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ABSTRACT: Blunt traumatic aortic rupture (BTAR) is one of the leading causes of rapid fatality in motor vehicle crashes. 

The mechanism of BTAR, however, is still not clear due to its complicated process. This paper looks the pattern alteration of 

blood wave propagation of the aorta caused by impact loading to identify the sources of rupture of aorta. In this paper, a 3D 

computational fluid dynamic (CFD) human aortic model was established. Pulsatile pressure and velocity, representing the 

cardiac transient pressure and velocity for the healthy adult, were applied at the inlet and outlets of aortic model as the 

boundary conditions. Blood flow propagation along the ascending aorta to thoracic descending aorta were analysed using 

ABAQUS CFD. The results indicate that the waves as a result of the impact loading has a significant effect on the patterns of 

blood wave propagation, which may be considered as one of the sources of rupture of aorta.  
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INTRODUCTION 
 
Blunt Traumatic Aortic Rupture (BTAR) refers to the tearing or rupture of the aorta wall during the 

car crash. It is one of the leading causes for rapid fatality in motor vehicle crashes. BTAR accounts for 

21.4% of all deaths from motor vehicle accidents and approximately 80-85% of victims of BTAR die 

at the scene or on ways to hospitals [1, 2]. Fig.1 shows that the distribution of BTAR victims as the 

function of the injury sites and impact types [1]. The findings from this study demonstrated that BTAR 

most often occurred in the descending aorta at the isthmus, which is referred as the ‘classical’ site of 

BTAR.  
 

 

Fig. 1. Distribution function of the TRA (Traumatic rupture of aorta) victims in relation to the sites of 

injury and impact types [1].  
(Horizontal axis represents the sites of injury in aorta in abbreviations:   ‘diaphr.’--diaphragm; ‘distal desc.’ --distal 

descending aorta; ‘peri-isthm.’--peri-isthmic aorta; and ‘asc.’--ascending aorta)  



Apart from the automotive accidents, there are additional circumstances under which the aortic rupture 

may occur. BTAR fatalities were also found in motorcyclist crash, falling down from scaffolding and 

high work site, etc. It was reported that 93.3% of the overall mortality or 80% of on-site mortality of 

fatal accident can be attributed to BTAR[3].  In fact, the mortality rates as the result of BTAR are 

dramatically high, no matter whatever circumstances under which this kind of injury occurs.  

 
To minimize the occurrence of aortic and other injuries due to car accident, significant efforts have 

been made in car design (include seat belts and airbags) over the past decades.  The analysis by the 

National Highway Transportation Safety Administration (NHTSA) found that car seat belt have saved 

168,524 US lives since 1960, and front airbags have saved 12,074 US lives [4]. The review report by 

Schulman, however, revealed that during 1993-2004, the overall incidence of blunt aortic injury that is 

associated with fatal vehicular crashes has remained high [5]. More recently, Sastry, based on UK 

Cooperative Crash Injury Study (CCIS) data during 1998-2007, found low-impact scenarios may 

account for two-thirds of blunt traumatic aortic rupture [6]. Sastry also found low-impact blunt 

traumatic aortic rupture is more commonly found at the old vehicle occupant. This finding is 

consistent with the finding by Welsh, where the body region most prone to injury for elderly vehicle 

occupant is chest [7]. It is understood that the lack of understanding of the BTAR mechanisms could 

mean that the overall fatality rate of blunt aortic injury during vehicle crash will remain high in the 

future, even in the presence of extensive use of safety seat belts and airbags.  

  

In order to reduce the fatality ratio caused by the aortic rupture, the BTAR mechanisms have been 

investigated in a number of ways. Lundevall suggested that the injury of aorta is mainly caused by the 

sudden stretching of aorta [8]. Kivity thought that the significant pressure pulse increase due to the 

sudden occlusion of blood vessel wall in the aorta is key factor of BTAR [9]. Kivity indicated that 

shock waves, formed in the arterial system, could led to the rupture of aortas eventually. Since the 

aorta is believed to be entrapped between the anterior thoracic bony structure and the vertebral column 

during vehicle impact, a recent study suggested that it is the combined bending and shear stresses, 

induced by the entrapment, make a great contribution to the rupture of aorta [10-12].  

 

Literature review mentioned above revealed that the mechanism of BTAR is not clear in spite of 

BTAR been investigated widely to date.  The main challenges are: (1) The mechanisms suggested by 

the different researchers are contradict to each other, where each investigation only focused on the 

individual factor, therefore, the systematical understanding of the mechanisms of BTAR is very 

limited; (2) It is hypothesized that pattern of blood wave propagation in the arterial system during car 

crash will be affected, however, investigation of the patterns of blood wave propagation under the 

impact loading is lacking. This paper, therefore, will focus on the blood wave propagation in the aorta 

under the impact loading and find out whether the alteration of patterns of the blood wave propagation 

is associated with the rupture of aorta. 

 

The blood flow performance and the blood wave propagation in the aorta during car crash are 

investigated using computational modelling approach in this paper. A 3D computational fluid dynamic 

(CFD) model, representing the inside fluid domain of the adult aorta (aortic lumen), had been 

developed by using the ABAQUS CFD software. Pulsatile blood pressure and flow waveform will be 

used as the boundary conditions. The blood flow performance and the patterns of blood wave 

propagation in the normal conditions will be compared with those when the aorta is subjected to 

impact loading.  

 

METHODOLOGY 
 

In this paper, a computational fluid dynamic (CFD) model, representing the inside fluid domain of the 

adult aorta (aortic lumen) from ascending aorta to descending thoracic aorta has been developed. 

ABAQUS CFD software is used to simulate the blood flow behaviour during car crash.  

 
In this model, the three major aortic branches including brachiocephalic artery, left carotid artery and 

left subclavian artery in the aortic arch were also included. The geometric and material properties of  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (a) for geometric aortic model and the boundary conditions; (b) for aortic mesh model. 

 

the aortic model are referred from the Voges’s study for adult [13]. The model is consisted with six 

sections: namely, ascending aorta, aortic arch, descending aorta, and three branches (Fig.2a). The 

density (1005 kg/m3) and viscosity (3.2x10-3 Pa.s) of blood have been assumed. The computational 

model is consisted by 20727 tetrahedral elements, shown in Fig.2b.  Three types of boundary 

conditions have been applied to the inlet of ascending aorta, outlet of descending aorta and the outlet 

of branches in the aortic arch, respectively. The first type of boundary conditions were used to 

simulate the normal physiological conditions, where the pulsatile pressure waveform (Fig.3) was 

applied at inlet of the ascending of aorta and velocity waveform (Fig. 4, Fig. 5) was applied at outlet of 

descending aorta and three branches. The second type of boundary conditions were used to simulate 

the blood flow behaviours when the aorta is occluded at the outlet, therefore, zero velocity was applied. 

The third types of boundary conditions were used to simulate the blood flow behaviours when the 

aorta is subjected to the occlusion and the impact loading. At this situation, the descending aorta was 

fully blocked. Meanwhile, at the location of occlusion, an impulse signal, representing the addition 

pressure waveforms, generated by impact loading, was also applied as the boundary conditions. The 

blood vessel walls for all of the aortic sections were assumed rigid and no slip conditions were applied 

to the blood vessel walls.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Boundary conditions of the pulsatile blood pressure were applied at the inlet of ascending aorta 
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Fig. 4. Boundary conditions of the pulsatile blood velocity at the outlet of descending aorta 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Boundary conditions of the pulsatile blood velocity at the outlet of three major aortic branches 

 

The pulsatile blood flow through 3D CFD aortic model was simulated with the incompressible Navier-

Stokes equations. The governing equations, combined with the boundary conditions, were solved with 

the finite element method (FEM) based on the commercial software ABAQUS CFD. Since the rigid 

vessel wall is assumed in this study, the coupling of the deformation of the vessel wall and blood flow 

behaviour is not considered. The pressure and velocity waveform at several locations will be extracted. 

The pressure and velocity contour will also be presented so that the detailed pressure distribution and 

velocity profile along longitudinal symmetrical sections can be investigated.      



RESULTS: 

 
The pressure distribution and flow profile under the three types of the boundary conditions were 

presented as the following: 

  
1. Normal physiological conditions 

 

The blood flow patterns at normal physiological condition are studied using 4 continuity stable cycles 

(Fig. 3, Fig. 4 & Fig. 5). The pulsatile pressure and velocity waveforms were applied at the inlet and at 

the outlet. The results at the 4th cycle are extracted and the pressure distributions at 4 key time points: 

t1=2.404s, t2=2.568s, t3=2.693s and t4=3.168s (Fig. 6) are presented in Fig. 7. 

 
As you can see from Fig. 7, at t1=2.404s when a cardiac cycle starts, the pressure distributions from 

the ascending aorta to descending aorta ranged from12.89kPa to 12.44kPa. It is the pressure difference 

between the ascending aorta and the descending aorta driving the flow from the upstream of aorta to 

the downstream. At peak of the systolic cardiac cycle (t2=2.568s), the pressure distribution ranges 

from 17.68kPa to 18.14kPa, where the maximum pressure occurs at the outlet of descending aorta, 

indicating the blood flow may move backward to upstream at that moment. At t3=2.693s and t4=3.168s, 

the pressures are distributed nearly uniform with the slight gradient between ascending aorta and 

descending aorta, which keeps the blood flow moving toward the peripheral arteries.    

 

In addition, the pressure and velocity waveforms at 4 key locations (inlet of ascending of aorta, 

beginning of aortic arch, end of aortic arch and outlet of aorta) are presented in the Fig. 8. It was 

observed that pressure waveforms are similar in shape and the systolic peak gradually increase when 

the blood flow moving from ascending aorta to descending aorta. 

 

2. Blood flow behaviours when the aorta is occluded 

 

During car crash, it is supposed that occlusion occurs due to the impact loading acted on the human 

body. The occlusion would cause the blood flow waveforms to be reflected and moving towards the 

upstream of aorta, which may result in the rapid and significant increase of the pressure. The pressure 

waveforms at the outlet of descending aorta between the condition when the aorta is occluded and  

normal physiological conditions was compared (Fig. 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Four key time points indicate the beginning of systolic phase, peak of systolic phase, midway 

and end of diastolic phase, respectively. 
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Fig. 7. The pressure distributions at (a) t1= 2.404s, (b) t2=2.568s,  (c) t3=2.693s, (d) t4=3.168s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8  Pressure and velocity waveforms at four locations: (a) inlet of the ascending aorta; (b) 

beginning of the aortic arch; (c) end of the aortic arch; (d) outlet of descending aorta. 
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Fig. 9. Comparison of the pressure waveforms at the outlet of descending aorta between two 

conditions: the normal physiological conditions and when it is occluded due to the impact loading 

 

 

Comparison between these two conditions indicated the wavefronts of pressure when the aorta is 

subjected to occlusion is approximately 3 times steeper than those in the normal physiological 

conditions. The peak of systolic pressure with the occlusion of descending aorta is slightly lower than 

that with the normal physiological conditions. 

  

3. Blood flow behaviour when the aorta is subjected to impact loading waveform 

 

If the peripheral arteries are experienced with the external impact loading, the additional pressure 

waveforms could be generated by the impact loading and propagates backwards to the heart. Patterns 

of blood flow propagation could be altered due to the additional wave generated by the impact loading 

and the reflected waves caused by the occlusions. In this study, it is assumed that the instant peak of 

pressure is generated at the descending aorta during the accident. The simulation results shown that the 

instant change of pressure fully altered the patters of the pressure and velocity waveforms, where the 

feature of cardiac blood flow cycle is fully lost. The peak of velocity under the impact loading is 1000 

times more than those in the normal conditions, which could not be explained in this paper. 

 

Discussions and Conclusions 
 

In this paper, the occlusions and the pattern of blood wave propagations due to the impact are 

investigated using the following approaches. An aortic CFD (computational fluid dynamic) model 

representing the inside fluid domain of the aorta (aortic lumen) has been developed by using the 

ABAQUS CFD software to simulate the blood flow behaviour during car crash. The pattern of the 

pulsatile wave propagation in the healthy adult were investigated in three conditions: (1) normal 

physiological conditions; (2) the descending aorta was occluded; (3) descending aorta was subjected to 

the impact loading.   

 



The pressure and velocity waveforms at the varied locations are extracted from the CFD simulation 

results. The effect of occlusion and the impact loading upon the alteration of the patterns of the wave 

propagation was analysed. As was expected, steeper wave-front of the pressure waveform was 

observed when the aorta is subjected to occlusion and impact loading. This may be attributed to the 

superstition of backward reflected waves resulting from the occlusion of arteries. In addition, it was 

expected that the impact load could results in the significant increase of pressure amplitude, which was 

not observed. Under the impact loading, the features of physiological cardiac pressure and flow 

waveform were fully lost, the reason of which could be the occurrence of shock waves. The results 

implied that shock wave could be formed if the very severe impact loading takes place in the location 

closer to the heart and in the systolic period.  In this study, blood vessel wall of the aorta is considered 

as rigid, resulting in the interaction between the deformation of blood vessel wall and blood flow 

behaviour being neglected. As is known, the arterial vessel is composed with the three layers, each of 

those experiences non-linear elastic performance under the cyclic loading. Ignoring the non-elastic 

properties of arterial wall could underestimate the performance of blood flow under the impact loading. 

Therefore, more realistic modelling through using visco- or hyper-elastic deformable elements in the 

future which may contribute to a more biofidelic understanding of the phenomenon. 
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