
Secure Bidirectional Proxy Re-Encryption for Cryptographic Cloud
StorageI

Jun Shaoa, Rongxing Lub, Xiaodong Linc, Kaitai Liangd

aSchool of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, P.R. China
bSchool of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

cFaculty of Business and Information Technology, University of Ontario Institute of Technology, Ontario, Canada
dDepartment of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

Abstract

Bidirectional proxy re-encryption allows ciphertext transformation between Alice and Bob via a semi-trusted
proxy, who however cannot obtain the corresponding plaintext. Due to this special property, bidirectional
proxy re-encryption has become a flexible tool in many dynamic environments, such as cryptographic cloud
storage. Nonetheless, how to design a secure and efficient bidirectional proxy re-encryption is still challenging.
In this paper, we propose a novel bidirectional proxy re-encryption scheme that holds the following properties:
1) constant ciphertext size no matter how many times the transformation is performed; 2) master secret
security in the random oracle model, i.e., Alice (resp. Bob) colluding with the proxy cannot obtain Bob’s
(resp. Alice’s) private key; 3) replayable chosen ciphertext (RCCA) security in the random oracle model. The
above three properties are usually required in the cryptographic cloud storage. Furthermore, the proposed
new master secret security may be of independent interest, as it is closer to the original desire: delegate the
decryption rights while keeping the signing rights.

Keywords: bidirectional proxy re-encryption, replayable chosen-ciphertext attack, master secret security,
multi-use, constant size, cryptographic cloud storage

1. Introduction

Proxy re-encryption (PRE) [2] allows a secure ciphertext transformation in a way that a semi-trusted
proxy can use a re-encryption key delegated from Alice (and Bob) to re-encrypt a ciphertext under Alice’s
public key into a new ciphertext that Bob can decrypt by using his own private key. However, the proxy
cannot do any decryption on the ciphertexts of either Alice or Bob. If the re-encryption key can be used
to do the re-encryption in both directions, the PRE scheme is called bidirectional; otherwise, it is called
unidirectional. Both types of PRE schemes have their own interesting applications. In this work, we shall
focus on bidirectional proxy re-encryption (BPRE), as it still encounters many research challenges when
applied to practical scenarios.

Among the applications of BPRE [10, 14, 8, 20, 17, 18, 11, 9, 16], the cryptographic cloud storage
(sharing) [20, 16] has become more and more popular. This kind of application usually works in a dynamic
environment which requires the PRE scheme to hold multi-usability and constant ciphertext size. In other
words, it demands that the transformed ciphertext can be further transformed while the ciphertext size keeps
the same.

To the best of our knowledge, there are only few BPRE schemes [2, 6, 13, 19] satisfying the above
requirements. However, those previously reported schemes in [2, 6, 13] suffer from the so-called collusion

IThe extended abstract of this paper appeared at Provsec 2014.
Email addresses: chn.junshao@gmail.com (Jun Shao), rxlu@ntu.edu.sg (Rongxing Lu), xiaodong.lin@uoit.ca

(Xiaodong Lin), kliang4-c@my.cityu.edu.hk (Kaitai Liang)

Preprint submitted to Elsevier June 7, 2015

attack, i.e., Alice (resp. Bob) colluding with the proxy can obtain Bob’s (resp. Alice’s) private key. In
practice, collusion resistance is crucial, especially when Alice (resp. Bob) uses the same private key to
perform decrypting and signing, and she (resp. he) wants to delegate the decryption rights while keeping
the signing rights. In the applications of cryptographic cloud storage (sharing), the cloud server (acting as
the proxy in the BPRE scheme) is assumed to be not colluding with any user in the system. However, as
we know, this assumption in the reality is not always true.

In general, the security notion dealing with the collusion attack is called master secret security proposed
by Ateniese et al. [1]. Recently, Weng and Zhao [19] proposed two BPRE schemes based on pairings. One
is multi-use but with only CPA secure, the other is CCA secure but not multi-use. Meanwhile, it has been
showed that replayable chosen ciphertext (RCCA) security is also crucial in the applications of distributed
storage [6]. Therefore, in this paper, to address the above challenges, we would like to propose the first
scheme with multi-useability, constant ciphertext size, and RCCA security. The proposed BPRE scheme in
this paper can (partially) solve the problem in the cryptographic cloud storage (sharing) mentioned above.
Furthermore, the proposed BPRE scheme satisfies our new master secret security where Alice (resp. Bob)
colluding with the proxy cannot sign messages on behalf of Bob (resp. Alice). This new definition is closer
to the original desire for the master secret security, compared to the existing master secret security where
Alice (resp. Bob) colluding with the proxy cannot obtain Bob’s (resp. Alice’s) private key.

1.1. Main Differences between the Conference Version and the Current Version

The main difference between the conference version [12] and the current version is the security model for
the master secret security. In the conference version, the security model only captures the attacks aiming
at computing private key, while the security model in the current version captures the attacks aiming at the
forgery on signatures. The security obtained in the latter model is stronger than that in the former model,
and the latter one is closer to the original desire for the master secret security.

To coordinate the new security model, we made the following changes in this current version.

• We added the definition of Auxiliary Digital Signature to the definition part.

• We added the signing oracle into the security games of the RCCA security and master secret security,
and changed the winning requirements in the security game of the master secret security.

• We added a concrete auxiliary digital signature scheme.

• We gave the new security proofs in the new security models.

1.2. Related Work

At EUROCRYPT 1998, Blaze, Bleumer and Strauss [2] proposed the first BPRE scheme (named BBS98)
base on ElGamal encryption [7]. Later on, Canetti and Hohenberger [6] proposed the first (R)CCA-secure
BPRE scheme (named CH07) by using pairings. At PKC 2011, Matsuda, Nishimaki and Tanaka [13] proposed
a new pairing-free CPA-secure bidirectional scheme (named MNT10). All of the above schemes hold multi-
usability and constant ciphertext size, but they all suffer from the collusion attack. The main reason that
the collusion attack works is that the re-encryption key is computed by skA/skB , where skA and skB are
the private keys of Alice and Bob, respectively. It is easy to see that once skA (resp. skB) and skA/skB are
put together, skB (resp. skA) would be revealed.

Recently, Weng and Zhao [19] proposed two new BPRE schemes by using pairings. The first one (named
WZ11a) is multi-use, CPA-secure and master secret secure (in the sense of the old definition), and the second
one (named WZ11b) is multi-use, CCA-secure, and master secret secure (in the sense of the old definition).
To obtain master secret security, the re-encryption key is computed by sk′A/sk

′
B , where sk′A and sk′B are not

the private keys but the decryption keys of Alice and Bob, respectively. The analogous relations between
skA and sk′A can be found in the identity-based encryption [15, 3], where the private key generator’s master
secret key and the user’s private key can be considered as the analogies skA and sk′A, respectively. Clearly,
knowing sk′A does not hurt the secrecy of skA.

2

Table 1: Summary of bidirectional proxy re-encryption schemes.

BBS98[2] CH07[6] MNT10[13] WZ11a[19] WZ11b[19] Our proposal

RCCA # ! # # ! !
CAa DDH DBDH re-applicable LTDFs DBDH 1-AwDBDHI mDBDH

MSSb # # # —c —d !
CA — — — — — CDH

MUe ! ! ! ! # !

aCA denotes “Complexity Assumption”.
bMSS denotes “Master Secret Security”.
cIt is unclear whether it can be proved secure in our new security model.
dIt is unclear whether it can be proved secure in our new security model.
eMU denotes “Multi-Useability”.

In Table 1, we summarize the existing BPRE schemes in terms of secrecy of message, master secret
security, multi useability and their complexity assumptions. From this table, we can see that our proposal
would be the only one that can hold the desired properties at the same time.

The rest of this paper is organized as follows. In Section 2, we give the definitions, security models
of BPRE. Our new definition of the master secret security is given in this section. Then, we present our
proposal in Section 3, including the description, security analysis and computation comparison. Finally, we
draw our conclusions in Section 4.

2. Definitions

2.1. Definition of Bidirectional Proxy Re-Encryption

Definition 1 (Bidirectional Proxy Re-Encryption). A Bidirectional proxy re-encryption scheme is a
tuple of probabilistic polynomial time (PPT) algorithms (KeyGen, ReKeyGen, Enc, ReEnc, Dec):

• KeyGen(1κ) → (pk, sk). On input of the security parameter 1κ, the key generation algorithm KeyGen

outputs a public key and private key pair (pk, sk).

• ReKeyGen(sk1, sk2) → rk1,2. On input of two private keys sk1 and sk2, the re-encryption key gen-
eration algorithm ReKeyGen outputs a bidirectional re-encryption key rk1,2. Since it is bidirectional,
ReKeyGen(sk2, sk1) can be easily computed from ReKeyGen(sk1, sk2) via a public function F . For
instance, F is the inversion of ReKeyGen(sk1, sk2) in [2, 6, 19].

In general speaking, this algorithm is interactive, involving the delegator, delegatee and proxy.

• Enc(pk,m)→ C. On input of a message m from the message space and a public key pk, the encryption
algorithm Enc outputs a ciphertext C.

• ReEnc(rk1,2, C1) → C2. On input of a re-encryption key rk1,2 and a ciphertext C1, the re-encryption
algorithm ReEnc outputs a re-encrypted ciphertext C2 or a special symbol reject.

• Dec(sk, C) → m. On input of a private key sk, and a ciphertext C, the decryption algorithm Dec

outputs a message m or a special symbol reject.

3

Correctness of BPRE. For any message m in the message space and any key pairs (pk, sk), (pk′, sk′) ←
KeyGen(1κ), the following two conditions must hold:

Dec(sk, Enc(pk,m)) = m and Dec(sk′, ReEnc(rk, C)) = m,

where rk is generated by ReKeyGen(sk, sk′) or F(ReKeyGen(sk′, sk)), and C is the ciphertext for message m
under pk from algorithm Enc or ReEnc if the bidirectional proxy re-encryption scheme is multi-use.

Recall the original desire for the master secret security: delegate decryption rights while keeping the
signing rights. To give the definition of the master secret security closer to the original desire, we need to
define the auxiliary digital signature for BPRE.

Definition 2 (Auxiliary Digital Signature). An auxiliary digital signature (ADS) for BPRE contains
the following PPT algorithms (KeyGen, Sign, Verify).

• KeyGen(1κ)→ (pk, sk). Identical to that in BPRE.

• Sign(sk,m)→ σ. On input of a private key sk and a message m from the message space, the signing
algorithm Sign outputs a signature σ.

• Verify(pk,m, σ) → 0/1. On input of a public key pk, a message m from the message space and a
signature σ, the verifying algorithm Verify outputs 1 if σ is valid or 0 otherwise.

Correctness of ADS. The correctness of ADS is the same as that the traditional digital signature. That
is, for any message m in the message space and any key pairs (pk, sk) ← KeyGen(1κ), the following two
conditions must hold:

Verify(pk,m, Sign(sk,m)) = 1 and Verify(pk,m′, Sign(sk,m)) = 0

where m′ 6= m.

2.2. Replayable Chosen Ciphertext Security for Multi-Use Bidirectional Proxy Re-Encryption

The replayable chosen ciphertext security for multi-use BPRE is defined by the following RCCA game
played between a challenger C and an adversary A. As usual, the challenger C does not answer any queries
which the adversary A can answer by itself using the secret it has been supplied, and returns only one answer
for the same query. Moreover, the adversary A should decide which party will be corrupted before the game
starts. In other words, our RCCA security is defined in the static model.

Setup: The challenger C sets up the system parameters, and initializes one empty table Tk which will be
used to record all key pairs.

Phase 1: The adversary A can issue the following queries adaptively.

• Public key generation oracle Opk: C takes a security parameter 1κ, runs KeyGen(1κ) to generate
a key pair (pki, ski), gives pki to A and records (pki, ski) in the table Tk. In the following, ski is
the corresponding private key of pki.

• Private key generation oracle Osk: On input of pki by A, C searches for pki in the table Tk, and
returns ski if pki is corrupted.

• Re-encryption key generation oracle Ork: On input of two different public keys (pki, pkj) by A,
C returns the re-encryption key rki,j = ReKeyGen(ski, skj). It is required that both pki and pkj
are corrupted or uncorrupted.

• Re-encryption oracle Ore: On input of (pki, pkj , C) by A, C returns the re-encrypted ciphertext
C ′ = ReEnc(ReKeyGen(ski, skj), C).

• Decryption oracle Odec: On input (pki, Ci), C returns Dec(ski, Ci).

4

• Signing oracle Osign: On input of (pki,mi), C returns Sign(ski,mi).

Challenge: Once A decides that Phase 1 is over, it outputs two equal length plaintexts m∗0, m∗1 from the
message space, and an uncorrupted public key pk∗ on which it wishes to challenge. C picks a random
bit b ∈ {0, 1} and sets C∗ = Enc(pk∗,m∗b). It sends C∗ as the challenge to A.

Phase 2: This phase is almost the same as Phase 1 but with the following restrictions.

• Ore: On input of (pk1, pk2, C1) by A, if (pk1, C1) is a derivative of (pk∗, C∗), and pk2 is corrupted,
C outputs reject. We say (pk1, C1) is a derivative of (pk∗, C∗) if one of the following conditions
holds.

– (pk1, C1) = (pk∗, C∗).

– (pk,C) is a derivative of (pk∗, C∗), and (pk1, C1) is a derivative of (pk,C).

– (pk1, C1)← Ore(pk, pk1, C), where (pk, C) is a derivative of (pk∗, C∗).

– The adversary A can use the re-encryption keys from Ork to transform ciphertexts under pk∗

to that under pk by running ReEnc, and Odec(pk1, C1) ∈ {m∗0,m∗1}.
• Odec: On input of (pki, Ci), if the output is m∗0 or m∗1, C returns reject.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

Remark 1. Compared to the existing security game of confidentiality for PRE, our security game addition-
ally contains the signing oracle. It is because that in our definition of BPRE, any BPRE scheme always has
an ADS scheme.

We refer to such an adversary A as an RCCA adversary. We define adversary A’s advantage in attacking
multi-use BPRE as the following function of the security parameter κ: AdvRCCA

MBPRE(1
κ) = |Pr[b = b′] − 1/2|.

Using the RCCA game, we can define RCCA security of multi-use BPRE.

Definition 3 (RCCA Security). If for any PPT RCCA adversary A the function AdvRCCA
MBPRE(1

κ) is negli-
gible, the multi-use bidirectional proxy re-encryption scheme is RCCA-secure.

2.3. Master Secret Security for Multi-Use Bidirectional Proxy Re-Encryption.

The master secret security for multi-use BPRE is defined by the following MSS game played between
a challenger C and an adversary A. As usual, the challenger C does not answer any queries which the
adversary A can answer by itself using the secret it has been supplied, and returns only one answer for the
same query. Moreover, all the public keys involved in the following oracles (except Opk) are from Opk. It is
worth mentioning that in the MSS game, the adversary does not need to decide the corrupted user before
the game starts. In other words, our master secret security is defined in the adaptive model.

Find: The adversary A can issue the following queries adaptively.

• Public key generation oracle Opk: C takes a security parameter 1κ, runs KeyGen(1κ) to generate
a key pair (pki, ski), gives pki to A and records (pki, ski) in the table Tk. In the following, ski is
the corresponding private key of pki.

• Private key generation oracle Osk: On input of pki by A, C searches for pki in the table Tk, and
returns ski.

• Re-encryption key generation oracle Ork: On input of (pki, pkj) by A, C returns the re-encryption
key rki,j = ReKeyGen(ski, skj).

• Re-encryption oracle Ore: On input of (pki, pkj , C) by A, C returns the re-encrypted ciphertext
C ′ = ReEnc(ReKeyGen(ski, skj), C).

• Decryption oracle Odec: On input of (pki, Ci), C returns Dec(ski, Ci).

5

• Signing oracle Osign: On input of (pki,mi), C returns Sign(ski,mi).

Output: A outputs a tuple of (pk∗,m∗, σ∗). If all the following conditions are satisfied, then A wins the
game.

• Verify(pk∗,m∗, σ∗) = 1.

• pk∗ has never been queried to Osk.

• (pk∗,m∗) has never been queried to Osign.

Remark 2. Compared to the existing security game for the master secret security, our security game addi-
tionally contains the signing oracle, and the winning requirement changes from outputting a private key of
an uncorrupted user to a successful forgery of the signature.

We also define AdvMSS
MBPRE(1

κ) = Pr[A Wins] for the security parameter κ as that in RCCA security.

Definition 4 (Master Secret Security). If for any PPT MSS adversary A the function AdvMSS
MBPRE(1

κ) is
negligible, the multi-use bidirectional proxy re-encryption scheme is MS-secure.

2.4. Bilinear Groups

In this subsection, we briefly review the definitions about bilinear maps and bilinear map groups, which
follow those in [3, 5].

1. G and GT are two (multiplicative) cyclic groups of prime order q;

2. g is a generator of G;

3. e is a bilinear map e : G×G→ GT .

Let G and GT be two groups as above. An admissible bilinear map is a map e : G × G → GT with the
following properties:

1. Bilinearity : For all P,Q,R ∈ G, ê(P ·Q,R) = ê(P,R) · ê(Q,R) and ê(P,Q ·R) = ê(P,Q) · ê(P,R).

2. Non-degeneracy : If ê(P,Q) = 1 for all Q ∈ G, then P = O, where O is a point at infinity.

We say that G is a bilinear group if the group action in G can be computed efficiently and there exists
a group GT and an efficiently computable bilinear map as above. We denote BSetup as an algorithm that,
on input the security parameter 1κ, outputs the parameters for a bilinear map as (q, g,G,GT , e), where
q ∈ Θ(2κ).

2.5. Complexity Assumptions

The security of our proposal is based on the modified decisional bilinear Diffie-Hellman assumption and
computational Diffie-Hellman assumption. Since the latter assumption is well-known, we only give the
definition of the former assumption in this paper.

Definition 5 (Modified Decisional Bilinear Diffie-Hellman Assumption). Let (q, g,G,GT , e)← BSetup(1k).
The modified decisional bilinear Diffie-Hellman problem (mDBDH) in (G,GT) is defined as follows: given
tuple (g, ga, g1/a, gb, gc, T) ∈ G5×GT as input, decide whether S = ê(g, g)abc. An algorithm A has advantage
ε in solving the mDBDH problem in (G,GT) if

|Pr[A(g, ga, g1/a, gb, gc, ê(g, g)abc) = 0]− Pr[A(g, ga, g1/a, gb, gc, T) = 0]| ≥ ε,

where the probability is taken over the random choices of a, b, c ∈ Zq, S ∈ G and the random bits of A.
We say that the (t, ε)-modified decisional Bilinear Diffie-Hellman assumption holds in (G,GT) if no t-time

algorithm has advantage ε at least in solving the mDBDH problem in (G,GT).

6

3. Our Proposal

3.1. Description of Our BPRE Scheme

The system parameters are (q, g, h, e,G,GT), where (q, g, e,G,GT) are from BSetup, and h is a random
element from G. Furthermore, it requires two secure cryptographic hash functions H1 : {0, 1}∗ → {0, 1}κ
and H2 : {0, 1}∗ → {0, 1}κ, where κ is a security parameter.

• KeyGen: Select random x1, x2, z1 ∈ Zq, Next, compute X1,g = ê(g, g)x1 , X1,h = ê(g, h)x1 , X2 = gx2 ,
Z1 = gz1 , z2 = (x1 − z1)/x2 mod q, and Z2 = gz2 . The public key is

pk = (X1,g, X1,h, X2, Z1, Z2),

and the private key is
sk = (x1, x2, z1, z2).

• ReKeyGen: On input two private keys sk = (x1, x2, z1, z2) and sk′ = (x′1, x
′
2, z
′
1, z
′
2), it outputs the

re-encryption key
rk = (rk1, rk2) = (z1/z

′
1 mod q, z2/z

′
2 mod q).

The re-encryption key can be computed efficiently by the method in [2, 6].

• Enc: On input pk = (X1,g, X1,h, X2, Z1, Z2) and m ∈ GT , do the following steps.

– Choose random r from Zq.
– Compute

u1 = gr, u2 = Xr
2 , v = Xr

1,h ·m, u3 = Xr
1,g,

u4 = H1(v||u3)r, u5 = H2(v||u3)r

Note that the item u5 is only useful in the security proof.

– Output C = (u1, u2, v, u3, u4, u5) as the ciphertext.

• ReEnc: On input a re-encryption key rk = (rk1, rk2) = (z1/z
′
1 mod q, z2/z

′
2 mod q) and a ciphertext

C = (u1, u2, v, u3, u4, u5) under key pk = (X1,g, X1,h, X2, Z1, Z2), the proxy performs as follows.

– Check whether

ê(u1, H1(v||u3)) = ê(g, u4) (1)

ê(u1, H2(v||u3)) = ê(g, u5) (2)

ê(u1, Z1) · ê(u2, Z2) = u3 (3)

all hold. If not, abort; otherwise, do the next steps.

– Compute u′1 = urk11 , u′2 = urk22 , u′4 = urk14 , and u′5 = urk15 .

– Output (u′1, u
′
2, v, u3, u

′
4, u
′
5) as the re-encrypted ciphertext.

Note that
u′1 = urk11 = gr·z1/z

′
1 , u′2 = urk22 = gr·x2·z2/z′2

u′4 = urk14 = H1(v||u3)r·z1/z
′
1 , u′5 = urk25 = H2(v||u3)r·z1/z

′
1

• Dec: On input a private key (x1, x2, z1, z2) and any ciphertext C = (u1, u2, v, u3, u4, u5), the decryptor
performs as follows.

– Check whether Equalities (1), (2), (3) all hold. If not, abort; otherwise, do the next steps.

7

– Compute m = v/(ê(uz11 , h) · ê(uz22 , h)). Note that if the ciphertext C is from Enc, we have that

v/(ê(uz11 , h) · ê(uz22 , h)) = ê(h, gx1·r) ·m/(ê(h, gz1·r) · ê(h, gz2·x2·r)) = m;

if the ciphertext C is from ReEnc, we have that

v/(ê(uz11 , h) · ê(uz22 , h)) = ê(h, gx
′
1·r) ·m/(ê(h, gz

′
1·r) · ê(h, gz

′
2·x
′
2·r)) = m.

– Output the message m.

The correctness of the above BPRE scheme can be easily obtained by the description.

3.2. Description of Our ADS Scheme

The system parameters are almost the same as that in our BPRE scheme, except we need an additional
secure cryptographic hash function H3 : {0, 1}∗ → Zq.

• KeyGen: Identical to that in our BPRE scheme.

• Sign: On input a private key sk = (x1, x2, z1, z2) and a message m, it outputs the signature σ =
H3(m||pk)x2 , where pk is the public key corresponding to sk.

• Verify: On input pk = (X1,g, X1,h, X2, Z1, Z2), a signature σ and a message m, if ê(X2, H3(m||pk)) =
ê(g, σ) holds, it outputs 1 or 0 otherwise.

It is easy to see that the above ADS scheme is the short signature scheme in [4], hence the correctness is
obtained.

3.3. Security Analysis

Theorem 1. If the mDBDH assumption holds in G, our proposal is RCCA-secure in the random oracle
model. In particular, we have

AdvRCCA
MBPRE(1

κ) ≤ AdvAmDBDH(1
κ),

where AdvAmDBDH(1
κ) is the advantage of that A breaks the mDBDH assumption under the security parameter

κ.

Proof. Assume there exists a RCCA adversary A that can break the RCCA security of our proposal. Then
we can build another algorithm B that can break the mDBDH assumption (i.e., given g, ga, g1/a, gb, gc, T , it
is hard to decide T = ê(g, g)abc) by playing the RCCA game with A. The details are as follows. Before the
game starts, B sets h = gb.

H1 Oracle: On input of (v, u3), check whether the tuple (v, u3, α1) exists in the list LH1 . If yes, return
(ga)α1 ; otherwise, it chooses a random α1 from Zq, and then records (v, u3, α1) in the list LH1

, and
returns (ga)α1 . Note that if the input (v, u3) is a part of the challenge ciphertext, then B just returns
gα1 .

H2 Oracle: On input of (v, u3), check whether the tuple (v, u3, α2) exists in the list LH2 . If yes, return
(g1/a)α2 ; otherwise, it chooses a random α2 from Zq, and then records (v, u3, α2) in the list LH2 , and
return (g1/a)α2 . Note that if the input (v, u3) is a part of the challenge ciphertext, then B just returns
gα2 .

H3 Oracle: On input of (m, pk), check whether the tuple (m, pk, α3) exists in the list LH3
. If yes, return

gα3 ; otherwise, choose a random value α3 from Zq, and then record (m, pk, α3) in the list LH3 , and
return gα3 .

Phase 1: B builds the oracles as follows.

8

• Opk: B chooses random elements z1, z2, x2 from Zq. If the public key is uncorrupted, then B
computes X1 = gz1((ga)x2)z2 and returns

pk = (X1,g, X1,h, X2, Z1, Z2)

= (ê(g,X1), ê(h,X1), gx2 , gz1 , (ga)z2);

if the public key is corrupted, then B computes X1 = gz1(gx2)z2 and returns

pk = (X1,g, X1,h, X2, Z1, Z2)

= (ê(g,X1), ê(h,X1), gx2 , gz1 , gz2).

At last, B records (pk,X1, z1, z2, x2) in Tk.

• Osk: On input of a corrupted public key pk by A, B gets (pk, z1, z2, x2) from Tk. B returns
sk = (z1 + x2 · z2 mod q, x2, z1, z2).

• Ork: On input of (pk, pk′) by A, B gets (pk, z1, z2, x2) and (pk′, z′1, z
′
2, x
′
2) from Tk, and then

returns
rk = (rk1, rk2) = (z1/z

′
1 mod q, z2/z

′
2 mod q).

Note that we have the following for the correctness.

– If the two public keys are both uncorrupted,

sk = (z1 + x2 · a · z2 mod q, x2, z1, z2 · a mod q)

and
sk′ = (z′1 + x′2 · a · z′2 mod q, a · x′2, z′1, z′2 · a mod q),

hence, rk = (rk1, rk2) = (z1/z
′
1 mod q, z2/z

′
2 mod q).

– If the two public keys are both corrupted,

sk = (z1 + x2 · z2 mod q, x2, z1, z2)

and
sk′ = (z′1 + x′2 · z′2 mod q, x′2, z

′
1, z
′
2),

hence, rk = (rk1, rk2) = (z1/z
′
1 mod q, z2/z

′
2 mod q).

• Ore: On input of C = (u1, u2, v, u3, u4, u5) and two public keys pk and pk′, B first checks the
well-formness as the real execution. If it does not pass, abort; otherwise, do the followings.

– If the two public keys are both uncorrupted or corrupted, then B gets the re-encryption key
from Ork, and returns the result of ReEnc.

– Otherwise, do the followings.

∗ Find the items (pk,X1, z1, z2, x2) and (pk′, X ′1, z
′
1, z
′
2, x
′
2) in Tk.

∗ Compute u′1 = u
z1/z2
1 , u′4 = u

z1/z2
4 , and u′5 = u

z1/z2
5 .

∗ Find the original decryptor pko of the ciphertext C by checking ê(u1, X1) = u3 for all
items in Tk. Assume that the found item is (pko, Xo1, zo1, zo2, xo2).

∗ Compute gr = u
z1/zo1
1 , (ga)r = (u

z1/zo1
4)1/α1 and (g1/a)r = (u

z1/zo1
5)1/α2 , where α1, α2

are the values in LH1
and LH2

corresponding to (v, u3), respectively.

∗ If pko and pk′ are both corrupted or uncorrupted, then compute u′2 = (gr)xo2·zo2/z2 . If
pko is corrupted and pk′ is uncorrupted, then compute u′2 = ((g1/a)r)xo2·zo2/z2 . If pko is
uncorrupted and pk′ is corrupted, then compute u′2 = ((ga)r)xo2·zo2/z2 .

∗ Output (u′1, u
′
2, v, u3, u

′
4, u
′
5) as the resultant ciphertext.

9

• Odec: On input of C = (u1, u2, v, u3, u4) under pk, B first checks the well-formness as the real
execution. If it does not pass, output ⊥; otherwise, re-encrypt the ciphertext to the one under
a corrupted public key by querying Ore, then decrypt the resultant ciphertext by using the
corresponding private key.

• Osign: On input of (m, pk), B firstly gets the value of α3 by querying H3 hash oracle, and then
returns Xα3

2 .

Challenge: A sends C two messages m0,m1 from G and an uncorrupted public key

pk∗ = (X∗1,g, X
∗
1,h, X

∗
2 , Z

∗
1 , Z

∗
2)

= (ê(g, gz
∗
1 (ga)z

∗
2), ê(h, gz

∗
1 (ga)z

∗
2), gx

∗
2 , gz

∗
1 , (ga)z

∗
2),

B chooses a random number b ∈ {0, 1}, and returns (u∗1, u
∗
2, v
∗, u∗3, u

∗
4, u
∗
5) as the challenge ciphertext.

u∗1 = gc, u∗2 = (gb)x
∗
2 , v∗ = ê(gb, gc)z

∗
1 · T x

∗
2 ·z
∗
2 ·mb,

u∗3 = ê(X∗1 , g
c), u4 = (gb)α

∗
1 , u4 = (gb)α

∗
2 ,

where (X∗1 , z
∗
1 , z
∗
2 , x
∗
2), α∗1 and α∗2 are from Tk, LH1 and LH2 , respectively.

Note that if T = gabc, we have that v∗ = ê(gb, gc)z
∗
1 · T x∗2 ·z∗2 ·mb = ê(gb, X∗1)c ·mb.

Phase 2: Almost the same as that in Phase 1, except the restrictions in the RCCA game.

Guess: A outputs the guess b′. If b′ = b, B decides T = ê(g, g)abc; otherwise, T 6= ê(g, g)abc.

It is easy to see that in the random oracle, the above simulation is perfect. Hence, we obtain this theorem.�

Theorem 2. If the CDH assumption holds in G, our proposal is MS-secure in the random oracle model. In
particular, we have

AdvMSS
MBPRE(1

κ) ≤ AdvACDH(1
κ)

e(1 + qsk)qH3

,

where AdvACDH(1
κ) is the advantage of that A breaks the CDH assumption under the security parameter κ,

and qsk and qH3
is the number of private key generation queries and H3 hash oracle queries, respectively.

Proof. Assume there exists an MSS adversary A that can break the MS security of our proposal. Then
we can build another algorithm B that can break the CDH assumption (i.e., given g, ga, gb, it is hard to
compute gab) by playing the MSS game with A. The details are as follows.

Find: B builds the oracles as follows.

• H1, H2 hash oracles: Identical to the proof of Theorem 1.

• H3 hash oracle: On input of (m, pk), check whether the tuple (m, pk, α3) exists in the list LH3
. If

yes, return gα3 . Otherwise, it decides whether (m, pk) is the target (message, public key) pair. If
yes, return gb; otherwise, choose a random value α3 from Zq, and then record (m, pk, α3) in the
list LH3 , and return gα3 .

• Opk: B chooses random elements z1, z2, x2 from Zq and decides θ ∈ {0, 1} under Pr[θ = 1] = δ. If
θ = 0, then B returns

pk = (X1,g, X1,h, X1, Z1, Z2)

= (ê(g, gz1((ga)x2)z2), ê(h, gz1((ga)x2)z2), (ga)x2 , gz1 , gz2);

if θ = 1, then B returns

pk = (X1,g, X1,h, X1, Z1, Z2)

= (ê(g, gz1(gx2)z2), ê(h, gz1(gx2)z2), gx2 , gz1 , gz2)

At last, B records (pk, z1, z2, x2, θ) in Tk.

10

• Osk: On input of a public key pk by A, B gets (pk, z1, z2, x2, θ) from Tk. If θ = 1, then B returns
sk = (z1 + x2 · z2 mod q, x2, z1, z2); otherwise, B outputs failure.

• Ork: On input of (pk, pk′) by A, B gets (pk, z1, z2, x2, θ) and (pk′, z′1, z′2, x′2, θ
′) from Tk, and

then returns rk = (rk1, rk2) = (z1/z
′
1 mod q, z2/z

′
2 mod q).

• Ore: B can use the re-encryption keys from Ork to reply the queries.

• Odec: Identical to the proof of Theorem 1.

• Osign: B firstly gets the value of α3 by querying H3 hash oracle, and then returns Xα3
2 .

Output: A outputs a signature σ∗ = H3(m∗||pk∗)a·x∗2 , then B outputs the CDH solution σ∗1/x
∗
2 , where x∗2

is the value in Tk corresponding to pk∗.

If B has guessed the right target (message, public key) pair and has not output failure, then the above
simulation is perfect. On one hand, B has guessed the right target pair with the probability of 1/qH3

at
least. On the other hand, the probability of that B has not output failure is δqsk(1 − δ). The maximize
value of δqsk(1− δ) is 1/(e(1 + qsk)) when δ = 1− 1/(qsk + 1). Hence, we obtain this theorem. �

4. Conclusion

In this paper, we have proposed a novel multi-use, bidirectional proxy re-encryption with constant cipher-
text size, master secret security and RCCA security. This proposed BPRE scheme can provide a (partial)
solution to the collusion attacks in the current cryptographic cloud storage. Another contribution in this
paper is that we propose a new definition for the master secret security. The new security definition is closer
to the original desire for the master secret security compared to the existing definitions. There are still var-
ious future works left, e.g., how to design a pairing-free, multi-use BPRE scheme with constant ciphertext
size, master secret security, and RCCA security is still unknown.

Acknowledgements

The authors thank the anonymous reviewers for their insightful comments and helpful suggestions. In
addition, this work was also supported by the National Basic Research Program of China (973 Program)
No. 2012CB315804, NSFC Nos. 61472364, 61379121, and NSFZJ No. LR13F020003. Rongxing Lu would
also like to thank the support of Nanyang Technological University under Grant NTU-SUG (M4081196) and
MOE Tier 1 (M4011177).

[1] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. In NDSS. The Internet Society, 2005.

[2] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy cryptography.
In Kaisa Nyberg, editor, EUROCRYPT, volume 1403 of Lecture Notes in Computer Science, pages
127–144. Springer, 1998.

[3] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In CRYPTO 2001, volume
2139 of LNCS, pages 231–229, 2001.

[4] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In ASIACRYPT 2001,
volume 2248 of LNCS, pages 514–532, 2001.

[5] Dan Boneh and Matthew Franklin. Identity-based encryption from the weil pairing. SIAM Journal of
Computing, 32(3):586–615, 2003.

[6] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM Conference on Computer and
Communications Security, pages 185–194. ACM, 2007.

11

[7] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

[8] Chun-Ying Huang, Yun-Peng Chiu, Kuan-Ta Chen, and Chin-Laung Lei. Secure multicast in dynamic
environments. Computer Networks (Amsterdam, Netherlands: 1999), 51(10):2805–2817, July 2007.

[9] Junbeom Hur. Improving Security and Efficiency in Attribute-Based Data Sharing. IEEE Transactions
on Knowledge and Data Engineering, 2012.

[10] Apu Kapadia, Patrick P. Tsang, and Sean W. Smith. Attribute-based publishing with hidden credentials
and hidden policies. In NDSS. The Internet Society, 2007.

[11] Hsiao-Ying Lin and Wen-Guey Tzeng. A secure erasure code-based cloud storage system with secure
data forwarding. IEEE Trans. Parallel Distrib. Syst, 23(6):995–1003, 2012.

[12] Rongxing Lu, Xiaodong Lin, Jun Shao, and Kaitai Liang. Rcca-secure multi-use bidirectional proxy
re-encryption with master secret security. In Provable Security - 8th International Conference, ProvSec
2014, Hong Kong, China, October 9-10, 2014. Proceedings, pages 194–205, 2014.

[13] Toshihide Matsuda, Ryo Nishimaki, and Keisuke Tanaka. Cca proxy re-encryption without bilinear maps
in the standard model. In Phong Q. Nguyen and David Pointcheval, editors, Public Key Cryptography,
volume 6056 of Lecture Notes in Computer Science, pages 261–278. Springer, 2010.

[14] Ritesh Mukherjee and J. William Atwood. Scalable solutions for secure group communications. Com-
puter Networks (Amsterdam, Netherlands: 1999), 51(12):3525–3548, August 2007.

[15] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO 1984, volume 196 of
LNCS, pages 47–53, 1984.

[16] Jun Shao, Rongxing Lu, and Xiaodong Lin. FINE: A fine-grained privacy-preserving location-based
service framework for mobile devices. In 2014 IEEE Conference on Computer Communications, INFO-
COM 2014, Toronto, Canada, April 27 - May 2, 2014, pages 244–252, 2014.

[17] Yipin Sun, Rongxing Lu, Xiaodong Lin, Xuemin Shen, and Jinshu Su. An Efficient Pseudonymous
Authentication Scheme With Strong Privacy Preservation for Vehicular Communications. IEEE Trans-
actions on Vehicular Technology, 59(7):3589–3603, 2010.

[18] Guojun Wang, Qin Liu, Jie Wu, and Minyi Guo. Hierarchical attribute-based encryption and scalable
user revocation for sharing data in cloud servers. Computers & Security, 30(5), 2011.

[19] Jian Weng and Yunlei Zhao. Direct constructions of bidirectional proxy re-encryption with alleviated
trust in proxy. IACR Cryptology ePrint Archive, 2011:208, 2011.

[20] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Achieving secure, scalable, and fine-grained
data access control in cloud computing. In INFOCOM, pages 534–542. IEEE, 2010.

12

