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A novel route to a Hopf bifurcation scenario in switched

systems with dead-zone

P. Kowalczyk ∗

November 11, 2016

Abstract

Planar switched systems with dead-zone are analyzed. In particular, we consider the effects
of a perturbation which is applied to a linear control law and, due to the perturbation, the
control changes from purely positional to position-velocity control. This type of a perturbation
leads to a novel Hopf-like discontinuity induced bifurcation. We show that this bifurcation
leads to the creation of a small scale limit cycle attractor, which scales as the square root of
the bifurcation parameter. We then investigate numerically a planar switched system with a
positional feedback law, dead-zone and time delay in the switching function. Using the same
parameter values as for the switched system without time delay in the switching function, we
show a Hopf-like bifurcation scenario which exhibits a qualitative and a quantitative agreement
with the scenario analyzed for the non-delayed system.

Keywords: Non-smooth bifurcations, Hopf bifurcations, switched control systems

1 Introduction

Dynamical systems which are characterized by switchings between a number of distinct differ-
entiable vector fields, with the switching law that depends on the value of some state variable,
are common in engineering applications (e.g. control or mechanical engineering [2, 5, 26, 8, 22]).
Such systems, depending on the context, are termed as hybrid dynamical systems, non-smooth
systems, or switched systems. In recent years, much of research effort has been spent on clas-
sifying bifurcations, termed as discontinuity induced bifurcations - DIBs for short, specifically
pertaining to systems with switched vector fields, see for some examples [16, 15, 6, 13, 4, 18].
However, unlike in the case of n-dimensional differentiable vector fields a complete theory of
bifurcation scenarios (e.g. local bifurcations of co-dimension one) in non-smooth systems has,
as yet, not been possible. Switched (or hybrid systems) can be seen as a concatenation of
differentiable vector fields in a way which is dependent on the class of switched systems under
investigation. Hence the structure of phase space in non-smooth systems allows a plethora of
different configurations even in the case of low dimensional systems. For this reason, bifurca-
tions in non-smooth systems are treated by considering non-smooth (hybrid systems) with a
switching law that has a certain specific structure and thus the conditions that define a switch-
ing law provide restrictions as to what types of bifurcations could occur in a given class of
switched (hybrid) systems.
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Recently, it has been suggested that the presence of switched or intermittent control induces
sway dynamics during quiet standing of humans [20, 1, 11, 12]. One way of verifying this
hypothesis is to investigate the dynamics of switched models in the context of human balance
as presented in [20, 1, 14, 12, 19]. In particular, the authors in [20, 1, 14, 12, 19] consider
different types of switched control laws to account for sway patterns observed experimentally,
and the dynamics of these models is investigated. In [1] phase space is divided into different
adjacent regions where the control action is either switched on or off. The authors argue that
the convergence to upright equilibrium during quiet standing is linked with the neuromuscular
system directing the body to follow the stable manifold of the saddle type “upright” equilibrium.
In [14] a multistability and homoclinic bifurcation scenario in a switched model with dead-
zone and the delay in state variables is shown. The models with dead-zone and time delay
in the switching function and state variables are further analyzed in [25] where homoclinic
bifurcations, complex bursting dynamics and so-called boundary bifurcations are investigated.
Another context of human neuromuscular control where switched models could be applied
is in modeling variations of threshold detection due to diabetes or aging. Motivated by the
above mentioned applications, in the current paper, we consider planar switched systems with
dead-zone. In particular, within the dead-zone the equations of motions describe an inverted
pendulum model and outside of the dead-zone a position or position-velocity control is applied
to the inverted pendulum model system. The contribution of the current work is the analysis
of a novel type of a Hopf-like bifurcation scenario as yet not analyzed in the literature triggered
by a perturbation from position to position-velocity control. We also link this bifurcation with
a Hopf-like bifurcation, first time reported in the current work, in the system with dead-zone,
purely positional feedback law and delay in the switching decision function.

The rest of the paper is outlined as follows. In Sec. 2 switched systems with dead-zone that
we analyze in the paper are introduced. We then, in Sec. 3, analyze a Hopf-bifurcation ensuing in
the system due to a perturbation of the control vector using asymptotic method. The existence
and stability analysis of a small scale limit cycle born in the bifurcation is shown in Sec. 4.
We then proceed in Sec. 5 to verify our analytical results by means of numerical investigations
of the system around the bifurcation point. In the following Sec. 6, using a system with time
delay in the switching function we numerically investigate a Hopf-like bifurcation which shows
qualitative and quantitative agreement with the Hopf-like scenario of the non-delayed system.
We then provide a brief theoretical explanation for the observed agreement. Finally, Sec. 7
concludes the paper.

2 Systems of interest

Consider a class of systems given by

ẋ = AIx for |Cx| ≤ φ, (1)

ẋ = AOx for |Cx| > φ, (2)

where AI ∈ R2×R2 is a non-singular matrix with the eigenvalues corresponding to a saddle-node
equilibrium point, and AO ∈ R2×R2 is a non-singular matrix with the eigenvalues corresponding
to a stable equilibrium point of the focus type. The product of the state vector x ∈ R2 and the
constant control row vector C ∈ R2 determines the switching between the two linear vector fields
for some fixed and positive value of φ. In what follows, we consider a novel Hopf bifurcation
scenario in the above class of systems under the variation of the control vector from C = C0 to
C = Cε0.
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2.1 Planar switched systems with dead-zone

Consider switched systems where the bifurcation parameter, say β, is increased from 0 and
implies a change of the control vector C0 from C0 = [−1 0] to Cε0 = [−1 β], where β =
O(ε). This variation is a change from purely positional feedback control law to position-velocity
feedback law. Matrices AI , AO, the state vector x and the width of the dead-zone are given by

AI =

(
0 1
A 0

)
, AO =

(
0 1

A−Kp −Kd

)
, x =

(
θ

θ̇

)
, |C0x| ≤ θ∗, or |Cε0x| ≤ θ∗,

(3)
where Kp > A > 0, Kp − A > K2

d/4, Kd > 0 and θ∗ > 0. In this set up the eigenvalues of
AI correspond to the system’s equilibrium point of a saddle type and the eigenvalues of AO
correspond to a stable focus, as assumed earlier. Matrix AI is expressed in so-called controllable
canonical form [3, 7] and this structure can be assumed without loss of generality

2.2 Phase space topology

We now define switching manifolds Σ± and Σε± as

Σ± = {(θ, θ̇) ∈ R2 : ±θ∗ − θ = 0}, (4)

Σε± = {(θ, θ̇) ∈ R2 : βθ̇ ± θ∗ − θ = 0} (5)

and regions

GIN = {(θ, θ̇) ∈ R2 : |θ| < θ∗}, (6)

GOUT = {(θ, θ̇) ∈ R2 : |θ| > θ∗}, (7)

GεIN = {(θ, θ̇) ∈ R2 : |βθ̇ − θ| < θ∗}, (8)

GεOUT = {(θ, θ̇) ∈ R2 : |βθ̇ − θ| > θ∗}. (9)

The flow within region GIN or GεIN , say ψIN , is given by the solution of the differential equation

θ̈ −Aθ = 0, (10)

and the flow within region GOUT or GεOUT , say ψOUT , is given by the solution of

θ̈ +Kdθ̇ + (Kp −A)θ = 0. (11)

Finally, define
H(θ, θ̇) = βθ̇ + θ∗ − θ. (12)

Clearly, the zero level set of H defines the switching manifold Σε+.

3 Local stability calculations

It has been shown in [14] that the system dynamics with the switching law given by C0x = ±θ∗
is governed by the existence of a pair of stable pseudo-equilibria EQ± = (±θ∗, 0). We define
a pseudo-equilibrium point in the switched system (1) and (2) as a point EQ ∈ Σ± such that
for some t0 (±θ∗(t0), 0) ∈ Σ± and ∀t ≥ t0 (±θ(t), 0) = (±θ∗(t0), 0). We note that considering
only forward time suffices for our purposes. The pseudo-equilibria (±θ∗(t0), 0) ∈ Σ± have been
shown to be the only two global attractors of the system. If we now “switch on” the control
vector Cε0 the two pseudo-equilibria loose their stability and there is born a pair of stable limit
cycles with the amplitude which grows in the O(

√
β). Hence a Hopf-like bifurcation takes

place in the system. Due to the system’s symmetry the Hopf-bifurcation occurs simultaneously
around both pseudo-equilibria. It is sufficient to consider the Hopf bifurcation around one of
the two pseudo-equilibria. In what follows we will concentrate on EQ+.
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3.1 Calculating flow time τ

Consider initial point, say P0 = (θ(0), θ̇(0)) ∈ Σε+, such that θ̇(0) = θ̇0 = O(ε). It then follows
that θ∗ − θ0 = −βθ̇0 = O(ε2).

If θ∗−θ0 > 0 and β > 0 then θ̇0 < 0 and the flow within the dead-zone, in the neighborhood
of the pseudo-equilibrium, is governed by the solution of

θ̈ −Aθ = 0,

which, clearly, is given by

θ(τ) = C1 exp(−
√
Aτ) + C2 exp(

√
Aτ) (13)

θ̇(τ) = −
√
AC1 exp(−

√
Aτ) +

√
AC2 exp(

√
Aτ). (14)

Using the initial conditions we find

θ(τ) =

√
Aθ0 − θ̇0
2
√
A

exp(−
√
Aτ) +

√
Aθ0 + θ̇0

2
√
A

exp(
√
Aτ) (15)

θ̇(τ) = −
√
Aθ0 − θ̇0

2
exp(−

√
Aτ) +

√
Aθ0 + θ̇0

2
exp(
√
Aτ). (16)

We assume that the time, say τ , required for the flow to reach Σε+ is τ = O(ε). We then get

θ(τ) = θ0 −
θ∗ − θ0
β

τ +
1

2
Aθ0τ

2 +O(ε3), (17)

θ̇(τ) = Aθ0τ −
θ∗ − θ0
β

+O(ε2). (18)

Solving H = 0 for τ , to leading order in τ , gives

τ = 2β +
2(θ∗ − θ0)

Aθ0β
+O(ε2). (19)

Thus the point of intersection with Σε+, say P1 ∈ Σε+, is given by

θ1 = θ0 + 2(θ∗ − θ0) + 2Aθ0β
2 > θ∗, (20)

θ̇1 = 2Aθ0β +
θ∗ − θ0
β

> 0. (21)

3.2 Calculating flow time δ

We now need to find the flow time, say δ, back to the switching line Σε+ following the ψOUT
flow, which is given by the solution of the differential equation (11)

θ̈ +Kdθ̇ + (Kp −A)θ = 0.

Assume δ = O(ε) and let a = Kd/2 and b =
√

(Kp −A)− (Kd/2)2.
We find the flow solutions

θ(δ) = θ1 exp(−aδ) cos(bδ) +
θ̇1 + aθ1

b
exp(−aδ) sin(bδ) (22)

θ̇(δ) = θ̇1 exp(−aδ) cos(bδ)− aθ̇1 + a2θ1 + b2θ1
b

exp(−aδ) sin(bδ). (23)
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Expanding to O(ε3) equation (22) for the angular position, and equation (23) for the angular
velocity, we get

θ(δ) = θ1 −
1

2
(a2 + b2)θ1δ

2 + θ̇1δ +O(ε3) (24)

θ̇(δ) = −(a2 + b2)θ1δ + θ̇1 +O(ε2). (25)

Inserting (20) and (21), for the initial position and velocity components, into (24) and (25) gives

θ(δ) = θ0 + 2(θ∗ − θ0) + 2Aθ0β
2 − 1

2
(a2 + b2)θ0δ

2 + (26)

2Aθ0βδ +
θ∗ − θ0
β

δ +O(ε3)

θ̇(δ) = −(a2 + b2)θ0δ + 2Aθ0β +
θ∗ − θ0
β

+O(ε2). (27)

We may now use the above expressions and insert them in the equation for the switching line
(12). We find the time δ

δ = 2
(a2 + b2 + 2A)θ0β

2 + θ∗ − θ0
β(a2 + b2)θ0

+O(ε2), (28)

which is well-defined since a2 + b2 = Kp − A > 0, β = O(ε) > 0 and θ0 > 0 = O(1). Inserting
for the time δ equation (28) into equations (26) and (27) for position and velocity, we finally
find

θ(δ) = θ0 − 2θ0β
2(a2 + b2 +A) +O(ε3) < θ0 (29)

θ̇(δ) = −2θ0β(a2 + b2 +A)− θ∗ − θ0
β

+O(ε2) < −θ
∗ − θ0
β

, (30)

which indicates expansion and hence loss of stability of the pseudo-equilibrium PS = (θ∗, 0) for
small positive β.

4 Small scale stable oscillations

4.1 Existence of the limit cycles

To determine the existence and stability of small scale oscillations born in the bifurcation, we
may use the Hamiltonian function (similarly as in [14])

L(θ, θ̇) =
1

2
θ̇2 − 1

2
Aθ2. (31)

Consider an initial point, say P1(θ1, θ̇1) ∈ Σε+, such that θ̇1 = −θ
∗ − θ1
β

> 0. We seek to find

the final point, say P2, such that ∆L = L(P2)−L(P1) = 0 and P2 ∈ Σε+. We call the flow time
from P1 to P2 by δ. If a limit cycle is born in the bifurcation, the order of magnitude of θ̇1,
θ1 and δ can be determined by considering the geometry of flows ψIN and ψOUT with respect
to Σε+ in a sufficiently small neighbourhood of the pseudo-equilibrium point EQ+. Flow ψIN
exhibits a quadratic tangency with respect to Σε+ in some sufficiently small neighbourhood of
EQ+. It can be shown that the time required to reach Σε+ from some point, within the dead
zone sufficiently close to EQ+, where flow ψIN attains its minimum with respect to Σε+, say
(θ0, θ̇0), is of O(

√
−(θ0 − θ∗)). Thus the time of flight from Σε+ back to itself under ψIN must

be of O(
√
−(θ0 − θ∗)). We note here that the segment generated by ψIN can be characterized
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by the sum of a section which can be found by flowing forward in time from (θ0, θ̇0) until Σε+
and a second section by flowing backward in time towards Σε+. Obviously, in either case, due
to the quadratic tangency of flow ψIN , we have the same order of magnitude. It then follows
that the periodic point (θ1, θ̇1) is (O(1), O(

√
ε)) respectively, and flow time δ = O(

√
ε). The

same geometry with respect to Σε+ holds for flow ψOUT and thus the scaling law is preserved
(see the Appendix for further details). We note that the somehow “unnatural” O(

√
ε) scaling

arises due to the quadratic tangencies of both flows with respect to Σε+, exactly in the same
manner as in the case of grazing bifurcations, or grazing-sliding bifurcations (in particular see,
for example, the Appendix B in [21] for similar derivations). The expansions for the flows are
“standard” power series expansions. We should note here that the degeneracies of matrices AI
and AO may lead to the loss of the geometry described above and the introduced orders may
no longer hold, and the bifurcation may altogether change its character.

Along any given segment of trajectory generated by flow ψIN there is no change in the value
of Hamiltonian L. We use flow ψOUT and in particular equations (24) and (25) to determine
point P2. Thus

∆L =
1

2
(−(a2 + b2)θ1δ + θ̇1)2 −A1

2
(θ1 −

1

2
(a2 + b2)θ1δ

2 + ... (32)

+θ̇1δ)
2 − (

1

2
θ̇21 −

1

2
Aθ21),

where (θ1, θ̇1) ∈ Σε+. We can write ∆L up to and including terms of O(ε). We have

∆L =
1

2
((a2 + b2)2θ21δ

2 + θ̇21 − 2(a2 + b2)θ1θ̇1δ) + ... (33)

−A1

2
(θ21 − θ21δ2(a2 + b2) + 2θ1θ̇1δ)−

1

2
θ̇21 +

1

2
Aθ21.

Simplifying (33) we get

∆L = −[(a2 + b2) +A]θ1θ̇1δ +
1

2
(a2 + b2)θ21δ

2[(a2 + b2) +A], (34)

which after further simplifications leads to

∆L = (−θ̇1 +
1

2
Kp(Kp −A)θ1δ)Kpθ1δ. (35)

Using (34) we can solve ∆L = 0 for δ, which to leading order in ε gives

δ =
2θ̇1

(Kp−A)θ1
+O(ε). (36)

We also require (θ1, θ̇1) ∈ Σε+ and (θ2, θ̇2) ∈ Σε+. Using equation (25) for the velocity θ̇ and
inserting it into equation for the switching line Σε+ given by (12), we find

βθ̇1 + θ∗ − θ1 +
1

2
(Kp −A)θ1δ

2 − θ̇1δ +O(ε3/2) = 0, (37)

where O(ε3/2) signifies the remaining terms of O(ε3/2) and higher. Note that βθ̇1 + θ∗− θ1 = 0,
but βθ̇1 = O(ε3/2) and θ∗ − θ1 = O(ε3/2). Thus the point (θ2, θ̇2) ∈ Σε+.

4.2 Stability calculations

To determine the stability of the limit cycle, we compute

d∆L

dθ̇1
=
∂∆L

∂θ̇1
+
∂∆L

∂δ

dδ

dθ̇1
.

6



Figure 1: (a) A limit cycle attractor. (b) The variation of the non-trivial Floquet multiplier of the
limit cycle attractor against the parameter β.

Using
H(θ̇1, δ) = 0

and applying the Implicit Function Theorem, we find

dδ

dθ̇1
= −∂H

∂θ̇1

(
∂H

∂δ

)−1

.

Using (36) for δ, we have

d∆L

dθ̇1
= − 2Kpθ̇1

Kp −A
−Kpθ1θ̇1

dδ

dθ̇1
+ 2Kpθ1θ̇1

dδ

dθ̇1
, (38)

and so we find
dδ

dθ̇1
=

2

(Kp −A)θ1

to leading order.
Thus (38) simplifies to

d∆L

dθ̇1
= − Kpθ̇1

Kp −A
< 0 (39)

to leading order, and hence the limit cycle born in the bifurcation is stable.

5 Numerical verification

In the following section, we numerically verify the analytical results described in the former
section. In Fig. 1(a), we are depicting the limit cycle attractor born in the switched system
for β = 0.01, A = 0.5, Kp = 1, Kd = 1 and θ∗ = 1. In Fig. 1(b), we depict variation of
the non-trivial Floquet multiplier corresponding to the limit cycle attractor as a function of
parameter β. The non-trivial Floquet multiplier lies within the unit circle of the complex plane,
and hence we get further numerical verification that the limit cycle born in the bifurcation is a
stable orbit.

An orbit diagram where we depict the variation of the maximum value of θ̇ on the limit
cycle, say |xmax|, versus β is then shown in Fig. 2(a).
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Figure 2: (a) Bifurcation diagram depicting |xmax| vs. β on the limit cycle born in the Hopf
bifurcation. (b) Time variation of the duration of one segment, generated by flow φ1, making up
the limit cycle born in the Hopf bifurcation using numerical (∆) and asymptotic values (δ given by
equation (36)).

In Fig. 2(a), we can clearly see the square root variation in the maximum value of the
θ̇ = |xmax| component as a function of the bifurcation parameter β. Then in Fig. 2(b), the
time variation required to generate a segment of the limit cycle by the flow ψOUT as a function
of parameter β is compared with numerical values. Asymptotic convergence is clearly visible.

6 Limit cycle attractor born due to delayed switching

6.1 System with delayed switching line and positional feedback

In the context of human neuro-muscular control, there are always present neurological time
delays. For example, in the context of human balance control, there is a time delay present
in the system due to neural processing and muscle activation. Therefore, we will compare
numerically the Hopf-like bifurcation that we analyzed for the planar case with the Hopf-like
scenario that we observed in switched system with dead-zone and time delay in the switching
decision function. Namely consider a planar switched system of the form

θ̈ −Aθ = 0, |θ(t− τ)| ≤ θ∗, (40)

θ̈ −Aθ = −Kpθ −Kdθ̇, |θ(t− τ)| > θ∗, (41)

where θ∗ > 0, Kp > A > 0, Kd > 0, Kp − A > K2
d/4 and τ = O(ε) > 0. That is we consider

the same parameter space as in Sec. 5. Similarly the flow ψIN is the solution of (40) and the
flow ψOUT is the solution of (41).

System (40) and (41) can be seen as a model for human balance control during quiet standing
where the neural transmission and muscle activation delays are included in the delay of the
switching decision function [1, 14]. The dead-zone in the model can be seen as being related to
the finite accuracy of sensing [1, 14]. Define

ΣψIN
+ = {(θ, θ̇) ∈ R2 : θ = θ1(τ) and θ̇ = θ̇1(τ)}, (42)
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where

θ1(τ) =

√
Aθ0 − θ̇0
2
√
A

exp(−
√
Aτ) +

√
Aθ0 + θ̇0

2
√
A

exp(
√
Aτ),

θ̇1(τ) = −
√
Aθ0 − θ̇0

2
exp(−

√
Aτ) +

√
Aθ0 + θ̇0

2
exp(
√
Aτ),

are the images of the position and velocity states on Σ+, namely for θ0 = θ∗ and θ̇0 ∈ R, under
the evolution of ψIN for the small fixed time τ = O(ε).

Similarly, define

ΣψOUT
+ = {(θ, θ̇) ∈ R2 : θ = θ2(τ) and θ̇ = θ̇2(τ)}, (43)

where

θ2(τ) = θ0 exp(−aτ) cos(bτ) +
θ̇0 + aθ0

b
exp(−aτ) sin(bτ),

θ̇2(τ) = θ̇0 exp(−aτ) cos(bτ)− aθ̇0 + a2θ0 + b2θ0
b

exp(−aτ) sin(bτ),

and a2 = K2
d/4, b2 = (Kp − A) −K2

d/4, θ0 = θ∗ and θ̇0 ∈ R. Thus (θ2, θ̇2) are the images of
the position and velocity states, for any initial conditions on Σ+, under the evolution of ψOUT
for the small fixed time τ = O(ε). Since Σ+ is a line and the flows ψIN and ψOUT are linear
then ΣψIN

+ and ΣψOUT
+ are lines in the phase space (θ, θ̇) which, generically, will cross in some

neighborhood of (θ∗, 0) for sufficiently small delay time τ .

6.2 Numerical observations

We will investigate numerically a bifurcation in the model under the switching of the delay time
τ . For τ = 0, we have a switched model with purely positional control and dead-zone, which
has two stable pseudo-equilibria as the only attractors (see Sec. 2 and [14]). For τ > 0, we have
a dynamical system which is infinite dimensional due to the fact that, to be able to determine
the forward evolution, it is necessary to keep track of a segment of trajectory for θ state in the
interval [t− τ, t]. However, if certain genericity conditions are satisfied in our delayed switched
model, the system dynamics reduces to the evolution of finite number of state variables (see
[23, 24]). In particular, let t1 be the time of evolution from any point (θ, θ̇) ∈ ΣψIN

+ , in some

neighborhood of (θ∗, 0), to Σ+, and t2 be the time of evolution from any point (θ, θ̇) ∈ ΣψOUT
+

to Σ+.
Then for τ sufficiently small we may assume that τ < t1 and τ < t2. This implies that, as-

suming a limit cycle exists in some neighborhood of the point (θ∗, 0), the dynamics of the delayed
switched system can be described locally by a smooth one-dimensional map ΣψIN

+ 7→ ΣψIN
+ .

Other Poincaré section, transversal to the limit cycle, can be chosen. What is important, how-
ever, is the reduction of an infinite dimensional system to a finite dimensional one. In what
follows, we show numerical evidence that this reduction preserves also quantitative features. In
other words, we will provide numerical evidence that a switched system with position-velocity
control may in certain circumstances behave exactly like a switched system with purely posi-
tional control and delayed switching.

In Fig. 3, we depict a limit cycle attractor born in the system for τ = 0.01, A = 0.5,
Kp = 1, Kd = 1 and θ∗ = 1 and compare it to the limit cycle attractor born in the switched
position-velocity system with β = 0.01. It can be seen that the two limit cycles are virtually
indistinguishable. In Fig.4(a) we compare bifurcation diagrams of both systems under variations
of β and τ from 0, and in Fig. 4(b) we verify the variation of the non-trivial Floquet multiplier
born in the Hopf-like bifurcation in either system. A simple argument may be given explaining
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Figure 3: Limit cycle attractors born in Hopf-like bifurcation scenarios in switched (“position-
velocity”) system (1) and (2) under the variation of the slope β (dashed line) and in system (40),
(41) with the delayed switching line (“position-delay”) under the variation of the delay time τ (solid
line).

Figure 4: (a) A comparison between the variation of the non-trivial Floquet multiplier of the limit
cycle attractor in the system with delayed switching line (dashed line) and no delay (solid line). (b)
The variation of the non-trivial Floquet multiplier of the limit cycle attractor against the parameters
β and time delay
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the current situation. The delayed switching line is given by the expression θ(t − τ) − θ∗ = 0.
Let us expand θ(t− τ) in τ to leading order. That is, we obtain a switching line, which is given
by θ(t)−τ θ̇(t)−θ∗ = 0. The algebraic expression for the switching line is now exactly the same
of for the position-velocity switching line with τ taking the place of β. However, this holds
for slowly oscillating orbits only, that is for orbits for which the flight time between switchings
is greater than delay time δ. Now, in the delayed case the limit cycles, indeed, satisfy this
condition since δ = O(

√
ε) and τ = O(ε), and the delayed system reduces to the system with

the position-velocity switching line for sufficiently small delay times τ .

7 Conclusions

In the paper, we analyze a novel type of a discontinuity induced bifurcation in the case when we
apply a perturbation to the linear control feedback law. In particular, we show that switched
linear systems with dead-zone and purely positional feedback under a small parameter pertur-
bation, from position to position-velocity control, may loose a stable pseudo-equilibrium state
(an equilibrium of the switched system which lies on the switching manifold) and produce a
limit cycle in a Hopf-like scenario. Using asymptotic method we analyze this novel bifurcation
and show the loss of stability of the pseudo-equilibrium and a birth of stable limit cycles with
the amplitude, say |x|, growing as the square root of the bifurcation parameter (|x| = O(

√
β),

where β refers to the bifurcation parameter).
We then consider switched systems with dead-zone and purely positional feedback law,

but with the switching decision function that contains time delay. We investigate this system
numerically for small values of delay time τ = O(ε). We find that the system, considering
the same parameter values as in the non-delayed case, exhibits a Hopf-like bifurcation scenario
under the variation of τ , which not only qualitatively but also quantitatively matches the Hopf
bifurcation in the switched system with no time delay. In control literature, it has been suggested
that delays in positional feedback laws may serve as approximation of velocity components since
v ≈ (x(t + τ) − x(t))/τ . However, in our case the time delay is included only in threshold
detection and so the agreement of the qualitative and quantitative nature in the case of the two
types of novel Hopf-bifurcation scenarios reported in the current work is somehow surprising.
A theoretical explanation for this agreement follows from the fact that for sufficiently small
time delays the delayed switching line can be approximated as a position-velocity switching line
provided that the time of evolution between switchings is greater than the delay time τ , which
is, indeed, the case.

We should note here that similar systems have been analyzed in [1, 25] and there an onset of
small scale limit cycles born around pseudo-equilibria have been also reported. However, these
systems have been characterized by the presence of time delays in the position and velocity
state variables as well.

Bifurcations which lead to the creation of limit cycles in switched systems, due to changes of
the control strategy, have been observed in different contexts, for example due to an introduction
of small hysteresis, see Sec. 2.1 in [18]. In some instances, these bifurcations can be seen as
bifurcations from infinity; from the point of view of perturbations applied not to the switching,
but to a state variable, see Sec. 2.2 in [18] and [10, 17] for further details. From these works, it
is clear that limit cycles can be born from a pseudo-equlibrium in switched systems in a variety
of scenarios and their exhaustive and unified classification seems extremely difficult. Perhaps
one of the ways in which one could attempt the classification of distinct Hopf-like bifurcations
in nonsmooth systems would be by considering scaling laws. That is, we should note that
the bifurcation analyzed in the current manuscript differs, from example, from the Hopf-like
bifurcation scenario analyzed in [9], by the scaling of the amplitude as a function of bifurcation
parameter β. In the other work, the amplitude of the limit cycle born in the bifurcation grows
linearly as a function of the bifurcation parameter. The question now arises whether one could
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divide the Hopf-like bifurcations in switched systems into classes characterized by different
scaling laws.

Future work is aimed at considering under what conditions the bifurcations analyzed in
the current work are observed in higher dimensional switched systems. From the application
point of view, we are interested in investigating whether there is a link between the small scale
stable oscillations, born due to a small change in the character of the control law in switched
models with dead-zone, and the dynamics of neuromotorcontrol systems. In particular, we are
interested in understanding sway motion during quiet standing of humans affected by diabetes
by linking changes of sway patterns with the bifurcations analyzed in the current work.

8 Appendix

Consider a point θ0 − θ∗ = O(ε) < 0. Computing

∂H

∂t
=
∂H

∂θ
θ̇ +

∂H

∂θ̇
θ̈ = θ̇ − βθ̈ = 0,

we find
θ̇0 = βθ̈0 = O(ε),

since β = O(ε) and θ̈0 = O(1) in a sufficiently small neighbourhood of (θ∗, 0). The subscript
‘0’ refers to a point where ψIN reaches a minimum with respect to Σε+. Let H(θ0, θ̇0) = Hmin
and clearly Hmin = O(ε). To determine the time required to reach Σε+ from Hmin we may
expand

H(ψIN ([θ, θ̇], δ)) = Hmin + (HxFIN )δ +
1

2
((HxFIN )xFIN )δ2 +O(δ3),

where the subscript ‘x’ denotes differentiation with respect to the state vector [θ, θ̇] and
HxFIN denotes the directional derivative of H in vector field FIN . Now, Hmin = O(ε) and

solving H(ψIN ([θ, θ̇], δ)) = 0, we find that time δ = O(
√
−Hmin) since HxFIN = 0 and

(HxFIN )xFIN = O(1) at (θ0, θ̇0).
Similar expansions may be carried out for the flow ψOUT .
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