
Please cite the Published Version

Goñi-Moreno, A, Carcajona, M, Kim, J, Martinez-García, E, Amos, M and de Lorenzo, V (2016)
An implementation-focused bio/algorithmic workflow for synthetic biology. ACS Synthetic Biology,
5 (10). pp. 1127-1135. ISSN 2161-5063

DOI: https://doi.org/10.1021/acssynbio.6b00029

Publisher: American Chemical Society

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/617065/

Usage rights: In Copyright

Additional Information: This is an Author Final Copy of a paper accepted for publication in ACS
Synthetic Biology, published by and copyright American Chemical Society.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1021/acssynbio.6b00029
https://e-space.mmu.ac.uk/617065/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

1

An implementation-focussed bio/algorithmic workflow for 1

synthetic biology 2

Angel Goñi-Moreno†, Marta Carcajona†, Juhyun Kim†, Esteban Martínez-García†, Martyn 3

Amos‡ and Vitor de Lorenzo*† 4

 5

† Systems Biology Program, Centro Nacional de Biotecnología, Cantoblanco-Madrid, Spain. 6

‡ Informatics Research Centre, Manchester Metropolitan University, United Kingdom. 7

 8

E-mail: vdlorenzo@cnb.csic.es 9

*To whom correspondence should be addressed 10

Abstract 11

As synthetic biology moves away from “trial and error" and embraces more formal processes, 12

workflows have emerged that extend from the conceptualisation of a genetic device to its 13

construction and measurement. We are particularly interested in this latter aspect (i.e., 14

characterisation and measurement of synthetic genetic devices), as this is a workflow component 15

that has received relatively little attention, but is crucial to the success of such constructions. We 16

present an end-to-end use case for engineering a basic synthetic construct, which is supported by 17

information standards and computational methods, and which focuses on characterisation and 18

measurement. This workflow captures the main stages of genetic circuit design and description, 19

and offers standardised tools for both population-based measurement and single-cell analysis. 20

The main contributions of the current paper are (1) Consideration of specific vector features. 21

Although circuit design has been successfully automated, important structural information is 22

usually overlooked, as is the case of plasmid vectors. We advocate the use of the Standard 23

European Vector Architecture to select the optimal carrier for a design and a thorough description, 24

in order to unequivocally correlate digital definitions and molecular devices. We developed a 25

digital version of this plasmid format with the Synthetic Biology Open Language and a software 26

2

tool that allows the user to embed genetic parts in vector cargoes. This enables the annotation of a 27

mathematical model of the circuit’s kinetic reactions formatted with the Systems Biology Markup 28

Language. From that point onwards the experimental results and their in silico counterparts 29

proceed alongside, with constant feedback to preserve consistency between them; (2) A 30

framework for the calibration of fluorescence-based measurements in synthetic biology. One of 31

the hardest endeavours in standardisation, metrology, is addressed by reinterpreting the 32

experimental output in light of simulation results, allowing us to turn arbitrary fluorescent units 33

into relative measurements; (3) Integration of single-cell methods into a framework for 34

multicellular simulation and measurement, allowing for standardised consideration of the 35

interplay between the carrier chassis and culture conditions. 36

Introduction 37

Synthetic biology is concerned with the rational design and construction of biological 38

information processing devices.1 The rigorous application of engineering principles and 39

processes is fundamental to the success of this endeavour,2,3,4 and significant attention is now 40

being paid to the development of standardised workflows,5,6 which describe sequences of 41

biological and algorithmic processes required to obtain a desired outcome. Such workflows, 42

therefore, specify a “ tool-chain" for synthetic biology, and the anticipated benefits of using them 43

include modularity (allowing individual processes to be implemented in several different ways), 44

robustness and scalability . 45

One of the over-arching challenges for the field is the end-to-end automation of “biodesign",7,8 a 46

process that is made up of two main stages:6 (1) the automatic selection and/or construction of 47

biological components, and their assembly into a network that, in principle, performs information 48

processing according to a high-level specification, and (2) the fine-tuning of the system 49

components and/or architecture to obtain the desired performance. The first part of this process 50

concerns the detailed specification of the components to be used 9,10 (or fabricated 11,12,13), 51

the attendant data representation and storage issues,14 and the correct arrangement of 52

components into a circuit that can implement a given (logical) function. A wealth of so-called 53

“bio-CAD" tools now exist for this latter task,15,16 and these include SBROME,17,18 54

3

TinkerCell,19 and SynBioSS.20 In terms of “fine-tuning" (the second stage), recent 55

developments use post-assembly modification of constructs based on observed network 56

behaviour6 or the “evolution" of cell models,21 facilitating an iterative “homing in" approach 57

towards circuit design. 58

In this paper, we focus on the latter stages of the circuit engineering process (that is, the 59

implementation stages that follow the initial development of a circuit design). The specific issues 60

that we address with our workflow (and, therefore, the most significant contributions of the paper) 61

are (1) the formalisation of circuit description, (2) the effect of plasmid vectors on circuit 62

performance, and (3) the correlation of experimental observations with simulation results. We 63

now briefly discuss each of these. 64

The first stage in the post-design process is to formalise the descriptions and sequences of the 65

parts of the system to be constructed. An early technical standard for the description of biological 66

parts was the BioBrick,22,23, which is appropriate for the assembly of DNA segments. However, 67

a key consideration (which is not handled particularly well by early standards) is the variety of 68

plasmid vectors that are available for the delivery of biological parts. Importantly, the choice of 69

plasmid vector can dramatically affect the performance of an engineered circuit; plasmid features 70

such as replication origin, selection markers and expression system need to be carefully 71

selected.24 72

As computational tools to aid biodesign become more commonplace, we may begin to see more 73

uniformity in terms of the types of circuit we see in the literature. However, once they are built, 74

the process of measuring the behaviour of the designed system (in order to assess its fidelity to 75

the desired output) may still vary substantially, since few existing workflows consider 76

measurement, and teams are free to choose their own tools for this stage. Mathematical and 77

computational modelling have become fundamental tools in synthetic biology, but they are only 78

effective when combined with useful in vivo observations of synthetic systems. In this workflow, 79

we describe a methodology for easily mapping simulation results onto laboratory measurements. 80

4

Results and discussion 81

Our overall workflow is depicted in 1. We use a combined experimental in vitro / in silico 82

approach, the two perspectives being tightly coupled at key points. The various stages are 83

temporally ordered, from left to right, and we begin once a circuit design is established (that is, 84

we do not consider issues of circuit design, and instead focus on implementation and 85

measurement). The first stage in our workflow is Description, in which the design of the desired 86

construct is captured by some representation(s); this then feeds into the Implementation stage, in 87

which the construct is built (or modelled). Once the device has been implemented, we perform 88

Population-level measurement in order to obtain aggregate performance metrics; this then feeds 89

into a second Implementation phase, which facilitates closer (single-cell) observations. We now 90

describe each workflow stage in more detail. 91

Description 92

In order to obtain reliable and robust circuit performance, it is important to have control over the 93

vector, and to be able to compare its performance with the same plasmid in multiple scenarios. In 94

order to achieve this, we use (for the in vivo component) the Standard European Vector 95

Architecture (SEVA)25 , which is a standard for the physical assembly of vector plasmids and 96

their nomenclature, as well as an online database of functional sequences and constructs available 97

to the community. Paired with the SEVA description of the plasmid is a digital representation of 98

the circuit for the in silico component of the workflow, for which we use the Synthetic Biology 99

Open Language (SBOL).26 This provides a “standard exchange format" for synthetic biology 100

designs (between research groups, and between different toolkits). 101

Implementation 102

In the first in vitro Implementation phase, the vector is assembled using standard molecular 103

biology procedures, resulting in the synthesis of circuit modules, and their insertion into the 104

carrier plasmid. In parallel with this process (i.e., during the in silico implementation phase), we 105

construct a standardised digital description using SBOL, with one SBOL document per 106

5

construction (File S2). These documents are then combined (using a Java-based tool, Tool S1), 107

resulting in a single SBOL file containing the sequences of interest in the correct cargo position 108

according to the restriction enzyme sequences. This tool identifies those SBOL components in 109

common across components (i.e., the restriction sites) and replaces all the information that exists 110

in the cargo section from enzyme to enzyme with the cassette of interest. After this step, both the 111

plasmid containing the circuit and its representation are fully standardised. 112

Measurements. 113

The use of mathematical modelling and computational analysis has became a fundamental part of 114

synthetic biology, due to the information they provide concerning the mechanical behaviour of 115

the systems. However, this potential can only be used effectively when combined with direct in 116

vivo measurements.27 Advances in metrology and measuring techniques will obviously benefit 117

the field of synthetic biology. Recently, attempts have been made to standardise these. Relative 118

Promoter Units (RPU)28 have emerged as a measuring standard for promoter activity based on a 119

comparison against a reference promoter. On a more abstract level, the Polymerase Operations 120

Per Second (PoPs) measure9 is used as the signal carrier in transcriptional circuits. However, 121

none of these methods are free of controversy.15 122

In order to simulate the model constructed in the Implementation phase, we use the iBioSim29 123

tool; conveniently, iBioSim exports reactions to a single Systems Biology Markup Language 124

(SBML)30 file (File S3), which is a computational standard for the representation of biochemical 125

networks. Importantly, this allows us to link up the SBML biochemical model of the circuit with 126

the SBOL description of the DNA components of the circuit, using the methodology described 127

in.31 In turn, this connects (via SBOL) with the SEVA description of the vector, giving seamless 128

integration of information across different standards that are used for different levels of 129

description. We also develop an application (Tool S2, based on libSBML32) to convert a given 130

SBML file into Python coded scripts, used for for deterministic and stochastic simulations (File 131

S4). Importantly, the SBML model details (i.e., rates) correspond not only to the circuit itself, but 132

also its carrier vector. This significantly reduces output variability; by including details of the 133

vector in the model characterisation (via SEVA/SBML) we take into consideration the possibility 134

6

that the carrier plasmid might later change, due to decisions taken at the implementation phase. 135

Any such change will, in turn, inevitably (although, sometimes subtly) affect the observable 136

behaviour of the model when implemented, so including details of the vector allows us to factor 137

in fluctuations due to variable plasmid selection. 138

The inclusion of an extra step within the workflow for multicellular analysis will also help to 139

reduce variability caused by both the chassis and culture conditions. Indeed, both chassis (i.e., P. 140

putida vs. E. coli) and culture conditions add their own effects to the circuit and its carrier. If the 141

circuit has to be used under different scenarios we should quantify cellular behaviour. In the 142

example provided there are behaviours that cannot be measured with the cytometer (i.e., noise 143

inheritance or cell movement), and which require time-lapse microscopy in order to be quantified. 144

The parameters corresponding to these behaviours are therefore fitted according to single-cell 145

measurements. Again, this information adds value to a potential specification sheet that 146

accompanies the in vivo system. 147

We use spectophotometry to measure the fluorescent signal of the entire cell population; dividing 148

this by the optical density (OD) over time yields the average fluorescence value per cell in the 149

culture. Experimental values are used to fit kinetic rate parameters in the mathematical models so 150

they produce similar profiles. Importantly, in the graphs that follow, the Y-axis refers to arbitrary 151

units of fluorescence in experimental observations, and the number of molecules (of, for example, 152

mCherry proteins) in the simulated observations. Matching the latter with the former gives us an 153

important reference point concerning measurements, which allows us to interpret subsequent 154

results. 155

We perform stochastic analysis in order to characterise noise in the system, using the well 156

established Gillespie algorithm.33 On the experimental front, we obtain data on noise using flow 157

cytometry, which allows the user to check the fluorescence intensity value of (in principle) every 158

single cell in the bacterial culture. Although the ready-to-use graphs produced by the cytometer 159

(Figure S1) are used as standard in most laboratories, we prefer to use the raw values, before they 160

are processed for presentation (normally in a “black box" fashion, which is opaque to the user). 161

There are three main reasons for using raw cytometry data: (1) Cytometers "count" cells using 162

7

variable intervals of fluorescence at high values of a logarithmic scale that is not always constant, 163

and which depends on a specific machine set-up. This processing therefore introduces variability 164

that is hidden from the user; (2) We need cell-specific values in order to make direct comparisons 165

with simulated cells within our framework; (3) Raw data values are more amenable to importing 166

and processing by various tool-chain components, whereas the automated extraction of specific 167

values from graphs produced by cytometers introduces unnecessary complications and the 168

possibility of misreading data. 169

A simulated cytometry graph is obtained by running the Python version of the reactions (see 170

Methods). This offers two potential benefits: firstly, it gives a computational method (via an 171

SBML model) of discarding invalid values from the raw cytometry information (see the later 172

Case study for an example). And, secondly, by overlapping both experimental and simulated 173

plots we are able to correlate the arbitrary units (au) of the cytometer with those from the 174

spectrophotometer. We propose this procedure as one approach towards unifying machine-based 175

measurements in the laboratory (and give an example in the Case study, below). 176

Implementation (2) 177

The behaviour of our circuit will inevitably be affected by the specific attributes of the host cell. 178

A thorough characterisation of a device should, therefore, include information about the 179

performance of the chassis34 (which, in our case, is P.putida KT244035). Rather than simply 180

providing “added value", this information is of vital importance in the case of multicellular 181

applications,36,37 which are becoming increasingly important as cell-to-cell communications are 182

increasingly well-understood and customised.38,39 183

In order to study the behaviour of circuits in vivo, we use DiSCUS,40 which is an agent-based 184

simulation package we have previously developed to study bacterial growth. Importantly, this 185

platform considers physical forces between rod-shaped bacteria, and is applicable to a wide range 186

of organisms. This tool uses the previously generated Python scripts for the intra-cellular genetic 187

network that is implemented by our cells. The SBML model is therefore embedded into the 188

cellular objects of the agent-based simulator. It is important to note that there is a standard, 189

8

currently under development, called the Multi-Cellular Data Standard (MultiCellDS, 190

http://multicellds.org/), which aims to create a data standard for sharing multicellular 191

experimental, simulation, and clinical data. Hopefully, when released, it will facilitate sharing of 192

configuration parameters for a specific chassis performance. 193

Concurrently, we prepare a 2-dimensional culture on an agarose pad,41 and let the cells grow on 194

a monolayer in order to facilitate visualisation in the microscope. 195

Single-cell measurements. 196

We first calibrate the movement and the growth of the simulated cells according to experimental 197

observations. We monitor the successive positions of a specific cell until division, and then 198

follow the displacement of its daughters during their lifetime(s). We then match these results 199

against the equivalent information obtained from the simulations, and adjust DiSCUS parameters 200

to fit the experiments. In short (see Methods for more details), this information yields the most 201

relevant features to prioritise in DiSCUS in order to reproduce the movement of our cells in vivo 202

(in the Case study, below, we give specific examples). 203

Spatial measurements. 204

After characterising the dynamics of the chassis that host our circuit, we measure its performance 205

in a spatial scenario. We measure the fluorescence intensity of our device in vivo, and obtain a 206

pixel-based image analysis of the specific colour (in our example, red) captured by the 207

microscope. In our analysis, we translate the scale bar of the analysis into values proportional to 208

those used in the mathematical model (see Methods for details of this conversion). As a 209

consequence, a simulation run with the system’s equations inside DiSCUS bodies, can be directly 210

compared against experiments in regard to circuit function. 211

Case study 212

In this Section we present the results of a combined in vivo/in silico case study, in which we 213

construct a simple device using our workflow. We start with a simple “always-on" source; that is, 214

9

a constitutive expression cassette. Although this device is relatively simple, compared to existing 215

synthetic genetic constructs (such as the oscillator), we emphasise that the main focus of the 216

current paper lies with the measurement of such devices. That is, the complexity of the device to 217

be constructed is less significant for the purposes of this work, as we are concerned only with 218

handling its output. Fluorescence measurements are taken in fundamentally the same way, 219

regardless of the size or complexity of a synthetic device; what interests us here is how we might 220

standardise such metrics, and relate them back to in silico studies in a useful and meaningful way. 221

The two subcomponents of the circuit are (1) the pEM7 constitutive promoter, and (2) the red 222

fluorescence reporter gene mCherry (see Methods for details - File S1). Once the initial design is 223

in place we move to the Description stage, where the system pEM7-mCherry is digitally 224

formalised and physically built. The SEVA vector pSEVA 231 (Figure 2B) is selected to carry 225

the design. This contains a Kanamycin marker (labelled 2), origin of replication pBBR1 (labelled 226

3), and the default cargo sector (labelled 1). As the cargo sector is a sequence of restriction sites, 227

we need to select specific locations into which to paste our modules. As depicted in Figure 2A, 228

we complete the promoter component by flanking the sequences of restriction sites PacI and 229

AvrII, and using HindIII and SpeI for the reporter gene (this leaves empty space in between for 230

future usage). Once the Description phase is complete, we move to Implementation. 231

In Figure 3A we highlight the kinetic rates involved and the Ordinary Differential Equations 232

(ODEs) that govern the continuous functioning of our always-on device. After cloning, Figure 4A 233

shows the results for average fluorescence value per cell in the culture, along with deterministic 234

simulation runs (based on the ODEs) for both the SBML model (implemented using iBioSim) 235

and its corresponding Python script. We then move to the Population measurement phase. 236

Figure 4B shows the fluctuations in molecular levels of the reactions of Figure 3A when running 237

the Gillespie algorithm on the SBML model (iBioSim) and its corresponding Python file. As 238

expected, the observed variability is the same in both, as the kinetic rates remain unchanged (i.e., 239

the same as in the ODEs). The mean value is precisely situated on the steady state value of the 240

deterministic simulation. 241

10

Raw data from the cytometer are plotted on Figure 4C, where the bimodal curve tells that 242

approximately half of the cells display strong fluorescence, while the rest express none (or very 243

little). The latter group corresponds to invalid values, and can be discarded, as indicated by the 244

control data (the same strain without the plasmid) and the already processed graph (Figure S1). 245

Moreover, further microscope tests show strong fluorescence in all the cells with a relatively 246

narrow noise interval, which confirms the correct elimination of that non-expressing cell group. 247

As described in the workflow description, this gives a computationally standard way of 248

discarding invalid values from raw cytometry information. Moreover, it yields a method for 249

correlating outputs from different pieces of laboratory equipment. We illustrate this in the graph 250

of Figure 4C; we are able to correlate the arbitrary units (au) of the cytometer with those from the 251

spectrophotometer: 1 au in the former, and � 1.2 au in the latter (see Methods for more 252

information). After performing population-level measurements, we move to single-cell 253

measurements. 254

5A shows the result of experiments to track cell movements. 5B shows the positions of a cell 255

(from Figure 5A) until division, and then the displacement of its daughters during their lifetime. 256

5C shows the most relevant features we need to add in DiSCUS in order to reproduce the 257

movement of our cells, starting from a very simple growth algorithm (which returns unrealistic 258

patterns) (Figure 5C.1). Ultimately, we find that we need to include: (1) cell size variations (due 259

to conditional growth), (2) variation in transversal angles after division, (3) randomised 260

directions of movement, and (4) slight attraction between cells (in order to avoid the appearance 261

of holes within the colony). 262

Figure 5D compares the synchrony of growth within experimental and simulated cells, yielding 263

suggestions as to how to uncouple growth events. These graphs show the length of each cell in 264

the population over time (in the laboratory experiments) or iterations (in the simulation). Starting 265

with just two cells (the same setup as in 5A) which grow and divide at the same time, we observe 266

that, after the second division (eight cells in total), the length of the cells is no longer 267

synchronised. 268

We then consider the spatial scenario. Figure 6A shows the results of measuring the fluorescence 269

11

intensity of our pEM7-mCherry device inside the KT2440 strain, and a pixel-based image 270

analysis of the red colour captured by the microscope. As stated above, the scale bar of the 271

analysis is translated into values proportional to those in the mathematical model of 4b. A 272

simulation run in DiSCUS, using the system’s equations (6B (left)) can be directly compared 273

against experiments. We verify, for instance, that daughter cells share output levels as they 274

directly copy their mother’s circuit at a given time (6B), and the fact that cells with slower growth 275

tend to display a stronger light signal (due to the accumulation of fluorescence proteins). 276

Discussion and conclusions 277

Arriving at a fully standardised workflow that allow for robust and reproducible constructs will 278

benefit synthetic biology. We describe procedures used in our lab to build and measure synthetic 279

devices, explaining both computational and experimental investigations via a simple use case. 280

Many recent efforts focus on a specific step depending on application interests. That is the case of 281

automated circuit design,5,16,18 mathematical modelling,20 single-cell analysis,41 metrology,28 282

data representation26 or post-construction modification.6 Indeed, there is significant room for 283

improvement in each step along the workflow. However, instead of focussing on a single 284

technique, we showed how to make use of several of them in an end-to-end workflow, 285

concentrating on output measurements. There are recent reviews of other workflows,15 but these 286

tend to focus on enumeration rather than application of techniques. Apart from the didactic 287

contribution of this paper, we provide new materials needed for linking standards, such as the 288

tool to merge SBOL documents for SEVA description, or the scripts to translate SBML into 289

Python. In this way, we provide a useful initial workflow for newcomers to the field, as well as 290

(more generally) a standard workflow for robust programmable biology. 291

Materials and Methods 292

Strains and plasmids. The strain used was Pseudomonas putida KT2440,35 the wild-type strain 293

derived from mt-242 strain cured of the TOL plasmid pWW0. The carrier plasmid for our circuit 294

was pSEVA 231 (2: Kanamycin resistance; 3: pBBR1 origin of replication; 1: default cargo) 295

12

selected from the SEVA database (http://seva.cnb.csic.es/). We then inserted the promoter pEM7 296

with PacI/AvrII and the mCherry reporter with HindIII/SpeI. The final plasmid was renamed 297

pSEVA 237R-pEM7 (already available in the database). Importantly, the sequences of interest 298

(target circuit) were edited to remove any restriction site that the SEVA standard uses as 299

structural elements. 300

SBOL-SEVA description. The SEVA format is highly structured in unambiguous functional 301

sectors, as shown in 2B. We described, using SBOL-2.0 (specifications on the website, 302

http://sbolstandard.org/), the SEVA vector 231 (Figure S2). The previous existing description of 303

this vector using GenBank format43 is then improved by adding missing features (like assembly 304

scars) and establishing structural and functional links. Separately, we produced two more SBOL 305

documents, one for each component of the circuit. Ultimately, we developed a Java based 306

application that can be fed with the carrier plasmid and the cassettes that needs to be inserted, and 307

outputs the new vector. The application searches in the carrier file for those restriction sites 308

present in the cassettes (iteratively) and substitutes the sequence in between. The resulting SBOL 309

document has all location parameters (i.e. bioStart) updated. 310

Mathematical modelling and SBML-to-Python conversion. In the model of Figure 3A, P we 311

show the promoter-reporter pair (18 copies, as estimated by previous observations for pBBR1 312

origin of replication44), mRNA the messenger RNA and rfp the red fluorescent protein (both at 0 313

molecules at the beginning of the simulation). Regarding the kinetic rates: k1 is the transcription 314

rate (27/18 hour-1, k2 represents the translation rate (2.5 hour-1) and k3 (0.65 hour-1) and k4 (0.265 315

hour-1) the degradation rates of the mRNA and the protein respectively. For such a small network, 316

parameter assignment is a difficult task due to the restricted number of constraints. Efforts on 317

assigning numbers to rates45 are of vital importance at this stage. 318

We then used the software iBioSim (http://www.async.ece.utah.edu/iBioSim/) to write the model 319

in SBML format and run the simulations with the Hierarchical Runge-Kutta method for ODEs 320

solution, and the Gillespie algorithm for stochastic behaviour. The model was exported in a flat 321

(iBioSim option) XML file and converted into Python scripts with the tool provided (Tool S2). 322

Flow cytometry data was obtained from the FCS files without processing, and the simulated 323

13

graph was obtained by (1) sampling a stochastic run in time (equal time intervals), and (2) 324

counting intensity values over a long enough (≈ 600 hours) period. 325

By making the simulations match experimental plots in Figure 4A, we conclude that �400 326

simulated molecules (s.m.) correspond to ≈400 arbitrary units in the spectrophotometer (a.u.s). 327

As the computational measurements (s.m.) in the stochastic simulation are exactly the same, we 328

used them to correlate the fluorescent units of the cytometer (a.u.c). As Figure 4C shows, ≈400 329

s.m. = ≈330 a.u.c; so 1 a.u.s = 400/330 a.u.c. We assume that the sources of fluorescent signal are 330

the same, as the cells are unaltered. 331

Two-dimensional in-vivo setup. In order to prepare of the microscope sample, we used an 332

agarose pad following the method described in.46 A slide glass with an attached gene frame (1.7 333

X 2.8 cm, life technologies) was prepared. Then 500 ul of LB, including 2% agarose, which is 334

melted in the medium, was added into the middle of the gene frame and assembled with another 335

slide glass. After 30 min at room temperature, one of the slide glasses was carefully removed, 336

maintaining an intact agarose pad. Then, the pad was cut out to 5 mm width within the gene 337

frame using a razor blade. Two strips of the pad were left to grow bacterial cells. 338

The strain carrying pSEVA 237R-pEM7 was precultured overnight in LB medium at 37�C and 339

bacterial cultures were then diluted 100-fold in the same medium and grown to the exponential 340

phase (OD600 = 0.2). 2.5 ul of the samples were then spotted on to the agarose pad and 341

assembled with cover glasses (24 X 50 mm) for following microscopy analysis. 342

The widefield fluorescent microscope was used to observe the sample (Leica DMI6000B, Leica 343

Microsystems) with a digital CCD camera Orca-R2 (Hamamatsu). The cell growth was 344

monitored for 75 min under the microscope at 37º C and images were captured every 3 min with 345

a40.0x/0.75 NA dry objective or 63.0x/1.3 NA glycerol immersion objective (depending on the 346

experiment) with a bandpass filter for mCherry (BP 560/40 and EM 645/75.) using the LAS AF v. 347

2.6.0 software (Leica Microsystems). Images were analyzed with the MATLAB-based code 348

Schnitzcells47 in order to track both the positions of the cells and their length while growing. 349

14

Two-dimensional in-silico setup. DiSCUS (http://code.google.com/p/discus/) is an agent-based 350

software for bacterial growth that uses Pymunk (http://pymunk.readthedocs.org/en/latest/), a 2D 351

physics library, to resolve collisions among cells. In the most basic test of Figure 5C.1 each cell 352

is a body of 16x30 square lattice that grows lengthwise until division, when the cell is cut in half. 353

Pressure-based growth is simulated by counting the cells that push a body of interest (threshold at 354

4 cells) and slowing down the growth events (without stopping them). Random angle variations 355

were introduced after division, whereby the daughter cells copy the angle of the mother and add a 356

number in the interval (-25,25) degrees. Furthermore, angle variations were included at the 357

normal growth events, although to a smaller extent (maximum variation of 5 degrees). The fact 358

that the cells grow in vivo forming a circular group without holes was simulated using a slight 359

gravity-like value that pushed the cells towards the middle of the population. This force can be 360

eliminated when the population is about 20 cells big, at which point the circular shape is 361

conserved without any other attraction. Further analysis on this force is needed. 362

Regarding pixel intensity in the analysis of Figure 6A, we set the maximum value to be at the 363

same level as the highest peak of the stochastic simulation of Figure 4B or the cytometry data of 364

Figure 4C. Therefore we calculated the percentage rate (≈470*100 divided by maximum pixel 365

value) to convert the intensity of every pixel into the scale shown by experiments. Again, we 366

assume that the source of light is the same (KT2440) and variances are due to different machine 367

measurements. 368

Acknowledgement 369

References 370

(1) Church, G. M.; Elowitz, M. B.; Smolke, C. D.; Voigt, C. A.; Weiss, R. (2014) Realizing 371

the potential of Synthetic Biology. Nature Reviews Molecular Cell Biology, 15, 289–294. 372

(2) Andrianantoandro, E.; Basu, S.; Karig, D. K.; Weiss, R. (2006) Synthetic biology: new 373

engineering rules for an emerging discipline. Molecular Systems Biology, 2:1. 374

(3) Heinemann, M.; Panke, S. (2006). Synthetic biology - putting engineering into biology. 375

15

Bioinformatics, 22, 2790–9. 376

(4) Kitney, R.; Freemont, P. (2012) Synthetic biology - the state of play. FEBS Letters, 586, 377

2029–2036. 378

(5) Beal, J.; Weiss, R.; Densmore, D.; Adler, A.; Appleton, E.; Babb, J.; Bhatia, S.; Davidsohn, 379

N.; Haddock, T.; Loyall, J.; Schantz, R.; Vasilev, V.; Yaman, F. (2012) An end-to-end 380

workflow for engineering of biological networks from high-level specifications. ACS 381

Synthetic Biology, 1, 317–331. 382

(6) Litcofsky, K. D.; Afeyan, R. B.; Krom, R. J.; Khalil, A. S.; Collins, J. J. (2012) Iterative 383

plug-and-play methodology for constructing and modifying synthetic gene networks. 384

Nature Methods, 9, 1077–1080. 385

(7) Brophy, J. A.; Voigt, C. A. (2014) Principles of genetic circuit design. Nature Methods, 11, 386

508–520. 387

(8) Densmore, D. M.; Bhatia, S. (2014) Bio-design automation: software + biology + robots. 388

Trends in Biotechnology, 32, 111–113. 389

(9) Baker, D.; Church, G.; Collins, J.; Endy, D.; Jacobson, J.; Keasling, J.; Modrich, P.; 390

Smolke, C.; Weiss, R. (2006) Engineering life: building a fab for biology. Scientific 391

American, 294, 44–51. 392

(10) Varadarajan, P. A.; Del Vecchio, D. (2009) Design and characterization of a three-393

terminal transcriptional device through polymerase per second. NanoBioscience, IEEE 394

Transactions on, 8, 281–289. 395

(11) Nielsen, A. A.; Segall-Shapiro, T. H.; Voigt, C. A. (2013) Advances in genetic circuit 396

design: novel biochemistries, deep part mining, and precision gene expression. Current 397

Opinion in Chemical Biology, 17, 878–892. 398

(12) Khalil, A. S.; Lu, T. K.; Bashor, C. J.; Ramirez, C. L.; Pyenson, N. C.; Joung, J. K.; 399

Collins, J. J. (2012) A synthetic biology framework for programming eukaryotic 400

transcription functions. Cell, 150, 647–658. 401

(13) Villalobos, A.; Ness, J. E.; Gustafsson, C.; Minshull, J.; Govindarajan, S. (2006) Gene 402

Designer: a synthetic biology tool for constructing artificial DNA segments. BMC 403

Bioinformatics, 7, 285. 404

(14) Canton, B.; Labno, A.; Endy, D. (2008) Refinement and standardization of synthetic 405

16

biological parts and devices. Nature Biotechnology, 26, 787–793. 406

(15) MacDonald, J. T.; Barnes, C.; Kitney, R. I.; Freemont, P. S.; Stan, G.-B. V. (2011) 407

Computational design approaches and tools for synthetic biology. Integrative Biology, 3, 408

97–108. 409

(16) Marchisio, M. A.; Stelling, J. (2009) Computational design tools for synthetic biology. 410

Current Opinion in Biotechnology, 20, 479–485. 411

(17) Huynh, L.; Tsoukalas, A.; Köppe, M.; Tagkopoulos, I. (2013) SBROME: a scalable 412

optimization and module matching framework for automated biosystems design. ACS 413

Synthetic Biology, 2, 263–273. 414

(18) Huynh, L.; Tagkopoulos, I. (2014) Optimal part and module selection for synthetic gene 415

circuit design automation. ACS Synthetic Biology, 3, 556–564. 416

(19) Chandran, D.; Bergmann, F. T.; Sauro, H. M. and others. (2009) TinkerCell: modular 417

CAD tool for synthetic biology. Journal of Biological Engineering, 3, 19. 418

(20) Hill, A. D.; Tomshine, J. R.; Weeding, E. M.; Sotiropoulos, V.; Kaznessis, Y. N. (2008) 419

SynBioSS: the synthetic biology modeling suite. Bioinformatics, 24, 2551–2553. 420

(21) Cao, H.; Romero-Campero, F. J.; Heeb, S.; Cámara, M.; Krasnogor, N. (2010) Evolving 421

cell models for systems and synthetic biology. Systems and Synthetic Biology, 4, 55–84. 422

(22) Knight, T. (2003) Idempotent vector design for standard assembly of biobricks; DTIC 423

Document. 424

(23) Shetty, R. P.; Endy, D.; Knight Jr, T. F. (2008) Engineering BioBrick vectors from 425

BioBrick parts. Journal of Biological Engineering, 2, 1–12. 426

(24) Preston, A. (2003) Choosing a cloning vector. E. coli Plasmid Vectors; Springer, 2003; 427

pp 19–26. 428

(25) Martínez-García, E.; Aparicio, T.; Goñi-Moreno, A.; Fraile, S.; de Lorenzo, V. (2014) 429

SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction 430

of bacterial functionalities. Nucleic Acids Research, gku1114. 431

(26) Galdzicki, M.; Clancy, K. P.; Oberortner, E.; Pocock, M.; Quinn, J. Y.; Rodriguez, C. A.; 432

Roehner, N.; Wilson, M. L.; Adam, L.; Anderson, J. C. and others (2014) The Synthetic 433

Biology Open Language (SBOL) provides a community standard for communicating 434

designs in synthetic biology. Nature Biotechnology, 32, 545–550. 435

17

(27) Kelwick, R.; MacDonald, J. T.; Webb, A. J.; Freemont, P. (2014) Developments in the 436

tools and methodologies of synthetic biology. Frontiers in Bioengineering and 437

Biotechnology, 2. 438

(28) Kelly, J. R.; Rubin, A. J.; Davis, J. H.; Ajo-Franklin, C. M.; Cumbers, J.; Czar, M. J.; de 439

Mora, K.; Glieberman, A. L.; Monie, D. D.; Endy, D. (2009) Measuring the activity of 440

BioBrick promoters using an in vivo reference standard. Journal of Biological 441

Engineering, 3, 4. 442

(29) Myers, C. J.; Barker, N.; Jones, K.; Kuwahara, H.; Madsen, C.; Nguyen, N.-P. D. (2009) 443

iBioSim: a tool for the analysis and design of genetic circuits. Bioinformatics, 25, 2848–444

2849. 445

(30) Hucka, M.; Finney, A.; Sauro, H. M.; Bolouri, H.; Doyle, J. C.; Kitano, H.; Arkin, A. P.; 446

Bornstein, B. J.; Bray, D.; Cornish-Bowden, A. and others. (2003) The systems biology 447

markup language (SBML): a medium for representation and exchange of biochemical 448

network models. Bioinformatics, 19, 524–531. 449

(31) Roehner, N.; Myers, C. J. (2013) A methodology to annotate systems biology markup 450

language models with the synthetic biology open language. ACS Synthetic Biology 3, 57–451

66. 452

(32) Bornstein, B. J.; Keating, S. M.; Jouraku, A.; Hucka, M. (2008) LibSBML: an API 453

library for SBML Bioinformatics, 24, 880–881. 454

(33) Gillespie, D. T. (1976) A general method for numerically simulating the stochastic time 455

evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434. 456

(34) Danchin, A. (2012) Scaling up synthetic biology: do not forget the chassis. FEBS Letters 457

586, 2129–2137. 458

(35) Nelson, K.; Weinel, C.; Paulsen, I.; Dodson, R.; Hilbert, H.; Martins dos Santos, V.; 459

Fouts, D.; Gill, S.; Pop, M.; Holmes, M. and others. (2002) Complete genome sequence 460

and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. 461

Environmental Microbiology 4, 799–808. 462

(36) Amos, M. (2014) Population-based microbial computing: a third wave of synthetic 463

biology?. International Journal of General Systems 43, 770–782. 464

(37) Macía, J.; Posas, F.; Solé, R. V. (2012) Distributed computation: the new wave of 465

18

synthetic biology devices. Trends in Biotechnology 30, 342–9. 466

(38) Tamsir, A.; Tabor, J. J.; Voigt, C. A. Robust multicellular computing using genetically 467

encoded NOR gates and chemical 'wires'. Nature 469, 212–5. 468

(39) Goñi-Moreno, A.; Amos, M.; de la Cruz, F. (2013) Multicellular computing using 469

conjugation for wiring. PLOS ONE 8, e65986. 470

(40) Goni-Moreno, A.; Amos, M. (2015) DiSCUS: A simulation platform for conjugation 471

computing. Unconventional and Natural Computation (UCNC 2015), Auckland, New 472

Zealand, August 31-September 4, 2015. 473

(41) Skinner,S.O.; Sepúlveda, L. A.; Xu, H.; Golding, I. (2013) Measuring mRNA copy 474

number in individual Escherichia coli cells using single-molecule fluorescent in situ 475

hybridization. Nature Protocols 8, 1100–1113. 476

(42) Worsey, M. J.; Williams, P. A. (1975) Metabolism of toluene and xylenes by 477

Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid.. 478

Journal of Bacteriology 124, 7–13. 479

(43) Benson, D. A.; Karsch-Mizrachi, I.; Lipman, D. J.; Ostell, J.; Rapp, B. A.; Wheeler, D. L. 480

(2000) GenBank. Nucleic Acids Research 28, 15–18. 481

(44) Lee, T. S.; Krupa, R. A.; Zhang, F.; Hajimorad, M.; Holtz, W. J.; Prasad, N.; Lee, S. K.; 482

Keasling, J. D. (2011) BglBrick vectors and datasheets: a synthetic biology platform for 483

gene expression. Journal of Biological Engineering 5, 1–14. 484

(45) Ronen, M.; Rosenberg, R.; Shraiman, B. I.; Alon, U. (2002) Assigning numbers to the 485

arrows: parameterizing a gene regulation network by using accurate expression kinetics. 486

Proceedings of the National Academy of Sciences 99, 10555–10560. 487

(46) de Jong, I. G.; Beilharz, K.; Kuipers, O. P.; Veening, J.-W. (2001) Live cell imaging of 488

Bacillus subtilis and Streptococcus pneumoniae using automated time-lapse microscopy. 489

Journal of Visualized Experiments: JoVE, 53.. 490

(47) Young, J. W.; Locke, J. C.; Altinok, A.; Rosenfeld, N.; Bacarian, T.; Swain, P. S.; 491

Mjolsness, E.; Elowitz, M. B. (2012) Measuring single-cell gene expression dynamics in 492

bacteria using fluorescence time-lapse microscopy. Nature Protocols 7, 80–88. 493

 494

19

Supporting Information Legends 495

File S1. Sequences of promoter pEM7 and gene mCherry. 496

File S2. SBOL files. For a) plasmid, b) promoter and c) reporter. 497

Tool S1. Software tool to merge SBOL files and insert cassettes into a vector. 498

File S3. SBML files. 499

File S4. Annotated SBML file. 500

Tool S2. Software tool to convert a SBML model into a Python script. 501

File S5. Python scripts 502

Figure S1. Cytometry results. Graph output by cytometer after processing. 503

 504

20

Figure Legends 505

Figure 1: Workflow for an end-to-end synthetic biology use case. The description that follows 506

(and modify) the design of an idea is the starting point for the consequent experimental and 507

computational methods. The circuit and its carrier vector are described using the SEVA (Standard 508

European Vector Architecture) format for the in-vivo workflow and the SBOL (Synthetic 509

Biology Open Language) standard for the parallel in-silico process. A first implementation round 510

is then performed via synthesis and cloning methods in the wet-lab and via SBML (Systems 511

Biology Markup Language) for the modelling. The resulting material is then used for different 512

measurements. First, we make use of usual laboratory equipment for population-based 513

experiments (spectophotometry and flow cytometry) to compare the output against simulation 514

software (iBioSim and ad hoc python code). Another implementation round prepares the samples 515

for single-cell measurements. On the computational side, the SBML model is exported to a 516

python script ready to be used with our software for cell movement DiSCUS (Discrete 517

Simulation of Conjugation Using Springs). Relevant efforts are being currently done to 518

standardise these simulations via the MultiCellDS (Multi Cellular Data Standard) project. On the 519

other side, the cells are grown on an agarose pad for 2-dimensional populations that allow us to 520

match results. 521

21

Figure 2: SBOL description of circuit and SEVA components. A. Circuit design modification 522

where the components are flanked by the selected restriction sites that specify their situation 523

inside the SEVA vector. The constitutive promoter pEM7 is surrounded by PacI and AvrII 524

whereas the reporter mCherry is bordered by HindIII and SpeI. An SBOL document per 525

component is created. B. The selected SEVA plasmid to harbour our circuit is SEVA number 231 526

(2: Kanamycin resistance; 3: pBBR1 origin of replication; 1: default cargo). All vector features 527

are recorded in a single SBOL document, including cargo (multiple cloning site) components for 528

a further assembling of circuit parts. C. Both in-vivo and in-silico protocols for building the final 529

construct have the same basics: introduce, sequentially, circuit parts in the carrier vector. A 530

software tool (Tool S1) allows to do so with SBOL documents. 531

22

 532

Figure3: Mathematical modelling and its SBML format A. Kinetic reactions (up) and system’s 533

differential equations (bottom). The circuit’s behaviour can be effectively simulated with just 534

four kinetic constants: the constitutive promoter P facilitates reporter transcription with rate k1, 535

resulting mRNA is translated with rate k2 leading to the formation of RFP (red fluorescent 536

protein) and both elements are degradated with rates k3 and k4 respectively. ODEs (Ordinary 537

Differential Equations) governing continuous dynamics are shown. B. Schema of the SBML 538

model produced with the software iBioSim, a CAD (computer-aided design) package for systems 539

biology. In the screenshot, blue elements represent substrates and red circles hide reaction rates. 540

After setting the parameters, iBioSim allows the user to export the model to an XML file 541

formatted following the SBML standard. 542

23

Figure 4: Population-based measurements in experimental and simulation setups. A. 543

Deterministic functioning of the circuit, in terms of fluorescence intensity over time (during 14 544

hours), averaging the value of the whole population. Red line corresponds to experimental results, 545

while blue and black lines show simulation runs of the model’s differential equations with 546

iBioSim and python code respectively. Experimental values are used to fit rate numbers in 547

mathematical models so they produce similar continuous lines. B. Stochastic behaviour of the 548

system according to simulations. The blue line results of running the Gillespie algorithm with 549

iBioSim whereas the black line shows the python script behaviour. As expected (same algorithm 550

with equal parameters), the fluctuations are alike. C Fluorescence intensity values of each cell in 551

the population measures variability and expression noise. Experimental raw data extracted by 552

flow cytometry (without processing by the cytometer, see text for details) corresponds to the red 553

line. Black line results from counting expression values in the simulation with the python script, 554

while grey area represents the control (plasmid-free cells) measured experimentally. Note that 555

scales are different in simulation and experimental lines, standing for variability within arbitrary 556

units (a.u.). 557

24

 558

Figure 5: Characterisation of chassis mechanics. A. Tracking cell lineages in a experimental 559

setup. Starting from the division of a single cell (up) we follow the movement of its daughters 560

(middle and bottom) in order to define their movement behaviour until next division. B. Position 561

coordinates are recorded during the experiment (red line) and simulation (black line) to fit 562

parameters by comparing both outputs. Cell traces are overlapped for visualisation purposes and 563

axis rotated accordingly to show dimensions. C. Parameter estimation for cell movement. 564

Different features are included, sequentially, in order to get the final moving procedure for in-565

silico simulations. Starting from inaccurate movement (C.1) we add size variability due to 566

pressure (C.2), random angles after division (C.3), irregular motion changes (C.4) and slight cell 567

attraction to simulate viscous bodies (C.5). All simulations start from a single cell, and one 568

lineage is coloured to monitor coordinate positions. D. Synchrony of cell growth. The length of 569

25

each cell (y axis) is monitored over time (x axis) in both scenarios (experiment, up; simulation, 570

bottom). The initial cells grow at the same time until division point is reached, whereas the third 571

generation of cells grow asynchronously. 572

26

Figure 6: Spatial progress of the genetic device. A. Phase contrast image of population (left), 573

fluorescent picture (middle) and computational analysis (right). In the latter, the colour scheme 574

(right bar) represents the value of the red channel of every pixel from 0 to 255. However it is 575

transformed into a [0..450] scale in order to allow comparisons with previous fluorescence 576

measurements. B. On the left, we show a simulation of a colony starting from a single cell. 577

Upper-left arrow highlights cells with slower growth rate and RFP accumulation while bottom-578

right arrow points at a recently divided cell where both daughters share similar RFP 579

concentration. On the right, expression noise inheritance is indicated with an arrow. Furthermore, 580

RFP accumulation caused by slow growth can be observed by the black line separation: a single 581

cell started from each side. 582

