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Automated Analysis and Quantification of Human
Mobility using a Depth Sensor

Daniel Leightley*, Member, IEEE, Moi Hoon Yap, Member, IEEE, and Jamie S.McPhee

Abstract— Analysis and quantification of human motion to
support clinicians in the decision-making process is the desired
outcome for many clinical-based approaches. However, generat-
ing statistical models that are free from human interpretation and
yet representative is a difficult task. In this work, we propose a
framework that automatically recognises and evaluates human
mobility impairments using the Microsoft Kinect One depth
sensor. The framework is composed of two parts. Firstly, it
recognises motions, such as sit-to-stand or walking 4 metre,
using abstract feature representation techniques and machine
learning. Secondly, evaluation of the motion sequence in the
temporal domain, by comparing the test participant with a
statistical mobility model, generated from tracking movements
of healthy people. To complement the framework, we propose an
automatic method to enable a fairer, unbiased approach to label
motion capture data. Finally, we demonstrate the ability of the
framework to recognise and provide clinically relevant feedback
to highlight mobility concerns, hence providing a route towards
stratified rehabilitation pathways and clinician led interventions.

I. INTRODUCTION

THERE is a clear advantage to developing automated
systems to detect human motion for applications asso-

ciated with healthcare [1]. The general population is living
longer, therefore factor in providing health and social care
services is to quantify and continuously assess people’s health.
While many people remain healthy, active and engaged into
later life, studies have indicated that a minority suffer from
frailty and musculo-skeletal mobility disorders [2]. Frailty is
not a single disease; but a combination of the natural ageing
processes, during which neuromuscular systems decline, and
the accumulation of medical conditions, which leaves a patient
vulnerable to illness or trips and falls [3]. Frailty is an indicator
of general health and well-being, and is usually assessed by
asking the person to perform several standardised tests (e.g.
walk back and forth, sit-to-stand) during which a clinician
observes the activity for stability, duration, coordination and
posture control.

Although direct clinical assessment is vital, there is a need
to construct more efficient clinical approaches to address lim-
itations in assessment [3]–[5]. First, clinician-led assessments
are dependent upon the skills, experiences and opinion of
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the clinician, so are not always objective. Second, clinical
assessments are open to subjective bias and variance between
assessments as well as interpretation of the results. Third,
the entire process can be time consuming considering the
patients’ need to attend the appointment to undertake the
assessment and the need for clinics to arrange appointments
and oversee the assessments. Fourth, people with mobility
impairments increase their risk of further trauma by having to
attend specialist clinics, so it would be preferable to undertake
the assessment at home. Fifth, patients may exhibit different
behaviour as a result of the examination, which may alter the
outcome and perceptions by the clinician.

Several studies [6], [7] indicate that reliable detection of
a person with “poor mobility” can predict future declines in
health, meaning that early identification could enable earlier
remedial clinician-led interventions [2], [8]. Several attempts
have been made to develop home-based monitoring systems
for assessment and rehabilitation [7], [9]. While these systems
have been validated and have the potential to support home-
based monitoring of mobility, they fall short of assessing for
mobility impairments. Further, these systems provide a single
health indicator whereas an in-depth descriptive indicator
could prove more useful to a clinician. In addition, existing
systems have been evaluated using game-orientated datasets,
and without clinical validation [5], [6], [10]. We utilise the
newly released K3Da dataset [11], which contains clinically
relevant motions to validate our proposed framework.

In this work, we propose a reliable and non-invasive frame-
work to recognise, assess and quantify the mobility of partic-
ipants. The system acquires motion capture (MoCap) from a
single depth sensor, where the skeletal stream is decomposed
into a set of novel joint-group features. Analysis techniques
are employed to provide joint-group feedback highlighting
the state of mobility, hence providing detailed insight for
clinicians. To identify and label the MoCap data, we propose
a method for automating the ground truth labelling of MoCap
that is free from human bias or interpretation.

This paper is structured as follows: Section II presents and
discusses current literature. Section III describes our proposed
method to recognising, decomposing and analysing human
motion. Section IV demonstrates the effectiveness of our
method for classifying and analysing human motion. Finally,
Section V provides a discussion, concludes our work and
presents future avenues of research.

II. RELATED WORK

Several works have been proposed to measure and analyse
human motion and stability. The most prevalent methodology



JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. X, NO. X, X 2015 2

suggests using one or a combination of intrusive sensors, such
as body-based accelerometer or markers. Then, the clinical
relevant indicators are extracted by analysing the patterns
presented in time-series data. In recent years, the computer
vision community has proposed an array of solutions to
solve this challenge, but majority are not validated clinically.
These works have predominantly focused on depth sensor
technology, removing the need for intrusive sensors, which
has been shown to be sufficiently accurate and responsive for
tracking in both in-home and clinical settings [10], [12], [13].

A number of frameworks have been proposed to enable
greater understanding of human motion. These frameworks
follow a similar structure. They first seek to identify the
motion, using recognition frameworks, and then undertake
quantitative analysis [14], [15]. The Rehabilitation Gaming
System [9], [16], [17] extracts the stability of a participant
using a combination of gloves and markers on the hands. After
the participant performs several standardised tests, the data
is processed to calculate compliance. Dolatabadi et al. [18]
proposed a home-based system for assessing changes in gait
and balance. The authors utilise a Microsoft Kinect 360 (Kinct
360) for xBox sensor to observe gait recovery in a participant
that had undergone surgery. They were able to track the gait,
and temporal change over a number of weeks. Gonzalez et
al. [19] proposed a solution for real-time balance estimation
by deriving Centre-of-Mass (CoM) feature from the Kinect
360 and a Wii Balance Board. The authors unite the CoM
and angular momentum to quantify the stability of participant.
While this work presents a novel solution to providing balance
and stability measurements, it has been tested only on two
participants.

There are few approaches that seek to unite recognition
and quantitative analysis of human motion in a hierarchical
context. Cary et al. [20] proposed a system to unite the
Kinect 360 and Artificial Neural Network (ANN) to aid in
recognition of physiotherapy assessment sessions. The authors
design a feature vector based on joint groups. The first group
is composed of the torso joints; with the second group the
remaining joints. The vector is computed by extracting the
associated angles between joints. The work employs a multi-
level ANN that decomposes each joint into a separate model.
This allows the recognition of complex motion sequences and
assesses their correctness in relation to a predefined model.
Kargar et al. [21] utilised a depth sensor to automatically
measure the physical mobility of participants. They analyse
and classify human gait in relation to “Get-up-and-Go-Test”.
Two types of features are extracted from the MoCap data
provided by the sensor. The first type of feature is related
to the human gait (e.g. number of steps, duration of each
step, and turning duration), whereas the second type describes
the anatomical configuration. The authors state that using
these features provided a descriptor for characterising physical
mobility. To enable classification of the imbalance severity, the
authors implement a Support Vector Machine (SVM).

While works exist to assess human balance and gait, the
work is limited to extracting single-valued indicators which
lack clinical validation. To the best of the authors’ knowledge,
this work is the first proposed method to detect, analyse

and provide clinically relevant outcome measures using depth
sensor technology. Our work relies on several key computer
vision and pattern recognition techniques: stereo vision, pose
estimation, feature representation, clustering and temporal
segmentation.

III. APPLICATION FRAMEWORK

The framework is divided into three parts. First, joint-group
features are generated from skeletal MoCap data. Second,
recognition of human motion using a range of machine learn-
ing classifiers to provide the clinician with the motion being
observed. Finally, a motion analysis approach to providing
clinically relevant outcome measures alongside the motion
being evaluated is proposed.

A. Feature Encoding

Identification and recognition of motions is not a trivial task.
Wang et al. [6] used feature groups to detect human action
with a Kinect 360, which yielded promising results. However,
the same feature set would not provide the abstract level of
detail required for suitable clinical outcome measures. This, in
part is due to the way in which motion performance between
humans differs slightly, making a single top-level outcome
generalised in nature [13], [22]. Derived features have been
shown to be more useful than raw MoCap data [23]–[25].
This lead to the work of Du et al. [26], using a Hierarchical
Recurrent Neural Network for human action recognition, at the
core was the concept of dividing the skeleton into joint groups,
based on anatomical significance to the motion sequence.
A joint level group of features is encoded, representative
of multiple motion types and shows promise in encoding
subtle variations. As in [26], we employ the same joint group
decomposition. A summary of the feature groups and encoding
methodology is presented in Table I, with a visual illustration
presented in Figure 1.

Fig. 1. An illustration of a MoCap skeleton divided into five joint groups
as proposed in [26]. Each joint group represents a key motion area which is
capable of representing all types of human motion.

There are multiple measurements which are capable of be-
ing extracted from a skeletal stream of MoCap [21], [25], [27].
The difficulty is to select the most appropriate features capable
of describing the motion and subtle variations. Alongside these
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TABLE I
SUMMARY OF JOINT DECOMPOSITION AND DERIVED FEATURES FOR EACH GROUP AND THE CORRESPONDING DIMENSIONALITY OF THE FINAL FEATURE

VECTOR. *Where I is the number of features

Joint Group Features Length Notation*
Left Arm (LeftShoulder, LeftElbow,
LeftWrist, LeftHand)

Left arm Euler Angle (between left shoulder and left wrist),
Euclidean distance between the left shoulder and left hand, x
and y axis vectors.

12 FLeftArm = {1 . . . , I}

Left Leg (LeftHip, LeftKnee,
LeftAnkle, LeftFoot)

Left leg Euler Angle (between left hip and left ankle),
Euclidean distance between the left hip and left foot, x and
y axis vectors.

12 FLeftLeg = {1 . . . , I}

Right Arm (RightShoulder,
RightElbow, RightWrist,
RightHand)

Right arm Euler Angle (between right shoulder and right
wrist), Euclidean distance between the right shoulder and
right hand, x and y axis vectors.

12 FRightArm =
{1 . . . , I}

Right Leg (RightHip, RightKnee,
RightAnkle, RightFoot)

Right leg Euler Angle (between right hip and right ankle),
Euclidean distance between the right hip and right foot, x
and y axis vectors.

12 FRightLeg = {1 . . . , I}

Torso (SpineBase, SpineMid, Neck,
Head, SpineShoulder)

Torso Euler Angle (between the spin base and neck) relative
to the body, Euclidean distance between the spine base and
head, Body lean angle (relative to the floor with torso as
a reference), Centre-of-Mass (between left shoulder, right
shoulder, spine mid), x and y axis vectors.

15 FTorso = {1 . . . , I}

derived features, raw MoCap data itself is also utilised. The x
and y coordinates are extracted for each joint to describe the
posture change with respect to the axis [23].

Euler Angle: Any rigid body can be described as an angle
around three orthogonal coordinates in fixed space. However,
computing Euler Angles from marker-less MoCap is difficult.
Joint angles are extracted using the approach by Lewandowski
et al. [28]. Frames are normalised, and then three angles
defining the reference joint (see Table I) are computed and
represented by a three unit angle (R3).

Euclidean Distance: An important characteristic of human
motion is the way in which the participant transitions over
time in relation to a fixed point. For example, with the Torso
Group, the Euclidean distance is computed between the base
of the spine and head. While this value will remain constant
for motions such as walking, when the participant performs
a bend, or sit-to-stand the distance between the two joints
differs. The change in distance is computed as:

distance =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (1)

where x1, y1, z1 and x2, y2, z2 are the reference joints.
Body Lean Angle: It is possible to represent a rotation

group (SO(3)), which is a rotation in Euclidean space as a
set of two vectors (unit vector ê indicating the direction of
lean, θ angle representing the magnitude of rotation about the
axis). The Body Lean Angle represents the body in relation to
the ground plane, see Figure 2. The angle is computed by the
flexion of the spine in relation to ground floor plane, defined
as the centre of the feet. The lean angle between the spine and
the floor is defined as:

ê, θ = arccos

(
S ·Q
‖S‖Q‖

)t

(2)

where S is the spine vector (x, y, z) and Q is the floor vector
- the centre of the feet (x, y, z).

Centre-of-Mass: The CoM [19], [29] is extracted from
MoCap data to describe the directional movement. Figure 3
demonstrates a 2D visual example for the CoM for two motion

Fig. 2. Visual representation of the Body Lean Angle in relation to the
Microsoft Kinect sensor. The angle is computed by the intersection between
the ground plane and spine.

sequences. Vertical directional movements, such as Chair Rise,
are identified by the Kinect One due to its ability to track
millimetre postural changes [30]. In order to evaluate and
measure stability, it is necessary to measure the movement
of the body’s CoM. Let com be the CoM at time t of pose p
computed from three joints (hip left, hip right, spine) is given
as:

x̄ =

∑3
i=1 p

′
t,xi

i

ȳ =

∑3
i=1 p

′
t,yi

i

z̄ =

∑3
i=1 p

′
t,zi

i
com = [x̄, ȳ, z̄]t

(3)

where x̄, ȳ, z̄ is the mean, i is the joint index of frame t and
com is the concatenation of the mean values.
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Fig. 3. Visual 2D representation of the CoM for two motion types. a) CoM (y axis) for Chair Rise. b) CoM (y axis) for Maximum Jump.

B. Recognition: Motion Identification
The framework for recognising trials (otherwise referred

to as motions) is shown in Figure 4. Recognition enables
the clinician to be aware of the motion performed by the
participant. The framework is divided into two aspects. First,
offline training of multiple machine learning classifiers based
on an exemplar-based pose selection. Second, online detection
and identification of motions in real-time.

Fig. 4. Recognition Overview: Top row illustrates the training process.
Bottom row illustrates the online recognition process.

1) Feature Reduction and Selection: For generalisation
and consistency, P represents all skeletal poses, ordered in

a time-sequential manner. Each feature encodes a motion
characteristic, such as gait, or motion performance. To train
any machine learning classifier, a unified training sample needs
to be formed, given as:

F̂ = {FLeftArm, FLeftLeg, FRightArm,

FRightLeg, FTorso} ∈ R63
(4)

where F̂ is a combined vector consisting of the features
derived for each joint group.

The objective is to identify and extract only those features
that contain enough descriptive information to describe the
motion. A two tier clustering process is employed (Algorithm
1 illustrates the pseudo code). Top-level process combines
the features for each trial into a single matrix. An automated
clustering approach is then employed to identify the optimum
number of clusters. k-means has been selected over other
approaches as it is computationally faster when dealing with a
large number of observations. Further, it is suitable for group-
ing and segmenting human motion compared hierarchical
clustering methods. Then, sub-level clustering is undertaken
on each feature group with the derived optimum clusters. This
results in a feature set F̂ , is represented by k clusters. The next
stage is to identify and extract key features. The clustering
process results in a dynamic number of k clusters of any
length. A “key” cluster is identified if it contains more than
N/K, the average size of the clusters. For each key cluster,
features are retained using an equivalence function.
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Algorithm 1: Automatic k selection and grouping with
k-means clustering

Input: Ax = {F̂1, F̂2 . . . , F̂N} - training instances for all
F̂n in the motion class in concatenated form
MaxIt - maximum number of convergence
iterations

Output: L = {l(e)|1, 2, . . . , E} - set of cluster associate
labels for F̂n

For a set of features x ∈ A do
foreach k = 2 : N do

randomly initialize k centroid location, Ci, for each
cluster
foreach ai ∈ A do

l(e)← argminDist||ax − ci||2, i ∈ {1, . . . , k}
end
it← 0
repeat

foreach ax ∈ A do
minDist← argminDist||ax − ci||2, i ∈
{1, . . . , k};
if minDist 6= l(e) then

l(en)← minDist
end

end
it+ +;

until it ≤MaxIt;
wcssk ← argminDist||An̂ − Ci||2, i ∈ {1, . . . , I}

end
estk = E∗I {log(wcssk)} − log(wcssk)}
then
foreach F̂n ∈ A do

randomly initialize estk centroid location, Ci, for
each cluster
do classify Fn samples according to nearest Ci

recompute Ci

until no change in Ci

end
return cluster identifications for each feature (n)

end

The similarity between two features, a and b from F̂ is
computed as:

Similarity(F̂a, F̂b) = min ||ai − bj ||2 (5)

A Self-Similarity Matrix S for a key cluster KC from F̂
can be computed using Eq. 5 and defined as:

S := (si,j)NzxNz = {Similarity(F̂i, F̂j)}NzxNz ∈ KC (6)

where S is the computed Similarity-Matrix with a dimension-
ality of Nz×Nz for cluster KC. The median element of the
Similarity-Matrix Smedian is selected, and a cost function is
defined to identify features that are within a threshold, denoted
as hold are retained. This is computed as:

D(Smedian, Si) = hold 

I∑

i=1

||Smedian − Si||2 (7)

where i ∈ I = {1, 2, . . . , I} is the number of poses for
each key cluster and D are the features which fall within
the threshold hold. Hence, only those that are shown to
be informative are retained. This provides a reduced feature
vector.

2) Recognition: For recognition, several machine learning
classifiers are evaluated (Table II). To train a model, each
action class is represented by a set of key clusters with fine-
tuning and parameter selection undertaken to improve the
model stability. To classify, the skeletal stream is encoded in
real-time using the features summarised in Table I, each pose
is provided to the model for assignment of a class predictor.

C. Motion Analysis

The framework for analysing human mobility is presented in
Figure 5. The framework is split into two parts. First, MoCap
is assigned a ground truth marker to identify if it contains
“good” or “poor” mobility, then multiple SVMs are trained
to detect mobility change. Second, identification and analysis
of participants mobility is undertaken to provide clinically
relevant outcome measures. In the recognition stage, the joint
groups are merged into a single feature vector, whereas for
motion analysis each joint group is trained as a separate
model.

Fig. 5. Motion Analysis Overview: Top row illustrates the process undertaken
to label, group and train a set of SVM models. Bottom row illustrates the
analysis approach utilised to provide clinically relevant outcome measures.

1) Labelling and Computation of Human Mobility: For a
typical recognition task, prior knowledge of the class label
is required. This is usually straightforward to determine, for
example a person walking or jumping can easily be defined
with a single label [1]. However, the task becomes very
difficult to identify and label in the context of different styles
of the same motion. For example, attempting to group different
types of gait manually can result in subjective grouping and
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TABLE II
LIST OF MACHINE LEARNING CLASSIFIERS UTILISED, INCLUDING FINE-TUNING/PARAMETER SELECTION METHODOLOGY.

Machine Learning Parameters
Required

Parameters Selection Methodology

Support Vector Machines (SVM) [31] C and γ Parameter selection was undertaken using cross-validation method.
Random Forests (RF) [32] ntree and mtry ntree selection is undertaken using cross-validation method iterating

from ntree = 100 to ntree = 5,00. and mtry set at a default of 3.
Artificial Neural Networks (ANN) [32] nlayer , neurons,

rate
Parameter selection was undertaken using stratified k-fold cross vali-
dation with a validation set employed to present over-training.

Gaussian Restricted Boltzmann Machines (GRBM)
[33]

hvariable The number of hidden units, hvariable was set at a default of 500.

Adaptive Boosting (AB) [34] niterations Parameter selection was undertaken using cross-validation.
LPBoost [35] niterations Parameter selection was undertaken using cross-validation.
RUSBoost [36] niterations Parameter selection was undertaken using cross-validation.
Total Boost (TB) [37] niterations Parameter selection was undertaken using cross-validation.
Bagging [38] ntree Parameter selection was undertaken using cross-validation.

bias [18], [39]. There have been several approaches proposed
to obtain and measure clinically supportive outcome(s), yet
they have manually annotated motions with little clinically
supportive reasoning for labelling [6], [13], [39]. However,
there are methods for objectively identifying and grouping
human motion in the clinical literature. Baumgartner et al. [40]
introduced a normal distribution of motion values to derive
the standard deviation (SD) of the mean to define groups of
sarcopenia (loss of muscle mass with ageing). This has been
used extensively within the medical community to identify
different groups [3], [41], yet to the authors’ knowledge it has
not been utilised within the computer science community.

Our proposal extends [40] work to define “good” and “poor”
mobility using a digitalised labelling framework, based on the
data itself. This approach is free from human interpretation,
bias or subjectiveness except for providing a threshold value.
The labelling can be summarised as follows: Frames that
contain a value greater than the ±1.5 SD of the mean are
identified having “poor” mobility, whereas frames within ±1.5
SD of the mean are identified having “good” mobility. Each
joint group is labelled individually. For each group, each
individual frame is labelled as having “good” mobility or
“poor” mobility. The labelling is summarised as follows:

1) Using young adults from the K3Da dataset, each motion
class and joint group is combined into a single matrix.
This results in five matrices representing each joint
group.

2) The ±1.5 SD from the mean (computed as the average
per feature row) is computed for each joint group.

3) Using the SD of the mean values computed at item 2,
all trials including young and elderly from the K3Da
dataset are labelled.

4) Frames that that are within the ±1.5 SD are labelled as
having “good” mobility.

5) Frames that lie greater than ±1.5 SD are labelled as
having “poor” mobility.

The mean ±1.5 SD threshold value is computed from the
young only, to represent the general population. As this work
seeks to identify mobility, using the elderly may create a bias
within the model and increase the rate of false positives. Table
III provides a summary for the number of frames labelled as
having “good” or “poor” mobility for each participant group.

TABLE III
FRAME LABELS FOR “GOOD MOBILITY” AND “POOR MOBILITY” FOR

EACH JOINT GROUP, REPRESENTED FOR EACH PARTICIPANT CATEGORY.

Joint Group Young Old
Good (%) Poor (%) Good (%) Poor (%)

Left Arm 31,382 (87) 4,131 (13) 12,516 (51) 12,851 (49)
Right Arm 32,145 (84) 5,146 (16) 13,728 (54) 11,639 (46)
Left Leg 30,367 (89) 3,368 (11) 18,089 (60) 7,278 (40)
Right Leg 31,344 (87) 4,169 (13) 19,725 (72) 5,642 (28)
Torso 31,355 (87) 4,158 (13) 16,089 (57) 9,278 (43)

The labelling of each frame provides information of the state
of mobility at any period of time; A “mobility score” metric
is derived to indicate the level of mobility the participant has
compared to the statistical models derived earlier. The mobility
score is an aggregate of the number of frames identified as
having‘ ‘good” mobility versus “poor” mobility for each joint
group.

2) Analysing Mobility using Multiple SVMs: Over recent
years, a number of classifiers have been proposed for the
task of motion recognition, consistently SVM have yielded
high accuracy results. They are computationally less expensive
to train, and provide a low latency for recognition compared
to others (e.g. Random Forest). The aim is to generate a
detailed insight of a participant’s mobility. To that end, a
random sample of participants from the K3Da dataset are
extracted, and each joint group is modelled using an SVM with
10-fold cross-validation, Figure 6 demonstrates the training
and evaluation pipeline. While it is possible to train a single
SVM, indeed [1], [42] obtained high accuracy results for the
task of recognition. If we follow these type of approaches,
subtle motion variations would be overshadowed resulting
in over generalisation (over fitting) leading to inter-/intra-
class confusion between “good” mobility and “poor” mobility.
Training an individual SVM for each joint group models
subtle changes in motion, providing a greater motion context.
Furthermore, it permits the framework to identify specific joint
groups that may be of concern.

To compute a clinical outcome measure, test data is de-
composed into joint-group based features and provided to
the corresponding SVM. Each SVM provides a feature-level
classification for “good” mobility or “poor” mobility, detailing
the state of mobility. Then, detailed analysis of the motion
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Left Arm Left Leg Torso Right Leg Right Arm 

Train SVMs 

Motion Analysis 

Outcome(s) 

Test Data 

Fig. 6. Summary of the training and evaluation approach for analysing human
mobility.

is undertaken on the complete labelled sequence to provide
feedback on the participants mobility.

For practical utilisation, each joint group is assessed based
on the number frames classified as having “good” mobility
versus “poor” mobility. If any joint group has more than a
predefined number of frames labelled as “poor” mobility, such
as 30%, an outcome is generated highlighting that further
investigation is required.

IV. EXPERIMENTAL: MOTION DETECTION AND
QUANTIFICATION

The validation of the framework is undertaken in two parts.
First, evaluate the ability of the framework to perform motion
recognition. Second, evaluate the ability of the framework
to detect mobility concerns and impairment. The evaluation
is performed on “unseen” test participants, meaning that no
test data has been included during the modelling phase. The
K3Da Dataset [11], which contains 54 participants performing
a wide range of clinically validated motions, captured using the
Microsoft Kinect One sensor were used. We selected five trials
scenarios from the dataset namely; balance (eyes open), chair
rise, semi-tandem balance, tandem balance, walk (4 metre).

A. Evaluation: Motion Detection

We evaluated the performance of a range of machine
learning classifiers using our joint groups. These classifiers,
together with parameter selection methodology are presented
in Table II. For each technique, a 10-fold cross-validation us-
ing the random ‘leave-one-out’ principle was used to compute
recognition accuracy. Table IV illustrates the performance of
each machine learning algorithm for motion recognition.

We were able to achieve acceptable recognition rates (Table
IV), particularly when we consider the similarity in motions
using our proposed joint groups and features. Random Forests
produced the highest average recognition rate of 87.10%,
GRBM producing the lowest average result of 73.08%. The
recognition rates fluctuated due to the leave-one-out approach

employed. Encouragingly, similar motions such as semi-
tandem and tandem balance were identifiable, with little inter-
/intra-class variation.

Below average recognition rates were observed for several
iterations, this, in part due to the formation of the training
and testing sets or cross-validation and parameter selection
may have struggled due to inter-class similarity. Being able
to correctly identify a motion is important to ensure the
correct model is applied for motion analysis and quantification.
Another consideration is the time in which it takes to perform
classification, an average recognition per frame was below
1ms, suggesting real-time recognition is viable. Leightley et al.
[11] reported a peak accuracy of 85.53%, with our proposals
obtaining a marginally increased peak accuracy of 87.10%.

B. Experimental: Motion Analysis

The ground truth labels derived in this work are used to
evaluate the proposed framework for the task of detecting
mobility. Figure 7 provides an overview for the success of
the overall framework in identifying features of concern in
relation to the ground truths.

75
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Balance Two Leg
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A
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u
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%
) Left Arm Group
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Fig. 7. Success of the framework when compared to ground truth labelling.

For evaluation, a random sample of participants were used
for training and the remainder used for testing, using leave-
one-out methodology. Across trials evaluated, a high true-
positive rate is obtained (Figure 7). This indicates that the
framework is capable of correctly identifying mobility con-
cerns based on the ground truths.

We were able to detect a large number of participants who
had been identified at labelling as possibly having a mobility
concern. Overall, the confusion matrix for each joint group
performed strongly, with a high rate of true positives, and a
small rate of false positives with an overall sensitivity of 0.98,
specificity of 0.95 and Matthew Correlation Coefficient (MCC)
score of 0.94 supporting this conclusion.

Balance - Two Legs (Eyes Open): Each participant stood
with their feet as close together as possible side-by-side. They
balanced with their eyes open and arms extended horizontally
to be parallel with the floor. Each joint group could be
correctly identified, with only Left Leg providing the low-
est detection rate of 96.23%. The framework detected large
amounts of mobility concern, most notably in the Left Arm.
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TABLE IV
MACHINE LEARNING RECOGNITION RATE FOR EACH ITERATION AND CLASSIFIER.

Iteration SVM RF ANN GRBM AdaBoost LPBoost RUSBoost Total Boost Bagging
1 80.78% 86.75% 83.92% 87.83% 78.36% 82.58% 89.50% 84.19% 79.98%
2 79.94% 82.85% 78.38% 81.01% 86.22% 88.12% 85.15% 87.92% 82.47%
3 82.99% 89.04% 82.46% 79.87% 91.08% 90.89% 87.67% 83.29% 87.15%
4 76.59% 93.48% 80.92% 82.10% 92.13% 84.76% 82.73% 84.77% 89.86%
5 86.43% 78.47% 82.19% 80.56% 81.79% 79.36% 83.89% 88.91% 85.78%
6 76.49% 83.67% 70.71% 82.37% 79.37% 83.85% 83.74% 86.07% 84.37%
7 86.65% 92.16% 80.68% 76.10% 83.58% 85.52% 90.17% 86.55% 89.98%
8 84.24% 87.92% 82.83% 78.34% 82.01% 84.71% 86.24% 87.72% 87.72%
9 81.05% 90.11% 74% 56.28% 74.18% 86.62% 85.71% 88.23% 88.47%
10 77.14% 86.60% 78.99% 74.09% 87.61% 88.09% 84.37% 83.47% 89.91%

Average (SD) 81.23% 87.10% 79.50% 73.08% 83.63% 85.45% 85.91% 86.11% 86.56%

TABLE V
OVERALL CONFUSION MATRIX FOR THE PERFORMANCE OF EACH JOINT GROUP IN IDENTIFYING MOBILITY CONCERNS. WHERE TRUE POSITIVE

INDICATES THE PARTICIPANT HAS GOOD MOBILITY AND TRUE NEGATIVE INDICATES PARTICIPANTS WITH A MOBILITY CONCERN.

5230p′

p

103

n

9n′ 2549

actual
value

Left Arm - Predicted Outcome

5676p′

p

17

n

113n′ 2148

actual
value

Left Leg - Predicted Outcome

5717p′

p

239

n

138n′ 1860

actual
value

Right Arm - Predicted Outcome

6658p′

p

67

n

73n′ 1155

actual
value

Right Leg - Predicted Outcome

6423p′

p

0

n

6n′ 1498

actual
value

Torso - Predicted Outcome

A sensitivity of 0.99, a specificity of 0.96 and a MCC of 0.96
was obtained. Mobility was in line with expectations, with the
framework performing reliably across all joint groups.

Chair Rise: Each participant started from a seated position.
When promoted, they had to stand up so that the legs were
fully extended, and then sit down again. This was repeated
five times with the aim to complete five complete stand/seat
cycles. The arms were held across the chest so that all of
the power needed to stand and sit was produced by the legs
muscles. Each joint group could be correctly identified, with
only Left Leg providing the lowest detection rate of 98.38%.
A sensitivity of 0.99, specificity of 0.96 and an MCC of 0.96
was obtained. Overall, mobility across the participant range
was good, with only a minority of features falsely classified
as having “concern” across the joint groups.

Semi-Tandem Balance: Each participant placed one foot
behind the other so that the big toe of the back foot was
touching the side of the heel of the front foot. Their arms
were fully extended horizontally for a period of 10 seconds.
Each joint group could be correctly identified, with only Right
Arm providing the lowest detection rate of 86.60%. A large
number of features were identified as having a “concern” in
Right Arm; this may be due to the incorrect recognition of
features. This false classification is further observed with a
relatively low sensitivity of 0.95, a specificity of 0.99 and a
MCC of 0.91.

Tandem Balance: Each participant placed one foot directly
behind the other so that the big toe of the back foot was
touching the back heel of the front foot. The arms were fully
extended horizontally for a period of 10 seconds. Each joint
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group could be as being correctly identified, with only Left
Arm providing the lowest detection rate of 96.69%. For Right
Leg, all features were classified correctly. This may be in part
due to most participants using their left leg for the balancing
resulting in the sensor being obscured from the right leg;
therefore the Right Joint Group may be hidden for duration of
the motion. A high sensitivity of 0.99 was achieved, however
low scores for specificity of 0.91 and MCC of 0.92.

Walk (4 metres): Each participant started from a standing
position and walked forwards in a straight line towards the
sensor at their ‘usual’ walking speed. Each joint group could
be correctly identified, with only Right Arm providing the
lowest detection rate of 98.10%. Across the joint groups,
features were classified correctly, with only a few features
being identified as a concern requiring further invention, this
was further supported with a sensitivity of 0.99. However,
when considering specificity of 0.94 and a MCC of 0.95, the
framework does yield low results for this type of trial when
compared to the others.

With the proposed framework it is possible to use the
recognition of frames to identify if any intervention or rehabil-
itation is required. A threshold of 70% was selected through
experimentation, if any joint group contained more than 70%
of frames classified as “concern” it would be acknowledged
as requiring investigation by a clinician. Of the participants
used in these experiments, 16 were highlighted as having
at least one joint group of concern. In a clinical context,
these participants would be examined further by a clinician
to determine why poor mobility was observed. In accuracy
terms, this is a 94% success rate in detecting mobility concerns
between participant groups based on ground truth labelling.

V. DISCUSSION AND CONCLUSION

The release of the Kinect One has presented new capacities
for innovation within the healthcare sector. The ability to
deploy the sensor in a wide range of locations, as well as
its low-cost are important highlights. Further, the Kinect One
is capable of providing detailed measurements extracted from
motion sequences and encoded features. Standard approaches,
such as SPPB [43] provide a single score measurements with
no contextual information whereas the Kinect One is able to
provide finite kinematic information. The extraction of joint
groups provides an abstract level of detail and insights into
how the joint group is performing in relation to the motion
as a whole, this leads to an improved insight for clinicians to
make a recommendation.

In this work, we utilise the Kinect One for detecting mobil-
ity concerns to aid in stratified clinical intervention. The mo-
tions used for evaluation are commonplace and necessary parts
of typical daily living, such as walking, sitting, standing and
balancing. These same movements become problematic for
persons with a mobility concerns of any age. Due to the large
inter-individual variability in age and physical capabilities,
the K3Da dataset is well suited for evaluating the proposed
framework. However, it contain only a limited number of par-
ticipants which makes general population modelling difficult.
If the number of participants for modelling is increased, a more

reliable and representative population model can be computed.
Future work will explore this in more detail.

While analysis is a key theme of this work, it is important to
consider detection of motions as they occur, this enables the
correct outcome measure to be applied. We have compared
several classifiers, presenting a detailed comparison of their
ability to detect a range of subtly different motions. They have
been able to detect subtle differences between similar motions,
for example semi-tandem and tandem balance with the aid of
our proposed feature set. This work has united recognition and
motion analyse to provide a united decision making process.

We propose a framework which unites human motion
recognition techniques with motion analysis. The framework
has been shown to be reliable and accurate for evaluation of
mobility. By utilising low-cost depth sensor technology the
application framework is deployable in a large number of
scenarios and environments, resulting in real world practical
benefits. Future work will focus on clinical validation of the
proposed framework with an increased population size using
power analysis.
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