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Abstract 26 

All mammals (apart from apes and humans) have whiskers that make use of a similar muscle 27 

architecture. Whisker specialists, such as rats and mice, tend to be nocturnal and arboreal, 28 

relying on their whisker sense of touch to guide exploration around tree canopies at night. As 29 

such, nocturnal arboreal rodents have many whiskers that are organised into a grid-like 30 

pattern, and moved using a complex array of muscles. Indeed, most arboreal, nocturnal 31 

mammals tend to have specialised whiskers, that are longer and arranged in a dense, regular 32 

grid, compared to terrestrial, diurnal mammals. The guinea pig diverged early from murid 33 

rodents (around 75 million years ago), and are ground-dwelling, diurnal animals. It would be 34 

predicted that, as a terrestrial mammal, they may have less whiskers and a reduced muscle 35 

architecture compared to arboreal, nocturnal rodents. We examined the mystacial whisker 36 

layout, musculature and movement capacity of Guinea pig (Cavia porcellus) whiskers and 37 

found that they did indeed have a disorganized whisker layout, with a fortification around the 38 

eye area. In addition, there was a reduction in musculature, especially in the intrinsic muscles. 39 

Despite guinea pigs not cyclically moving their whiskers, the mystacial musculature was still 40 

very similar to that of murid rodents. We suggest that the conserved presence of whisker 41 

layout and musculature, even in visual mammals such as primates and guinea pigs, may 42 

indicate that whiskers still play an important role in these animals, including protecting the 43 

eyes and being involved in tactile social behaviours. 44 
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Introduction 46 

All mammals (apart from apes and humans) have facial whiskers (vibrissae) (Ahl, 1976). 47 

Whisker specialists, such as mice, rats and hamsters are able to move their whiskers to 48 

perform large, quick, cyclic sweeps (termed whisking), which is amongst the fastest 49 

movements that mammals can make (occurring at around 25Hz in mice) (Welker, 1964; 50 

Wineski, 1983; Jin et al., 2004). The fast and precise positioning of the whiskers are enabled 51 

by a specialist whisker musculature, a complicated architecture of intrinsic and extrinsic 52 

muscles (Dörfl, 1982), which are represented mainly by fast muscle fibres (Jin et al., 2004). 53 

Perhaps the most well-studied muscle group is that of the intrinsic muscles, represented by 54 

sling-like muscles that link around the base of each whisker follicle, causing the whiskers to 55 

protract forward (Dörfl, 1982). The layout of the intrinsic muscles has been found to be 56 

largely preserved from marsupials (Grant et al., 2013) to rodents (Dörfl, 1982), to nocturnal 57 

arboreal primates (Muchlinski et al., 2013). That intrinsic whisker muscles are preserved 58 

between marsupials and rodents, even though their last common ancestor occurred around 59 

160 million years ago (Luo et al., 2011), suggests that the common ancestor of extant 60 

mammals may well have had moveable whiskers involved in active touch sensing. While 61 

intrinsic muscles are largely preserved, the extrinsic muscles of the mystacial pad can largely 62 

vary between species (Yohro, 1977). In the marsupial Monodelphis domestica (Grant et al., 63 

2013), for example, some of the extrinsic muscles are so reduced that vibrissal control is 64 

limited, and whisker spread and velocity cannot be controlled during object exploration.  65 

 66 

The number, layout and musculature of the mystacial vibrissae are all closely linked to the 67 

function and movement abilities of the whiskers. Small, social, nocturnal and arboreal 68 

mammals have been found to have longer vibrissae with a more densely packed vibrissal 69 

field than that of ground-dwelling and burrowing mammals (Pocock, 1914; Lyne, 1959; Ahl, 70 

1986; Muchlinski et al., 2013). Exceptions to this include semi-aquatic (i.e. Australian water 71 

rat (Dehnhardt et al., 1999)) and aquatic mammals (such as pinnipeds and sirenians 72 

(Dehnhardt, 2002)), that have long and densely-arranged whiskers, despite them being large, 73 

diurnal animals; indeed the California sea lion has the longest whiskers of all mammals. In 74 

these animals, the whiskers are a likely adaptation for an aquatic lifestyle, and are used for 75 

navigation and prey capture in a dark, underwater environment (Grant & Arkley, 2016).  76 

Arboreal, nocturnal rodents actively position their whiskers for use in a variety of functions, 77 

including navigation, locomotion, exploration, hunting and social touch (Grant & Arkley, 78 
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2016). Extensive studies in arboreal, nocturnal mice and rats have revealed that they possess 79 

three groups of whisking muscles (protractors, retractors, and vertical vibrissae deflectors) 80 

leading to a range of whisker movements and vast control abilities (Haidarliu et al., 2010). 81 

However, diurnal mammals, such as some primates, lack organized vibrissae, have very thin 82 

whiskers and a reduced whisker follicle without intrinsic muscles (Muchlinski et al., 2013). 83 

 84 

Guinea pigs, and other Hystricomorphs, diverged from the murid rodents before the 85 

artiodactyls and primates, and are often thought of as a separate order from rodentia (Graur et 86 

al., 1991). They represent an early divergence in eutherian evolution, and as such often have 87 

rather anomalous characteristics compared to other mammals, such as their facial bone 88 

structure (Muchlinski, 2008) and body muscles (Potter et al., 1957). The guinea pig, and 89 

other Histricomorphs, have a unique facial anatomy, in that the media masseter (mastication) 90 

muscle passes through the infraorbital foramen (IOF) of the skull, which makes it particularly 91 

large, compared to the IOF of other rodents (Muchlinski, 2008). While some aspects of the 92 

maxilliary facial musculature has been described in guinea pigs (Muchlinski 2008), that of 93 

the mystacial pad has yet to be considered, despite guinea pigs being able to generate fast and 94 

large amplitude whisker movements; however, these movements do not tend to be cyclic and 95 

usually occur in isolation (Jin et al., 2004). Due to their early divergence, we might expect the 96 

guinea pig to have a whisker layout and musculature more similar to the marsupial, than the 97 

rodent tactile specialists that evolved later, such as mice and rats. Moreover, we might expect 98 

the guinea pig whisker system to be even further reduced and disorganized, due to them being 99 

diurnal, ground-living mammals.  100 

 101 

The aim of this study is to describe the muscle architecture of the mystacial pad in the guinea 102 

pig anatomically, by cutting the mystacial pads of the guinea pig in the tangential plane and 103 

staining consecutive slices for cytochrome c oxidase activity and Masson’s Trichrome. 104 

Because of the differences in proposed up-to-date schemes of whisker layouts in the guinea 105 

pig mystacial pad (Sikich et al., 1986; Haidarliu and Ahissar, 1997), we also re-examine here 106 

the layout of the mystacial pad in situ. All results will be compared in detail with those of rat, 107 

and also to other animals such as opossums and shrews. We will go on to consider the impact 108 

of diurnality on the whisker pad muscles and layout.  109 

 110 

 111 
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Materials and Methods 112 

Pad removal 113 

Eight female adult Dunkin-Hartley guinea pigs were used in the anatomy section of this 114 

study, each weighing between 350-400 g. The guinea pigs were euthanized via an overdose 115 

of anaesthetic. The mystacial pads were removed by cutting down the skin in the sagittal 116 

plane and around each pad (around 2mm on either side of the pad). They were placed into a 117 

solution of fixative (4% paraformaldehyde in 0.1 M phosphate buffer) and left for one hour. 118 

They were then straightened by placing them into histology cassettes (Medex Supply, 119 

Monsey, NY, USA) packed with high-density foam. Twelve of the pads were then placed 120 

into fixative solution enriched with sucrose up to 30% for twenty four hours, and then 121 

sectioned on the freezing microtome for staining for cytochrome oxidase activity. The 122 

remaining four pads were kept flattened for two weeks, then subjected to dehydration and 123 

clearing, and mounted in paraffin wax to slice and stain with Mason’s Trichrome.  124 

Staining for cytochrome oxidase activity 125 

After fixing, each of the pads was sectioned using a freezing microtome (Leica CM 1800) 126 

into 60 µm thick slices in the tangential plane. All slices were stained for cytochrome oxidase 127 

activity following the method developed by Wong-Riley (1979) and modified by Haidarliu et 128 

al. (2010). Slices were floated in an oxygenated solution of 0.02% cytochrome c (0.75mg), 129 

catalase solution (40µl), and 0.05% diaminobenzidine (5mg) in 0.1 M phosphate buffer. The 130 

slices were incubated at room temperature on a shaking platform until the stain developed 131 

(approximately 1-3 hours), and a clear differentiation between non-reactive and highly 132 

reactive tissue structures could be determined.  Slices were then rinsed with 0.1 M phosphate 133 

buffer. Stained slices were mounted on microscope slides and left to air dry overnight. The 134 

slices were then coverslipped with DPX. 135 

The cross-sectional diameter of the intrinsic muscles was manually measured, perpendicular 136 

to the follicle, on the C-row whisker follicles of one slide (Fig. 3B) using the image analysis 137 

software Tracker (Brown 2015), and compared to an equivalent slice in rat. 138 

Staining with Masson’s Trichrome 139 

Four of the pads were placed into empty histology cassettes and transferred to a tissue 140 

processor (Shandon Citadel 2000), where tissues were dehydrated through a series of graded 141 
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IMS baths (70%, 80%, 90%, 100%), and then immersed in xylene and paraffin wax. This 142 

process took around 20 hours. The samples were then mounted in a block of paraffin wax and 143 

sliced on an automatic rotary microtome (Thermos Scientific microtome HM355S) into 10 144 

µm thick slices that were floated in a 35-37°C bath. Two mystacial pads were sliced 145 

tangentially, and two were sliced horizontally to visualise the C-row follicles. Slices were 146 

mounted onto slides and left to dry at 38oC overnight. 147 

Slides were put in a fixative solution (4% paraformaldehyde in 0.1 M phosphate buffer) for 1 148 

hour, and introduced to Bouin’s Solution for 4 hours.  They were then cleared with xylene, 149 

rehydrated with ethyl alcohol (100%, 90%, 80%, 70%) and moved through a sequence of 150 

solutions for the Masson’s Trichrome staining (Biebrich Scarlet Acid, Phosphotungstic and 151 

Phosphomolybdic Acids, Aniline Blue and Acidified Water), with multiple washes of 152 

distilled water in-between each stage. The slices were then dehydrated with ethyl alcohol 153 

(70%, 80%, 90%, 100%) and xylene, towel dried and cover-slipped using DPX. All slices 154 

were visualised using a Zeiss Stereo Lumar V12 light microscope. Figures were captured 155 

using Zeiss Axiovision, version 4.8. Occasional adjustments to exposure and white balance 156 

were made. 157 

Behavioural Filming 158 

Nine adult female guinea pigs, of mixed strains, were used for filming. They were placed 159 

individually into a transparent, Perspex, rectangular arena (20 x 50 x 15 cm) (Fig. 1A), which 160 

was lit from below by an infrared light box (PHLOX LEDIR-BL-200/200-SLLUB-Q-1R-161 

24V). Each guinea pig was filmed from above using a digital high-speed video camera 162 

(Phantom Miro ex2) recording at 500 frames per second with a shutter-velocity of 1 ms and a 163 

resolution of 640x480 pixels. Multiple 1.5-s video clips were collected opportunistically (by 164 

manual trigger) when the animal moved in the cameras field of view. Approximately 12 clips 165 

were collected from each animal.  Two-three clips from each guinea pig were selected based 166 

on to the following selection criteria: i) the guinea pig was clearly in frame; ii) both sides of 167 

the face were visible; iii) the head was level with the floor (no extreme pitch or yaw); and iv) 168 

the whiskers were not in contact with a vertical wall. Twenty two clips in total were tracked 169 

using the BIOTACT Whisker Tracking Tool (Perkon et al., 2011). The tracker semi-170 

automatically finds the orientation and position of the snout, and the angular position (relative 171 

to the midline of the head) of each identified whisker. Tracking was validated by manually 172 

inspecting the tracking annotations overlaid on to the video frames (Fig. 1B, inset). 173 
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The movement of the entire whisker field was determined from the unsmoothed mean of all 174 

the tracked whisker angular positions for each side frame by frame (Grant et al., 2013), which 175 

can be seen in Fig. 1B and is termed naïve mean angle (nma). The offset was calculated as the 176 

mean nma, and an average was taken between the two whisker sides. To estimate the 177 

amplitude, the offset was removed from the whisking angle time series and the root mean 178 

square value was computed to give the root-mean-square (RMS) whisking amplitude and was 179 

estimated by multiplying the RMS whisking amplitude by 2√2 (Chatfield, 2003). Whisk 180 

frequency was not calculated as the nma did not often contain clear whisks, rather they were 181 

more asymmetric movements that oriented the whisker field. 182 

All work in this study conformed to UK Home Office Regulations and was approved by local 183 

ethics committees. 184 

 185 

Results 186 

Mystacial Pad Layout 187 

The layout of the guinea pig whiskers indicates that there are five rather irregular rows of 188 

whiskers within the mystacial pad (Fig. 2). Dorsal to these five rows of mystacial vibrissae 189 

and to the nostril, a row of five-to-six arcwise arranged nasal vibrissae passes in the rostro-190 

dorsal direction. The most dorsal row of the mystacial vibrissae, row A, is made of only two 191 

whiskers. Row B comprises of usually three, but sometimes four vibrissae. Rows A and B are 192 

caudally straddled by a straddler (α). Each of the rows C, D, and E contains usually five 193 

vibrissae. Rows D and E are positioned more rostral, such that vibrissae D1 and E1 align with 194 

vibrissae A2, B2 and C2. The misalignment of the rows D and E with rows A – C reveals the 195 

guinea pig to have a more irregular whisker pad than other rodents, for example rat (compare 196 

with Fig. 3A). 197 

The straddler whiskers of the guinea pig also have a complex arrangement. Straddlers γ and 198 

δ sit ventro-caudal to the rest of the whisker pad, and it is not clear from just looking at the 199 

layout in Fig. 2, which whisker rows they are associated with. Straddler α sits caudal to rows 200 

A and B. Straddler β straddles rows B and C. Muscle fibers from the ventral side of the 201 

follicle C1, the dorsal side of the follicle D1 and straddler δ reach the follicle of the straddler 202 

γ which is positioned more caudal to them (Fig. 3B). This is a rather irregular straddler 203 
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layout, compared to the rat (Fig. 3A) where straddler whiskers straddle consecutive rows A-204 

B, B-C, C-D, and D-E. 205 

Intrinsic Muscles 206 

The guinea pig whisker pad contains sling-like intrinsic muscles (Figs. 3B-D) that form a 207 

sling around the rostral areas of each follicle and attach to the caudal follicle in the same row. 208 

These muscles are striated and made up of red, pink and white striated muscle fibers (Fig. 209 

3D). The intrinsic muscles look much reduced, are much thinner, and are not as striking as 210 

those seen in the rat (compare Figs. 3A and 3B).  Indeed, the cross-sectional diameter of the 211 

intrinsic muscles (measured at the point of the arrows on Figs. 3A and 3B) show that the C 212 

row intrinsic muscle diameter is 0.080±0.01 mm in rat and 0.061±0.004 mm in guinea pig, 213 

despite the guinea pig being slightly bigger overall.  214 

In addition, the intrinsic muscles are, on the whole, more irregular in the guinea pig. In the 215 

rat, the intrinsic muscles connect each consecutive follicle within the same row, forming a 216 

regular, chain-like architecture (Figure 3A). However, in the guinea pig, oblique intrinsic 217 

muscles pass both between and within vibrissal rows. Figure 3C shows an oblique intrinsic 218 

muscle passing between follicles in different rows, from the ventral part of the B1 follicle 219 

attaching to the dorsal part of the C1 follicle. Figure 3E shows an oblique intrinsic muscle 220 

passing within vibrissal rows, from the ventral part of A2 crossing to the dorsal part of A1. 221 

These oblique intrinsic muscles are not observed in rat. 222 

Whisker Follicles 223 

The intrinsic muscles can also be observed in Fig. 4, which shows a slice containing the C-224 

row of whiskers. The muscles (in red) can be clearly seen linking the bottom of a more rostral 225 

follicle to the distal end of a more caudal follicle (C4-C3, C3-C2, C2-C1). In addition, the 226 

whisker C2 (the second whisker follicle from the right) contains a clear follicle sinus and 227 

ringwulst. The sinus can also clearly be seen in the follicles in Fig. 3B and C.  228 

Extrinsic Muscles 229 

The superficial extrinsic muscles, M. nasolabialis and M. maxillolabialis, are both present. 230 

They insert into the caudal areas of the mystacial pad, and merge rostrally between the rows 231 

of vibrissae (Fig. 5A and B). The bundles of the Mm. maxillolabialis and nasolabialis fan 232 

rostrally, each forming a thin layer, so that they can usually be seen clearly in different slices 233 
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(Fig. 5A and B). Another superficial extrinsic muscle that participates in vertical vibrissa 234 

spreading (Pars orbicularis oris of the M. buccinatorius) can also be seen in Fig. 2. 235 

The deep vibrissa retracting muscles are part of the M. nasolabialis profundus. The Pars 236 

interna profunda (PIP) occupies the most dorsal position in the rostral segment of the 237 

mystacial pad. Its origin is represented by a number of tapered ends of muscle fibres that are 238 

attached to the nasal cartilage. Muscle fibres fan and run toward rows A and B (Fig. 6A). 239 

Guinea pigs possess a single Pars maxillaris that originates from a large area of the nasal 240 

cartilage ventral to the PIP origin. It is not divided into two parts (superficialis et profunda), 241 

as in many other rodents, and runs through and around rows C – E. The separation of the 242 

deep vibrissa retracting muscles in to two groups, those targeting A and B rows and those 243 

targeting rows C-E, may reflect compartmentalization of the guinea pig mystacial pad into  244 

nasal and maxillary parts. The nasal and maxilliary compartments have been labelled on Figs. 245 

3A and B in rat and guinea pig, and are also reflected in the higher density grouping of the 246 

follicles in rows C-E, compared to A and B. The deep vibrissa retracting muscles submerge 247 

near the proximal ends of the five vibrissal rows and insert into the deep fibrous mat that is 248 

represented, similar to rats, by thick collagenous bundles (Fig. 7A, C). The collagenous 249 

nature of these bundles was confirmed by their autofluorescence (Fig.7D). 250 

The deep vibrissa protracting muscles can be seen in the mystacial pad slices as two groups 251 

of densely arranged muscle bundles, that correspond to the Partes mediae superior et inferior 252 

in other rodents (Fig. 7A). Their origins are not seen in tangential slices of the mystacial pad 253 

because the nose of the guinea pig contains larger cartilages and well developed soft tissues, 254 

compared with whisking rodents. Muscle bundles are cut transversally and contain three 255 

types of muscle fibres (Fig. 8B and C), similar to those of the rat.  256 

 257 

Behaviour  258 

Behavioural data from the guinea pigs show that the whiskers are not moved in continuous 259 

cycles; rather, they remain stationary, until a large head rotation or forward movement 260 

occurs. Some cyclic movements (whisking) can be seen, but these only occur in short bouts 261 

(Fig. 1B, right whisker in blue). Most whisker movements are in isolation, asymmetric and do 262 

not show clear whisking (Fig. 8C). The whiskers were positioned at mean offset values of 263 

98±12.5 degrees, and moved with mean amplitudes of 44±25.9 degrees (Fig. 8A and B).  264 
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 265 

Discussion 266 

The guinea pig is a ground-dwelling, diurnal mammal of the group Histricomorpha. As such, 267 

we would expect to see a reduction in the number of whiskers and mystacial muscles, 268 

compared to climbing, nocturnal rodents, such as rats and mice. We see here that the number 269 

of whiskers are not only reduced in number, but also more irregularly distributed through the 270 

pad. While the intrinsic and extrinsic mystacial musculature is largely conserved between 271 

guinea pigs and rats, it is more irregular and somewhat reduced in the guinea pig. This has 272 

implications for behaviour, with the guinea pig moving their whiskers in isolation and 273 

asymmetrically, compared to the cyclic and almost continuous movements of whiskers 274 

observed in rats and mice. 275 

Whisker layout and follicles 276 

The guinea pig mystacial pad has around 23 whiskers arranged in a grid-like layout. It 277 

contains five rows of whiskers, which is the same as in rats and mice (Haidarliu et al., 2010). 278 

However, each row in the guinea pig contains fewer whiskers, especially the most dorsal row 279 

A, which only contains two whiskers (Fig. 2). Indeed, the guinea pig has much fewer 280 

whiskers than hamsters (23 whiskers, Wineski, 1985; Haidarliu and Ahissar, 1997), rats (33 281 

whiskers, Haidarliu et al., 2010), mice (33 whiskers, Dörfl, 1982), and even shrews (around 282 

40 whiskers Kulikov, 2011; Brecht et al. 2011) who have a much earlier evolutionary lineage 283 

than guinea pigs. This reduction in whisker number in the guinea pig is, therefore, likely to be 284 

associated with a diurnal, visual lifestyle, rather than simply being more primitive than rats 285 

and mice.  286 

As well as there being fewer whiskers in guinea pig, compared to rats and mice, the whiskers 287 

are also more irregularly positioned (compare Fig. 3A and 3B). In rats, the straddler whiskers 288 

are caudal to the main whisker rows, and sit between them in a regular fashion (Haidarliu et 289 

al., 2010). In the guinea pig, straddlers α and β sit fairly uniformly and are caudal and dorsal 290 

to row B and C, respectively; however, γ and δ do not align well with rows D and E (Fig. 2). 291 

Whisker rows D and E are also displaced rostrally in the pad, such that D2 and E2 whisker 292 

follicles are aligned with B3 and C3 (Fig. 2). The irregular organization of the whisker 293 

follicles is also associated with a similar topographic disorganization of barrel structures in 294 

the somatosensory cortex (Woolsey et al., 1975; Haidarliu et al., 1997).  295 
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Individual whisker follicles in the guinea pig are large, and contain a clear follicle sinus and 296 

ringwulst, similar to rats and opossums (Grant et al., 2013). This agrees with observations 297 

from Rice et al. (1986), who found that guinea pig follicles were of a similar structure to 298 

hamsters, mice, rats, gerbils, rabbits, guinea pigs and cats. Rice et al. (1986) measured the 299 

degree of innervation in the guinea pig follicle, approximated by the number of axons in the 300 

deep vibrissal nerve, and found it to be comparable to all these animals. However, 301 

innervation of the inner conical body (the deep area of the follicle), in particular, was 302 

decreased in the guinea pig and cat, compared to whisking animals such as the hamster, 303 

mouse, rat and gerbil (Rice et al., 1986). This variation of innervation in the guinea pig 304 

between the inner conical body and other areas of the follicle sinus complex (such as the 305 

cavernous sinus and the ring sinus) caused the authors to conclude that innervation of the 306 

guinea pig follicle was disorganized through the structure.      307 

Musculature 308 

The guinea pig mystacial pad contains intrinsic whisker muscles. This is relatively 309 

unsurprising as intrinsic muscles have also been described in mice (Dörfl, 1982), hamsters 310 

(Wineski, 1985), opossums (Grant et al., 2013), rats (Haidarliu et al., 2010), shrews (Yohro, 311 

1977) and even nocturnal primates (Muchlinski et al., 2013), lending confidence to the view 312 

that this is a primitive mammalian trait. The intrinsic muscles in guinea pigs are thinner than 313 

those in rats (Fig. 3A and B) by around 0.02 mm, despite guinea pigs being slightly larger 314 

than the rats overall. In addition, the intrinsic muscles are also more irregular. For example, 315 

two types of oblique intrinsic muscles occur in guinea pig; those that pass between follicles in 316 

different rows, and those that connect follicles the same row (Fig. 3). Oblique intrinsic 317 

muscles that connect follicles in neighboring rows (i.e. between B and C in Fig. 3C) are 318 

relatively rare, and as yet have only been observed in the more ventral rows of the mystacial 319 

pad in the big-clawed shrew (“straddling” muscles) (Yohro, 1977). The oblique intrinsic 320 

muscles that connect follicles in the same row can be observed in the guinea pig in row A 321 

(Fig. 3D). The position and attachment of these oblique intrinsic muscles in row A suggests 322 

that they may cause a torsional rotation of the most dorsal whiskers, enabling the A row to 323 

rotate during protraction. This type of oblique intrinsic muscle has only been observed before 324 

in the opossum, Monodelphis domestica, which contains oblique intrinsic muscles in both the 325 

A and B rows (Grant et al., 2013). In the opossum, the oblique intrinsic muscles were thought 326 

to fortify the eye area (Grant et al., 2013), perhaps moving the whiskers in front of eye for 327 

protection against collisions. The presence of these oblique intrinsic muscles in both the 328 
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opossum and guinea pig may not, therefore, simply be representative of a disorganization of 329 

the pad, but also lends support for the idea that whiskers could have a possible function in 330 

protecting the eye area.  331 

Superficial extrinsic muscles, that drive retraction movements of the vibrissae, are present in 332 

the guinea pig (Fig. 5A and C), and have previously been described in hamsters (Wineski, 333 

1985), mice (Dörfl, 1982; Klingener, 1964), rats (Haidarliu et al., 2010), jerboas (Klingener, 334 

1964), opossums (Minkoff et al., 1979; Grant et al., 2013) and shrews (Yohro, 1977). There 335 

is some variation between species, for example in the big-clawed shrew, the striated M. 336 

nasolabialis superficialis is also associated with smooth muscle fibres just beneath the 337 

corium (Yohro, 1977). In the guinea pig, these muscles look to be striated throughout, much 338 

like in the rat and opossum (Grant et al., 2013; Haidarliu et al., 2010).  339 

The guinea pig has deep vibrissa retracting muscles that are parts of the M. nasolabialis 340 

profundus. They originate around the nose, run down most of the length of the mystacial pad 341 

and pull the deep layers of the whisker pad forward, enabling the whiskers to retract back. In 342 

mice and rats, these muscles belong to the bipennate type, indicating that their origins are 343 

tendinous, and their attachment is limited by a small area of the nasal cartilage to which the 344 

tendon is attached (Haidarliu et al., 2010, 2015). In the guinea pig, these muscles belong to a 345 

divergent type; their origins are represented by multiple tapered ends of muscle fibres that 346 

occupy a considerably larger surface of the nasal cartilage (Fig. 6). The fibres of such 347 

muscles are long, and they fan in such a manner that their insertion sites are spread over a 348 

large area reaching the deep fibrous mat of the mystacial pad. Similar fanning architecture of 349 

the subunits of the M. nasolabialis profundus, and a single Pars maxillaris were also observed 350 

in hamsters (Wineski, 1985).  351 

Aspects of the deep retracting muscles have previously been described in mice (Dörfl, 1982; 352 

Haidarliu et al., 2015; Klingener, 1964; Rinker, 1954), hamsters (Wineski, 1985), opossums 353 

(Grant et al., 2013) and rats (Haidarliu et al., 2010; Rinker, 1954). In the opossum, 354 

Monodelphis domestica, these muscles are greatly reduced, so much so the animal cannot 355 

control retraction movements during contact (Grant et al., 2013). That these muscles are 356 

almost absent in the opossum, but present in the guinea pig indicates that the deep retracting 357 

muscles might have become more established in a common ancestor of guinea pigs and rats, 358 

about 75 million years ago (Adkins et al., 2001).  359 
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The most dorsal deep retracting vibrissae muscle (PIP) submerges under the rows A and B 360 

and is separated by a few hundred microns from the Pars maxillaris that runs toward rows C – 361 

E. Such separation may reflect compartmentalization of the guinea pig mystacial pad into the 362 

nasal and maxillary parts that has not yet been described in guinea pigs. 363 

Compartmentalization of the mystacial pad has been already observed in mice (Yamakado 364 

and Yohro, 1979) and opossums (Grant et al., 2013), and it has been shown that nasal and 365 

maxillary compartments of the mystacial pad develop from different growth centres in 366 

embryo (Yamakado and Yohro, 1979). 367 

In the guinea pig mystacial pad, the Partes media superior and inferior of the M. nasolabialis 368 

profundus differ significantly from those in rats and mice. In rats and mice, these deep 369 

protracting muscles are organized in to groups and can be observed between vibrissae rows 370 

along the whole length of the mystacial pad (Haidarliu et al., 2010). They act on the more 371 

caudal vibrissae especially, pulling them rostrally to reduce the spread of the whiskers overall 372 

during protraction. In the guinea pig, a number of discrete bundles of muscle fibers can be 373 

seen sliced transversally (in Fig. 7); however, these are only observed in the most rostral area 374 

of the mystacial pad. We therefore conclude that guinea pigs do not have extrinsic protracting 375 

muscles that would be analogous to those described in mice and rats.  376 

Behaviour 377 

The guinea pig moves its whiskers with a mean amplitude of 44±25.9 degrees, which is 378 

comparable to rats (43.19±7.65 degrees), but even larger than mice (31.25±11.64 degrees) 379 

and opossums (36.04±9.53 degrees) (Mitchinson et al., 2011). The guinea pig positions its 380 

whiskers with a mean offset angle of 98±12.5 degrees, which is similar to the rat 381 

(100.63±9.21 degrees) and opossum (94.42±9.01 degrees), but set slightly further back than 382 

the mouse (112.53±6.85 degrees) (Mitchinson et al., 2011). While the range and position of 383 

the whisker movements is fairly comparable to rats and mice, the movements themselves are 384 

really rather different. The movements are rarely cyclic, and whisking is often absent, or only 385 

occurs in short bouts of around three or four whisks and usually only unilaterally (Fig. 1B, 386 

Fig. 9C), which agrees with previous observations of guinea pig whisker movements (Jin et 387 

al., 2004). Indeed, guinea pig whisker movements are often asymmetric, occurring with head 388 

rotations, and do not resemble the whisking motions observed in rats, mice and opossums. 389 

The lack of whisking movements is probably associated with the thin and irregular intrinsic 390 
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whisker muscles, causing the whiskers to move less often, compared to those of rats and 391 

mice.  392 

Implications 393 

The total number of whiskers are reduced in the guinea pig (at 23 whiskers), which is a more 394 

comparable amount to the marsupial opossum (23 whiskers), than to rats and mice (33 395 

whiskers), despite them being closer related. Diurnal primates also have fewer whiskers (with 396 

a minimum of 7 whiskers) that tend to be especially thin, with smaller whisker follicles 397 

lacking in intrinsic muscles (Muchlinski 2010; Muchlinski et al., 2013), compared to 398 

nocturnal primates (who have a minimum of 11 whiskers). In addition, the layout of the 399 

whiskers tends to be disorganized in diurnal primates, who lack a clear grid-like arrangement 400 

(Muchlinski et al., 2013). These aspects can also be observed in the guinea pig, but to a 401 

slightly lesser extent, and might indicate common properties of a diurnal, visual lifestyle. 402 

While there were no differences in the whisker follicle appearance, it was fairly large and 403 

contained a sinus - the mystacial pad of the guinea pig was disorganized in terms of whisker 404 

layout, intrinsic musculature and even innervation of the follicle. It might, therefore, be that 405 

vibrissae organization, innervation distribution and whisker number are key predictors of 406 

whisker specialisation in mammals, with whisker specialists, such as mice and rats, having 407 

more whiskers that are better organized.   408 

That the diurnal guinea pig still has large and sensitive whisker follicles, and can exert 409 

movement over the whiskers using a complex architecture of intrinsic and extrinsic muscles, 410 

indicates that the whiskers are functional in this animal, despite a greater reliance on vision. 411 

Overall, the guinea pig mystacial pad is remarkably similar to rats and mice, despite them 412 

moving their whiskers less and being ground-dwelling and diurnal. This might be due to 413 

these animals being relatively closely related or, more likely, that the whiskers maintain an 414 

important role for the guinea pig. Although being arboreal and nocturnal are important factors 415 

in predicting the presence of intrinsic muscles, aspects of body size and other lifestyle 416 

variables are also important influences (Mitchinson et al., 2011; Muchlinski et al., 2013), 417 

such as being small and living in social groups (Muchlinski et al., 2013). Guinea pigs are 418 

extremely social animals and live in large groups displaying quite complex social behaviours. 419 

While whisker touch is implicated in social behaviours (Barnett, 2007; Muchlinski et al., 420 

2013; Wolfe et al., 2011) this has not yet been explored in guinea pigs. It does seem likely 421 
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that the whiskers could play an important role in aggressive and submissive interactions in 422 

the guinea pig (for example, see figures in Grant and Mackintosh 1963).  423 

 424 

Conclusions 425 

In agreement with other studies on diurnal mammals, guinea pigs have fewer and less-426 

organized whiskers, than arboreal, nocturnal rodents. While the reduction in whisker number 427 

and mystacial musculature suggests a larger reliance of the guinea pig on visual information, 428 

overall, the mystacial pad is surprisingly similar to rat and mouse, indicating that the 429 

whiskers may still play an important role in the life of the guinea pig. We suggest here that 430 

protecting the eye and social touch behaviours are both roles that the whiskers might play in 431 

guinea pig, and these will be important aspects of future research. Furthermore, we provide 432 

evidence that vibrissae organization, in terms of mystacial musculature, follicle layout and 433 

whisker number, is a key predictor of whisker specialisation in mammals. 434 
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Figure Legends 531 

Figure 1. Recording and tracking guinea pig behaviour. A. The experimental set-up. The 532 

high-velocity video camera above the arena, which was illuminated from below by an 533 

infrared light box. B. An example of recording of whisker angles (nma: naïve mean angle) of 534 

the left (in red) and right (in blue) whisker fields. Inset is the tracked video footage showing 535 

head and whisker traces. 536 

Figure 2. Layout of the mystacial vibrissae in a superficial tangential slice of the 537 

mystacial pad of the guinea pig. Staining for cytochrome oxidase activity. (A1 – E5) 538 

Follicles of the mystacial vibrissae ; α − δ, straddler follicles; FBP, furry buccal pad; N, 539 

nostril; N1 – N6, a row of follicles of the nasal (rhinal) vibrissae; POO, Pars orbicularis oris 540 

of the M. buccinatorius; R, rostral; V, ventral. Scale bar = 1 mm. 541 

Figure 3. Intrinsic muscles in the rat (A) and guinea pig (B – E). A and B show the layout 542 

of the mystacial pad of the rat and guinea pig, intrinsic muscles of the C row vibrissae are 543 

indicated by black arrows, although intrinsic muscles are present throughout, from row A to 544 

E in both rat and guinea pig. (N) Nasal compartment. (M) Maxilliary compartment. C. A 545 

tangential slice of the mystacial pad showing  intrinsic muscles at higher magnification, 546 

including a straddling oblique intrinsic muscle (arrow head); D. enlarged boxed area in C; E. 547 

row A and oblique intrinsic muscle between follicles of the vibrissae A1 and A2 (arrow 548 

head). (1) Follicle sinus. Scale bars in A and B = 1 mm, C and E = 0.5 mm and D = 0.1 mm. 549 

All figure panels show tangential slices stained for cytochrome oxidase activity. 550 

Fig. 4. Guinea pig whisker follicles of the C-row. A horizontal slice of the mystacial pad 551 

stained with Masson’s Trichrome. C1 – C4, whisker follicles; C, caudal, M, medial. (1) Ring 552 

sinus; (2) ringwulst. Scale bar = 1 mm.  553 

Figure 5. Superficial vibrissa retracting extrinsic muscles of the guinea pig mystacial 554 

pad. Tangential slices of the mystacial pad stained for cytochrome oxidase activity. 555 

(α, β, γ) Straddler follicles; B1, C1, vibrissal follicles;  ML, M. maxillolabialis; NL, M. 556 

nasolabialis; R, rostral; V, ventral. Scale bars = 0.5 mm  557 

Figure 6. Deep extrinsic vibrissa retracting muscles of the guinea pig. A tangential slice 558 

of the mystacial pad stained for cytochrome oxidase activity. These muscles are part of the 559 

M. nasolabialis profundus. A. A deep tangential slice of the mystacial pad. B. Enlarged boxed 560 

area in (A). (α, β, γ, δ) straddler follicles; (A1 – E2) vibrissa follicles. (1) Pars interna 561 
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profunda; (2) Pars maxillaris; (3) Pars anterior; (4, 5) tapered ends of the muscle fibres of the 562 

Pars interna profunda and Pars maxillaris, respectively, that are attached to the nasal 563 

cartilage; N, nostril; R, rostral; V, ventral. Scale bars = 1 mm in (A) and 0.5 mm in (B). 564 

Figure 7. Deep extrinsic vibrissa protracting and retracting muscles of the guinea pig. A 565 

tangential slice of the mystacial pad stained for cytochrome oxidase activity. A. A very deep 566 

tangential slice of the mystacial pad. B and C. Enlarged boxed areas in A, respectively. D. 567 

Collagen autofluorescence in the area shown in C. (α) straddler follicle; CF, collagenous 568 

bundles of the deep fibrous mat; MB, muscle bundles; MF, muscle fibres; N, nostril; N1, a 569 

follicle of the nasal vibrissae; PM, Pars maxillaris; PMI, pars media inferior; PMS, Pars 570 

media superior; R, rostral; V, ventral. Scale bars = 1 mm in (A), 0.1 mm in (B), and 0.5 mm 571 

in (C) 247 and (D) 572 

Figure 8. Whisker movements in guinea pig. A. A histogram of whisker offset, the mean 573 

angular position of the whiskers; B. a histogram of whisker amplitude, the amount the 574 

whiskers move; C. an example trace of mean whisker angular positions from the left (in red) 575 

and right (in blue) whisker fields.  576 
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Figure 1. Recording and tracking guinea pig behaviour. A. The experimental set-up. The high-velocity video 
camera above the arena, which was illuminated from below by an infrared light box. B. An example of 

recording of whisker angles (nma: naïve mean angle) of the left (in red) and right (in blue) whisker fields. 

Inset is the tracked video footage showing head and whisker traces.  
Figure 1  

79x126mm (150 x 150 DPI)  
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Figure 2. Layout of the mystacial vibrissae in a superficial tangential slice of the mystacial pad of the guinea 
pig. Staining for cytochrome oxidase activity. (A1 – E5) Follicles of the mystacial vibrissae; α-δ straddler 
follicles; FBP, furry buccal pad; N, nostril; N1 – N6, a row of follicles of the nasal (rhinal) vibrissae; POO, 

Pars orbicularis oris of the M. buccinatorius; R, rostral; V, ventral. Scale bar = 1 mm.  
Figure 2  

180x135mm (300 x 300 DPI)  
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Figure 3. Intrinsic muscles in the rat (A) and guinea pig (B – E). A and B show the layout of the mystacial 
pad of the rat and guinea pig, intrinsic muscles of the C row vibrissae are indicated by black arrows, 

although intrinsic muscles are present throughout, from row A to E in both rat and guinea pig. (N) Nasal 
compartment. (M) Maxilliary compartment. C. A tangential slice of the mystacial pad showing  intrinsic 

muscles at higher magnification, including a straddling oblique intrinsic muscle (arrow head); D. enlarged 
boxed area in C; E. row A and oblique intrinsic muscle between follicles of the vibrissae A1 and A2 (arrow 
head). (1) Follicle sinus. Scale bars in A and B = 1 mm, C and E = 0.5 mm and D = 0.1 mm. All figure 

panels show tangential slices stained for cytochrome oxidase activity  

Figure 3  
272x164mm (150 x 150 DPI)  
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Fig. 4. Guinea pig whisker follicles of the C-row. A horizontal slice of the mystacial pad stained with Masson’s 
Trichrome. C1 – C4, whisker follicles; C, caudal, M, medial. (1) Ring sinus; (2) ringwulst. Scale bar = 1 mm. 

Figure 4  
170x120mm (300 x 300 DPI)  
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Figure 5. Superficial vibrissa retracting extrinsic muscles of the guinea pig mystacial pad. Tangential slices of 
the mystacial pad stained for cytochrome oxidase activity. (α, β, γ) Straddler follicles; B1, C1, vibrissal 

follicles;  ML, M. maxillolabialis; NL, M. nasolabialis; R, rostral; V, ventral. Scale bars = 0.5 mm  

Figure 5  
258x98mm (150 x 150 DPI)  
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Figure 6. Deep extrinsic vibrissa retracting muscles of the guinea pig. A tangential slice of the mystacial pad 
stained for cytochrome oxidase activity. These muscles are part of the M. nasolabialis profundus. A. A deep 
tangential slice of the mystacial pad. B. Enlarged boxed area in (A). (α, β, γ, δ) straddler follicles; (A1 – E2) 
vibrissa follicles. (1) Pars interna profunda; (2) Pars maxillaris; (3) Pars anterior; (4, 5) tapered ends of the 
muscle fibres of the Pars interna profunda and Pars maxillaris, respectively, that are attached to the nasal 

cartilage; N, nostril; R, rostral; V, ventral. Scale bars = 1 mm in (A) and 0.5 mm in (B).  
Figure 6  
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Figure 7. Deep extrinsic vibrissa protracting and retracting muscles of the guinea pig. A tangential slice of 
the mystacial pad stained for cytochrome oxidase activity. A. A very deep tangential slice of the mystacial 

pad. B and C. Enlarged boxed areas in A, respectively. D. Collagen autofluorescence in the area shown in C. 
(α) straddler follicle; CF, collagenous bundles of the deep fibrous mat; MB, muscle bundles; MF, muscle 
fibres; N, nostril; N1, a follicle of the nasal vibrissae; PM, Pars maxillaris; PMI, pars media inferior; PMS, 

Pars media superior; R, rostral; V, ventral. Scale bars = 1 mm in (A), 0.1 mm in (B), and 0.5 mm in (C) 247 
and (D)  
Figure 7  
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Figure 8. Whisker movements in guinea pig. A. A histogram of whisker offset, the mean angular position of 
the whiskers; B. a histogram of whisker amplitude, the amount the whiskers move; C. an example trace of 

mean whisker angular positions from the left (in red) and right (in blue) whisker fields.  

Figure 8  
131x210mm (150 x 150 DPI)  
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