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Abstract 25 

The influence of injection pressure up to ultra-high value of 300 MPa , nozzle hole diameters of 26 

0.16 and 0.08 mm and fuel properties such as boiling point, cetane number and oxygen content on 27 

spray, ignition and combustion characteristics of biodiesel fuel in diesel engine were investigated. 28 

Biodiesel from palm oil source (BDF) and for comparison the JIS #2 diesel fuel were utilized. The 29 

Mie-scattering technique was used for characterizing the evaporating spray formation processes 30 

while the OH chemiluminescence technique was used to determine the ignition and the lift-off 31 

length of the combusting flame. Furthermore, the two color pyrometry was applied to study the soot 32 

formation processes. The results obtained indicated that due to higher boiling point, the BDF 33 

produced longer liquid phase length as compared to diesel. It was observed that the ignition region 34 

was larger for the 0.16mm nozzle as compared to the 0.08 mm.  Due to the enhanced mixing 35 

processes, ignition delay decreased as the injection pressure increased from 100 to 300 MPa 36 

respectively and also by reducing the nozzle hole diameter to 0.08 mm. Higher cetane number and 37 

oxygen content of the BDF facilitated shorter ignition delay as compared to diesel. The percentage 38 

stoichiometry air entrained increased by decreasing the nozzle hole diameter. The BDF flame 39 

produced shorter lift-off length and lower percentage stoichiometry air. Under higher injection 40 

pressures and decreasing nozzle diameter, the BDF produced less soot as compared to diesel. The 41 

fuel oxygen content in the biodiesel fuel played a greater role in the soot formation processes.  42 

Keywords: Biodiesel Fuel; Diesel Engine; Spray; Ignition; Combustion 43 

1.  INTRODUCTION 44 

Due to environmental concerns and the rising cost of fossil fuels such as diesel, the search for 45 

alternative fuels like biodiesel has attracted more attention.  Renewable fuels such as biodiesel 46 

continues to be of interest to achieve a sustainable energy economy thus reducing the dependence 47 

on fossil fuel utilization.  It was further stated that the use of renewable transportation fuels is 48 
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increasing and a national standard of 5 % in the United States has been proposed in energy-related 49 

legislation [1].  The fuel and energy crises of late 1970's and early 1980's as well as accompanying 50 

concerns about the depletion of the world's non-renewable resources provided the incentives to seek 51 

alternatives to conventional, petroleum-based fuels.  Biodiesel fuel is an environmentally clean and 52 

renewable energy source.  It is usually produced from animal fats or vegetable oils by the trans-53 

esterification reaction.  The oxygen content, which is about 11–15 wt percentage, makes biodiesel 54 

to enhance the combustion process and reduce pollutant emissions from the diesel engine [2].  55 

Biodiesel as an alternative fuel in diesel engines has a great potential  of  reducing noxious 56 

emissions such as CO, CO2, HC, PM, SOx and PAH [3].  The major threat facing the use of 57 

biodiesel in diesel engine is the formation and control of NOx emission.  This is because NOx is 58 

closely related to the oxygen concentration in the biodiesel fuel.  To this end, it has been proposed 59 

that the addition of cetane-improving additives and the decrease in the bulk modulus of biodiesel 60 

can be potential ways of decreasing the NOx emissions.  Also by applying early injection timing, the 61 

NOx emission can be reduced drastically [4].  Numerous research works to mention a few have been 62 

done on the combustion characteristics of biodiesel fuel in diesel engine [5-8].  Furthermore, recent 63 

works on the impact of high injection pressure and micro hole nozzle as effective methods of 64 

improving spray atomization and mixture preparation processes of diesel fuel in reducing 65 

particulate matters have been reported [9-13].  However, little or no significant work has been done 66 

on the role of injection pressure up to ultra-high level and micro-hole nozzle diameter size on the 67 

biodiesel spray, combustion, and soot formation characteristics using the constant volume vessel.  68 

Therefore, this study tends to focus on experimental study of spray, combustion and soot formation 69 

processes of biodiesel fuel spray injected by a common rail injection system in a quiescent constant 70 

volume vessel.  The role of high injection pressure up to an ultra high value of 300 MPa and nozzle 71 

hole diameter up to micro hole of 0.08 mm diameter are to be investigated. Also the influence of 72 
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some of the biodiesel properties such as viscosity, distillation temperature, oxygen content to 73 

mention a few on spray and combustion characteristics need to be clarified. 74 

2. EXPERIMENTAL DETAILS 75 

2.1 Experimental Apparatus and Methods  76 

Experiments were conducted under simulated quiescent conditions in a constant-volume vessel.  77 

Figure 1 shows a schematic diagram of the direct photography system for spray and combustion 78 

experiments.  As shown in Fig. 1, the constant volume vessel can produce typical thermodynamic 79 

conditions in the combustion chamber of a diesel engine.  Description about this constant volume 80 

chamber can be found in previous works by the authors [14].  A manually operated high-pressure 81 

generator (High Pressure Equipment Co. model 37-5.75-60) as shown in Fig. 1 was used to generate 82 

injection pressure up to 300 MPa in the common rail.  Two nozzle hole diameters of 0.08 mm 83 

(micro-hole nozzle) and 0.16 mm were utilized in the course of the experiment. The injector driver 84 

electronically controlled the injector, while the common rail pressure was measured with a pressure 85 

transducer.  A pulse/signal generator (Stanford Inc., DG535) was used to synchronize the operation 86 

of the CCD camera and injection system. In order to obtain spray images under evaporating 87 

conditions, a xenon lamp and two reflecting mirrors were utilized to illuminate the fuel spray inside 88 

the vessel.  Images were acquired using the Mie-scattering technique.  The OH chemiluminescence 89 

technique was also used to detect the auto-ignition site and also determine the flame lift-off length.  90 

In understanding the soot formation process, the two color pyrometry technique was utilized to 91 

provide the flame structure and KL factor to characterize the soot concentration.  Figure 1 also 92 

shows the experimental arrangement for the spray, OH chemiluminescence and the two color 93 

pyrometry imaging.  The difference is that there was no illumination for the OH chemiluminescence 94 

and two color techniques.  A high speed video camera (FASTCAM-APX RS, Photron Corp.) was 95 

employed to take the direct photography images of sprays. For the spray, the camera was equipped 96 
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with a lens (Nikon, 70-210 mm, f/4-5.6).  A frame rate of 10,000 fps (frames per second), an 97 

exposure time of 1/10000 sec, a resolution of 512 x 512 pixels and an aperture of f/4.0 were utilized 98 

to image the evaporating spray.  With the aid of the UV-Nikkor lens (Nikon, 105 mm, f/4.5) 99 

attached to an image intensifier (LaVision Inc., HS-IRO), the OH chemiluminescence images were 100 

captured.  OH band-pass filter of wavelength 313 nm (10 nm FWHM) coupled to the image 101 

intensifier was used to observe the OH chemiluminescence.  In order to acquire clear images 102 

without saturation, the OH image intensifier gain and gate were set to optimum values of 70 and 50 103 

μs respectively.  For the two color pyrometry images, a visible lens (Nikon, 105mm, f/4.5) was 104 

coupled to the camera.  The two color system was calibrated using a tungsten lamp (Polaron 105 

Components) before it was used to capture two raw identical flame images at wavelengths of 650 106 

and 800 nm (10 nm FWHM).    The Thermera HS4 software (Mitsui Optronics, version 4.61) was 107 

used to process the captured raw image data obtained from the two wavelengths, thus generating 108 

two-dimensional and line-of-sight false-color maps of soot concentration.  The same frame rate, 109 

resolution and exposure time like the evaporating spray, were used to capture the two color 110 

pyrometry images.  To avoid saturation in the two color images, the aperture was changed to f/8.0.  111 

In the course of the experiments 4 shots of fuel injections were made in order to avoid bias in the 112 

data recorded. In eliminating noise from the images which could contribute errors in the data, 113 

imaging processing which involves subtracting the captured image from a background image was 114 

carried out using in house commercial software.  The high speed video camera (FASTCAM-APX 115 

RS, Photron Corp.) operates under an 8 bit dynamic range having a maximum intensity of 256.  116 

Therefore for the processing of the Mie-scattered spray and OH chemiluminescence combustion 117 

images, an optimum threshold intensity value of 20 (i.e. 8% of the maximum intensity) was set in 118 

order to get the edge of the subtracted image.  This implies that every pixel whose digital level 119 

exceeds the threshold value will be considered as image. 120 
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2.2 Experimental Conditions  121 

The experimental conditions were determined by the real engine conditions.  An ambient density of 122 

15kg/m3 was used to simulate engine conditions at a crank angle of -10 oATDC. Biodiesel fuel from 123 

palm oil source (BDF) and for comparison, JIS #2 diesel were utilized in the experiments.  For both 124 

evaporating spray and combustion experiments the ambient temperature and pressure were 125 

maintained at 885 K and 4.0 MPa in the constant volume vessel.  Nitrogen an inert gas which has 126 

similar properties like air was utilized for the evaporating spray experiment to create a non reactive 127 

environment.  Table 1 shows the list of the experimental conditions, while Table 2 presents the 128 

main properties of the two fuels.    129 

3. RESULTS AND DISCUSSION 130 

3.1 Evaporating Spray Characteristics  131 

Figure 2 presents the evolution of the spray under evaporating conditions. The start of injection 132 

(SOI) was determined from the frame rate selected as stated earlier i.e. 10,000 fps. Since the fuel 133 

injection processes and camera image capturing were controlled using the pulse/signal generator 134 

(Stanford Inc., DG535), the first appearance of spray in the frame was taken to be the start of 135 

injection energizing (SOE).  Due to the settings on the pulse/signal generator (Stanford Inc., 136 

DG535), the first appearance of spray was detected between 0.2 to 0.3 ms ASOE (after start of 137 

energizing). Therefore extrapolation was done to get the actual start of injection (SOI) of the spray. 138 

This method of extrapolation implies obtaining an approximate time of start of injection (SOI) when 139 

the spray has a length of 0 mm i.e. no appearance of spray in the frame. The timing that is now 140 

obtained when the spray length is 0 mm is now used to determine the actual time for the appearance 141 

of the first visible spray image.  As shown in Fig. 2, as time proceeds, under the influence of 142 

decreasing nozzle hole diameter and increasing injection pressure the liquid phase length became 143 

shorter. At 100 MPa, by decreasing the nozzle diameter to 0.08 mm, the liquid phase length 144 



7 
 

decreased considerably. The rate of the decrease in the liquid phase length was further enhanced 145 

under the combined effect of the 300 MPa ultra-high injection pressure and 0.08 mm micro-hole 146 

nozzle. At higher temperatures, under increasing injection pressure and decreasing nozzle hole 147 

diameter, atomization is improved thus enhancing the surface evaporation of the spray and the 148 

movement of ambient gas by its momentum leading to shorter liquid phase spray tip penetration.  149 

Furthermore, as presented in Fig. 3, after an initial development period, the tip of the liquid phase 150 

fuel region stops penetrating and fluctuates about a mean axial location as a result of turbulence. At 151 

all injection pressures, the BDF produced longer liquid phase lengths as compared to the diesel.  152 

This implies that the diesel fuel evaporated more than BDF.  There is the tendency that the higher 153 

boiling point of biodiesel which is characterized by the distillation temperature, T90 as stated in 154 

Table 2, could have initiated the longer liquid length penetration.  This phenomenon was observed 155 

in previous works on liquid phase penetration length visualization [3, 15].  Fuels with higher boiling 156 

point tend to possess lower volatility.  Hence, due to the high boiling point property, BDF is less 157 

volatile compared to the diesel fuel.  As a result of less volatility, BDF produced longer liquid phase 158 

length as compared to diesel.  Thus, the energy required to heat and vaporize a lower volatility fuel 159 

is higher for a given set of conditions [15, 16].  Since the entrainment rate of energy into the spray 160 

is limiting the vaporization process, the requirement for more energy to heat and vaporize the less 161 

volatile fuel translates to a longer spray entrainment length to supply the additional energy, and 162 

therefore, to a longer liquid length.   163 

Pastor et.al [17] reported that biodiesel blends has a great influence on the liquid phase length. As 164 

obtained in their work, liquid phase length tends to increase as the content of the biodiesel in the 165 

fuel blends decreases. Hence by comparing the diesel (i.e. 0% biodiesel content) and BDF (i.e. 166 

100% biodiesel content) liquid lengths, similar result as observed by [17] was achieved.  On the 167 

other hand, by downsizing the nozzle hole diameter to 0.08 mm, there is a drastic reduction in the 168 
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liquid phase length of the evaporating sprays. It is obvious that the nozzle hole diameter has a 169 

greater effect on the liquid phase length as compared to the injection pressure. As confirmed by 170 

Siebers [15] and Myong et.al [16], injection pressure has less effect on the liquid phase length.  The 171 

non-significance in the liquid phase length of the evaporating spray under increasing injection 172 

pressure could be as result of the cancelling out phenomenon of the increase in the liquid phase 173 

penetration and the faster atomization with mixing effect.   174 

3.2 Auto-Ignition Process 175 

Figure 4 shows the flame development of the combusting fuels from the auto ignition period to the 176 

time when the flame profile was stable At 100 MPa, as compared to the 0.08 mm micro hole nozzle, 177 

a relatively large ignition region was produced by the 0.16 mm nozzle, which suggests that the 178 

ignition could have occurred at simultaneously at multiple points of the spray.  As the nozzle hole 179 

diameter decreases, the region of the auto-ignition decreased. The auto-ignition location for the 180 

BDF is a bit upstream compared to the diesel fuel. At an increasing injection pressure up to ultra-181 

high level of 300 MPa, the spray velocity increases thus pushing the auto-ignition location farther 182 

downstream with time.   Also, Fig. 5 presents the ignition delay of the BDF and diesel respectively 183 

under injection pressures of 100, 200 and 300 MPa and nozzle hole diameters of 0.08 and 0.16 mm. 184 

Since the same frame rate was used to obtain the spray and combustion processes, therefore, the 185 

extrapolated time for the spray images was adopted in obtaining the ignition delay. From the 186 

analyses, irrespective of the nozzle hole size, ignition delay was shortened as the injection pressure 187 

increased from 100 to 300 MPa. Also, at all injection pressures, ignition delay was shortened by 188 

decreasing the nozzle hole diameter from 0.16 to 0.08 mm. Irrespective of the fuel type, the 189 

combined effect of the 300 MPa ultra-high injection pressure and the 0.08 mm micro-hole nozzle 190 

further made the ignition delay to be shortened. The shortening in the ignition delay could be 191 

attributed to the enhanced mixing achieved at increasing injection pressure and decreasing nozzle 192 
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hole diameter.  Furthermore, as investigated by [18], one of the factors that could affect ignition 193 

delay and subsequent combustion processes is the fuel cetane number.    BDF has higher cetane 194 

number as presented in Table 2 and this could have facilitated its shorter ignition delay when 195 

compared to diesel. Another factor that could be responsible for the shortening of the ignition delay 196 

could also be the fuel oxygen content [19].  Comparing with diesel, BDF has a shorter ignition 197 

delay because of its higher oxygen content.   198 

3.3 Flame Lift-Off Length 199 

After auto-ignition processes, the flame progresses downstream and then stabilizes at a quasi-steady 200 

location significantly downstream of the injector tip.  As depicted in Fig. 5 with an arrow, the 201 

distance from the injector tip to the initial quasi-steady flame location is referred to as the flame lift-202 

off length.  A graphical expression for the lift-off length for BDF and diesel is presented in Fig. 6. 203 

Irrespective of the nozzle hole size, as injection pressure increases, the lift-off length increases 204 

linearly for the two fuels.  This could be attributed to the higher spray velocities which arise under 205 

the influence of increasing injection pressure thus pushing the initial combustion zone farther 206 

downstream. Furthermore, at all injection pressures, decreasing the nozzle hole diameter to 0.08 207 

mm, led to decrease in the lift-off length.  The main factor for this was the lower spray velocity by 208 

the micro hole nozzle.    At all injection pressures and nozzle hole diameters, the BDF produced 209 

shorter lift-off lengths as compared to the diesel fuel.  Previous results showed that fuels with 210 

shorter ignition delays have shorter lift off length [20, 21].  Hence, the same effect holds for the 211 

BDF as compared to diesel.  By comparing with previous works [22], there is the tendency that 212 

injection pressure will have more effect on the lift-off length as compared to the nozzle diameter.   213 

3.4 Percentage Stoichiometry Air Entrained Upstream of Lift-Off Length 214 

At the upstream of the lifted flame, air is usually entrained into the fuel. Hence, fuel air- mixing 215 

usually occurs prior to the initial combustion zone.  Based on the previous knowledge on the 216 
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schematic idealized model fuel jet by Naber and Siebers [23], the percentage stoichiometry air 217 

entrained upstream of the lift flame i.e. lift-off length could be estimated using the expression for 218 

the axial variation of the cross sectional average equivalence ratio, , in a quasi-steady non reacting 219 

fuel jet.  The reciprocal of the equivalence ratio when multiplied by 100 gives an expression for the 220 

air entrained up to the lift-off location as a percentage of the total air required to burn the fuel being 221 

injected.  Therefore, the estimated air entrainment upstream of the lift-off length in terms of the 222 

percentage of stoichiometric air, (%)st  as redefined by Siebers [24] can be expressed as;  223 

  















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sost fxL 21161100(%)
2

                                                                (1) 224 

Where,  225 

oL  is the experimental lift-off length, x is the characteristics length scale for the fuel jet defined, 226 

sf which is the stoichiometric air fuel ratio by mass was calculated using the Carbon, Hydrogen, 227 

and Oxygen contents as shown in Table 2.  It has estimated values of 14.71 and 12.61, for diesel 228 

and BDF. In estimating (%)st , details about the parameters needed to obtain x  has been 229 

described in previous work by the authors [14].     230 

Figure 7 presents the effect of the injection pressure and nozzle hole diameter on the percentage of 231 

stoichiometric air entrained upstream of the lift-off length.  As a result of improvement in 232 

atomization and mixing processes the percentage of stoichiometric air entrained upstream of the lift-233 

off length increased under the influence of decreasing nozzle diameter and increasing injection 234 

pressure. Irrespective of the fuel type, the combined effect of the 300 MPa ultra-high injection 235 

pressure and the 0.08 mm micro-hole nozzle further improved atomization hence more air was 236 

entrained upstream of the lift-off length.  Since the BDF exhibited shorter lift-off length as 237 

compared to diesel, the percentage stoichiometric air entrained by the BDF is lower compared at 238 
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increasing injection pressure and decreasing nozzle diameter.  The BDF entrained less percentage 239 

stoichiometric air due to its poor atomization which affected the lift-off length.   240 

3.5 Integrated KL Factor  241 

The temporal variation of the line-of-sight and false-color maps of the KL factor processed images 242 

obtained from two raw images with wavelengths 650 and 800 nm respectively are presented in 243 

Fig.8.  As the nozzle diameter reduced from 0.16 to 0.08 mm and injection pressure increased from 244 

100 to 300 MPa, the flame area reduced considerably. The reduction in the flame area implies soot 245 

reduction.  Information obtained on the two color scale legend which describes the soot levels 246 

reveals that as the nozzle diameter reduced to 0.08 mm, the soot level decreased considerably with 247 

the BDF flame producing less soot as compared to diesel flame. Irrespective of the fuel type, no 248 

soot incandescence was detected under the combined influence of the 300 MPa ultra-high injection 249 

pressure and 0.08 mm micro-hole nozzle.  Figure 9 presents the temporal variations of the 250 

integrated KL factor for the two fuels.  The integrated KL factor gives the overall or total soot 251 

quantity information in a flame at a particular time.  As shown in Fig. 9, for the 0.16 mm nozzle, at 252 

the 100 MPa injection pressure, in respective of the fuel type, the integrated KL factors increase 253 

gradually, reached a peak value and then decreased with time.  The rise of the integrated KL values 254 

up to the peak level characterized the soot formation processes while the decreasing integrated KL 255 

values could be referred to as soot oxidation processes.  The soot formation continues to be 256 

dominant over soot oxidation after the end of injection (1.5 ms ASOI) for several milliseconds.  At 257 

about 2.3 ms ASOI (0.8ms AEOI), the KL factor starts decreasing downwards, signifying the onset 258 

of soot oxidation.  At the 100 MPa injection pressure, there is no much significant difference in the 259 

soot integrated KL factor trends for the BDF and diesel.  It can be observed that the soot emergence 260 

timing for the BDF is earliest as compared to the diesel.  This could be an indication that the start of 261 

soot formation is dependent to some extent on the start of ignition  By increasing the injection 262 
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pressure to 200 MPa, there is a decrease in the BDF soot quantity but  the KL factor for diesel did 263 

not change significantly just like the previous results at 100 MPa.  At the 300 MPa, the integrated 264 

KL factors for the BDF reduced significantly to the lowest compared to what was obtained at the 265 

100 MPa injection pressure.  Also, the diesel flame at 300 MPa achieved a significant change in the 266 

integrated KL factor.  At the 100, 200 and 300 MPa injection pressures, irrespective of the nozzle 267 

size, the time taken for the soot oxidation process was shorter for the BDF as compared to diesel 268 

fuel.  Furthermore, at a higher injection pressure of 300 MPa, the BDF recorded a lower KL factor 269 

as compared to diesel.  The soot residence time which is characterized by the duration between the 270 

start of soot inception and the start of soot oxidation reduced as the injection pressure increased to 271 

300 MPa.  This implies that the rate at which soot formation could be reduced under increasing 272 

injection pressure.  By downsizing the nozzle hole diameter to 0.08 mm, at the 100 MPa, the soot 273 

levels for the two fuels decreased significantly with the BDF producing less soot as compared to 274 

diesel.  At the 200 MPa, the soot level for the two fuels reduced significantly more than what was 275 

obtained by the 0.16 mm nozzle the 300 MPa injection pressures. As reported earlier, no soot 276 

incandescence was detected by the two color system under the influence of the combined effect of 277 

the ultra high injection pressure of 300 MPa and micro-hole nozzle of diameter 0.08 mm. This 278 

implies that the combined effect of the ultra high injection pressure and micro-hole nozzle of 279 

diameter enhanced atomization strongly and this further led to a drastic soot reduction in the flames 280 

generated by the fuels. 281 

3.6 Correlation of Air Entrained Upstream of Lift-Off Length and Fuel Oxygen Content with 282 

Soot Formation 283 

From the previous sections, soot formation for the two fuels decreased under the influence of 284 

increasing injection pressure and decreasing nozzle hole diameter.  This phenomenon could be 285 

attributed to the proper spray atomization processes which enhanced the air entrained thus 286 
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promoting mixing effect.  In the course of combustion of the fuels, air is usually entrained upstream 287 

of the lift-off flame.  The influence of the air entrained in terms of the percentage stoichiometric air 288 

on the net soot formed at all injection pressures using the 0.08 and 0.16mm nozzles are presented in 289 

Fig. 10.  For the BDF and diesel flames, as the percentage stoichiometric air entrained increases, the 290 

integrated KL factor for the soot formed decreased under increasing injection pressure and 291 

decreasing nozzle hole diameter. As shown in Fig. 10 the increasing percentage stoichiometric air 292 

entrained upstream of the flame lift-off length, tends to produce a less rich central flame reaction 293 

zone just downward of the lift-off length.  Less rich central flame reaction zone implies less soot 294 

formation. Another observation that could be made from Fig. 11 is that despite the smaller 295 

percentages of stoichiometric air entrained by BDF, the soot formed is lower compared to that of 296 

diesel.   This implies that another factor could have contributed to the lower integrated KL factors 297 

of the BDF flame. It should be noted that soot formation process does not only depend on physical 298 

processes such as the spray atomization, mixing of fuel and entrained air upstream of the lift-off 299 

length but also on chemical processes.  The chemical bound oxygen content in the fuel undergoing 300 

combustion reaction could play an important role on the soot formation process [25].  The overall 301 

oxygen molecules in the spray flame needed for soot oxidation could be said to consist of the 302 

oxygen content in the fuel molecules (chemical processes) and that in the entrained air upstream of 303 

the lift-off length (physical processes).  Previous works have revealed the great effect of fuel 304 

oxygen content on soot reduction [19, 26-27].  Hence there is the tendency that apart from the air 305 

entrained upstream of the flame lift-off length, the oxygen content in the fuel could be a major 306 

factor of enhancing soot reduction processes.  As presented in Table 2, the BDF oxygen content is 307 

11.1 % as compared to diesel, which is less than 1 % or negligible.  It has been reported by [28] that 308 

biodiesel fuels have the tendency to provide oxygen in the rich core of the spray during combustion 309 

process thus enhancing reduction in the soot formation.  Despite the inferior atomization of the BDF 310 
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spray which led to less air entrained upstream of the lift-off length and also longer liquid phase 311 

length  (inferior vaporization) which could influenced soot formation, the oxygen in the rich core of 312 

the BDF spray could have been responsible for the reduction of soot during the combustion 313 

processes. Therefore, the chemical bound oxygen content in the BDF played more significant role 314 

on soot formation with increasing injection pressure and decreasing nozzle diameter while the air 315 

entrained upstream of the lift-off length had less effect.   It can be said that a trade-off between the 316 

oxygen in air entrained upstream of the lift-off length and the oxygen content in the fuel controlled 317 

the soot formation processes of the BDF at higher injection pressure.  Unlike the diesel spray flame, 318 

the reduction in soot formation occurred primarily because of the air entrained upstream of the lift-319 

off length under increasing injection pressures and decreasing nozzle diameter.  320 

4. CONCLUSIONS                                                                          321 

By conducting experiments under simulated conditions of the D.I. diesel engine, the effect of 322 

injection pressure, nozzle size and fuel properties on spray, combustion and soot formation of 323 

biodiesel fuels have been investigated.  The summary of the results obtained are as follows; 324 

(1) Due to higher boiling point, the BDF produced longer liquid length.  325 

(2) Due to enhanced mixing, ignition delay was shortened as the injection pressure increases to 300 326 

MPa and also by decreasing the nozzle hole diameter to 0.08mm. BDF had shorter ignition 327 

delay as a result of higher cetane number and oxygen content. 328 

(3) Under increasing injection pressure and decreasing nozzle hole diameter, BDF produced the 329 

shorter lift-off length and less percentage stoichiometry air. 330 

(4) The combined effect of the ultra high injection pressure and micro-hole nozzle of diameter 331 

enhanced atomization strongly and this further led to a drastic soot reduction in the flames 332 

generated by the fuels.  333 
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(5) BDF produced less soot compared to diesel as a result of high oxygen content while the fuel 334 

oxygen content in BDF played a greater role in soot reduction as compared to the air entrained 335 

upstream of the flame lift-off length.  336 
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Nomenclature 406 

nA   nozzle cross sectional area 407 

ASOE  after start of energizing 408 

ASOI  after start of injection 409 

ATDC  at the top dead centre 410 

BDF  biodiesel from palm oil 411 

d   orifice diameter 412 

D.I.  direct injection 413 

EOI  end of injection 414 

sf   stochiometric air-fuel ratio by mass 415 

oL   lift-off length 416 

x   characteristics length scale 417 

                      equivalence ratio 418 

(%)st   percentage of stoichiometric air  419 


