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Abstract

Quantum annealing is a combinatorial optimization technique inspired by quantum mechanics. Here we show that a spin
model for the k-coloring of large dense random graphs can be field tuned so that its acceptance ratio diverges during
Monte Carlo quantum annealing, until a ground state is reached. We also find that simulations exhibiting such a diverging
acceptance ratio are generally more effective than those tuned to the more conventional pattern of a declining and/or
stagnating acceptance ratio. This observation facilitates the discovery of solutions to several well-known benchmark k-
coloring instances, some of which have been open for almost two decades.
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Introduction

Quantum annealing [1–6] is a combinatorial optimization

technique that employs a quantum fluctuation parameter C for the

purpose of escaping local minima. The parameter C is often a

transverse magnetic field in the presence of a low temperature T
[3]. Quantum annealing studies have been carried out on NP-hard

[7] problems such as the traveling salesman problem [8] and the

graph coloring problem [9,10]. Our version of quantum annealing

is close to that in ref. [8] in terms of the approximations employed

in the formulation. The algorithms in refs. [2,5] prioritize

simulating a quantum system as strictly as possible, while ours is

more flexible in incorporating known classical optimization

techniques, with the main aim of solving large and difficult

combinatorial optimization problems on a classical computer. The

graph k-coloring problem requires a determination of whether

every vertex of a given graph can be colored differently to all its

adjacent vertices, when only k colors are available. In order to get

the best performance out of quantum annealing, the main

parameters C and T need to be tuned according to the particular

problem instance under consideration. Although suitable values

for the parameters can usually be found by trial runs [8,9], a study

of why certain values work better than others is desirable. Our

findings show that the best parameter settings for dense random

graphs are those that induce a continuously increasing acceptance

ratio during Monte Carlo quantum annealing. Achieving this

involves setting a low value for T , and tuning C to within a critical

range.

Methods

Given an undirected graph G~(V ,E) with a vertex set Vof size

n, an edge set E, and a set K consisting of k colors, G is said to be

k-colorable if there exists a mapping Q : V?K such that

Q(i)=Q(j), for all fi,jg[E. To decide k-colorability, we can

minimize a cost function or problem Hamiltonian Hp, given by

the number of edges with conflicts. A graph is k-colorable if and

only if some configuration v(Q(1),Q(2),:::,Q(n)) exists such that

Hp~0. Any v with Hp(v)~0 is also a global minimum. A

configuration v can be expressed in terms of Nconstrained

Boolean variables fxijg, where ij represents a pair of vertices with

iwj, and N~n(n{1)=2 [9]. The Boolean variables are such that

xij~0 when Q(i)=Q(j), and xij~1 otherwise [9,10]. To create an

Ising model, we define the set of spins fSijg, where

Sij~1{2xij~+1. When the spins are defined this way, not all

of the 2Npossible spin configurations correspond to a valid

member of the k-coloring search space. Therefore the k-coloring

search space cannot be explored by starting from just any spin

configuration, and moving to a different one with a single spin flip.

Instead, we first obtain an initial fSijg from a uniformly random

assignment of one of the k colors to each of the vertices.

Afterwards, a new valid configuration can be obtained by

changing the color of a vertex, thereby implicitly performing

specific multiple spin flips that maintain validity. The problem

Hamiltonian can be represented as

Hp Sij

� �� �
~
X
ij[E

1{Sij

� ��
2 ð1Þ

The classical Hamiltonian in equation (1) can be converted to a

quantum Hamiltonian with a transverse field to give

Hq~Hp sz
ij

n o� �
{C

X
ij

sx
ij ð2Þ

where sz
ij and sx

ij are Pauli matrices, and C is a parameter

representing the strength of a magnetic field providing quantum
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fluctuations. To address large problem instances feasibly on a

classical computer, we use path integral Monte Carlo. This

involves applying a Suzuki-Trotter transformation to Hq in

equation (2) to give a new classical Hamiltonian.

H~
1

P

XP

r~1

Hp Sij,r

� �� �
{JC

XP

r~1

X
ij

Sij,rSij,rz1 ð3Þ

The Hamiltonian H in equation (3) consists of P replicas of the

original problem Hamiltonian, simulated at a fixed effective

temperature PT , with Sij,r representing the ij-th spin of the r-th

replica, and JC given as {T=2 ln tanh C=PTð Þ [9,11]. Just as in

the quantum annealing of the traveling salesman problem [8], the

use of a single spin-flip transverse term in equation (2) is an

approximation enabling a straightforward application of the

Suzuki-Trotter transformation. In our implementation, only

conflicting vertices are eligible for a color change with the

Metropolis criterion [9,10].

Parameter tuning is crucial to the success of quantum annealing.

In addition to the tuning of the temperature T and the field

strength C, a decrement rate for C is usually required [8,9,11,12].

If the initial value of C is too high, then a slow decrement rate can

become impractical. On the other hand, decreasing C too quickly

can result in the system being trapped by local minima. But if T
and C are heuristically chosen to fit the problem instance, we have

recently experimentally demonstrated for graph coloring that

successful simulations can be achieved with C fixed throughout the

duration of a particular simulation [10]. This is the variant of

quantum annealing that we use in the current work. A good value

of T for a problem instance (G,k) is usually a suitable value for the

more difficult instance (G,k{1). Additionally, a good value of C
for (G,k{1) can usually be obtained from that of (G,k) by

incrementing it slightly [9,10].

An exact simulation of quantum computation with path integral

Monte Carlo requires that the number of replicas P approach

infinity [3]. In practice, P has to be set to a low value. A value of

30 has been used for the traveling salesman problem [8], while we

have used values such as 10 and 20 for large instances of the graph

coloring problem [9,10]. Each of the P replicas was independently

initialized by assigning to each vertex one of the k available colors

uniformly at random. To alleviate the drawback of using only a

small number of replicas, we implemented a similarity control

mechanism of preventing directly connected replicas from

prematurely becoming too similar, by randomly perturbing a

fraction of the spins at critical moments [10]. Specifically, two

replicas were considered too similar when one could be made

identical to the other by changing the colors of less than 10% of all

vertices in one of them [10]. Also, in order to perturb a

configuration, we randomly selected 10% of all vertices and

assigned a new randomly selected color for each of them [10]. The

procedure usually activated itself towards the end of a simulation

involving difficult instances. For many of the easier instances, a

solution was often already reached before such measures were

needed.

Our computer hardware setup consisted of 12 CPU cores

distributed across two identical desktop computers (having 6 CPU

cores each), with each of the 10 replicas running on its own core,

and one core left free on each desktop. Each core had a frequency
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Figure 1. Parameter tuning variance with the number of colors for the graph DSJC1000.5. The field strength C (red), and the effective
temperature PT (blue), plotted against the number of available colors k.
doi:10.1371/journal.pone.0050060.g001
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Figure 2. An unsuccessful simulation with a declining and stagnating acceptance ratio. The acceptance ratio plotted against Monte Carlo
steps for (G = DSJC1000.5, k = 82) with parameters C = 0.7 and PT = 0.36.
doi:10.1371/journal.pone.0050060.g002
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Figure 3. A successful simulation with a continuously rising acceptance ratio. The acceptance ratio plotted against Monte Carlo steps for
(G = DSJC1000.5, k = 82) with parameters C = 0.7 and PT = 0.31.
doi:10.1371/journal.pone.0050060.g003
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of 2.6GHz, and each desktop had 6GB of RAM. The

programming environment was GNU C++ on Linux. Communi-

cation between the two computers was achieved with MPI

(Message Passing Interface), while intra-computer parallelism

was performed with OpenMP (Open Multi-Processing). We

considered one Monte Carlo step to be complete after all P

replicas had each completed 8 DV D k color change attempts [10].

After each Monte Carlo step, each replica received the configu-

ration of directly connected replicas. The configuration of each

replica was stored and transmitted as an assignment of vertices to

colors. From this, the value of any spin Sij can be deduced. Rather

than try to keep track of the instantaneous state of other replicas,

each replica simply used an old copy in its computations, until it

received an update [10].

Results and Discussion

We considered the Erdös-Rényi G(n,p), which is a standard

model of random graphs in which an n-vertex graph is formed by

independently including each possible edge with a probability p.

The graph coloring problem is still hard, even when restricted to

such random graphs, provided instances are chosen near the

uncolorable transition [13,14], where k is very close or equal to the

chromatic number x. The chromatic number is the smallest

possible value of k for which a proper coloring exists. In fact, no

known polynomial time algorithm is guaranteed to color random

graphs with (2{e)x where ew0 is fixed [15]. We used DIMACS

[16] as our source of benchmark graphs, as numerous algorithms

have been tested against them. DIMACS random graphs have p
ranging between 0.1 and 0.9, and can all be considered dense in

comparison to very sparse graphs that might be 3-colorable [14].

The graph DSJC1000.5 is a member of the G(1000,0:5)family of

graphs. An upper bound of 83 was reported for the chromatic

number of DSJC1000.5 in the year 1999 [17], and no algorithm

has been able to do better since then. We used our Monte Carlo

quantum annealing algorithm given in ref. [10] to easily find

colorings for instances in the range 83ƒkƒ87, for which the

effective temperature PT~0:36 appears to be optimal [9,10].

Although we set the value of P to 10 for all experiments in this

paper, different values of P can be used by adjusting T to maintain

the same value for PT [8,10]. The acceptance ratio is the number

of completed moves (or color changes) divided by the number of

attempted moves. We know that PT~0:36 corresponds to a low

temperature because the starting acceptance ratio [9,18] during

the Monte Carlo simulation is about 1.3% with k~83. In contrast,

a value of PT~500 is needed to bring the acceptance ratio to

about 50%, which was the starting ratio for comparable

experiments with thermal annealing for graph coloring in ref.

[18]. Each time we solved for a smaller value of k, we chose a

larger, fixed value for the magnetic field strength C from the range

between 0.55 and 0.68, to allow for the increase in difficulty [9].

Since probabilistic counting arguments [18,19] suggest that

colorings with k~82 might exist for the G(1000,0:5) family of

graphs, we tried to find the first ever 82-coloring for DSJC1000.5

by setting an increased value for C. Parameter settings of

PT~0:36 and C~0:7 repeatedly failed to produce an 82-

coloring, and setting an even larger C did not improve the

situation. When k is close to the chromatic number, we are likely to

encounter phase transitions in the structure of the solution space

[13,15] characterized by the clustering of solutions, and the

subsequent emergence of frozen vertices [14], which might require

a change in approach. A further series of experiments with a

Table 1. Quantum annealing (QA) coloring results compared
with the best algorithms.

Graph QA Evolutionary-Tabu
Extraction pre-
processing

DSJC500.5 47 48 refs. [17,21,23,24] 48 ref. [22]

DSJC1000.5 82 83 refs. [17,21,23,24] 83 ref. [26]

DSJC1000.9 222 223 refs. [21,24] 222 ref. [26]

C2000.5 145 148 refs. [21,24] 145 ref. [27]

C4000.5 262 (259*) 271 ref. [21] 259 ref. [27]

C2000.9 400 413 ref. [26] 408 ref. [27]

flat1000_76_0 81 82 refs. [21,23,24] 81 ref. [27]

*We found 259-colorings for C4000.5 by performing quantum annealing on a
residual graph obtained from the independent set extraction experiments in
ref. [26].
doi:10.1371/journal.pone.0050060.t001

Table 2. Detailed quantum annealing results.

Graph k PT C Attempted Accepted Time Success

DSJC500.5 47 0.30 0.70 2.861011 4.16109 36 min 2/10

DSJC1000.5 82 0.31 0.70 5.661011 4.46109 1.2 hr 10/10

DSJC1000.9 222 0.20 0.40 5.961011 3.16109 1.1 hr 6/10

C2000.5 146 0.32 0.65 2.561012 1.161010 5.4 hr 5/5

145 0.32 0.69 1.461013 6.761010 31.6 hr 2/2

C4000.5 270 0.28 0.51 1.261014 2.061011 11 days 1/1

262 0.28 0.57 1.361015 1.861012 4 mo. 1/1

C2000.9 403 0.18 0.29 1.261013 2.061010 24 hr 5/5

402 0.18 0.295 2.861013 4.561010 54 hr 1/1

401 0.18 0.30 8.861013 1.461011 174 hr 1/1

400 0.18 0.31 1.361014 2.061011 505 hr 1/1

flat1000_76_0 81 0.31 0.70 1.061012 8.76109 2.2 hr 10/10

Columns 5 and 6 contain the average number of attempted and accepted color changes respectively for successful runs. The average time for a successful simulation is
displayed in column 7, while the success rate is in column 8. Proofs of our colorings can be found at https://sites.google.com/site/olawaletitiloye/graphcoloring/qacol
doi:10.1371/journal.pone.0050060.t002
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Figure 4. An ineffective simulation for (G = C2000.5, k = 146) with an increased temperature PT = 0.35. The acceptance ratio persistently
declines in a manner very similar to thermal annealing.
doi:10.1371/journal.pone.0050060.g004
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Figure 5. Acceptance ratio plot for (G = C2000.5, k = 146) with C = 0.65 and PT = 0.32. A successful simulation shows a continuously rising
pattern for the acceptance ratio over time.
doi:10.1371/journal.pone.0050060.g005
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Figure 6. Acceptance ratio plot for (G = C2000.5, k = 145) with C = 0.69 and PT = 0.32. A successful simulation shows a continuously rising
pattern for the acceptance ratio over time.
doi:10.1371/journal.pone.0050060.g006
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Figure 7. Acceptance ratio plot for (G = C2000.5, k = 146) with C = 0.8 and PT = 0.32. When the field strength is set higher than the critical
value of C = 0.65, the simulation becomes ineffective. It also shows a persistent stagnation in the evolution of the acceptance ratio.
doi:10.1371/journal.pone.0050060.g007
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reduced effective temperature of PT~0:31 and a field strength

C~0:7 surprisingly produced 82-colorings for DSJC1000.5 with a

100% success rate from 10 independent runs. The successful tuned

values of PT and C for the DSJC1000.5 graph with 82ƒkƒ87
are presented in Fig. 1.

For each successful run with the instance (G = DSJC1000.5,

k = 82), quantum annealing made an average of 5.661011 color

change attempts and 4.46109 color changes before a solution was

found. Our algorithm took an average wall-clock time of 1.2 hours

to find an 82-coloring for DSJC1000.5. This is comparable to the

computational resources other researchers have dedicated to this

problem. For example, in some experiments in ref. [20] and ref.

[21], their single-threaded algorithms took up to 10 and 12 hours

respectively for each run on the same DSJC1000.5 graph, without

reporting any 82 colorings.

Fig. 2 and Fig. 3 show the evolution of the acceptance ratio with

time measured in Monte Carlo steps, for the simulations involving

(G = DSJC1000.5, k = 82), with PT~0:36 and PT~0:31 respec-

tively. In the ineffective simulation with the higher temperature in

Fig. 2, there is a persistent decline and stagnation of the

acceptance ratio. This is also what often happens in a thermal

annealing algorithm [18]. However, the successful simulation for

the instance (G = DSJC1000.5, k = 82) with the lower temperature

of PT~0:31 shows an unusual pattern of a continuously rising

acceptance ratio (in Fig. 3), which persists until a solution is found.

While quantum annealing with a persistently declining acceptance

ratio can solve the easier cases of k§83 with PT~0:36 [9], the

higher temperature turns out to be problematic for k~82, no

matter the value of C. The lower temperature of PT~0:31 also

works for k§83, but the required computational effort is

unnecessarily increased. Almost our entire past quantum anneal-

ing results for random graph coloring [10] used parameter settings

which led to stagnating and/or declining acceptance rates. Tuning

quantum annealing that way was competitive in its own right.

However, parameters that induce a continuously increasing

acceptance seem to be necessary for an improved result.

In order to verify that the continuously rising acceptance ratio

was not simply due to the perturbation from the similarity control,

we first noted that a typical successful run for the simpler instance

(G = DSJC1000.5, k = 83) with PT~0:36 and C~0:68 results in

about 4000 perturbations out of a total of about 5000 Monte Carlo

steps required to solve the problem. A perturbation acts on one

replica, while each Monte Carlo step refers to the iteration over P

replicas. A declining pattern for the acceptance ratio similar to

Fig.2 was observed. However, we found that by setting the

reduced temperature of PT~0:31 and keeping everything else the

same in the aforementioned problem, no perturbations were

needed at all to solve the problem, although a much larger number

of Monte Carlo steps of about 30,000 were necessary. More

importantly, in this case, the acceptance ratio continuously rises as

in Fig. 3. Furthermore, even though the more difficult instance

(G = DSJC1000.5, k = 82) with settings PT~0:31 and C~0:70
typically requires about 10,000 perturbations out of a total of

about 105 Monte Carlo steps, we observed that another successful

experiment with the settings of a lower temperature PT~0:30,

and C~0:70 resulted in only 5 perturbations out of about 2.56105

Monte Carlo steps. Nevertheless, this also produced a continuously

rising pattern in the acceptance ratio similar to that in Fig. 3. This

shows that the longer simulations with slightly lower temperatures

and much less perturbations can still produce a continuously rising

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0  20  40  60  80  100  120  140  160  180  200

A
cc

ep
ta

nc
e 

ra
tio

 [%
]

Monte Carlo steps [thousands]

Figure 8. Acceptance ratio plot for (G = C2000.5, k = 146) with C = 0.5 and PT = 0.32. The simulation becomes ineffective when the field
strength is set lower than the critical value of C = 0.65. The evolution of the acceptance ratio shows a long period of decline and a very weak growth
afterwards.
doi:10.1371/journal.pone.0050060.g008
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acceptance ratio. Therefore we can be confident that the

phenomenon is not due to the perturbations used to control

similarity.

The continuously rising pattern of Fig. 3 can be induced for

other random graphs to produce results that we have not been

able to achieve with parameters that exhibit a declining or

stagnating pattern. In some cases, our results are the best ever

found by any algorithm. For example, in the case of DSJC500.5, a

G(500,0:5) graph that had the upper bound on its chromatic

number improved to 48 in the year 1996 [22], we have been able

to find 47-colorings for the first time. We did this by setting a

reduced temperature of PT~0:3 for k~47, instead of PT~0:35
used for k~48 [9], while maintaining the field strength at C~0:7.

With an appropriately low temperature, and a carefully tuned field

strength, quantum fluctuations dominate thermal ones, and

quantum annealing is able to escape the deceptive local minima

that have confounded all previous algorithms on the (G =

DSJC1000.5, k = 82) and (G = DSJC500.5, k = 47) instances for

almost two decades. The main competitors of quantum annealing

for the coloring of dense graphs are evolutionary algorithms

incorporating Tabu local search [17,21,23,24]. Simpler approach-

es such as thermal annealing [18] and plain Tabu search [25] are

generally less competitive for coloring dense random graphs. The

preprocessing technique of independent set extraction [19] has

been improved [26,27] to produce good results for very large

random graphs, but quantum annealing can also incorporate this

idea when necessary.

We have improved on the recent result of 409-colorings in ref.

[26] for C2000.9, a G(2000,0:9) graph, by finding 400-colorings.

Quantum annealing also found 145-colorings for C2000.5, a

G(2000,0:5)graph, thereby improving on the 146-colorings of ref.

[26]. Our results were obtained by selecting parameters that

exhibited a continuously rising acceptance ratio. Simulations with

parameters that produced a declining acceptance ratio were

repeatedly unsuccessful in several independent runs. The graphs

C2000.9 and C2000.5 are large, and consist of about 1.8 million

and 1 million edges respectively. But unlike in ref. [26], our

experiments with C2000.9 and C2000.5 did not need to employ

pre-processing by set extraction in order to obtain or improve on

the best known results for these particular graphs.

The largest Erdös-Rényi graph from the DIMACS benchmarks

is C4000.5, which is a G(4000,0:5)graph with about 4 million

edges. It is not often used in experiments due to its very large size.

The best result obtained without independent set extraction was a

271-coloring by an evolutionary algorithm incorporating Tabu

search [21]. This was recently improved to k~260 by coloring a

residual graph of about 800 vertices obtained after extracting

several large independent sets [26]. Encouraged by the superior

results of quantum annealing on G(1000,0:5), we extracted 163

large independent sets from C4000.5 that were obtained in the

experiments of ref. [26] in about 5 days of single processor time.

We found 96-colorings of the resulting residual graph of about

1200 vertices by quantum annealing in 12 hours on our hardware

setup, thereby providing 259-colorings for C4000.5. Without the

aid of set extraction pre-processing, quantum annealing located a

270-coloring in 11 days and a 262-coloring in 4 months. C4000.5

is the only random graph in the DIMACS benchmark for which

we had to employ set extraction pre-processing in order to obtain

the best results.

Although the graph flat1000_76_0 from the DIMACS bench-

marks is not an Erdös-Rényi graph, we have previously observed

that quantum annealing required similar parameters to a

G(1000,0:5) graph when solving instances in the range

87ƒkƒ82 [9]. Specifically, PT~0:36 and C~0:67 are good

parameters for finding 82-colorings of flat1000_76_0, as well as

83-colorings for DSJC1000.5 [9,10]. Both graphs are also of

similar density, and consist of the same number of vertices. Even

though flat1000_76_0 is a flat graph with a hidden 76-coloring

[28], it tends to behave similarly to DSJC1000.5 when k is large

enough. For example, algorithms in refs. [17,20–24] produce a

similar upper bound for the chromatic number x on both

flat1000_76_0 and DSJC1000.5, often by using similar parameters

and a comparable computational effort for both graphs. It was

therefore natural to investigate whether the parameters PT~0:31
and C~0:7 for (G = DSJC1000.5, k = 82), could also be used to

improve the results of the flat graph by solving (G =

flat1000_76_0, k = 81). Our experiments show that this is indeed

the case. After completing our computations, we learned that

successful solutions to (G = C2000.5, k = 145), (G = C4000.5,

k = 259), (G = flat1000_76_0, k = 81) and (G = C2000.9, k = 408)

have recently been mentioned in ref. [27]. They were obtained by

improving the synergy between the set extraction preprocessing in

ref. [26] and their main graph coloring algorithm in [24].

Quantum annealing still maintains a lead of eight colors on the

very dense C2000.9 by finding 400-colorings. Additionally, our

approach is still the only one that successfully solves (G =

DSJC1000.5, k = 82) and (G = DSJC500.5, k = 47). The results of

our colorings are summarized in Table 1. Additional details such

as the parameter settings, number of attempted color changes, wall

clock time taken, and the frequency of success can be found in

Table 2.

During the quantum annealing of our artificial spin model, even

though the state of an individual spin at a future time is highly

unpredictable, the acceptance ratio is an easily tracked property

describing the collective activity of the spins. We were unable to

find any set of parameters producing a declining and/or

stagnating acceptance ratio such as in Fig. 2, that nevertheless

solves the problem instance (G = DSJC1000.5, k = 82). Instead the

continuously rising pattern in Fig. 3 appears to be crucial for

success with that particular instance. Extensive experiments

suggest that the temperature PT~0:36 is not low enough for

k~82, even though it is adequate for the easier instances with

k§83, despite the production of a declining and stagnating

pattern for the acceptance ratio in those cases. Lowering the

temperature to PT~0:31 turns out to be useful and important,

both in solving the instance (G = DSJC1000.5, k = 82), and in

producing a continuously rising pattern for the acceptance ratio.

We also generated five new G(1000,0:5) graphs and found that

they were all 82-colorable with the same parameter settings of

PT~0:31 and C~0:7. This is not surprising, as Erdös-Rényi

graphs with the same values for pand n are known to possess very

similar characteristics [29].

Additionally, we observed that the larger the graph, the earlier

one is forced to start using lower temperatures, even when k is still

far from the chromatic number. For example, the temperature

parameter used in ref. [10] to find 147-colorings for C2000.5 was

PT~0:32, and any attempts to use anything higher causes

problems. In our experiments, we used this same temperature

value to successfully solve for k~146 and k~145, by setting a

field strength of C~0:65 and C~0:69 respectively. We also

performed several experiments on (G = C2000.5, k = 146) with a

higher temperature PT~0:35, and the field strength maintained

at C~0:65. They were all ineffective. Fig. 4 depicts a typical

acceptance ratio plot for this experiment. In addition to not

locating a solution, the simulations exhibited a persistently

declining acceptance ratio reminiscent of thermal annealing. In

contrast, the experiments with PT~0:32 depicted in Fig. 5 and

Fig. 6 were effective, and produced a continuously rising
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acceptance ratio. This strongly suggests that it is necessary for the

temperature to be as low as PT~0:32. Nevertheless we have

observed that random graphs of various sizes with the same

probability p can often be approached with the same (or very

close) value for the temperature PT . For example, whenp~0:9,

good values for PT tend to be very close to 0.2 for different values

of n, as can be seen from Table 2 and our past graph coloring

studies in refs. [9,10].

The field strength C~0:65 appears to be a special value of the

field strength for the instance (G = C2000.5, k = 146). Experiments

with a higher value of C~0:8 produced an acceptance ratio curve

with a persistently stagnating pattern following an initial brief

period of decline, as shown in Fig. 7. The simulations with this

setting repeatedly failed to reach a solution in several independent

runs, even though we allocated three times the amount of Monte

Carlo steps as was used for C~0:65. Similarly, simulations with

the lower value of C~0:5 proved to be ineffective. As shown in

Fig. 8, the acceptance ratio underwent a long period of decline and

only rose very weakly afterwards. The diverging pattern of the

acceptance ratio seen in Fig. 5 did not appear. When C is on either

side of 0.65, the behavior of the system starts becoming

unfavorable for locating solutions.

The least dense family of G(n,p) graphs from the DIMACS

benchmarks is G(n,0:1). The largest such graph from the

benchmarks is DSJC1000.1 with n~1000. Quantum annealing

can match the best algorithms in coloring DSJC1000.1 with

k~20: the lowest ever used [9]. However, when we repeated the

experiments with various parameter settings, we noticed that

unlike denser graphs, we could not find settings which solved the

problem with a diverging acceptance ratio. Instead, success for this

sparse graph appeared to require a declining acceptance ratio,

which started from values as high as 5%. We proceeded to

generate several sparser random graphs, some of which were likely

to be 3-colorable, and were up to 5000 vertices. A similar behavior

to that of DSJC1000.1 was observed during quantum annealing.

In fact, the sparser the graph, the closer the performance and

behavior of our quantum annealing was to thermal annealing. In

our k-coloring spin model, all graphs with the same number of

vertices possess the same number of spins. But the denser graphs

have more constraints, and hence more interaction between their

spins. We observed that the appearance of a diverging acceptance

ratio correlated with the density of the graph.

By studying the effects of parameter tuning on a Monte Carlo

quantum annealing algorithm for the coloring of dense random

graphs, we have solved some well known k-coloring problem

instances that no other approach has been able to. As more insight

is gained into parameter tuning, Monte Carlo quantum annealing

may be able to improve on other heuristics for different types of

combinatorial optimization problems.
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