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The Dipterocarpaceae is the emblematic family of South-east Asian tropical rain 11 

forests and many of the seasonally dry forests of continental South and South-east 12 

Asia.  Whilst dipterocarps are pantropical, with two sub-families Monotoideae and 13 

Pakaraimoideae found in Africa and South America (Maury-Lechon and Curtet 14 

1998), Asian forests that can be dominated by dipterocarps occur from southern 15 

India throughout Malesia to New Guinea (Figures 1 and 2).  In South-east Asia, the 16 

dominance of dipterocarps is evident in most mature forest communities, 17 

comprising around 20% of all trees (Slik et al. 2003) and a greater proportion of the 18 

larger forest trees; the majority are lowland species rarely found above 1200 m 19 

above sea level (Whitmore 1984).  In the drier continental forests, dipterocarps 20 

make up a greater proportion of the trees but with reduced species diversity 21 

(Smitinand et al. 1980; Ashton 2014; Figure 2).  Given this ecological predominance, 22 

advancing our knowledge of the ecology of dipterocarp species yields a better 23 

understanding of the forests of South and South-east Asia as a whole (Ashton 1988, 24 

2014; Ghazoul 2016).  25 

 26 

 Dipterocarp trees are influential in the structure and function of Asian 27 

forests.  They are amongst the tallest trees found in the tropics (Banin et al. 2012; 28 

Mongabay 2016a,b), making them important stores of above-ground carbon (Slik et 29 

al. 2013) and they are highly productive (Banin et al. 2014).  These features, 30 

combined with their commercially favourable wood properties, clear straight boles 31 

and high stem density in accessible lowland forests meant they became widely 32 
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exploited for timber in the twentieth century (Sodhi et al. 2004).  Indeed, many of 33 

the earliest studies of dipterocarps were by silviculturalists (e.g. Brandis 1895; 34 

Foxworthy 1932; Symington 1943).  The forests of South-east Asia have therefore 35 

been shaped by a long management and disturbance history, with slightly less than 36 

half of the original forest area now remaining (Stibig et al. 2014).  Whilst logging has 37 

declined in some parts of Asia, agriculture and the fragmentation associated with 38 

land conversion, pose further threats to the ecological functioning of remaining 39 

forest stands (Wilcove et al. 2013).  Nonetheless, in recent years there has been an 40 

increased commitment to restoring forest cover in tropical Asia and new scientific 41 

understanding is required to determine how this might be done successfully 42 

(Chazdon 2008; Kettle 2010; Tuck et al. 2016).  Evidently, forest restoration in much 43 

of Asia will have to rely on successful establishment of dipterocarp communities 44 

facilitated by a deeper understanding of their ecology. 45 

 46 

 The Asian dipterocarps are found in India (Antin et al. 2016), Bangladesh, 47 

Nepal, Sri Lanka and the Andaman Islands, in the seasonal forests of Thailand 48 

(Disyatat et al. 2016), Cambodia (Kenzo et al. 2016b), Vietnam (Dong et al. 2016 a, 49 

b; Nguyen and Baker 2016), Myanmar, Laos and into southern China.  These drier 50 

forests are more open, shorter and have markedly lower diversity (Figures 1 and 2).  51 

Dipterocarps are found across Malesia, throughout the Malay peninsula (Chong et 52 

al. 2016; Kenzo et al. 2016a; Ng et al. 2016; Yamada et al. 2016), Sumatra, Java, and 53 

in Borneo (Ang et al. 2016; Brearley et al. 2016; Dent and Burslem 2016; Nutt et al. 54 

2016; Saner et al. 2016) they reach their highest species diversity (Figure 2).  East 55 

of Wallace’s line, in neighbouring Sulawesi, diversity decreases markedly and 56 

although dipterocarp ranges extend to New Guinea (Figure 2), dipterocarp species 57 

constitute a much smaller component of the forest canopy.  58 

 59 

 The family-level dominance of the dipterocarps in the forests of South and 60 

South-east Asia has long fascinated ecologists; the closest tropical ecological 61 

equivalent are the stands of Caesalpinioideae subfamily of the Leguminosae found 62 

in west Africa and South America (Henkel 2003; Peh et al. 2011; Newbery et al. 63 

2013).  Dipterocarps have a number of ecological characteristics that all likely 64 

contribute, in some way, to their dominance, which play out at various points during 65 
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their life cycle (Figure 3).  These include their non-pioneering yet often fast-growing 66 

lifestyle (Thomas and Bazzaz 1999; Banin et al. 2014), mast fruiting (Ashton et al. 67 

1988; Brearley et al. 2007; Numata et al. 2013), wind-dispersed winged fruits 68 

(Suzuki and Ashton 1996; Smith et al. 2015) and symbiotic ectomycorrhizal 69 

associations (Brearley 2011, 2012) (Figure 3).  Under conditions relatively free from 70 

exogenous disturbance, these family-wide traits and underlying mechanisms could 71 

help dipterocarps gain a competitive advantage and lead to their ecosystem 72 

dominance.  Nonetheless, species within the family are certainly not equal and there 73 

is clear variation in growth rates, wood density, maximum tree size, leaf form, 74 

pollinators, seed size, dispersal distance, germination rates, and niche breadth 75 

including edaphically- and irradiance-mediated habitat specialisation (Ashton 76 

1964, 1982, 2014; Gunatilleke et al. 1997; Thomas and Bazzaz 1999; Marod et al. 77 

2004; Russo et al. 2005; Philipson et al. 2012; O’Brien et al. 2013; Born et al. 2014; 78 

Smith et al. 2015; Ghazoul 2016).  Indeed, this functional variation and exploitation 79 

of different environmental niches is one explanation for the maintenance of high 80 

dipterocarp diversity, of over 500 species, in the tropical forests of Asia.    81 

 82 

 The key to understanding the ecology of the Asian dipterocarps lies in 83 

improving our knowledge of the ecological processes at various scales, and the life-84 

cycle stage(s) at which these operate (Figure 3).  This special issue compiles new 85 

research relating to these key processes, across the majority of the Asian 86 

dipterocarps’ range.  Ultimately, through understanding how dipterocarp species 87 

reproduce, establish, function, and become organised in space and time, we can 88 

better interpret the impacts of environmental change on the functioning, survival 89 

and evolution of these communities and judge the effectiveness of management 90 

interventions.   Here, we briefly outline the key messages of the papers contained in 91 

this special issue and conclude by placing the new understanding in the context of 92 

the future for Asian forests. 93 

 94 

Genetics and reproduction  95 

We have a reasonable picture of the broader branches of the dipterocarp phylogeny 96 

with three subfamilies (Dipterocarpoideae, Monotoidae and Pakaraimoidae) and 97 

two tribes (Dipterocarpeae and Shoreae) in the former subfamily (Dayanandan et 98 
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al. 1999; Gamage et al. 2006).  This is confirmed by Ng et al. (2016) using two marker 99 

regions (rpoB and trnL).  However, the ‘twigs’ of the tree, particularly within Shorea 100 

and closely related clades, still need attention – part of this lack of clarity is likely 101 

due to historical hybridisation events.  Hybridisation between dipterocarp species 102 

is known (e.g. Kamiya et al. 2011) and may be one of the causes of high species 103 

diversity in this family.  Kenzo et al. (2016a) examined a population of hybrid 104 

seedlings in Singapore and showed how their growth and survival rates are 105 

comparable to their parent species.  However, the proportion of hybrids was greater 106 

at the seedling stage than the adult stage and they suggested that this might be due 107 

to increasing forest disturbance.  At the population level, Ang et al. (2016) report 108 

that whilst naturally occurring seedlings of two dipterocarp species did not have 109 

lower genetic diversity in logged forest compared to unlogged forest, genetic 110 

variation within enrichment-planted seedlings was lower in monocultures 111 

compared to mixed-species plantings, presumably through post-planting mortality 112 

processes, which warrants further research.  A possible mechanism for this was 113 

demonstrated by Nutt et al. (2016) who found Parashorea tomentella seedlings with 114 

greater heterozygosity had a greater survival rate, as did those with larger seeds, 115 

although neither seedling growth nor germination rate were influenced by 116 

heterozygosity.  Ng et al. (2016) further fill a gap by providing new data on genome 117 

sizes for over 100 species of dipterocarps.  Genome sizes were found to be 118 

consistently small (< 0.8 picograms in all cases).  Because of the high nutrient 119 

demand for nucleic acids, it has been suggested that infertile soils, as found in much 120 

of South-east Asia (e.g. Banin et al. 2015), will lead to small genome sizes (Kang et 121 

al. 2015) supported by the data of Ng et al. (2016).  However, there is still work to 122 

be done to determine the evolutionary importance and ecological correlates of 123 

genome size variation in dipterocarps and Ng et al. (2016) provides the starting 124 

point for this. 125 

 126 

Dispersal and predation  127 

Mast fruiting is hypothesised to be competitively advantageous to trees by satiating 128 

seed predators (Janzen 1974).  Chong et al. (2016) studied the fates of seeds 129 

following a masting event at a fragmented site in Singapore to examine how human 130 

impacts on the forest might influence reproduction.  Overall, they found that long-131 
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tailed macaques were the dominant pre-dispersal seed predators whereas insects 132 

dominated predation post-dispersal.  Vertebrate post-dispersal predation was more 133 

comparable to that of a logged forest than an intact forest in a previous study 134 

(Curran and Webb 2000), indicating possible changes in seed predation patterns 135 

associated with forest disturbance.  Notably, Chong et al. (2016) identified a large 136 

proportion of non-viable seeds, which could be attributed to lower rates of out-137 

crossing in a disturbed and fragmented landscape.  Maintaining seed viability could 138 

become increasingly important for future dipterocarp communities, since it has also 139 

been established that successful reproduction may be lower in ‘minor’ masting 140 

events (Maycock et al. 2005) that appear to be increasing in frequency. 141 

 142 

Leaf and stem traits 143 

We are still learning how seedling ecophysiology drives species co-existence in 144 

dipterocarp communities, for example through the growth and survival strategies 145 

of light-demanding versus shade tolerant dipterocarps under resource-limited 146 

environmental conditions.  Saner et al. (2016) observed six dipterocarp species and 147 

grouped the seedlings into light-demanding species that increased their growth 148 

rates after a simulated gap opening in contrast to shade tolerant species that showed 149 

a greater relative increase in non-structural carbohydrates.  Although the role of 150 

non-structural carbohydrates in light adaptation is not well understood, it was 151 

found that enhanced non-structural carbohydrates were related to increased 152 

dipterocarp seedling drought survival in an earlier study (O’Brien et al. 2014).  153 

Kenzo et al. (2016b) looked at leaf traits of two common dipterocarps in dry 154 

deciduous dipterocarp forest in Cambodia and found strong relationships with 155 

height in the canopy.  Canopy leaves had the fastest rate of photosynthesis - 156 

comparable to those in evergreen forests - despite a dry, hot and bright 157 

environment.  These were maintained by thick leaves with a high nitrogen content 158 

and minimal stomatal limitation even in the early dry season.  There were also clear 159 

seasonal differences with photosynthesis being faster in the wet season as stomata 160 

could remain open due to less water stress and, in general, the two species showed 161 

similar patterns in leaf ecophysiological traits, indicating their convergent 162 

adaptation to a highly seasonal environment.  In contrast, Dent and Burslem (2016) 163 

showed differing leaf traits among saplings of nine dipterocarp species in a tropical 164 
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forest of Malaysian Borneo that had soil-specific edaphic preferences.  Seedlings 165 

specialised to more nutrient-poor sandy soil had strategies for nutrient and water 166 

conservation such as lower foliar nitrogen and phosphorus concentrations, reduced 167 

stomatal density and less negative δ13C, whereas those species specialised to more 168 

nutrient-rich clay soils generally had traits with a broader range of values 169 

(particularly for leaf mass per area and leaf lifespan).  This has implications for the 170 

high diversity of dipterocarps seen across Borneo as high alpha diversity on 171 

nutrient-rich soils may be driven by a wider range of growth strategies (see also 172 

Coomes et al. 2009) and the considerable edaphic variation leads to high beta 173 

diversity across the island.  Dong et al. (2016a) examined the ecophysiology of 174 

Hopea odorata within artificial gaps in an Acacia plantation in a silvicultural 175 

restoration experiment in Vietnam.  They showed optimal physiological traits and 176 

growth towards the centre of the gaps where irradiance was greatest; this species 177 

demonstrated high phenotypic plasticity and rapid growth under high light 178 

conditions indicating that it could be a good candidate for initial forest restoration.  179 

In follow-up research, Dong et al. (2016b) showed that these seedlings achieved 180 

such growth rates through a greater light-use efficiency, obtained by changes in 181 

crown structure under the higher irradiance conditions.  There was, however, 182 

competition for water when growing near the gap edge and closer to the Acacia 183 

nurse crop, suggesting consideration should be given to the choice of nurse crops to 184 

minimise competitive interactions in restoration plantings (Dong et al. 2016a).   185 

These studies indicate how information on species-level functioning can provide 186 

insights for applied conservation and forest management, as well as fundamental 187 

ecological understanding of factors influencing community assembly and diversity.  188 

 189 

Mycorrhizas and soil processes 190 

Dipterocarps have long been known to be ectomycorrhizal (Singh 1966) with 191 

ectomycorrhizas often credited as promoting faster growth rates and the high 192 

species diversity and dominance of the family.  Brearley et al. (2016) combined four 193 

independent studies that manipulated connection to an ectomycorrhizal hyphal 194 

network and found very little supporting evidence that this network influenced 195 

seedling growth or survival over the short term.  They hypothesised this was due to 196 

low host specificity of ectomycorrhizal fungi meaning that there would be little 197 
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chance for adult trees to exclusively support kin through a hyphal network and it 198 

would not, therefore, provide an adaptive benefit.  However, they did not actually 199 

examine the ectomycorrhizal fungi found in their study system, as did Disyatat et al. 200 

(2016); the latter looked at fungal diversity and composition in a dry dipterocarp 201 

forest fragment and a dipterocarp plantation in Thailand.  They found lower 202 

ectomycorrhizal richness in the plantation and differences in ectomycorrhizal 203 

species composition between wet and dry seasons elucidating a previously 204 

overlooked temporal dimension to dipterocarp-associated ectomycorrhizal 205 

communities.  Their traditional molecular research methods can be complemented 206 

in the future by using next generation sequencing for improving our understanding 207 

of tropical soil microbial processes (Peay et al. 2015; Thomas et al. 2015) and their 208 

links with their respective above-ground communities. 209 

 210 

Structure and composition  211 

Monitoring forest structure and composition has become increasingly important 212 

with a need to accurately and efficiently quantify carbon stocks and fluxes in 213 

association with REDD+ (Reducing Emissions from Deforestation and forest 214 

Degradation) policies (Miles and Kapos 2008).  Changes in community composition 215 

may also alter the ability of a forest to sequester and store carbon.  Thuy and Baker 216 

(2016) present a study on the dry dipterocarp forests of Vietnam based on 217 

numerous small sampling plots where four dipterocarp species made up about 80% 218 

of the trees.  In terms of regeneration, the seedling composition in each plot was not 219 

always representative of the canopy composition and Shorea siamensis appeared to 220 

have poor regeneration capacity that is likely to lead to a changing species 221 

composition over time.  Temporal forest dynamics were also explored by Antin et 222 

al. (2016) who used direct observations of diameter growth over a 21-year period 223 

in the Western Ghats of India, combined with allometric projections of height and 224 

crown dimensions to predict dynamics of the two dominant dipterocarps 225 

Dipterocarpus indicus and Vateria indica.  They found that Vateria indica was a faster 226 

growing species in all dimensions in the majority of situations suggesting that it was 227 

increasing in dominance in the forest, possibly from some past disturbance.  Yamada 228 

et al. (2016) examined the impacts of logging on five common dipterocarp species 229 

at Pasoh Forest Reserve in Peninsular Malaysia.  An influence of past logging on tree 230 
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growth or mortality was not detected, but there was still a signature on patterns of 231 

recruitment that was an order of magnitude lower in logged forest, with the caveats 232 

that the study was based on only a single plot of each forest type and the logged plot 233 

may also have been impacted by edge effects.  These studies indicate the need for 234 

monitoring a variety of structural parameters (horizontal and vertical), dynamic 235 

processes (growth, mortality and recruitment) and community members (adults, 236 

saplings and seedlings) to understand changes and predict the future of dipterocarp 237 

assemblages. 238 

 239 

Disturbance and fragmentation 240 

Forest disturbance and fragmentation are prevalent in the forests of South-east Asia 241 

(Sodhi et al. 2004; Wilcove et al. 2013) and understanding the impacts of these 242 

human-driven processes on dipterocarp-dominated forests is thus pressing.  243 

Numerous studies noted above addressed some aspects of forest disturbance or 244 

fragmentation.  Ang et al. (2016) showed how logging had minimal impacts on 245 

seedling genetic diversity and Yamada et al. (2016) also found that logging did not 246 

impact tree growth rates or mortality but did influence recruitment.  A number of 247 

studies used the small Bukit Timah Nature Reserve and surrounding secondary 248 

forest as examples of fragmented forest within an urbanised matrix (Corlett 1992) 249 

that may represent an extreme fate of dipterocarp forests in the future.  Chong et al. 250 

(2016) indicated that fragmentation and disturbance might affect patterns of 251 

dipterocarp reproduction and successful seed dispersal and germination and Kenzo 252 

et al. (2016a) suggested that fragmentation may increase rates of hybridisaton.  In 253 

a dry dipterocarp forest, Disyatat et al. (2016) further demonstrated that 254 

fragmentation can influence patterns of ectomycorrhizal fungal diversity.  Varying 255 

results indicate both that different stages of the dipterocarp life cycle may be 256 

differentially affected by disturbance and fragmentation, and that the degree of 257 

disturbance and the environmental setting also play a role in determining tangible 258 

effects on dipterocarp communities. 259 

 260 

Moving forward: applying autecological knowledge of dipterocarps to forest 261 

change, regeneration and restoration 262 
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The tropical forest biome is undergoing unprecedented environmental changes, 263 

including climatic, biogeochemical, fragmentation and extraction disturbances 264 

(Malhi et al. 2014).  Particular challenges in South-east Asia include possible 265 

increasing frequency and/or intensity of El Niño-associated droughts and fires (e.g. 266 

Huijnen et al. 2016) and associated tree mortality (Slik 2004; Ngo et al. 2016) along 267 

with the widespread forest conversion to agriculture, forest fragmentation and 268 

associated edge effects and isolation effects.  These landscape-level changes can 269 

alter forest biomass dynamics (Chaplin-Cramer et al. 2015), seedling performance 270 

(Yeong et al. 2016) and successful reproduction (Chong et al. 2016).  Timber 271 

extraction has been extensive in the past, and long-lived taxa, such as the 272 

dipterocarps, may have a ‘disturbance memory’ of such perturbations, transcending 273 

generations and lasting decades or hundreds of years (e.g. Yamada et al. 2016).  274 

Understanding the fundamental ecology of this important taxon, and the processes 275 

that underpin the structure and function of dipterocarp communities will help us 276 

identify the ways in which Asian forests may be affected now and into the future. 277 

 278 

 Forest restoration is on the agenda in many Asian countries, with initiatives 279 

proposed or underway, for example, in Sabah, Malaysia (The Star 2015) and in India 280 

(Business Standard 2015).  This is a welcome development and represents a distinct 281 

opportunity.  Contributions to this special issue have demonstrated that successful 282 

regeneration and restoration programmes may require an understanding of the 283 

entire life cycle of target species and communities (see also Kettle 2010).  Seed 284 

viability and seedling survival are affected by genetics of parent trees and their 285 

landscape context, in both natural regeneration and enrichment planting situations 286 

(Ang et al. 2016; Chong et al. 2016; Nutt et al. 2016; Kenzo 2016a).  Seedling 287 

physiology, performance and competition in given environmental settings (Dent 288 

and Burslem 2016; Dong et al. 2016 a, b, Saner et al. 2016) and changes in 289 

communities over time through mortality and recruitment processes ultimately 290 

shape the future communities (Ang et al. 2016; Antin et al. 2016; Nguyen and Baker 291 

2016).  Perturbations to other biotic components (e.g. fungi, fauna) in these forest 292 

systems will also interact to affect rehabilitation of dipterocarp communities (Chong 293 

et al. 2016; Disyatat et al. 2016).    294 

 295 
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 We acknowledge the challenge in knowledge transfer between those who 296 

pursue fundamental research on the ecology of dipterocarps and those involved in 297 

applied forest management.  However, we hope that this special issue demonstrates 298 

how bridges between fundamental research and applied questions can be crossed 299 

and that the contributions within direct us to a new domain of confidence and a 300 

more comprehensive understanding of the ecology of the Asian dipterocarps. 301 
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Figure 1: Dipterocarp-dominated forest types in South and South-east Asia including some of the 541 

study sites in this special issue.  Dry dipterocarp forest in Kratie province (Cambodia) in the (a) wet 542 

season and (b) dry season; (c) Lowland evergreen rain forest at Gunung Mulu, Sarawak, northern 543 

Borneo; (d) Heath forest (also known as kerangas) at Barito Ulu, central Borneo; (e) Bukit Timah, a 544 

fragment of dipterocarp forest in Singapore; (f) canopy walkway at Pasoh Forest Reserve, Peninsular 545 

Malaysia; (g) Uppangala in the Western Ghats of India; (h) Danum Valley in Sabah, northern Borneo; 546 

(i) forest in Murung Raya regency, central Borneo showing traversing logging road.  Photos by 547 

Tanaka Kenzo (a, b, e), Lindsay Banin (c), Francis Brearley (d, f, i), Jimmy Le Bec (g) and Ch’ien Lee 548 

(h). 549 

Figure 2: Map of South and South-east Asia depicting mean annual precipitation across the region 550 

(from WORLDCLIM; Hijmans et al. 2005) with region-specific species richness values for members 551 

of the Dipterocarpaceae.  Species richness data come from Ashton (1982) for Peninsular Malaysia, 552 

Sumatra, Java, Borneo, The Philippines, Sulawesi and New Guinea, Jacobs (1981) for Sri Lanka, 553 

Thailand, Cambodia and Vietnam and Li et al. (2000) for Chin). Photos by Aswandi (Sumatra), 554 

Shangwen Xia (China), Thuy Nguyen Thi (Vietnam) and Liam Trethowan (Sulawesi). 555 

Figure 3: Key stages of the dipterocarp life cycle (inner circle) and the linkages with fundamental 556 

environmental processes (symbols on outer circle) that are discussed in this special issue.  Note that 557 

the ecological processes cannot be linked to a single life cycle stage, but represent the approximate 558 

scale at which the process operates and/or the starting point for interaction among stages and 559 

processes through the life cycle. © Diogo Guerra. 560 


