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Abstract 

 
While social information has been shown to alter neural activity 
during decision making, the temporal dynamics of this effect 
remain elusive. Here, we applied event-related analysis of 
electroencephalography (EEG) to investigate the effect of peer 
recommendation on the decision making process underlying a 
simple consumer decision. Our preference-based binary choice 
paradigm revealed an effect of peer recommendation during 
evidence integration. We observed reduced EEG-signal strength 
when a recommendation was present, consistent with previous 
evidence of attenuated frontal lobe activity in the presence of 
social information. Absent an effect of the recommendation on 
choice outcome, the neural effect could not be unequivocally 
interpreted. We suggest a possible modulation of frontal activity 
via an engagement of the reward mechanism, ostensibly 
developed in order to bias individuals towards prosocial 
decisions. 
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Introduction 
 
Perceptions of quality are biased by social information, such as advice or 
recommendations (Biele et al, 2011; for review: Izuma, 2013). Indeed, social information 
affects consumer behaviour (Duhan, 1997), even when it is indirect (Biele, Rieskamp & 
Gonzalez, 2009). In a society increasingly reliant on aggregated collective judgment on the 
internet, it becomes important to understand the nature of this effect (Muchnik, Aral & 
Taylor, 2013). In its pursuit, neuroeconomics emphasizes investigating the neurobiological 
mechanisms by which decisions are made (Glimcher & Rustichini, 2004; Camerer, 
Loewensetin & Prelec, 2005; Sanfey et al, 2006). 
 
Recently, neuroeconomic research has begun to explore the finer points of the decision 
making process by investigating the specific effects of factors such as social influence 
(e.g. Zaki, Schirmer & Mitchell, 2011) and branding (Philiastides & Ratcliff, 2013). This 
follows the consolidation of large sections of the decision making literature behind diverse 
variants of a class of models known as drift diffusion models (DDMs; Ratcliff, 1978; Ratcliff 
& Rouder, 1998; 2000; Philiastides & Sajda, 2005; 2006; Malmaud et al, 2010; Krajbich et 
al, 2015). The models share the same fundamental characterization of the decision 
process, which posits that noisy evidence for competing alternatives is extracted and 
integrated until the accumulated evidence for one alternative reaches a certain specific 
threshold at which point a response is initiated (Armel, Rangel & Krajbich, 2010; Krajbich 
et al, 2012). 
 
This framework permits the integration of results from research on perceptual and value-
based decision making since the computational problem has similar properties in both 
cases (Malmaud et al, 2010; Philiastides, Biele & Heekeren, 2010). Using results obtained 
from perceptual decision making research to inform investigations of the dynamics of 
value-based decision making has facilitated their exploration to a similar level of detail as 
those of perceptual decision making (Philiastides et al, 2010; Philiastides, Ratcliff & Sajda, 
2006). However, exactly how different components constitute the value process remains 
unknown (Hunt et al, 2012). 
 
The present work was designed to help resolve this uncertainty. Using a modified version 
of Philiastides & Ratcliff (2013) forced binary choice paradigm, we used 
electroencephalography (EEG) to investigate the effect of social influence, in the form of 
peer recommendation, on behaviour and neural dynamics of a simple consumer decision. 
The investigation focussed on the frontal cortex, given the localization of activity related to 
value computation to diverse regions within this area, primarily ventromedial- and 
dorsolateral prefrontal cortex (VMPFC; DLPFC; Philiastides & Sajda, 2007; Kennerley et 
al, 2009; Biele et al, 2011; Hare et al, 2011; Zaki, Schirmer & Mitchell, 2011). 
 
Behaviourally, social information has been shown to bias choices towards alternatives with 
social rewards (Behrens, Hunt & Rushworth, 2009). Recommendations incur social 
rewards derived from aspects of the choice such as conformity, which have been shown to 
influence behaviour (Klucharev et al, 2009). Social information may affect behaviour even 
when no direct reward is expected as a result of a lifelong associative learning process 
that biases individuals towards prosocial decisions through, where prosocial refers to a 
decision that follows social influence (Hunt et al, 2008). The bias is taken to result from the 
rewards expected for making prosocial choices (Behrens et al, 2008). 
 
Beliefs about the origin of the recommendation are key, and certain beliefs about 
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trustworthiness and quality of advice can nullify or reverse the conventional effect 
(Behrens et al, 2009). In the present study, it was indicated that peers had recommended 
items of clothing, a socially relevant category for which a particular susceptibility to peer 
influence has been established in female, urban late adolescents (Wilson & MacGillivray, 
1998). 
 
The present study focussed on the characterization of the temporal dynamics of the 
decision making process. Previous studies of the dynamics of decision making according 
to the DDM have identified three core components that should be replicated by the present 
study (Philiastides & Sajda, 2005; Philiastides et al, 2006; Philiastides, Heekeren & Sajda, 
2014).  In chronological order of appearance during decision making, the components 
correspond to effects related to evidence encoding (~150ms), task difficulty (~220ms), and 
evidence integration (~280ms). The first and last components are likely to be modulated 
by task difficulty (Malmaud et al, 2010). 
 
With respect to neural activity related to social information such as advice, previous work 
suggests reduced activity in decision-related regions in the presence of explicit social 
information (Biele et al, 2011; Engelmann et al, 2009). An attenuated reward signal on 
trials during which advice is offered versus trials with no advice is implicated in this effect 
(Biele et al, 2011; Coricelli et al, 2005). It may be that a generalised reward mechanism for 
prosocial behaviour biases judgements towards the recommended alternative (Behrens et 
al, 2009). Indeed, choices that have been made socially relevant by peer recommendation 
could act as secondary inducers of reward circuitry (Erk et al, 2002; Schaefer & Rotte, 
2006), which modulates frontal activity (Ichihara-Takaneda & Fukahashi, 2008). The 
observed reduction in activity in decision-related regions has been termed “cognitive off-
loading” (Engelmann et al, 2009). 
 
More fundamentally, there is evidence that social influence alters the uptake of available 
sensory evidence (Germar et al, 2013) or modifies the values assigned to a stimulus 
during evidence integration (Zaki et al, 2011). Both suggestions result from observations of 
an increase in frontal activity in the presence of social information. The present work 
aimed to discriminate between these alternatives while replicating the pattern of results 
typical for our paradigm. 
 
Method 
 
Participants 
 
Twenty-three right-handed female volunteers (mean age= 19.8 years, ơ = 1.96) were 
recruited for this study. All had normal or corrected to normal vision and none reported a 
previous history of neurological problems or current intake of prescription medication. 
Informed consent was obtained according to the procedure of the local ethics committee of 
the University Of Glasgow School Of Psychology. Participants were thoroughly debriefed 
upon completion of the study. 
 
Stimuli 
 
A set of 220 images of items of clothing from high-street vendors had previously been 
obtained from the web. Images were placed on a uniform grey background and were 
resized to 330 x 330 pixels. Stimuli were placed in the centre of either a blue or green 
rectangle of 360 x 360 pixels depending on condition that created a frame of width 30 
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pixels. The hues of blue and green used were equiluminant, to control for low-level 
perceptual effects. 
 
Behavioural Paradigm 
 
In Task 1 (see supplementary information; Fig. 1.1), participants provided preference 
ratings for all 220 items of clothing on a scale from 1 (really don't like) to 7 (really like) in 
increments of one. Items were presented in the centre of the screen, above a scale 
represented by stars (Fig.1.1). Participants responded using number keys 1 – 7 at the top 
of the keyboard. No time limit was imposed. Participants were free to change their 
response and had to confirm ratings before proceeding to the next item. 
 
On the main task (Task 2; Fig 1.2), participants were required to make binary choices 
between two items. Items that formed pairs were drawn from the same category of clothing 
(e.g. trousers, dress, sweater) to ensure the alternatives could be readily compared. For 
each participant, items were paired to create a continuum of differences in ratings, ranging 
from -6 to 6 given our scale (1 - 7). The absolute value of this difference, referred to as 
item difference rating, is taken as a measure of task difficulty. In the absence of 
recommendations larger differences are considered to represent lower difficulty, the 
hardest decision being the indecision point. Differences were grouped into 5 bins ([-6, -5, -
4]; [-3, -2,-1]; [0]; [1, 2, 3]; [4, 5, 6]), renamed difficulty level (1 – 5), in order to ensure 
sufficient trials per condition and to keep the total length of the experiment within a 
reasonable limit. 
 
A total of 350 participant-specific pairings were generated for both the recommendation 
present and recommendations absent conditions (70 trials per difficulty level each; N=700 
trials in total). During this process, the stimuli were split into two groups of 110 stimuli 
assigned to each recommendation condition in such a way as to create the smallest 
difference in mean rating across the groups. The items in the group assigned to the 
recommendation present condition were further split into items to be recommended and 
not, such that no item was recommended on some trials and not recommended on others. 
Participants were told the recommendation had been derived from the ratings given by 283 
previous participants. All participants were told they were participant 284. 
 
The task comprised four blocks of 175 pairs, with a non-constrained rest period between 
blocks. Recommendation conditions were interleaved within every block. The 
recommendation was delivered by placing the recommended item in a green frame and 
the non-recommended item in a blue frame. On recommendation absent trials, both items 
were presented in a blue frame.  
 
On each trial, two items were presented on either side of a fixation cross and participants 
had a maximum of 1,750ms to indicate which they preferred to purchase. Participants 
were instructed to respond as soon as they made a decision. Choice was indicated by 
pressing the left or right arrow key (using right index and middle finger respectively) 
corresponding to the position of preferred item on screen. Items were removed from the 
screen as soon as a decision was made, and their offset followed by a randomly jittered 
interstimulus interval during which only a fixation cross was presented (1,250 – 1,750ms). 
 
EEG Data Acquisition 
 
EEG-data were recorded during Task 2 using a Brain Products amplifier (Brain Vision, UK) 
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at a sampling rate of 1000Hz. Data was recorded using a Brain Vision Recorder. A 
reference electrode was placed on the left mastoid process. A ground electrode was 
placed left of centre on the chin. Input impedances were reduced to <30kOhm before 
onset of recording. Responses and reaction times were recorded using a computer 
keyboard (Cedrus Corporation, San Pedro, CA, USA). Data were acquired in an 
electronically shielded room. 
 
EEG Data Pre-processing 
 
A 0.5 - 40 Hz band-pass filter was applied to remove slow dc drifts and high frequency 
noise. Participants performed an eye movement calibration task to allow for later removal 
of artefacts related to eye movement (e.g. blinks). The task consisted of three sections, in 
which participants were instructed to blink repeatedly focussing on a central fixation cross, 
and to perform saccades first horizontally and then vertically by following a moving fixation 
cross. By timing the visual cues, principal component analysis could be employed to detect 
and remove linear components corresponding to blinks and saccades of the EEG-data 
collected during Task 2 (Parra et al, 2005). Data were baseline corrected with an interval 
of 100ms prior to stimulus onset to prevent slow alpha frequency-related changes in 
activity at trial onset. 
 
Epochs locked to stimulus onset were subsequently constructed around task events. A 
time window of -100 – 900ms was defined, such that the full time range of the decision 
making process can confidently considered to be included. A sliding window of 50ms was 
applied to smooth data prior to statistical tests conducted on the EEG-data. By moving the 
window in 10ms steps, we obtained smoothed event-related potentials (ERPs) of 100 time 
windows per trial. 
 
Behavioural Data Analysis 
 
For each participant, we computed proportion of recommended item choice and mean 
reaction time (RT; averaged across both recommended and non-recommended item 
choices) for each of the five levels of difficulty, separately for the recommendation present 
and recommendations absent trials. The conditions could be compared by proportion of 
recommended items chosen because difficulty level of the recommendation absent 
condition contained sufficient information on which item would be recommended to dummy 
code a recommendation. Significant effects were tested for using a 2 (recommendation 
condition) x 5 (difficulty level) repeated measures analysis of variance (ANOVA). For the 
analysis of reaction times (RTs), data were collapsed across difficulty levels equally far 
from the indecision point resulting in three levels of item difference ratings (difficulty level 
[1, 5], [2, 4], 3), since the sign of the difference was assumed to have had no effect on the 
difficulty of the decision when the recommendation is absent. 
 
A criterion was implemented whereby participants (N=2) who chose against the preference 
they indicated in Task 1 on more than 40% of trials in the most extreme difficulty bins (1,5) 
of Task 2 were excluded from further analysis. This criterion served as a measure of the 
reliability of the item ratings obtained in Task 1. 
 
Event-Related Potential Analysis of EEG 
 
EEG data were analysed by computing event related potentials. (ERPs) These were 
obtained from three frontal sensor clusters: far frontal cluster (FF: NFpz, FPz, F1, F2), 



Page 7 of 28 

 

frontolateral cluster (FL: F7, F8, FT7, FT8), and frontomedial cluster (FM: AF1, AF2, F1, 
F2, Fz, FC1, FC2, FCz; Fig 3.1 D). ERPs were computed as a sample mean and for each 
participant individually. In the absence of both a significant main effect of recommendation 
condition and significant interaction of difficulty and condition, data were collapses across 
recommendation decision before ERPs were computed. To test for significant differences 
in brain activity, participant ERPs were used to conduct ANOVAs on ERPs in relation to 
significant behavioural effects. The ANOVA was conducted for all 100 windows of the 
smoothed EEG-data. Results were corrected for multiple comparisons using the false 
discovery rate (Benjamini & Hochberg, 1995). This method is designed to quantify the best 
trade-off between identifying true and incurring false positives (Storey, 2002). 
 
Given mean response times between ~750 – 900ms, response processes can be 
assumed to be initiated around 600ms post-stimulus. It has been shown this is sufficient 
time for decisions to reach accuracy of ~80% (Koch, Rangel & Milosavljevic, 2011). Given 
five participants had mean RTs below 650ms, effects as early as post 500ms post-
stimulus are confounded with response processes. The present analysis will focus on 
effects prior to this cut-off. 
 
Results 
 
Behavioural Results 
 
There was no evidence of a significant difference in the proportion of recommended items 
chosen whether the recommendation was absent or present (F = 0.109, p = 0.741). There 
was no evidence of a modulation of the role of peer recommendation by difficulty level or 
task difficulty, i.e. item difference rating (F = 0.638, p = 0.425; F = 0.015, p = 0.901). 
Difficulty level proved a direct indicator of the proportion of recommended items chosen (F 
= 505.7, p < 0.001; F = 363.5, p < 0.001), where difficulty level refers to which bin the item 
pair was selected from. Since higher difficulty levels reflected increased percentage of 
preferred items recommended. This is interpreted to indicate that participants chose the 
items they preferred in both conditions. Indeed, the percentage of preferred items chosen 
increased at more extreme item difference ratings (F = 25.087, p < 0.001). 
 
Item difference rating was also significantly correlated with percentage preferred stimuli 
chosen (F = 85.92, p < 0.001). An effect of item difference rating on percentage preferred 
stimuli chosen is to be expected given an effect of difficulty on percentage recommended 
stimuli chosen since it reflects an effect on proportion recommended stimuli chosen after 
difficulty levels are combined into three item difference rating bins. 
 
Item difference rating was a direct indicator of RT, with lower item difference ratings, i.e. 
higher decision difficulty –resulting in longer RTs (F = 9.272, p < 0.01). Reaction times 
were broadly symmetrical around the indecision point. The absence or presence of the 
recommendation did not modulate RT (F = 0.052, p = 0.819).  Also, recommendation 
condition did not differentially effect RTs across item difference ratings (F = 0.022, p = 
0.882; Figure 2.1). 
 
Given anecdotal evidence that some participants purposefully chose against the 
recommendation when uncertain about their preference on a recommendation present 
trial, post-hoc analysis of the behavioural data was carried out to investigate a possible 
obscured effect. Participants were rank ordered by percentage of recommended items 
chosen and divided into two groups of eight, with the middle five participants being 
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excluded. Mean proportion recommended items chosen was significantly different across 
the resulting subsamples (Welch two-sample t-test: t (9.81) = -6.278, p < 0.001). Which 
group participants belonged to was then factored into the model and another ANOVA 
computed. 
 
Whether participants chose recommended items more or less on average did not interact 
with any of difficulty level, item difference or recommendation condition towards predicting 
either proportion recommended chosen or RT (p-values all > 0.3; Figure 2.2), nor was it 
directly predictive of choice proportion or RT (p-values > 0.1). 
 
EEG Results 
 
Difficulty Level 
 
Having found a significant main effect of difficulty level on proportion of recommended 
items chosen this factor was investigated further. Different levels reflected different 
degrees of preference for the recommended stimulus. Classical ERPs were observed in all 
three clusters, constituted by an early peak putatively showing early encoding of stimuli 
and ramping slopes from around 400ms consistent with slopes seen during evidence 
accumulation (Vugt et al, 2012). 
 
None of the three clusters demonstrated differences in signal strength that reached 
statistical significance after correcting for multiple comparisons (Figure 3.1A – C). This is 
not surprising absent any complex effects or interactions and since equally eccentric levels 
of difficulty correspond to the same item difference rating, i.e. level of task difficulty. 
 
Item Difference Rating 
 
As opposed to difficulty level, item difference rating did show differences in signal strength 
that remained statistically significant following correction for multiple comparisons in both 
the FF cluster and FM cluster (Figure 3.2A; C). For the FF-cluster, two time windows, at 
150 – 300ms (p < 0.05) and 440 – 900ms post-stimulus (p < 0.01) retained statistical 
significance. Four time windows from the FM cluster were at 150 – 290ms (p < 0.05), 270 
– 300ms (p < 0.05), 470 – 530ms (p < 0.05) and 830 – 900ms (p < 0.05) post-stimulus. 
 
No time window retained statistical significance in the FL-cluster (Figure 3.2B). 
Generally, significant differences in signal strength occurred when ERPs of decisions at 
the indecision point (item difference 3) were noticeably different from ERPs of decisions 
where a preferred choice was present (item differences 1 and 2). The effects inside the 
window of <500ms post-stimulus all show this pattern. 
 
Within this time window, the difference in ERPs across item difference ratings is reflected 
in a difference in slope for the FF-cluster (Fig 3.3A). A change in slope can be taken to 
reflect an analogous change in input, be it sensory or integrated evidence, and has been 
shown to be modulated by task difficulty (Philiastides & Sajda, 2005). The FM-cluster also 
exhibited an effect akin to a transposition of the ERP along the y-axis as a function of item 
difference rating (Fig. 3.3B). This suggests the effect is not related to increasing RT at 
higher difficulties, which would manifest as a translation along the x-axis instead. Instead, 
a translation along the y-axis suggests a general difference in signal strength. The 
absence of single-trial analysis makes a more detailed analysis of response dynamics and 
time course impossible. 
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A neural component related to task difficulty has been previously identified in studies of 
perceptual decision making at ~220ms post-stimulus (Philiastides et al, 2006). Indeed, 
peak difference in ERPs of the difference conditions for the FF-cluster in the present study 
was at ~210ms. However, higher task difficulty is related to lower absolute activity in the 
present study, inconsistent with the suggestion that the D220 reflects the recruitment of 
additional resources (Philiastides et al, 2006; Fig 3.3A). The scalp topography of this 
component also shows a different distribution to the D220, with more anterior high 
negative frontal activity (Fig. 3.3C). Meanwhile, computing the difference in signal strength 
between the highest and lowest task difficulty does show a strong centrofrontal effect (Fig 
3.3D). 
 
An early component identified in the FM-cluster ~130ms has been previously identified in 
perceptual studies and related to behavioural performance (VanRullen & Thorpe, 2001; 
Fig 3.3B). Early components have been related to low-level feature processing (Johnson & 
Olshausen, 2003) though no differences in low level features dependent on item difference 
rating exist in the present study. Topographical layout of the scalp potentials showed a 
distributed frontocentral effect, consistent with the suggestion that the brain must recruit 
additional resources (e.g. attention) when a decision is hard (Philiastides et al, 2006; Fig 
3.3E). 
 
A later component also identified in the FM-cluster may be related to recurrent processing, 
given the time between components is broadly consistent with 130ms mean reverberation 
time (VanRullen & Koch, 2003). Recurrent processing reflects integration of information 
that underlies perception (Philiastides & Sajda, 2006). A late component peaking at 
~340ms related to task difficulty would reflect a change in the activity underlying the 
integration of evidence as a function of task difficulty. 
 
Indeed, feedback processing mediates attention (Super et al, 2001), and stronger absolute 
activation may reflect stronger recruitment of attentional resources to make more difficult 
choices. Attention has been shown to affect evidence accumulation (Krajbich et al, 2012) 
and could affect evidence integration as well. While the effect on accumulation reflects 
random shifts due to low-level stimulus features that affect how attribute values are 
sampled (Milosavljevic et al, 2011), the present results indicate a potential effect of 
attention on integration would be a systematic change as a function of task difficulty. 
It should be noted that none of the identified differences in ERPs within the decision 
window retain statistically significance when a more strict correction for multiple 
comparisons is applied (Holm's). 
 
Recommendation Condition 
 
Despite the absence of a significant behavioural main effect of recommendation, 
comparing ERPs of the levels of recommendation may produce meaningful results, albeit 
difficult to interpret. Indeed, the FM-cluster, though neither FF- nor FL-cluster, showed 
differences in signal strength that remained statistically significant after correction for 
multiple comparisons (Fig. 3.4A – C). Given the absence of any behavioural effect due to 
recommendation condition, correction for multiple comparisons was repeated on the 
original data by conducting the more conservative correction for family-wise error (Holm's 
test). Statistically significant differences in signal strength between recommendation 
absent versus present conditions were retained for a time window 280 – 580ms (p < 0.05; 
380 – 580ms, p < 0.01; time window 45, i.e. 325 – 375ms, p = 0.052; Fig. 3.5A). 
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Peak difference in ERPs occurred ~320ms post-stimulus. The topography of difference in 
signal strength during this time window presents a large negative central cluster 
suggestive of an effect mediated by attention (Fig 3.5B). However, the signal of greater 
magnitude was observed on trials during which the recommendation is absent as opposed 
to present. An increased engagement of attentional resources should have produced the 
opposite effect. Current results suggested an attenuation of neural signals due to social 
influence. Absent a behavioural effect it is uncertain whether the reduced activity was 
decision-related. It might be noted that task-related variability is commonly identified in the 
literature (Behrens et al, 2009). 
 
It has been suggested that the effect of social influencing factors such as a 
recommendation would be mediated by the value difference between alternatives (Hunt et 
al, 2008). This predicts a modulation of signals relevant to the given social information by 
differences in subjective value ratings. To test the task relevance of the ERP-difference 
observed for data collapsed across difficulty levels, a post-hoc computation of ERP 
difference at effect peak (~330ms) for recommendation absent and present conditions for 
each item difference rating was conducted. 
 
A 2 x 3 within-subjects ANOVA (recommendation conditions x item difference ratings) did 
not confirm that task difficulty modulates signal difference (F = 0.238, p = 0.627). This 
suggests a non-parametric effect independent of difficulty that is due, instead, to the 
simple presence of the recommendation, consistent with previous results indicating an 
effect due to the simple presence of advice (e.g. Biele et al, 2011). 
 
Discussion 
 
The present work was designed to explore the influence of social information on a simple 
consumer decision. We computed ERPs from EEG-data to investigate the influence of 
peer recommendation on the neural dynamics of that decision. Consistent with earlier 
evidence (Biele et al, 2011; Coricelli et al, 2005; Engelmann et al, 2009), our results 
suggest that peer recommendation reduces frontomedial brain activity. Temporally, we 
localised this effect to a time window suggestive of an effect of peer recommendation on 
evidence integration. There was no evidence of a corresponding behavioural effect. 
Typical temporal dynamics of value-based decisions were partially replicated. 
 
Influence of peer recommendation 
 
The effect observed in FM-cluster ERPs when comparing recommendation levels is 
difficult to interpret absent a behavioural effect. It can be said that the late onset of the 
effect contradicts the conclusion that social information alters the uptake of available 
sensory evidence (Germar et al, 2013). The timing of our results is more consistent with a 
modulation of the value-encoding process by peer recommendation (Zaki et al, 2011). This 
converges with the literature in suggesting that social influence modifies the value 
assigned to a stimulus (Izuma, 2013). The issue may be complicated further by the fact 
that selection and integration of evidence are aspects of a single dynamical process 
(Mante et al, 2013). This leaves open the exact effect peer recommendation may have on 
the computation of choice. 
 
The scalp topography (Fig 3.5B) of the difference between ERPs of the recommendation 
conditions suggests an attention-related effect. In line with Engelmann et al's (2009) 
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suggestion of “cognitive offloading”, this may reflect the reduced engagement of attentional 
resources when social information is present. Absent a behavioural effect, this offloading is 
more difficult to interpret, since the information that incurs the offload does not seem to be 
relevant to behaviour. Elsewhere, the “offload” was suggested to be the result of an 
associative learning process that leads individuals to intuitively expect a reward for 
engaging in prosocial behaviour (Behrens et al, 2008). 
 
Indeed, the effect we observed could be mediated by the reward mechanism, implicated in 
value-based social decision making by previous work (Biele et al (2010); Coricelli et al, 
2005). However, the subcortical regions constituting the human reward circuitry 
themselves are difficult to investigate using EEG (Plichta et al, 2013), but activity in this 
network has diffuse effects throughout the cortex that can easily be measured by the 
technique (e.g. Plichta et al, 2013; Fouragnan et al, 2015). A more sensitive paradigm 
paired with functional imaging is required to delve deeper into these questions. 
 
Importantly, the ostensible bias incurred by an expected reward for prosocial behaviour is 
taken to be mediated by social reinforcement values assigned to each choice option in 
either case (Germar et al, 2013). The assigned value depends on the expected reward at 
consumption (Malmaud et al, 2010), and there is considerable evidence that this value is 
modulated by social information (Behrens et al, 2009). Indeed, clothing takes a central role 
in social comparison among urban young adult women, who feel strongly influenced by 
peers in their choice of clothing (Wilson & MacGillivray, 1998). This leads to a high 
perceived reward for prosocial choice (Behrens et al, 2008). 
 
In this framework, the absence of a behavioural effect and presence of a neural effect may 
imply that the peer recommendation was of insufficient import to the participants to cause 
them to adjust their behaviour. The neural effect is evidence that the recommendation 
influences the computations underlying decision formation, the absence of a behavioural 
effect indicates this had no influence on decision outcome. In terms of the computations 
underlying value-based choice, the value assigned to the recommendation may ultimately 
have been too small to bias behaviour. 
 
If the recommendation influenced value comparison as opposed to value assignment, we 
might expect a parametric modulation of the influence of recommendation by item 
difference rating since the relative weight of a constant value of the recommendation 
would change deepening on the subjective value difference between items (Rangel, 
Camerer & Montague, 2008). An influence on either process would be consistent with the 
timing of the observed effect (Rangel & Hare, 2010). While our study cannot resolve the 
exact influence of peer recommendation, future work could do so along these lines. 
 
Additionally, various factors may insulate against judgment bias introduced by a social 
gesture, including expertise (Kirk, Harvey & Montague, 2011). As such, the absence of a 
behavioural effect may reflect participants' familiarity with making choices between items 
of clothing. Indeed, recent EEG results indicate task familiarity modulates the decision 
process (Harris et al, 2014). Thus, the absence of a behavioural effect may be related to 
the manner in which the recommendation was operationalized (Izuma et al, 2013). 
 
Participants may have felt the information was not relevant, or may not have trusted the 
recommendation, both of which can nullify the expected effect (Behrens et al, 2009).  The 
first process of value-based decision making is computing a representation of the decision 
problem (Rangel et al, 2008) and it could be that the manner in which the recommendation 
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was operationalized in our study incurred a very limited relevance to the imminent 
decision. 
 
An option to remedy this would be to rely on a more direct recommendation (Biele et al, 
2011). However, an indirect recommendation, which more closely approximates 
aggregated collective judgements online, should show an effect given social information 
has been shown to bias behaviour even when indirect (Hunt et al, 2008). To illuminate this, 
it may be advisable to conclude similar paradigms with a questionnaire in the future, in 
order to obtain data on the influence participants felt the recommendation, in our case, had 
on their decision. 
 
Modulation by task difficulty 
 
It has been shown previously that quantities associated with task difficulty continuously 
modulate scalp potentials (Philiastides et al, 2014). The D220 is a specific difficulty related 
component that may correspond to a direct influence of task difficulty on the decision 
process (Philiastides & Sajda, 2006). We identify a temporally similar component, which 
nonetheless cannot be the same as it does not seem to be predictive of the timing of an 
associated late component we also identify. It is noteworthy that greater task difficulty was 
associated with reduced activity in our study. This might be the case if the component 
were related to the value difference signal that is accumulated over the decision period 
(Philiastides et al, 2010). In this context, reduced activation may reflect reduced or noisier 
evidence for one preferred alternative. 
 
The orbitofrontal cortex (OFC) has been diversely implicated in encoding subjective value 
and value comparison (Erk et al, 2002; Zaki et al, 2011). If task difficulty modulates value 
comparison, this suggests a possible localisation of this effect to OFC. Indeed, OFC does 
seem to be responsive to value difference (FitzGerald, Seymour & Dolan, 2009). The 
reduced activity for greater difficulty observed in the present task converges with increased 
activity previously reported for increased value difference at OFC (Zaki et al, 2011). By this 
account, the FF-cluster effect we report may reflect the encoding of subjective value 
difference, if it can be shown that an increase in this ratio is paralleled by an increase in 
signal strength. The relationship to task difficulty would be a parametric modulation of 
value difference signal as a function of task difficulty. 
 
Within the DDM, this is expected to lead to longer RTs for more difficult decisions because 
the accumulator takes longer to reach the decision threshold (Krajbich et al, 2015). The 
behavioural effect of task difficulty on RT reflects the identity of item difference rating and 
difference in subjective value of the choice alternatives. Longer RTs are the direct result of 
a smaller difference between the subjective value of each option, and smaller differences 
lead to slower accumulation of the difference signal towards the criterion that initiates a 
response (Krajbich et al, 2015). 
 
The early (~130ms) and late (~310ms) effects observed in the FF-cluster showed the 
expected greater activation for more difficult decisions. These results converge well with 
the literature (e.g. Johnson & Olshausen, 2001; VanRullen & Thorpe, 2003; Philiastides et 
al, 2006; Philiastides & Sajda, 2006). Ostensibly related to evidence acquisition and 
integration respectively, both effects suggest the recruitment of additional resources to 
make relatively more difficult decisions (Philiastides et al, 2006). The topography of the 
effects implicated distributed frontomedial regions reinforcing a possible role of attention. 
This is putatively recruited to a greater extent when there is less evidence, i.e. decisions 
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are harder. That both evidence accumulation and integration are modulated by task 
difficulty converges with the notion of their as two components of a single dynamical 
process posited by the DDM (Mante et al, 2013). 
 
Task-related factors 
 
The role of task difficulty also implies that macroscopic effects observed in EEG-data may 
be as much explainable by differences in task design as they are reflective of common 
underlying processes (Philiastides et al, 2014). Indeed, task-dependency of neural 
networks implicated in similar computations remains an open question (Hare et al, 2011). 
Meanwhile, idiosyncratic, task-related differences also highlight the ultimately limited 
relevance of results from perceptual decision making to the value-based literature. As in 
the comparison of the present work with earlier studies from our group (Philiastides & 
Sajda, 2006; Philiastides et al, 2006), the finer points of the neural mechanisms suggested 
by individual tasks will likely continue to show at least slight differences. Though adaptive 
coding allows the comparisons across domains (Krajbich et al, 2015), it is crucial to the 
investigation of ever more subtle influences that the origin of these task-related differences 
is explored. 
 
Recall too, that the value comparison process under the DDM is neither deterministic nor 
optimal (Malmaud et al, 2010). Despite non-stochastic stimuli, noisy is introduced into the 
computation because value is assigned by sequential and stochastic extraction of features 
(Armel et al, 2010). Here, a task-related influence is captured by differences in fixation on 
each choice alternative (Armel et al, 2010). This is driven by low-level perceptual features 
such as salience (Milosavljevic et al, 2011) and by initial value of each choice alternative 
(Armel et al, 2010). To resolve the influence of such factors, the present study might have 
benefited from eye tracking and pupilometry, both of which have been shown to be 
informative in respect to the decision process and outcome (e.g. Satterthwaite et al, 2007; 
Cavanagh et al, 2014). In their absence, the degree to which our results were influenced 
by these features remains uncertain, as does the role of these biases. 
 
Integration with functional imaging literature 
 
The effect of social influence is not on a special set of neural responses, but modulatory of 
activity throughout the neural networks associated with preference judgements (Harvey et 
al, 2010). This is consistent with significant EEG-results, which reflect strong activity of 
neural populations (Philiastides & Sajda, 2006). Despite the poor spatial resolution of 
EEG, the present results may contribute to the identification of underlying neuromodulatory 
regions by implicating regions previously correlated to computations our results suggest 
are relevant.  
 
With regard to recommendation condition, the present results tentatively suggest a reward-
mediated effect. There is evidence of reward processing in VMPFC, but reports are of both 
attenuated (Biele et al, 2011) and increased activity (Hare et al, 2011; Kirk et al, 2011; 
Germar et al, 2013) Again, that discrepancy may be the consequence of task-related 
factors (Milosavljevic et al, 2011). In this case, an analysis of the task idiosyncrasies that 
incur differential activity of the VMPFC could illuminate its varying role in different kinds of 
decisions. 
 
Meanwhile, previous results suggested an independent evaluative system may play a key 
role in social modulation of preference (McClure et al, 2004). This is broadly consistent 
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with the associative learning mechanism that may underpin the neural effect of peer 
recommendation and would lead us to expect an identifiable shared response in task of 
this nature. Given the broad implication of OFC, this region may be another candidate for 
closer analysis, particularly given its implication in reward-related processing during 
consumer decisions (Erk et al, 2002). 
 
In addition to VMPFC, posterior and anterior medial frontal cortex (pMFC; aMFC) have 
been shown to be modulated by social influence and susceptibility to social influence 
respectively (Izuma et al, 2013). The notion of susceptibility raises the additional concern 
of interindividual differences but also offers a possible avenue to explore these, since 
greater susceptibility may be related to increased aMFC activity. Indeed, functional 
imaging aimed at clarifying the varying contribution of different task- and participant-related 
factors would yield the two-fold benefit of a more detailed picture of the decision process 
and a better idea of its fundamental mechanism. 
 
Limitations 
 
The present paradigm faces a number of limitations incurred by its reliance on aggregated 
data. In calculating smoothed ERP's, we averaged both across participants and across 
time, and the amount of information lost during this process is considerable. As a result, 
conclusions with respect to exact timing of observed effects must be considered tentative. 
Moreover, ERPs also confound the variability in the evidence accumulated, starting point 
of the decision process and duration of nondecision components (Krajbich et al, 2012). 
 
Any attempt to model the influence of peer recommendation will need to take this into 
account. It has been shown that these factors can be dissociated using single-trial analysis 
(Ratcliff, Philiastides & Sajda, 2009). On the other hand, individual trials introduce 
considerable heterogeneity of responses of individual neurons (Philiastides et al, 2014). In 
this respect, ERPs are easier to interpret, but cannot unequivocally relate observed 
components to specific stages in the decision making process (Philiastides & Sajda, 
2006). While aggregate data face large limitations, the consensus remains that they 
continue to represent a useful tool for analysis precisely because of their relative easiness 
to interpret. 
 
Our analysis of the influence of peer recommendation on neural dynamics is limited most 
by the nature of our behavioural data. Absent an identifiable influence of the 
recommendation on behaviour it is difficult to relate the neural effect to a precise stage of 
the underlying process. This is the case particularly in the context of a literature in which 
an effect is commonly identified but remains ambiguously assigned (e.g. Erk et al, 2002; 
Zaki et al, 2011; Germar et al, 2013). The mechanism underlying of the corresponding 
decision, and the component regions could only be explored tentatively. The importance of 
careful operationalization of social influence was also exacerbated by the influence of task-
related factors. Future work should aim to explore and identify a behavioural effect before 
proceeding. 
 
Ecological validity provides a final challenge to our results, and reflects a systematic 
challenge to the decision making literature, and indeed laboratory-based experimental 
work in general (Skorepa, 2011). In our study, participants thought they were receiving 
recommendations aggregated over the fictional previous participants who had supposedly 
completed the same task.In a participant's mind, the recommendations would have been 
made purely on the basis of seeing the same images also presented to her. This makes 
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the present recommendations different from the aggregated collective judgements that 
motivated our study, since the latter are typically made after using the product. In our 
study, the absence of any engagement with the physical product by the ostensible 
recommending party may have reduced the value of the recommendation to the 
participants by removing an important dimension of the underlying value-judgement. 
 
Consequently, recommendations in the present study may be relatively superficial. As a 
result of recommendations based on only superficial information, our paradigm may fail to 
faithfully reproduce the collective judgements motivating our study (Muchnik et al, 2009). 
In having fallen short of reproducing the natural decision with full accuracy, the paradigm 
may fall short of capturing the richness of consumer decision making more generally too 
(cf. e.g. Herve & Mullet, 2009). The crucial point is to reiterate a call for attention to details 
of task-design, which may prove crucial to the validity of results. Future and indeed past 
results must be interpreted carefully, with keen awareness of the nuances of tasks and the 
phenomena under investigation. 
 
Summary 
 
Our results contribute to an account whereby social information presented during a 
decision acts to attenuate activity in the human frontal cortex. This effect is likely mediated 
by the differential engagement of the reward mechanism in the presence of social 
influence. We observed that neural activity is modulated by peer recommendation, even 
absent a behavioural effect. The present findings converge with the established literature 
on an influence of task difficulty on neural dynamics of decision making at both evidence 
accumulation and integration. These results must be understood in the context of 
considerable inter-task variability and seem broadly consistent with functional imaging 
results to date. 
 
Future Directions 
 
Within the current paradigm, the essential next stage is to more compellingly 
operationalize social influence. This will permit an exploration of the dynamics of decision 
making when the influence is carried forward to bias behaviour. In addition, future work 
would do well to apply both single-trial analysis and computational modelling in order to 
develop our understanding of the finer mechanics of the influence of social influence on 
value-based decision making. This should also contribute to continued efforts to codify a 
number of influences on the fundamental decision making mechanism that underlies 
perceptual and value-based decision according to the DDM. 
 
The present and associated research also carries potential applications to neuromarketing 
(Lee, Broderick & Chamberlain, 2007). The extent to which decisions are biased in a 
variety of situations by social influence among other factors, may be the core of that 
nascent research direction (Breiter et al, 2014). This research could have important 
applications to economics too, if it succeeds in challenging long-standing assumptions 
about the rationality and self-interestedness of consumer behaviour (Muchnik et al, 2013). 
 
Notes 
 
We wish to thank Gavin Shields for his assistance during the testing phase. 
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Figures 

 
Figure 1.1: Task 1. Participants were presented with an item and asked to indicate a 
preference using a corresponding number key. Item offset followed confirmation of the 
indicating rating by the space key. The onset of the next item followed immediately. 

Figure 1.2: Task 2. Participants were asked to fixate on the centre of the screen. Pairs of 
items were presented for up to 1,750ms, during which participants indicated their 
preference using the corresponding arrow key. A response was immediately followed by 
stimulus offset. An ISI of between 1,250 and 1,750ms displayed just the fixation crossed 
before the onset of the following trial. Recommendation conditions were randomly 
interleaved throughout the task. 
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 Figure 2.1: Behavioural Results (N=21).  A. Percentage recommended items chosen as a 
function of difficulty and recommendation condition. Only main effect of difficulty (p < 
0.001). B. Reaction times as a function of task difficulty, as captured in item difference 
rating, and recommendation condition. Only main effect of item difference (p < 0.01). C. 
Percentage preferred items chosen as a function of difficulty and recommendation 
condition – no values at difficulty = 3 since item difference = 0, i.e. neither item is 
preferred. Decisions are symmetrical around the indecision point. 
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Figure 2.2: Behavioural results for two subsamples median split along rank order of 
overall percentage recommended items chosen. A. - C. Behavioural results for subsample 
of participants with relatively high proportion of recommended items chosen. D. - F. 
Behavioural results for subsample of participants with relatively low proportion of 
recommended items chosen. G. - I. Behavioural results of subsamples in comparison. 
ANOVA results for the factor group (high versus low proportion recommended chosen) did 
not reach significance. 
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Figure 3.1: ERPs computed for difficulty levels across recommendation conditions. 
Neither FF-(A), FL-(B.), nor FM-cluster (C.) showed a statistically significant effect of item 
difficulty on signal strength. Recall however that equally eccentric difficulty levels reflect 
the same item difference rating, D. Cluster locations: FF = green; FL = orange; FM = 
yellow. 
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Figure 3.2: ERPs computed for difficulty levels across recommendation conditions. 
Figures contain 100ms (10 window) baseline, i.e. stimulus onset occurs at window 10. A. 
Two time windows with statistically significant differences in signal strength depending on 
item difference were identified in FF-cluster. An early cluster 150 – 290ms (p < 0.05; 220 – 
250ms p < 0.01) and a continuous late cluster 440 – 900ms (p < 0.05; 510 – 810ms, p < 
0.02) B. FL-cluster showed no time windows of statistically significant differences in signal 
strength dependent on item difference C. Four time windows with statistically significant 
differences in signal strength depending on item difference were identified in FM-cluster. 
120 – 160ms (p < 0.05), 270-300ms (p < 0.05), 470 – 530ms (p < 0.05), 840 – 900ms (p < 
0.05; 860 – 900ms, p < 0.01).  D. Cluster locations: FF = green; FL = orange; FM = yellow. 
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Figure 3.3: Statistically significant ERP components for task difficulty. A. ERPs for FF-
cluster showed a significant intermediate component peaking at ~210ms. B. ERPs for FM-
cluster showed a significant early component peaking at ~130ms. C. Scalp topography of 
EEG signal at 210ms showed a farfrontal negative peak, and frontomedial positive cluster 
D. Scalp topography of  ERP difference at 210ms between highest and lowest item 
difference showed strong centrofrontal reduced activity, with increased activity related to 
lower difficulty E. Scalp topography of early component (~130ms), showed strong, 
distributed frontomedial negativity, consistent with the engagement of attention. 
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Figure 3.4: ERPs computed across item difficulties for recommendation absent and 
present levels. Figures contain 100ms (10 window) baseline, i.e. stimulus onset occurs at 
window 10. Recommendation condition did not show statistically significant differences in 
signal strength in either FF-(A.) or FL-cluster (B.). C. FM-cluster showed statistically 
significant differences in ERP signal strength in the majority of time windows. A very early 
effect immediately following stimulus onset (10 – 70ms, p < 0.02), and an effect at 100 – 
210ms (p < 0.05) as well long effect (260ms – 680ms, p <0.02; 270 – 610ms, p < 0.001) 
and a very late effect at 790 – 880ms (p < 0.05) D. Cluster locations: FF = green; FL = 
orange; FM = yellow. 
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Figure 3.5: Significant EEG-results for recommendation present versus absent despite 
non-significant behavioural effect. A. ERPs by recommendation condition corrected for 
multiple comparisons using Holm's method. One statistically significant effect period from 
280 – 580ms ( p < 0.05; 380 – 580ms, p < 0.01; time window 45, i.e. 325 – 375ms, p = 
0.052) B. Scalp topography of the ERP difference across recommendation conditions at 
peak signal difference (window 43, i.e. 305 – 355ms). Topography showed a negative 
central cluster extended latitudinally over a large central area of the scalp, suggestive of 


