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Abstract 

Power electronic converters (PECs) are used for conditioning the flow of energy between renewable 

energy applications and grid or stand-alone connected loads. Insulated gate bipolar transistors 

(IGBTs) are critical components used as switching devices in PECs. IGBTs are multi-layered devices 

made of different coefficient of thermal expansion (CTE) based materials.    

In wind and solar energy applications, IGBT’s reliability is highly influenced by the operating 

conditions such as variable wind speed and solar irradiance. Power losses occur in switching 

transient of high current/voltage which causes temperature fluctuations among the layers of the 

IGBTs. This is the main stress mechanism which accelerates deterioration and eventual failures 

among IGBT layers due to the dissimilar CTEs. Therefore, proper thermal monitoring is essential for 

accurate estimation of PECs reliability and end lifetime. 

Several thermal models have been proposed in literature, which are not capable of representing 

accurate temperature profiles among multichip IGBTs. These models are mostly derived from offline 

modelling approaches which cannot take operating conditions and control mechanisms of PECs into 

account and unable to represent actual heat path among each chip.  

This research offers an accurate and powerful electro thermal and reliability monitoring tool for such 

devices. Three-dimensional finite element (FE) IGBT models are implemented using COMSOL, by 

considering complex heat interactions among each layer. Based on the obtained thermal 

characteristics, electro thermal and thermo mechanical models were developed in SIMULINK to 

determine the thermal behaviour of each layer and provide total lifetime consumption analysis. The 

developed models were verified by real-time (RT) experiments using dSPACE environment.   

New materials, such as silicon carbide (SiC) devices, were found to exhibit approximately 20°C less 

thermal profile compared to conventional silicon IGBTs.  For PECs used within wind energy systems, 

PECs driving algorithms were derived within the proposed models and by adjusting switching 

frequency PECs cycling temperatures were reduced by 12°C which led to a significant reduction in 

thermal stress; approximately 27 MPa. Total life consumption for the proposed method was 

calculated as 3.26x10-5 which is approximately 1x10-5 less compared to the other both methods. 

Effects of maximum power tracking algorithms, used in photovoltaic solar systems, on thermal stress 

were also explored. The converter’s thermal cycling was found approximately 3 °C higher with the IC 

algorithm. The steady state temperature was 52.7°C for the IC while it was 42.6 °C for P&O.  In 

conclusion, IC algorithm offers more accurate tracking accuracy; however, this is on the expense of 

harsher thermal stress which has led to approximately 1.4 times of life consumption compared to 

P&O under specific operating conditions.   
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1.1 Motivation 

 
Renewable energy sources (RESs) have recently been playing a significant role in electricity 

generation. Power electronic converters (PECs) interface renewable energy generators (such 

as solar panels and wind turbines) to utility grid for conditioning of the energy flow (i.e. 

voltage and frequency regulation) and safety [1]. However, high and random variations in 

wind speeds and solar irradiations have huge impact on total amount of generated energy. 

Hence, unpredictable temperature profile occurs within the associated power electronic 

converters (PECs). This causes difficulties in predicting, the highly temperature dependent, 

lifetime of the switching elements used in those PECs. Failure of those devices are one of the 

most frequent causes for the down-time in power generation plants, in particular, those 

utilise renewable energy sources [2]. As shown in Figure 1.1, electrical systems (including 

PECs) are responsible for 24% of total failures faced on wind energy systems. 

   

 
 

Figure 1.1  Failure rates for the wind energy system [3] 
 
 

 
A recent wind energy update and maintenance report [4] states that 66% of PECs used in 

offshore wind farms is due to the break down mechanisms where the total maintenance cost 

is up to €300,000 per year.  Furthermore, it is stated that estimated lifetime of both wind and 

solar energy conversion system is only 20-25 years because of the unaddressed issues, such 

as uncertainty of mission profiles, strength of components, lack of understanding of failure 

mechanisms [1],[5] and increase in the electronic content and complexity (i.e. heat coupling 

effect [6]).  Accurate analysing of reliability of converters is crucial for preventing permanent 
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damages and for increasing the lifetime of wind and solar systems [1]. Therefore, motivation 

for new driving methods, increments in cooling capacity and improvements in material 

properties would lead to major improvements and they are essential for end of life 

enhancement.   

 

1.2 Power Electronic Converters in Renewable Energy 

 

Semiconductor devices are the essential components determining the efficiency of PECs for 

energy conditioning [7]. Some of the key switching elements used in the converters include 

Silicon-Controlled Rectifiers (SCR), Gate Turn Off Thyristors (GTOs), Metal Oxide 

Semiconductor Field Effect Transistor (MOSFET) and Transistors [8]. The Insulated Gate 

Bipolar Transistor, IGBT, is one of these semiconductor devices which are operated as 

switching elements in PECs in high switching frequency and current-voltage rating 

applications [9]. PECs in renewable energy systems consist of a set of combination of 

devices such as driver, cooling system, capacitors and power module. A view  of a PEC can 

be seen from the Figure 1.2 [10] embedded in a wind turbine.  

 

  

Figure 1.2 Components in Wind Turbine Hub [3][10] 

 
PECs used in renewable energy systems can be divided into three different types, namely; 

DC-DC converters, DC-AC rectifiers and AC-DC inverters [11]. A voltage source DC-AC 

inverter linked with a DC-DC boost converter is shown in Figure 1.3. 
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Figure 1.3 Voltage source DC-AC inverter linked with a DC-DC boost converter 

 

1.3 Failure Mechanism of Semiconductor Devices 

 
IGBTs  have earlier break down mechanisms compared to other elements of converters [12]. 

This is because thermo-mechanical effects or long-term exposure to high temperatures  are 

caused by variable mission profile [13]. IGBTs consist of different layers (see Figure 1.4) with 

different material properties. During its operation, heat flux transfers through different heat 

paths from die chip to cooling system where thermal cycling generates temperature 

fluctuations within these layers. Therefore, stress occurs within bonded materials with 

different coefficient of thermal expansions (CTEs) [14]. It causes fatigue at different locations 

of the power module such as bonding wire, solder and failures occur eventually [7]. 

 

 

Figure 1.4 Structural Details of IGBT Module [1] 

 

Temperature and temperature cycling are the major stressors (see Table 1.1) that affect the 

IGBT reliability. According to Lu et al. [15], almost 60% of failures are temperature induced 

as shown in Figure 1.5, and for every 10 °C temperature rise, the failure rate nearly doubles 

in the operating environment. In practice, operating mean junction temperature has to be 

between the maximum and minimum allowed ratings, specified in datasheets, which are 

generally less than 125°C to avoid possible faults.  

DC-DC Boost Converter DC-AC inverter 
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Table 1.1:Failure Mechanisms of PECs [1] 

Failure Mechanisms Failure Sites Relevant loads 

Fatigue  Die attach, wire bond/TAB, solder 
leads, bond pads, interfaces 

ΔT, DT/dt, dwell time, ΔH, ΔV 

Corrosion Metallisation M, ΔV, T 
Electro migration Metallisation T, J 
Conductive filament formation Between Metallisation M, ΔV 
Stress driven diffusion voiding Metal traces S, T 
Dielectric breakdown Dielectric Layers V, T 

 
T: temperature, H: humidity, Δ: cyclic range, V: voltage; M: moisture; J: current density; 𝛁: gradient; S: stress 

 

 

Figure 1.5 Chart of break down mechanism [16] 

 

Two main failure mechanisms are solder fatigue and bond wire lift-off. Thermal resistance 

increment occurs due to the solder fatigue, and on-state voltage increment is commonly 

caused by the wire bond lift off [17]. In PECs, the failure of one component, such as DC link 

capacitor, may affect the operation of another one which causes over voltage stress on 

other switching devices and possible faults [18]. However, these components have also 

individual failure mechanisms which have significant impact on the reliability of PECs. For 

instance, Aluminium Electrolytic Capacitors (ALEC) and Metallized Polypropylene Film 

Capacitors (MPPFC) are used as DC-link capacitors; and high capacitance Multi-Layer 

Ceramic Capacitors (MLCC) are commonly used in DC-DC converters [19]. Failure mechanism 

comparison for the three different types of capacitors can be seen in Table 1.2. The key 

factor in the reliability of the electrolytic capacitors, for instance, is called Effective Series 

Resistance (ESR). The evaporation of electrolyte was investigated by Harada et al. [20] and 

linked as the indicator for lifetime of capacitor as it experiences high thermal profiles and 
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ages. The capacitor lifetime has considerable effect on the converter lifetime hence can be 

investigated in more depth as a future work but it is out of scope of this research. 

 

Table 1.2: Failure Mechanisms comparison for capacitors [19] 

Capacitor Type ALEC MPPFC MLCC 

Dominant  
failure modes 

Wear out 

open circuit open circuit open circuit 

Dominant failure 
mechanisms 

electrolyte, 
vaporization; thermo 
mechanical reaction 

moisture corrosion; 
dielectric loss 

insulation 
degradation; flex 
cracking 

Most critical stressors T, V, I T, V, humidity T, V, vibration 

Self-heating capability moderate good no 

 

In contrast, inductors have the lowest failure rates in the lifetime of the power electric 

converters [21]. The failure can happen by the overheating and permanent change in the 

inductance and this count is for only 3% of the total failure reasons in PECs.  

Power diodes cause 10% of total failures in PECs [22]. With the recent technological 

improvements on power modules where the diode chips are manufactured along with IGBT 

ones, the lifetime of the PECs depends on the cross-coupling heat mechanism among these 

semiconductor components. Therefore, electro-thermal behaviour of the diode chips is 

important for accurate estimation of lifetime of the PECs. Failures are mostly due to the 

variable temperature profile caused by the non-ideal doping behaviour during conduction 

and blocking modes of the operation when used as recovery and freewheeling diodes. As 

the current rating increases, even more degradation occurs between metal contacts and 

silicon chips [23].  

1.3.1 Wire Bond Lift-Off 
 

Reconstruction of the aluminium metallization mostly initiates bond wire lift-off due to the 

plastic stress relaxation of the aluminium. During power cycling, this causes increment in the 

collector to emitter voltage which results in higher power losses and hence increases 

temperature profile of chips. This expedites the bond wire lift-off due to the stress caused 

by thermal expansion between wire bond and the chip [24]. A sample view of the wire bond 

lift-off can be seen in Figure 1.6. 
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Figure 1.6 Wire bond lift off mechanism [17] 

 

After an emitter wire lift off, the associated chip is no longer able to conduct the current; 

hence, other bond wires are forced to conduct higher current. This also causes a continual 

lift off for the other wires as they may experience more current than they are capable of 

[24].  

1.3.2 Solder Fatigue 
 
High temperature fluctuations affect the reliability of soldered joints by developing cracks 

and fatigue processes that eventually result in failure as seen from the Figure 1.7.  

 

          

Figure 1.7 (a) Solder Fatigue and (b) Cracks and ceramic substrate failure [25] [26] 

 

The failure occurs due to the different thermal expansion properties of the layers joint by 

the solder such as silicon and copper. This layer is also subjected to high shear stress leading 

to failure due mismatched CTE between layers and temperature gradients. Due to fatigue, 

this eventually grows to cracks leading to critical heat transfer reduction and hence increase 

in die generated heat [27]. Chip solder fatigue due to power cycling test is shown in Figure 

1.8 [28]. 

(a) (b) 



Introduction  

 

8 

 

 

Figure 1.8 Chip Solder Fatigue caused by power cycling (a) Photograph and (b) Ultrasound Image [28] 

 

1.3.3 Reconstruction of Metallization 
 

This layer is made of metalized aluminium that has different thermal expansion coefficient 

to silicon and ultimately leads to fatigue due to temperature variations. At temperatures 

range higher than 175 °C diffusional creep and plastic contributions; at temperatures lower 

than 175 °C plastic deformation is the cause of failure mechanisms [29]. A recent research 

conducted by Arab et al. [30] proposed that the reconstruction occurs due to a short circuit 

fault. A sample reconstruction metallization can be seen in Figure 1.9 [31].  

 

Figure 1.9 (a) Optical and (b) X-ray image of a diode after power cycling test [31] 

 

1.4 Silicon and Silicon Carbide Technologies 

 

Thanks to recent developments, operating voltage of silicon (Si) IGBTs  have reached up to 

6.5 kV with 1-100 kHz switching frequency range [32],[33]. IGBT chip thickness reduction, 

for the purpose of improving dynamic electrical properties, causes higher thermal 

resistances [34],[35]. To overcome such challenges, the recent trend is moving towards 

different technologies such as transistors built from Silicon Carbide (SiC) and Galium Nitride 

(GaN) [36],[37]. Physical material specification differences among these technologies and 

their superior properties can be seen in Table 1.3. It has been investigated that SiC 

(a) (b) 

(a) (b) 
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structured transistors can be operated at higher switching frequency and temperature 

capacities [38],[39]. Conventional Si IGBTs can be operated at higher current densities with 

lower frequency while the SiC MOSFETs have better efficiency at higher switching 

frequencies over 100 kHz. 

 

Table 1.3: Physical characteristic differences among semiconductor technologies [40]-[41] 

 
Recently developed SiC MOSFETs have much smaller channel mobility compared to 

conventional ones [42],[43] but at higher total cost [44]. On the other hand, the thermal 

conductivity of SiC is much higher than that for silicon [45], so generated heat can easily be 

transfered from the device.  

1.5 Lead Free Solder and Silver Sintering 

Lead (Pb)-containing solders i.e. Sn63Pb37 have been in use in power electronic 

manufacturing thanks to its low cost and melting temperature along with excellent wending 

properties with Cu, Ag etc. However, it has been replaced with lead free type solder due to 

lead (Pb) inherent toxicity. After the publication of RoHS requirements in 2006, significant 

shift has been made towards using these Pb-free power modules. Material properties and 

reliability aspect of Pb-free solder have been studied in literature [46] for different 

application types [47] and compared with the Pb-containing solder [48]. As discussed 

earlier, solder is a vital material for determining reliability of the power modules hence, 

properties of lead free solder alloys need to be fully understood for accurate lifetime 

estimations. For example, the Sn–Ag–Cu solder alloy, Sn96.5Ag3Cu0.5, has low melting 

temperature and good wetting ability compared to Sn–Ag solder alloys. The thermal 

parameters of Pb-free and conventional Pb-containing solders can be seen in Figure 1.10.  

Properties Si GaAs GaN 4H-SiC 6H-SiC Unit 

Crystal Structure Diamond Zincblende Hexagonal - 

Bandgap (EG) 1.10 1.43 3.5 3.26 3 eV 

Electron Mobility (μn) 1400 8500 1250 900 380 cm2/Vs 

Hole Mobility (μp) 600 400 200 100 80 cm2/Vs 

Dielectric Constant (εS) 11.8 12.8 9.5 10.1 9.66 - 

Saturation Drift Velocity (vs) 1x107 2 x107 2.7 x107 2.7x107 2 x107 cm/s 

Breakdown Field (EB) 0.3x106 0.4 x106 3 x106 3 x106 3 x106 V/cm 

Thermal Conductivity (k) 1.5 0.5 1.3 4.9 4.9 W/cm°C 

Melting Point 1420 1283 2500 2830 2830 °C 



Introduction  

 

10 

 

 

Figure 1.10 (a) Melting point and (b) thermal conductivity of Pb-containing and Pb-less solders[47] 

 

On the other hand, soldering can be replaced by a recent technology called sintering, in 

power modules. The sintering is based on pulverised silver which forms a material 

connection when pressure and temperature are applied [49]. It combines two fine grained 

ceramic or metallic materials, usually under high pressure, at temperatures below the 

melting point of both materials. The sinter joint is a thin silver layer with better thermal 

resistance compared to the soldered joint. Due to the high melting point of silver (960 °C), 

less joining fatigue occurs which increases the life time and power cycling capability [49]. 

1.6 Reliability and Health Monitoring 

 
Capability of the power electronic devices to fulfil expected operation under stated 

conditions, is defined as its reliability, in certain period of time [50].  In spite of the various 

studies, still there are limitations in the reliability research for power electronics. Wang et al. 

[1] have summarized these limitations as; lack of systematic design for reliability (DFR) 

approaches are over reliance on calculated value of mean time to failure and meantime 

between failures. Handbook based failure prediction methods  [51] aim to provide statistic 

estimations for remaining lifetime of converters but they lack valid justification [52] since 

they are not function of  time dependent temperature profile [53].  For instance, Military 

Handbook 217 [54] establishes how to predict lifetime of electronic products in terms of the 

factors that influence reliability. However, the methods are not function of temperature 

gradient or time dependent temperature profile [53]. Temperature cycling affects failure 

rate change with materials which are not considered in such books [1].  Therefore, accuracy 

of such studies would not be high. One useful approach is the physics of failure approach 

that is based on root caused failure mechanism analysis and the impact of materials, defects 

and stresses on product reliability [1], [14], [15].  

(a) (b) 
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1.7 About this Research 

In order to derive accurate reliability analysis for PECs, it is necessary to understand the 

physics of their failure in terms of thermal characteristic. This research firstly investigates 

the effects of the operational factors such as control methods, switching algorithms, load 

variations, environmental effects, on the thermal profile of the power electronic devices. 

Then, it proposes accurate electro thermal modelling and active controlling techniques for 

these devices in order to decrease thermo-mechanical stress and temperature variations on 

layers made of different material used in conventional power modules. This section outlines 

the specific research direction. Based on the motivation of the work, originality and 

limitation of the research are also addressed.  

1.7.1 Contribution to Knowledge 
 
1. An electro thermal model was implemented, which is applicable not only for discrete 

but also for continuous temperature monitoring of integrated switching devices, using 

Simulink and embedded within real time dSPACE environment. 

2. In an attempt for the replacement of expensive thermal imaging procedures, Finite 

Element (FE) models for topologically different Si IGBTs and SiC MOSFET were derived 

with COMSOL which take real-time power losses as input and produce heat 

distribution over the devices.   

3. A new variable DC link and switching frequency control method, within the PWM 

driving strategy of a two level back to back converter, which is coupled with a wind 

energy system, was implemented for stress/strain and power cycling reduction. 

4. For the first time in literature, the effect of the different maximum power point 

algorithms (MPPTs) on the reliability of the power electric converters used in PV 

system was investigated. Previous studies only dealt with comparison among the 

MPPTs efficiency, accuracy, tracking speed etc.  

5. An experimental, electro thermal monitoring for a physical three-phase IGBT inverter 

power module was implemented for temperature and lifetime estimations. Suitability 

of the system was tested by a physical wind turbine test rig under different operating 

conditions and verified with model based results. 



Introduction  

 

12 

 

1.7.2 Aim and Objectives 
 

1.7.2.1 Aim  

 
The aim of this research is to investigate the effects of the environmental and operating 

conditions on the electro thermal performance and reliability of the power electronic 

converters embedded within renewable energy systems. Based on this, the research 

considered deriving real time electro thermal modelling, new control strategies, and 

reliability models to decrease thermal stress and to enhance the lifetime of related devices. 

 

1.7.2.2 Objectives 

 
1. To review the research status in the electro thermal modelling, operating conditions, 

physical material properties and reliability of insulated gate bipolar transistors 

operated in power electronic converters of renewable energy systems.  

2. To derive accurate electro thermal and thermo mechanical FE models for the 

semiconductor switching and power electronic devices used in renewable energy 

systems. 

3. To investigate electro thermal characteristics of topologically different 

semiconductor switching devices based on their physical and operational 

differences.  

4. To derive thermo mechanical FE models for power electronic devices used in 

renewable energy systems. 

5. To derive reliability models for semiconductor switching devices as a function of 

electro thermal and thermo mechanical characteristic. 

6. To implement Simulink models of wind and PV systems with embedded power 

electronic converters and their associated control algorithms to decrease the 

thermal stress and enhance the lifetime during variable environmental conditions.  

1.8 Structure of Remaining Chapters 

 
The remaining chapters of the thesis are organised as follows:  
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Chapter 2 presents the literature survey of the project. Current research status in electro 

thermal and thermo mechanical modelling of the power electronic converters, their 

material type developments and control technologies as well as reliability and lifetime 

analysis are reviewed. Suitable technologies and knowledge are highlighted for the design of 

novel control algorithms which is needed to enhance their end of life.  

 

In Chapter 3, implementation of an electro thermal model for a multichip single IGBT power 

module is presented with theoretical approaches of thermal stress analysis. The model was 

built by using COMSOL finite element package and then implemented in Simulink package 

based on the complex heat interactions and coupling effect across IGBT chips. This chapter 

also presents implementation of real-time electro thermal model and detailed investigations 

into the performance of trench gate Punch through (PT), non-Punch through (NPT), Field 

Stop (FSTP) IGBT and SiC MOSFET topologies. They are firstly modelled using 3-D multi-

physics FE modelling to gain clear understanding of their thermal behaviour. Subsequently, 

modelling outcomes are verified by using those devices as switching elements in operational 

boost converters.  

 

Chapter 4 critically studies the thermo mechanical modelling and the effects of thermal 

stress on the reliability of power electronic converters. By considering the variations in wind 

characteristics, a mitigating technique is offered by first, developing realistic Full Scale (FS) 

and Partial Scale (PS) induction generator models combined with a two level back-to-back 

PECs. Subsequently, a switching algorithm was derived which reduces PEC’s operating 

temperature by controlling its switching patterns. The experimental validation for the 

thermal stress mitigating technique of a three phase DC-AC inverter module used in a wind 

system is presented. 

 

Chapter 5 studies lifetime reliability analysis for power electronic devices based on the 

electro thermal and thermo mechanical characteristics.  The model is validated via dSPACE 

real time implementation with a physical permanent magnet generator based wind turbine 

system test rig. It also investigates the effects of maximum power point tracking algorithms 

on lifetime and thermal stresses in DC-DC converters under different operating conditions. 
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Converter’s electro thermal characteristics were firstly modelled. Subsequently, 

experiments on photovoltaic solar system were carried out using two different MPPT 

algorithms, namely, perturb and observe (P&O) and incremental conductance (IC).  

 

Achievements, conclusions and future work are depicted in final chapter.
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2.1 Overview 

 

This chapter presents the literature survey of the project. The review process includes 

electro thermal, thermo mechanical modelling and lifetime analysis of semiconductor 

switching elements, specifically their material properties and reliability in power electronic 

converters embedded in wind and solar energy applications. At the end of the literature 

review, the research synthesis and main direction of the project are outlined.  

 

2.2 Electro Thermal Modelling 

 
Electro thermal models are consist of thermal and power loss models, which can 

continuously monitor temperature variation for a device in power electronics. Heat 

distribution through the power electronic devices are due to the power loss occurring which 

causes the temperature to increase. Coupled temperature depended power loss and 

thermal models are implemented to monitor thermal profile of power electronic devices. 

 

2.2.1 Thermal Modelling 

 
Thermal models aim to describe transient thermal behaviour (transient thermal impedance) 

of power electronic devices or converters to estimate mean and varied temperature profiles 

under operation. Thermal modelling techniques are based on two main forms of reactance 

theorems defined by Foster [55] and Cauer [56]. Foster [57] also improved the modelling 

approach based on earlier defined models with thermal RC elements. Until late 90s, the 

improvements were continued by using 3-D finite element modelling analysis. The accuracy 

of such a model is high since the applied equation to a finite boundary condition is solved 

for small parts of a material in scaled elements. At present, however, these simulations 

require long transient thermal simulations for power electronic applications [58]. Another 

approach can be the usage of analytical Fourier series so that the extraction of RC thermal 

equivalent circuit can be avoided [59].  
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2.2.1.1 Finite Element based Thermal Modelling 

 
Finite Element Modelling (FEM) was first developed in 1943 by R. Courant, who utilized the 

Ritz method of numerical analysis and minimization of variational calculus to obtain 

approximate solutions to vibration systems [60]. Initial finite element forms of Poisson's 

equation and the electron and hole current continuity equations are derived by Barnes and 

Lomax [61] with implementation of fourth order (Hermite bicubic elements) methods. First 

thermal studies are based on the work proposed by Hsu and Vu-Ouoc [62] that 

accomplished heat transfer simulations by a rational approach. Construction of thermal 

circuit networks of the heat equation by the finite element method with FLOTHERM 

simulator was accomplished with triangular and rectangular elements in the 2-D, and 

tetrahedral and cube elements in the 3-D case. Hefner and Blackburn [63] proposed a model 

which solves dynamic electro thermal behaviour of power electronic systems. However, this 

model was disadvantageous since it can only predict the junction temperature and is unable 

to solve exact heat distribution through each layer. 

 

Székely [64] developed a model with THERMODEL software to describe heat conduction of 

three-dimensional physical structures. The simulation based time-constant spectrum was 

related both with the time and frequency responses. The relation was solved based on a 

complex convolution method that uses the Fourier-domain inverse filtering method. Bagnoli 

[65] studied a model for implementing an equivalent thermal circuit of an electronic device 

by infinite and convergent series of time constants. More practical approach was proposed 

by Rencz et al. [66] where an algorithm collects the junction temperature estimation under 

transient operation and updates the compact RC models for a semiconductor device using 

frequency domain analysis. 

2.2.1.2 Analytical and Finite Element based Thermal Modelling 
 

The approaches discussed above are all employ resistor capacitor networks as thermal 

equivalent circuits. Although, they can be accepted as computationally fast, they cannot 

represent actual 3D heat diffusion path through the devices. For instance, transient thermal 

identity extraction based study, assessed by Ciappa et al. [67] with Foster equivalent circuit, 
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was unable to represent actual heat path and lateral heat spreading effect that occurs if the 

silicon layer (where the heat is generated) is smaller than the cross section of the 

conducting material. 

Christiaens et al. [68] proposed a methodology that represents dynamic thermal model of 

chip packages by using analytical Fast Fourier Transform technique. The model includes 

compact resistor-capacitor network that predicts the dynamic junction temperature 

response under any arbitrary set of external cooling conditions. 

More accurate thermal models were derived by Masana [69] who proposed analytical 

solutions to heat spread angle estimations by taking the chip and substrate dimensions into 

account and changing angle accordingly. The methodology showed good accuracy compared 

to the Fourier series based thermal model analysis with the 10% of theoretical exact 

solutions of infinite series techniques. Culham et al. [59] proposed an analytical approach 

for thermal characterizing based on the steady-state solution of the Laplace equation for 

rectangular geometrical chips. Three dimensional Fourier series were applied to solve the 

conduction law within each layer of the package. The validation between published 

experimental data showed 5% increased accuracy compared to the traditional procedures 

proposed by Christiaens et al. [68]. 

Masana extended the previously developed models [69] by 3-D analysis in [70]. Each 

thermal resistance and capacitance pairs were used as input to an electric circuit simulator 

to obtain the transient response of the package. The results showed good accuracy 

compared to the FE model with ANSYS, however the employed methodology is still unable 

to solve exact solution to heat transfer equation and characterise the coupling effect [6] 

between internal layers of any power electronic device. Janicki et al. [71] proposed an 

analytical solution of the three dimensional heat equation with the using Green’s functions. 

The results of transient thermal simulations of a real hybrid power module are compared 

with infrared measurements. The derivation was validated with accurate set of data; 

however it showed complexity and difficulties to be modelled with any circuit simulator 

software. Vermeersch and Mey [72] developed an extension of complex thermal impedance 

in phasor notation. Heat dissipation was studied as a square source that spread through the 

device under a fixed angle. The temperature distribution was generated by integrating the 

Green's function over the source area. The approximated relative error was observed as less 
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than 6%; however the analytical solution was only valid when the heat sink temperature 

was fixed and equal to zero. Swan et al. [73] implemented an analytical thermal model for a 

power device module in MATLAB/Simulink with block diagrams. A Fourier-based solution 

was used to solve the heat equation in 1-D & 2-D. The model was validated against FEM 

simulations with FLOTHERM. The 1-D model showed 3% where the 2-D model showed 4% 

difference for peak temperature rise for each model. 

 

2.2.1.3 Boundary Condition Depended Finite Element based Thermal Modelling 
 

Augustin and Hauck [74] proposed a new method for the generation of boundary condition 

dependent dynamic thermal compact models by state space modelling by transforming the 

state space model into a Kirchhoffian network. However, presence of the introduced 

Lagrange polynomials increased the complexity simulations even though good accuracy was 

obtained between the results and FE model with ANSYS. Darwish [75] proposed an addition 

analytical solution to Masana’s model [70] that derives an exponential approximation for 

thermal resistance calculation, based on Fourier's conduction law. The theoretical solution 

was verified with FE simulations with ANSYS. The accuracy was improved up to 1-2% 

between FEM  and analytical solution, compared to Masana’s  [70] method. 

Kiffe and Wachutka [76] proposed a thermal model consists of a set of Foster-type thermal 

equivalent circuits. The modelling and measurements consisted of only one single chip 

analysis and the approach could not be extended for multichip devices [77]. Schweitzer et 

al. [78] also showed numerical effects during the calculation of the structure function and 

3D heat spreading effects on determining the junction to case thermal resistance. The 

derived structure function showed around 5-15% uncertainty with FE modelling results. 

Hocine et al. [79] studied thermal analysis of a IGBT module by using MSC.NASTRAN. The 

junction temperature for an input heat power located as hot spots; however, the results 

consisted of self-heating phenomena in the device only. Stupar et al. [80] proposed a model 

to estimate junction to case and case to heat sink thermal resistances, experimental tests 

were performed when the device is attached to a cold plate. The validation of the 

estimation was assessed based on the information supplied in datasheet and with GECKO 

CIRCUITS software; however it still had the shortage of defining thermal coupling effects. 



Literature Review 

 

20 

 

Transient thermal behaviour of a power module was improved by Hensler et al. [81] with 

respect to the material properties and dimensions of the device where the thermal 

spreading angle is accepted as 45°. Although the analysis showed moderate accuracy (~11%) 

compared to the experimental estimations, the actual heat flow path was fairly investigated. 

Gradinger and Riedel [82] recently provided a time-variant cooling by ICE-Pack FE software. 

Evaluations showed that Cauer networks responded physically meaningful while the Foster 

networks reacted too quickly in terms of thermal resistance derivations.  

Skuriat and Johnson [83] studied a comparative model between three cooling methods to 

extract thermal parameters for IGBT based half bridge converter [84]. This work proved that 

heat spreading effect can still be estimated accurately once it was compared with FE model 

of whole module. Azoui et al. [85] proposed a new approach for 3-D FEM which contains 

several cooling surfaces, and the represented non-linear properties of materials for 

structure of generated models. Variable thermal resistances and capacitances were used to 

improve heat flux estimations and results from the dynamic compact thermal model (DCTM) 

were found within 3% against the FEM results. Schweitzer [86] also aimed to analyse two 

measurement techniques, that were constant, and floating case temperature methods. The 

junction to case thermal characteristic difference between two methods was obtained as 

15% where it was up to 31% with 3-D thermal simulation.  

On the other hand, thermal models of power modules with multichip designs were 

proposed by Luo et al. [87] for multichip device. The thermal parameters were extracted 

from the experimental data and the accuracy of the model was verified by 3D FEM method 

simulations with ANSYS. However the thermal coupling between the chips has not been 

considered that it leads inaccuracy at temperature estimations. Castellazzi et al. [77] 

proposed an extensive experimental thermal characterization of multi-chip IGBT-modules. 

Proposed technique showed comprehensive and flexible simulation results since they were 

based on Cauer-T Thermal model and interconnects to parasitic elements of IGBT.  Yu et al. 

[88]  proposed an approach which predicts individual self-heating temperatures by 

superposition to calculate the heat spreading. Poller et al. [6] modelled the substrate of a 

standard IGBT power module with ANSYS. It was discussed that with increasing frequencies, 

the cross coupling effects cannot be reproduced correctly and it was the main cause of 

inaccuracies.  
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Proper thermal models with heat coupling effect analysis were considered by Drofenik and 

Kolar [89]. The proposed method derived in terms of convection cooling (forced air model 

with computational fluid dynamics, CFD), thermal hotspots on the heat sink base plate, 

thermal time constants of the heat sink, and thermal coupling between different power 

modules mounted onto the heat sink. The work studied a thermal impedance matrix that 

was convenient for thermal coupling effect estimations and most suitable way to represent 

actual heat path through the device. The experimental results also showed better accuracy 

of the heat sink model with temperature errors below 10%. Drofenik et al. [90]  expanded 

the study proposed in [89] from air cooled to a water cooled heat sink model for a 

3300V/1200A power module. A dynamic thermal model that consists of the mutual thermal 

coupling of neighbouring dies was modelled for integration into a circuit simulator. In this 

case, FEM results were compared with an infrared temperature measurement set of data. 

Thermal impedance matrix was expanded for a total of 36 chips heat source and 3-D 

geometry was implemented with a boundary condition of convection heat flux that 

represents a water cooled heat sink where water circulated inside the pumps. Hot spots 

detected in wide range of surface at specified locations on module and material properties 

were taken as temperature dependent as variable arguments. 2% of maximum temperature 

difference was observed when compared between FEM and infrared camera estimations. 

 

2.2.2 Power Loss Modelling 

 
 
Power losses occur due to the rapid changes in current and voltage ratings and they 

generate heat over the devices. Power Loss models can be implemented in different ways. 

Since energy losses are accepted as the main cause of the heat generation through power 

semiconductor devices [16], modelling a power loss model that represents the actual 

behaviour (designing switching and conduction duration accurately) of a device is essential 

for a proper electro thermal model.  

Blinov et al. [91] studied improvement of conventional power loss calculation methods by 

using manufacturers’ datasheet parameters.  Energy losses supplied in datasheets were 

fitted by curve fitting methods with third order exponential functions. Each loss was 

calculated with respect to the sample current-voltage input characteristics. An analytical 
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method of estimating losses was also derived by parasitic components of the device and 

compared with fitted curves. Good approximation was assessed with such technique but the 

order of polynomial causes miscalculations in high frequency operation. Similar model was 

proposed by Rui et al. [92] with the extension of temperature and on time resistance 

dependent loss estimations. The simulation was executed with PSCAD/EMTPC software and 

1.4% loss rating was estimated compared to the analytical calculation. The model cannot be 

easily expanded with a thermal model although the accuracy was quite high. A quite similar 

approach was also followed by Ivakhno et al. [93]; however the model was implemented 

with Matlab/Simulink blocks. With the help of the logic blocks in Simulink, power loss 

calculation was acquired based on the output current and voltage signals of IGBT/Diode 

block element, available in SimPower library. Acceptable accuracy of dynamic loss 

calculation (<10%) was achieved under hard switching. Different modulation strategies (i.e. 

SPWM, THIPWM, SVM) and their effect on power loss estimations were also studied by 

Santos and Antunes [34] for three level neutral point clamped converter (3L-NPCC). 

Comparison between two and three level converters power loss analysis were also 

presented by Orfanoudakis et al.[94] where three level application showed better 

performance in high switching operations. Radan [95] studied effects of the losses on DC 

link capacitor. Intensive studies have been performed on carrier-based, sinusoidal, space 

vector and sigma delta PWM methods in open loop control of inverters [96]. It was proven 

that the selection of topology and control techniques may vary according to power 

demands of inverter.  

 Zhou et al. [97] studied an electro thermal model that was relatively applicable for 

reliability analysis. The main purpose of this work was to improve accuracy of power loss 

model by designing a compact electro thermal model whilst keeping the simulation time 

step relatively large (i.e. in the order of milliseconds). The proposed look up table based 

simulation method was more promising for life time analysis since it is computationally 

more efficient compared to model studied in [58]. Another electro thermal model for an 

inverter consists of six IGBTs in PLECS was proposed by Huang et al. [98]. Although the 

model was computationally efficient for accurate power loss calculation, it lacks of 

implementing heat path through the device and it was only capable of junction temperature 
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estimations. Moreover, the model cannot be extended for reliability analysis although it was 

suitable for wind power converter application where the  frequency was variable. 

Ma and Blaabjerg [99] also studied and extended the electro thermal model developed in 

[98] from 2L-BTBC to 3L-NPTC. The proposed simulations were carried out based on PLECS 

blockset in Simulink. Look up table based power loss calculations were integrated into 

thermal models based on the datasheet supplied by the manufacturer. Unfortunately, this 

model also had the disadvantage of inaccurate temperature estimation among physical 

layers and it was not compatible with reliability modelling, as well. Ma et al. [100] 

developed a case study among three-level and five-level H-bridge and neutral point clamped 

topologies in terms of electro thermal performance based on the developed models in 

[101]. Simulink based modelling approach was applied. It was estimated that three levels 

neutral point clamped converter has better electro thermal performance among other 

topologies; therefore, it is more reliable under same conditions (i.e. power cycling and PWM 

strategy) according to this particular study. Another electro thermal model was developed 

by Pittini et al. [102] for a 2L-BTBC converter with PSCAD block sets. The thermal and energy 

loss parameters were obtained from the device datasheet. Although the software leads user 

friendly implementation, the physical user interface was not capable of electro thermal 

modelling of multichip design power modules and reliability analysis. 

A recent promising study was implemented by Ma and Blaabjerg [14] to extract the chip 

number from an IGBT module. It aimed to calculate the chip numbers N according to the 

module’s conduction voltage at a certain load current Iload. Since the load current is equally 

distributed because of the parallel connection, the conduction voltage is equal for all chips 

where the chip load current is Iload/N. This proposed analytical method can be accepted as 

accurate since the internal resistance of the IGBT/Diode Modules is equal for each chip and 

unlike the other proposed models discussed until now; it is quite convenient for calculating 

temperature distribution through each chip over the module. Similar methodology was also 

implemented by Wigger and Eckel [103] earlier for proper scaling of single chip 

measurements to module-level. Ma et al. [104] recently developed complete power loss and 

thermal model in terms of device rating as input variables for multichip power modules. 
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2.3 Thermo Mechanical Modelling 

2.3.1 Temperature and Power Cycling 
 
As mentioned earlier, solder joints of different layers are one of the weakest points of 

power electronic devices; hence, they have great impact on overall reliability of PECs. Mi et 

al. [105] proposed a reliability study for lead-free solder joints using Weibull distribution 

based on an accelerated life test. Thermal cycling test was applied and number of cycles to 

failure was predicted by a new censored data processing method. It was investigated that 

occurred fatigue in lead-free solder joint under thermal is creep fractured and the crack 

initiation always occurs at the interface of solder and copper layer. Feller et al. [106] also 

proposed a study for investigating the effects of raising the maximum operating 

temperature of IGBT modules and the required design modifications of solder materials. 

Two solder materials, namely Pb40Sn60 and lead free Sn96.0Ag2.5Bi1Cu0.5 were 

experimentally compared by creeping tests. They also stated that joint fracture mechanism 

can differ a lot between different solder materials which lead to a different fracture surface. 

They offered that for a higher operating temperature; the lead-free solder can be chosen 

carefully since evolution during power and temperature cycling to meet the reliability 

requirements should be further investigated. Ji et al. [107] proposed a novel design to 

consider die-attachment solder failures induced by short power cycling and baseplate solder 

fatigue induced by the thermal cycling. The work aimed to minimize the total thermal 

resistance and the plastic work accumulated in the solder layer through equation 

transformation in FE modelling. It has been concluded that different optimization 

characteristics were needed for power and temperature cycling operations for calculating 

thermal resistance effectively. Based on this, Bouarroudj [108] proposed a comparative 

thermomechanical stress study by using Finite Element simulations for power and 

temperature cycling conditions 600V-200A six-pack IGBT power modules in automotive 

applications. For the power cycling test condition gate threshold voltage shift and solder 

cracks were observed at the junction temperature of 60°C with an ambient temperature of 

90°C. However, for the thermal cycling test caused only solder deformation at the 

temperature cycling range of -40°C to 120°C. The study concluded that power cycle at low 

temperature is almost as destructive as a thermal cycle for solder lifetime and those chips 
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are subjected to very high compressive stresses especially at low temperature levels. In 

order to understand the solder joints degradations and stress–strain distribution at the 

solder joints under cyclic thermal loading, a multi-layered IGBT module was analysed in [27] 

with the ANSYS FE software. Since the solders are highly viscoelastic in nature, a nonlinear 

viscoplastic material was used for solder in the analysis defined by Anand’s constitutive 

model [109] while other layers were considered to be elastic. This model was also studied 

by Wang et al. [110] to represent the inelastic deformation behaviour for solders such as  

62Sn36Pb2Ag, 60Sn40Pb, 96.5Sn3.5Ag, and 97.5Pb2.5Sn. Anand’s model was successful for 

representing the inelastic deformation behaviour of solders at high homologous 

temperature and is promising for FE modelling studies for deriving the stress/strain 

responses of wide range of solders. For deriving solder joint reliability during thermal 

cycling, Motalab et al. [111] developed a new reliability prediction procedure that also 

contains constitutive and aging effects. An improved Anand’s viscoplastic model was studied 

by considering includes material parameters. Using the measured fatigue data, solder 

fatigue failure criterion was derived by Coffin-Manson (strain-based) and Morrow-Darveaux 

(dissipated energy based) type fatigue criteria. It was expressed that the associated fatigue 

models for solder joints are affected by isothermal aging prior to cycling. 

2.3.2 Warpage 
 
Solder layer bumps due to warpage of a semiconductor power electronic device in its 

operation. Warpage can be defined as a distortion where the surfaces of the moulded part 

do not follow the intended design shape. Zhou et al. [112] recently investigated warpage 

and residual stresses induced by reflow process for a 1200V IGBT module by FE and 

experimental studies for substrate and copper layers. Viscoplastic behaviour of solder was 

also considered for predicting warpage and thermal stress, accurately. It was proposed that 

increasing the thickness of the alumina layer maximizes both warpage of the module and 

residual stress. Also, the increment of the copper substrate would lead deductions of the 

warpage; however, this would increase the residual stress. Based on their experimental 

study, little influence on deformation magnitude and residual stress was obtained by the 

pre-warpage process. 

Another investigation for lead free Sn96.5Ag3Cu0.5  solder behaviour was presented in [55] 

in terms of strain rate at different temperatures and tensile speeds. It was found that both 
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temperature and strain rates have crucial effects on tensile and creep properties. Compared 

to the Pb-containing solders, lead free solder has lower stress of 20 MPa at room 

temperature and revealed certain creep resistance, resulting in a long time of creep 

fracture. Also, compared to the Pb-containing Sn63Pb37, flat plastic range of this lead-free 

solder had better deformation resistance. 

Thermo-mechanical performance of a microchannel-based technology within an actively 

cooled 1200V 75A IGBT module was investigated by Xu et al. [113] and its performance was 

compared with normal operation by finite element analysis. Residual stress caused by 

reflow soldering process and operating stress considering the residual stress in previous 

process were studied as well as the plastic behaviour of soft solder and copper. It was 

investigated that the chip temperature could be reduced up to 80 °C by the usage of copper 

microchannel baseplate. Residual stress of the module caused by CTE would cause more 

than 1500 mm warpage and it also bends the silicon chips with a stress of 57.3 MPa on 

bottom and 188.2 on the top of the layer. Based on the optimisation study, copper thickness 

layers were suggested to be increased up to 3 mm where the thermal interface material 

thickness needs to be 0.2 mm. 

2.3.3 Sintering 
 
As mentioned earlier, sintering is based on pulverised silver which forms a material 

connection when pressure and temperature are applied. Dudek et al. [114] studied the 

thermo-mechanical reliability design requirements of the sintered silver layers for IGBT 

devices by FEM. By using a micromechanical cell model, shear loadings with in-situ 

deformation were analysed for monitoring the silver behaviour during passive and active 

thermal cycling. It was observed that active power cycling can induce failure modes 

different from passive cycling. For instance, maximum principal stress in the die increases 

with active heating and as the cyclic inelastic strain in the Ag sinter layer is regarded, it gets 

very low dependent on the Ag material properties. Therefore, no simple solution was 

presented for thermo-mechanical stress due to the strong interaction of various design- and 

material parameters; however the FE model showed good performance for future reliability 

prognostics of sintered devices.  

Braunwarth et al. [115]  further compared the soldering and sintering as die-attach 

technologies by using life cycle assessment for IGBT power modules. They claimed that 
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sinter layers can be useful since they reduce the maintenance efforts by increasing reliability 

unless the power module fails earlier due to other mechanism such as bond wire lift-off.  

Reliability of sintered joints and soldered SAC305 joints were compared by Chen et al. [116] 

using cyclic shearing tests at different temperatures in terms of temperature, mean stress, 

and stress amplitude. The fatigue of sintered joint was found as much longer than that of 

soldered SAC305 one under the same loading conditions. Hence, it was concluded that 

sintered nanosilver joint has demonstrated a longer lifetime and better response than 

SAC305 joint, especially at high temperatures.  

Rajaguru et al. [117] proposed a thermo-mechanical reliability finite element model for 

sintered silver structure of a power electronic module based on the computational approach 

and reduced order modelling in order to capture the strain distribution. The model was 

demonstrated on sintered silver interconnect between silicon carbide chip and copper 

substrate in a power electronic module.  

2.3.4 Wire-bond 
 
Another experimental power cycling test proposed by Forest et al. [118] studied for ageing 

of IGBT power modules by monitoring device temperature and on-state voltage for 

detecting possible wire bond degradation and emitter metallization for the test devices IGBT 

modules with one inverter leg and 600 V–200 A trench gate chips. These two characteristics 

were monitored by first implementing temperature variations induced by Pulse Width 

Modulation (PWM) operation in an inverter bridge built with two samples. Then, an 

automated measurement system was implemented for avoiding any data loss during on-

state voltage monitoring. The technique showed good accuracy verified by several dozen of 

test devices. The average lifetime of the devices varied between 550,000 to 660,000 cycles 

and degradations were observed for the wire bond. 

Nagl et el. [119] studied different operating conditions of a typical 1700V / 800A traction 

high-power IGBT module such as normal operation, short circuit with medium inductive 

load, and short circuit with low inductive load for identifying its power loss, temperature 

distributions and mechanical stress/strain distributions in a typical package by using the 

finite element method. Von Mises stress and strain distributions due to thermal expansion 

were calculated under quasi-static and pulse load conditions. It was proposed that any 

operation of the device causes different stresses which are the reason of thermomechanical 
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fatigue. It was found that average load during a normal operation is 400W where this 

increases up 5MW for the short circuit operations. Von Mises stress for normal operation 

was estimated the highest at the centre upper solder and gate bond wire.  

An application based research was proposed by Paul et al. [120] for verifying importance 

and limitations of parameters used together within reliability tests and field applications of 

IGBT power modules.  FE and analytical model based studies were used for simplifying the 

laboratory based drive cycle stress test. Compared to the application based lifetime 

calculation which was approximately 14095, model based cycles to failure were found as 

12500 while the cycle time step was 900 seconds. The reason of stress in solder was found 

as power cycling operation compared to the temperature cycling. Spatial stress distribution 

was mainly observed at the centre of the chip where the peeling stress was close to the chip 

edges. This peeling stress was defined as reasonable for the delamination of system solder. 

The stress relaxation began at 1-2 seconds interval and the dependence of creep strain 

saturated after 60 seconds. On the other hand, wire bond stress was mostly caused by 

thermal cycling. 

Medjahed et al. [121] studied wire bond behaviour on the IGBTs by applying direct current 

flow within the wire to reproduce the thermal cycling test used in reliability studies within 

FE analysis and verified the results by experimental temperature measurement. Von-Mises 

stress was obtained by FEM and thermo-mechanical results were compared with a 1D 

simplified thermal model. Both electromagnetic force and the mechanical stress were 

considered in numerical modelling. Bond angle amplitude was studied for current levels 5-

15 A and optimized values were extracted based on the Von-Mises stress distribution. It was 

also concluded that the electromagnetic effects are not relevant for mechanical stress. 

Another life assessment study was proposed by Chen et al. [122]  for predicting wire bond 

life by finite element IGBT models by ANSYS. Power cycling test was conducted for life cycle 

data estimation and the statistical analysis was validated by these tests compared to FE 

model. Compared to the previous studies in literature, an additional electrical resistance at 

the wire bond was discovered from testing and evaluated by thermal simulation and has 

significant impact on the wire bond life. Bond fails were also estimated around the chip 

centre and expands to the edges. 
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Recently, Medjahed et al. [123] studied electro thermal stress for wire bonds of 1500A, 

3300V, IGBT module with active current cycle under steady and transient current states 

using ABAQUS FE package. The maximal value (10 MPa) was located at the tail of the wire, 

near heel area where main failure modes occur close to this specific region. One main 

outcome of this study was that an AC current waveform does not produce exactly the same 

temperature dispatching and values as DC one. 

Bielen et al. [124] described power cycling experiments using the Joule heating of the bond 

wires for finding failures. This was managed by varying bond wire settings to create 

different amounts of initial damage as introduced by the plastic deformation of the heel and 

the wedge. FE model was employed using ANSYS solver to calculate the stress amplitude in 

the heel of the bond wire in the experiments as function of current, pulse time and loop 

shape. The model succeeded for detecting plastic deformations around microscopic defects 

by averaging Von Mises stress over the wire diameter. In order to predict the expected 

lifetime, measured failure times (Nf) and calculated stress amplitude (S) the durability (S-N 

curves) were used for deriving different amounts of initial damage. Ozkol et al. [125] studied 

power cycling performance of IGBT modules by implementing wire bond layout of the 

emitter contact using electrical and thermomechanical FE analysis and experimental results. 

Based on the current distribution and induced mechanical stress, a new HiPak IGBT power 

module was designed. 

2.4 Lifetime Analysis and Reliability of Power Electronic Devices 

 
Lifetime prediction can also be assessed by well-designed compact transient thermal models 

[98]. This can be achieved by estimation of the damage accumulation due to thermo-

mechanical stress cycling once a transient electro thermal model is coupled with [7]. 

Deriving accurate reliability prediction models are challenging due to the several reasons 

discussed in introduction and thermo-mechanical modelling sections. High reliability 

requirements and the lack of component manufacturer data also increase the concern on 

such studies. Empirical and statistical data based models showed high inaccuracies [126]; 

hence, physics of failure approaches need to be investigated further by considering 

individual material properties and failure mechanisms of power module layer and 

interactions among themselves during power and thermal cycling. 
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Zhou et al. [127] proposed a novel method for reliability improvement of a full bridge, single 

phase inverter system by using a dual loop controller which includes temperature control 

and electric power control loops. The method aimed to adjust the carrier frequency of the 

driving signals. Digital implementation of field programmable gate array (FPGA) board based 

was used for verification and number of cycles to failure has been largely increased. IGBT 

chip temperature was decreased from 9°C to 0.5°C based on the proposed model. Different 

failure mechanisms accelerated by temperature and voltage of semiconductor device were 

studied by Qin and Bernstein [128] such as hot carrier injection (HCI), time dependent 

dielectric breakdown (TDDB) and negative bias temperature instability (NBTI). It was noticed 

that the activation energy and voltage acceleration parameter depend on stress 

temperature and voltage. Two new considerations were studied: first, a modified version of 

the Arrhenius model to model the temperature dependence of device lifetime at given 

voltage; second, a modified exponential model to model the voltage dependence of device 

lifetime at given temperature.  

Wang et al. [1] proposed a reliability and end of life study for a 2.3 MW wind power 

electronic converter. Selection of two power modules; namely 1.6 kA 1 kV IGBTs parallel and 

single 2.4 kA 1 kV IGBT were tested for their reliability aspects. It was investigated that the 

design principle mission profile and the topology of an individual device has a crucial effect 

of the overall reliability  

Arifujjaman [129] presented reliability analysis of the power electronic converters for grid-

connected permanent magnet generator-based 1.5 kW wind energy conversion system 

based on the semiconductor power losses. Different power electronic converter topologies 

namely intermediate boost converter, the intermediate buck-boost converter, the back-to-

back converter and the matrix converter were investigated. The main target of the study 

was to specify which power electronic converter yields the highest mean time between 

failures (MTBF) and reliability in terms of power losses under different wind speed 

operations. It was expressed that the efficiency and MTBF (4x104 h) of the intermediate 

boost converter was higher compared to other topologies. The most reliable device was 

found as rectifier while the least reliable one was the inverter (1.7x104 h).  

 Isidori et al. [130] proposed another comparative reliability study for a 3L-NPCC for a 10 

MW wind turbine equipped with a Permanent Magnet Synchronous Generator for five 
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different pulse width modulation drive methods. Simulink and PLECS simulation platforms 

were used to derive different modulation strategies namely sinusoidal pulse width 

modulation (SPWM) [131], optimal zero sequence injection [132], alternative zero sequence 

injection [133], conventional 60◦ discontinuous PWM and Alternative 60◦ Discontinuous 

PWM [134]. Among these five control methods, the Conventional 60◦ Discontinuous PWM 

showed the best thermal performance and the highest number of cycles for both the 

generator and the grid side converters. It was also concluded that the increment in the wind 

speed profile causes larger dispersion for the mean and fluctuation temperatures; hence, 

cycle lifetime of the converter largely decreases.  

Xie et al. [135] proposed new failure models for power electronic converters used for 2 MW 

wind turbines which consider the effects of the wind speeds by using multistate probability 

analysis method. The wind speed data was taken from Lauwersoog and Valkenburg wind 

sites in Holland. It was mentioned that the failure rate and wind speed curve are similar to 

those between the generator output power and wind speed and confirmed that wind 

speeds have significant impacts on converter reliability performance. The failure probability 

of the converters under the rated wind speed was 95% within one year, where this is 20% 

for the wind speed at the Valkenburg site and 37% at the Lauwersoog site. Also, as the rated 

speed gets smaller, larger failure rate for converters were investigated; however the effect 

of cut-in and cut-out wind speeds on the failure rate of WTPCS were very small. 

Wagenitz et al. [136] designed a power cycling test bench for the lifetime analysis and 

reliability management system of IGBT power modules converters for 1.5MW doubly-fed 

induction generators used in wind turbines. The test bench offered accelerated ageing of 

the power semiconductor devices under real load conditions with the phase legs operating 

at 1070 V dc-link voltage and allowing sinusoidal load currents up to 560A, at load 

frequencies from 0.1Hz to 13Hz with offering programmable load profiles. Temperature 

data is generated continuously according to the implemented load profile and software and 

hardware modelling was developed for online thermal monitoring.  

In order to verify theoretical load-profiles with data from the field applications, Denk et al. 

[137] proposed a concept to record all junction temperature cycles of an IGBT power 

module during its operation in a test vehicle. The recorded load of test vehicles was used to 

predict lifetime of IGBT power modules. A modified gate driver was used to determine the 
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temperature sensitive IGBT internal gate resistor by superimposing the negative gate 

voltage with a high-frequency identification signal. Then, an online version of the Rainflow 

Algorithm, which relates stress reversal cycles to streams of rainwater flowing derived by 

Matsuishi and Endo [138], was developed for temperature cycles calculation and this 

enabled real-time temperature measurement for an inverter. 

Arifujjaman et al. [139] presented a reliability analysis of the power electronic converters of 

both the permanent magnet generator (PMG) and wound rotor induction generator (WRIG)-

based small wind turbine generation systems. The PMG system included a rectifier, boost 

converter and a grid-side inverter while the later had a rectifier, a chopper and an external 

resistor in the rotor side with the stator directly connected to the grid. It was investigated 

that the failure rate for the PMG-based power electronic converter system was 1.9009×10-5 

and the MTBF was 5.2607×104 hours (≈6 years) where the failure rate for the WRIG based 

system was 9.3768×10-6 and MTBF was 1.0665×105 hours (≈12 years). In other words, the 

PCS of the WRIG based power electronic converter system illustrates higher reliability than 

the PMG based system.  

Another reliability study, was proposed by Kostandyan and Ma [18] for crack propagation 

failure mechanism of solders of a 1700 V and 3600 A IGBT power module manufactured 

with 24 parallel connected IGBT chips used in a 2.3MW wind turbine. First, order reliability 

method was used to define failure of each chip defined as 20% shrinkage of the total solder 

interconnected area under the chip, which defines crack length of 0.72 mm. Rainflow 

algorithm was used to the estimate temperature means and temperature variations. 

Palmgren–Miner rule [140] was used to calculate accumulated damage and to estimate 

reliability. This rule was also considered by Kostandyan and Sørensen [141] for deriving a 

reliability estimation method for an IGBT power electronic module. Based on the proposed 

model, a life prediction with crack movement was also described. Wang et al. [142] 

presented a reliability enhancement by integrating (liquid cooling structure in IGBT module. 

More than 50% junction to heat sink thermal resistance deduction was archived by direct 

liquid cooling. 

Condition monitoring is one effective method for enhancing reliability and improving device 

life time. Degradation process of a 400 A IGBT power module was monitored in a real time 

system by Watanabe et al. [143] under power cycling test. Acoustic tomography was used to 
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monitor the device chip temperature and reliability model was derived based on the 

obtained temperature profile.  

In the review study presented by Yang et al. [144] which investigates condition monitoring 

methods for power electronics, dominant failure mechanisms were described. The benefits 

and limitations of these techniques are discussed as follows; the understanding of the 

failure mechanisms and effects should be enhanced. Also, system terminal characteristics 

degradation without using sensors but within embedded in the module might be a realistic 

and promising approach regarding to sensitivity. A combined condition monitoring and 

measurement technique would be ideal with reliability modelling to estimate lifetime 

prediction and prognosis for systems in service.  

Another review study stated by Song and Wang [145] discuses that power electronic 

manufacturing perspective is effective at the beginning phase of system design and active 

thermal managements is effective on the existing hardware in terms of reliability 

enhancement. Active thermal management systems are designed to regulate steady state 

and transient thermal-mechanical stress in power electronic modules of operation. System 

parameters can be controlled such as switching frequency and load current regulations 

according to the maximum junction temperature to guarantee junction temperatures of all 

devices below a critical value.  

2.4.1 Reliability of ElectroThermal Performance of Silicon and Silicon Carbide Technologies 

 
Increased lifetime demands for PECs especially in renewable energy applications have 

necessitated deeper investigation into the reliability of such systems. Latest manufacturing 

technologies of IGBTs have led to thinner silicon- and trench-gated devices [146]. Negative 

temperature coefficient of collector-emitter voltage, VCE(sat,)  in punch-through (PT) created a 

high risk of thermal runaway when paralleling the devices. Another planar gate generation 

without n+ buffer layer was the Non-Punch-Through (NPT). Inspite of the positive 

temperature coefficient of VCE(sat), conduction losses increased due to longer channel which 

causes poor thermal properties.  

To overcome the downsides of the planar gate devices, vertical, trench gate technology has 

been developed [147]. Charge injection enhancement, reduced tail current at turn off and 

decreased power loss profiles were achieved by this technology [148],[149]. Since the 
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voltage drop over the channel is inversely proportional to the channel width and 

proportional to the length of the channel, lower conduction losses were achieved by 

shortening the channel [150]. For instance, trench gate devices can provide around 30% 

power dissipation deduction for 600 V IGBTs, typically optimized at 20 kHz switching 

frequency, in DC-to-AC inverter applications [151] [152]. 

Further improvements were achieved by a field stop (FS) region which is added to thin-

wafer NPT device. This layer stops the electric field and allows high breakdown voltage 

through thinner wafer[153]. It results in faster switching capabilities, higher current density, 

as well as lower saturation collector to emitter voltage and 40% reduction in the conduction 

losses. Electro thermal physics-based model for the FS was developed by Kang et al [154]. 

Practical studies were proposed by Forsyth et al. [155] to parameterise a physical IGBT 

model, for three generations of IGBT, using double-pulse switching test, at temperatures 

extending down to 50°K.. Effects of different parasitic circuit characteristics of NPT and FS 

topologies have also been presented by Bakran et al.[156]. More IGBT cells are used with 

thinner silicon for even lower on-state voltage and improved switching characteristics. 

Higher switching speed is leading to lower switching losses but causes EMI whilst keeping 

the turn on losses low due to gradual change in voltage with respect to current [157]. 

Thermal profile improvement and monitoring is one essential reason of technological 

improvements. Comparison of junction temperature evaluations in IGBT modules in [158] 

[159] as well as the measurement and modelling of power electronic devices at cryogenic 

temperatures have been studied in [167] . Characterization of high-voltage IGBT module 

degradations under PWM power cycling test at high ambient temperature has also been 

assessed in [161].  

 

A number of FS topologies have been produced by different manufacturers to maximise 

efficiency by optimizing carrier concentration; to minimize overall losses and operating 

temperatures by increased channel width and cell density. For instance, high resistivity 

substrate and finite drift layer thickness requirements were solved by super-junction field 

stop (SJFS) IGBTs [162] with charge balance concept. Soft-Punch Through (SPT) IGBTs [163] 

with positive temperature coefficient were developed based on same concept. Integration 

of freewheeling diodes, within IGBTs can also be counted as major improvement by use of 
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shorted-anode (SA) technology for reverse current conduction feature [164]. In FS IGBTs, FS 

layer provides enough breakdown voltage at backside structure. Hence, it has higher 

switching speed capacity and lower switching losses. In literature, Chibante et al. studied 

physics based models for NPT [165] and PT IGBTs [166] for hole/electron distribution based 

on ambipolar diffusion equation . Takaishi et al. [167] studied analytical formulation turn-off 

waveform for advanced trench gate IGBTs under high current density condition for 

calculating trade-off curve between turn-off loss and saturation voltage. Ronsisvalle et al. 

[168] proposed an experimental characterization for the input capacitance of FS Trench 

IGBTs. In contrast, accurate electro thermal modelling and temperature monitoring of 

IGBT’s depend on collector tail current and collector to emitter saturation voltage. Thus, 

power sensing elements have to be coupled within electro thermal model accurately. Tang 

et al. [169] proposed FS switching transient model for simulating the turn-off tail current 

switching transient of IGBT at different temperatures. It was analyzed that base excess 

carrier lifetime has a great influence on the temperature characteristics of switching 

transient and thermal behavior greatly changes during on and off times. Dynamic avalanche 

on PT IGBTs to locate active areas of chip region and thermal analysis using FE simulations 

were studied by Lefranc et al. [170]. Yet, parasitic elements of IGBTs such as carrier mobility, 

excitation concentration and trans conductance vary with temperature [169]. Hence the 

performance of IGBTs in terms of on-state voltage, tail current, switching speed and lifetime 

are affected [171]. Many studies present FE models of power modules for thermal 

impedance characterization and derive thermal models based on the generic current 

signals. In fact, limited amount of data is supplied by the manufacturer datasheets for the 

switching characteristic although the listed properties above are temperature depended. 

This can cause vital changes in the electro thermal performance of IGBTS based on the 

application type they are used with [172]. A reliability study presented by Khosroshahi et al. 

[173] showed that IGBT technology was used and operating modes of the converter matter 

on overall life time.   

Recent studies are taking places for fabrication of high performance SiC MOSFET which 

reduces power losses especially at high carrier frequencies [174]. Analytical formulation of 

injection capability of SiC device has been proposed by Lee and Huang [175]. Degradation 

characteristics and features of SiC devices have been presented in [176] [177].  
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Takao and Ohashi [178] proposed a novel power loss estimation method based on an 

analytical model of Si-IGBT and SiC diode pairs to investigate suitability of coupling of two 

technologies. Power losses of the tested devices were calculated to investigate the upper 

limitation of the switching frequency and the method was validated by comparing the 

calculated and measurement results. By using the proposed method, the high voltage 4.5-kV 

Si-IGBT was found appropriate at 2.9-kHz to be used with the SiC diode. 

Zhong et al. [179] presented a prototype development of an 800 kHz, 800 V output boost 

dc–dc converter module which integrates SiC MOSFET and SiC Schottky diode die. An FE 

model of the converter was also studied by using ANSYS simulation. The experimental and 

simulated junction temperatures were found approximately equal to each other (≈320 °C) 

when the total SiC MOSFET chip loss was 147 W. It was observed that the solder layer 

temperature was 198°C, which indicates that the solder layer was completely molten. This 

proved that the reason for the thermal resistance increment is gradual after the junction 

temperature exceeds 180°C. As a result, it was proposed that high frequency gate driver 

capability at temperatures greater than 300°C for needs to be obtained to enable SiC power 

devices operating beyond 320◦C junction temperature. Regardless promising material 

properties of SiC, Si devices can still be more reliable and economically efficient based on 

the current rating and switching frequency of a specific application. 

2.4.2 Lifetime Performance and Thermal Reliability of PECs in Wind Energy Applications 

 
Wind energy has become one of the fastest developing renewable energy technologies. The 

performance and lifetime of these systems highly depend on PECs. They suffer from 

reliability related issues caused by variable and unpredictable wind and other natural effects 

[180]. Due to their ease of driving and higher frequency switching capacities compared to 

other semiconductor devices, insulated gate bipolar transistors (IGBTs) found their wide 

applications in PECs. Malfunctions of PECs cause failures to electrical/control systems within 

wind energy systems and contribute to approximately 41% of the total causes [181]. In 

literature, Senturk et al. [182] studied a thermal power capability determination algorithm 

for different multilevel topologies consist of press-pack IGBTs of grid side wind system 

converter. Blaabjerg  et al. [183] presented another case study for providing life time 

prediction and temperature cycling analysis of PECs wind energy systems. DC link voltage 
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adaption is also one of the promising choices for PECs in terms of reliability and life time 

extension [184]. In renewables either in solar, [185] or wind [186] systems, controlling the 

DC bus voltage is already important for maximum power point tracking (MPPT), avoiding 

distorted energy generation and grid interfacing. El-Sousy et al. [187] studied a DC link 

voltage regulation model for a grid connected FS wind system in order to provide an MPPT 

technique. Bekakra and Attous [188] also developed a DC link voltage control method for a 

back-to back converter connected to a variable speed wind turbine. In these control 

strategies, the main aim is to keep DC voltage steady. However, it is also possible to operate 

these systems with dynamic DC link voltage as discussed by Dayarante et al. [189]. Lower DC 

link voltage can decrease the power losses [190], [191]. However, it would also cause large 

fluctuation and hence larger thermal in the grid side converters. Especially, this should be 

avoided at low switching frequencies for protecting the utility grid inverter from highly 

distorted AC signals.  Monitoring the DC link current and voltage ripple analysis proposed by 

Pei et al. [192] or constrained optimal current control adoption method studied by 

Lemmens et al.[193],[194] can be two options for protecting the generator side converter 

from such worse case scenarios. However, based on the grid power requirements, operating 

at constant switching frequency would cause higher switching losses due to the higher 

current injection to grid side if DC link voltage is not sufficient. Therefore, controlling the 

switching frequency becomes crucial for the dynamic DC link voltage adaption methods. 

Recently, Andresen and Liserre [195] analysed the thermal cycles of the junction 

temperature in dependence of current and switching frequency and they derived a 

switching utilization method for an electrical vehicle by using space vector modulation 

(SVM).  

Honsberg and Radke [196] studied the effect of the influence of power factor variation on 

the thermal behaviour of the IGBT chips located on a three level inverter device used in 

power factor correction systems. It was stated that each chip is affected by the power factor 

individually. On the other hand, the origin of power loss is changing i.e. while power factor 

is 1, lower chip mainly heated by conduction loss and when the power factor is -1, total 

losses are due to the combination of conduction and switching losses.  

Ma et al. [197] studied the reactive power influence on the thermal cycling of power devices 

in grid-connected inverter for 10 MW wind turbines. By controlling the reactive power 
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circulated among paralleled converters, they proposed a new method to stabilize the 

thermal fluctuation of the associated power electronic converters during wind gusts. To 

achieve that, reactive current during the lower wind speed of a wind gust was injected and 

the junction temperature fluctuation in the most stressed devices was stabilized. 

Ma et al. [198] also extended their studies to increase the lifetime of IGBT and diode chips 

during wind speed variations. A control method was derived to relieve the thermal cycling 

of, by circulating reactive power among the parallel power electronic converters. The 

amount of reactive power is adjusted to limit the junction temperature fluctuation in the 

most stressed devices. It was discussed that the technique is needed to be further 

investigated for adopting the grid requirements. 

 

2.4.3 Comparison of the MPPT Methods and Lifetime of the PECs in PV Energy Systems 

 

PECs are widely used in solar PV applications. The efficiency of PV systems is highly 

influenced by the irradiance level and load variations. Therefore, PECs are embedded as 

DC/DC converters within solar energy applications to ensure extracting the maximum power 

under different operating condition. This is known as Maximum Power Point Tracking 

(MPPT) and is a control strategy which can be achieved via a number of methodological 

approaches. Two most popularly algorithms are present in research literature and industry; 

Perturb and Observe (P&O) [199] and Incremental Conductance (IC) [200] methods. Many 

studies have been proposed in order to improve the existing MPPT methodologies in 

literature in terms of efficiency, tracking speed and MPPT accuracy. Zhang et al.[201] 

proposed a MPPT method which uses a sliding mode control strategy by controlling the duty 

cycle of a buck converter and it achieved efficiency improvement of 5%. Moradi and Reisi 

[202] studied another algorithm, first by setting point calculation to approximate the MPP 

based on the open circuit voltage [203]; then by using a fine tuning loop based on P&O 

method. Quoc et al. [204] also proposed a similar combinational MPPT algorithm by 

employing the IC. Kabalaci et al. [205]  improved the P&O algorithm with extended PI 

controller for a hybrid solar and wind energy system. Maranda and Piotrowicz [206] used 

recorded real-life irradiance data to study static and dynamic performance of P&O algorithm 

by using a narrower time resolution. Haroun et al. [207] developed a PV system consisting of 
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two cascaded boost converters and derived a design oriented averaged model including 

MPPT controller which can achieve 95% efficiency.  

Comparison among MPPT algorithms was also widely studied. Liu et al. [208] compared the 

conventional P&O method with an improved version and 93% efficiency was achieved while 

this was 72% for the conventional one. Houssamo et al. [209] presented experimental 

comparison between P&O and IC algorithms for maximizing the output power from a PV. 

Same algorithms were also compared in terms of PV voltage ripple, dynamic response and 

experimental tracking factor (TF) by using PV systems in [210] attached to boost and in [211] 

to a buck converter. Suitability of employment of the other DC/DC converters such as Buck-

Boost and Cúk converters in P&O and IC algorithms for MPPT purpose was also compared in 

[212], [213]. Azevedo et al. [214] studied the effects of the improvements on both 

algorithms such as adjustment of the sampling rate, perturbation size etc. Ishaque et al. 

[215] on the other hand stated that IC method is slightly better since it gives 98.5% MPPT 

efficiency compared to 98.3% of P&O, based on a study conducted with a buck–boost MPPT 

converter attached to a PV array simulator. It was also observed that the performance of IC 

is highly depended on its step size, especially at low insolation levels. Dash et al. [216] 

proposed that although the P&O algorithm is easier to implement, IC is more accurate 

under rapidly changing irradiance conditions. Other MPPT techniques were compared in 

[217] based on their control variables and used circuitry for a PV system. Digital signal 

processing (DSP) controller feature of dSPACE real time interface (RTI) system is widely used 

in literature for implementing MPPT algorithms and to provide duty cycle control signal for 

PECs employed within PV systems. For instance, Mahdi et al. [218] implemented an 

improved P&O algorithm to ensure optimal operating points of a PV system using dSPACE 

DSP controller. Noman et al. [219] [220] presented another MPPT facility by using intelligent 

fuzzy logic controller designed in Simulink and operated within a PV system by using dSPACE 

1104 software. Mathematical equations which describe the nonlinear characteristics of a PV 

panel to design a MPPT can also be implemented by using dSPACE as presented in [221]. 

However, in the literature, to the best knowledge of the authors of this article, no 

comparative study has been presented about the electro thermal effects of the MPPT 

algorithms on the DC/DC converters employed within PV systems, although temperature 

influence and importance of the electro-thermal design were mentioned in [222] ,[223] and 
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an improved thermal profile for PV inverters was assessed by power limit control method 

within P&O method in [224]. Most of the studies focused on comparing the tracking 

efficiency, signal ripple, speed response, sensitivity to environmental conditions, ease of 

hardware and software implementation and converter suitability among MPPT methods. 

However, life time of the DC/DC Converter which operates the MPPT has vital effect on the 

reliability of the solar PV application which is embedded. Operating principles of each MPPT 

algorithm also differ from each other. This produces different power loss profiles which 

cause dissimilar operating temperature amplitude and fluctuations for PECs. Therefore, the 

operational difference characteristic is essential to be explored for reliability assessment 

among MPPT algorithms.  

 

2.5 Summary and Research Question 

 
From the above mentioned research work, it was noted that reliability of the power 

electronic devices is one of the most significant factor which affect the overall lifetime of 

the renewable energy systems. Many techniques have been proposed to accurately monitor 

the thermal profile of these devices and predict the remaining lifetime. New material types, 

cooling component improvements and lead-free soldering techniques are highlighted 

examples of possible reliability extension methods in literature. Thermal stress is also 

defined as the main cause of the fatigue occurring and eventual failures between the 

bonded layer materials. However, few publications appear in literature which concerns to 

decrease these stresses by optimising the power losses of power electronic converters. 

Therefore, this research work will focus on developing efficient control algorithms to 

minimize the thermal stress; hence to increase their life time. Also, new thermally high 

conductive material types such as SiC for IGBT chip manufacturing is further investigated in 

order to achieve less thermal stress profiles for semiconductor devices. To achieve this aim, 

the following objectives are executed; 
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 A three dimensional finite element model (FEM) is implemented for accurate 

estimation of thermal profile of a power module. Based on the thermal characteristic 

obtained by the FEM, an electro thermal model was developed to predict the 

temperatures of each layer of the power module that cannot be measured during 

service. 

 

 Recent topological improvements have led design of new devices called Silicon 

Carbide (SiC) MOSFETs which are also being used as switching elements for PECs. 

However, no rigorous investigation has been carried out to assess the effects of 

design and construction techniques on thermal behaviour under different operating 

and environmental conditions in literature. A detailed investigation into the 

performance of those switching devices with a focus on their reliability and thermal 

characteristics was studied and compared to the three types of differently 

manufactured insulated gate bipolar transistors (IGBTs). Namely, punch through 

(PT), non-punch through (NPT) and field stop (FSTP) silicon trench gate technologies. 

 
 

 Based on the surveyed research work, thermally induced effects, e.g. thermal stress 

caused by temperature fluctuations, of the dynamic DC link operation have not been 

thoroughly analysed in literature. This research offers a new switching frequency 

driving scheme, based on the optimised DC link voltage requirements to decrease 

thermal stress across power electronic modules.  

 

 Most of the studies in literature focused on comparing the tracking efficiency, signal 

ripple, speed response, sensitivity to environmental conditions and ease of hardware 

and software implementation and converter suitability among MPPT methods of PV 

systems. However, life time of the DC/DC Converter which operates the MPPT has 

vital effect on the reliability of the solar PV application which is embedded. 

Operating principles of each MPPT algorithm also differ from each other. This 

produces different power loss profiles which cause dissimilar operating temperature 

amplitude and fluctuations for PECs. Therefore, the operational difference 

characteristic is essential to be explored for reliability assessment among MPPT 
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algorithms. This work investigates the effects of IC and P&O maximum power point 

tracking algorithms on thermal stresses and reliability of PEC modules. 

 
 

 Adjusting the switching frequency is one of the modelling techniques for power loss 

and thermal stress reduction as discussed in literature. To expand these models 

based studies, an experimental validation and accurate FE modelling for a three 

phase inverter power module is implemented and examined under various operating 

conditions. The model is experimentally validated via dSPACE real time 

implementation of actual inverter and with a physical permanent magnet generator 

based wind turbine system test rig. 
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3.1 Overview 

Implementation of an electro thermal, 3D finite element model for a multichip single IGBT 

power module is presented in this chapter. The model was built with COMSOL finite 

element package.  Based on the thermal profile extracted from Finite Element (FE) analysis, 

a compact electro thermal model was implemented in discrete z-domain with 

MATLAB/Simulink for continuous temperature estimations over each layer based on the 

heat interactions and coupling effect across IGBT/diode chips. 

3.2 Physical and Electrical Properties of IGBT/Diode Power Electronic  

 
Power semiconductor devices are the essential components of power electronic systems 

(PECs), used for renewable energy conditioning. The Insulated Gate Bipolar Transistor, IGBT, 

is one of these components that can be operated as a switching element for a power 

electronic conversion unit. The first IGBT was demonstrated by Baliga in 1979 [225].  After 

comprehensive improvements, it was commercially introduced in 1983 [225]. The symbol 

and the equivalent circuit of IGBT device are shown in the Figure 3.1 (a) & (b). 

 

Figure 3.1 (a) Simplified Equivalent Circuit and (b) Circuit Symbol of IGBT [226] 

 

The device combines easy driving advantages of MOSFET and the low on-state voltage of 

bipolar transistor technologies [227]. The basic construction is very similar to a MOSFET but 

with an extra P+ substrate layer, called collector and with an emitter terminal instead of 

source. The cross-sectional view of an IGBT device with locations of the equivalent devices 

can be represented as in Figure 3.2. 

(a) (b) 
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  Figure 3.2 Cross-Sectional view of an IGBT 

 

The physical working principle of the device is mainly divided into three sections [228]. First, 

when negative voltage is applied on collector to emitter, there are no current flows through 

the device for the lower junction, J1. This is called the reverse blocking mode. The forward 

blocking mode on the other hand is the operation when positive voltage is applied to the 

collector and the gate to emitter voltage (Vge) is equal to zero. In this case, the upper 

junction, J2, is reverse biased. When a positive voltage higher than the threshold voltage is 

applied, the device is in the on state operation. This leads the p region to be inverted to an n 

channel then electron flow starts through n region of emitter to n drift region J1 and J2. The 

more positive voltage is applied, the more injected holes concentration is processed [228]. 

This operation is limited by the capacity of the n channel and stops when collector to 

emitter current reaches to the saturation point where active region begins. The 

characteristics of voltage (VCE) vs current (IC) through device explained above are shown in 

Figure 3.3, below. 

         

Figure 3.3 (a) Ic vs. Vce & (b) Ic vs. Vge characteristics of IGBT 

 

Dynex Power Electronic Module, DIM1200ASM45, shown in Figure 3.4 (a); was studied and 

modelled in this chapter which is applicable for wind energy applications. Circuit 

(a) (b) 
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configuration of the device is shown in Figure 3.4 (b). It is manufactured as a single switch 

IGBT/Diode module with 24 IGBT and 12 diode chips. It has maximum collector current of 

1200 A and collector-emitter voltage of 4.5 kV [229]. This device was particularly chosen 

since it is suitable for both single and three phase applications and can be tested in 

laboratory environment as a switching element by itself only. 

         

Figure 3.4 (a) Physical view (b) Circuit configuration of power module DIM1200ASM45  

 

The built purpose of the antiparallel freewheeling diodes is similar to conventional diode 

scheme as it provides a path for reverse current to bypass the IGBTs. This connection brings 

the advantages of bidirectional switching ability to avoid damages caused by reverse 

currents [230]. Figure 3.5 represents a scheme of the internal view of the power module. 

 

Figure 3.5 Internal view of DIM1200ASM45 

 

Current and voltage characteristics of IGBTs and diodes in DIM1200ASM45 are as shown in 

Figures 3.6 a & b at 25°C and 125°C [229]. All chips in the module are in parallel. Hence, IGBT 

chips temperature increases at the same time when the device is on; and same for the each 

diode chip at off condition by sharing the total current through the internal resistance of the 

device. Thus, mean current flowing in each individual chip, ichip, can be represented as [104]; 

                                                           N

ti
ti

load

chip

)(
)(                                                                  (3.1) 

(a) (b) 
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where iload is the total device load current and N is the number of chips. Based on the eqn. 

1.1 current vs. voltage characteristics for each chip can be depicted as shown in Figure 3.6 

(c) & (d). It can be observed that as temperature inclines from 25 °C to 125 °C, voltage drop 

across the module increases when the current level passing through the device is identical. 

 

  

        Figure 3.6 Current and voltage characteristics of a) IGBTs, (b) Diodes and (c) & (d) for each individual chip  

(  T=125 °C,  T=25 °C) [229] 

Current and voltage characteristics of the device presented in Figure 3.6 are used to define 

the conduction power losses in the following section. In order to calculate the overall losses 

as a function of temperature, look up tables (LUTs) are used in Simulink. 

3.3 Energy and Power Loss Modelling  

Developing a proper electro thermal model strictly requires accurate power loss calculation 

and integration of the heat generation represented by internal self-heating and cross 

coupling effects across each chip and layers underneath. During recovery, heat generation 

also occurs among neighbour and adjacent layers due to the reverse current over diode 
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chips which also affect the mean temperature. Power losses with respect to the current and 

voltage signals are described schematically in Figure 3.7.  

 
Figure 3.7 Characteristics of IGBT and Diode energy losses with respect to voltage/current and switching behaviour 

 

During switching process, the stepper change in di/dt and dv/dt causes the total switching 

losses which lead to increase in the temperature through the device. Switching energy 

losses for a single power electronics module, over one period of switching processes, is 

divided into Turn-on and Turn-off losses, ESW,ON and ESW,OFF, for the IGBT. The instantaneous 

switching power losses, PSW,IGBT of IGBT can be calculated as[104],[14]: 

 , ,,
( ) . ( ( )) ( ( )) SW ON C SW OFF CSW IGBT S

P t f E I t E I t
 

(3.2) 

where Ic is the IGBT collector current and fs is the switching frequency. The average 

switching power loss of IGBTs, PSW,IGBTAV can be expressed as the integral of instantaneous 

power losses as: 

                

 
1/

, , ,

0

( ( )) ( ( )) 
fo

SW IGBTAV o S SW ON C SW OFF CP f f E I t E I t dt

 

            (3.3) 

where fo is the fundamental frequency. Similarly, diode instantaneous recovery power 

losses, PSW,DIODE, can be denoted by means of recovery energy, ESW,RR, as: 

                                  , ,
( ) . ( ( ))

SW DIODE S SW RR F
P t f E I t

    
 (3.4) 
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where IF is forward current across diodes. Average recovery power loss can be derived as: 

     
1/

, ,

0

( ( )) 
fo

SW DIODEAV o S SW RR FP f f E I t dt
 

(3.5) 

Average switching power losses, PSW,AV, over IGBT and diodes within total number of cycle, 

N, in each fundamental frequency at nth switching period can be denoted as  [104], [16]: 

               
, , , ,

1

( ( )) ( ( )) ( ( ))



    
N

SW AV o SW ON C SW OFF C SW RR F

n

P f E I n E I n E I n

 

   (3.6) 

Total conduction loss of power module is composed of the total IGBT/diode chips 

conduction losses, PCON,IGBT and PCON,DIODE, respectively. The instantaneous conduction loss, 

PCON can be derived as: 

       , ,
( ) ( ) ( ) ( ( )). ( ). ( ) ( ( )). ( ). ( )   

CON CON IGBT CON DIODE CE C C I F F F D
P t P t P t V I t I t D t V I t I t D t   (3.7) 

where, VCE is the collector-emitter saturation voltage of the IGBT. Vf and If are the forward 

conduction voltage and current of the diode, respectively. DI is the conduction time of the 

IGBTs and DD for the diodes. Average conduction power loss, PCON,AV can be expressed as the 

integral of instantaneous power losses as [2–28]: 

 
1/ 1/

,

0 0

( ) ( ( )). ( ). ( ) ( ( )). ( ). ( )   
f fo o

CON AV o CON o CE C C I F F F DP f P t dt f V I t I t D t V I t I t D t dt

 

 (3.8) 

Average switching power losses, PCON,AV, over IGBT and diodes within total number of cycle, 

can be derived as: 

 ,

1

( ( )). ( ). ( ) ( ( )). ( ). ( )



 
N

CON AV o CE C C I F F F D

n

P f V I n I n D n V I n I n D n

  

     (3.9) 

Similar to the current characteristic of the device, energy loss distribution over each IGBT 

chip is approximately 1/24th of all IGBTs and 1/12th  of the module diode losses for diode 

chips as [104] and [103] discussed. Hence, switching and conduction losses of power module 

and scaled down losses for individual chips can be represented as shown in Figures 3.8 & 

3.9, respectively.  
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Figure 3.8 IGBT & Diode switching energy losses for (a) module (left), (b) for individual chips (right)  

(  T=125 °C,  T=100 °C,  T=80 °C,  T=50 °C,  T=25 °C) 
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As it can be shown in Figure 3.8 b, the losses for IGBT chips are 1/24th of overall module 

losses (Figure 3.8 a) where these are 1/12th for diode chips. Also, as the temperature 

increases, the amount of the losses inclines. Different than the most of the power loss 

models in literature [91]–[94], individual chip losses data were used to implement the 

switching losses in LUTs. Those previous studies could not provide an accurate 

representation of losses of the power modules since parallel die chips have individual power 

loss profiles. This is because of the temperature depended power loss occurring is different 

for each chip, based on their geometrical position on the power module (coupling effect). 

 

Figure 3.9 IGBT and Diode conduction energy losses for (a) module & (b) individual chips  

(  T=125 °C,  T=25 °C) [229] 
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Overall and individual chip conduction losses are shown in Figure 3.9. As it can be depicted, 

since the current level is decreased 1/24th for each IGBT and 1/12th for each diode chip, the 

power losses are also declines by the same ratio. Power loss model is shown in Figure 10.  

 

Figure 3.10 Sample Power Loss model for a single IGBT chip 

In the power loss model, instantaneous switching and conduction losses are computed by 

LUTs based on the current/voltage characteristics of each chip defined in Figure 3.6 with 

respect to the instantaneous temperature. For instance, switching OFF losses data for IGBT 

chips (Figure 3.8 b) which was built in LUTs can be as seen in Figure 3.11. 

 

 

Figure 3.11 Scaled switch OFF losses for one single chip in Look up Table 

Total power loss for each active device is calculated in each switching cycle. Switching 

power loss calculation is triggered by the edge detector before and after the switching 

condition durations for IGBT and diode chips. In order to produce actual power loss 

behaviour (seen in Figure 3.7), switching ON and OFF losses are triggered in turn on  and 

turn off [229] times only. These losses are added to the conduction losses to find the total 

power losses. The instantaneous total losses are then averaged by using a weighted moving 

average block in order to avoid the undesired temperature ripples caused by small ON and 

OFF time transients [97].  The operation is controlled by sub models that were built with 

control blocks available in Simulink.  
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3.4 Thermal Modelling Methodology for IGBT/Diode Module 

 
Heat or thermal energy is created by the motions of molecules and atoms [231]. Increase in 

motion of the atoms and molecules lead more heat or thermal energy created by any 

material. There are three different heat transfer mechanisms where the heat is transferred 

from one place to another; Conduction, Convection and Radiation [232]. Conduction is 

energy transport due to molecular motion and interaction [232]. In other words, it is the 

transfer of heat between substances that are in direct contact with each other. It is 

proportional to the temperature gradients in a system and is formulated by Fourier’s law as: 

x

T
kq



                                                            (3.10) 

where 𝑞  is the heat energy flow density, 𝑘 is the thermal conductivity, 
𝝏T

𝝏𝑥
 is the 

temperature gradient. The materials that have higher conductivity can transfer the heat 

rapidly. Convection is the energy transport when groups of the molecules move from one 

hot to another cold medium by fluid flow. It generally happens between solid and fluid 

boundaries. It is determined by Newton that the ratio between total heat transfer and 

surface area is proportional to the temperature difference between a solid and fluid 

material. It is defined as: 

                                                                 )(
fs

TThq                                                                 (3.11) 

where h is the heat transfer coefficient, 𝑇𝑠
  and 𝑇𝑓 are the temperatures of solid and fluid 

materials, respectively.  Radiation is the heat transferred through wave energy. The waves 

are called electromagnetic waves since the energy travels in electric and magnetic waves. 

The net heat radiation rate is proportional to the fourth power of the absolute material 

temperature and can be expressed as: 

                                                                )(
44

hch
TTAq                                                             (3.12) 

where 𝑇ℎ and 𝑇𝑐 are the hot and cold plates, 𝐴 is the area of the object, 𝜀 is the emissivity of 

the material and the 𝜎 is the Stefan-Boltzman constant. The thermal characteristics of each 

layer affected by heat flux must be determined precisely for an accurate thermal design of 

any semiconductor power electronic device. The heat diffusion equation can be used to 

describe the distribution of heat flux through any material as a function of position and 



Electro Thermal Modelling of Power Electronic Modules 

 

 

54 

 

material properties. It can be used to give a solution for temperature variations of a defined 

region in the time domain caused by conduction heat transfer as; 

 

where T is the temperature, k is the thermal conductivity, c is specific heat capacity,  ρ is the 

mass density and q is the rate of generation of energy per unit volume [231]. A simplified 

form of eqn. 3.13 can be derived as in eqn. 3.14 by using Laplace transform to solve the heat 

distribution within the power module as: 

                                                       02

2

2

2

2

2

)( TsT
z

T

y

T

x

T
D 














                                              (3.14) 

 

where D denotes the diffusion coefficient, k/ρc, T is the Laplace transform of the 

temperature and T0 is the initial temperature. The thermal resistance Rth and capacitance Cth, 

are functions of the material properties, are derived from eqn. 3.13 as; 

                                                                                kA

l
R

th
                                                                                           (3.15)          

                                                                           lAcC
th

...                                                                                     (3.16) 

 

where l is the length and A is the cross-sectional area of a heated path. (Please refer to 

Appendix for electrical and thermal description of resistance and capacitance by means of 

one dimensional heat diffusion equation for thermal and transmission line equation for 

electrical circuits). 

3.5 Definition of Thermal Heat Path  
 
Thermal impedance represents the description of the system behaviour in terms of 

temperature. In order to estimate this identity, a constant heat source is applied to a 

material and heated until the steady state temperature is reached. Then, the ratio of the 

difference between the initial (Ts) and final temperature (Tf) to the applied total heat power 

(Po) gives the thermal impedance. The thermal impedance can be represented as: 

                                                                   
0P

TT
R

sf

th


                                                             (3.17) 
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It leads to estimate junction temperature, Tj, of a semiconductor device when any variable 

input heat source (i.e PWM, Sinusoidal) is applied. It can also be measured practically in the 

cooling operation when an externally applied power is switched off and the device is left to 

cool down until reaching to the ambient temperature. Heating and cooling phases can be 

seen in Figure 3.12.   

 

Figure 3.12 Heating and cooling operation of a solid material 

 

Internal structure of typical power module and identified thermal impedance parameters 

are shown in Figure 3.13. Each device on the module consists of several layers. Each of them 

has different material properties; hence has different coefficient of thermal expansion. 

When heat is generated among these layers, deformation occurs due to the different 

expansion generation between these bonded layers, where eventual cracks occurs. 

 

 

Figure 3.13 Internal Structure of a semiconductor device with thermal Impedances and temperatures identities 
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The junction temperature, Tj, and the heat sink temperature, Th, can be represented as 

shown in eqns. 3.18 and 3.19, respectively. In practice, the operating junction temperature 

has to be between the maximum and minimum allowed rating specified in datasheets, even 

in the overload conditions. 

where Ta is the ambient temperature. 

 

3.6 Cauer and Foster Thermal Networks  

 

To represent the transfer function for each individual material, two commonly known 

thermal equivalent circuits, Cauer [56] and Foster models [57], can be used. The Cauer 

network has the advantages of describing the temperature distribution between the actual 

physical layers (die, solder, substrate, etc.) as shown in Figure 3.14. Each RC element 

represents the thermal resistance and capacitance of each layer. Foster network, on the 

other hand has cascaded mathematical form with parallel connected thermal resistance and 

capacitances as shown in Figure 3.15. Each RC element does not represent actual thermal 

identity of any layer [233]. The equivalent response has physical meaning for the junction 

layer, only. 

Rth,1

Cth,1

Rth,2

Cth,2 Cth,n

Rth,n

 
Figure 3.14 Equivalent thermal circuit of Cauer Network 

 
The equivalent thermal impedance can be extracted for Cauer network as: 
 

   𝑇ℎ =     𝑇𝑎 + (𝑃𝑙𝑜𝑠𝑠 𝑥 𝑍𝑡ℎℎ𝑎)                                                         (3.19)                                                 

   𝑇𝑗 =     𝑇ℎ + 𝑃𝑙𝑜𝑠𝑠 ( 𝑍𝑡ℎ𝑗𝑐 + 𝑍𝑡ℎ𝑐ℎ)                                                   (3.18)                                                 
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Figure 3.15 Equivalent thermal model Foster networks   

 

Transient thermal impedance for each component with Foster can be represented as follows:         
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where;                                                   thth
CR                                                                                        (3.22) 

By taking the inverse Laplace transforms of eqn. 3.21, Zth can be written in time domain as; 
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For n number of circuits, the total thermal impedance can be extended as: 

 

                           111
)('

,','

,'

2,'2,'

2,'

1,'1,'

1,'










nthnth

nth

thth

th

thth

th

th CsR

R

CsR

R

CsR

R
sZ                        (3.24) 

 

The data sheets provided by producers [229] contain thermal impedance information of the 

whole module based on the Foster network. Hence, conversion between Foster to Cauer 

network was studied by researchers [76], [78] in order to estimate actual layer dimensions to 

implement 3D FEM models. However, as stated by [234], this approach cannot produce the 

layer dimensions precisely since the thermal information supplied is only mathematical 

approximation form and does not have any physical meaning.  

On the other hand, transformation of the thermal parameters from Cauer to Foster form is 

useful as it can contain each physical layer characteristics. Since the Foster for is a 

combination of parallel RC components, reduced order equivalences can be designed easier 
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compared to the Cauer form.  As a part of this research, a new conversion algorithm from nth 

order Cauer to Foster model is derived. (Please refer to Appendix for the derived algorithm of 

the transformation). An example, two layered (two RC components) Cauer to Foster 

conversion can be solved analytically as follows. The equivalent impedance for two layer 

Foster model is: 

                              )''''(')''''(1

)''''''(''
)('

2121
2

22211

22112121

CCRRsRCRCRs

CRRCRRsRR
sthfZ




                                       (3.25) 

 
and equivalent impedance for two layered Cauer is: 
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                                          (3.26) 

 
 
Given the actual physical layer dimensions and material properties, parameters R1, R2, C1, C2 

of Cauer thermal network can be calculated from eqns. 3.15 and 3.16. Since it is desired to 

estimate equal response from the both configurations by equating numerators and 

denominators of eqns. 3.25 and 3.26 lead following solutions as; 
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221121
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221                                            (3.27) 
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                                                       ''
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RR  d                                                        (3.30) 

 
By eliminating the eqns. 3.27 to 3.30, the solution eqn. 3.31 is derived as; 
 

                                  0)()4()4(
22222

 aabdcdcddbxbcx                                  (3.31) 

 
 

The solutions x1 and x2 are the thermal resistance parameters, R2' and R1' of the quadratic 

eqn. 3.13, respectively. By knowing the two unknowns R2'&R1', direct elimination between 

eqn. 3.29 and eqn. 3.30 should lead to find two unknown thermal capacitances, C2' and C1'. 

(Please see Appendix 2 for Analytical derivation of converted parameters for validation) 
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3.7 Heat Transfer and Thermal Modelling Implementation in Simulink  
 

In order to verify the proposed Cauer to Foster transform, heat transfer through one single 

chip was initially modelled with electrical circuit blocks of Simulink. Based on the actual 

dimensions of the internal layers (i.e. Silicon die, Die solder, baseplate) and their physical 

properties, one directional, 8th order thermal model was generated for a single IGBT chip 

and the layers underneath as shown in Table 3.1.  

 

Table 3.1: Physical Dimensions of layers of the DIM1200ASM45 Power Module  

Layer 
Physical Dimension Physical Property 

Length (mm) Height (mm) Width (mm) ρ(kg/m3) k (W/mK) c (J/kgK) 

Silicon, Die  13.55 0.375 13.55 2330 153 703 

Solder 13.55 0.05 13.55 7360 33 200 

Copper, Cu 16 0.3 45 8850 398 380 

AIN  50.725 1 46 3300 180 750 

Copper, Cu 58 0.3 49.3 8850 398 380 

Solder  58 0.175 49.3 11300 35 129 

Baseplate 190 5 140 3010 180 741 

Grease 190 0.05 140 2800 1 705 

Heat Sink 240 10 145 2730 155 893 

 

 

Thermal capacitance and resistance parameters alongside the individual time constants 

were calculated for each layer by using eqns. 3.15 and 3.16 as seen in Table 3.2. Then, Cauer 

form of thermal model was derived from these parameters as depicted in Figure 3.16.  

Instead of a RC pair, a constant 25 V DC voltage source was attached to the Cauer model in 

order to represent 25°C heat sink temperature. 

 

Table 3.2: Thermal Characteristics of each layer of the DIM1200ASM45 Module with Cauer 

 

Layer 
Thermal Characteristic (Cauer) 

Cth(J/K) Rth(K/W) τ (s) 

Silicon, Die  0.1127 0.01334 0.00150 

Solder 0.0135 8.2523.10-3 0.00011 

Copper, Cu 0.726 1.047.10-3 0.00076 

AIN  5.775 2.381.10-3 0.01375 

Copper, Cu 2.884 2.6361.10-4 0.00076 

Solder  0.7294 1.74.10-3 0.00126 

Baseplate 296.644 1.044.10-3 0.30969 

Grease 2.625 1.88.10-3 0.00493 

Heat Sink 848.38 1.38.10-3 1.17076 
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Figure 3.16 Equivalent thermal model of 8th order system using Cauer network   

 

Then, the derived transformation algorithm was used to calculate Foster network 

parameters by MATLAB coding. The thermal identity for this circuit is shown in Table 3.3.  

Foster model implementation can be seen in Figure 3.17. 

 

Table 3.3 Thermal Characteristics of layers of the DIM1200ASM45 Power Module for Foster Network Analysis 

 

Layer 
Thermal Identity (Foster) 

Cth(J/K) Rth(K/W) τ (s) 

Silicon, Die  6.347 1.057.10-5 6.71.10-5 

Solder 2.254.108 6.17.10-13 0.0001 

Copper, Cu 5.508 1.16.10-4 0.0006 

AIN  1.3548.106 1.28.10-9 0.0017 

Copper, Cu 0.1263 0.02 0.0025 

Solder  2.223 0.0015 0.0033 

Baseplate 6.2421 0.005 0.0312 

Grease 282.3906 0.0032 0.9036 

 

 Figure 3.17: Equivalent thermal model Foster networks   

 

The maximum conduction losses at 25°C was calculated as 133.2 W (for one IGBT chip ~ 

50A) at full current (1200 A) from the data supplied by company. Hence, as an example, a 
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step input signal with amplitude of 133.2 was applied to the both circuits for representing 

an input heat source of 133.2 W. The results for both implementations are shown in Figure 

3.18. It is noticed that the temperature at junction reaches approximately 29°C; hence 

simulation results showed good agreement and the conversion algorithm was verified. 

 
 Figure 3.18: Comparison of Junction Temperature with Cauer and Foster Models 

 

3.8 Validation of Preliminary Thermal Model with FEM 
 

In order to verify temperature estimations obtained from the preliminary models, a 3D FE 

model of module which consists of only a single chip and layers underneath was 

implemented with COMSOL Multi-physics package. The material properties stated in Table 

3.1 were used for constructing the geometry. Heat diffusion equation was defined for the 

whole model to solve the distribution of heat and temperature variations when an input 

heat power is applied. The ambient and heat sink temperatures were set to be 25°C and all 

outer boundaries are thermally isolated (no convection) to provide same test condition with 

circuit implementation discussed in previous section. Two dimensional power losses were 

applied to the upper surface of silicon chip as 133.2 W heat source as it can be seen in 

Figure 3.19.  
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Figure 3.19: FE Model with of the one IGBT chip and layers underneath 

 

The temperature estimations were observed from the geometric centres of each layer. 

Temperature at the each layer can be depicted from the Figure 3.20. The silicon die 

temperature at junction reaches to 55.1°C where this was only 29.04 °C in circuit 

implementation discussed in previous section. 

  
Figure 3.20:  Estimated temperature distribution over each layer by FEM   

Temperature contours over the layers and the total heat flux can be seen in Figure 3.21. The 

heat does not distribute homogeneously over each layer (due to spreading angle effect 

[72]). Heat flux direction was found as it follows a propagation angle along with z-axis as 

seen in Figure 3.22. The area affected by heat flux is observed as a circular region over the 

layers on the model. Therefore, defining the thermal resistance and capacitance parameters 
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(seen in Table 3.2) based on the actual geometric dimension (see Table 3.1) caused under 

estimations of temperatures in previous model since heat does not flow outer regions of 

circle. 

    
Figure 3.21 Heat flux distribution 

 

 

 
Figure 3.22 Heat Flux distribution directions 

 

3.9 An Analytical Solution for Heat Path based on Spreading Effect 
 

Self-heating effect on the layers was unable to be estimated correctly using actual 

dimensions of the layers caused by well-known spreading angle effect [72]. It occurs when a 

heat source area is smaller than the area of the following layer which consists of different 

material. Therefore, in this section, an analytical solution was studied for accurate heat and 

temperature observation. The heat diffusion equation considers hyperbolic problem which 

http://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation


Electro Thermal Modelling of Power Electronic Modules 

 

 

64 

 

leads circular heat propagation in its solution. However, for analytical simplicity, as also 

widely accepted in literature, [72], [81], it was assumed from FE analysis that heat follows a 

diagonal path with approximately 45° propagation. The heat source (chip) has a square 

shape; therefore in this work, it is accepted that the heat path follows a truncated square 

pyramid volume in z- direction as shown in Figure 3.23 a. The local cross sectional area of 

the heat flow path can be depicted in Figure 3.23 b and it was calculated as; 

                                                                
2

)45tan..2( haA                                                         (3.32) 

                   

Figure 3.23: (a) Heat Flux distribution by constant spreading angle, (b) Lateral view of Heat Flux distribution    

                                                     

Area, A was replaced for calculating new thermal resistances of each layer in eqn. 3.15. 

Similarly, the total volume that is affected by heat flow can be written as;  

                                              hahhaV )).45tan..2()45tan..2((
3

1 22
                                (3.33) 

Volume, V was replaced with total volume element of thermal capacitance calculations in 

eqn. 3.16, as well. Then, by applying spreading angle analysis, new layer dimensions which 

are function of the approximated effective heat path are shown in Table 3.4 alongside the 

calculated thermal parameters (Rth, Cth). By implementing the Cauer Model with updated 

thermal parameters, analytical temperature distribution over each layer was estimated as 

seen in Figure 3.24 along with the FE modelling results. 

 

 

 

(a) (b) 
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Table 3.4 Physical Dimensions of approximated heat path for constant spreading angle 

 

Layer 

Physical Dimension Thermal Identity (Cauer) 

Length 

(mm) 

Height 

(mm) 

Width 

(mm) 

Cth(J/K) Rth(K/W) τ (s) 

Silicon, Die  13.55 0.375 13.55 0.1127 0.01334 0.0015 

Solder 13.55 0.05 13.55 0.0135 8.2523.10-3 0.0001 

Copper, Cu 14.15 0.3 14.15 0.1935 0.039 0.0075 

AIN  16.15 1 16.15 0.5681 0.0242 0.0137 

Copper, Cu 16.75 0.3 16.75 0.2730 0.0028 0.0007 

Solder  17.1 0.175 17.1 0.0731 0.0175 0.0012 

Baseplate 27.1 5 27.1 5.446 0.0569 0.3098 

Grease 27.2 0.05 27.2 0.0728 0.0678 0.0049 

 
Figure 3.24 Temperature distributions over each layer by analytical solution vs FE results   

 

As it is seen from Figure 3.24, when spreading angle analyses (coloured curves) are 

compared with FEM analysis (shaped curves), accurate results are obtained especially for 

the initial layers. Analytical derivation is acceptable for estimating junction (silicon), solder 

and baseplate temperatures although approximately 4°C difference is estimated for 

substrate and grease layers. The possible reason for the inaccuracies is related to the 

thickness of the direct bonded copper (DBC) substrates where it is stated that [235] 

spreading angle model with a 45 degrees assumption could provide less than 20% error of 

thermal resistance for a certain thickness range. Dimension dependent thermal impedance 

model with dynamic spreading angle assumption proposed by [69] and boundary condition 
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depended model proposed by [86] would increase the accuracy for the multi-chip power 

module where the chips are located near the edge of the substrate layers. 

 

3.10 Thermal Modelling in Discrete Domain 
 

In this section, discrete domain analysis was used to perform the proposed thermal model. 

The z-domain analysis advantages can be listed as follows: 

 Increased computation speed  

 Reduced order modelling 

 Accurate thermal impedance matrix for multichip devices 

 Applicable to dSPACE implementation for experimental verification (see section 4) 

 

Forward Rectangular Euler’s rule was applied to the thermal coefficients which were in s-

domain. The transfer function H(s), equivalent to eqn. 3.21, can be expressed in discrete 

domain as:  

                                                        as

b
sH


)( → 

a
Ts

z

b
zH





1

)(
                                               (3.34) 

where Ts is the sample time. By recalling eqn. 3.21; applying a heat source, Pi, the change in 

the temperature, ΔT, can be expressed as follows: 

                                                                        i
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                                                      (3.35) 

This can be rearranged as in eqn. 3.36:  
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i
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Then, conversion from s-domain to z-domain can be written as (Please see the Appendix for 

extended derivation):  
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Implemented simple thermal network stated in eqn. 3.37 is shown in Figure 3.25. The model 

generates one simple exponential term of RC network and is derived in Simulink.  

 
Figure 3.25: Simple Thermal Network model in Simulink 

 

8th order Laplace form of RC network was implemented by using the thermal parameters 

extracted from transformation algorithm as shown in Figure 3.26 (a).  

 
Figure 3.26: 8th Order thermal model in discrete  

 

Each block contains one single element of thermal model. Total temperature for each layer 

is added to ambient temperature which was selected as 25°C. Thermal parameters are 

analytically calculated based on the spreading angle effect (see Table 3.5) analysis, using the 

transformation algorithm from Cauer to Foster model with MATLAB coding. Then, two 

different modelling methods were simulated individually; First one with circuit elements as 

shown in Figure 3.17, and the proposed z-transform based model as shown Figure 3.26 (a). 
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Table 3.5: 8th Order thermal model in discrete  

 

Layer 
Thermal Identity (Foster) 

Cth(J/K) Rth(K/W) τ (s) 

Silicon, Die 6.709 9.822.10-6 6.59.10-5 

Solder 2.496.109 5.84.10-14 0.0001 

Copper, Cu 0.2159 0.0065 0.0014 

AIN 6.84.104 3.2769.10-8 0.0022 

Copper, Cu 10.2515 3.0113.10-4 0.0030 

Solder 0.4339 0.0189 0.0082 

Baseplate 0.6576 0.0608 0.0399 

Grease 5.894 0.1432 0.8440 

 

Step input which represents 133.2 W heat sources was applied as input in both models. The 

junction temperature of conventional Foster and z-domain based proposed thermal models 

can be seen from Figure 3.26 (b). Good agreement is obtained between both models; hence, 

the proposed model is applicable to represent temperature, accurately.  

Another example load profile was applied to the z-domain model using a regular square 

wave signal with amplitude 133.2 at 7.5 seconds sample time as shown in Figure 3.27 (a). 

Temperature estimations at heating and cooling stages of each are shown in Fig 3.27 (b) for 

each layer.  

 

Figure 3.27 (a) Total Power Loss and (b) Temperature estimated for each layer  

 

3.11 A 3D FE Model of Multichip Power Module 
 

In order to detect cross coupling heat spread through module, 3D finite element model of 

the device was implemented using COMSOL Multi-physics software. The model is 

constructed based on the actual dimensions of the internal physical layers and material 
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properties supplied by producer.  Heat Diffusion Equation is defined for the whole model to 

solve distribution of heat and temperature when an input heat power is applied. Identical 

boundary conditions were applied as in single chip FE model defined in Section 3.8. A 3D 

rectangular domain which represents the heat sink was attached to the rear surface of the 

base plate via a thermal grease layer for providing heat emission. It was modelled as a block 

with the recommended size in [229] (200mm x 300mm). Boundary condition was applied to 

the bottom surface of the heat sink as a constant cold plate at 25°C. The geometry was 

constructed with 313454 elements. The meshed view of the model is shown in Figure 3.28. 

 

Figure 3.28 Meshed Model 

 

Physical view of the module is shown in Figure 3.29. It is seen that the module has six legs; 

each consists of four IGBT and two diode chips. All chips are at the same size and with 

geometrical symmetries.  

 

Figure 3.29 3D FEM of IGBT/Diode  

 

 
Therefore, as an example, the heat flux distribution caused by chip DG33 is equal to heat 

flux distribution at UG11, UG33 and DG11 along different directions as shown in Figure 
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3.30. Hence, the circled chips were heated individually for thermal parameters 

extraction, only since all the other chips are in symmetry with them along different axes. 

 

 
 

Figure 3.30 Overhead view of the model with entitled chips where UGs & DGs state upper and down IGBTs and UDs and 
DDs are the upper and down diodes, respectively 

 

3.12 Operation of Thermal Impedance Matrix 
 

The heat transfer analysis was further expanded for whole power module by taking 

consideration of heat coupling effects and temperature dependency of the power losses. 

This was achieved by implementing the thermal impedance matrix. For M layers and n 

heating sources, the temperature of each layer can be expressed as:     
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where A is the coefficient 1/Cth and α is the 1/τ  in eqn. 3.21. A matrix form of eqn. 3.38 can 

be derived as in eqn. 3.39 where a1a1, .... aMN  are the transfer functions of thermal 

impedances. 
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The general thermal impedance implementing approach can be expressed in Figure 3.31 

where the thermal characteristic was estimated in time domain, then formed in s-domain 

and implemented in z-domain.  

3D Themal 
Characterisation

Expression the 
Matrix Form of 
Thermal Model

Implemetation of 
Compact Electro 
Thermal Model

t- domain s-domain z-domain

 

Figure 3.31 Process of Thermal Model Implementation 

In order to extract the thermal characteristics of the whole module, each chip highlighted in 

Figure 3.30, was heated by a constant 133.2 W heat source in time domain based individual 

simulations. Simulation time step was set to 1 millisecond and it was computed until the 

step response of heating curve reaches steady state or thermal equilibrium. Individual chip 

heating operations for the DG33 and DD22 are shown in Figure 3.32 (a) & (b), respectively.  

     

Figure 3.32 Heating operations for (a) DG33 and (b) DD22 with 133.2W heat source 

 

The area of the effective heated region strongly depends on the location of the heat source. 

For example, when the chip DG33 is heated, only five neighbouring chips and the layers 

underneath are affected by heat coupling effects. However, the total affected region is wider 

when DD22 is heated individually. Hence, it is expected that the chips located in the middle 

will experience higher temperatures caused by cross coupling effects. Heat flux through both 

chips can be seen in Figure 3.33.  

 

(a) (b) 
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Figure 3.33: Heat Flux through DD22 (a) and DG33 (b) when133.2W heat source is applied 

 

Example temperature distributions on chip DG33 due to its self-heating and coupling effects 

on the chip DG34 and the layers underneath are presented in Figure 3.34 (a) & (b), 

respectively. Approximately 7 °C temperature increment occurred on the chip DG34 due to 

the heat occurring on the DG33 as it was inclined from the initial 25 °C to 31.8 °C. 

 

Figure 3.34 (a) Temperature estimations of DG33 and the layers underneath (due to self-heating) (b) Temperature 

estimations of DG33 and the layers underneath (due to heat coupling effect caused by heating DG34) 

 

3.13 Thermal Impedance Extraction of Internal Layers  
 

The generated heat curves found by using FE simulation are shown in Figure 3.35 along with 

the original 3D FEM model results. The extracted curves are represented as circles on the 

estimated temperatures of each layer. From the generated heat curves, coefficients Rth and 

Cth for each individual layer were extracted by curve fitting study using least square method.  
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Figure 3.35 Temperatures of DG33 and layers underneath by FEM (self-heating of DG33) vs. fitted data by curve fitting 

 

For more accuracy, the thermal impedance of each extracted curve was represented by three 

exponential terms. For instance, the coefficients A and α of eqn. 3.38 were calculated in 

order to define extracted thermal parameters for the Silicon Die chip, DG33, as follows: 
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where A1=1.127, A2=0.057.4, A3=0.183 and time constants τ1=0.077s, τ2=1.215s and 

τ3=1.354s. The same process was applied for all the internal layers and the extracted 

parameters are shown in Table 3.6. 

Table 3.6 Thermal Parameters for Chip DG33 and Layers underneath due to Self-Heating 

Layer 
Thermal Capacitance Thermal Resistance 

Cth,1 Cth,2 Cth,3 Rth,1 Rth,2 Rth,3 

Silicon, Die  0.887 17.53 5.45 0.0871 0.069 0.065 

Solder 1.066 17.76 5.67 0.0785 0.068 0.063 

Copper, Cu 1.187 17.91 5.81 0.0737 0.068 0.063 

AIN  1.593 18.44 6.4 0.0634 0.066 0.060 

Copper, Cu 2.147 19.16 7.27 0.0558 0.065 0.056 

Solder  2.709 19.99 8.35 0.0513 0.062 0.052 

Baseplate 7.177 18.32 641 0.051 0.062 0.003 

 

Then, thermal parameters, which represent the coupling effects, were extracted using one 

exponential term and they are shown in Table 3.7.  Previously developed Simulink model in 

Section 3.10 was updated with thermal blocks that represent the self-heating and heat 

coupling effects for each layer, similar to the parameters shown in Table 3.6 and 3.7. 
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Table 3.7 Thermal Parameters for Chip DG34 and Layers underneath due to Coupling Effect when DG33 is heated 

 

Layer 
Thermal Identity 

Cth Rth 

Silicon, Die  23.074 0.0554 

Solder 23.104 0.0553 

Copper, Cu 23.144 0.0552 

AIN  23.075 0.0549 

Copper, Cu 23.568 0.0544 

Solder  23.949 0.0537 

Baseplate 26.8 0.0486 

 

3.14 Implementation of Electro Thermal Model with Cross Coupling Effect  
 

In order to design an electro thermal model for any semiconductor device, full description 

of current-voltage ratings, power loss characteristics and thermal behaviour of the device 

should be identified. The scheme of the developed electro thermal model with the power 

loss model is shown in Figure 3.36. The generated input current signal was combined with 

look up tables where energy losses are provided to the thermal model. The control scheme 

triggers the power loss calculation and the total dissipated power is integrated with the 

thermal model. Temperatures from this model are fed back into power loss model; hence 

continuous electro thermal analysis is obtained. 

 

High rate process Slow rate process

Look Up Table
f(Vce,Ic,Tj)

Energy Losses 
for IGBT 

(Esw+Econ) Thermal Model
(Self &Coupling 

Heat)

Current
Signal  Genertor

Junction
Temperature

Look Up Table
f(Vf, If,Tj)

Energy Losses 
for Diode 

(Erec+Econ)

Trigger Signal for 
Power Loss 
Calculation

Scaling down 
/24

Scaling down 
/12

Power 
Loss

Power 
Loss

 
Figure 3.36 Schematic of the Developed Model in Simulink  

 

A compact electro thermal model of the power module was developed based on z-domain 

analysis with Simulink. The electro thermal model of 1st leg of IGBT module can be seen 
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from the Figure 3.37. In the model, diodes (DD32 & DD31) are modelled in light grey where 

the IGBTs (DG31, DG32, DG33 & DG34) are modelled in bold grey blocks. The blocks include 

the thermal impedance of self-heating for the silicon chip and seven layers underneath and 

the thermal impedance of cross-coupling effects to the neighbour chips and layers. The 

green blocks are the power loss models for each individual chip.  

 

 
Figure 3.37 Electro thermal model of 1st leg of IGBT module 

Sample blocks in each thermal model are shown in the Figure 3.38. Red block contains the 

thermal parameters extracted for self-heating and white blocks contain thermal parameters 

caused by coupling heat effect to neighbour layers when the selected chip is heated. 

               
Figure 3.38 Heating operation of DG33 including cross coupling effects  
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Since heating operation of chip DG33 causes coupling heat effect on six neighbour layers, 

there are six thermal blocks around this chip containing the coupling effect thermal 

parameters. During simulation, each temperature is calculated at each single layer and they 

are fed back into individual power loss models. Figure 3.39 shows the model inside the block 

“ThermalModelDD31”. It is seen from the model that when the diode chip DD31 is heated, 

temperature rises for DG33 and layers underneath are multiplexed and output from the 

block; then inserted to “Demultiplexing Block”. The same procedure is applied in the other 

blocks on the 1st leg and temperature detection is completed by addition of temperature 

rise occurred in each layer. 

 

 

Figure 3.39 Heating operation of DG33 &Thermal Model including cross coupling effects 

 

Note: The temperature processed only for DG33 and the layers underneath in the Figures 

3.38 & 3.39.  Hence, related signals are multiplexed and processed only for this chip. 

Estimations for other chip layers were removed in purpose for clarity and easy explanation. 

3.15 Validation of the Simulink Model with FEM 
 

In order to verify the electro thermal model; a test case was applied for both FEM and 

Simulink models by applying conduction losses, only.  Switching loss calculation blocks were 
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removed in Simulink model and switching losses have not been considered in both 

simulations due to the FE solver speed limitations. The switching occurs in micro seconds for 

the power module; hence, it is computationally not convenient to be represented until the 

steady state temperature was reached in FE solver. A square wave input signal with 50 A 

amplitude, representing the maximum chip current for IGBT chips (see appendix), was used 

to represent the power loss for the thermal model. This signal was applied at switching 

frequency 20 Hz and with 50% duty cycle. On the other hand, 133.2 W heat losses were 

applied as initial heat source in FE model which are the associated total conduction power 

losses at 50 A current. Hence, same inputs were described for both simulations and the 

ambient temperature was set 25°C in both models. The power losses of the diode chip i.e. 

DD31, were calculated by the maximum diode current (100 A) in the model. Figure 3.40 

shows comparison of estimated junction temperatures between FEM and Simulink.  

 

Figure 3.40 Junction temperature estimated with FEM and Simulink for (a) IGBT and (b) Diode chip 

The maximum junction temperature difference between the FEM and Simulink model is 

approximately 2°C for the IGBT die. It is depicted that the temperature difference for the 

diode is higher than IGBT at cooling boundary. However, it is lower at the heating path which 

is around 1.8°C. The response speeds are also quite similar; therefore, good agreement in the 

estimated results is obtained between both models. 

3.16 Implementation of Ideal Switching with Cross Coupling Heat Effect 
 
Simulink model was further tested by generating pulse width modulation controlled current 

with 50% duty cycle at 25°C ambient temperature. In this case, switching loss calculation 

block was also considered and the total calculated power is automatically applied to the 
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thermal model at 1 kHz in a closed loop system. As it is seen from Figure 3.41 (a), when 

maximum allowed current 50 A passes through IGBT chip DG33, as an example, power losses 

are automatically calculated using lookup tables as function of the applied current, duty cycle 

and temperature estimates. The junction temperature estimates for this test reaches 81.2 °C. 

 

  

 

 

 

 

  

Figure 3.41 (a) Chip current vs. Power loss vs. Junction temperature of DG33 & (b) DD31 

 

Switch on and off losses are calculated as 2.3 and 2.5 kW, respectively. The conduction loss 

is 190W when the device is conducting. On the other hand, the recovery losses for the diode 

can be estimated as 2.7 kW where the conduction losses are up to 310 W for the diode chip 

DD31, as it can be seen from the Figure 3.41 (b). The maximum junction temperature is also 
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reached up to 83.1 °C and approximately 2 °C difference is estimated compared to the IGBT 

chip DG33. The highest junction temperature was 91.3 °C for the DD22 diode. It can still be 

considered as safe region (~125°C) even for higher ambient temperatures (i.e. 40 °C). 

3.17 Effect of the Cross Coupling Heat Effect 
 

In order to detect the effect of the coupling heat effect, identical initial conditions were 

applied in the model; however, only self-heating based thermal impedance characteristics 

were considered. A case study is simulated that contains the self-heating thermal 

parameters for each chip and the layers underneath. The results can be seen in Figure 3.42. 

  

  

 

 

 

 

  

Figure 3.42 a) Chip current vs. Power loss vs. Junction temperature of DG33 & b) DD31 
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It is shown that the maximum junction temperature and total power losses are critically 

decreased if the cross coupling effect is ignored. The maximum junction temperature 

decreased from 81.2 °C to 60 °C for IGBT DG33 and 83.1 °C to 61.9 °C for the diode chip 

DD31.  For both chips, the estimated temperature difference is around 20 °C which would 

cause serious degradation or faults, in case it is underestimated. Furthermore, regarding to 

the temperature difference, the maximum power losses for both chips also showed great 

difference between two cases due to the temperature depended power loss occurrences.  

 

3.18 Effect of the Cooling Boundary Conditions 
 

 

In previous sections, constant heat sink temperature (25 °C) was applied in the models as a 

boundary condition. This assumption was validated with the circuit implementation of 

Cauer and Foster networks and FE models. However, it can cause differences in the thermal 

impedance profile if the heat sink has floating (changing) temperature characteristics. The 

thermal impedance of the heat sink has considerable effect on the same characteristic of 

the each layer of the power module. In real-applications, this should be considered for 

accurate temperature monitoring. Therefore, a convection heat based cooling operation for 

the heat sink of the power module FE model is studied. The bottom boundary of the heat 

sink was modelled as a convection heating boundary and the heat transfer coefficient, h was 

assigned as 5 W/m2K over this boundary representing natural convection. Similar to the 

previous sections 133.2 W constant heat source was applied to the top boundary of the chip 

DG33 and initial temperature was defined as 25 °C. All other material and dimension 

properties were identical with the previous models. Temperature distribution over the 

model and the convective heat flux at the bottom boundary of the heat sink can be seen in 

Figure 3.43 (a) & (b). 
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Figure 3.43 (a) Temperature estimation through different layers of the module when DG33 is heated (b) Convective Heat 

Flux through the bottom of the heat sink to ambient. 

 

Temperatures of the each layer can be seen in Figure 3.44. It is seen that the silicon 

temperature is reached up to 62.3 °C where it was approximately 53°C for the constant heat 

sink temperature case.  

 

Figure 3.44 Temperature estimations for each layer 
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slower than constant heat sink temperature case.  It is also seen that the total effective area 
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3.19 Real Time Electro Thermal Modelling for Insulated Gate Bipolar Transistors 
 
Implemented model based mathematical electro thermal models in previous section are 

embedded in dSPACE real time system for validation purpose. In order to predict the 

temperature and power losses of four physically built boost converter units, experimental 

set ups were designed with three topologically different insulated gate bipolar transistors 

(IGBTs) and one with a SiC MOSFET device. In order to ensure that results are as accurate as 

possible environmental conditions of experimental tests were kept as identical with model 

based studies and thermal camera captures were taken for comparison purpose. The 

predicted power losses are subsequently used by FE models (derived in COMSOL) to 

estimate the heat distribution over the monitored modules.  

Physically manufactured three different IGBT technologies are namely, punch through (PT), 

non-punch through (NPT) and field stop (FSTP) silicon trench gate technologies. PT device is 

structured by the replacement of the n+-substrate of the MOSFET with a p+-substrate, and 

an additional N+ layer which improves switching speed by reducing the number of excess 

holes that are injected into the P+ substrate [170]. On the other hand, NPT was generally 

made by using an N-doped substrate with the collector region grown on the backside.  Since 

no buffer layer exists, this device has larger reverse voltage blocking capacity compared to 

the PT [165]. With the technological improvements in the gate structure, vertical, trench 

gate technology has been developed which allows even higher channel density by reducing 

the effective diameter of the gate and base region. It also reduces both conduction and 

switching losses compared to conventional PT and NPT structures [196]. Addition of a field-

stop region to a thin-wafer NPT device enabled several further improvements in 

performance [169]. FSTP trench technology provides higher power density and optimized 

carrier concentration in the die. It can increase the carrier density in the vicinity of the 

trench gate which reduces substantially of the saturation voltage [154]. Moreover, the field 

stop layer accelerates the majority of carrier recombination during the turn-off time, and 

thereby, its tail current is much smaller than NPT or PT IGBTs which leads lower switching 

losses and lower turn-off energy. Figure 3.45 shows physical differences among these IGBTs. 
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Figure 3.45 Trench NPT, (b) Trench PT and (c) Trench FS IGBTs 

 
As it can be illustrated in Figure 3.45, the electric field shape is trapezoidal for PT, triangular 

for NPT, and FS has quasitriangular one [236]. Table 3.8 summarises important properties of 

IGBTs manufacturing technologies such as losses, field capacity and drift region thickness. 

 

Table 3.8 Characteristics of three IGBT technologies [160], [226] 

Property/Topology Punch-Through (PT) Non-Punch-Through (NPT) Field Stop (FSTP) 

E-field  punches trough drift region to 
buffer-shortens tail current 

dissipates in drift region -
lengthens tail current- raises Eoff 

punches through drift region to 
buffer-shortens tail current 

Drift Region Thin-lowers Vce(sat) Thick -raises Vce(sat) Thinnest - lowest Vce(sat) 

Epitaxial Layer Expensive-grown on p+ 
substrate 

Injection layer realized by ion 
implantation- no epitaxial layer. 

No epitaxial layer- 
Wafers as thin as 80um 

Switching Losses Low-short tail current, 
significant increase in Eoff with 
temperature  

Medium- low tail current, 
moderate increase in Eoff with 
temperature  

Low-short tail current, moderate 
increase in Eoff with temperature 

Conduction Losses Low-Vce slightly decreases 
with temperature 

Medium-Vce increases with 
temperature  

Low-Increases with temperature 

Paralleling Difficult-Must sort on Vce(sat), 
must share heatsink 

Easy-Optional sorting, 
Recommend sharing heatsink 

Optional sorting, Recommend 
sharing heatsink 

Short Circuit Rated Limited-High Gain Yes Yes 

Vce Temperature Coeff.  Negative  Positive Positive  

 

3.20 DC/DC Boost Converter 

DC-DC converters are electronic devices used for changing the DC electrical power 

efficiently from one voltage level to another. Boost converter or step-up converter is 

a power converter with a regulated output DC voltage greater than its input DC voltage. The 

ideal boost converter components are the switching device (IGBT, MOSFET), a power diode, 

an inductor and input/ output ripple capacitors. The circuit diagram of this converter can be 

seen in Figure 3.46. 
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Figure 3.46 Boost Converter circuit 

 

The on time of the switching device is a fraction of its time, Tp such that TON=DT, where D is 

the duty cycle. When the switch is in on position; the circuit is separated into two parts. 

These parts are on the left; the source is charging the inductor while the capacitor, which is 

on the right, maintains the output voltage using previously stored energy. When the switch 

changes its position into off-state, both DC source and energy stored in the inductor will 

supply power to the circuit on the right which boosts the output voltage. The output voltage 

can be maintained at desired level by controlling the switching time sequence which can be 

calculated as: 

                                                   f
TTT POFFON

1
                                                                   (3.41) 

where f is the switching frequency.  

                                                 PON DTT  , POFF TDT )1(                                             (3.42 & 3.43) 

Considering ideal components, when switch is turned on, voltage applied on inductor is; 

                                                           .
P

in
I

in

DT

i
LV

dt

di
L


                     (3.44) 

Where L is the inductance; when switch is off:                                            

                                                 
P

in
OI

in

TD

i
LVV

dt

di
L

)1( 



(3.45) 

By equating eqns. 3.44 and 3.45, following equation is obtained; 

                                                     )(
)1(

OI
PIP VV

L

TD

L

VDT



            (3.46) 
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Simplifying the eqn. 3.46;  

                                                        OI VDV )1(                  (3.47) 

∴ for a lossless system input power (Pi) is equal to the output power (Po)   

                                                    Pin = Pout = Iin VI = IoVo                                                                  (3.48) 

                                                          Io IDI )1(              (3.49) 

Current signal characteristics of components during switching can be seen in Figure 3.47. 

                      

Figure 3.47 Current Signal Characteristics 

 

3.21 Physical Boost Converter design 
 
Four physical boost converters were built using identical blocking and storing components 

but with different switching element technologies. Converter parameter specifications are 

listed in Table 3.9.  

 

Table 3.9 Boost Converter parameter specifications 

Element Vin IGBTs MOSFET Diode S. Freq. Duty  Inductor, L Cin, Cout 

Values 5-70 V 600/15A 1200/15A 300/20A 5-150 kHz 50% 1mH/12A 82μF/450V 
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3.21.1 Switching Devices 
 

 Selected IGBT components are commercially available; TO-220 are packaged, and they are 

all from different manufacturers. The NPT IGBT is the NGTB15N60S1EG from On 

Semiconductor, PT one is the STGP14NC60KD from ST Microelectronics and FS is the 

IKP10N60T by Infineon. Each device has approximately equal power loss profiles at 25°C and 

they are purposely selected based on their similar current ratings. The characteristics of 

selected devices are shown in Table 3.10: 

 

Table 3.10 Si IGBTs and SiC MOSFET specifications 

 

IGBT (A) IGBT (B) IGBT (C) MOSFET Unit 

NPT-Si-Trench PT-Si- Trench FSTP-Si-Trench SiC-Planar - 

Cost: 1.00 Cost:1.2 Cost: 1.19  Cost: 11.52 £ 

VCEs: 600 VCEs 600 VCEs: 600 VDSs: 1200 V 

IC (T=25C): 25 IC (T=25C): 25 IC (T=25C): 20 ID (T=25C): 24 A 

IC (T=100C): 15 IC (T=100C): 14 IC (T=100C): 10  ID (T=100C): 10 A 

Cies:1950 Cies:760 Cies : 551  Ciis: 667 pF 

Coes: 70  Coes: 86 Coes: 40  Coss: 27 pF 

Cres: 42  Cres: 15.5 Cres: 17  Crss: 5 pF 

Qg: 88  Qg: 34.4 Qg: 62  Qg: 36 nC 

td(on) (T=25C): 65  td(on) (T=25C): 22.5 td(on) (T=25C): 12 td(on) (T=25C):19 ns 

tr: 28  tr: 8.5 tr: 8  tr: 19 ns 

td(off): 170  td(off): 116 td(off): 215  td(off): 47 ns 

tf: 140  tf: 75 tf:38  tf: 29 ns 

Eon (T=25C): 0.55  Eon (T=25C): 0.082 Eon (T=25C): 0.16  Eon (T=25C): 0.057 mJ 

Eoff (T=25C): 0.35 Eoff (T=25C): 0.155 Eoff (T=25C): 0.27  Eoff (T=25C) : 0.02 mJ 

Ploss(T=25C): 117  Ploss(T=25C): 112 Ploss(T=25C): 110  Ploss(T=25C): 108 W 

 

Physical view of a boost converter can be seen in Figure 3.48.  
 

 
 

Figure 3.48 Physical view of a boost converter 
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3.21.2 Inductor 
 
In order to decrease saturation of current flow even at high ratings, an iron-core type 

inductor with 1mH rating, manufactured by EPCOS, has been used. This type of the inductor 

is favourable because of its high saturation flux density.  

3.21.3 Power Diode 
 

An identical fast recovery diode was used for each boost converter unit. It is DPG 10 I 300PA 

by IXYS. The device has particularly short recovery time and low leakage current which 

would increase the total efficiency performance. 

3.21.4 Capacitors 
 
Input and output capacitors are Aluminium Electrolytic type and cylindrically manufactured 

by Panasonic. In order to limit the ripple of input and output voltages to their 2% for the 

frequencies between 10 to 100 kHz, 82uF input and output capacitors are selected. Input 

and output voltage readings were measured over these components, respectively. 

 

3.22 Driver Unit Design 
 

Switching elements have particular gate signal power requirements to turn on and turn off. 

A gate driver is essential for translating the low power TTL or CMOS logic signal, generated 

by signal generator units or controller ICs, to a higher voltage and higher current signals for 

rapidly switching the gate of the IGBTs and MOSFET. In other words, a gate driver is a power 

amplifier which can be provided either on-chip or as a discrete module. There are 

commercially available gate drivers for single switching devices or for power modules with 

multi-chip design. In this research, the gate driver circuit for DC/DC boost converter and 

DC/AC inverter were implemented by the author. In order to isolate low power switching 

signal and high power converter circuit, an opt coupler was embedded with a driver PIC for 

providing appropriate gate signal in terms of power level. 

 

 

https://en.wikipedia.org/wiki/Power_amplifier
https://en.wikipedia.org/wiki/Power_amplifier
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3.22.1 Optical Coupler 
 

In order to obtain an adequate isolation between high power boost converter and more 

expensive signal generating unit (dSPACE), an opt-coupler chip was used in the configuration 

before enabling the driver chip.  The opt-coupler package is the HCPL-4502/3 by Agilent 

Technologies configuration can be seen in Figure 3.49.  

 

Figure 3.49 Configuration of the Opt coupler [237] 

 
It is shown that there is an electrical isolation between LED and a photo detector. This 

transition isolates the driver and the converter protects the driver unit from any high 

current reversed from the converter. The photo-detector senses the light energy which is 

the converted form of the electrical signal by the LED. Then, this energy is converted it back 

to electrical signal by an amplification circuit at the output. The other important function of 

opt coupler is the filtering of the noisy signal. 

3.22.2 Driver  
 
The output signal from the opt coupler is embedded into the driver chip which can provide 

sufficient current and voltage level for the switching transient of the IGBT and MOSFET. 

TD351 by ST Microelectronics was purposely selected because of its inverting and non-

inverting output features. The original gate signal is inverted during the isolation part in the 

opt coupler. Therefore, it has to be inverted back by the driver for determining on and off 

stages of the PWM signal correctly. The circuit configuration of the TD351 can be seen in the 

Figure 3.50. In order to decrease the voltage spike on the gate, the Miller clamp function is 

used and the gate output signal is constantly connected back to CLAMP pin for Miller Active 

Clamp function. Also, similar to opt coupler, a capacitor is connected closely to the VH and 

VL pins for ripple filtering.  
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Figure 3.50 Configuration of the Opt coupler [238, p. 351] 

3.23 dSPACE Real Time System 
 

dSPACE Real Time system, available in Advanced Industrial Diagnostics Lab, was 

comprehensively used in this research for experimental validation of the modelling sections. 

dSPACE system is a powerful tool for prototyping, target implementation, and electronic 

control unit (ECU) testing. The dSPACE Control Desk Software was used for executing Real-

Time Interface to Simulink which is a part of Rapid Control Prototyping and Hardware in the 

Loop (RCP and HIL) software.  The platform is suitable for embedding Simulink models in 

Control Desk and it is able to record and export the experimental data in real time. Instead 

of using generic input signals in Simulink models, experimental data can be embedded 

within this platform and continuous execution of the models can be obtained.  For instance, 

collector current and voltage of IGBTs are embedded into electro thermal models derived 

from Simulink to monitor real time power loss and temperature data in Control Desk.   

3.23.1 Real time Platform 
 
Real time interface (RTI) is the package needed for implementing Simulink models in 

dSPACE. These models are first converted into suitable C/C++ codes, and then they can be 

embedded in Control Desk via RTI. The platform is called DS1006 and it is the hardware 

platform where the complied script files are executed. It contains three key components: 

hardware, a code-development assistant, and a graphical user interface (GUI) which 

transfers the code onto the processor and monitors the execution of the program.  
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3.23.2 DS1006 
 
DS1006 platform consists of a high-speed hardware processor, analogue and digital input-

output (I/O) devices or interfaces, and a communication arrangement between the host 

computer and the platform. It is designed for calculating complex, precisely detailed 

simulation models that require enormous computing power and it is directly connectable to 

all dSPACE I/O boards via peripheral high speed (PHS) bus. The communication between the 

host computer and the modular system is through an optical cable. Physical view of the I/O 

platform and the DS1006 are shown in Figure 3.51 (a) & (b), respectively.  

   

Figure 3.51 (a) I/O Platform (b) DS1006 [239] 

Features of the DS1006 board can be listed as: 
 
 x86 processor technology x86-compatible 64-bit server multi-core processor 

 Quad-Core AMD OpteronTM processor 

 512 kB L2 cache per core and 6 MB shared L3 cache 

 1 GB local memory for executing real-time models 

 128 MB global memory per core for exchanging data with the host PC 

 Fully programmable from Simulink 

 High-speed connection to all dSPACE I/O boards via PHS bus 

 Multiprocessor system of several DS1006 processor boards via fiber-optic connection.  

The platform also has multi I/O board, DS2201, for analogue to digital conversion. dSPACE 

I/O board is selected during start-up of the Simulink from the RTI block library which 

contains ports for all the peripherals available on the modular system and then attaches via 

Simulink. The block diagram of the DS1006 is shown in Figure 3.52. 

(a) (b) 
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Figure 3.52 Block diagram of DS1006 [239] 

Two additional boards also exist within the dSPACE system. The DS5101 for digital 

waveform output and DS 2004 A/D for digital-to-analogue conversion. 

3.23.3 DS5101 
 
DS5101 is a digital waveform output board for generating a multiple signals at various 

frequencies, such as incremental encoder signals and pulse-width modulation (PWM) 

waveforms. PWM is required in almost any control application. The features of this board 

can be listed as follows: 

 TTL pulse patterns on up to 16 channels 

 25 ns time resolution  

 1-phase PWM 

 3-phase PWM 

 3-phase/6-channel PWM (includes converted signals) 

 Incremental sensor simulation 

 Monoflop signal generation 

 

Physical view of the DS5101 is shown in Figure 3.53.  
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Figure 3.53 DS5101 

3.23.4 DS2004 
 
DS 2004 A/D Board is an analogue to digital conversion platform for digitizing input signals 

at high sample rates. It is also equipped with differential inputs and four triggers inputs for 

connecting to external trigger sources. It provides many different hardware- and software-

based trigger mechanisms as well as data buffers for burst data transfer. The burst mode 

offers two ways of converting measurements; namely automatic continuous sample mode 

and triggered sample mode which is controlled by the software or a trigger event. The key 

features of DS2004 can be listed as follows: 

 16-bit independent A/D converters 

 16-bit resolution 

 800 ns conversion time 

 ±5 V or ±10 V input voltage range 

 4 external trigger input lines 

 total harmonic distortion (THD)   ≤-85 dB (at 10 kHz, 10 V range) 

                                                                ≤-83 dB (at 10 kHz, 5 V range) 

Physical view of the DS2004 board is shown in Figure 3.54. 

 

Figure 3.54 DS2004 
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3.24 System Design 
 
The gate signals for each switching device located in boost converters were generated using 

dSPACE DS5101 digital to analogue converter card. Then power levels of these signals were 

increased by previously implemented driver circuit.  In order to calculate the power loss and 

temperature profile of each IGBT, the collector current signals were monitored by hall-effect 

based ACS712 linear current sensors by Allegro Microsystems. The sensor is applicable for 

AC and DC current sensing in industrial systems with 185 mV/A output sensitivity. 

Configuration of the sensor can be seen in Figure 3.55.  

 

 
Figure 3.55 ACS712 Configurations [240, p. 71] 

 
 

The ACS712 outputs an analogue signal, VOUT. It can vary linearly with the uni- or bi-

directional AC or DC primary sampled current, IP. Filter capacitor, CF, is needed for noise 

management through ground. Collector to emitter current of the IGBTs is captured by ADC 

DS2004 as voltage ratings are calibrated in Simulink block for current equivalences based on 

the specifications stated in manufacturer datasheet. On the other hand, collector to emitter 

voltage is also directly captured by a voltage divider circuit, implemented with serially 

connected 1 MΩ resistors, and interpolated for associated saturation voltage level within 

look up tables. Boost converter units were operated in a temperature controlled chamber 

for controlling ambient temperature. View of experimental setup is shown in Figure 3.56. 
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Figure 3.56 Experimental Set-up 

3.25 Methodology 
 
In order to extract the thermal parameters, each IGBT was initially supplied by a constant 

gate signal and 5V of collector-emitter voltage under 10 Ω parallel load conditions. Each 

device was operated until reaching to a steady state temperature. During the test, 

temperatures were captured by FLIR T440 thermal camera in every 5 seconds. It has a frame 

rate 60 Hz and a thermal resolution of 76,800 pixels. Output power of the boost converters 

were monitored by Voltech PM300A power analyzer. IGBT based boost converters were 

operated in this part of the study. SiC MOSFET based boost converters are examined in and 

performance comparison between Si IGBT is presented. The flowchart of the developed 

methodology and the experimental setup are shown in Figures 3.57 & 3.58. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.57: Flowchart of the proposed system  
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Figure 3.58: Schematic diagram of the proposed system  

Device thermal resistance (Rth) and capacitances (Cth) were determined using eqns. 3.24 & 

3.25.  The calculated thermal resistances and capacitances are shown in Table 3.11. Then, 

the thermal model was built upon the discrete domain based modelling approach. In 

addition to the calculated thermal resistances and capacitances, measured currents and 

voltages are interfaced to the real-time electro-thermal monitoring scheme (implemented 

in dSPACE) depicted in Figure 3.59.   

 

Table 3.11 Interpolated thermal characteristic 

Tested Device  
Thermal Capacitance Thermal Resistance 

Cth,1 Cth,2 Cth,3 Rth,1 Rth,2 Rth,3 

FS 0.22 0.02 0.0013 0.2911 0.409 0.5008 

PT 0.24 0.015 0.019 0.282 0.35 0.502 

NPT 0.28 0.018 0.0014 0.2811 0.4 0.5019 

 

The dSPACE blocks are shown in Figure 3.59, two (DS2004ADC) blocks are used for current 

and voltage readings and three blocks (DS5101PWMDAC) are used for providing gate signals 

to each IGBT used in boost converters. A zoomed in view of power loss calculation blocks is 

illustrated in Figure 3.60. The output temperatures then fed back into power loss model 

along with the voltage and current signals for continuous monitoring of the electro thermal 

behaviour of the IGBT. Three tests were carried out to assess the performance of the IGBTs, 

namely as operation under different ambient temperatures, different switching frequencies 

and finally, when operated under different electrical loading. All tests took place 

simultaneously under same conditions to ensure repeatability and confidence.  
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Figure 3.59:  Real-time implementation of electro thermal model in DSAPCE 

 

 

Figure 3.60: View of the power loss block in dSPACE 

 

3.25.1 Ambient Temperature Effect Test 
 
All units were operated under the same conditions and ambient temperature was increased 

in steps of 5°C up to 50°C starting from room temperature of 25 °C. Junction temperature of 

each IGBT was accurately identified at each ambient temperature when reached to a steady 

state by using a thermal imaging camera.  

3.25.2 Switching Frequency Effect Test 
 
In the switching frequency test, the devices were simultaneously driven by four sets of 

different switching frequency from 10-40 kHz. Heat sinks were used in those tests with a 

collector current of 5A through each switching device. 
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3.25.3 Load Variation Effect Test 

In this test, the devices were examined under different loading conditions. The ambient 

temperature and switching frequency were kept constant to 30°C and 20 kHz respectively. 

Loading was varied from zero to full load in steps of 20%. Three sets of boost converter units 

are shown in Figure 3.61. 

 

         

 
Figure 3.61: Boost converters in temperature controlled chamber 

3.25.4 Finite Element Modelling and Numerical Solution 
 
A 3-D finite element IGBT model was derived using COMSOL Multiphysics modelling 

software. The heat distribution through each material was determined using heat diffusion 

equation. Material properties such as conductivity and coefficient of thermal expansion are 

temperature dependent. View of the meshed FE model for TO-220 package and the region 

for the applied real time power loss profile can be seen in Figure 3.62 (a) & (b), respectively. 

The collector pin is directly attached to the case. The gate and emitter on the other hand are 

connected to wire bonds. Chip areas can also be seen in Figure 3.62 (b) for each IGBT 

technology. 

                                       
 

Figure 3.62 (a) View of the FE model and (b) applied heat regions 

PT IGBT 

NPT IGBT 
FSTP  IGBT 
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The heat transfer coefficient h is defined as 5 W/m2K over the model representing natural 

convection in heating unit. For higher current applications, heat sink model is built in rear 

side of the case through mica layer where the thermal grease boundary is defined as heat 

remover boundary condition. Leads are attached by soldering layer on to a PCB via copper 

channels. Material properties of each layer are listed in Table 3.12.  

 

Table 3.12: Material Properties 

Layer 
Physical Properties at 25 °C 

p (kg/m
3
)           k(W/mK)    c(J/(kgK) 

Silicon 2330 153 703 

Copper 8850 398 380 

Gold 19300 318 129 

PLCC 900 0.2 1700 

Steel Alloy 7850 54 477 

Mica 2883 0.71 500 

Aluminium 3010 180 741 

Grease - 2 - 

3.25.5 Electro Thermal Model of Boost Converter in Simulink 
 
An electro thermal was simulated in Simulink for the boost converter. Collector current and 

voltage were embedded in previously developed electro thermal models by using energy 

losses data supplied in manufacturer data and experimentally obtained thermal impedance 

parameters. The view of the model can be seen in Figure 3.63. 

 

Figure 3.63 View of the boost converter in Simulink 
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Component parameters were selected as identical with the physically built boost converter. 

Simulation temperature results used in boost converter can be depicted in Figure 3.64 for 

each IGBT. As it is shown, NPT showed higher temperature profile compared to the FSTP 

and PT. PT also showed earlier response to reach for steady state while FS temperature was 

calculated as 61 °C, approximately 7 °C less than NPTs’. 

 

Figure 3.64 Simulation results for each IGBT 

3.26 Results and Discussion 

3.26.1 Ambient Temperature Influence Test 
 

Supply voltage to each boost converter was 5V with 0.5A of input current at 25 °C ambient 

temperature. The collector to emitter voltage and current signals are shown in Figure 3.65.  

    

 

Figure 3.65 Switching transient of (a) NPT (b) FSTP IGBTs 

 

The switching transient is much smoother in the FSTP device due to the additional field stop 

layer while the NPT showed longer transient in the same period. The effect of the longer tail 
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current was also reflected on total power losses where the switches off losses are higher for 

the NPT, as shown in Figure 3.66. 

    

Figure 3.66: View of Power loss profile for (a) FS, (b) NPT 

On time losses also increased up to 100 W for NPT where these are only 72 W for FSTP 

device. Ambient temperature effects on IGBTs thermal behaviour, at 25 and 35°C, are 

shown in Figures 3.67 and 3.68, respectively. 

 

                 
 
 

Figure 3.67 Thermal camera view (a) NPT, (b) PT, (c) FSTP at 25 °C ambient temperature 
 

 

                 
 

Figure 3.68 Thermal camera view (a) NPT, (b) PT, (c) FSTP at 35 °C ambient temperature      
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(a) (b) (c) 
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FSTP type exhibits the lowest temperature of 45.3 °C at both tests compared to the PT and 

NPT, 48.6 °C and 49.6 °C. Power loss was used as inputs to FE model shown in Figure 3.69.  

         

Figure 3.69 FEM of (a) NPT, (b) PT, (c) FSTP at 25 °C ambient temperature 
 

The highest heat was observed around collector lead for all of the IGBTs. The measured 

temperature for FSTP and PT showed good agreement with the model based calculated 

figures (~ 1.2°C difference) while the difference was only 0.9°C for the FSTP type. 

Experimental and model based transient temperature responses for the FSTP device are 

shown in Figure 3.70 and about ~2°C differences were observed. 

 
Figure 3.70 Transient temperature in Simulink based experimental dSPACE model and FE model for FSTP 

 

 

The FSTP type IGBT has shorter drift layer compared to the other two types. Hence, it has 

lower electric field which punches through the drift region to buffer. This provides 

shortened tail current and lower power losses. Since the lower losses causes less 

temperature profile and do not generates experimental peak fluctuations, the error 

between the experimental and FE based results are observed as low as 1.2 °C.  

 

FS IGBT PT IGBT NPT IGBT 
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3.26.2 Influence of Switching Frequency Test 
 

Frequency test results are depicted in Figure 3.71. Device A (NPT) is subjected to highest 

temperatures at all frequency ranges where device C (FSTP) showed less thermal heating 

especially at higher switching frequencies. 

 

Figure 3.71 Ambient temperature effect on junction temperature at different switching frequencies 

 

Figure 3.72 shows results when the devices were run at 20 kHz switching frequency, 25 °C 

ambient temperatures and a current of 2 A. The differences in temperature between NPT 

and FSTP devices were about 20 °C.   

        
 

 
Figure 3.72 (a) NPT (b) PT and (c) FSTP IGBTs at 25 °C ambient temperature with heat sinks attached 

 
 

(b) 30 kHz (a) 40 kHz 

(c) 20 kHz (d) 10 kHz 

(b) (a) (c) 

FSTP IGBT PT IGBT NPT IGBT 
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Figure 3.73 FE model of (a) NPT, (b) PT, (c) FSTP at 25 °C ambient temperature with attached heatsinks 

 

Accuracy of model has decreased by approximately 3.7% when higher current was drawn, 

see Figure 3.73. For NPT, the steady state temperature is 3.2°C lower with FE model, which 

is 74.4 °C, compared to the 77.6 °C of experimental result. The approximation in physical 

shape of the heat sink and used thermal grease layer may cause the minor discrepancy. 

Higher currents may cause change in material properties of the device. Experimental and 

model based NPT transient temperature responses are shown in Figure 3.74.  

 
Figure 3.74 Transient temperature in Simulink based experimental dSPACE model and FE model for NPT 

The NPT device has the longest drift layer where the electric field dissipates which is 

different than the other two devices. This increases the tail current and causes higher 

switching losses. The experimental inaccuracy (3.2°C) is due to the fact that the FE model 

cannot represent this short time tail current behaviour due to computational time 

limitations for the NPT device only. The experimental temperature difference was only 1.2 

°C for the FS device (Figure 3.70) since it contains very short tail current which becomes 

almost negligible for the temperature profile. However, it has a considerable effect on the 

NPT device temperature as advised in [160], [226] and causes temperature estimation errors. 

FSTP IGBT PT IGBT NPT IGBT 

(a) (b) (c) 
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3.26.3 Effects of Load Variation Test 
 
Thermal behaviour of the examined devices due to the load variations is shown in Figure 

3.75.  As anticipated, the FSTP device was affected much less than the other two devices by 

load variation. However, it is worth to mention that the temperature changes of the PT 

device were seen as less dynamic (lowest slope).  

      
 

Figure 3.75 Junction temperature at various load characteristics (a) without (b) with heat sink 

 

Efficiency for each boost converter module was also affected by the performance of their 

switching elements as shown Figure 3.76. The ambient temperature was kept at 30 °C and 

the operating switching frequency was set to 20 kHz. 

 

Figure 3.76 Output power efficiency of Boost Converter among each device 

 

The FSTP device was found to be the most efficient one in all of the cases. For example, the 

FSTP efficiency was about 92 % while it was only 80 % for NPT when the output power was 

3W.  

(a) (b) 
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3.26.4 Discussion 
 

Thermal variations are found as not linear and the FSTP device showed consistent behaviour 

in all cases. PT device had better electro thermal performance compared to NPT. The reason 

for that is the higher NPT conduction loss as temperature increases due to its positive 

temperature coefficient. For the FSTP, the presence of field stop layer accelerates the 

majority carrier recombination during the turn-off intervals and lower saturation voltage 

drop; hence, its tail current is much smaller than both NPT and PT devices. This leads lower 

switching losses and temperature characteristics. Regarding to overall performance of 

modelling approach, about 3 °C temperature difference was observed for FSTP and PT as 

the current level increased from 0.5 to 2A. Overall, model based predicted results were in 

good agreement with the empirical data. 

3.27 SiC MOSFET Technology compared to Si IGBTs 
 

Conventional IGBTs can be operated at higher current densities with lower frequency while 

the MOSFETs have better efficiency at higher operating frequencies over 100 kHz. In 

contrast, recently developed SiC MOSFETs have much smaller channel mobility compared to 

conventional ones [84] which reflect increase in total cost. On the other hand, the thermal 

conductivity of SiC is much higher than that for silicon [177], so dissipated heat can easily be 

removed from the device. Regardless of promising material properties of SiC, Si devices can 

still be more reliable and economically efficient based on the current rating and switching 

frequency of a specific application. Topological physical differences among Si IGBT and SiC 

Planar and Trench Gate MOSFETs can be seen in Table 3.13. 

Table 3.13: Si IGBT and SiC MOSFET technologies 
 

Material Silicon SiC SiC 

 
 

Physical 
Structure 

 

  

Technology IGBT MOSFET 

Gate Trench Planar Trench 

SiC Drift Layer SiC Drift Layer 

SiC Sub SiC Sub Si Drift Layer 

Trench Trench Gate Gate Gate 
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Two trench gate Si IGBTs, namely NPT, which showed weakest thermal performance in 

previous section, the FSTP, which was the best device in terms of electro thermal 

performance and a SiC based MOSFET, SCT2280KO by ROHM Semiconductor, specified in 

Table 3.10 were evaluated. Similar to the previous section, real time power loss data 

processed through dSPACE Real Time Interface (RTI) and derived as initial heat source in FE 

models. The experimental test rig is shown in Figure 3.77. 

 

                

Figure 3.77 Boost converters in temperature controlled chamber  

 

3.27.1 Finite Element Model for SiC MOSFET 
 

Identical modelling approach and boundary conditions were derived from the FE analysis of 

SiC MOSFET. TO220 package constructed for IGBTs is different than the TO247 for SiC 

MOSFET in terms of dimension as shown in Figure 3.78 (a). Chip size of MOSFET is almost 

two times greater compared to both FSTP and NPT IGBTs where FSTP one’s is half of NPT’s. 

Mesh view of model can be seen in Figure 3.78 (b). The total number of tetrahedral 

elements was 57082. Mesh refinement was completed by the scale factor of two especially 

for the solder layers. Temperature depended material properties for Si and SiC are 

presented in Table 3.14, and are defined as dynamic arguments where for cooling boundary 

condition, the natural convection, h, in model was assigned as 5 W/m2K. 

 

                                    

Figure 3.78 (a) TO-220 (left) and TO-247 (right) Packages, (b) View of FE model for TO-247 
(b) (a) 
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Table 3.14 Material Properties Comparison of Si and SiC 

 
                         Layer Physical Properties at 25 °C 

        p (kg/m
3
)     k(W/mK)         c(J/(kgK) 

T0220 Silicon Chip 2330 153 703 

T0247 SiC Chip 3216 490 690 

 

3.27.2 Thermal Measurement and RTI Model Verification 
 
Thermal model was built upon operating switching elements in continuous conduction 

mode with a constant gate voltage. SiC device temperature had been monitored by thermal 

imaging and recorded in 5 seconds intervals. Based on obtained transient temperature 

profile, thermal impedance for each component have been interpolated as in eqns. 3.24 & 

3.25 and shown in Table 3.15. 

 

Table 3.15 Thermal impedance characteristics of SiC MOSFET 

 

Device/Parameters 
           Thermal Capacitances    Thermal  Resistances 

Cth,1 Cth,2 Cth,3 Rth,1 Rth,2 Rth,3 

SiC MOSFET 0.51 0.050 0.002 0.153 0.14 0.4003 

 
 

SiC MOSFET has double thermal capacitance and half of resistance of both FS and NPT IGBTs 

which is leading to lower thermal fluctuations and amplitude. Figure 3.79 (a) shows thermal 

images of converters at 25°C ambient temperature when input voltage of boost converter is 

5V, switching frequency is 20 kHz and current passes of each device is 0.5A.  

 

          

Figure 3.79 (a) Boost Converters in heating unit, (b) NPT IGBT and (c) SiC MOSFET Thermal FE models  

 

FE model solutions of defined devices can be seen in Figure 3.79 (b) for NPT IGBT and Figure 

3.79 (c) for MOSFET. Good agreement has been obtained in terms of steady state 

temperature and total heat distribution over each device. It is distributed through collector 

(a) (b) (c) 

NPT IGBT SiC MOSFET 
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in both results. The NPT IGBT has the highest temperature profile while the SiC MOSFET was 

subjected to 50% of the NPT’s as 45.3 °C and 28.1 °C, respectively. 

 

  
Figure 3.80 Transient temperature comparisons for (a) Si NPT IGBT (b) SiC MOSFET FE models 

 
 

Approximately 2°C difference was measured for NPT IGBT where this is less than 1°C for 

MOSFET. Transient temperature results for both devices are shown in Figure 3.80 (a) & (b). 

It can be clearly seen that the SiC MOSFET has higher heat capacity since it reaches the final 

temperature around at 800 s whilst this is much shorter for NPT. The accuracy of the 

proposed FE model approach can still be validated based on transient analysis. 

3.27.3 Ambient Temperature and Switching Frequency Effect Tests without Heat Sink 
 
Two sets of experimental tests were performed. First, the devices were operated without 

heat sinks and, current passes through IGBTs and SiC MOSFET was set as 0.5A by variable 

resistors. Converters were operated in temperature controlled chamber simultaneously for 

a set of switching frequencies between 10-150 kHz and the ambient temperature was 

changed in steps of 5°C from 25 to 50 °C. Temperature of each switching device was 

monitored by FLIR T440 thermal camera and recorded for each frequency at different 

ambient temperatures. 

 

                                    
 

Figure 3.81 Thermal camera view (a) NPT IGBT, (b) FS IGBT, (c) MOSFET at 30°C ambient temperature 

(a) (b) 

(a) (b) (c) 

NPT IGBT FSTP IGBT SiC MOSFET 

NPT IGBT SiC MOSFET 



Electro Thermal Modelling of Power Electronic Modules 

 

 

109 

 

Figure 3.81 shows the boost PECs at 35°C ambient temperature when the switching 

frequency of boost converters was 50 kHz. FSTP IGBT temperature was approximately 5°C 

less than NPT’s while the SiC MOSFET showed better thermal performance compared to 

both Si IGBT devices with temperature of 33.5 °C.  

 

  

 
Figure 3.82 Ambient temperature effect on device temperature at (a) 20 kHz, (b) 50 kHz, (c) 150 kHz 

 

For both Si IGBTs, effect of ambient temperature was observed as lower at 35-40°C regions 

as seen in Figure 3.82. Beyond this point, temperature trend shows higher slope until 55°C 

ambient. MOSFET temperature showed more linear incline with respect to ambient 

temperature and can be commented as less ambient dependent especially at higher 

switching frequencies. Moreover, temperature between both IGBTs increases as frequency 

inclines due to the higher switching losses of NPT device caused by longer tail current. 

 

           

 

Figure 3.83 (a) Switching Frequency vs. device temperature, (b) NPT IGBT at 103°C and (c) at 78.2°C 
 
 

The effect of switching frequency is further analysed as shown in Figure 3.83 (a) at 30 °C 

ambient temperature. The conduction losses are superior at frequencies lower than 15 kHz 

for each device and hence the temperature rise can be detected up to i.e. 103 °C for NPT as 

shown in Figure 3.83 (b). Same device has highest temperature of 78.2 °C when operated at 

150 kHz at ambient temperature of 40 °C as seen in Figure 3.83 (c). MOSFET is more 

preferable at higher frequencies as high as 150 kHz. Compared to both IGBTs, its maximum 
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junction temperature is only increased 2°C while this was 11°C for FSTP and 13°C for NPT 

IGBTs when the frequency increased from 20 to 150 kHz.  

 

3.27.4 Power Efficiency and Current Effect Operation with Attached Heat Sinks 
 
Further tests have been employed with higher current ratings when heat sinks are attached 

to the devices. The ambient temperature was kept constant at 25°C and switching 

frequency of converters was 20 kHz. Boost converters were tested with equal loads, 

simultaneously.  

 

                    

 
Figure 3.84 Thermal camera view (a) NPT IGBT, (b) FSTP IGBT, (c) MOSFET at 25°C ambient temperature 

 
 

Steady state temperature distributions are shown in Figure 3.84 shows at 2A load current. 

The temperature difference among each device is approximately as high as 15°C where the 

NPT has highest temperature of 80 °C and the SiC MOSFET is operated at 41.5 °C. The 

highest current rating of each device is 15 A and due to laboratory limitation the load 

current was increased up to 5A.  It was found that thermal performance of SiC device 

decreases as the current rating inclines. The SiC MOSFET is superior Si IGBT devices at higher 

frequencies. However, Si IGBTs shows more consistent thermal profile at higher current 

ratings especially above 2A as seen in Figure 3.85 (a). This range can change for different 

power rating devices. In this study, for accurate comparison, current capacity and total 

power loss of each device have been selected as same. FE model results for FSTP IGBT and 

MOSFET can also be seen in Figure 3.85 (b) & (c) when heat sinks are attached at the back of 

both devices via a thermal grease layer, during high current operation. Processed total 

power loss data by RTI directly applied to chips in FEM. Good accuracy was also obtained 

especially for T0-247 packaged MOSFET with only 1.5 °C difference compare to 

experimental result shown in Figure 3.84 (c).  

(a) (b) (c) 

NPT IGBT FSTP IGBT SiC MOSFET 
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     Figure 3.85 (a) Device temperature vs current (b) FSTP IGBT and (c) SiC MOSFET Thermal FE models 
 

 

For FSTP IGBT, temperature difference is approximately 3.5 °C compared to experimental 

case due to difference in package type TO-220 and geometrical assumptions on heat sink 

modelling. As stated before for estimating total power losses and transient temperature, 

switching transient of each device (on-off state voltage/current) was processed through 

dSPACE Control Desk into electro thermal models using Simulink are shown in Figure 3.86.  

 

 
 

 
 

          Figure 3.86 Switching transient of (a) SiC MOSFET, (b) FSTP IGBT (c) NPT IGBT  

 

SiC device has very little tail current; hence there is lower switching off losses compared to 

the both Si IGBTs. This also proves the better thermal performance of MOSFET at higher 

switching frequencies. On the other hand, NPT IGBT has the highest switching transient time 

among all devices where the FSTP technology performance is still compatible with SiC 

MOSFET in terms of thermal performance at higher current ratings. It was also estimated 

that the conduction losses of NPT’s increase as the temperature inclines due to positive 

temperature coefficient. IGBT costs, evaluated in this paper, are one tenth the cost of SiC 

MOSFET. As indicated previously, production cost of the SiC device is more expensive. 

Bigger die size of MOSFET compared to IGBTs, which is three times bigger than NPTs’, is also 
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one reason for expensive device cost. Depending on the priorities of the design, although 

IGBT companies offer “higher Vce/lower switching energy device” for high frequency 

applications, and vice versa for a low frequency applications, MOSFET is still effective at the 

frequencies above 150 kHz in terms of thermal performance. Below this frequency, both 

IGBTs, evaluated in this study, can be viable competitor of SiC MOSFET especially at higher 

current limits of an individual device with the help of their lower conduction loss 

characteristics.  

 

     Figure 3.87 Output power efficiency of Boost Converter among each device 

 

Efficiency of boost converter is shown in Figure 3.87 when the ambient temperature was 

kept constant at 30 °C and the switching frequency was 20 kHz. Under all loading cases, SiC 

MOSFET based converter was more efficient than the ones with IGBTs. Compared to the 

NPT IGBT, it attained 10% better efficiency where it is approximately 2% higher once 

compared with the FSTP device. Efficiency of the FSTP IGBT is very close to the MOSFET 

performance; however it slightly decreases when the output power is greater than 3.5 W. 

Table 3.16 shows the temperature comparison for each device while they were operated 

under 0.5 A load current, 30 °C ambient temperature and 20 kHz of switching frequency.  

 

Table 3.16 Temperature profile comparison for each device with and without heatsink 

 
Device 

Condition 
Without Heatsink 

 
With Heatsink 

 

SiC MOSFET 41.5 °C 32.1 °C 

Si FSTP IGBT 68.5 °C 35.4 °C 

Si PT IGBT 69.4 °C 44.1 °C 

Si NPT IGBT 74.5 °C 58.1 °C 

 

As it can be observed from Table 3.16, with usage of the heat sinks the device temperatures 

can drastically be decreased. The most temperature reduction was observed as 30°C for the 
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FSTP type IGBT which has very similar temperature characteristic with the SiC MOSFET with 

32.1 °C and 35.4 °C, respectively. The field stop layer of the FSTP device provides fast 

recovery and this result in an improved temperature profile. On the other hand, 

approximately 20°C temperature decrement was achieved for both PT and NPT devices. 

 

 

3.28 Summary 
 

3.28.1 Electro thermal Modelling of Power Electronic Converters 
 

In this chapter, an electro-thermal model for power electronics module DIM1200ASM45 was 

developed. The commercially available circuit simulators cannot represent the actual heat 

flux distribution through the device. Therefore, 3D FEM thermal analysis has been developed 

to estimate heat interactions between different internal layers of the module. Multi-chip 

design technology brings the disadvantage of highly complex temperature profile. The cross 

coupling effects occur through the hidden layers that cannot be easily estimated in practice; 

hence, different than the studies in literature, the proposed model defines each heat path of 

the individual components. The developed electro thermal model is used to represent the 

actual thermal behavior of the each chip on the power module in Simulink. The maximum 

chip temperature was found as 20°C with the proposed study compared to the conventional 

method results which ignore the cross coupling effect across individual chips. It can be 

concluded that the proposed method is well-suited for monitoring the internal behavior of 

the thermal effects within power electronic modules under their working conditions.  

 

3.28.2 Real-Time Electro thermal Modelling of Power Electronic Converters 

 
Powerful and inexpensive system to monitor the real-time electro thermal characteristics of 

IGBTs used in boost converters was implemented in this chapter. Compared to the 

expensive thermal imaging techniques in literature, the system determines IGBTs 

temperatures and heat distributions based on current and voltage measurements and 

embedded models. Furthermore, real time electro thermal monitoring study was presented 
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for SiC MOSFET and Si based IGBT devices within DC/DC boost converter. Finite element 

model of these semiconductor components was developed as a function of power loss real-

time measurements. The study demonstrates good agreement between model outcomes 

and obtained experimental results under different environmental and operational 

conditions such as ambient temperature and switching frequency. SiC device was found 

more thermally stable particularly at frequencies higher than 100 kHz and has 

approximately 20°C less operating temperature characteristic compared to the IGBT devices 

in most of the tested conditions. FSTP IGBT performed the best at frequencies between 10-

50 kHz thanks to its lower conduction loss characteristics. The switching frequency is 

significant since higher switching frequency decreases the fluctuations and this brings the 

ability to decrease the size of the output capacitor and inductor to save converter space and 

cost. However the efficiency is decreased as switching frequency is increased due to the 

increased switching losses. In conclusion, SiC device has a better dynamic response since it 

has a wider band gap and can block higher voltage and reduce drift region widths due to its 

higher electric field. Lower recovery current characteristic is also leading to less switching 

losses. Other outcome of this chapter is that the Si IGBTs can be selected as switching device 

for boost converters used in wider frequency range applications if cost matters. The results 

were verified by comparing the analytical results and further experimental validations. The 

proposed models will also be extended for providing thermo mechanical thermal stress 

analysis in Chapter 4 and life consumption monitoring in Chapter 5. 
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4.1 Overview  
 

Based on the surveyed research work [183-190], there is still a need for an accurate IGBT 

model to understand its thermos mechanical characteristics under wide weather condition 

variations. Thermally induced effects, e.g., thermal stress caused by temperature 

fluctuations, of the dynamic DC link operation have not been thoroughly analysed in 

literature [190-195], as well. Therefore, thermo mechanical modelling of power electronic 

modules was initially derived in this chapter. Then, based on the obtained temperature-

thermal stress relation, it offers a new switching frequency driving scheme by considering 

the DC link voltage requirements. A conventional 1.7 kV/1 kA dual IGBT power module, by 

Infineon, was used to build power electronic converter (PEC) of a wind energy system in 

Simulink. The developed scheme was embedded in power loss models to minimise 

temperature fluctuations. The performance of the proposed scheme was compared with 

the conventional back-to-back topology based constant and dynamic DC link operations. A 

finite element model (FEM) combined with a Simulink code was established to monitor PECs 

thermally induced stress based on estimated power loss profiles for different topologies.  

4.2 Thermo Mechanical Modelling of Power Electronic Modules  

 

As stated in [1], the effect of temperature cycling can also be explained by typical stress-

strain curve defined as cyclic stress shown in Figure 4.1 where; σ is the cyclic stress, i.e. 

temperature cycling and ԑ is the deformation. Operating the device at high temperatures 

may not cause instant failures; however it produces degradation that leads to eventual 

breakdown at medium to long term period [16].   

 
Figure 4.1 Typical stress-strain (σ-ԑ) curve [11] 
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With a low cyclic stress below, no damage occurs and the material is in the elastic region. 

When the stress is increased above this point, deformation begins and the material enters 

into the plastic region [1]. The mismatch among adjacent layers of the module is non 

uniform due to the coefficient of thermal expansions (CTE) differences of each material. 

Especially, the high difference among solder materials (Pb40Sn60 or SAC305) and silicon chips 

and substrates (AlN or Al2O3) in terms of CTE causes bimetal effect when the module is 

subjected to temperature fluctuations [27] [113]. Hence, thermally induced stress occur 

which causes deformation and eventual cracks based on the stored elastic energy. In order 

to present stress-strain and maximum stress (von Misses) distribution, the FE model was 

subjected to the power loss profiles (not constant step input). In the model, the stress 

distribution was defined by the yield function F as: 

                                                            yieldmises
F                                                                 (4.1) 

where σyield is the yield stress and σmises is the von Mises stress. It is derived from the 

deviatoric stress tensor, which considers the stress due to the shape changes and is given 

as; 

                                                    )(:)(
2

3
 devdev

mises
                                                              (4.2) 

It is used in failure tests [27] where the maximum von Mises stress should be less than the 

yield strength in such operations. Anand’s model [109] was used to describe the solder 

behaviour such as temperature sensitivity, creep and strain hardening. It is a time-

dependent plastic phenomenon which formulates viscoplastic deformations. The constitute 

model equations are defined firstly by flow equation as: 

                                                  

m

isr s
RTQA

/1

)sinh()/exp( 










                                                     (4.3) 

where isr
  is the effective inelastic strain rate, A (17.9 1/s) is the pre-exponential factor, Q is 

the activation energy (82895 J/mol),  R is the Boltzmann’s constant, T is the temperature, 

(0.35) is the stress multiplier , is the tensile stress and m (0.153) represents the strain rate 

sensitivity of stress. Then, the evolution equation is defined with respect to scalar variable s 

(deformation resistance) as: 
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where, 

                                                            
*

/1 ssB                                                                             (4.5) 

                                                     

n

isr RTQ
A

ss 







 )/exp(ˆ

* 
                                                                (4.6) 

 

0
h (1526 MPa) states the hardening/softening constant, a (1.69) is the strain rate sensitivity 

of hardening/softening, s* represents the saturation stress, ŝ (2.536MPa) is the coefficient 

for saturation, n (0.028) is the strain rate sensitivity of deformation resistance [241].  

 

4.3 State of the Art Thermo mechanical Model of IGBT Power Module  

 
As stated earlier, a dual IGBT power module, namely the FF1000R17IE4, by Infineon was 

purposely selected for this study due to its manufacturing topology which suits well as one 

phase (leg) in two level back to back scheme of PEC topology [95]. It is also suitable for wind 

PEC application operated at 1.1 kV DC link voltage with 1.7 kV/1 kA rating. Physical and 

unmounted views of FF1000R17IE4 are seen in Figure 4.2 (a) & (b), respectively. The device 

has twelve IGBT and twelve recovery diode chips. 

 

                         
 

Figure 4.2 (a) Physical and (b) unmounted view of the FF1000R17IE4 

 

The thermo mechanical FE model was implemented for the selected IGBT module and an 

attached heat sink was modelled using COMSOL as seen Figure 4.3 (a).  Based on the actual 

dimensions and the material properties stated in Table 4.1, heat distribution through each 

material was generated using eqn. 3.13. Material properties such as conductivity or 

(b) (a) 
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coefficient of thermal expansion are temperature dependent. Therefore, these were 

defined as dynamic properties and as function of temperature as shown in Figure 4.3 (b), 

e.g., for silicon layer. Different than the FE model of DIM1200ASM45 derived in Chapter 3, 

two cylindrical domains, representing liquid cooling elements, are placed across the heat 

sink, operated at 25 °C. Bottom surface was modelled as convection boundary, where heat 

transfer coefficient h is found as 4200 W/m2·K using eqn. 4.7: 

                                                                
, . th hs hsh R A                                                                      (4.7) 

where Ahs is the surface area and Rth,hs is the thermal resistance of the heat sink. 

 

     

Figure 4.3 (a) Meshed model view of FF1000R17IE4 (b) dynamic thermal conductivity property of silicon layer. 

 

Table 4.1 Physical properties of each layer material at 25 °C [45] [242] [241] [243]  

Layer 

Physical Properties at 25 °C 

ρ (kg/m3) K (W/m·K) c (J/(kg·K) CTE (10−6/K) 
Young Modulus 

(MPa) 

Poisson 

Ratio 

Silicon 2330 153 703 3.61 113.000 0.28 

Solder 7360 33 200 30.20 27.557 0.40 

Copper 8850 398 380 17.30 128.000 0.36 

Aluminium 3300 180 750 4.60 344.000 0.22 

Copper 8850 398 380 17.30 128.000 0.36 

Solder 11,300 35 129 29 16.876 0.44 

Baseplate 3010 180 741 0.27 192.000 0.24 

T. Grease 2500 2 700 29 15.700 0.32 

Heat Sink 2730 155 893 4.30 384.000 0.30 

Thermal grease between heat sink and base plate was defined as boundary with 2 W/m·K 

conductivity. Initially, a constant 200 W heat was applied in time domain on each chip 

located on the module where the initial temperature was 25 °C. In order to generate 

(a) (b) 
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thermal network, simulation was computed until the step response of heating curve reaches 

steady state as seen in Figure 4.4 (a) & (b).  

 

Figure 4.4 (a) Temperature distributions due to heating (b) layer temperature and fitted data 

 

Thermal impedance for each individual layer was extracted by curve fitting using least 

square method. The thermal matrix, in Laplace domain, was then generated based on the 

self and coupling heating across [242]. 

4.4 Thermo Mechanical Modelling of PECs in Wind Energy Systems 

 
PECs, depending on the topology and the application, allow bi-directional power flow [244] 

between grid and generator side. Two and Three Level converters are two most popular 

types [245], [95] in wind energy applications. One advantage of the three level converters is 

that they have additional one more output voltage level (-VDC/2, 0, VDC/2) compared to the 

two level topology (-VDC/2, VDC/2).  Output voltages are also smoother with a three-level 

converter which leads to smaller harmonics but it requires more components and complex 

control schemes. Two level converters are still preferred in most of the wind applications 

because of its simpler structure. It is bi-directional power converter consisting of two 

conventional PWM-VSCs with six unidirectional commanded switch pair (an IGBT and a 

Diode) used as a rectifier, and with the same number of switch pair, used as an inverter 

[246]. PEC connection topologies are divided into two categories in wind energy systems; 

namely, partial scale (PS) and full scale (FS), where doubly fed induction generator (DFIG) is 

common option for PS topology, as seen in Figure 4.5.  
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Figure 4.5 Two level back-to-back converter topology in (a) full scale (FS) and (b) partial scale (PS) based wind energy 

system 

Power losses for two level back to back converters are defined based on a sinusoidal output 

current. As discussed in previous chapters, turn on and off time losses occur in switching 

transient for IGBTs and recovery losses occur in diodes. Conduction losses, on the other 

hand, occur in conducting mode of the IGBT and diode chips. Sample sinusoidal power loss 

signals for an IGBT device, operating in a back to back converter, can be seen in Figure 4.6. 

 

 

Figure 4.6 Sinusoidal Power losses Signals 

 

As [247] derived, the conduction losses for IGBTs and diodes device operating in a back to 

back converter can be represented as: 

Switch off losses 

Switch on losses 

Conduction power losses 
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where PCON,IGBT is the IGBT conduction losses, PCON,DIODE is the diode conduction losses, M is 

the modulation index, VCE is the collector to emitter voltage, VCO  is the threshold  voltage for 

IGBT, ICN is the rated collector current, ICM  is the maximum collector current, θ is the angle 

between current and the voltage, VF is the diode forward voltage, VFO is the threshold  

voltage for diode. Then, switching losses are derived as[247]:  
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where PSW,ON is the switching on power losses, PSW,OFF  is the switching off power losses, 

PSW,RR is the reverse recovery power losses, VCC is the DC-link voltage, trN is the rated rise 

time, tfN  is the rated fall time, Fs is the switching frequency, trrN  is the rated recovery time, 

QrrN is the rated recovery charge. Look up tables were used to interpolate the previously 

defined energy losses as function of device current, saturation voltage and temperature as 

studied in Chapter 3. Simulink blocks were used to generate thermal impedance 

equivalence which is integrated within previously defined self and coupling heating based 

thermal impedances for all IGBT/diode chips and all layers underneath.  

4.5 Case Study: Thermo Mechanical Wind Turbine and Utility Grid Modelling  

 

FS and PS based two level back-to-back (BTB) power converter topologies were modelled 

individually with an induction generator based wind turbine system model in MATLAB/ 

Simulink. The generator and grid side converters have been modelled separately for both 

topologies. Then, coupled control was established via DC link according to active power 

supply. Wind turbine converted mechanical output power is described as: 
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m p wind

A
P c v                                                      (4.13) 

where Pm is the mechanical output power, cp is the performance coefficient of the turbine, ρ 

is the air density, A is the turbine swept area, vwind is the wind speed, λ is the tip speed ratio 

of the rotor blade to wind speed and β is the pitch angle where it as taken as zero. The 

parameters of the wind turbine and generator are given in Table 4.2. The base wind speed 

of the turbine model is 12 m/s and nominal output power is 1.5 MW. Simulated power 

characteristic of turbine with respect to speed and output power is seen in Figure 4.7. 

 

Table 4.2 Wind turbine and induction generator parameters 

 

Turbine Parameters Value 

Base wind speed 12 [m/s] 

Nominal mechanical output power 1.5 [MW] 

Max. performance coefficient 0.32 

Opt. tip speed ratio 8.1 

Generator Parameters 

Nominal power 1.5 [MW] 

Rated Shaft Speed 1800 [rpm] 

Stator inductance 0.042 [mH] 

Rotor inductance 0.08 [mH] 

Pairs of poles 2 

 

 

Figure 4.7 Wind turbine characteristics and power-speed curve. 
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4.5.1  DC Link Voltage Regulation and Grid Side Converter Control  
 

The control for both grid and generator converters was assessed by sinusoidal pulse width 

modulation method (SPWM). Equivalent voltage equation in a balanced grid connected to a 

three phase PWM converter through a filter branch is given as [248] [249]: 

                                                           
L f C

v v v                                                            (4.14) 

where converter voltage vc, filter voltage vf, line resistance R and inductance L are formed 

as: 

                                                      
L

L L C

di
v Ri L v

dt                                                       (4.15) 

R can be neglected since it has much lower voltage drop than L and the three-phase 

voltages (va,b,c) can be represented with respect to line currents (ia,b,c) and converter 

voltages (vca,b,c )as: 
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                                                       (4.16)  

The equivalence of eqn. 4.16 in α-β stationary coordinates becomes: 

  

  

     
      
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L L C

L L C

dv i v
Lv i vdt

    

    (4.17) 

Then eqn. 4.17 is represented in rotating d-q frame as: 

                                               
Ld

Ld Lq Cd

di
v L Li v

dt                                              (4.18) 

                                                             
Lq

Lq Ld Cq

di
v L Li v

dt                                              (4.19) 

where ω is the angular frequency. As discussed in, usage of trigonometrical relation leads to 

define boundary condition by using eqn. 4.18 & 4.19 as [249]: 
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Assuming , , where Em is voltage amplitude, when only active power is 

supplied to the grid which leads , minimum DC-Link voltage boundary is defined as: 

                                                  
2 23 ( )  m Lddclink

v E Li                                                 (4.21) 

Based on the minimum DC-link voltage, PWM signals are synchronised with the grid voltage 

by zero detection scheme. Iq represents the reactive power component and hence, it is 

desirable to be zero. Whereas, the desired magnitude for Id, depends on actual voltage 

measured across the DC link. The converter output voltages Vcd and Vcq were regulated 

based on the difference between measured and reference values of the d-q current. Hence, 

magnitude and phase angle delay of converter output voltages corresponding to grid 

voltages are set by: 

                                                        
2 2
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v V V                                                   (4.22) 
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4.5.2  Generator Side Control with Switching Frequency Regulation  
 

Similar to the derived d-q elements for the three phase line voltages in previous section, 

stator voltages vsd,q can be expressed as follows [248] [249]: 

                                                     
sd s sd sd d sq

d
v R i w

dt                                              (4.24) 

                                                    
sq s sq sq d sd

d
v R i w

dt                                                  (4.25) 

where ωd is instantaneous speed of d-q winding set in the air gap, λsd,q and λrd,q are stator 

and rotor flux linkage expressions, respectively. vrd,q rotor winding voltages are given as: 

                                                  
rd r rd rd dA rq

d
v R i w

dt                                                  (4.26) 
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where ωdA is the instantaneous speed of the d-q winding set in the air gap with respect to 

the rotor A-axis speed. The relation between inductances can be defined as a unit less term 

leakage factor, σ as: 
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where Ls and Lr are the stator and rotor inductances and Lm is the magnetization inductance. 

Hence, the stator windings are defined as: 

                                                           
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Then, stator d-q voltages can be expressed in terms of control and compensation terms as: 

                                       
' ,
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For the DFIG based partial scale PE control, eqns. 4.31 & 4.32 are derived by eqns. 4.26 & 

4.27 for rotor voltages control. The d-q voltages can be used to derive equivalent stator 

generator voltage as: 

                                                      
2 23

( )
2

 sd sqs
v v v                                                       (4.33) 

In steady state balanced conditions, it is equal to the line voltage, VL, which can be defined 

in terms of DC link voltage as: 
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Then, Vdclink in eqn. 4.34 was defined as minimum value based on the generator voltage with 

respect to generator speed. The boundary has been rearranged as: 

                                        ( )

2 2
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3
  

dclink LL rms
V v V                                              (4.35) 

where a control margin is set to ∆V = 10 V. Converter control for both FS and PS topologies 

can be seen in Figure 4.8. 
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Figure 4.8 View of the control methods of grid and converter side back-to-back converters 
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Look up tables are used to provide the mechanical torque with respect to reference speed. 

The mechanical power is also interpolated based on the power vs. speed characteristic 

derived in Figure 4.9. Reference stator d-q currents as well as the compensation elements of 

the stator voltages are also extracted through LUTs data obtained through eqns. 4.29-4.32 by 

means of angular speed and power. The DC link voltage is adjusted to its minimum value in 

the DC link calculation block by LUTs during operation. It is derived based on the stored 

generator voltage and speed data obtained thorough eqns. 4.34 & eqns. 4.35 for the generator 

side; and based on the grid voltage, active power component Id and power factor data obtained 

thorough eqns. 4.20 & 4.21 for the utility grid side. It is then assigned by a scheme according to 

interpolated value through both sides of PEC. The scheme of the proposed switching 

frequency adaption is shown in Figure 4.9. In the grid side inverter, the process needs to be 

monitored in terms of current injection, to protect the switching elements against high 

power losses. When wind speed decreases and minimum DC link voltage regulation begins, 

the edge detector block stores the latest calculated power loss for both sides of the PEC. 

Then, switching frequency regulation block is activated in order to reduce the switching 

losses. The switching frequency is decreased as the stored power loss is less than the one 

extracted from active power loss block. When wind speed increases, switching frequency is 

adjusted according to loss characteristic, as well. The lowest possible operating switching 

frequency is 2 kHz to mitigate lifetime consumption within converters caused by power 

cycling load of switching frequency. In order to keep each three-phase voltages in 

symmetric, switching frequency is adjusted by the ratio of modulation and carrier 

frequencies (fm & fc) in multiple of three as stated in eqn. 4.36.  

                                                     3 , ( ) 
c

m

f
k k N

f                                                     (4.36) 
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Figure 4.9 Scheme of the electro thermal model with switching frequency adaption 

 

4.6 Results and Discussion  

4.6.1  Dynamic DC Link Voltage and Switching Frequency Analysis  

 

The overall modules IGBT on time energy and conduction power losses are seen in Figure 

4.10 (a) & (b), respectively. On time energy, losses were expressed with respect to DC 

current and voltage at generator side converter (GSC) for different wind speeds, as shown in 

Figure 4.11. When wind speed is lower than the rated wind turbine speed, energy losses can 

be decreased by lowering the DC link voltage. For instance, approximately 180 mJ loss 

deduction can be witnessed by reducing the DC link 50%, whilst keeping the current 

unchanged, when the wind speed is decreased from 12 m/s to 9 m/s. 

 Figure 4.10 (a) Insulated gate bipolar transistor (IGBT) switching-on energy losses; (b) Conduction losses 
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Figure 4.11 DC link voltage vs. current vs. on time losses 

Temperature fluctuations for the GSC with respect to current and switching frequency are 

shown in Figure 4.12 when the wind speed is 9 m/s. It can be seen that the temperature 

fluctuations can be kept constant by lowering the switching frequency around 50%, and in 

the case, current increases approximately 25%. 

 

Figure 4.12 Switching frequency effect during 9 m/s wind speed 

A sample of collector current profile over a switching period is shown in Figure 4.13 (a), with 

respect to the grid side converter current of the FS based wind system at 50 Hz, shown in 

Figure 4.13 (b). The wind speed was kept constant as 12 m/s and the DC link voltage was 

adjusted as 1.2 kV; hence, the collector-emitter voltage through power devices, appearing 

at the same level, is seen in Figure 4.14 (a). The switching frequency is 5 kHz. Instantaneous 

on and off power losses are found as 2.3 and 2.6 kW, respectively as seen in Figure 4.14 (b).  

5 kHz 
∆t=10 C 
500 A  

2.5 kHz 
∆t=10 C 
750 A  
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Figure 4.13 (a) Ic current and (b) Three phase generator current 

 
 

Figure 4.14 (a) Vce voltage (b) Total power losses at 5kHz 
 

A case study is discussed for FS topology for expanding the switching frequency control. 

Figure 4.15 (a) & (b) shows a sample applied wind speed profile and the dynamic DC link 

operation for FS scheme grid side converter, respectively. The initial frequency is selected as 2 

kHz where the DC link voltage is 650 V in the model. 

 

 

Figure 4.15 (a) Wind speed profile and (b) Adjusted DC link voltage 
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At t = 2 s, wind speed is increased from 9 m/s to 12 m/s. The look up table which obtains 

minimum value for DC link operation is triggered and increases it to 748 V. At the meantime, 

the switching frequency is adjusted by the control block shown in Figure 4.9, in order to 

control switching loss for the assigned current and voltage through the power modules. It 

holds the latest calculated switching losses before the wind change detected by an edge 

detector and based on the next calculated power loss signal, the frequency is increased up 

to 2.55 kHz, as shown in Figure 4.16 (a). Similar operation also takes place at time t = 5 s and 

afterwards until t = 8 s. However, at t = 8 s, a rapid power loss increase occurs due to higher 

current injection and frequency controller pulls switching frequency back by means of the 

ratio defined in eqn. 4.36. The total power losses can also be seen in Figure 4.16 (b) as the 

DC link voltage is controlled Variable DC link and frequency operation causes fluctuation on 

the energy supplied to the utility grid. The three phase grid voltage can be seen in Figure 

4.16 (c) with distortion caused by the controller. Total harmonic distortion can also be 

depicted in Figure 4.16 (d) with respect to wind changes and switching frequency 

adjustments. 

 

 

(a) 

(b) 



Thermo Mechanical Modelling of Power Electronic Modules 

 

133 

 

 

      

Figure 4.16 (a) Controlled power loss data by dynamic DC link and frequency operation;  (b) Power losses; (c) Three 

phase grid voltage; (d) Total harmonic distortion. 

4.6.2  Comparison of Temperature Profiles for FS and PS Based Back to Back PECs                      

A variable wind profile, shown in Figure 4.17, is applied both PS and FS models for 

determining the average junction temperature of IGBT chips. The simulation step time was 5 

μs. Thermal parameters for the central silicon chip and the layers underneath are shown in 

Table 4.3 which is obtained through FEM. In order to increase the accuracy, thermal 

impedances of each extracted curves were represented by three exponential terms. 

Thermal impedance for thermal grease layer is integrated within baseplate parameters since 

this layer was defined as a boundary for computational efficiency. 

Table 4.3 Thermal parameters extracted from the finite element model (FEM) 

Layer 
Thermal Capacitance Thermal Resistance 

Cth,1 Cth,2 Cth,3 Rth,1 Rth,2 Rth,3 

Silicon 0.48 113.14 13.78 0.217 0.056 0.061 

Solder 0.69 113.31 13.92 0.212 0.055 0.058 

Copper 0.85 113.62 14.22 0.198 0.054 0.057 

AIN 1.02 113.94 14.88 0.175 0.053 0.056 

Copper 1.57 114.31 15.31 0.154 0.053 0.056 

Solder 2.01 114.78 16.04 0.136 0.052 0.052 

Baseplate 6.63 115.02 430.0 0.132 0.050 0.009 

(c) 

(d) 
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Figure 4.17 Applied wind speed profile 

 

 
Temperature distributions for GSC and utility grid side (UGS) power modules in FS and PS 

based wind systems, in three different operation modes, are shown in Figures 12 and 13 

respectively. As it is seen in Figure 4.18 (a), temperature distribution with a fixed DC link 

voltage (1.1 kV at 2.5 kHz) is much stable compared to the variable DC link operation (fixed 

at 2.5 kHz), shown in Figure 4.18 (b). Especially, at wind speed below the rated shaft speed, 

the temperature fluctuation is higher. During static DC link operation, mean junction 

temperature is 92 °C where it is 80 °C for variable DC link operation. On the other hand, the 

junction temperature profile of the power module, when the proposed control scheme is 

applied (see Figure 4.18 c), has less fluctuations compared to variable DC link operation. 

Lower mean junction temperature than with the one with static DC link voltage operation is 

also attained. It can also be seen that at lower wind speed (at t = 40 s), the temperature is 

higher compared to the dynamic DC link operation. This is due to the switching frequency 

increase controlled by the edge detector. 
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Figure 4.18. Temperature profile of FS based PECs with (a) conventional fixed DC link voltage; dynamic DC link (b) 

without and (c) switching frequency adaption schemes in generator side (GS) and utility grid side (UGS) 

Temperature fluctuations, for variable DC link operation, are higher for the grid side 

converter devices due to the distorted DC link voltage and current injection. In fact, the 

mean temperature is approximately 25 °C lower than generator side converter which means 

the power modules will experience higher thermal stress caused by wind variations. 

Compared to FS topology, mean and peak temperatures of the converter modules are 

greater and more fluctuated for both generator and grid sides of PS topology, as seen in 

Figure 4.19 a–c. Maximum temperature fluctuation is approximately 12 °C at t = 80 s. Also, 

when frequency control algorithm is applied, mean temperature reaches to 92 °C. 

0 20 40 60 80 100 120

30

40

50

60

70

80

90

100

Time(s)

J
u
n
c
ti
o
n
 T

e
m

p
e
ra

tu
re

 (
C

)

 

 

FS GSC Temperature

FS UGSC Temperature

0 20 40 60 80 100 120

30

40

50

60

70

80

90

100

Time(s)

J
u
n
c
ti
o
n
 T

e
m

p
e
ra

tu
re

 (
C

)

 

 

FS GSC Temperature

FS UGSC Temperature

0 20 40 60 80 100 120

30

40

50

60

70

80

90

100

Time(s)

J
u
n
c
ti
o
n
 T

e
m

p
e
ra

tu
re

 (
C

)

 

 

FS GSC Temperature

FS UGSC Temperature

(a) (b) 

(c) 



Thermo Mechanical Modelling of Power Electronic Modules 

 

136 

 

   
 

 

Figure 4.19 Temperature Profile of PS based PECs with (a)conventional fixed DC link voltage; dynamic DC 

link (b) without and (c) switching frequency adaption schemes in GS and UGS. 

 

The temperature fluctuation however, is reduced by 9 °C which would reflect on the 

thermal stress induced during the operation. Similar to the FS converter topology, higher 

fluctuation (~15 °C) and lower mean junction temperature (~70 °C) profiles were estimated, 

on the GSC. 

4.6.3  Thermo Mechanical Performance of Proposed Model  

 
As a case study, FS generator side converters’ power loss profiles of each three of the 

topological models were applied on top of the chips within FE analysis for obtaining the 

thermo-mechanical performances. Due to computational speed limitation in FEM, step time 

of loss profile was resampled into 5 ms range. Power losses were scaled by 1/12 factor; then 

were applied individually as boundary heat source on the each top surface of the silicon chip 

layer. This approach made it possible to locate thermal stress caused by thermo-coupling 
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heat effect across neighbour chips located on each substrate. Von Mises stress which 

occurred due to the power loss profile extracted from each topological operating approach 

are shown in Figure 4.20.  

 

                        
 

 

Figure 4.20 Surface von Mises stress for FS based BTB converter’s generator side power module with (a) 

fixed DC link; (b) dynamic DC link without and (c) with switching frequency adaption 

 

It can be commented that the most stressed regions are the solder of silicon and copper of 

baseplate layers. The maximum von Mises stress is estimated at the edges of copper layer 

as 142 MPa for the fixed DC link operation, as shown in Figure 4.20 (a). On the other hand, it 

is possible to reduce it around 130 MPa with dynamic DC link operation, as depicted in 

Figure 4.20 (b). The performance of the proposed model in terms of maximum stress is also 

shown in Figure 4.20 (c). Compared to dynamic DC link mode, approximately 27 MPa stress 

deduction was attained. The maximum stress was reduced approximately to 103 MPa which 

is lower than the yield strength of the copper [243]. Stress across silicon layer edges and 

baseplate is reduced in overall, especially around solder of neighbour substrates compared 

to dynamic DC link approach. First principle stress analyses are shown in Figure 4.21 (a)–(c) 
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for each topology. Most effected regions are middle edge of the silicon and aluminium 

ceramic layers. Proposed method showed better performance with total difference as lower 

as 36 MPa compared to the static and dynamic DC link operations. Total principal stress can 

be estimated as 56.6 MPa. Table 4.4 shows the thermo mechanical profile comparison 

among each PEC. Although dynamic DC link operation has lower mean junction temperature 

profile, thermal stress distribution is worse due its highly fluctuated characteristics, 

compared to proposed driving scheme.  

                           
                   

 

Figure 4.21 Surface first principle stress for FS based back-to-back (BTB) converter’s generator side power module with 

(a) fixed DC link; (b) dynamic DC link without and (c) with switching frequency adaption 

Table 4.4 Thermo mechanical profile comparison for each PEC 

 
PEC 
Type 

GSC 
 

UGSC 
 

Fixed DC 
Link 

Dynamic 
DC Link 

Dynamic DC Link 
& S. Frequency 

Fixed DC 
Link 

Dynamic 
DC Link 

Dynamic DC Link 
& S. Frequency 

Full Scale 142 MPa 130 MPa 103 MPa 93 MPa 81 MPa 64 MPa 

Partial Scale 149 MPa 144 MPa 142 MPa 96 MPa 91 MPa 86 MPa 

 

Total power losses with respect to mean and temperature fluctuations and stress for both 

FS and PS schemes are shown in Figure 4.22. It is seen that the proposed scheme showed 

(b) (a) 

(c) 
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better performance for the FS based wind energy system. Mean junction temperatures are 

approximately lowered by 8 °C compared to the static DC link system for both GSC and 

UGSC. Temperature fluctuation is also decreased by means of 50% compared to the variable 

DC link operation which will be the major benefit for stress deduction. Although, the 

instantaneous power losses at peak point are decreased by 20% in DFIG system, this 

deduction did not reflect on mean junction temperature and maximum stress (~7 MPa in 

GSC,~10 MPa in UGSC) since the power absorption during sub-synchronous mode increases 

thermal cycling, unlike in FS topology. In spite of the highly cycling thermal profile, 5 °C 

mean junction temperature deduction is established compared to the conventional 

topology for both side converters of the PS based wind system model. 

 

 

Figure 4.22 Overall thermo-mechanical and electro-thermal for (a,c) generator and (b,d) grid side power 
modules on FS and on PS doubly fed induction generator (DFIG) based BTB PECs. 

4.7 Experimental Validation of Thermo Mechanical Model   

 

The experimental validation of thermomechanical FE model and the proposed switching 

control method with variable DC link operation were achieved via dSPACE RTI by using a 

three phase inverter module; namely the FS10R12VT3 by Infineon Technologies. This device 

is a scaled down module of the FF1000R17IE4 which is constructed with six pairs of 

IGBT/Diode chips. It is more suitable to be tested under laboratory condition due to its low 

power capacity.  

(a) (b) 

(c) (d) 
     GSC      UGSC 

Full Scale 

IG 

Partial 

Scale DFIG 

142 MPa     130 MPa    103 MPa 93 MPa     81 MPa   64 MPa 

149 MPa     144 MPa    142 MPa 96 MPa     91 MPa   86 MPa 
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4.7.1 Physical Properties of the IGBT Inverter Power Module  
 
Inverter module, FS10R12VT3, was purposely selected due to its low current characteristic 

and cost effective compact design. Its commercial name is EasyPACK 750, sixpack IGBT 

module with IGBT3. It was originally purchased in capsulated form as seen in Figure 4.23.  

 

Figure 4.23 View of the FS10R12VT3 Inverter 

 

Circuit configuration of the inverter module is shown in Figure 4.24.   It consists of six IGBTs 

and six diodes.  Unlike the previously studied Dynex DIM1200ASM45 single power module, 

the gate signalling should individually be supplied for each device. It is simply in the form of 

three parallel connected Infineon FF1000R17IE4 modules. 

 

 
Figure 4.24 Circuit configuration of the FS10R12VT3 Inverter 

 
The specifications of the module are presented in Table 4.5. As it is shown, the device has 

1.2 kV maximum voltage and 16 A current capacities at 25 °C. The energy loss distribution 

over the device was calculated by a datasheet study using the methods studied in Chapter 3. 

Hence, the module losses were extracted to calculate the losses for each chip by using the 

eqn. 3.1.  

 
Table 4.5 Specifications of the inverter module 

Spec. VCEs IC(T=25C) IC(T=80C) Cies Cres td(on) tr td(off) tf Eon(T=25C) Eoff(T=25C) 

Value 1.2 kV 16A 10A 0.70nF 0.026nF 0.037μs 0.02μs 0.29μs 0.09μs 0.95mJ 0.7mJ 

 

http://www.infineon.com/cms/en/product/promopages/easy/#overview
http://www.infineon.com/cms/en/product/power/igbt/igbt-module/channel.html?channel=ff80808112ab681d0112ab69e66f0362
http://www.infineon.com/cms/en/product/power/igbt/igbt-module/channel.html?channel=ff80808112ab681d0112ab69e66f0362
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The module was carefully de-capsulated by Dremel Corded Multi-Tool 3000 driller in order 

to locate the chip locations and appropriate thermal camera imaging during experimental 

tests. The internal view of the inverter module and the chip locations can be seen in Figure 

4.25. 

 

 

Figure 4.25 View of the de-capsulated FS10R12VT3 Inverter 

 

The chips located in inverter module are attached on the substrate by lead-free soldering 

technique. This feature provides a possibility for a model based comparison study between 

lead containing and lead free solders, once the existed properties in FE are experimentally 

verified. The module does not contain a baseplate. Hence, it is mounted directly on an 

aluminium heat sink by thermal grease, namely the SK 100 by Fischer Electronic, in 

experiments and for modelling. An enhanced version of the driver circuit, presented in 

Chapter 3, was implemented in order to drive the inverter module. 3-phase/6-channel PWM 

feature of the DS5101 platform was used to generate gate signals. Then, the implemented 

driver circuit was used to increase to power level of these signals for sufficient gate driving. 

 
4.7.2 Finite Element Model of the FS10R12VT3 Inverter 
 

FE model of the inverter module was studied in details by using COMSOL. In order to 

increase the accuracy, dimension and material properties of each layer as well as the 

geometrical shapes of the wire bonds were accurately designed. The meshed view of the 

inverter model with the attached heat can be depicted in Figure 4.26. The geometry was 

modelled with 111743 tetrahedral elements. Mesh size for the heat sink and individual 

layers of the module are different for computational efficiency. Mesh refinement was 

completed by scale factor of two especially only for narrow edges of wire bonds and thin 

solder layers. 

Diode Chip 

IGBT Chip 
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Figure 4.26 Meshed FE model of the FS10R12VT3 Inverter 

 

In the model, thermal conductivity properties are defined as a function of temperatures and 

considered as dynamic functions. Please refer Appendix for the material specifications data 

sheet of the module. Similar to the previously modelled power modules, heat diffusion 

equation was defined for whole model to solve the distribution of temperature variations. 

As stated in previous section, the module was unmounted and the encapsulation silicone gel 

was removed. Hence, thermal isolation is no longer provided for the inverter module. In 

order to provide these test conditions in experimental analysis, the heat transfer coefficient 

h is defined as 5 W/m2K over the model representing the natural convection. The ambient 

and heat sink temperatures were set to be 20°C. Each chip was heated, in individual 

simulations, by a constant two dimensional 10 W heat source. Heating operation for a Diode 

chip can be seen in Figure 4.27 (a) & (b) at top surface and middle of the chip, respectively. 

  

        

Figure 4.27 Heating operation of Diode chip of FS10R12VT3 Inverter at a) top surface and b) middle  

 

(a) 
(b) 
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In order to extract the thermal impedance parameters, the methodology defined in Chapter 

3 was followed. Then, the thermal impedance matrix was implemented based on the self-

heating and cross coupling heat generations among each neighbouring chips along with 

thermo mechanical modelling analysis.  

 

4.7.3 Experimental Set-up 
 
 
The heat sink, with dimensions of 75 x 66 x 40mm, was mounted on an isolated mica 

platform along with the driver circuits.  In order to mount the input and output terminals of 

the inverter module, a PCB circuit was implemented and soldered to the specified legs. The 

inverter is isolated through the middle gap of the PCB circuit and mounted directly on the 

heat sink. The pin numbers and the design can be seen in Figure 4.28. 

 

 
 

Figure 4.28 Inverter module design 
 

 
Although, there are commercially available gate driver boards such as 2ED300C17-S 

recommended driver by Infineon (unit price £92.86 at RS), these solutions are commonly 

expensive. Therefore, the driver circuit is fabricated by the author as an extending version of 

the implemented design in Chapter 3. Compared to the previous case, a total of six gating 

circuits have been implemented for driving six individual gate signal provided by DS5101 

DAC platform. The total cost is approximately £20 cheaper by considering the unit prices of 

the HCPL-4502 (£1.14) and TD351ID (£1.66).  
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4.7.4 Multisim Model Filter Design 
 
 
Multisim software was used at this part of the research for filter design of the three phase 

inverter since it contains actual circuit components compared to the generic ones in 

Simulink. This is useful during the modelling process before purchasing the physical filter 

components. The aim of this chapter is not to design an optimised filter for the inverter 

module. Nevertheless, for accuracy of the RT electro thermal measurements, appropriate 

current and voltage signals are needed in terms of harmonic distortion. A conventional, 

second order LC filter was implemented to reduce harmonic distortions caused by 

fundamental square waved output voltage of the inverter. A shunt capacitor is used to 

further attenuation of the switching frequency components [250]. It is selected to produce 

low reactance within the control frequency range. The resonant frequency is calculated 

from eqn. 4.35. 

                                                           

                                                               LC
f
o

1
.

2

1


                                                                    (4.35) 

 

where the L is the inductance, C is the capacitance at selected switching frequency fo. The 

characteristic impedance of the passive filter Z is given by:  

 

                                                                   C

L
Z                                                                          (4.36) 

 

The impedance, Z determines filtering performance at harmonic frequencies except for the 

resonant frequency. Lower characteristic impedance reflects a lower DC capacitor voltage as 

well as lower EMI emissions [251]. The modelled 3-phase inverter systems can be depicted 

in Figure 7.7. As filtering, 10 mH inductors and 33μF capacitors were selected along with the 

available 18 Ω resistors and 10μF capacitors as balanced loads. 
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Figure 4.29 View of the Multisim Model 
 
 
As it can be seen from the Figure 4.29, low distorted current and voltage signals are 

obtained with the selected filtering. However, if the filter was designed with a 10 μF 

capacitors and 1 mH inductors, the load current and voltage signals would have been highly 

distorted, as shown in Figure 4.30. 

 
 

Figure 4.30 Load Current and Voltage 
 
4.7.5 Real Time Implementation of Experimental Setup 
 

The filter inductor was selected as leaded type since it is applicable to power line output 

filtering systems without a stable ground connection. It is namely the 10mH WE-CMB HC by 

Wurth Electronic. It has the maximum current capacity of 5A and ±30% impedance 

tolerance. On the other hand, the filter capacitor was purposely selected as through whole 

Load current and voltage Inverteroutput current and voltage 
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polyester film capacitor type. This type is particularly manufactured as AC filter capacitor 

and it is namely the B32524 AC capacitor by Epcos. It is 33μF (±10%) with the voltage levels 

of 100 V for DC and 63 V for AC applications. The physical view of the filter inductor and 

capacitors can be seen in Figure 4.31 (a) & (b), respectively. 

 

                                                              

 

Figure 4.31 a) Filter inductor and b) capacitor 

 

The load side was implemented as three-phase balanced resistive/capacitive load with the 

10μF version of the Epcos B32521 AC filter capacitor and an axial leaded 18Ω, 50 W, ± 5%, 

resistor namely the WH50-18RJI by Welwyn, is physically shown in Figure 4.32. 

 

 

Figure 4.32 Load Resistor 

 

 

The view of the implemented inverter systems can be seen in Figure 4.33.  

 

 

(a) (b) 
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Figure 4.33 Physical view of the inverter systems 

 

 

 

The DS5101PWM6 block from dSPACE Control desk was used to generate SPWM based gate 

signals for each IGBT as shown in Figure 4.34. The load current and voltages were captured 

by the DS2004 A/D platform and processed in to power loss and thermal models. A case 

study was conducted at constant 5V volt input while the switching frequency of the SPWM 

was 100 kHz. Different filters were applied to verify the Multisim modelling experimentally. 

 

 

Figure 4.34 dSPACE implementation 
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Figure 4.35 Experimental converter output voltage and load current signals 

 

Much smoother current-voltage characteristic is obtained by using the 33μF-10mH filter as 

depicted in Figure 4.35. The results for the Multisim simulation are also verified in terms of 

oscillatory load current for the case where the 10μF - 1mH filter is used. Although, the 33μF-

10mH filter is more expensive compared to the other choices, it was used for the rest of the 

experimental work in order to increase the accuracy of temperature monitoring. 

 
 
4.7.6 Thermo Mechanical and Thermal Model in MATLAB/Simulink  
 
 
The electro thermal and the thermo mechanical modelling methodologies derived 

previously were applied to the inverter module by considering self and coupling effect 

among each chip. IGBT and freewheeling diode current and voltage signals are directly 

embedded in power loss models for each device. The temperatures for each layer were 

monitored by feedback look through individual thermal layer model. View of the Simulink 

electro-thermal model can be found in Appendix. Results are depicted in Figure 4.36 (a) & 

(b) for simulated and experimental studies, respectively. 

No filter 10 μF, 1 mH 

10 μF, 10 mH 33 μF, 10 mH 

Load Current 

Inverter output voltage 
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Figure 4.36 Temperatures observed by (a) Simulink model and (b) by dSPACE and thermal imaging 
 
 

 
The input DC voltage was adjusted as 5V where the switching frequency was 50 kHz. Input 

current signals were captured through the output of the inverter terminals. Then, these 

signals was recalculated for representing sinusoidal IGBT and diode currents with 120° 

degree phase shift among them. The maximum temperature reached up to 96 °C for the 

simulated case. Compared to the individual heating operation, by the electro thermal model 

in Simulink, 15°C temperature increase can be obtained by considering the heat coupling 

effect. The experimental results are also in good agreement with the simulated data as seen 

in Figure 4.36. The thermal imaging captures were taken in 20 seconds of intervals (see 

Figure 4.37) while the dSPACE model predicts the instantaneous temperature based on the 

load current and voltage. Approximately 1.5 °C temperature swing was estimated during the 

inverter operation, as well. 

 

(a) 
(b) 
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Figure 4.37 Thermal camera captures 
 
 
 
4.7.7 Variable Switching Frequency Operation 
 
 
A variable temperature profile was generated by varying the switching frequency at 

constant input voltage. Please, refer to the Appendix for the dSPACE Control Desk view of 

the generated study. Four sets of different SPWM switching frequency were applied to the 

inverter in 20 seconds intervals. The trends of increasing/decreasing intervals were kept 

similar to the variable frequency set of data in Section 4.6. The monitored temperature 

along with the power loss data can be in Figure 4.38 (a) & (b), respectively during variable 

switching frequency operation. The initial switching frequency was 10 kHz and it was 

increased to 50 kHz and 100 kHz in each 20 seconds. Then, the frequency was pulled back to 

20 kHz at 140 seconds. The power losses increased as the switching frequency increased and 

this reflected on the instantaneous temperature where it was at its highest, 83 °C at 100 

kHz.  Thermal camera captures in stated time intervals can be seen in Figure 4.39.  

(t=40s) (t=80s) 

(t=120s) (t=160s) 



Thermo Mechanical Modelling of Power Electronic Modules 

 

151 

 

 
 

Figure 4.38 (a) Temperature observed by dSPACE and thermal imaging, (b) power losses 
 
 
 

                         
 

 

                          
 
 

 

 
Figure 4.39 Thermal camera captures 

                         
 

By the experimental results, it can be commented that the argument of proposed method 

and model based studies in Section 4.3 are verified in terms of switching frequency variation 

and its effect on the temperature changes. The higher switching frequency led higher power 

losses at specified time intervals which caused temperature increments and vice versa.  The 

distortion of the output voltages at various switching frequency rates also explains the total 

harmonic distortion variations where it was the highly fluctuating at 10 kHz of switching 

(b) (a) 

(t=40s) (t=80s) 

(t=120 s) (t=160s) 
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frequency and was smoother as the switching frequency increases up to 100 kHz as shown 

in Figure 4.40. 

    
 

            

            
 

Figure 4.40 Load voltages at different switching frequencies 
 

 

During the variable switching frequency operation, as the switching frequency deceases, the 

temperature and thermo mechanical thermal stress decline. However, the signal distortions 

occur due the lowered switching frequency which increases the total harmonic distortions. 

 

4.8 Summary  

 
A switching frequency solution to minimise thermal effects and the induced stress of PECs 

was demonstrated in this chapter. Based on the previously discussed literature survey, there 

is very few study which dealt with the thermo mechanical stress variation on the PECs 

during changing environmental conditions. Promising results were achieved by optimising 

switching frequency of PECs within dynamic DC link voltages for wind energy applications. 

The proposed adaptive switching driving scheme managed to control the total power losses 

of a two level back-to-back converter platform used in full scale (FS) and doubly fed 

(100kHz) (50 kHz) 

(20 kHz) (10 kHz) 
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induction generator (DFIG) based partial scale (PS) wind systems. Moreover, the IGBT 

junction’s mean temperature and the induced stress were eliminated and kept within 

acceptable levels, which in turn maximise the life cycle of such PECs as it will be presented in 

the following chapter. With the proposed approach, “the total temperature fluctuation” was 

notably reduced; for FSIG by 12 °C, DFIG by 5 °C. Such temperature reduction leads to a 

total stress decrease by about 27 MPa. The drawbacks associated with the proposed model 

are related to its complexity, possible current and voltage fluctuations which may cause 

increase to the total harmonic distortion fed into the utility grid as discussed in [252]. The 

variable frequency could also forces the DC-link capacitor and cause decrease in the 

expected total lifetime to failure which would cause further replacement cost. This issue can 

be solved by active filtering techniques [251]. The switching frequency control 

methodologies were verified by an accurate implementation of physical DC/AC inverter. An 

actual wind turbine system was used to apply variable speed operation and to find its 

effects on the thermal behaviour of the coupled inverter system. Good agreement was 

obtained with the model and experiment based studies. The reliability of the inverter due to 

the fluctuated thermal profile is also expressed and the higher speed operation caused 

more stress and life time consumption based on the experimental work.  
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5.1 Overview 

Reliability modelling for the switching devices used in power electronic converters is 

presented in this chapter. The electro thermal and thermo mechanical models implemented 

in previous chapters are further extended for calculating life time estimation of the PECs. In 

addition to the thermo mechanical stress analysis in previous chapter, the advantages of the 

proposed variable DC-link and dynamic switching frequency control method on the lifetime 

of the PECs used in wind energy systems are verified. For this purpose, solder breakdown 

mechanism was considered as failure criteria.  

A further case study was applied to an actual permanent magnet generator based wind 

turbine system test rig. A double bridge AC/DC rectifier was used to convert the generated 

AC power into DC. Then, the FS10R12VT3 was used as an inverter during variable 

environmental conditions in order to analyse the performance of the reliability of the bond 

wires located on IGBT and diode chips. 

In order to extend existing studies in literature [211], [218], [221], in the final part of this 

chapter, the effects of Incremental Conductance (IC) and Perturb and Observe (P&O) 

maximum power point tracking algorithms on thermal stresses and reliability of PEC 

modules were investigated in a PV system based case study. By implementing a PV model, 

the associated MPPT algorithms and realistic electro thermal model of power electronic 

module’s switching component (IGBT) used in a DC-DC boost converter was experimentally 

attached to a physical PV panel and real time temperature monitoring was interfaced with 

dSPACE. Temperature variations of IGBT were determined when IC and P&O algorithms 

were applied as MPPT method and these profiles were used in reliability models for lifetime 

consumption estimation. 

5.2 Lifetime Analysis 

 
Lifetime analysis for power electronic devices are evaluated by using Weibull statistics [183]. 

Devices under test are examined for determining the number of cycles to failure. Reliability 

of the PECs mostly depends on the associated switching elements (IGBT) since they are the 

most easily damaged components [127], [253] . The failure occurs due to the thermo 

mechanical stress caused by different thermal expansion characteristics of materials among 
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the IGBT package during temperature changes. The failure mechanisms of these devices are 

related to the cycling load of the module. Therefore, temperature profile of the IGBT was 

considered for estimating power cycling lifetime in terms of mean and cycling temperature.  

In order to relate the failure mechanisms and quantified reliability performance analytical 

models are developed to predict the lifetime such as [183]: 

 

Coffin-Manson Model: 
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This life time model takes the fluctuation of junction temperature, ΔTj into account. The α 

and n are constants, acquired experimentally. 

 

Coffin-Manson-Arrhenius Model: 
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This model takes also the mean junction temperature, Tm into account where K is the 

Boltzmann constant and Ea is activation energy parameter. 

 

Norris-Landzberg Model: 
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This model is based on eqn. 5.2 and additionally takes the cycling frequency f of the junction 

temperature into account. 

 

Bayerer Model: 
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This model considers a number of parameters where, the ton is the heating time, I is the 

applied DC current, D is the diameter of the bond wire, and V is the blocking voltage.  

 

5.2.1 Lifetime Analysis Verification for the PECs in wind energy systems 
 

Thermal stress distribution for the chip solder layers of the Infineon FF1000R17IE4 power 

module was analysed in Chapter 4, for wind energy applications. Von Mises stress analyses 

was performed in order to calculate the average thermal stress on the module caused by 

three different operation modes of the power electronic conversion schemes.  A 

conventional partial scale wind system with constant DC link voltage caused 150 MPa stress 

while this was decreased to 144 MPa with the variable DC link voltage. Also, a technique 

was studied in order to control the switching frequency within the variable DC link operation 

which led to 140 MPa average thermal stress. In this section, lifetime consumption analysis 

was conducted for the chip solders joints, based on the cycle to failure models studied by 

Ma et al. [1]. The model states that the expected number of cycles to failure for the solder 

can be derived as: 

                                                      

                                                                
.616

.104.1

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jf

TN                                                             (5.5) 

 

Model based solder temperature profiles for three operating modes are shown in Figure 

5.1. In order to achieve total life consumption (TLC) caused by the combined effect load 

profile, Palmgren-Miner linear damage accumulation rule [254] was applied and modelled 

for failure prediction. It can be expressed as: 

 

                                                                




j

i i

i

N

n
LC

1
                                                                       (5.6) 

where ni is the number of cycles, Ni is the measured lifetime in the ith profile  and j is the 

total number of load profile. The rule states that failure happens when condition TLC=1 

occurs. 
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Figure 5.1 Solder temperature profile for different operating modes (a) fixed DC link; (b) dynamic DC link without and  
(c) with switching frequency adaption 

 

 
Counting algorithms enable the evaluation of  temperature cycles with an empirical lifetime 

model [137] by extracting the temperature cycles within the load-profile and storing in a 

data vector. The Rainflow method is one of these methods [255] for counting the 

temperature cycles. For lifetime estimation analysis purpose, Rainflow counting algorithm 

tool [256] was used to evaluate the temperature variation profile for the solder layer. 

 

(a) 

(b) 

(c) 
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Rainflow algorithm was used to find the total number of thermal cycles for each data. Then, 

by using the life time estimation method, derived in eqn. 5.5, the TLC was calculated for 

each profile. The results are depicted in Figure 5.2. 

 

 

 
Figure 5.2 Number of Cycles and Life time consumption for PS PECs (a) fixed DC link; (b) dynamic DC link without and  

(c) with switching frequency adaption 
 
 
As it is shown in Figure 5.2, the maximum life consumption for the solder in the fixed DC link 

operation was reached up to 1 x 10-5 at 80 °C. The TLC was 4.25 x 10-5 for the fixed DC link 

operation. With the dynamic DC link operation, the TLC slightly decreased to 4.06 x 10-5. It 
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can be seen from the Figure 5.2 (b) that although the maximum consumption declined at 

most of the mean temperature points, the increment in temperature fluctuations (10°C 

<∆T<20 °C) led insufficient TLC improvement for solder in variable DC link operation. With 

the proposed switching frequency control method embedded with variable DC link 

operation showed better TLC improvement especially by eliminating high temperature 

fluctuations. The highest and maximum cycles, 210, was observed at 78 °C mean 

temperature which caused 6 x 10-6 life consumption. The TLC for this method was calculated 

as 3.26 x 10-5 which is approximately 1x10-5 less compared to the other both methods. The 

thermal stress analyses, obtained in Chapter 4, are also in good agreement with the related 

TLC results. The highest average stress occurred for the fixed DC-link operation which 

caused higher TLC and vice versa for the proposed switching frequency control method.  

 

5.2.2 RTI of Reliability Estimation of FS10R12VT3 Inverter at Variable Wind Speed 
 
For the verification of the variable wind speed operation, a permanent magnet based 18 

Watt, 1150 rpm wind turbine; namely the 910 MKII by Rutland was used. The physical view 

of the turbine can be seen in Figure 5.3.  

 

 

Figure 5.3 Experimental Set up 
 

 

The speed of the wind turbine generator was adjusted by a DC motor which was attached to 

the centre hub of the turbine by a shaft. The motor is shunt type DC motor from NECO, at 

rating current of 0.75 A at 1500 rpm. A speed controller namely was used to derive the DC 

Wind Turbine 

Speed 

Controller 

AC 

output 
DC 

output 

DC motor 
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motor; hence to control the speed of the turbine. During the experiment, the blades were 

purposely removed. The turbine output AC power was rectified initially by using two bridge 

rectifiers (KBPC3504) as shown in Figure 5.4. 

 

 
 

 
 

Figure 5.4 Two bridge rectifier 
 
 

 

Internal scheme and physical view of the turbine hub can be seen in Figure 5.5 (a) & (b). 

   

 
 

Figure 5.5 (a) Internal schematic and (b) physical view  

 

The speed controller has ten sets of speed range. The turbine speed was controlled by this 

portion in order to represent a variable wind profile. The output AC power was firstly 

rectified by the specified bridge diodes. Then, operating at constant switching frequency, 

 (a) (b) 
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the FS10R12VT3 Inverter was coupled with the rectifier output in order to produce three-

phase power. The filter and load components were identical with the previously designed 

system in this chapter. The gate signals were provided by dSPACE and the load current was 

used to predict inverter temperature during the variable speed profile. The applied speed 

range profile can be seen in Figure 5.6 (a) along with temperature variations in Figure 5.6(b). 

     
 

Figure 5.6 (a) Speed and (b) Inverter Temperature 

 

As it is seen from the Figure 5.6, the increase in the wind speed caused temperature 

increment for the Inverter. The highest estimated temperature was 85 °C at the speed 

portion 10. The thermal profile behaviour with respect to the wind speed changes defined 

and modelled in Chapter 4 are verified based on the experimental case study. It can be 

stated that during the wind speeds increment, the temperature profile of the PECs are 

increases. In this condition, by lowering the switching frequency, the thermal stress can be 

decreased as a result of the analysis in previous chapter. For further verification, a study was 

completed for the life time prediction of the inverter module under variable wind speed 

operation. The thermal data for the inverter was defined by AC input currents. Lifetime 

modelling study, defined in previous section, was applied to processed temperature data to 

count number of thermal cycles and then for predicting the total life consumption (TLC) for 

aluminium wire bonds. The model of the number of total cycles to failure during a thermal 

cycling on wire bonds studied by Ma et al. [1] was used. It is defined as: 
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Based on the Rainflow counting algorithm analysis [256], the total temperature cycles data 

was calculated as seen in Figure 5.7.   

(a) (b) 
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Figure 5.7 Rain flow thermal cycling data 

 
The mean temperature changed between 76°C to 88 °C and highest cycle was observed as 

40°C at 82°C mean temperature. In order to calculate the total lifetime consumption caused 

by the variable wind speed operation, Palmgren-Miner linear damage accumulation rule 

[254] was applied and modelled for failure prediction. The total life consumption results can 

be depicted in Figure 5.8. TLC for one wire bond of the inverter was found as 1.88 x 10-5, and 

it was observed that the higher speed caused more life consumption for the inverter.  

  

Figure 5.8 Lifetime Consumption during variable speed 

 

It can be seen from the Figure 5.8 that, during wind speed increment, the mean 

temperature inclines and the number of cycles found in the thermal profile are increases. 

This causes more lifetime consumption for the device and decreases its reliability. 
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5.3 Lifetime Analysis for Discrete IGBT Devices 

 

Lifetime models available in literature were used in previous sections in order to find the 

total life consumption for the solder layers and wire bonds of the multichip power electronic 

modules. However, for discrete, single chip devices studied in Chapter 3, there is no any 

specific lifetime model. Therefore, a lifetime consumption study was performed in this 

section to extract the parameters for the discrete IGBT device. Based on the discussed 

models in literature [1]-[183],  a scheme of the lifetime consumption study, performed in 

this research, is shown in Figure 5.9. This model will be further used for a case study to 

analyse lifetime consumption of PECs used in a PV system. 

 

 

Figure 5.9 Scheme of lifetime consumption study 

 

Initially, number of cycles to failure was obtained by an accelerated power cycling test. 

Implemented test circuit for reliability test can be seen in Figure 5.10. The gate signal 

duration was provided through dSPACE to turn on and off the device. Load current was 

conducted through power supply unit for generating temperature swing. 
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Figure 5.10 Accelerated life consumption test set-up 

 

Modelled and measured temperatures are shown in Figure 5.11 (a) with respect to device 

current. A total of four different test conditions were applied for the failure test. Model 

based data is shown in Figure 5.11 (b) when the temperature swing (∆T) was adjusted as 

90°C and 40°C with average temperatures (Tm) of 80°C and 60°C, respectively.  

 

        

 

Figure 5.11 (a) Temperature monitoring verification by thermal camera (b) Accelerated power cycling test data 

 

 

(a) 

(b) 
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The thermal resistance increment is common since the solder fatigue and the on-state 

voltage increment is caused by the wire bond lift off [17]. Hence, device temperature and 

the forward voltage of the IGBT were monitored during the test, as shown in Figure 5.12. 

The mean temperature was 60°C and temperature variation was 90 °C.  

 

Figure 5.12 Power Cycling Test Results 

Failure criteria were defined as 25% increase of temperature. Voltage across the device was 

no longer constant after 190k cycles and more than 30% increase was detected in the device 

temperature after 225k cycles. This was considered as indication of failure. A modified 

Coffin-Manson-Arrhenius lifetime model [183] was used to define cycle to failure data as a 

function of mean temperature, Tm and temperature variation ∆T. In the model, Nf  is 

expected number of cycles to failure, Boltzman constant (kb) is 1.38 x 10-23 J⋅K−1, activation 

energy is 1.3 x 10-19 J, A and α are the constants, 610 and -5, respectively which are fitted by 

least square method. Lifetime curves are presented in Figure 5.13 as a function of 

temperature variation with respect to number of cycles to failure. 

 

Figure 5.13 Lifetime curves 

 ● T
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▲ T

m
: 80 °C 

  



Lifetime Modelling of Power Electronic Modules 

 

 

167 

 

For lifetime estimation analysis purpose, Rainflow counting algorithm tool [256] was used to 

evaluate the temperature variation profile for the IGBT when P&O and IC MPPT algorithms 

were applied to PV system in the following section. 

 

5.4 Case Study: Lifetime Analysis for PECs used in Solar PV Applications 

 

Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinctive 

maximum power point (MPP) depending on the environmental factors, i.e. temperature and 

irradiance. To harvest the maximum available power from the solar panels, maximum 

power point tracking (MPPT) techniques are used. In this section the effect of MPPT 

techniques on the lifetime of the PECs will be analysed. The most commonly used 

techniques namely Perturb & Observe (P&O) and Incremental Conductance (IC) methods 

were selected for this purpose. The PV solar cell internal photocurrent, IPH, within PV cell 

equivalent circuit is shown in Figure 5.14 along with the boost converter for MPPT 

application purpose. 

 

 
Figure 5.14 PV solar cell equivalent circuit integrated within a MPPT system 

 

 A parallel diode, D, internal series and parallel resistances (RS and RP) can also be seen in this 

circuit along with total current and voltage IPV and VPV, respectively. Total current, IPV, can be 

represented with respect to diode, ID and parallel resistance currents, IP as:  
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where I0 is the total diffusion current, VPV is the output voltage, q is the charge of one 

electron, Tc is the solar cell temperature, k is the Boltzmann constant and A is junction 

perfection factor, which determines the diode deviation from the ideal p-n junction. For 

deriving the numerical model of a PV module, eqn. 5.10 can be extended as: 
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where Ig is photo-generated current, np cells in parallel and ns cells in series the 
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A PV module, namely KS10T by SOLARTEC, was used in this research due to its convenient 

power characteristics with the previously implemented DC/DC boost converters. The 

characteristic of the PV module used in this work is listed in Table 5.1. Based on eqn. 5.9-

5.12, electrical model of this component was implemented by using MATLAB/Simulink.  

 

Table 5.1: PV module parameter specifications 

Electrical 
Performance 
(at 1kW/m2) 

Maximum 
Power 

Maximum 
Power Voltage 

Maximum Power 
Current 

Open Circuit 
Voltage (Voc) 

Short Circuit 
Current (Isc) 

Values 54 W 17.4 V 3.11 A 21.7 V 3.31  

 

5.4.1 Maximum Power Point Tracking (MPPT) Algorithms  
 
P&O and IC algorithms were implemented for MPPT purpose in MATLAB/Simulink. The 

maximum power point, expression, PPV,mpp, can be written as [208]: 

 

                   mppPVcmppPVPHmppPVmppPVmppPV VAkTqVIIVIP ,,0,,, )1)/exp((.                    (5.13) 
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5.4.1.1 Incremental Conductance (IC) MPPT Algorithm  
 

Incremental conductance (IC) MPPT method is based on the derivative of the power with 

respect to the voltage at P-V curve which is equivalent to zero at maximum power point. 

Hence, by comparing the instantaneous conductance (Ipv/Vpv) with incremental one 

(∆Ipv/∆Vpv) maximum power point is tracked based on the sign of the ∆Ppv/∆Vpv and varying 

the operating voltage. Flowchart of IC methods can be seen in Figure 5.15 (a). 
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The maximum power point of solar PV module can be defined as: 
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from eqn. 5.15, operating points of the PV module with respect to IC algorithm can be 

written as: 

 

                                  pvpvpvpvmpppvpv
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dV
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//,0 ,                              (5.16) 

where the module is operated at MPP and the Vpv should be hold as it is. 
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pv

pv
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//,0 ,                              (5.17) 

 
where the Vpv should be increased by applying constant steps to reach Vpv,mpp. 
 
 

                             pvpvpvpvmpppvpv

pv

pv
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where the Vpv should be controlled by applying constant steps to be reduced until Vpv,mpp. 
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5.4.1.2 Perturb & Observe (P&O) MPPT Algorithm  
 

Perturb & Observe (P&O) MPPT algorithm is derived by producing disturbances to either 

instantaneous current or voltage which was used as a reference in this study. By changing 

the solar panel voltage in small amounts, the system I-V operating point and hence P-V 

characteristics are changed. However, change in amount of power can either be positive or 

negative. In case that it is positive; disturbance should follow the same direction until MPP is 

approached. Otherwise, perturbation direction should be changed to prevent moving 

further away from MPP. Step size of the disturbance can be decreased when it is closer to 

MPP to avoid large oscillations. Flowcharts of P&O method is shown in Figure 5.15 (b). 

 

5.4.2 Electro Thermal Model of Boost Converter within MPPT 
 

A Boost DC/DC converter with NPT IGBT device, implemented in Chapter 3, was used for 

matching the MPP of the PV module at any irradiance and temperature level along with an 

MPPT control, PWM block and a load. Operating point of the PV module is changed by the 

duty cycle of the switching element (IGBT) according to MPPT algorithms to reach the single 

value of maximum power point duty cycle, DMPP. By recalling the boost converter topology, 

operating occurs in ON and OFF stages in period of T. During ON stage, for DT seconds, the 

IGBT is closed which results in increase of the inductor current. During the flow through the 

IGBT, power losses occur on this device due to drastic change in current and voltage; hence, 

its temperature increases. Thermal cycling on this component results in deformation and 

eventual failures which is around 60% of overall PEC runaways.  
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Figure 5.15 Flowchart of (a) Incremental Conductance and (b) Perturb & Observe Methods
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Therefore, only electro thermal model of this device was implemented. When IGBT is open, 

for (1-D)T seconds, energy accumulated into the capacitor and load through flyback diode. 

At this stage, no heat losses occur. For both stages, circuit equivalences of the converter, 

when coupled with PV module, can be written as: 

                                                 off
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PV t
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V 
                                                               (5.19)  
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eqns. 5.19 & 5.20 can be simplified into the relationship between input /output voltage as: 

                                                               D
V

V

OUT

PV 1                                                                      (5.21) 

 
5.4.3 Experimental Setup 

MPPT algorithms were individually implemented using Simulink and integrated with dSPACE 

through control desk. Gate signals generated through MPPT blocks were provided through 

DS5101 digital to analogue converter card. Due to gate requirements, gate drivers were 

used to reach sufficient power level. Experimental setup is shown in Figure 5.16. 

 

 

            
 
 
 

Figure 5.16 (a)Visual and  and (b) Actual cxperimental Set-up 
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Collector current, Ice, and PV current, IPV, were monitored by current transducers, LA 25-NP, 

and were inserted dSPACE RTI through DS2004ADC as power loss and MPPT algorithm 

model inputs. PV and collector to emitter voltages, VPV and Vce were also measured for 

operating within same blocks as current signals. Implemented IC and P&O algorithms within 

Simulink and dSPACE are shown in Figure 5.17 (a) & (b), respectively. 

  
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
 

Figure 5.17 Real Time Implementation of (a) IC and (b) P&O MPPT methods in dSPACE 

 

Look up tables were used to interpolate previously estimated switching energy loss profiles 

during switching operation. Real time power loss profiles were monitored by multiplication 

of these losses with the switching frequency. Then, total power loss was calculated over one 

switching period in each step time as a function of collector current, Ice, collector to emitter 

voltage Vce and temperature by addition of switching and conduction losses.  

(b) 

(a) 
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Figure 5.18 RT Implementation of Electro thermal Model in dSPACE 

 

 

Total power losses were then used as input to heat source within thermal model, as shown 

in Figure 5.18 by using Simulink blocks, as already studied in Chapter 3, mathematical 

equivalent model was implemented in thermal block. Estimated temperature is then fed 

back into power loss model for continuous monitoring. 

 

 

5.4.4 Electro Thermal performance of PEC with IC and P&O methods 

5.4.4.1 Simulated and Experimental Characteristics of PV Module  
 

PV module performance was examined under different light irradiation levels 

experimentally and compared with numerical simulation results. MATLAB s-functions were 

used to execute the PV voltage/current characteristic by coding. The boost converter model 

in Simulink was then embedded to the PV system model which provides the input power. I-

V and P-V characteristics under different irradiation levels are shown in Figure 5.19 (a) & (b) 

when different load characteristics were applied experimentally along with numerical 

simulation which results at 22°C ambient temperature.  
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Figure 5.19 Experimental a) I-V and b) P-V characteristics at different light levels of halogen bulb 

 

 

In order to assess an accurate temperature monitoring with thermal camera, no heat sink 

was attached to switching device. Light controlled chamber, with ten portions, was used to 

vary irradiance. By this way, any thermal runaway on PECs was avoided due to the increased 

current characteristics at higher light level. As light level decreases, MPPT voltage changes 

more drastically compared to higher light level. Hence, wider ranges of duty cycle operating 

points were examined for verifying thermal stress difference between P&O and IC 

algorithms.  

 

 

(a) 

(b) 

(a) 
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5.4.4.2 Electro Thermal Comparison of IC and P&O MPPT Algorithms 

 
Thermal performance of IC and P&O methods was tested under the same environmental 

conditions. Experimental and simulated PV voltages, current and tracked maximum power 

as well as the length of the duty cycle by means of percentage are shown in Figures 6.20-

6.23 (a) and (b), respectively for IC algorithm based MPPT. 

 

 

 
 

Figure 5.20 (a) Experimental and b) Simulated MPPT duty cycle with IC method 

 
 

 
 

 
Figure 5.21 (a) Experimental and (b) Simulated MPPT power with IC method 

 

(a) (b) 

(a) (b) 
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Figure 5.22 (a) Experimental and (b) Simulated MPPT current with IC method 

 

 
 

Figure 5.23 (a) Experimental and (b) Simulated MPPT voltage with IC method 
 

  

The analysis can be seen in Figures 5.24-5.27 when the MPPT method P&O was used. Duty 

cycle changes during operation in IC algorithm are more drastic compared to the P&O 

algorithm as it can be illustrated in Figures 5.20-5.27. The gradual change of duty cycle in 

P&O algorithm was also reflected on the extracted PV current characteristic. Although, it is 

more oscillatory, the amplitude during each cycle is less compared to the IC method. In 

general, both methods show inaccuracies at low light levels where P&O provided slower 

response to light level changes during all practical and experimental analysis. 

(a) (b) 

(a) (b) 
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Figure 5.24 (a) Experimental and (b) Simulated MPPT duty cycle with P&O method 
 
 

 
 
 

Figure 5.25 (a) Experimental and (b) Simulated MPPT power with P&O method 
 
 
 

 
 
 

Figure 5.26 (a) Experimental and (b) Simulated MPPT current with P&O method 
 
 

 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 5.27 (a) Experimental and (b) Simulated MPPT voltage with P&O method 

 
 

Power loss profiles of semiconductor switching devices are highly depended on the current 

signal characteristic i.e. amplitude, frequency etc. [104], [233], [257]. This was monitored on 

dSPACE Control Desk for both MPPT methods, as illustrated in Figure 5.28 (a). It can be 

clearly seen that there is higher power loss profile especially when higher illuminations 

between 1000 and 1200 & 1400 and1600 seconds are experienced for IC method. The 

gradual current change caused more fractional loss profile when P&O was selected as MPPT 

method and approximately 10 W less power loss can be attained compared to IC one at 

highest possible light level.   

 

 
 

 

Figure 5.28 (a) Total power loss and (b) switching losses comparison on IGBT when IC and P&O selected 

 

 
 

(a) (b) 

(a) (b) 
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Switching energy losses for a fraction of analysis time are depicted in Figure 5.28 (b). The 

sharp change of PV current caused by tracking method which is the result of light level 

change, produced more switching losses when IC algorithm is selected. Approximately, two 

and half times higher power loss can be noticed during on-time losses where the device is 

exposed the highest voltage/current change. Yet, off-time losses were very similar in both 

methods.   

 

                    
 

Figure 5.29 Thermal camera view of IGBT when the light level is 6 (4150 Lux) when (a) P&O and (b) IC used 

 

Temperature of the PEC was monitored by FLIR T440 thermal camera [258]. Tests were 

performed under 22°C ambient temperature. Thermal impedance values in thermal model 

were also verified by this method. Thermal camera captures for temperature difference 

observation when P&O and IC methods were used under light level 6 and 10, are shown 

Figures 5.29 and 5.30, respectively. 

 

                       
 

Figure 5.30 Thermal camera view of IGBT when the light level is 10  when (a)P&O and (b)IC used 
 

 

Operating temperature of IGBT is the highest compared to other components’ located on 

PEC. Nevertheless, the IGBT experienced approximately 10 °C higher temperature when the 

IC method is selected with 52.7 °C compared to 42.6 °C with P&O highest light level, as 

(a) 

(a) (b) 

(b) 
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shown in Figure 5.30. Therefore, higher power loss profile caused by IC method affected the 

operating temperature of the IGBT, proportionally. Transient experimental temperature 

characteristic of the IGBT can be seen in Figure 5.31 (a) which was observed through in 

dSPACE Real Time Control Desk where Figure 5.31 (b) shows the simulated results in 

Simulink. 

       
 

Figure 5.31 (a) Transient IGBT temperature monitored in dSPACE, (b) Simulated temperature in Simulink 

 

 

Steady state temperatures of IGBT captured by thermal camera for each applied light level 

can also be illustrated in Figure 5.32. 

 

 

Figure 5.32 Steady state IGBT temperature comparisons when IC and P&O selected as MPPT methods 

 

As it can be depicted, a very good approximation was obtained at specified light levels on 

the PV module with the modelling method. Meanwhile, the IGBT temperature amplitude 

difference between P&O and IC methods inclines as the light level; hence, the MPP 

(a) (b) 

Light Level 

Light 
Level 4 

Light 
Level 6 

Light 
Level 10 Light 

Level 3 

Light 
Level 7 Light 

Level 4 
Light 
Level 4 

Light 
Level 6 

Light 
Level 10 

Light 
Level 3 

Light 
Level 7 

Light 
Level 4 



Lifetime Modelling of Power Electronic Modules 

 

 

182 

 

increases. Approximately 6 °C temperature cycling is observed at the light level 10 when IC 

was used with up and down boundaries of 52 and 46 °C, respectively. Yet, with P&O based 

system, the fluctuations are as low as 4 °C from 42 to 38 °C, although temperature 

amplitude changes more drastically along with light level variations. 

 

5.4.4.3 Lifetime Modelling and Reliability Comparison of IC and P&O MPPT Algorithms 

 

Temperature profiles obtained in Figure 5.31 (a) was processed in the Rainflow counting 

algorithm. The counted numbers of cycles for both temperature profiles are shown in Figure 

5.33 (a) & (b). The majority of thermal variations (∆T) are estimated at low values for both 

algorithms and the mean temperature changes (Tm) between 40 °C -55 °C for IC and 35 °C -

45 °C for P&O. The highest number of cycles for IC is approximately 2000 at 43 °C where it is 

2500 cycles for P&O algorithm at 35 °C. 

 

 

Figure 5.33 Number of cycles found with (a) IC and (b) P&O algorithms 

 

Numbers of life consumption of IGBT for IC and P&O algorithms are shown in Figures 5.34 

(a) & (b). The TLC was calculated by addition of each consumption data by using the model 

experimentally implemented in Section 5.3. As it can be observed, less amount of high 

temperature variation i.e. at 10 °C mean temperature of 43 °C for IC and 35 °C for P&O 

methods cause approximately same amount of life consumption with ten times higher 

number of cycles at low temperature variation (i.e. 0.5 °C) at 5 °C higher mean 

temperatures. TLC for IGBT, used in boost converter, was found as 4.817 x 10-5 while this 

was 3.44 x 10-5 for P&O algorithm. Thus, approximately 1.4 times higher TLC was observed 

(a) 
(b) 
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for the IC MPPT method usage under same loading and environmental conditions compared 

to the P&O algorithm for the described PV system. 

 

  

Figure 5.34  Lifetime Consumption with (a) IC and (b) P&O algorithms 

 

5.4.5. Discussion 

Prior to discuss the reasons behind the different temperature profiles of the switching 

device of the converters while operated by P&O and IC MPPT algorithms, it is worth to recall 

their operating principles and main causes of the electro thermal power loss occurring 

which affects the reliability.   

The P&O algorithm simply introduces perturbations in the duty cycle of the power converter 

which leads to changes in the PV voltage and current. Subsequently, by observing the 

change in the operating power, the duty cycle is further increased or decreased by the 

amount of the perturbation step size as the direction of the perturbation is retained.  It 

should be noted that, once the maximum power point is reached, the conventional P&O 

algorithm begins to oscillate around it by a certain amount, depending on this perturbation 

step size. 

The IC, on the other hand, incrementally compares the ratio of the derivative of the 

conductance with the instantaneous conductance and updates the duty cycle, accordingly. 

Similar to the P&O, the maximum power point where the condition of dI/dV + I/V = 0 is 

difficult to be operated; hence the PWM signal oscillates around this point.  

Although in theory, both methods provide very close tracking efficiencies as discussed in 

literature, the working principle of the P&O consists of a hill climbing nature which has 

(a) 
(b) 
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slower dynamics compared to the IC algorithm’s incremental ratio working principle. This is 

the one main reason for the difference in the average values of the tracking efficiencies 

between both algorithms where the INC performs 3% better for the applied test conditions 

compared to the P&O. The selected perturbation step time, which is 0.005, has also a 

significant effect on the efficiency and oscillations during varying irradiance conditions. A 

further optimised perturbation step size would increase the efficiency for both methods and 

vice versa. 

The efficiency of the P&O method is low at the sharp decrements of the light levels such as 

at 600, 1200 and 1800 seconds due to the constant perturbation size. The same method has 

better efficiency at the higher light levels; however it is not as high as the IC due to its 

slower dynamics. One other reason is that the perturbation step is not sufficient to follow 

rapid increase in the MPP. Yet, the IC has faster working dynamics and provides better 

tracking efficiency under minimum and maximum light conditions. It continuously inspects 

the ratio between derivative and instantaneous conductance to update the duty cycle 

rather than producing perturbations and updating the duty cycle based on the direction of 

the slope by using a hill climbing method. The searching direction can get confused with 

P&O due to experimental noise which results in reduced tracking efficiency as well. On the 

other hand, at medium light levels, i.e. 5-7, the efficiency between both algorithms was 

found similar.  

Lower efficiencies at low light level conditions, i.e. around 1-3, are due to the constant 

perturbation step size which causes undesired oscillations on the very low current drawn 

from the PV panel. The current oscillations result in oscillations in power and the MPP 

tracking is affected negatively for both P&O and INC methods. Specifically, the low 

efficiencies for the IC method at low light conditions are mostly related to the oscillatory 

behaviour of the duty cycle of the converter which does not allow the voltage and current to 

settle down smoothly as seen through Figures 6.20-6.23 (a) and (b); hence, the MPP 

condition cannot be stabilised constantly as mentioned in literature [218]. 

According to the experimental and simulated analysis discussed above, the IC method was 

found as more efficient compared to the P&O method under identical operating conditions 

which is in agreement with the previous literature studies. Specifically, the IC yield better 

efficiency for drastic light level changes and the P&O method has slower dynamics and 
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offers lower efficiency due to the perturbed PV output parameters (oscillation may cause 

divergence) in every MPPT cycle, although it is mostly accepted as easier to implement.  

Having studied the tracking efficiency, the reflection of the dynamics of both methods on 

the electro thermal performance of the switching devices of the converters can be further 

analysed. To begin with, since the IC method was found as more efficient than the P&O 

method, theoretically it can deliver more power from the PV panel under identical working 

environment. This, in turn, results in more current drawn through the converter as 

experimentally and theoretically shown in Figures 6.20-6.27. It was initially stated that the 

current increase causes more power losses for the switching devices and it is also a function 

of both duty cycle and temperature.  This is the main reason for the IC method why it has 

higher loss profile compared to the P&O method which causes higher temperature and life 

time consumption. In particular, for instance, at the highest light level, the duty cycle is 

increased by both algorithms to extract the maximum available power where the IC method 

showed better efficiency. The converter extracted 11.2 W average power once it is operated 

by IC whereas this was 10.5 W with the P&O method. The average duty cycle provided by 

the IC was 63% where it was only 59% from the P&O method. This clearly shows that with 

the IC method, longer conduction time occurred on the switching device compared to the 

P&O method. This leads to more current passing through the device in on-stage; hence, 

causes higher conduction losses as shown in Figures 5.28 (a) & (b). The increments in the 

average temperature profile with IC and the fluctuations are related to this analysis as can 

be depicted in Figures 5.31 (a) & (b). As a result of the lower temperature profile, the P&O 

caused 1.4 times less life time consumption on the switching device compared to the IC 

method.  

 

5.5 Summary 

 

Lifetime modelling for the PECs was completed in this chapter. Lifetime of such 

semiconductor component depends on the thermal variation caused by changing operating 

conditions. This was investigated in this work with experimental power cycling test based 

life time consumption monitoring. Number of cycles to failure was estimated by this test 

and number of cycles in temperature profile of IGBT used in PEC was counted by Rainflow 



Lifetime Modelling of Power Electronic Modules 

 

 

186 

 

algorithm. Then, life time consumption was calculated based on the Palmgren-Miner linear 

damage accumulation rule. Based on this methodology, the total cycles to failure for the 

proposed variable DC-link switching frequency control method was calculated as 3.26 x 10-5 

which is approximately 1 x 10-5 less consumption compared to the other both methods. The 

thermal stress analyses, obtained in Chapter 4, are also in good agreement with the related 

TLC results. The highest average stress occurred for the fixed DC-link operation which 

caused higher TLC and vice versa for the proposed switching frequency control method. 

Effects of IC and P&O maximum power point tracking algorithms on the electro thermal 

performance and lifetime of the IGBT used as switching element of PEC were presented. 

Compared to the P&O method, thermal cycling on the IGBT component was found as 

approximately 4°C higher when the IC method is operated and the steady state temperature 

was 52.7°C while this was 42.6 °C with P&O. The system operated by IC method was found 

to be less reliable compared to the one with P&O, once they are operated under the same 

operating conditions. IC method was found to cause 1.4 more life consumption. 

Consequently, the IC method is superior in terms of tracking efficiency and response to 

sudden light level changes on PV module based on this study; however, it causes higher 

varied temperatures on IGBT and reduces its reliability. The results presented in research, 

for the first time in literature, clearly show that the reliability of the converter switching 

devices is affected by different MPPT methods in PV applications. An interesting future 

research needs to be done for further investigating of this phenomenon under different 

operating parameters i.e. power rating and environmental conditions.   
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6.1 Overview 

 

This chapter states the outcomes of the research project. Achievements and objectives are 

addressed and summarised by an overall conclusion of the proposed real time electro 

thermal modelling and experimental studies. Future prospects of the research work are also 

presented as future research directions. 

 

6.2 Reviews for the Objectives and Achievements 

 

The objectives of this research were fulfilled as follows: 

 
 
Objective 1: To review the research status in the electro thermal modelling, operating 

conditions, physical material properties and reliability of insulated gate bipolar transistors 

operated in power electronic converters of renewable energy systems. 

 

A comprehensive literature survey was presented in Chapter 2. Research status in electro 

thermal and thermo mechanical modelling of the power electronic converters and the 

limitations of current modelling approaches were defined. By reviewing the above research 

works, the research questions for the project is outlined. Reliability of the power electronic 

devices was defined as one of the most significant factor which affect the overall lifetime of 

the renewable energy systems. However, only few publications appear in literature which 

concerns to decrease these stresses by optimising the power losses of PECs. To assess 

estimation of this phenomenon, an accurate electro thermal modelling technique was 

presented which is applicable to be coupled with renewable energy system PECs. 

 

Objective 2: To derive accurate electro thermal and thermo mechanical FE models for the 

semiconductor switching and power electronic devices used in renewable energy systems. 

 

An accurate electro thermal model for a multichip single IGBT power module was achieved 

in Chapter 3. The model was built by using COMSOL finite element package and the thermal 

characteristic was embedded in Simulink package based on the complex heat interactions 
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and coupling effect across chips located on the device. Analytical results also showed good 

agreement with the model. 

 

Objective 3:  To investigate electro thermal characteristics of topologically different 

semiconductor switching devices based on their physical and operational differences. 

 

In order to verify accuracy of the proposed electro thermal model, performance of trench 

gate topologically different IGBT devices with a silicon carbide based MOSFET were 

presented in Chapter 3. Experimental studies were conducted in order to evaluate the 

models in wide range of operating condition such as ambient temperature or load 

variations.  By real-time implementation of dSPACE model, an efficient temperature 

monitoring tool was produced and subsequently, modelling outcomes are verified by using 

those devices as switching elements in operational boost converters.  

 

Objective 4: To derive thermo mechanical FE models for power electronic devices used in 

renewable energy systems. 

The thermo mechanical study was completed by using FE analysis for power electronic 

converters used in renewable energy systems in Chapter 4. Thermal stress effect was 

defined as von-Mises and principal stresses and observed based on the temperature 

variations on each chip located on the devices and the layers underneath. 

 

Objective 5: To derive reliability models for semiconductor switching devices as a function 

of electro thermal and thermo mechanical characteristic. 

 

Rainflow algorithm was used to estimate the total number of cycles in each temperature 

profile and by using improved Coffin-Manson methods the number of cycles to failure was 

obtained. The total life consumption was then calculated by Palmgren–Miner rule. 

Experimental validation of model based implementation of a three phase inverter module 

was presented in Chapter 5. The switching frequency control method for extending lifetime 

of the associated inverter was verified by a physical variable speed wind turbine. The model 

is validated via dSPACE real time implementation with an actual permanent magnet 
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generator based wind turbine system test rigs. Further discussion was presented in order to 

verify the thermal stress analysis with total life time consumption calculations.  

 

Objective 6: To implement Simulink models of wind and PV systems with embedded power 

electronic converters and their associated control algorithms to decrease the thermal stress 

and enhance the lifetime during variable environmental conditions. 

 

In order to decrease thermal stress occurring on PECs, a switching pattern control method 

was derived in Chapter 4. During a variable wind speed application, the methods were able 

to decrease significant amount of stress which led to enhance the lifetime. The effects of 

maximum power point tracking algorithms on lifetime in DC-DC converters under different 

operating conditions was investigated for the first time in literature. Experimental work was 

verified in Chapter 5 by real time implementation of model based  photovoltaic solar system 

by using two different MPPT algorithms, namely, perturb and observe (P&O) and 

incremental conductance (IC).  

 

 

6.3 Conclusions 

 

The proposed electro thermal model in Chapter 3, defines each heat path of the individual 

chip components for a multichip device. It was used to represent the actual behaviour of the 

power module in MATLAB/ Simulink. The proposed method is well-suited for monitoring the 

internal behaviour of the thermal effects within power electronic modules under their 

working conditions. The impact of the heat coupling effects among chips was found as high 

as 10 C° which was difficult to be accurately defined with most of the models in literature. 

Experimental real time verification of electro thermal model was achieved. The system 

determines IGBTs temperatures and heat distributions based on current and voltage 

measurements and embedded models.  Based on this implementation, series of case studies 

applied for thermal performance comparison among SiC MOSFET and Si based IGBT devices 

within DC/DC boost converter. SiC device was found more thermally stable particularly at 

frequencies higher than 100 kHz and has approximately 20°C less operating temperature 
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characteristic compared to the IGBT devices on most of the tested conditions. However, 

current increase caused temperature inclination at lower frequencies. FSPT IGBTs 

performed the best at frequencies between 10-50 kHz thanks to their lower conduction loss 

characteristics. A model based solution to minimise the thermal effects and the induced 

stress of PECs in wind systems was implemented. IGBT junction’s total temperature 

fluctuation were notably reduced; for FSIG by 12 °C, DFIG by 5 °C. Such temperature 

reduction leads to a total stress decrease by about 27 MPa. Experimental studies were 

conducted for a DC/AC inverter power module. Two case studies were performed in order 

to verify model based analysis. First, the inverter was fed by a constant power source under 

variable frequency operation. Then, an actual wind turbine system was used to apply 

variable speed/input operation to the coupled inverter. The thermal behaviour of inverter 

module during both cases was monitored by thermal imaging and dSPACE implementation. 

Good accuracy was obtained between model and experimental results for both cases. The 

estimated temperature data for variable wind operation was used to calculate number of 

cycles to failure and total life consumption of one of the chip wire bond. TLC as 1.88 x 10-5, 

and it was observed that the higher speed caused more life consumption for the inverter.  

Further analysis was studied for verification of the thermal stress deduction with the 

proposed switching frequency control method. Solder lifetime modelling was derived for 

the calculating the number of cycles to failure of the solder chips. The TLC was 4.25 x 10-5 

for the fixed DC link operation. With the dynamic DC link operation, the TLC slightly 

decreased to 4.06 x 10-5. With the proposed switching frequency control method significant 

TLC improvement was achieved especially by eliminating high temperature fluctuations. The 

TLC for this method was calculated as 3.26 x 10-5 which is approximately 1 x 10-5 less 

compared to the other both methods. Effects of IC and P&O maximum power point tracking 

algorithms on the electro thermal performance and lifetime of the IGBT used as switching 

element of PEC was presented. Compared to the P&O method, thermal cycling on the IGBT 

component was found as approximately 4°C higher when the IC method is operated and the 

steady state temperature was 52.7 °C while this was 42.6 °C with P&O. IC method was found 

to cause 1.4 more life consumption. 
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6.4 Future Work 

 

The implemented electro thermal models and experimental work were verified by series of 

case studies. However, there are still many future work perspectives which would increase 

the overall accuracy and understanding the failure mechanisms of PECs. For instance, SiC 

technology could be further investigated based on its thermally beneficial material 

properties. Not only for IGBTs but also SiC Schottky diodes would offer better performance 

because of its lower forward drops and reverse recovery characteristics. More investigation 

towards SiC technology would lead manufacturing of multi-chip power devices which are 

very rarely available in market.  

In terms of reliability enhancement, active cooling elements which monitor the device 

temperature and provides adjustments based on the certain temperature limits could be 

embedded within the PECs. By this way, online temperature control could be established. 

Although the electro thermal monitoring methods derived in this research are based on the 

online implementation of dSPACE system, the reliability models were derived with obtained 

temperature profiles using Simulink. The reliability models could be embedded within the 

online application of electro thermal model which would generate not only temperature but 

also online reliability modelling. The reliability models could be improved by considering 

more parameters which are relevant to failure mechanisms. For instance, the switching 

frequency could be considered while calculating the number of cycles to failure of a power 

electronic device. 

In this research, the proposed switching frequency control technique for wind energy 

applications were derived by using SPWM method. This analysis could be expanded by 

implementing different modulation techniques i.e. SVM which would produce more thermal 

stress deductions; hence increase total life consumption. Electro thermal modelling of the 

DC-link capacitors can also be further implemented for lifetime consumption estimations of 

the power electronic converters.  
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Appendix 

 
Chapter 3 
 

Heat Equation 

Thermal and Electrical circuit parameters can be equated to each other in the theory of 

application. This can be proved by studying one dimensional heat diffusion equation for 

thermal and transmission line equation for electrical circuits. Applying the boundary 

conditions for both phenomena, direct conversion is mathematically established for the x-

component of the heat equation as follows; 

 

When heat power, 𝑃0 is applied to a solid object, equally distributed to area A, in the x-

direction as shown in Fig. A.1, it is equivalent to A.5; 

Figure A.1: Heat applied to solid object 

 

 

From (A.1); (A.5) can be written as: 

Where L is the length of the total heated path, 𝑇𝑖
  is the initial (x=0) and 𝑇𝑓 is final (x=L) 

temperature, through area, A. From (A.6), term 
Tf−Ts

𝑃𝑜
 is defined as the Thermal Resistance, 

𝑅𝑡ℎ [𝐾/𝑊]: 

 
𝜕2𝑇

𝜕𝑥2 = 
𝑝.𝑐

𝑘
  

𝜕T

𝜕𝑡
                                                                                                                        (A.1) 

 𝑃0 = 𝑞. 𝐴                                                                                                                            (A.2) 

          𝑃0 = −𝑘. 𝐴  
𝝏T

𝝏𝑥
= −𝑘. 𝐴

Ts−Tf

𝑳
                                                                                                                         (A.3) 
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The heat power 𝑃0 can be interpreted as electrical current, since the Electrical Transmission 

Line Equation states: 

For an ideal transmission line with no inductance, 𝐿𝑒𝑙=0, and with an ideal isolation between 

two single lines, where the volume element cannot be cooled itself, 𝐺𝑒𝑙=0. Hence; 

 

The electrical current 𝑖(𝑡) [A] as a function of voltages [V] is defined as: 

By interpreting the electrical current as heat power and voltage as temperature in thermal 

domain (A.10) becomes; 

Thermal Capacitance is defined as 𝐶𝑡ℎ [𝐽/𝐾 ], and from (A.1) & (A.9) it is represented as: 

Hence (A.9) in thermal analysis, can be written as: 

Table 1 shows the conversion between the parameters of the electrical and thermal systems.  

Type Energy Potential Resistance Capacitance 

Electrical  I, Current [A] V, Voltage [V] Rel, Electrical 
Resistance [Ω] 

Cel, Electrical Capacitance [F] 

Thermal 
 

P, Dissipated 
Power [W] 

T, Temperature [K] Rth, Thermal 
Resistance [K/W] 

Cth, Thermal Capacitance [J/K] 

 
Table A.1: Electrical and Thermal System Parameters 

 
 
 

𝑖(𝑡) =  𝐶𝑒𝑙 .
𝜕V

𝜕𝑡
                                                                                                                                                  (A.7) 

𝑝(𝑡) =  𝐶𝑡ℎ .
𝜕T

𝜕𝑡
                                                                                                                                                (A.8) 

𝐶𝑡ℎ =  𝑐. 𝜌. 𝐴. 𝐿                                                                                                                                              (A.9)                                             

𝜕2𝑇

𝜕𝑥2 = 𝑅𝑡ℎ𝐶𝑡ℎ  
𝜕T

𝜕𝑡
                                                                                                                    (A.10) 

𝜕

𝜕𝑥
( 

𝜕V

𝜕𝑥
) =𝐶𝑒𝑙𝐿𝑒𝑙 

𝜕

𝜕𝑡
( 

𝜕V

𝜕𝑡
) +(𝐶𝑒𝑙𝑅𝑒𝑙+𝐺𝑒𝑙𝐿𝑒𝑙)

𝜕V

𝜕𝑡
+ 𝐺𝑒𝑙𝑅𝑒𝑙𝑉                                                            (A.5) 

𝜕2𝑉

𝜕𝑥2 = 𝑅𝑒𝑙𝐶𝑒𝑙  
𝜕V

𝜕𝑡
                                                                                                                    (A.6) 

        𝑅𝑡ℎ =  
𝐿

𝑘 𝐴
                                                                                                                                                        (A.4)       
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The algorithm derived in Chapter 3 uses the analytical property of pure square roots,  

continued fraction equation [259] and its similarity between the nth order Cauer Form. 

Equations (A.14 to A.16) show the equivalence of Cauer Network when the number of layers 

attached together are increased. 

11
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                                ⋮ 
                                    ⋮ 
 

The algorithm inputs the thermal capacitance and resistances of each layer from bottom to 

top and arranges the equivalence of nth layer form of Cauer. Then by coding, residue 

function of MATLAB finds the residues and poles of a partial fraction expansion of the ratio 

of two polynomials B(s)/A(s), that has a similar characteristics to Foster form as: 

 

)(

)(

)2(

)2(

)1(

)1(

)(

)(

nPs

nR

Ps

R

Ps

R

sA

sB








                                                                                       (A.14) 

 

where 
thCnR 1)(  and )(nP 

1
                                                                            (A.15) &(A.16) 

 
Analytical derivation of converted parameters for validation (for two RC elements) test can 
be derived as: 

''''''
221121

CRRCRR 
221

CRR                                                                                             (A.17) 

 ''''
2211

CRCR
221211

CRCRCR                                                                                         (A.18) 

''''
2121

CCRR
2121

CCRR                                                                                                        (A.19) 

 ''
21

RR
21

RR                                                                                                                (A.20) 

 
Solving A.20 to A.23, the validation of converted thermal parameters from Cauer to Foster 
can analytically be derived as: 
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Where ''
111

RC and ''
222

RC                                                                                        (A.25 & 26) 

 
 
 
To obtain the discrete equivalent of transfer function thermal impedance via numerical 

integration, system differential equation is written, then applied forward rectangular 

numerical integration technique as: 

 

T

kxkx
kx

)()1(
)(


                                                                                                                (A.27) 

 
By transferring the above equation into frequency domain each discrete time left shift by n 

corresponds to a zn multiplying factor in z-domain (see Fig A.2). Then, each dn/dtn in 

continuous time domain corresponds to a sn multiplying factor in Laplace domain [260]. 

Thus it can be obtained as; 

T

z
s

1
   (Forward Rectangular Rule)                                                                                   (A.28) 

 

 
 

Figure A.2: Forward Rectangular Rule [260] 
 

 
First Order Laplace form of the simple exponential term thermal model is: 
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The Forward Rectangular Euler’s rule was applied to the thermal coefficients that were 

extracted in s-domain. The transfer function H(s), equivalent to (A.32), can be expressed in 

discrete domain as:  





as

b
sH )(  a

Ts

z

b
zH





1

)(
                                                                                             (A.33) 

where 
thCa 1 and b 

1                                                                                              (A.34 & A.35) 

                        
The derivation of this analysis can be derived as [261]: 
 
Transfer Function                     Differential Equation 



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as

b
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sE
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)(
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           aeauu                                                                   (A.36) 

 
In time continuous domain: 

 

t

dbeautu
0

))()(()( 
                                                                                                  (A.37) 

In discrete time domain: 





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0

                                                                    (A.38) 

  kTTkToverbeauareaofTkTukTu ,)()()(                                              (A.39) 

   
 
From the Forward Rectangular Rule (Euler’s Rule) with the approximation (kT –T); 

The difference equation becomes [261]: 
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Transfer Function: 
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By equating (A.32) where Ca 1
 , b 

1  and RC

TzRC
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                                                 (A.43) 

 
Applying a heat source, P, to thermal impedance (A.32), change in the temperature, ΔT, in s-

domain yields the following expression: 
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In z-domain: 
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Average vs Instantaneous Power Loss 

 

 
 

 
 

Figure A.3: Instantaneous and Average Power loss data with respect to temperature 
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Curve Fitting in Matlab 

 

  
 

Boost Converter Design 

 

Figure A4: Boost Converter Schematic 
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Figure A5: Boost Converter PCB Layout 

Driver Circuit Design 

 

Figure A6: Driver  Schematic 
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Figure A7: Driver  PCB Layout 

 

Figure A8: dSPACE Control desk 
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Figure A9: Opt coupler signal vs. collector current 

 

Figure A10: Driver Gate signal vs. collector current 

 

 

Figure A11: Collector current and voltage in dSPACE Control Desk 
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Chapter 4 
 

 

 

Figure A.12 Simulink Model view for FS based with systems 

 

Figure A.13 Anand viscoplasticity model in COMSOL 
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Chapter 5 
 

 
 

Figure A.14: Simulink model of PV system simulation 
 
 

 

 
 

Figure A.15: Inverter Materials  


