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Abstract 

Intelligent Tutoring Systems personalise learning for students with different backgrounds, abilities, behaviours and knowledge.  

One way to personalise learning is through consideration of individual differences in preferred learning style. OSCAR is the 

name of  a Conversational Intelligent Tutoring System  that models a person’s learning style using natural language dialogue 

during tutoring in order to dynamically predict, and personalise, their tutoring session.  Prediction of learning style is undertaken 

by capturing independent behaviour variables during the tutoring conversation with the highest value variable determining the 

student’s learning style. A weakness of this approach is that it does not take into consideration the interactions between 

behaviour variables and, due to the uncertainty inherently present in modelling learning styles, small differences in behaviour 

can lead to incorrect predictions. Consequently, the learner is presented with tutoring material not suited to their learning style. 

This paper proposes a new method that uses fuzzy decision trees to build a series of fuzzy predictive models combining these 

variables for all dimensions of the Felder Silverman Learning Styles model. Results using live data show the fuzzy models 

have increased the predictive accuracy of OSCAR-CITS across four learning style dimensions and facilitated the discovery of 

some interesting relationships amongst behaviour variables. 
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1. Introduction 

Intelligent Tutoring Systems (ITS) are adaptive educational systems that utilise intelligent technologies to provide 

individualised instruction (Brusilovsky and Peylo, 2003; Mitrovic, 2003; Papanikolaou et al., 2003; Popescu 2008, 2009, 2010; 

Aparicio et al., 2012; Jia-Jiunn et al., 2012). Over a period of time, ITS build a model of the goals, preferences and knowledge 

of each student, and use this model to adapt the teaching style and provide a degree of intelligent assistance.  Personalisation 

of a student’s learning experience has been achieved in such systems through the detection of emotional and cognitive states 

(Garcia et al., 2007; Garcia-Valdez et al., 2010); affective states including facial and body language (Annar et al., 2010; 

D’Mello and Graesser, 2012a, 2012b); personality (Leontidis and Halatsis, 2009); learning progressions (Rus et al,. 2013) and 

learning styles (Latham et al,. 2014).  Reyes et al., (2013) highlighted the current challenges in the development of ITS, which 

include the expense of system construction, no or minimal reflection on material by students to feedback given by the ITS, no 



evaluation standards and the question of whether the students’ focus is on learning how to use the system rather than the actual 

learning content. 

 A recent review by Sani and Aris (2014) of 50 ITS-related journal papers published between 2008 and 2013 shows a clear 

trend in the use of artificial intelligence techniques to improve performance and efficiency of ITS. Of particular relevance to 

our work is the use of fuzzy and Bayesian logic, which has been used increasingly to handle uncertainty with the ITS student 

model.  A brief review of learning systems inspired by computational intelligence can be found in section 2.2. 

Learning styles recognise that individuals have instructional preferences in how they choose to learn. The authors recognise 

that the concept of learning styles in education is contentious, with multiple models existing, looking at a variety of constructs 

including learning styles, attitudes, cognitive styles, and approaches to studying, with various levels of grounding in data and 

robustness of measurement. Some models of learning styles, such as the VAK (visual-auditory-kinaesthetic) model have almost 

achieved acceptance, particularly at school level, through their very ubiquity despite having no clear provenance (Sharp et al,. 

2008). However, the notion of learning styles can provide insights into the variety and diversity of learning experiences and 

preferences, but a critical review by Coffield et al. (2004, p138) suggests that there is theoretical incoherence in the field, with 

variable quality of models, and that “it matters fundamentally which instrument is chosen”. 

The principal learning styles model used in the field of engineering education is the Felder and Silverman (FS) model (Felder 

and Silverman, 1998) which is diagnosed by a formal questionnaire. The FS model defines four independent dimensions of 

preferred learning style: perception (sensory-intuitive), input (visual-auditory), processing (active-reflective) and 

understanding (sequential-global) which cover different aspects of the learning process. Research has shown that adapting to a 

student's learning style increases their learning ability which is often assessed by teachers through their performance (Coffield 

et el. (2014).  Learning styles have been widely used to enhance ITS by presenting learning material matched to individual 

students’ preferred styles (Stash  et al,. 2004; Wang et al., 2006; Popescu, 2008; Fossati et al,. 2009). When adapting to learning 

styles in ITS there are two main issues: how will learning styles be modelled? And how will the system adapt to individual 

learning styles? 

Existing ITS typically capture learning styles using a self-assessment questionnaire (Spalleck, 2003; Wang et al., 2006), or 

by analysing a student’s behaviour within the ITS (D’Mello and Graesser, 2012a; Latham et al., 2012a). Questionnaires are 

time-consuming to develop and validate, arduous to administer and often not completed accurately. Predicting learning style 

using a history of student behaviour means adaptation is delayed until several modules have been completed, and also a 

student’s learning style may change over time or for different topics. WELSA (Popescu, 2010) and EDUCE (Kelly and 

Tangney, 2006)  are two ITS that estimate learning style dynamically during the tutoring session for the purpose of curriculum 

sequencing. However, they do not include a conversational interface or other intelligent tutoring technologies. Dorca et al. 



(2013) proposed three strategies for the modelling of student learning styles through reinforcement learning in adaptive ITS. 

This work highlighted the importance of ongoing adaptation to learning styles and continuous updates to the student model 

during the actual tutoring session. However, the strategies were only tested through a simulation experiment and no real students 

were actually involved. 

During the past ten years there has been substantial effort in including both dialogue and affect into ITS which has led to the 

development of Conversational Intelligent Tutoring Systems (CITS).  CITS are complex to develop (Cha et al., 2006; Kumar 

et al., 2010; Latham et al., 2012a, 2012b, Porayska-Pomsta and Mellish, 2013) yet necessary within a constructivist pedagogy 

(von Glasersfeld 1995; Piaget, 2011) in order to effectively mimic a human tutor and support the construction of a student’s 

knowledge through discussion. Conversational Agents (CA) can provide flexible and robust natural language interfaces to ITS 

(Latham et al., 2012a, 2012b, 2014).  CA (O’Shea et al., 2011; Crockett et al., 2012) functionality includes the ability to explain, 

reason, emphasise and pursue a course of action based on interactions with humans and other agents. All CA features can be 

incorporated into a CITS to generate personalised learning through the understanding and correct interpretation of natural 

language dialogue. Examples of CITS include: AutoTutor and its variants (Azevedo et al., 2003; Graesser et al., 2005a, 2005b; 

D’Mello and Graesser, 2012a, 2012b; Nye et al. 2014) helps students construct knowledge about computer literacy and physics; 

CIRCSIM-tutor (Woo Woo et al., 2006) which engages students in discussion to solve physiology problems; and AVIS (Kumar 

et al., 2010) a CA tutor with ‘social conversational skills’ that supports small teams of learners in a collaborative learning 

scenario. Discussions that take place within these CITS do not consider learning styles during tutoring. 

OSCAR is the name of a Conversational Intelligent Tutoring System (referred to as OSCAR-CITS in this paper) that 

implicitly models a student’s learning style during a tutoring conversation and dynamically adapts its style of tutoring to suit 

his or her preference (Latham, 2011; Latham et al., 2012a, 2012b, 2014). Modelling of learning style occurs by inferring or 

calculating the values of a number of independent behaviour variables (representing the characteristics an individual exhibits) 

which are captured during the conversational tutoring.  In order to determine an individual’s preferred learning style (in 

accordance with FS model (Felder and Silverman, 1998)) and provide the most suitable learning material, the value of a related 

variable is used. The current method reported in (Latham et al., 2012a) has been shown to be successful (despite not considering 

the interactions between different behaviour variables) and adaptation to learning styles during a tutorial has been shown to 

improve the learning experience (Latham et al., 2014).  However, a simple winner-takes-all strategy is employed whereby the 

single best behaviour variable associated with the learning style determines the adaptation for a particular question.  Combining 

behaviour variables would factor in all behaviour extracted from the dialogue to determine the learning style.    

 

 



The motivation for the research presented in this paper was based on the following observations: 

 

1) From the earlier experiments (reported in (Latham et al., 2012a)), only one of the 41 independent behaviour variables 

captured during the conversation is used to predict each learning style. For example, in the experiments reported in (Latham et 

al., 2012b), the sequential and global learning styles are associated with three different independent behaviour variables but 

predictions only use logic rules (sequential) and approach to queries Q9 (global) in predictions. By combining the behaviour 

variables, it may be possible to improve the accuracy of prediction. 

 

2) No proposal has been made for how to deal with conflict resolution, i.e. when the selected attribute for each of the two 

learning styles of a dimension gives opposing classes of learning styles (e.g. the learner is classed as both sequential and global 

for the understanding dimension).  

 

3) In earlier work (Latham et al., 2012a) behaviour variables have been mapped to individual learning styles according to the 

FS model. However, it may be that all aspects of behaviour (even that commonly associated with different learning style 

dimensions) can be useful in modelling an individual’s preference, as learning styles models only describe general traits of 

different learners. By combining the values of all behaviour variables, regardless of the associated learning styles, further 

information may be mined that improves the prediction accuracies.  

 

The work presented in this paper aims to overcome the weakness of OSCAR-CITS by modelling the interactions between 

the behaviour variables from individuals who have participated in a tutoring session. Data collected from these tutorials will 

allow the creation of fuzzy models which take into account all behaviours which should comprehensively predict the learning 

style dimension rather than using a winner-takes-all strategy.  This will be achieved through the use of fuzzy decision trees to 

automatically find patterns of learner behaviour (using the independent behaviour variables) and produce a set of rules that can 

improve learning style dimension prediction accuracy. Better prediction by the fuzzy models will allow for better adaptation 

of tutoring materials to take place and improve the student learning experience.  The resulting experimental study will then 

consider whether it is possible to accurately estimate a learner’s learning style from a two-way tutoring discourse using these 

fuzzy models. This paper proposes a two-phase methodology for modelling learning style using fuzzy decision trees (Crockett 

et al., 2006; Gasir et al., 2012; Liu et al., 2013; Marsala, 2013). Fuzzy decision trees are based on the principles of classical 

decision trees that can automatically extract the most relevant features for a given problem from a set of data without human 

intervention. Classical decision trees are interpretable by humans and are robust and efficient but the decision making process 



is often rigid with only one path (rule) in the tree firing thus limiting amount of information contributing towards the predicting 

the outcome. Application of fuzzy theory, allows all information in the decision tree to contribute to the prediction phase by a 

matter of degree and allows for human uncertainty to be modelled.  Initial work using fuzzy decision trees by the authors 

(Crockett et al., 2013) has shown that combining such behaviour variables using machine learning techniques has shown 

comparable prediction levels, however this work did not explore the predictive accuracy of a full learning styles model nor 

critically analyse the behaviour variables in the context of the models produced.   

In terms of the research described in this paper, to be able to predict an individual’s learning style fuzzy trees will first be 

created in an induction phase and then applied to a set of individual learners data to perform prediction. In the induction phase, 

fuzzy decision trees will be induced from the independent behaviour variables captured through previous tutoring 

conversations. During the prediction phase all branches within the fuzzy tree will fire to some degree, and a fuzzy inference 

strategy will be applied to combine the information to provide an overall prediction of an individual’s learning style.  In order 

to improve the predictive accuracy of each individual’s learning style, a fuzzy decision tree is learned automatically from a set 

of data about a domain and provides a set of rules for classifying or predicting an outcome. 

Initial work (Crockett et al., 2013) tested out the use of fuzzy decision trees in the development of a Fuzzy Learning Styles 

Predictor Module which would interface with the predictive version of OSCAR-CITS. This work demonstrated that combining 

behaviour variables using machine learning algorithms (including support vector machines, the J48 decision tree and fuzzy 

trees) gave a higher predictive accuracy compared with the accuracy obtained using one variable as reported in  (Latham et al., 

2012a).  The first limitation of this work was that only two learning dimensions of the FS model were considered, and given 

choice and execution of learning style model is critical to successful learning, the need to investigate the predictive ability 

across all dimensions is essential to evaluate the overall predictive accuracy of OSCAR-CITS. Secondly, the initial work did 

not examine the information content of the behaviour variables and their relationships in building predictive models of each 

dimension and no detailed analysis was conducted.  

The novel contribution of this paper can be summarised as follows: 

1) The enhancement and extension of the Fuzzy Learning Styles Predictor (FLSP) module (first reported in Crocket et al., 

2013) to use a simpler fuzzy inference and fuzzification strategy to allow transparency in the decision making process 

leading to prediction of a learning style dimension.  This enables transparency in the model for tracking the importance 

of particular behaviour variable combinations influencing an individual’s learning style.  

2) An optimised and simplified approach of inducing all four fuzzy learning style models from behavioural variables for 

all dimensions in the FS model: Sensory – Intuitive, Visual – Verbal, Active – Reflective, Sequential – Global. This 



allows a complete picture of how OSCAR-FLSP performs in terms of predictive accuracy across a complete learning 

style model. 

3) A comparative evaluation for all FS dimensions between the predictive accuracy of OSCAR-CITS compared with 

OSCAR-FLSP and the classical decision tree algorithm C4.5 obtained from building fuzzy decision tree models from a 

Learner Behaviour dataset.  

The paper is organized as follows: Section 2 describes the foundations of the work, including the OSCAR-CITS and an 

overview of fuzzy decision trees. Section 3 presents the new OSCAR-FLSP (Fuzzy Learning Style Predictor) architecture and 

describes the two phase methodology of inducing fuzzy decision trees from a previous conversational interaction.  Section 4 

explains the experimental process that was undertaken on the four dimensions of the FS model. Finally, section 5 presents the 

results and discussion.  

 

2. Foundations 

This section starts by providing an overview of the Felder and Silverman Learning Styles Model and why it was selected as a 

model to personalise learning in the conversational intelligent tutoring system used within this study. Related work in the 

field of conversational intelligent tutoring systems is provided with a detailed description of the original OSCAR-CITS, 

Fuzzy Logic and Other Machine Learning Approaches. The current state of the art in learning systems inspired by machine 

learning, specially fuzzy logic is briefly highlighted. This includes a review of how existing machine learning approaches 

which incorporate fuzzy decision trees have been used to induce fuzzy models for predicting dimensions of the FS learning 

styles model. 

 

2.1 Felder and Silverman Learning Styles Model 

Learning styles describe the way in which groups of people prefer to learn. There are several contradictory theories about 

learning, and therefore no single agreed definition. Some learning theories are based on psychological theories such as 

personality traits and intellect whereas others focus on brain functioning or the learning environment. One established and 

popular model is known as the Felder-Silverman (FS) learning styles model (Felder and Silverman, 1988) which was developed 

to describe the learning styles in engineering education and suggest different teaching styles to address learners’ needs. The 

Felder and Silverman model, uses four aspects of learning style to describe the learning style of engineering students. The four 

dimensions of learning style described in the FS model are associated with different steps in the receipt and processing of 

information: 



 The perception dimension describes learners as sensory or intuitive depending on the way in which they prefer perceive 

the world, externally through observing and gathering data through the senses (sensory) or internally through speculation 

or hunches (intuitive).  

 The input dimension classes learners as visual or verbal according to their preferred method of receiving external 

information, e.g. seeing diagrams (visual) or reading textual explanations (verbal). 

 The processing dimension labels learners as active or reflective corresponding to the way they convert information into 

knowledge, e.g. by discussing information (active) or through introspective thought (reflective). 

 The understanding dimension describes learners as sequential or global depending on their progression towards 

understanding, e.g. whether they take continual steps (sequential) or first gain an overview of a topic before exploring the 

detail (global). 

There are 16 (24) learning styles overall (an example being sensory/visual/ active/sequential). Each learning style dimension 

may be thought of as an axis with the opposite learning styles at each end and learners are placed on each axis according to 

the strength of their preferred learning style. By defining independent dimensions the FS model describes the detail of learner 

tendencies, including the strength of preference as well as the nature of learning styles. The Index of Learning Styles (ILS) 

(Felder and Silverman, 1998) is a 44-question self-assessment diagnostic questionnaire that determines an individual’s 

learning style under the FS model. For each dimension, answers are compared and result in a learning style and a score from 

1 to 11 (in steps of 2). Scores of 1 or 3 place the learner at the centre of the axis and indicate a low preference for that 

learning style, which Felder & Silverman call neutral preferences. The FS model has been selected in this study for a number 

of reasons: the dimensions  are distinct and independent, teaching styles exist that map onto preferred learning styles, the 

model was designed for engineering students and therefore applicable in on line tutoring systems that deliver computing 

related courses.  

 

2.2 Conversational Intelligent Tutoring Systems Approaches  

Conversational Intelligent Tutoring System (CITS) are designed to model a human tutor by directing a tutoring conversation 

in natural language with a user in the same style as a human. Their development typically brings together two strands of 

research:  intelligent tutoring systems and conversational agents. Intelligent tutoring systems (ITS) extend the traditional 

computerised learning systems ‘one-size-fits-all’ approach by capturing and modelling individual traits used to personalise 

the instruction (Brusilovsky and Peylo 2003). This involves presenting learning material in a style and order to suit the 

learner (e.g. by presenting learning material matched to preferred learning styles), and also proactively helping learners, e.g. 



by giving intelligent feedback on incomplete or erroneous solutions and guidance to assist learners in constructing solutions 

to problems. Within the research field of CITS, there are two leading systems: AutoTutor and OSCAR-CITS.  

AutoTutor uses an animated conversational agent (CA) to present tutoring questions and engage in mixed initiative 

dialogue (where dialogue flow is controlled by both the agent and the user) whilst guiding students towards constructing a 

solution. As well as showing AutoTutor’s response textually on screen, the animated CA speaks the text and shows 

appropriate facial expressions and gestures, although it is the dialogue content rather than the animation and speech that 

influences learning (Graesser et al., 2003). AutoTutor has since been expanded to adapt to learner emotions as well as their 

knowledge (D’Mello et al., 2009, Graesser et al., 2008a). Emotions such as boredom and frustration are modelled using 

sensors to detect facial expressions and body posture as well as dialogue patterns. AutoTutor responds by, for example, 

giving a hint to a frustrated student or giving a challenging problem to a bored student. Adapting to emotions improved 

deeper learning for students with low knowledge, however some students were irritated by the empathic AutoTutor (D’Mello 

et al., 2010b) and the detection of boredom and confusion from dialogue patterns alone was poor (D’Mello et al., 2008). The 

necessity for sensors to detect emotion in a real-life learning environment has many difficulties and facial recognition is a 

complex task. As well as requiring cameras with sufficient resolution (which is expensive), successful recognition of 

emotions requires a consistent environment, for example adequate lighting and learners seated in a fixed position. These 

barriers constrain the widespread use of AutoTutor in real learning environments but the extensive research on AutoTutor has 

contributed much to the CITS field. 

     OSCAR-CITS is a sophisticated multi-agent system that aims to imitate a human tutor by delivering an adaptive natural 

language tutorial based upon a learner’s preferred learning style. Like a human tutor, OSCAR-CITS automatically models an 

individual’s learning styles using cues captured from his or her behaviour during the tutoring conversation, and then 

dynamically adapts its tutoring style to suit each individual’s preferences. By adapting the pedagogic approach to the preferred 

style (as encouraged in Felder & Silverman 1988), OSCAR-CITS aims to provide a more effective learning experience that 

results in improved learner motivation and a deeper understanding. Results showed that participants completing a tutorial 

adapted to their learning styles performed 12% better in answering tutorial questions than those without suitable adaptation 

(Latham et al. 2014). Users value OSCAR-CITS’s personalised tutorials, which enable them to discuss and construct 

knowledge, give instant feedback and are available 24-hours a day (Latham et al., 2012a, 2012b, 2014) By modelling a 

classroom tutorial style and engaging in a natural language dialogue, OSCAR-CITS is intuitive to use, which helps learners 

feel more confident.  In addition to implementing an intelligent conversational agent to converse with learners, OSCAR-CITS 

incorporates several intelligent techniques, including: 



 presenting learning material in a style and sequence adapted to the user’s learning style (curriculum sequencing);  

 providing analysis and detailed feedback of errors and omissions in solutions (intelligent solution analysis);  

 modelling the approach used by human tutors to discuss questions and give hints (problem solving support) to 

encourage learners to construct their own knowledge. 

The original OSCAR-CITS architecture can be seen in Figure 1 and interface in Figure 2.  

 

Fig.1. Original OSCAR-CITS architecture (Latham et al. (2012)) 

 

 

Fig. 2.  OSCAR-CITS conducting a SQL tutorial 



 

OSCAR-CITS is a complex system; its modular design facilitates reuse and ease of maintenance through separation of learning 

styles and domain knowledge bases from its functionality. As such, OSCAR-CITS is independent of the learning styles model 

and tutoring discipline, allowing it to be extended for different domains by adopting a 3-phase methodology that describes how 

to construct a Learning Styles Predictor, Tutorial Knowledge Base and Conversational Agent (Latham et al. (2012a)). The 

methodology features both generic components and tools to aid development (behaviour variables, key words, logic rules, 3-

level conversation model, question styles and templates).  

The Conversational Agent also includes a logging component that records information about the behaviour of the learner, 

such as timing of interactions, the number of words used, the number of times FAQs are asked and the type of tutor resource 

accessed (Latham et al. (2012a)). The tutoring conversation is also recorded, along with information about the student 

knowledge of the topic being discussed and the adaptation employed. A full description of the architecture and development 

methodology of OSCAR-CITS with its implementation to deliver an SQL tutorial for university students can be found in 

Latham (2011).  The current live version of OSCAR-CITS is delivering SQL revision tutorials at Manchester Metropolitan 

University (MMU).  

In OSCAR-CITS implementation, the knowledge of typical learner behaviours described in the Felder and Silverman 

Learning Styles model is expressed as 33 logic rules that were incorporated into the OSCAR-CITS Learning Styles Predictor 

agent (Latham et al., 2012a).  The logic rules follow a typical IF-THEN format. Figure 3 shows five examples of logic rules 

used by OSCAR-CITS to increment learning style values which are recorded within the associated variables in Table 2 during 

tutoring.  

 

 

 

 

 

1. Example rule to test how verbose the learner is: 

IF (total-student-wordcount-per-interaction (wordcount)  >= average-student-wordcount-per-interaction 

(mean_Wordcount))  

THEN  

 INCREMENT VERBAL;  

ELSE  

 INCREMENT VISUAL;  

2. Example rule testing whether showing an example visually helps the learner receive and process information: 



IF (answer IS (wrong OR don’t-know) AND show-movie)  

THEN  

{  

 IF (next-answer IS right)  

 THEN  

  (INCREMENT VISUAL) AND (INCREMENT ACTIVE);  

}  

3. Example rule testing whether the learner prefers to try to solve the problem all at once: 

IF (question-template-applied IS choice-of-approach)  

THEN  

{  

 IF (student-chooses-onego OR student-attempts-query)  

 THEN  

  (INCREMENT GLOBAL) AND (INCREMENT ACTIVE);  

}  

4. Example rule testing whether the learner prefers to solve problems one step at a time: 

IF (question-template-applied IS choice-of-approach)  

THEN  

{  

 IF (student-chooses-steps OR student-chooses-don’t-know)  

 THEN  

  (INCREMENT SEQUENTIAL) AND (INCREMENT REFLECTIVE);  

}  

5. Example rule to test how comfortable the student is with words and with detail: 

IF (answer IS (wrong OR don’t-know) AND answer-given-in-explanation-text)  

THEN  

 (INCREMENT INTUITOR) AND (INCREMENT VISUAL); 

 
 

 

Fig. 3.  Example of logic rules used to adjust student learning style based on tutoring conversation 

 

The empirical evaluation of OSCAR-CITS modelling of learning styles, conducted in a real teaching/learning environment, is 

described by Latham et al. (2012a, 2014) and summarised here. A conversational tutorial was developed for undergraduate 

computing students on structured query language (SQL). The OSCAR-CITS tutorial was integrated into several undergraduate 

modules at MMU, and learner behaviours were captured throughout the tutorial. All participants were asked to complete the 

Index of Learning Styles (ILS) questionnaire (Felder and Silverman, 1998) and its results were compared to the OSCAR-CITS 

predictions to compute the prediction accuracy. The research investigated whether it was possible to predict learning style from 



behaviour captured during a two-way conversational tutorial with a CITS (Latham, 2011).  The experiments (reported in 

Latham et al. (2012a)) had 95 participants, and showed it was possible to predict learning style, giving best prediction accuracies 

for individual learning styles of 61-100%, as shown in Table 1. 

Table 1 OSCAR-CITS best prediction accuracy. 

 

OSCAR-CITS 

n 

95 

Sensory 

70% 

Intuitive 

80% 

Visual 

94% 

Verbal 

71% 

Active 

100% 

Reflective 

73% 

Sequential 

82% 

Global 

61% 

 

To evaluate the usability of OSCAR-CITS all participants were asked to complete a feedback questionnaire (Latham et al. 

2014). The questionnaire consisted of eight questions to be rated using a six-point LIKERT scale (to force participants to 

express an opinion one way or another rather than selecting the centre rating), four questions requiring a Yes/No answer, and 

three open questions.. The user evaluation showed that OSCAR-CITS was well received by participants, with 87% of 

participants rating the tutoring highly (with 51% giving the highest rating). 94% of participants found the tutoring helpful (with 

72% giving the highest rating) and 85% of participants felt that OSCAR-CITS had helped them to revise. Overall, 89% of 

participants stated that they would use a resource like OSCAR-CITS if it were available. Slightly more than half of participants 

(52%) stated that they would use OSCAR-CITS instead of reading a book, and a surprising 35% of participants stated that they 

would use OSCAR-CITS instead of attending a face-to-face tutorial.  

The current version of OSCAR-CITS models learning style using a number of separate behaviour traits exhibited during the 

conversation as well as the result of a combined set of logic rules. The results reported show good prediction accuracies for 

each learning style individually; however the mechanisms have not been combined to give an overall classification for each 

learning style dimension.   

 

2.3 Fuzzy logic and Other Machine Learning Approaches and Applications 

 

Research into the application of machine intelligence to ITS has been undertaken since 1996 when Hawkes and Derry (1996) 

proposed a fuzzy model that captured the way in which human tutors evaluated borderline tutoring decisions in accordance 

with student behaviour. Fuzzy models, based on fuzzy set theory resembles human reasoning in its use of approximate 

information uncertainty to inform decision making. Since then there have been numerous examples (Chenn-Jung et al., 2007; 

Chen and Liu, 2008; Cabada et al., 2009; Fazlollahtabar and Mahdavi, 2009; Chih-Yueh et al., 2011; Zarandim et al., 2012; 

Hsieh et al,. 2012; Lin et al., 2013; Vassen et al., 2014) where machine intelligence has successfully been applied within the 

context of ITS, such as: 



 a virtual teaching assistant that evaluates student solutions and generate hints in a program tutorial (Chih-Yueh et al., 

2011);  

 the application of k-means clustering  to identify help-seeking strategies in ITS  (Vassen et al., 2014);  

 an adaptive web-based learning system that is optimized using a multi-layer feed forward neural network to predict a 

student’s cognitive styles (Cabada et al., 2009); 

 the creation of a personalised on-line programming tutorial  through identification of learning styles  by mining student 

web logs using the AprioriAll algorithm (Klasnja-Milicevic et el., 2011).  In  Klasnja-Milicevic et al. (2011) clustered 

learners based on their learning style and then used the AprioriAll pattern mining algorithm to extract behavioural 

patterns from log files. By comparing learner behaviours to each cluster, learning styles were identified and learning 

material recommended. 

A detailed review of state of the art in the automatic detection of learning styles can be found in (Feldman et al., 2014) 

Bayesian networks are probabilistic models that have been used to model the relationships between learning styles and 

behaviour factors. Garcia et al., (2007) used Bayesian networks to infer student learning styles from a history of their 

behaviour in using the ITS. Three dimensions of the FS model were modelled, with precisions of 58-77%. Enhancing the 

Bayesian model improved precisions to 66-80%. EDUCE (Kelly and Tangney, 2006) offers different resources styled using 

four of the Gardner multiple intelligences (Gardner, 1993)  and used Naïve Bayes (a form of simple probabilistic classifier) to 

predict which resources students prefer, based on past choices.  

Artificial neural networks are computational models inspired by the neural structure of the brain, which have been used to 

classify student learning styles based on behaviour.  Villaverde  et al. (2006) used a neural network to predict student learning 

style for three dimensions of the FS model. The neural network analysed student behaviour in an ITS to automatically model 

learning styles, achieving an accuracy of 69.3%. However, only ten behaviour factors (input neurons) were used.  A known 

weakness with neural networks is their ‘black box’ nature, which means that no information is learned about which behaviour 

factors are most significant in predicting a learning style.  

The use of fuzzy logic to handle uncertainty and imprecision in learning systems is particularly relevant to the study presented 

in this article. Work by Nykanen (2006) examined the use of fuzzy logic in educational design in two distinct areas: how to 

integrate imprecision in predictive systems due to the lack of tutoring information; and how fuzzy descriptions and expressions 

can be used to provide an intuitive and linguistic interface. Nykanen (2006) developed a fuzzy model that could predict failing 

students on a university mathematics course by identifying students who required additional assistance. The DEPTHS (Design 

Pattern Teaching Help System) utilized a knowledge assessment method based on fuzzy rules to assess student understanding 

of domain concepts (Jovanović and Gašević, 2012).  



A genetic fuzzy expert system that automatically estimates the difficulty level of questions in a specific competitive learning 

system in the virtual learning environment Moodle showed promising initial results (Verdu et al., 2014).  This system consisted 

of a fuzzy model generator that learned characteristics of the questions in the environment for a number of difficulty levels. 

Initial classifications of questions into levels of difficulty were made by a teacher and are therefore open to subjective 

interpretation. The authors emphasized that more work is required on how to map fuzzy sets to levels of question difficulty 

perceived by students.  Fuzzy rule-based systems have also been developed in conjunction with collaborative filtering 

algorithms to recommend the most appropriate learning objects to students based upon their learning style (Arce-Cardenas and  

Garcia-Valdez, 2012) and fuzzy expert systems architectures are also being considered in the development of ITS (Xu et al., 

2002) through the use of fuzzy cognitive maps. More recently, a prototype fuzzy logic based personalized learning system for 

adaptive English learning was proposed (Hsieh et al., 2012). Whilst each of the above learning systems (inspired by 

computational intelligence techniques)  have shown degrees of success using small experimental groups, none attempt to 

predict the learning style through obtaining variables captured through natural language dialogue which occurs naturally during 

a tutoring conversation. 

Decision tree methodologies provide a natural set of tools for extracting rules from both symbolic and numeric data. The 

aim is to induce a set of rules for classifying objects from knowledge of a subset of the domain of objects whose attribute values 

and classes are given (Quinlan, 1993). The resulting set of rules formulates the decision tree model which is comprised of 

attributes from the domain that allow the user to comprehend, for a new case passing through the tree, how a decision is made 

to some degree of accuracy. In other words, all data from the domain is used to build a tree of questions with answers at the 

leaves. To answer a new query, start from the tree root, and answer the questions until a leaf node is reached and then return 

the answer specified at that leaf node.  

The process of classification can be simply defined as the task of discovering rules or patterns from a set of data. The 

objective of any classification task is to at least equal and essentially exceed a human decision-maker in a consistent and 

practical manner. In studies, such as the one presented in this paper, the classification is provided by the results of the formal 

Index of Learning Styles questionnaire and not by human labels. The benefit of using computational intelligence techniques 

for classification is that they are independent of other factors that may influence a human’s intuitive labelling during tutorials, 

such as the tutor’s mood or preconceptions about the student. The success of any classification algorithm can be measured in 

terms of accuracy, which is determined by its performance on an unseen set of data (test set) and its speed, the time taken to 

learn a set of rules or discover patterns from a training set of data. Providing that the training set is randomly sampled from the 

given data set, the accuracy of the test set can be seen to be an un-biased estimate of performance. For example, an induced 



decision tree could be used to determine what kinds of behaviour, exhibited by a student during a conversational agent tutorial, 

lead to a particular learning style being preferred over another.  

Classical decision trees have also been used to predict the value of a variable (e.g. learning style) based on a number of input 

variables (e.g. behaviour factors). Cha et al. (2006) designed their ITS interface to capture behaviour related to the FS model, 

using decision trees and Hidden Markov Models  to classify learning styles from learner choices and behaviour.  Ozpolat and 

Akar (2009) used the NBTree algorithm to classify student learning styles from the content of learning objects rather than 

behaviour (using keywords matched in Internet search terms).  In their study involving 30 participants, they achieved accuracies 

of between 70 and 73.3% across different learning style dimensions.  Chen and Liu (2008) used decision trees and K-means 

clustering to automatically identify cognitive styles from learning patterns 

Fuzzy decision trees (Crockett et al., 2006) are an extension of classical decision trees where the main fundamental difference 

between fuzzy and crisp trees is that with fuzzy trees, gradual transitions exist between attribute values. For example, consider 

a Bank is trying to use a system to predict whether to offer a person a loan based upon the data they have supplied from an 

application form. Within the induced crisp tree there exists a node for the attribute age. Values less than or equal to 21 (left 

branch) strongly suggest a person will not get a loan, whilst values greater than 21 (right branch) suggest that more information 

about the person needs to be analyzed to make a decision. The decision to split on the value of 21 for age is a strict decision 

that the tree algorithm has learned from the data and it is not flexible.  Previous research (Crockett et al., 2006; Crockett et al., 

20012; Crockett et al., 2013) has identified that new cases whose values are close to the associated node value may be 

misclassified due to this inflexibility. In this case, for example, values between say 18 and 24 may not be clear cut in terms of 

determining who gets a loan. Applying Fuzzy trees to deal with this type of uncertainty present at node values in crisp trees 

enables a more flexible approach to decision-making. This is achieved by modelling each attribute within the tree as a fuzzy 

set, which generates a degree of membership for each related attribute value.  In addition, the reasoning process within the tree 

allows all rules to be fired to some degree, with the final classification being the result of combining all membership grades. A 

number of methodologies exist for the development of fuzzy decision trees, with the main distinction being whether to induce 

the fuzzy decision tree from a raw dataset or to first fuzzify the dataset using either experts in the domain or via an automatic 

method.  

Previous work (Crockett et al., 2006)  has shown that the generation of a fuzzy decision tree from crisp induced trees produces 

a generalized and robust rule set without the need for human expert intervention during the fuzzification process. In order to 

predict learning styles from the independent variables captured during the tutorial conversation a fuzzy tree algorithm known 

as FIA (Crockett et al., 2006) will be used. One of the strengths of the algorithm is that no pre-fuzzification of the data is 

required in order to induce the fuzzy tree. FIA provides a mechanism for the direct fuzzification of both discrete and continuous 



attributes and the ability to use a range of fuzzy inference techniques. In the context of this work FIA has undergone 

modification and will be described in section 3.   

3. Methodology  

3.1 An Architecture for a Fuzzy Learning Styles Predictor within a CITS 

 

This section describes the addition of a new module, known as the Fuzzy Learning Styles Predictor (FLSP) module to the 

original OSCAR-CITS architecture reported by (Latham et al., 2012a).  The complete architecture, referred to as OSCAR-

FLSP is shown in Figure 4.  

 

Fig.4. OSCAR-CITS with Fuzzy Learning Styles Predictor Module 

 

When a learner first engages with the tutorial through the textual conversational interface, variables reflected through the 

learner’s behaviour are detected via the conversational agent (and its dialogue scripts), collated, and analyzed via the controller. 

The controller is responsible for managing the tutorial, and for communicating with all components. The tutorial knowledge 

base manages course information, such as topics and their breakdowns, related tests and teaching material. All information 

within the knowledge base is categorised according to teaching style (related to learning style). At the start of the first tutoring 

session, no initial learning style values exist for a student. During the tutoring conversation, learning style values will be 

incremented depending on the learner’s statements and behaviour. Periodically, the value pairs of each learning style dimension 

will be compared to reveal the student’s overall learning style tendency for that dimension (i.e. the greater value). Learning 

style values depend on an individual’s unique tutoring session, and if no evidence is gathered relating to a particular learning 

style dimension, that learning style will remain unclassified.  The student model records information such as the student 



registration number and password and a predicted numerical value for each learning style.  The conversational agent receives 

natural language text and information about topic and learning style from the interface and stores a log file, a state file and a 

time log which enable the analysis of behaviour such as timings, word and interaction counts during experimentation. The 

conversational agent accesses a database of dialogue scripts in order to match the input and generate a response. The graphical 

user interface displays a webpage showing questionnaires, tests, images, documents and interactive movies and sends 

communication to and from the user.  

The FLSP  module consists of four principal components: 

 Fuzzification Interface that takes raw conversational cues (e.g. number of interactions to complete a question) and 

maps to an appropriately defined fuzzy set(s). 

 Knowledge Base consisting of induced fuzzy rules obtained from the fuzzy decision tree models and a series of fuzzy 

sets representing branches within the tree. The fuzzy decision tree models are induced from the behavioural variable 

knowledge base.  

 Fuzzy Inference Mechanism for combining grades of membership in all eight dimensions of the four learning styles.  

 Defuzzification Interface to translate the aggregated fuzzy sets into a fuzzy singleton to predict the learning style 

dimension at a point in time.  

 

The benefit of using a fuzzy decision tree in the FLSP is that when a new case (set of data comprising behaviour variables and 

associated values for a specific learner) passes through the tree,  all branches in the tree will contribute towards the decision 

classification (i.e. the learning style dimension) to some degree. Interaction between behaviour variables captured during the 

tutoring conversation is possible. This is in comparison to traditional decision tree classifiers where only one route through a 

tree can be chosen.  Each component of the FLSP will now be described in the sub-sections that follow.  

 

3.1.1 Fuzzification Interface 

  Fuzzification is the process of converting crisp values into their fuzzy representations to allow a degree of uncertainty to 

be represented. The construction of any fuzzy system requires the identification of all control and solution variables within the 

system to be modelled. In this application, a dataset comprising 41 independent behaviour variables (described in section 4.2) 

captured during the tutoring conversation is used in the first instance to induce a classical decision tree using the established 

decision tree algorithm C4.5 (Quinlan, 1993). The behaviour variables are included in the tree based upon their information 

content with respect to how much they contribute to the prediction of a learning style dimension and will be subject to 

fuzzification.  Figure 5a shows a portion of a crisp decision tree showing the root node Rules_GLO that was induced (learned) 



from the Learner dataset (Table 2, Appendix). Global learners (on the understanding dimension) typically make intuitive leaps, 

have difficulty working with material they have not understood and prefer to jump directly to complex material (Felder and 

Henriques 1995). Rules_GLO is the score resulting from rules that fired during the tutoring conversation and has the range 

{0...10}. The decision tree has learned from the dataset that the number of rules fired, captured by the behaviour variable 

Rules_GLO, is the most significant attribute in accurately predicting the sequential-global learning dimension. However, 

Rules_GLO splits on the value of 5 which is a generalised crisp value known as the decision threshold for that attribute (dt)  

i.e. the most significant value of any given attribute,  learnt through the induction process, which contributes to the most number 

of correct classifications overall.  Previous work (Crockett et al., 2006; Gasir et al., 2012) has found that such crisp values 

create hard decision boundaries that do not give the best decision-making, as they do not capture uncertainty inherent in the 

data.  

A solution is to fuzzify this boundary to create a fuzzy region around each node in the tree using two opposing fuzzy 

membership functions as defined in equation (1). This will enable a new case passing through the tree to be assigned degrees 

of membership to each branch. Therefore, if a person’s tutorial triggered 5 global logic rules they would have a membership 

grade of 0.5 in both the Rules_GLO_Left and Rules_GLO_Right membership functions representing maximum uncertainty. 

Figure 5b shows a sample pair of membership functions for the behaviour variable Rules_GLO. When the number of global 

rules triggered during the tutoring session is between 3.6 and 6.4 then partial degrees of membership are generated for both 

Rules_GLO_Left and Rules_GLO_Right.    

This allows for uncertainty of each student’s learning styles to be taken into consideration during the tutorial. Once all 

branches throughout the tree have been assigned grades of membership in a similar manner, the fuzzy decision tree will use 

fuzzy inference to combine membership grades of all behaviour variables in the tree to predict the learning style dimension.  

 

 

Fig.5a. Root node Rules_GLO of induced Classification tree for global-sequential dimension 



 

Fig.5b. Example pair of opposing fuzzy membership functions for root node Rules_GLO.  

 

The shape of the membership function is very significant in any problem domain. Slight adjustments can have considerable 

effects on final predictions of a system. The approach adopted for acquiring the shape of a membership function is often 

dependent on the application. The construction of the membership functions may arise directly from the ‘expert’ (manual) or 

by automatic generation (automatic). For the purpose of this work, simple linear membership functions have been used.  

 

Each membership function will have an associated domain (dmi, dni) whose scope is determined by the behaviour variable i 

at each specific node in the tree. To represent a left branch, linear increasing and decreasing membership functions L, may be 

defined as (Crockett et al., 2006): 

 

                                           (1)   

 

                                          (2) 

where dm  generates the zero membership value and is the  lower bound of L defined   as  dm = dt - n       

                        where n is a real number  n [0.0,] and  is the standard deviation. 
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                    dn generates the complete membership value (maximum membership value)  and is the upper bound of L 

defined as  dn = dt +  n where n is a real number  n [0.0,] and  is the standard deviation, and 

                    x is the value of variable i.  n is empirically determined. 

 

In figure 5b, the domains of Rules_GLO_Left and Rules_GLO_Right are determined using equations (1) and (2). Empirical 

optimisation using a genetic algorithm is used to determine the most optimal coverage of fuzzification around the decision 

threshold (dt) of each attribute (Crockett et al., 2006). In this work, optimal equates to obtaining the set of membership function 

domains which maximise the classification accuracy of the fuzzy decision tree. For Rules_GLO_left and Rules_GLO_right,  

the value of dt for the Rules_GLO attribute = 5 and through optimisation of n, dm= 3.6549 and dn=6.3451. Therefore the 

degree of uncertainty is only present when a value of Rules_GLO is between {3.6549,6.3451}.  

 

3.1.2 Creating the Knowledge Base 

 

In order to create a knowledge base for predicting learning styles of students, a series of fuzzy decision trees were induced 

from the data described in Table 1 (Section 4.2). This section describes the generalised algorithm used to induce a fuzzy 

decision tree. The algorithm was inspired from previous work (Crockett et al., 2006) and consists of two phases. 

 

Phase 1: Construction of the knowledge base 

1. Generate a crisp classification tree, C, from a set of data, S consisting  of i-variables {v1,v2....vi} of domain,  D which are 

used to describe a single classification outcome. In this application, Quinlan’s established C4.5 decision tree algorithm 

was used (Quinlan, 1993). 

2. For each variable, vi, at a node within the classification tree, C,   define an opposing membership function pair v and 

v as defined in eq(1) and eq(2). 

3. Interpret and implement the classification tree, C as a set of Fuzzy IF-THEN rules to formulate the FLSP knowledge base. 

Each path from the root of the tree to the leaf node is represented by one rule within the knowledge base and is defined as: 

 

IF x1 is A1 AND x2 is A2 AND .... xn is An THEN y is B 1..j 

 

where            xn  are attribute values  

L

L



                   A, B are fuzzy sets representing linguistic labels over the universe of discourse, and 

                   y is the consequent real number y {0,1}  (a fuzzy singleton) for outcome j determined from defuzzification of 

B 1..j .  

 

Phase 2: Application of fuzzy inference 

In order to combine the outcomes of rules within the knowledge base, the antecedents of each individual rule need to be 

combined together. One technique is the min-max composition developed by Zadeh (1992), which first involves taking the 

minimum of the membership values of each individual rules by performing a logical AND operation on them. The final stage 

of the min-max composition is the application of the maximum operator, which takes the consequents from each rule and 

performs a logical OR by taking the maximum value. Due to the simplicity of the rules, the output is a singleton that will be 

used to determine the degree to which an individual exhibits traits of a certain learning style dimension. This application of 

inference can be defined as follows (Crockett et al., 2006): 

 

The process of learning from a set of data, S involves a transformation function F which accepts as input S and produces a 

defuzzified outcome O, which is a mapping  

    F(S)  O                                                    (3) 

 

Applying an inference technique onto an existing tree consisting of x branches involves the combination of M membership 

function values {1, 2,...m} of all root to leaf node paths.  

 

Let T be a set of all possible outcomes {t1,t2,..tj} defined from an existing classification tree where j is the total number of 

outcomes.  Fuzzy inference of S will involve an inference mechanism, IM which consists of an intersection function , 

which takes in M and a  t-norm TMin , which produces  a set of minimum outcomes {TMin1,TMin2......T.Minj} where j is the 

number of leaf nodes, and a union function , which combines the output  from  to produce a maximum membership 

grade O.   Let ,   O  {0.0,1} consisting of real numbers, . 

i. Apply the fuzzy intersection function,  

    This involves combining membership grades down all paths, from root to leaves within the tree. 

  ({1, 2,...v})  TMin {TMin1,TMin2......T.Minj}                                                (4) 
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ii. Apply possibilistic strength of leaf node 

The possibilistic strength of a leaf node represents the possibility that an example reaching a leaf node will have the 

same outcome as the leaf.  Let P be a set of leaf possibilities {p1,p2...py} where y is the total number of leaf outcomes then 

  ({1, 2,...v })  TMin {(TMin1*p1),(TMin2*p2)......(TMinj*py)}                        (5) 

 

Each leaf possibility py is applied to the corresponding membership grade at each leaf node TMinj, after the intersection 

operation has been applied to combine grades of membership down one tree path. 

iii. Apply fuzzy union function  

The fuzzy union operator is applied in-order to combine the membership grades from all leaf nodes in order to produce 

a representative final grade of membership. 

 ({(TMin1*p1),(TMin2*p2)......(TMinj*py)O                           (6) 

 

O is the fuzzy singleton used to determine the success of correct classification having taken place for S. 

 

iv. Optimise the membership function and inference weightings (if applicable) 

A full description of the original version of this algorithm can be found in (Crockett et al., 2006) 

 

3.1.3 Defuzzification Interface 

  The unique characteristics of a specific classification problem will often determine the defuzzification strategy used. The 

experiments in this paper have been undertaken using a discrete outcome Learner data set (described in section 4.2) where the 

outcome is the learning style for a dimension. The output of the application of fuzzy inference is the generation of a fuzzy 

singleton (section 3.3) which is used to determine this learning style.  At any point in time, a student’s overall learning style is 

indicated by comparing the two fuzzy singleton values for each dimension of a given learning style, with the larger (max) value 

representing their learning style.  

 

3.2 Methodology for generating fuzzy decision trees from conversational tutorials 

3.2.1 Study Overview 

f

f

f



An empirical study was undertaken in a real teaching/learning environment to evaluate the success of the fuzzy learning 

styles predictor (FLSP) model when incorporated into the OSCAR-FLSP. The experiment investigated whether the Oscar-

FLSP was successful at predicting learning styles by testing the hypothesis: 

 

H1: It is possible to accurately estimate a learner’s learning style from a two-way tutoring discourse using a fuzzy logic 

learning styles predictor model embedded into a conversational intelligent tutoring system. 

 

In order to test this hypothesis, a study was conducted using a conversational tutorial on structured query language (SQL) that 

was delivered using OSCAR-CITS. Learners were undergraduate computing students within Manchester Metropolitan 

University who had studied a module on database fundamentals for at least one term, delivered by a human tutor. After 

anonymous registration, learners completed an online version of the formal ILS questionnaire, recorded in the student model 

to provide a benchmark classification for comparison of the experimental results.  Before starting the conversational tutorial, 

learners were presented with a pre-tutorial 12 question multiple-choice question (MCQ) test, known as the pre-test, to assess 

their existing SQL knowledge. The pre-test results were stored in the student model. Next, OSCAR-CITS directed a two-way 

conversational SQL revision tutorial which took on average 43 minutes, with each participant following an individual learning 

path depending on their existing knowledge and the dialogue. There were ten main tutorial questions. At the end of the tutorial, 

participants again completed the same MCQ test (known as the post-test) to assess any learning gain (Fossati et al., 2009), with 

the results stored in the student model. Next, OSCAR-CITS presented participants with a comparison of their test results 

(indicating their learning gain) and some feedback on their tutorial performance. Finally, participants were asked to complete 

a user feedback questionnaire.  

 

3.2.2 Experimental Learner Data Set   

  75 undergraduate university students who had previous experience of SQL completed the formal ILS questionnaire and the 

OSCAR-CITS SQL Revision tutorial.  During the tutorial their behaviour and test scores were logged. Information relevant to 

the prediction of learning styles was captured in 42 different behaviour variables during the tutorial. Table 2, available in the 

appendix,  provides a high level description of the variables captured during the conversation.  In addition, for each LS 

dimension the learning style assessed by the ILS questionnaire was stored in the class variable.  Each behaviour variable is 

associated with predicting at least one learning style dimension. For example, one variable known as No_interactions, captured 

the number of conversational interactions the user had with OSCAR-CITS during the session. Variables Q5_Choice and 



Q9_choice, were used to capture a student's approach to writing SQL queries (i.e. whether they try all at once or want to try 

one step at a time) which is indicative of the sequential-global  and sensory-intuitive dimensions.  The capturing of each 

behaviour variable involved individual sets of complex rules, which are defined in detail in (Latham et al., 2012a). Most 

learning style dimensions had an approximately even split of students, apart from the Visual/Verbal dimension where most 

students were Visual. This is consistent with the FS model, which suggests that most engineering students are Visual. However, 

despite this learning style not obtaining a fair representation it has still been included in this study for completeness. This was 

not unexpected and in accordance with the FS model for students studying science and engineering based subjects. Table 2 

includes both the statistical information for all numeric attributes, and quantities for discrete values captured through 

interactions with all 75 participants. 

3.2.3 Experimental Methodology 

   Using the experimental Learner dataset described in section 4.2, four sets of experiments were undertaken on all four of the 

dimensions of Felder-Silverman model (Felder and Silverman, 1998). For each experiment set, stratified 10-fold cross 

validation was used. Following the methodology described in section 3, first crisp decision trees were created from the dataset 

using the statistical chi-square pruning technique with significance levels of 0.1% in order to produced highly optimised C4.5 

trees that would allow good generalisation to take place. Figure 6, shows as an example the highest optimised fuzzy decision 

tree for the sequential-global learning dimension, generated from 10-fold cross validation. At each leaf the possibilistic strength, 

p is shown.  



 

 

Fig. 6.  Fuzzy induced tree representing sequential-global dimension 

 

Fuzzy membership functions were generated for both discrete and continuous attributes. Initial membership functions were 

selected to be equivalent to crisp sets, with the initial fuzzy classification trees becoming an alternative representation of the 

C4.5 decision tree. For experiments reported in this paper the amount of fuzzification either side of each tree node was increased 

linearly from zero fuzzification up to n = 5 for each tree  i.e. maximum fuzzification per node was 5 times the  standard 

deviation of the attribute as deduced from the training set.  

 

Using a one-to-one mapping, each tree was then transformed into a set of Fuzzy IF-THEN rules where each path from root to 

leaf node represents one rule. For example, the fuzzy induced tree in Figure 6 would be transformed into 10 fuzzy IF-THEN 

rules as shown in Figure 7. For numerical behaviour variables, left branches represent values less than or equal to the 



partitioning threshold value and are represented by associated fuzzy sets labelled LOW. Subsequently, right branches, greater 

than the partitioning threshold value, are represented by associated fuzzy sets labelled HIGH. LOW and HIGH for each 

behaviour variable have unique membership functions. The final fuzzy rule base contained a total of 31 rules, 10 for the 

sequential-global; 7 for the sensory-intuitive; 8 for active-reflective and 6 for visual-verbal.  

 

 

 

 

 

 

 

 

Fig. 7.  Fuzzy IF-THEN rules for the Sequential-Global Learning Dimension. 

 

Fig. 7.  Fuzzy IF-THEN rules for the sequential-global Learning Dimension. 

 

To illustrate the  application of  fuzzy inference  (phase 2), consider the fuzzy IF-THEN rules in figure 7 which have been 

generated from the fuzzy tree modelling the sequential and global dimension in figure 6.  

Given the following participant case passing through the tree where Rules_GLO = 5, Rules_SNS = 1, Rules3_SNS = 1, Q-prac 

= 0.4 and Q5_choice = start. The classification outcome can be calculated by generating the grades of membership for each 

fuzzy set for the associated variable values i.e. Rules_SNS = 1  has a fuzzy set membership of  0.78 in Rules_SNS are low fuzzy 

set and then applying fuzzy inference as follows: 

R1: Min {0.5, 0.78 0} *1 = 0 

R2: Min {0.5, 0.78, 1.2, 0} * 0.75 = 0 

R3: Min (0.5, 0.78, 1.2, 1) * 1 = 1.2 

R4: Min {0.5, 0.78, 1.2, 0} * 1 = 0 

R5: Min {0.5, 0.78, 1.2, 0, 0} * 0.75 = 0 

R6: Min {0.5, 0.78, 1.2, 0, 1} * 1 = 0 

R7: Min {0.5, 0.78, 1.2, 0, 0} * 1 = 0 

R8: Min {0.5, 0.23} * 1 = 0.23 

R9: Min {0.5, 1} * 1 = 0.5 

1.  IF   Rules_GLO ARE LOW AND  Rules_SNS ARE LOW AND Rules3_SNS ARE LOW THEN learning 

style is SEQUENTIAL 

2. IF   Rules_GLO ARE LOW AND  Rules_SNS ARE LOW AND Rules3_SNS ARE HIGH AND Q5_choice is  

{ongo} THEN learning style is GLOBAL 

3. IF   Rules_GLO ARE LOW AND  Rules_SNS ARE LOW AND Rules3_SNS ARE HIGH AND Q5_choice is  

{start} THEN learning style is GLOBAL 

4. IF   Rules_GLO ARE LOW AND  Rules_SNS ARE LOW AND Rules3_SNS ARE HIGH AND Q5_choice is  

{dunno} THEN learning style is GLOBAL 

5. IF   Rules_GLO ARE LOW AND  Rules_SNS ARE LOW AND Rules3_SNS ARE HIGH AND Q5_choice 

is {steps} AND Q9_Steps2 is {NA} THEN learning style is GLOBAL 

6. IF   Rules_GLO ARE LOW AND  Rules_SNS ARE LOW AND Rules3_SNS ARE HIGH AND Q5_choice 

is {steps} AND Q9_Steps2 is {Y} THEN learning style is SEQUENTIAL 

7. IF   Rules_GLO ARE LOW AND  Rules_SNS ARE LOW AND Rules3_SNS ARE HIGH AND Q5_choice 

is {steps} AND Q9_Steps2 is {N} THEN learning style is SEQUENTIAL 

8. IF   Rules_GLO ARE LOW AND  Rules_SNS ARE HIGH THEN learning style is SEQUENTIAL 

9. IF   Rules_GLO ARE HIGH AND  Q-prac ARE LOW THEN learning style is GLOBAL 

10. IF   Rules_GLO ARE HIGH AND  Q-prac ARE HIGH THEN learning style is SEQUENTIAL 
 



R10: Min {0.5, 0} * 0.75 = 0 

Class Outcome = Max{R1..R10} = 0.5 (R9) = Global. 

The participant would be classified in this case as a global learner.  

 

4. Results and Discussion 

4.1 Predictive Results per Learning Dimension 

Tables 3 to 6 present the prediction accuracies of all learning style dimensions where the number of participants, m = 75. In 

each Table the average results of 10 fold cross validation are shown. For the sequential-global dimension (Table 3), columns 

%AVG SEQ and %AVG GLO show the percentage accuracy of predicting sequential and global learners respectively, with 

the overall prediction accuracy for the sequential-global learning dimension shown in the %AVG SEQ/GLO column. Tables 4 

to 6 present the results for the other dimensions in a similar way. DT (C4.5) provides the predictive accuracy of a crisp decision 

tree model where multiple behaviour variables are combined based upon their effect on the outcome, but uncertainty is not 

taken into consideration. The FLSP rows show the results obtained by using fuzzy classification trees within the FLSP model. 

The OSCAR-CITS row represents and names the best behaviour variable predictor used by the original OSCAR-CITS to 

determine the learning style.  For both sequential-global and sensory-intuitive dimensions, this variable was Q9_choice, which 

essentially records whether the learner chooses to approach a complex question in one go or not.  For active-reflective, OSCAR-

CITS, the key predictive variable was Q-style which recorded whether the participant was more successful at practical or 

theoretical questions. For visual-verbal, OSCAR-CITS, the key predictive variable was mean_read_time, which records 

whether the participant’s average reading time during the tutorial was longer or shorter than the mean reading time across the 

group. 

 

Table 3 Sequential - Global 

Method 

m=75 

%AVG 

SEQ 

% AVG 

GLO 

% AVG 

SEQ/GLO 

OSCAR–CITS (Q9_choice) 70 59 65 

DT (C4.5) 80 70 76 

OSCAR-FLSP 93 83 88 

 

 

 



 

Table 4 Sensory-Intuitive 

Method 

m=75 

%AVG 

SEN 

% AVG 

INT 

% AVG 

SEN/INT 

OSCAR-CITS (Q9_choice)  70 59 65 

DT (C4.5) 84 80 82 

OSCAR-FLSP 98 73 86 

  

Table 5 Visual-Verbal  

Method 

m=75 

%AVG 

VIS 

% AVG 

VER 

% AVG 

VIS/VER 

OSCAR-CITS (Mean-read_time)  72 50 61 

DT (C4.5) 95 50 73 

OSCAR-FLSP 100 70 85 

  

Table 6 Active-Reflective 

Method 

m=75 

%AVG 

ACT 

% AVG 

REF 

% AVG 

ACT-REF 

OSCAR-CITS (Q-style)  53 73 63 

DT (C4.5) 69 77 73 

OSCAR-FLSP 74 94 84 

  

Table 7 Learning styles prediction results summary and comparison of best prediction accuracy of learning styles. 

 Sensory Intuitive Visual Verbal Active Reflective Sequential Global 

Prior Probability 60% 40% 87% 13% 57% 43% 60% 40% 

OSCAR-FLSP 98% 73% 100% 70% 74% 94% 93% 84% 

OSCAR-CITS 70%  59% 72% 50% 53% 73% 70% 59% 

+/- +28% +14% +28% +20% +21% +21% +23% +25% 

 



 

4.2 Predictive Ability 

In discussing the significance of the results in Tables 3 to 6, the prior probability will be used as a fair comparison 

instead of chance (50%) due to the uneven spread of learning styles across the sample. Prior probability is based on the 

distribution of learning styles across the sample. On first observation, the results in Table 7 indicate that the introduction 

of the FLSP models has predicted learning style better than the prior probability. When a single predictive behaviour 

variable is used, OSCAR-CITS also predicts learning style with higher accuracy across all dimensions except visual and 

active. What is noticeable is the increase in the prediction accuracy when the FLSP is used, which ranged from 14% to 

28%. A test for the difference of two proportions (Dietterich, 1998) was used to measure the difference between the error 

rate of OSCAR-CITS and OSCAR-FLSP. Low p-values mean the difference between the two is statistically significant.  

The results indicated a significant difference in the predictive accuracy between OSCAR-CITS and OSCAR-FLSP 

dependent on learning style dimension; sensory-intuitive (p < 0.01), sequential-global (p < 0.05), active-reflective (p < 

0.05) and visual-verbal (p < 0.05). Thus, the results have indicated that H1 is true.  

The results in Tables 3 and 4 show that for sequential-global and sensory-intuitive dimensions, when only one 

variable is used (OSCAR); the same variable (Q9_choice) was identified as being the most significant in terms of 

prediction accuracy. An initial observation of the results shows that a correlation might exist between the two learning 

dimensions as measured by this particular question as sequential people typically like to learn step by step and sensory 

people prefer to go slowly and carefully, whereas global people typically like to jump straight in and intuitive people may be 

more fast and careless.  The results in Table 3 for OSCAR show that 70% of students who chose to answer the tutorial 

Question 9 one step at a time are Sequential learners. Using this variable (Q9_choice) OSCAR-CITS would predict that 

students in this group are Sequential learners and be accurate 70% of the time. However, if the FLSP model had been 

integrated, where 6 behaviour variables (as shown in the tree in Figure 5) were used in combination to determine Sequential 

learners, OSCAR-CITS would have predicted correctly 93% of the time – a 33% improvement.    

The results of inducing fuzzy trees yielded some interesting results with regards to the models produced (e.g. Figure 5). In 

modelling the sequential-global dimension, the attribute Rules_GLO (representing the number of global related rules that had 

fired during the conversation) was seen to be the most significant detector of learning style. However, what was surprising 

was the number of sensory attributes (Rules_SNS and Rules3_SNS) that were also included in the model. This again 

supported the correlation between sequential-global and sensory-intuitive dimensions. 

The results for the visual-verbal dimension in Table 5 are not conclusive as only 13% of the students captured were 

classified as verbal learners. The uneven distribution of undergraduate learners on the visual-verbal FS dimension, as 



noted in the FS model, leads to consideration of the question whether it is important for a CITS to classify this dimension 

and therefore if adopting the FS model the importance of predicting visual-verbal learning styles should be considered 

carefully. 

A comparison of predictive results directly with other current CITS is not possible as they do not predict learning styles. 

Work has been done using menu-based tutoring systems embodied within ITS that predict learning styles at a slight lower level 

that OSCAR-CITS using the winner takes all strategy (Ozpolat and Akar et al., 2009) and thus the results presented from the 

FLSP compare favourably. However, it must be noted that in (Ozpolat and Akar et al., 2009) classification is determined 

through the addition of a neutral class for each dimension which is different approach to that presented in this paper.  

 

4.3 Implications for CITS Design 

Regardless of the debates surrounding learning style theory and practice as a whole there is considerable support in the 

educational community for the development of such models as they have been shown to increase motivation of students (Ghaedi 

and Jam, 2014), improve learning gain and even reduce learning time (Coffield et al., 2004).  Key challenges lie in the 

identification of learning styles, avoiding the weaknesses of traditional paper-based approaches, and in making meaningful 

adaptations to a learning environment based on such classifications. It also raises the pedagogic question of whether dynamic 

style detection and automatic personalisation is a preferable approach to learner education and choice in relation to learning 

styles. Automatic detection of learning styles within a learning system such as a CITS can be achieved over a period of time 

(such as a tutorial) and is more accurate in relation to a specific learner when using live student data.  However, employing a 

computational intelligence technique (such as fuzzy decision trees) that allows models to be built from the behaviour of learners 

using multiple pieces of information captured during the tutorial substantially increases the predictive accuracy.   

The FLSP solves the problem of predicting a user’s learning style using only the highest ranking single behaviour variable. 

Adapting to learning styles within an CITS tutorial has been shown to significantly improve the learning experience (Latham 

et al., 2014) but this is highly dependent on the accuracy of the student learning style model. The FLSP has produced four 

models – one for each learning style dimension, which have learned combinations of behaviour variables that result in a more 

accurate and comprehensive overall learning styles model. The next stage is to embed these models into the adaptive OSCAR-

CITS and conduct a further study to assess the impact on learner performance. 

The methodology and architecture for developing a CITS with a Fuzzy Learning Styles Predictor Module are independent 

of the learning styles model and subject domain, and can be adapted. The FLSP creates a rule base that is readable by the 

teacher and ensures decision transparency in how the system determined the learning style. The introduction of fuzzification 

for each behaviour variable allows the model to deal with the uncertainty in trying to automatically detect the correct dimension 



through natural language conversation. Consequently, this makes the FLSP much less sensitive to noise within natural 

language. 

 

5. Conclusion and Future Work 

 The motivation of this work stemmed from the uncertainty in predicting a person’s learning style for the purpose of CITS 

tutorial delivery. The current OSCAR-CITS predicts the learning style through one behaviour variable captured during the 

tutoring conversation – typically the one that scored the highest. Whilst this prediction was good, it was not based on the 

combination of behaviour exhibited by each person during the tutorial and the learner was on occasion being presented with 

material not suited to their learning style.  

 This paper has proposed a new method that uses fuzzy decision trees to build a series of fuzzy learning style predictive 

(FLSP) models using behaviour variables captured from natural language within a CITS tutorial for the four dimensions of the 

Felder and Silverman Learning Styles model. Seventy-five undergraduate students completed a formal ILS questionnaire and 

a tutorial in SQL using the OSCAR-CITS as part of their revision studies.  During the tutorial, their behaviour was logged in 

41 different behaviour variables that were used in this study to build the Learner data set.  Experiments were carried out for all 

four learning style dimensions: perception (sensory-intuitive),  understanding (sequential-global),  input (visual-verbal) and 

processing (active, reflective) to build a set of four fuzzy decision trees, each with the ability to predict a dimension with a 

degree of possibility. The results have indicated that the use of fuzzy predictive models has substantially increased the predictive 

accuracy of the OSCAR-FLSP compared with the one variable predictor currently used.  The prediction accuracy improvement 

across all dimensions ranged from 14% to 28% and a significant difference in the predictive accuracy between OSCAR-CITS 

and OSCAR-FLSP was obtained for all learning dimensions as indicated by the test for the difference of two proportions: 

sensory-intuitive (p < 0.01), sequential-global (p < 0.05), active-reflective (p < 0.05) and visual-verbal (p < 0.05).  

The new Fuzzy Learning Styles Predictor module is a part of the intelligent background processing in the new OSCAR-

CITS architecture (Figure 4). Therefore, it is hidden from the user. In modelling the student learning style with more accuracy, 

the expectation is that the improved model will deliver better adaptation decisions that should impact positively on the usability 

of the system. However, it is not possible to demonstrate this until the fuzzy predictive models are incorporated into the adaptive 

OSCAR-CITS in future work.  

Fuzzy decision trees are one of a number of computational intelligence techniques that learn from data to build models. 

However, decision trees are most suited to handling uncertainty and imprecision that is inherent in humans. The models that 

have been induced in this work have created a transparent set of rules where it is clear to see which behaviour variables impact 

most on the predictive accuracy for a given learning dimension. A model, however is only as good at the data and therefore 



further experiments would be needed using different learners and different CITS tutorials. Further work will incorporate the 

fuzzy predictive models into the adaptive OSCAR-CITS (Latham et al., 2014) in order to provide an improved and more 

personalised learning experience.  
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APPENDIX 

Table 2.  Learner Dataset Description 

Attri

bute 

No 

FIELD  DESCRIPTION      TYPE VALUES / 

STATS  

 

1 

 

Rules_VIS  Contains score for Visual learning style dimension 

resulting from OSCAR-CITS logic rule  

Numeric  Min: 1 / Max: 11  

Mean: 6.733 

StdDev: 2.767  

 

2 

 

Rules_VRB  Contains score for Verbal learning style dimension 

resulting from OSCAR-CITS logic rule. 

Numeric  Min: 0 / Max: 11  

Mean: 3.4  

StdDev: 2.427  

3 

 

Rules3_VIS  Contains score for Visual learning style dimension 

resulting from OSCAR-CITS extended logic rule - 

includes whether the participant answered question 

correctly.  

Numeric  Min: 0  / Max: 16  

Mean: 4.413 

StdDev: 2.881  

4 

 

Rules3_VRB  Contains score for Verbal learning style dimension 

resulting from OSCAR-CITS extended logic rule – 

includes whether the participant answered question 

correctly.  

Numeric  Min: 0 / Max: 12  

Mean: 3.053 

StdDev: 2.117  

5 

 

Rules_SEQ  Contains score for Sequential learning style dimension 

resulting from OSCAR-CITS logic rule. 

Numeric  Min: 1 / Max: 11  

Mean: 6.2  

StdDev: 2.307  

6 

 

Rules_GLO  Contains score for Global learning style dimension 

resulting from OSCAR-CITS logic rule.  

Numeric  Min: 1 / Max: 10  

Mean: 4.933 

StdDev: 1.848 

7 Rules3_SEQ Contains score for Sequential learning style dimension 

resulting from OSCAR-CITS extended logic rule – only 

applied if participant gave the correct answer.  

Numeric Min: 0 / Max: 10 

Mean: 6.067 

StdDev: 2.062 

8 Rules3_GLO Contains score for Global learning style dimension 

resulting from OSCAR-CITS extended logic rule – only 

applied if participant gave the correct answer. 

Numeric Min: 0 / Max: 8 

Mean: 4.347 

StdDev: 1.573 

9 Q5_choice The choice the learner makes in response to a question 

on how to approach a complex question (Question 5 in 

the tutorial) – in one go (ONEGO) or steps (STEPS), or 

just starts solving the problem (START).  

Discrete ONEGO: 9 

START: 5 

STEPS: 16 

steps: 19 

onego: 9 

start: 15 

dunno: 2 



10 Q5_STEPS2 Extends Q5_choice, by reporting the choice the learner 

made in how to approach a complex question and 

whether the question was then answered correctly. 

Discrete Y: 49 

NA: 16 

N: 10 

11 Q9_choice The choice the learner makes in how to approach a 

complex question (Question 9 in the tutorial) – in one go 

or steps. 

Discrete ONEGO: 10 

START: 6 

STEPS: 13 

DUNNO: 1 

steps: 17 

onego: 7 

start: 16 

dunno: 5 

12 Q9_STEPS2  

 

Extends Q9-choice, by reporting the choice the learner 

made in how to approach a complex question and 

whether the question was then answered correctly.  

Discrete NA: 14  

Y: 54  

N: 7  

13 Q4_detail  

 

Records whether a learner got the answer right when the 

answer was given in the question explanation text.  

Discrete Y:60  

N: 15  

14 Q_prac  

 

Indicate whether the student performs better during the 

tutorial on practical questions.  

Numeric Min: 0.2 /Max: 1 

Mean: 0.673 

StdDev: 0.174 

15 Q_theo  

 

Indicates whether the student performs better during the 

tutorial on theoretical questions.  

 

Numeric Min: 0.13/ Max: 1 

Mean: 0.678 

StdDev: 0.183 

16 Q_style  

 

Records student performance on Q_prac and Q_theo. 

(Practical (P), Theory (T), Same on both(S))  

 

Discrete P: 31 

S: 5 

T: 39 

17 Keyword_ 

example 

Records the number of times particular keyword 

“example” was uttered by the learner during the tutorial. 

Numeric Min: 0 / Max: 3 

Mean: 0.04 

StdDev:0.346 

18 Keyword_ 

show 

Records the number of times particular keyword “show” 

was uttered by the learner during the tutorial. 

Numeric Min: 0 /Max: 3  

Mean: 0.627  

StdDev:0.749  

19 Keyword_see Records the number of times particular keyword “see” 

was uttered by the learner during the tutorial. 

Numeric Min: 0 / Max: 1 

Mean: 0.013 

StdDev:0.115 

20 Keyword_ 

tell  

 

Records the number of times particular keyword “tell” 

was uttered by the learner during the tutorial. 

 

Numeric Min: 0 / Max: 2  

Mean: 0.04  

StdDev:0.257  

21 Keyword_ 

picture  

 

Records the number of times particular keyword 

“picture” was uttered by the learner during the tutorial 

Numeric Min: 0 / Max: 1 

Mean: 0.013 

StdDev: 0.115 

22 Keyword_ 

discuss  

 

Records the number of times particular keyword 

“discuss” was uttered by the learner during the tutorial.  

 

Numeric Min: 0 / Max: 2  

Mean: 0.027  

StdDev: 0.231  

23 Rules_ACT  

 

Contains score for Active learning style dimension 

resulting from OSCAR-CITS logic rule. 

 

Numeric  Min: 0 / Max: 11  

Mean: 5.52  

StdDev: 2.549  

24 Rules_REF Contains score for Reflective learning style dimension 

resulting from OSCAR-CITS logic rule.  

 

Numeric Min: 0 / Max: 11 

Mean: 3.013 

StdDev: 2.883 

25 Rules3_ACT Contains score for Active learning style dimension 

resulting from OSCAR-CITS extended logic rule – only 

applied if participant gave the correct answer. 

 

Numeric Min: 1 / Max: 10  

Mean: 3.907  

StdDev: 1.612  

26 Rules3_REF Contains score for Reflective learning style dimension 

resulting from OSCAR-CITS extended logic rule –  only 

applied if participant gave the correct answer. 

Numeric Min: 0 / Max: 3  

Mean: 0.267  

StdDev: 0.6  

27 Rules_SNS Contains score for Sensory learning style dimension 

resulting from OSCAR-CITS logic rule. 

Numeric Min: 0 / Max: 11  

Mean: 4.72  



 StdDev: 3.451  

28 Rules_INT Contains score for Intuitive learning style dimension 

resulting from OSCAR-CITS logic rule.  

 

Numeric Min: 0 / Max: 11  

Mean: 4.52  

StdDev: 2.811  

29 Rules3_SNS Contains score for Sensory learning style dimension 

resulting from OSCAR-CITS extended logic rule - only 

applied if participant gave the correct answer. 

Numeric  Min: 0 /Max: 4  

Mean: 1.307  

StdDev: 0.822  

30 Rules3_INT Contains score for Intuitive learning style dimension 

resulting from OSCAR-CITS extended logic rule – only 

applied if participant gave the correct answer. 

Numeric Min: 1 / Max: 14  

Mean: 4.293  

StdDev: 2.358  

31 MCQ_theory Indicates whether the student performs better in the 

MCQ on questions related to a particular style of tutorial 

question: theoretical or practical.  

Numeric Min: 0 / Max: 1  

Mean: 0.524  

StdDev: 0.37  

32 MCQ_pract Indicates whether the student performs better in the 

MCQ on questions related to a particular style of tutorial 

question: theoretical or practical.  

Numeric Min: 0 / Max: 1  

Mean: 0.532  

StdDev: 0.373 

33 Duration Records the duration of the tutorial in seconds.  

 

Numeric Min: 845 /  

Max: 14527  

Mean: 2445  

StdDev: 1638 

34 Mean_Duration Records whether the duration was longer or shorter than 

the mean durations across the study group.  

 

Discrete Min: 845 

Max: 14527 

Mean: 2445 

StdDev: 1638 

35 Time_per_int Records the time per interaction.  

 

Numeric Min: 18.322 

Max: 415.057 

Mean: 52.339 

StdDev: 45.906 

36 Mean_time_ 

int 

Records whether the duration per interaction was longer 

or shorter than the mean durations across the group.  

Discrete ABOVE: 25 

BELOW: 50 

37 Read_time Contains the mean reading time for 10 words in seconds. Numeric Min: 4.305 

Max: 102.303 

Mean: 12.23 

StdDev: 11.295 

38 MeanRdTime Records whether the reading time was longer or shorter 

than the mean reading time across the group (in 

seconds).  

Discrete ABOVE: 22 

BELOW: 53 

39 Wordcount Contains the learner’s word count for the tutorial. Numeric Min: 67 / Max: 352 

Mean: 164.027 

StdDev: 68.666 

40 Mean_ 

Wordcount  

 

Records whether the word count was longer or shorter 

than the mean word count across the group. 

Discrete BELOW: 44  

ABOVE: 31  

41 No_interactions Contains the number of interactions (Dialogue 

exchanges). 

Numeric Min: 24 / Max: 84 

Mean: 48.84 

StdDev: 9.895 

42 Mean_ 

interactions 

Records whether the number of interactions was longer 

or shorter than the mean interactions across the group. 

Discrete BELOW: 39 

ABOVE: 36 

43 Class Contains the learner’s learning style class given by the 

ILS results. 

ACTIVE (ACT), REFLECTIVE (REF), GLOBAL 

(GLO), SEQUENTIAL (SEQ), VISUAL (VIS), 

VERBAL (VRB), INTUTIVE (INT), SENSORY (SNS). 

Discrete ACT: 43 

REF: 32 

GLO: 30 

SEQ: 45 

VIS: 65 

VRB: 10 

INT: 30 

SNS: 45 
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