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Abstract 1 

Advances in technology have allowed research in cognitive neuroscience to contribute 2 

significantly to the discipline of sport psychology. In most cases, the research has become 3 

more rigorous and has directed current thinking on the mechanisms subserving a number of 4 

psychological theories and models of practice. Currently, the three most common 5 

neuroscience techniques informing sport and exercise research are electroencephalography, 6 

transcranial magnetic stimulation and functional magnetic resonance imaging. In this 7 

review, we highlight and discuss the contributions to sport psychology that have been made 8 

in recent years by applying these techniques, with a focus on the development of expertise, 9 

motor cognition, motor imagery and action observation. 10 
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Highlights 1 

 Recent advances in neuroscience have benefitted sport and exercise psychology  2 

 Integral to research in neuroscience is a good understanding of measurement 3 

techniques 4 

 Research supports combined imagery and action observation interventions  5 

 6 
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Introduction 1 

The considerable advances in neuroscience and digital technology over the past 30 years 2 

have had a substantial and positive impact on sport psychology research and practice. The 3 

ability to demonstrate functional brain activity during sporting performance and whilst 4 

engaged in psychological interventions has been important in promoting the efficacy of the 5 

discipline, albeit in most cases through cross-sectional studies. Cognitive neuroscience has 6 

now been able to provide sport psychologists with the ‘evidence’ for the “neural 7 

reorganizations that occur with expertise [that] reflect the optimization of the 8 

neurocognitive resources to deal with the complex computational load needed to achieve 9 

peak performance”[1 p.1]. 10 

Moore’s Law’s predictions for growth in digital electronics have seen important 11 

improvements in neuroimaging techniques, brain activity recording, and non-invasive 12 

electrical stimulation of the brain. These gains, alongside the decreasing cost of computing 13 

power, have allowed many sport and exercise psychology laboratories to host an array of 14 

complex, increasingly mobile and wireless technology that could not have been envisaged 15 

even 20 years ago. Many laboratories now include multi-channel, light-weight mobile 16 

electroencephalography (EEG), wireless electromyography (EMG), and single and paired-17 

pulse transcranial magnetic stimulation (TMS) equipment. In addition, sport and exercise 18 

psychologists are collaborating more regularly with their mainstream psychology and 19 

cognitive neuroscience department colleagues to use functional magnetic resonance 20 

imaging (fMRI) and magnetoencephalography (MEG) to study brain activity in sport and 21 

exercise psychology research.  22 
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Unfortunately, however, with the ubiquity of neuroscience technology comes an 1 

uncomfortable allure and fascination with neuroscience research that can seem to make 2 

any psychological finding more important, even when the presented neuroscience is almost 3 

irrelevant to the logic of the study [2]. This is a concern for sport and exercise psychology 4 

and researchers should be careful not to include neuroscientific approaches in an attempt 5 

to inflate the importance of their research or to overemphasize the meaning of their data. 6 

One area that has had to wrestle with the recent technical and popularity challenges 7 

in cognitive neuroscience is motor cognition. Defined as the study of the mechanisms 8 

involved in movement thought, planning, intention, organization, perception, 9 

understanding, learning, imitation and attribution (modified from Jeannerod, [3]), motor 10 

cognition has been important for sport and exercise psychology because it “acknowledges 11 

the inextricable link between cognition and action…and highlights the importance of bodily 12 

knowledge and kinesthetic processes in the study of mental activity” [4 p.421 ]. Jeannerod’s 13 

list has an obvious attraction for sport psychologists and the field has had an even greater 14 

lure in recent years following the neuroscientific evidence in support of a proposal for a 15 

putative human mirror neuron system (hMNS). The suggestion that a hMNS is the neuronal 16 

substrate underlying this array of functions has, however, been increasingly questioned [5, 17 

6] and even been presented as “the most hyped concept in neuroscience” [7 p.1]. Sport and 18 

exercise psychologists need to be cognizant of the hyperbole surrounding cognitive 19 

neuroscience, motor cognition and the hMNS if they are to research and practice effectively 20 

in motor learning.  21 

In the following sections, we present recent evidence to support the continued but 22 

cautious use of three techniques that purport to provide evidence for neuroscientific 23 
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mechanisms that underlie the modulation of some of the cognitive processes and common 1 

behaviors seen in the sport and exercise psychology literature.  2 

Electroencephalography (EEG) 3 

Electroencephalography (EEG) records voltage fluctuations in the electrical activity of 4 

the brain through electrodes attached to the scalp. In sport psychology EEG has, historically, 5 

been the subject of criticism (see Hatfield et al. [8]). In the sports-based research of the 6 

1980s and early 1990s, EEG montages tended to be limited to small electrode arrays and 7 

signal analysis was often restricted to spectral power in the single frequency of interest; 8 

typically overall alpha power (i.e., 8-13Hz) conflating the known behavioral differences 9 

between upper and lower frequency alpha power. Therefore, whilst the good temporal 10 

resolution allowed accurate measurement of cortical activity, the poor spatial resolution 11 

and partial analysis may have limited any meaningful interpretation of the data.  12 

The psychological meaning of any event-related frequency change has been based 13 

on the generally accepted topographic function of the cortex immediately below the 14 

electrode(s) of interest. For example, alpha power increase, or event-related 15 

synchronization (ERS), at electrode site T3 was referred to as reduced auditory processing, 16 

whilst a decrease in power, or event-related desynchronization (ERD), could be explained by 17 

an increase in ‘self-talk’. Today, with more dense electrode arrays, more detailed analyses 18 

and the contribution from concurrent imaging techniques, it is accepted that the neural 19 

substrate of skilled performance is more extensive than previously reported. Fortunately, 20 

some of the recent research has learnt from the early ambitious studies. Di Fronso et al. 21 

[9*], for example, using a 32-channel montage, have identified the neural markers 22 

underlying optimal and sub-optimal pistol shooting performance, and used the ERS and ERD 23 
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data as evidence to support the neural efficiency hypothesis [10] and the reinvestment 1 

theory [11] of skilled motor performance.  2 

Other EEG components of interest to sport and exercise psychology include the 3 

movement-related cortical potential (MRCP) and event-related potentials (ERPs). The MRCP 4 

is a low-frequency negative shift in the electroencephalographic recording that occurs 5 

approximately 2 seconds before voluntary movement onset. Its components, the readiness 6 

potential and the negative slope (aka ‘early’ and ‘late’ Bereitschaftspotential respectively), 7 

are thought to reflect the cortical processes involved in movement planning and 8 

preparation. As such, the MRCP has been seen as a useful marker of motor learning [12] 9 

since, like the ERS shown in the Di Fronso et al. [9*] study, reductions in the slopes of both 10 

components may reflect the greater neural efficiency that accompanies motor skill  11 

acquisition. In a related study, Rietschel et al. [13] have recently shown that the ERP, P3 (an 12 

index of the involuntary orienting of attention), increased in amplitude over practice trials 13 

to offer evidence that attentional reserve increases with motor skill acquisition.  14 

Taken together, we propose that these three markers of skill improvement indicate a 15 

reduction in cerebral cortical activation. This reduced cognitive load accompanying expertise 16 

is consistent with the claims of the current attentional theories in sport psychology (e.g, 17 

Processing Efficiency Theory [14] and Attentional Control Theory [15]. EEG methodologies, 18 

therefore, continue to offer a valid approach for sport and exercise psychologists. The 19 

increasing opportunities to investigate sporting behavior in ecologically-valid environments 20 

with mobile, wireless systems suggests this area of research remains fruitful.  21 

Transcranial Magnetic Stimulation (TMS) 22 
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Delivering transcranial magnetic stimulation (TMS) to motor cortex elicits a motor 1 

evoked potential (MEP) response in the corresponding muscle on the contralateral side of 2 

the body. The amplitude of the MEP, measured using surface EMG, provides a marker of 3 

corticospinal excitability at the time of stimulation. Recently, this technique has been used 4 

to explore some of the theoretical claims from motor cognition and motor simulation, 5 

especially the effects of motor imagery (MI; see [16*]) and action observation (AO; see [17]) 6 

interventions on activity in the corticospinal system. It is now accepted that MI and AO 7 

interventions facilitate corticospinal excitability in comparison to various control conditions 8 

and that activity in an extended hMNS may explain some of this facilitation. This has been 9 

demonstrated in recent sports-related tasks for both AO [18, 19] and MI [20, 21] with the 10 

implicit assumption that the increased corticospinal activity during these simulation 11 

conditions in some way supports motor learning and the development of expertise. We 12 

would argue that this association is not yet fully established.  13 

In this field of research, MI or AO interventions that elicit the largest MEP response 14 

are often assumed to be the most effective in delivering enhancements in motor 15 

performance and (re)learning. For example, informed by the work of Vogt et al. [22], several 16 

recent TMS experiments have demonstrated that corticospinal excitability is increased when 17 

participants engage in kinesthetic imagery synchronous with AO, in contrast to independent 18 

MI or AO [e.g., 23-25*]. This has resulted in claims that simultaneous AO and MI 19 

interventions may offer sport and exercise psychologists more optimal delivery methods for 20 

performance and learning than the traditional independent MI and AO approaches. Future 21 

research should investigate these claims. In a similar study, Wang et al. [21] have reported 22 

MEPs of larger amplitude when elite badminton players imagined serving whilst holding 23 
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their racquet, compared to imagery when the racquet was absent. It is possible, therefore, 1 

that holding implements associated with movement execution during imagery may make 2 

such interventions more effective, and would be consistent with the central tenets of 3 

Holmes and Collins’ PETTLEP model [26] where haptic afference was suggested to facilitate 4 

MI generation.  5 

Whilst intuitively appealing, an underlying assumption with this research paradigm is 6 

that an elevated MEP response during certain AO or MI conditions would be facilitative to 7 

motor skill performance. Although plausible, it should be noted that successful performance 8 

in high-level sport is usually characterized by reduced cortical activity [e.g., 9*]. TMS 9 

research may, therefore, only reflect the conscious and focused attentional processes 10 

associated with skill learning and not necessarily the more autonomous and ‘intentive’ brain 11 

activity of the skilled performer described by Shaw [27]. Sport psychology researchers and 12 

applied practitioners should be cautious in interpreting greater MEP responses during AO or 13 

MI as ‘better’ until further evidence of the neural substrate for skill learning and motor 14 

performance is provided. Similarly, Hétu et al. [28] have cautioned against generalizing data 15 

from TMS action observation research and suggested that it will be critical to first “identify 16 

individuals who are more prone to respond to action observation interventions” (p.10) and 17 

to “distinguish ‘good’ from ‘bad’ observers [to] potentially optimize the use of action 18 

observation” (p.10) as an intervention technique. 19 

Functional Magnetic Resonance Imaging (fMRI) 20 

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that detects 21 

changes in cerebral blood flow, which are then interpreted as a marker of neural activity. 22 

Staying with our motor cognition theme, experiments using fMRI have shown some 23 
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commonality between the areas active during the execution of movement and those active 1 

during motor imagery [29] and action observation [30]. Possibly more important however, 2 

multi-voxel pattern analysis techniques have shown that it is possible to distinguish areas in 3 

which increased activity is seen to be unique to each behavior [31]. In a comprehensive 4 

review of online and offline performance gains following motor imagery practice, Di Rienzo 5 

et al. [32* p.1] also demonstrate the “compelling evidence that motor imagery promotes 6 

motor learning”. In line with the discussion in the TMS section above, the finding that action 7 

observation and motor imagery activate similar and distinct motor regions of the brain is 8 

important for practice in sport and exercise psychology and, in recent years, has seen an 9 

increased interest in their combined use [see 22]. Instead of contrasting the respective 10 

benefits of MI and AO, optimal training gains might be anticipated through their combined 11 

and simultaneous use because of the greater shared neural activity. For example, recent 12 

fMRI experiments have explored the effects of the simultaneous combination of AO and MI 13 

of kicking [33] and balance [34] tasks. These studies indicate that AO with concurrent MI 14 

elicits increased activity in brain regions involved in motor execution of the same task 15 

compared to independent AO [33] or both independent AO and MI [34].  16 

It is important to note that the increased activity detected by fMRI techniques could 17 

represent an increase in neural mechanisms that are either facilitatory or inhibitory to 18 

movement production. As such, we encourage researchers to consider combining fMRI with 19 

other measurement techniques, such as EEG or TMS, to provide a clearer understanding of 20 

the fMRI activity.  21 

From the MRCP research discussed in the EEG section above, it is well-established 22 

that, compared to novices, expert performers seem to exhibit reduced and more ‘efficient’ 23 
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cortical activity related to movement preparation and execution [e.g., 35, 36]. In addition, 1 

successful athletic performances are characterized by reduced cortical activity prior to and 2 

during movement execution than less successful performances [9*]. In support of the 3 

findings from these approaches, Costanzo et al. [37] used fMRI to demonstrate that this 4 

neural efficiency in experts may extend beyond motor preparation and execution. 5 

Specifically, they reported that in comparison to non-athletes, athletes with experience of 6 

performing successfully in stressful competitive situations exhibited reduced activity in pre-7 

frontal brain regions associated with regulation of emotions when processing pictures of 8 

emotional stimuli related to their sport (e.g., injury). The authors argued that this reduced 9 

activity in processing emotional stimuli may preserve processing resources required for 10 

attentional and motor processes, allowing these athletes to cope and manage their 11 

performance during the stress of competition. 12 

Conclusions 13 

The use of advanced neuroimaging and brain activity recording technology in motor 14 

cognition and cognitive neuroscience continues to inform thinking in sport and exercise 15 

psychology. The findings from recent research have significant implications for practice, 16 

especially in the area of motor learning. However, as the opportunities to use this 17 

technology become more available, it remains important for researchers to be mindful of 18 

the electrophysiological limitations of the methods when reporting their findings and for 19 

practitioners to constrain their work to the evidence from methodologically rigorous 20 

studies.  21 

 22 



12 
 

References 1 

1. Debarnot U, Sperduti M, Di Rienzo F, Guillot A: Expert bodies, expert minds: how 2 

physical and mental training shape the brain. Front Hum Neuro 2014, 8: 280 3 

2. Weisberg DS, Keil FC, Goodstein J, Rawson E, Gray JR: The seductive allure of 4 

neuroscience explanations. J Cog Neurosci 2008, 20(3): 470-477.  5 

3. Jeannerod M: Motor cognition: what actions tell the self. Oxford Psychology Series; 6 

2006: 1-209. 7 

4. Moran A: Cognitive psychology in sport: progress and prospects. Psychol Sport Ex 8 

2009, 10: 420-426. 9 

5. Kilner JM, Lemon RN: What we know currently about mirror neurons. Curr Biol 2013, 10 

23: R1057-R1062.  11 

6. Steinhorst A, Funke J: Mirror neuron activity is no proof for action understanding. 12 

Front Hum Neuro 2014, 8: 333. 13 

7. Jarrett CB: Mirror neurons: the most hyped concept in neuroscience? Psychol Today 14 

[Blog] 2012, http://www.psychologytoday.com/blog/brain-myths/201212/mirror-15 

neurons-the-most-hyped-concept-in-neuroscience. 16 

8. Hatfield BD, Haufler AJ, Spalding TW: A cognitive neuroscience perspective on sport 17 

performance. Human Kinetics, 2006: 221-240.  18 

9. *di Fronso S, Robazza C, Filho E, Bortoli L, Comani S, Bertollo M: Neural markers of 19 

performance states in an Olympic athlete: an EEG case study in air-pistol shooting. J 20 

Sport Sci Med 2016, 15: 214–222.  21 

This rigorous EEG study identifies some of the neural markers underlying optimal and 22 

suboptimal performance of an elite air-pistol shooter. The authors collected target 23 

pistol shots, perceived control, accuracy, and hedonic tone, and cortical activity data 24 

(32-channel EEG). ERD-ERS analysis supported the notion that optimal-automatic 25 

http://www.psychologytoday.com/blog/brain-myths/201212/mirror-neurons-the-most-hyped-concept-in-neuroscience
http://www.psychologytoday.com/blog/brain-myths/201212/mirror-neurons-the-most-hyped-concept-in-neuroscience


13 
 

performance experiences were characterized by a global ERS of cortical arousal 1 

associated with the shooting task, whereas suboptimal controlled states were 2 

underpinned by high cortical activity levels in the attentional brain network. Results 3 

are presented in line with the neural efficiency hypothesis and reinvestment theory. 4 

10. Del Percio C, Rossini PM, Marzano N, Iacoboni M, Infarinato F, Aschieri P, Lino A, Fiore 5 

A, Toran G, Babiloni C, Eusebi F: Is there a “neural efficiency” in athletes? A high-6 

resolution EEG study. NeuroImage 2008, 42: 1544-1553. 7 

11. Masters R, Maxwell J: The theory of reinvestment. Int Rev Sport Exerc Psychol 2008, 8 

1(2): 160-183. 9 

12. Wright DJ, Holmes PS, Smith DK: Using the movement-related cortical potential to 10 

study motor skill learning. J Mot Behav 2011, 43(3): 193-201.  11 

13. Rietschel JC, McDonald CG, Goodman RN, Miller MW, Jones-Lush LM, Wittenberg GF, 12 

Hatfield, BD: Psychological support of increasing attentional reserve during the 13 

development of a motor skill. Biol Psychol 2014, 103: 349-356.  14 

14. Eysenck MW Calvo MG: Anxiety and performance: The processing efficiency theory. 15 

Cogn Emot 1992, 6(6): 409-434. 16 

15. Eysenck MW, Derakshan N, Santos R, Calvo MG: Anxiety and cognitive performance: 17 

Attentional control theory. Emotion 2007, 7(2): 336-353. 18 

16. *Grosprêtre S, Ruffino C, Lebon F: Motor imagery and cortico-spinal excitability: a 19 

review. Eur J Sport Sci 2016, 16(3): 317-324.  20 

The authors produce one of the first sport-specific reviews of motor imagery and 21 

corticospinal excitability. They define MI and describe TMS techniques followed by a 22 

report of MI activities at a cortical level. The focus of the paper is on the specificities 23 

of cortico-spinal modulations during MI, investigated by TMS. A brief overview of 24 

subcortical mechanisms gives importance to the activation of peripheral neural 25 

structures during MI. 26 



14 
 

17. Naish KR, Houston-Price C, Bremner AJ, Holmes NP: Effects of action observation on 1 

corticospinal excitability: Muscle specificity, direction, and timing of the mirror 2 

response. Neuropsychologia 2014, 64: 331-348. 3 

18. Aglioti SM, Cesari P, Romani M, Urgesi C:Action anticipation and motor resonance in 4 

elite basketball players. Nat Neurosci 2008, 11: 1109-1116 5 

19. Wrightson JG, Twomey R, Smeeton NJ: Exercise performance and corticospinal 6 

excitability during action observation. Front Hum Neurosci 2016, 10: 106. 7 

20. Fourkas AD, Bonavolontà V, Avenanti A, Aglioti SM: Kinesthetic imagery and tool-8 

specific modulation of corticospinal representations in expert tennis players. Cereb 9 

Cortex 2008, 18(10): 2382-2390.  10 

21. Wang Z, Wang S, Shi FY, Guan Y, Wu Y, Zhang LL, Shen C, Zeng YW, Wang DH, Zhang J: 11 

The effect of motor imagery with specific implement in expert badminton player. 12 

Neurosci 2014, 275: 102-112.  13 

22. Vogt S, Di Rienzo F, Collet C, Collins A, Guillot A: Multiple roles of motor imagery during 14 

action observation. Front Hum Neurosci 2013, 7: 807. 15 

23. Mouthon A, Ruffieux J, Wälchli M, Keller M, Taube W: Task-dependent changes of 16 

corticospinal excitability during observation and motor imagery of balance tasks. 17 

Neurosci 2015, 303: 535-543. 18 

24. Wright DJ, Williams J, Holmes PS: Combined action observation and imagery facilitates 19 

corticospinal excitability. Front Hum Neurosci 2014, 8: 951.  20 

25. *Wright DJ, McCormick SA, Williams J, Holmes PS: Viewing instructions accompanying 21 

action observation modulate corticospinal excitability. Front Hum Neurosci 2016, 10: 22 

17.  23 



15 
 

This is one of the first experiments to investigate the effect of manipulating the 1 

viewing instructions provided to participants on corticospinal excitability prior to 2 

action observation. Motor evoked potential responses were compared when 3 

participants were instructed to observe finger-thumb opposition movement 4 

sequences: (i) passively; (ii) with the intent to imitate the observed movement; or (iii) 5 

whilst simultaneously and actively imagining that they were performing the 6 

movement as they observed it. Corticospinal excitability was facilitated most during 7 

combined observation and imagery. These findings suggest it is important to 8 

encourage observers to imagine themselves simultaneously performing the observed 9 

movement during action observation interventions. 10 

26. Holmes PS, Collins DJ: The PETTLEP approach to motor imagery: a functional 11 

equivalence model for sport psychologists. J App Sport Psychol 2001, 13(1): 60-83.  12 

27. Shaw JC: Intention as a component of the alpha-rhythm response to mental activity. 13 

Int J Psychophys 1996, 24(1-2): 7-23.  14 

28. Hétu S, Taschereau-Dumouchel V, Meziane HB, Jackson PL, Mercier C: Behavioral and 15 

TMS markers of action observation might reflect distinct neuronal processes. Front 16 

Hum Neuro 2016, 10:458.  17 

29. Hétu S, Gregoire M, Saimpont A, Coll MP, Eugene F, Michon PE, Jackson PL: The neural 18 

network of motor imagery: An ALE meta-analysis. Neurosci Biobehav Rev 2013, 37(5): 19 

930-949. 20 

30. Caspers S, Zilles K, Laird AR, Eickhoff SB: ALE meta-analysis of action observation and 21 

imitation in the human brain. NeuroImage 2010, 50(3): 1148-1167. 22 

31. Zabicki A, de Haas B, Zentgraf K, Stark R, Munzert J, Krüger, B: Imagined and executed 23 

actions in the human motor system: testing neural similarity between execution and 24 

imagery of actions with a multivariate approach. Cereb Cortex 2016. 25 

32. *Di Rienzo F, Debarnot U, Daligault S, Saruco E, Delpuech C, Doyon J, Collet C, Guillot, A: 26 

Online and offline performance gains following motor imagery practice: a 27 



16 
 

comprehensive review of behavioral and neuroimaging studies. Front Hum Neuro 1 

2016, 10: 315.  2 

This comprehensive review provides an overview of recent applied and fundamental 3 

studies investigating the effects of motor imagery practice on motor learning and 4 

detangles the applied and fundamental findings in support of a sleep contribution to 5 

motor consolidation after motor imagery practice. The authors conclude with an 6 

integrative approach of online and offline learning resulting from intense motor 7 

imagery in healthy participants, and underline research avenues in the motor 8 

learning/clinical domains. 9 

33. Villiger M, Estévez N, Hepp-Reymond M-C, Kiper D, Kollias SS, Eng K, Hotz-10 

Boendermaker S: Enhanced activation of motor execution networks using action 11 

observation combined with imagination of lower limb movements. PLoS One 2013, 8: 12 

e72403. 13 

34. Taube W, Mouthon M, Leukel C, Hoogewoud H-M, Annoni J-M, Keller M: Brain activity 14 

during observation and motor imagery of different balance tasks: an fMRI study. 15 

Cortex 2015, 64: 102-114. 16 

35. Di Russo F, Pitzalis S, Aprile T, Spinelli D: Effect of practice on brain activity: an 17 

investigation in top-level rifle shooters. Med Sci Sp Ex 2005, 37(9): 1586-1593. 18 

36. Wright DJ, Holmes PS, Di Russo F, Loporto M, Smith D: Differences in cortical activity 19 

related to motor planning between experienced guitarists and non-musicians during 20 

guitar playing. Hum Mov Sci 2012, 31(3): 567-577.  21 

37. Costanzo ME, Van Meter JW, Janelle CM, Braun A, Miller MW, Oldham J, Russell BAH, 22 

Hatfield BD: Neural efficiency in expert cognitive-motor performers during affective 23 

challenge. J Mot Beh 2016: 1-16. 24 


