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Abstract 

We present a carbon-nanotube-deposited long period fiber grating for refractive index 

sensing applications in liquid. Carbon nanotubes are deposited around the surface of a 

long period fiber grating to form the refractive index sensing element. The sensing 

mechanism relies mainly on the high refractive index properties of the carbon 

nanotube thin film, which enhances the cladding mode of the long period fiber grating 

in order to have a significant interaction between the propagating light and the target 

medium. A sensitivity of 31 dB/ RIU and 47 dB/ RIU are obtained for the refractive index 

ranges of 1.33 to 1.38 and 1.38 to 1.42, respectively, which have not been demonstrated with 

normal long period fiber gratings as the sensing element. As the sensing mechanism is based 

on the change of the transmitted optical power, our proposed scheme can intrinsically solve 

the limitations of the free spectral range commonly seen in other reported schemes, and 

continuous and repeatable measurements can be obtained while only acquiring errors 

mainly from the power fluctuations from the light source. The fiber grating also does not 

require any further mechanical modification like etching or tapering, which allows the sensing 
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element to have the advantage of mechanical strength for practical applications. The 

experimental results are consistent with the modeling of the sensing mechanism. 

Keywords: optical fiber sensor; carbon nanotube; refractive index sensor; optical 

materials 

 

Introduction 

Optical fiber based refractive index (RI) sensors have attracted a lot of research 

attention over the years due to the advantage of remote and real-time monitoring 

capabilities [1-13]. In particular, detecting of RI variations in water is important for 

water treatment plants as different RI values would indicate the purity level of the 

water being treated. A variety of optical fiber based sensing schemes such as 

multimode interference [10], fiber tapering [3, 5, 8, 12], surface plasmon resonance 

(SPR) [1, 13], and dielectric multilayer films [7, 9] have been previously reported to 

construct the sensing probe in order to detect RI variations. However, most of these 

schemes like tapering, which involves the stretching of the fiber to very thin diameters, 

and SPR, which commonly involves the etching of the fiber cladding, lead to the 

modification of the fiber structure to enhance the sensitivity, but make the sensing 

element mechanically weak and hence prone to damage in practical applications [2, 

12, 13]. Also, some of the proposed schemes rely on the measurement of 

interferometic wavelength shifts with RI variation within a certain spectral range. 

These fiber sensors, though extremely sensitive to external perturbations and immune 

to power fluctuations as long as a certain extinction ratio is achieved, are usually 

limited by a certain free spectral range (FSR) of the transmission or reflection 

spectrum [5, 8, 12]. This poses a considerable challenge when measurements over a 

wide range of refractive indices are needed.  



Y. C. Tan et. al., “Carbon-Nanotube-Deposited Long Period Fiber Grating ……” p. 3 

 

In order to meet the conditions of a robust fiber sensor, a sensing element using a long 

period fiber grating (LPFG) is one of the solutions as it does not affect the mechanical 

strength of the fiber while providing interaction between the propagating light and the 

outside medium through the cladding mode of the LPFG [14]. However, one major 

limitation of such a RI sensing scheme is that the LPFGs only display a significant 

response to ambient RI changes for RI values close to that of the fiber cladding’s RI 

and very little variation in wavelength for RI values near that of pure water of around 

1.33 [15, 16, 17]. Such low sensitivity at the RI of 1.33 makes the conventional LPFG 

unsuitable as a RI sensor for applications for water quality monitoring. Previous 

reports show that the assembling or specific coating of thin films on the LPFGs can 

enhance the RI sensing range, sensitivity, or specificity [18-23]. However, most of 

these methods require very precise fabrication techniques with long and complex 

fabrication processes [18-23]. 

In this paper, we propose and demonstrate a novel RI sensing scheme using LPFG 

with carbon nanotubes (CNTs) deposited on the LPFG grating region as the sensing 

element. CNT is known to be a dark material with high absorption of light and high 

RI [24]. On the other hand, it was found that CNTs are highly compatible to silica and 

able to form thin films on silica surfaces [25, 26]. In our experiment, a relatively 

simple and effective deposition method was used to coat a layer of CNT around the 

grating region of the LPFG, making the overall sensor easily reproducible and 

requiring little mechanical modifications of the fiber structure. Furthermore, due to its 

sensing principle, the sensor was able to register variations over a range of refractive 

indices (RIs) and was also not limited by the FSR of its spectrum during the detection 

of perturbations in its external environment. The sensor also demonstrated good 
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repeatability and a continuous RI sensing with a sensitivity of 31 dB/ RIU and 47 dB/ 

RIU obtained within the ranges of 1.33 to 1.38 and 1.38 to 1.42, respectively.     

 

 

Principle of RI sensing using CNT-deposited LPFG   

The working principle of RI sensing using CNT-deposited LPFG is based on the light 

extraction of propagating cladding modes of the LPFG by the deposited CNTs. As 

light propagates through a LPFG, the fundamental core mode (LP01) would be 

coupled with the co-propagating cladding modes (LP0m). This coupling occurs when 

the following phase matching condition is satisfied [27]:   

                    01

2
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where 01  and m
clad  are the propagation constants of the fundamental mode and the 

m
th

 co-propagating cladding mode, respectively, and   is the grating period. Due to the 

high attenuation of the cladding modes, distinct attenuation bands centered at discrete 

resonant wavelengths in the transmission spectrum can be observed. These resonant 

wavelengths can be described by the relation: 
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 where ,m res   is the resonant wavelength due to the coupling between the fundamental core 

mode and the m
th
 cladding mode. 01

,coreneff  and 0
,n m

eff clad   are the effective RIs of both the 

fundamental core mode and the m
th

 cladding mode, respectively. 1n  , 2n   and 3n   are 

the core RI, cladding RI and the RI of the surrounding medium, respectively. 

Consider the case where the refractive index of the surrounding medium does not 

exceed that of the cladding. According to equation (2), with the increase of the RI of 

the surrounding medium, the effective index of the cladding will increase while the 
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effective index of the core remains the same. This results in a blue shift of the 

resonant wavelengths with respect to the increase in the surrounding RI.  

However, when the RI of the surrounding medium is higher than that of the cladding, 

the phase matching condition will no longer be satisfied. The surrounding medium of 

higher RI than the fiber cladding will result in a loss of the total internal reflection 

condition of the light guided by the cladding of the LPFG. These guided cladding 

modes will then behave as radiation modes (leaky cladding modes). A portion of the 

cladding modes will be reflected at the cladding/external medium interface while the 

rest will be transmitted and lost to the surrounding medium. The amount of 

reflectance, which affects the attenuation of the attenuation band at the resonant 

wavelength, will vary based on the Fresnel reflection coefficients [14, 16]. Thus far, 

the treatment of the system can be understood to be that of the LPFG being 

surrounded by a medium of infinite thickness. 

If an additional thin film with higher RI than that of the cladding of the LPFG and of 

finite thickness is coated on the LPFG, the phase matching condition of equation (1) 

will again not be satisfied. In our scheme, CNTs are deposited on the surrounding of 

the grating region of a LPFG to form a thin film. By this approach, the system can be 

modified to incorporate an additional dielectric layer of finite thickness between the 

cladding and the surrounding medium of infinite thickness as shown in Fig 1. The 

system can then be modeled as a four layer cylindrical waveguide where the coupled-

mode equations can be solved through the calculation of the LP modes, cross-

coupling coefficients, and self-coupling coefficients to determine the transmission 

spectrum [19]. The power of each mode can be expressed as: 
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where 0 j  is the propagation constant of the LP0j mode, 0  is the permeability of free 

space, 0k c   , where c  is the speed of light in vacuum, (r)R  is the radial variation 

of the modal field, and    is the azimuthal angle.  

The behavior of the LPFG would be similar to the case of a LPFG surrounded by a 

medium of higher RI, and a portion of the power of the cladding mode will be 

reflected by the CNT layer while the rest will be transmitted [14]. The amount of 

reflectance of the cladding mode at the fiber cladding/thin film interface can be 

determined by [28]: 
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where 4 /a k   is the absorption coefficient of the thin film, filmn n ik  , cladn  

and extn  are the RIs of the cladding and the surrounding medium, respectively. ,x yr  in 

equations (5) and (6) is the amplitude reflection coefficient of the interface between 

layer x  and layer y  as shown in Fig 1. From equations (4), (5), (6), and (7), it can be 

seen that R  would vary with extn . This leads to a variation in the amount of 

attenuation of the cladding modes, which would result in a change in the attenuation 

depth of the attenuation band. Therefore, the sensing of the RI of the external 
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surrounding medium can be obtained by monitoring the amount of attenuation in the 

attenuation bands of the LPFG. 

 

Experiment on RI sensing using CNT-deposited LPFG   

In our experiment, a piece of LPFG with a grating length of 2.6 cm and a grating period of 

320 µm was adopted. It was fabricated by the amplitude mask technique with a Krypton 

Fluoride laser at a peak wavelength of 248 nm and left to anneal at 80 °C for 24 hours. The 

deposition of the CNTs on the LPFG was done by spraying the well-dispersed CNT solution. 

At first CNT solution was prepared by dispersing CNT powder in Dimethylformamide 

(DMF) solution and sonicating in a water bath. After which, a mechanical spray coating 

method was employed to evenly coat a CNT layer onto the entire surface of the grating region 

of the fabricated LPFG. The fabrication cost of the sensor includes the standard 

procedures of the LPFG fabrication and the spray coating of the CNTs. The spray 

coating method is known to be cost effective as it only involves the cold transfer of 

nano-materials while no heat chamber is required [25]. Figs. 2(a) and 2(b) show the 

optical microscopic images of the bare and CNT-deposited LPFG, respectively. Both images 

were recorded using the same magnification for comparison. It can be observed that a thin 

layer of CNT is formed over the grating region of the LPFG, darkening the entire coated 

region. Although it is difficult to directly measure the thickness of the CNT layer on the 

LPFG, it can be estimated through concurrently carrying out the same spray coating of CNTs 

on a silicon substrate side by side. Hence, the thickness of the CNT layer deposited on the 

silicon substrate can be estimated through scanning electron microscopy (SEM). In this case, 

the thickness of the CNT layer was estimated to be several micrometers.  

The experimental setup for RI sensing using the fabricated CNT-deposited LPFG is shown in 

Fig. 3. Two single-mode fiber cords were spliced to each end of the LPFG. The output of a 
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white light source (Yokogawa AQ4305), which delivers an average power of -31.4 dBm over 

the detecting range of 1000 to 1600 nm, was coupled into one end of the fiber and propagated 

through the LPFG. The spectrum of the transmitted light was measured using an optical 

spectrum analyzer (OSA, Ando AQ6317B) with a resolution of 2.0 nm at the other end of the 

LPFG. 

Fig. 4 shows the transmission spectrum of the CNT-deposited LPFG. In this experiment the 

attenuation band corresponding to the resonance wavelength at 1463.2 nm with the largest 

power attenuation was chosen. This resonant wavelength was chosen for the external medium 

RI measurements as it is expected to display the largest response to external perturbations 

within 1.33 (pure water) and 1.44 (fiber cladding) [19]. In our experiment, a power change of 

around 2 dB of the resonant wavelength was also observed upon deposition. Note that no 

additional power compensation was necessary for the CNT deposited LPFG as the power 

measurements were still obtainable within the power sensitivity of the OSA. 

The main test solutions used in the experiment was prepared by dissolving sugar in a fixed 

amount of de-ionized water and stirred till saturated sucrose solution was obtained. The 

choice of using sucrose solutions over salt solutions is due to the fact that a wider RI range is 

obtainable with sucrose solutions than with salt solutions. The saturated sucrose solution was 

then diluted with different volumes of de-ionized water to form different sucrose solutions of 

varying RI. The RI of each solution was subsequently confirmed with a digital refractometer 

(Kruss DR201-95) with a resolution of 0.0001. In our experiment, the range of the RI 

solutions used was from 1.3332 to 1.4179. All RI measurements were carried out in an indoor 

environment at a constant temperature of 23 ± 0.1 °C to avoid any temperature induced errors 

in the RI measurement. The constant temperature can also ensure that there will be no 

temperature-induced perturbations to the grating which can affect the output spectrum [29]. 

During the experiment, the CNT-deposited LPFG was placed in a holder over a glass slide to 
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ensure that no strain was placed on the grating region. Approximately 1 ml of each sucrose 

solution with specific RI was dropped on the sensing region of the CNT-deposited LPFG and 

the spectral changes were recorded on the OSA. Note that the entire sensing region was 

completely immersed in the solution in order to get an accurate measurement. The CNT-

deposited LPFG was thoroughly rinsed with de-ionized water and left to dry after each RI 

measurement.  

 

Results and Discussion 

Fig. 5 shows the transmission spectra of the resonance band of the LPFG with test solutions 

of different RIs. It is observed that as the RI of the solution increases, the intensity minima of 

the attenuation band of the LPFG decreases. This is consistent with the theoretical 

investigation described in the previous session. Since the cladding modes behave as radiation 

modes in the presence of the CNT coating, thus the amount of reflectance of the cladding 

modes at the cladding/ thin film interface would depend on the external RI, as highlighted by 

equation (4). The sensor is found to be able to display clear, distinct power levels over the 

range of RIs measured, and register a larger amount of reflectance for the lower RI values and 

a smaller amount of reflectance at higher RI values. There was also very little deviation in the 

resonance wavelength of the attenuation band. The slight variation in wavelength observed 

from each reading is likely due to the strain on the LPFG caused by minute differences in the 

volume of sugar solution used for each trial. Note that due to the sensing scheme, readings of 

the whole range of RIs could be taken continuously and no prediction of the relative 

wavelength shift is required, and hence there is no FSR limitation. 

Fig. 6 plots the intensity change of the attenuation band against different RIs of the test 

solutions. In order to test the repeatability of the sensor, the experiment was performed for 

both increasing and decreasing of RIs of the test solution. The RI range of the test solution 
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used for this experiment was from 1.3330 to 1.4175. The change in power is plotted 

relative to the corresponding data point with the lowest RI for each measurement. As 

described in equation (4), the results show a nonlinear behavior for a change in intensity with 

RI which is consisten with the findings in previous reports [7, 10, 16].  A single curve was 

plotted based on the experimental data for both measurements. The maximum error due to the 

repeatability for all data points was found to be 0.41 dB, which could be attributed to power 

fluctuations and measurement errors from the white light source and the OSA, respectively. 

The results indicate that the sensor has good repeatability and is able to consistently 

demonstrate a change in intensity with RI, regardless of whether it is increasing or decreasing.  

In our experiment, the achieved sensitivity was approximately 31 dB/ RIU within a RI range 

of 1.33 to 1.38. For the RI range from 1.38 to 1.42, the obtained sensitivity was approximately 

47 dB/ RIU. We acknowledge that the sensitivity of the sensor is not as high as compared to 

that of [10], which has achieved a sensitivity of -110 dB/ RIU in the most linear region. 

Possible improvement of the sensitivity includes utilizing gratings with shorter period, which 

would result in higher order resonance bands within the detectable region of 1000 to 1600 nm 

on the OSA [16]. These higher order resonance bands would exhibit greater sensitivity to 

external perturbations in the ambient environment and thus increase the sensitivity of the 

sensor [16, 19]. On the other hand, the thickness of the CNT layer would be expected to affect 

the sensitivity. Previous reports have shown that there is an optimized thickness for which a 

small change in RI in the surrounding medium would result in a large change in the 

transmission spectrum of the grating [18, 19]. Hence, more extensive methods can be used to 

obtain the optimal thickness for the maximum sensitivity. From equation (2), it can be seen 

that the CNT coating will not affect the grating period. Hence, the behavior of the sensor 

towards strain and temperature perturbations would be expected to be similar to that given in 

[10, 29], where a change in temperature of the external medium or a change in the amount of 
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strain on the LPFG would cause a shift in the resonant wavelength. As such, a dual parameter 

sensor would be possible as a second environmental perturbation such that temperature or 

strain can be measured from the variation in wavelength. Also, since the sensing is based on 

the intensity change within a narrow wavelength range, an OSA can be substituted by an 

optical band pass filter centered at corresponding wavelength followed by an optical power 

meter. Future work will focus on achieving the optimal layer thickness of the CNT thin film 

to achieve a higher sensitivity, to extend the measurement range of RIs to those above that of 

the cladding and below that of pure water (1.33), and also to explore possible methods of 

incorporating this sensor into a sensor array.  Also, since the sensing scheme works based on 

variations in intensity to the ambient RI, it would be necessary to compensate for any power 

fluctuation due to the instability of the light source. Suitable compensation methods will be 

explored to give more accurate intensity measurements for this sensor. Finally, the CNTs can 

also be functionalized to allow particular molecules to bind to its functionalized sites, thus 

extending its capabilities to analyte specific sensing in the environment which could greatly 

enhance its role as a pollutant sensor as well [30]. 

 

Conclusion 

In summary, we have presented a novel carbon nanotube deposited long period fiber grating 

refractive index sensor with a relatively simple fabrication method. The sensing scheme 

allows the sensor to have no free spectral range limitation and also exhibit variations in 

intensity over a large range of RI values below that of the fiber cladding. Such RI sensing is 

not obtainable with bare LPFGs. Since there is no tapering or etching of fiber involved in the 

fabrication process of the sensing element, the robustness of the CNT-deposited LPFG is 

similar to normal single-mode fibers and is thus suitable for practical applications in harsh 
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environments. The sensor registered a sensitivity of 31 dB/ RIU and 47 dB/ RIU at lower and 

higher RI ranges, respectively.  
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Figure captions: 

 
Figure 1. Schematic illustration of a carbon nanotube (CNT) deposited long 

period fiber grating (LPFG). 

Figure 2. Optical microscopic images of (a) bare LPFG and (b) LPFG coated 

with CNT thin film, under the same magnification. 

Figure 3. Experimental setup of refractive index (RI) sensing using a CNT-

deposited LPFG.  

Figure 4. Transmission spectrum of the CNT-deposited LPFG in air. 

Figure 5. Output spectra of the resonance band of the CNT-deposited LPFG with 

different RI of the test solutions. 

Figure 6. Plot of the intensity change of the resonance band against RI of the test 

solution. 
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