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Abstract 11 

As synthetic biology moves away from “trial and error" and embraces more formal processes, 12 

workflows have emerged that extend from the conceptualisation of a genetic device to its 13 

construction and measurement. We are particularly interested in this latter aspect (i.e., 14 

characterisation and measurement of synthetic genetic devices), as this is a workflow component 15 

that has received relatively little attention, but is crucial to the success of such constructions. We 16 

present an end-to-end use case for engineering a basic synthetic construct, which is supported by 17 

information standards and computational methods, and which focuses on characterisation and 18 

measurement. This workflow captures the main stages of genetic circuit design and description, 19 

and offers standardised tools for both population-based measurement and single-cell analysis.  20 

The main contributions of the current paper are (1) Consideration of specific vector features. 21 

Although circuit design has been successfully automated, important structural information is 22 

usually overlooked, as is the case of plasmid vectors. We advocate the use of the Standard 23 

European Vector Architecture to select the optimal carrier for a design and a thorough description, 24 

in order to unequivocally correlate digital definitions and molecular devices. We developed a 25 

digital version of this plasmid format with the Synthetic Biology Open Language and a software 26 
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tool that allows the user to embed genetic parts in vector cargoes. This enables the annotation of a 27 

mathematical model of the circuit’s kinetic reactions formatted with the Systems Biology Markup 28 

Language. From that point onwards the experimental results and their in silico counterparts 29 

proceed alongside, with constant feedback to preserve consistency between them; (2) A 30 

framework for the calibration of fluorescence-based measurements in synthetic biology. One of 31 

the hardest endeavours in standardisation, metrology, is addressed by reinterpreting the 32 

experimental output in light of simulation results, allowing us to turn arbitrary fluorescent units 33 

into relative measurements; (3) Integration of single-cell methods into a framework for 34 

multicellular simulation and measurement, allowing for standardised consideration of the 35 

interplay between the carrier chassis and culture conditions. 36 

Introduction 37 

Synthetic biology is concerned with the rational design and construction of biological 38 

information processing devices.1 The rigorous application of engineering principles and 39 

processes is fundamental to the success of this endeavour,2,3,4 and significant attention is now 40 

being paid to the development of standardised workflows,5,6 which describe sequences of 41 

biological and algorithmic processes required to obtain a desired outcome. Such workflows, 42 

therefore, specify a “ tool-chain" for synthetic biology, and the anticipated benefits of using them 43 

include modularity (allowing individual processes to be implemented in several different ways), 44 

robustness and scalability .  45 

One of the over-arching challenges for the field is the end-to-end automation of “biodesign",7,8 a 46 

process that is made up of two main stages:6 (1) the automatic selection and/or construction of 47 

biological components, and their assembly into a network that, in principle, performs information 48 

processing according to a high-level specification, and (2) the fine-tuning of the system 49 

components and/or architecture to obtain the desired performance. The first part of this process 50 

concerns the detailed specification of the components to be used 9,10 (or fabricated 11,12,13), 51 

the attendant data representation and storage issues,14 and the correct arrangement of 52 

components into a circuit that can implement a given (logical) function. A wealth of so-called 53 

“bio-CAD" tools now exist for this latter task,15,16 and these include SBROME,17,18 54 
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TinkerCell,19 and SynBioSS.20 In terms of “fine-tuning" (the second stage), recent 55 

developments use post-assembly modification of constructs based on observed network 56 

behaviour6 or the “evolution" of cell models,21 facilitating an iterative “homing in" approach 57 

towards circuit design.  58 

In this paper, we focus on the latter stages of the circuit engineering process (that is, the 59 

implementation stages that follow the initial development of a circuit design). The specific issues 60 

that we address with our workflow (and, therefore, the most significant contributions of the paper) 61 

are (1) the formalisation of circuit description, (2) the effect of plasmid vectors on circuit 62 

performance, and (3) the correlation of experimental observations with simulation results. We 63 

now briefly discuss each of these.  64 

The first stage in the post-design process is to formalise the descriptions and sequences of the 65 

parts of the system to be constructed. An early technical standard for the description of biological 66 

parts was the BioBrick,22,23, which is appropriate for the assembly of DNA segments. However, 67 

a key consideration (which is not handled particularly well by early standards) is the variety of 68 

plasmid vectors that are available for the delivery of biological parts. Importantly, the choice of 69 

plasmid vector can dramatically affect the performance of an engineered circuit; plasmid features 70 

such as replication origin, selection markers and expression system need to be carefully 71 

selected.24  72 

As computational tools to aid biodesign become more commonplace, we may begin to see more 73 

uniformity in terms of the types of circuit we see in the literature. However, once they are built, 74 

the process of measuring the behaviour of the designed system (in order to assess its fidelity to 75 

the desired output) may still vary substantially, since few existing workflows consider 76 

measurement, and teams are free to choose their own tools for this stage. Mathematical and 77 

computational modelling have become fundamental tools in synthetic biology, but they are only 78 

effective when combined with useful in vivo observations of synthetic systems. In this workflow, 79 

we describe a methodology for easily mapping simulation results onto laboratory measurements.  80 
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Results and discussion 81 

Our overall workflow is depicted in  1. We use a combined experimental in vitro / in silico 82 

approach, the two perspectives being tightly coupled at key points. The various stages are 83 

temporally ordered, from left to right, and we begin once a circuit design is established (that is, 84 

we do not consider issues of circuit design, and instead focus on implementation and 85 

measurement). The first stage in our workflow is Description, in which the design of the desired 86 

construct is captured by some representation(s); this then feeds into the Implementation stage, in 87 

which the construct is built (or modelled). Once the device has been implemented, we perform 88 

Population-level measurement in order to obtain aggregate performance metrics; this then feeds 89 

into a second Implementation phase, which facilitates closer (single-cell) observations. We now 90 

describe each workflow stage in more detail.  91 

Description 92 

In order to obtain reliable and robust circuit performance, it is important to have control over the 93 

vector, and to be able to compare its performance with the same plasmid in multiple scenarios. In 94 

order to achieve this, we use (for the in vivo component) the Standard European Vector 95 

Architecture (SEVA)25 , which is a standard for the physical assembly of vector plasmids and 96 

their nomenclature, as well as an online database of functional sequences and constructs available 97 

to the community. Paired with the SEVA description of the plasmid is a digital representation of 98 

the circuit for the in silico component of the workflow, for which we use the Synthetic Biology 99 

Open Language (SBOL).26 This provides a “standard exchange format" for synthetic biology 100 

designs (between research groups, and between different toolkits).  101 

Implementation 102 

In the first in vitro Implementation phase, the vector is assembled using standard molecular 103 

biology procedures, resulting in the synthesis of circuit modules, and their insertion into the 104 

carrier plasmid. In parallel with this process (i.e., during the in silico implementation phase), we 105 

construct a standardised digital description using SBOL, with one SBOL document per 106 
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construction (File S2). These documents are then combined (using a Java-based tool, Tool S1), 107 

resulting in a single SBOL file containing the sequences of interest in the correct cargo position 108 

according to the restriction enzyme sequences. This tool identifies those SBOL components in 109 

common across components (i.e., the restriction sites) and replaces all the information that exists 110 

in the cargo section from enzyme to enzyme with the cassette of interest. After this step, both the 111 

plasmid containing the circuit and its representation are fully standardised.  112 

Measurements. 113 

The use of mathematical modelling and computational analysis has became a fundamental part of 114 

synthetic biology, due to the information they provide concerning the mechanical behaviour of 115 

the systems. However, this potential can only be used effectively when combined with direct in 116 

vivo measurements.27 Advances in metrology and measuring techniques will obviously benefit 117 

the field of synthetic biology. Recently, attempts have been made to standardise these. Relative 118 

Promoter Units (RPU)28 have emerged as a measuring standard for promoter activity based on a 119 

comparison against a reference promoter. On a more abstract level, the Polymerase Operations 120 

Per Second (PoPs) measure9 is used as the signal carrier in transcriptional circuits. However, 121 

none of these methods are free of controversy.15  122 

In order to simulate the model constructed in the Implementation phase, we use the iBioSim29 123 

tool; conveniently, iBioSim exports reactions to a single Systems Biology Markup Language 124 

(SBML)30 file (File S3), which is a computational standard for the representation of biochemical 125 

networks. Importantly, this allows us to link up the SBML biochemical model of the circuit with 126 

the SBOL description of the DNA components of the circuit, using the methodology described 127 

in.31 In turn, this connects (via SBOL) with the SEVA description of the vector, giving seamless 128 

integration of information across different standards that are used for different levels of 129 

description. We also develop an application (Tool S2, based on libSBML32) to convert a given 130 

SBML file into Python coded scripts, used for for deterministic and stochastic simulations (File 131 

S4). Importantly, the SBML model details (i.e., rates) correspond not only to the circuit itself, but 132 

also its carrier vector. This significantly reduces output variability; by including details of the 133 

vector in the model characterisation (via SEVA/SBML) we take into consideration the possibility 134 
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that the carrier plasmid might later change, due to decisions taken at the implementation phase. 135 

Any such change will, in turn, inevitably (although, sometimes subtly) affect the observable 136 

behaviour of the model when implemented, so including details of the vector allows us to factor 137 

in fluctuations due to variable plasmid selection. 138 

The inclusion of an extra step within the workflow for multicellular analysis will also help to 139 

reduce variability caused by both the chassis and culture conditions. Indeed, both chassis (i.e., P. 140 

putida vs. E. coli) and culture conditions add their own effects to the circuit and its carrier. If the 141 

circuit has to be used under different scenarios we should quantify cellular behaviour. In the 142 

example provided there are behaviours that cannot be measured with the cytometer (i.e., noise 143 

inheritance or cell movement), and which require time-lapse microscopy in order to be quantified. 144 

The parameters corresponding to these behaviours are therefore fitted according to single-cell 145 

measurements. Again, this information adds value to a potential specification sheet that 146 

accompanies the in vivo system.  147 

We use spectophotometry to measure the fluorescent signal of the entire cell population; dividing 148 

this by the optical density (OD) over time yields the average fluorescence value per cell in the 149 

culture. Experimental values are used to fit kinetic rate parameters in the mathematical models so 150 

they produce similar profiles. Importantly, in the graphs that follow, the Y-axis refers to arbitrary 151 

units of fluorescence in experimental observations, and the number of molecules (of, for example, 152 

mCherry proteins) in the simulated observations. Matching the latter with the former gives us an 153 

important reference point concerning measurements, which allows us to interpret subsequent 154 

results.  155 

We perform stochastic analysis in order to characterise noise in the system, using the well 156 

established Gillespie algorithm.33 On the experimental front, we obtain data on noise using flow 157 

cytometry, which allows the user to check the fluorescence intensity value of (in principle) every 158 

single cell in the bacterial culture. Although the ready-to-use graphs produced by the cytometer 159 

(Figure S1) are used as standard in most laboratories, we prefer to use the raw values, before they 160 

are processed for presentation (normally in a “black box" fashion, which is opaque to the user). 161 

There are three main reasons for using raw cytometry data: (1) Cytometers "count" cells using 162 
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variable intervals of fluorescence at high values of a logarithmic scale that is not always constant, 163 

and which depends on a specific machine set-up.  This processing therefore introduces variability 164 

that is hidden from the user; (2) We need cell-specific values in order to make direct comparisons 165 

with simulated cells within our framework; (3) Raw data values are more amenable to importing 166 

and processing by various tool-chain components, whereas the automated extraction of specific 167 

values from graphs produced by cytometers introduces unnecessary complications and the 168 

possibility of misreading data. 169 

A simulated cytometry graph is obtained by running the Python version of the reactions (see 170 

Methods). This offers two potential benefits: firstly, it gives a computational method (via an 171 

SBML model) of discarding invalid values from the raw cytometry information (see the later 172 

Case study for an example). And, secondly, by overlapping both experimental and simulated 173 

plots we are able to correlate the arbitrary units (au) of the cytometer with those from the 174 

spectrophotometer. We propose this procedure as one approach towards unifying machine-based 175 

measurements in the laboratory (and give an example in the Case study, below).  176 

Implementation (2) 177 

The behaviour of our circuit will inevitably be affected by the specific attributes of the host cell. 178 

A thorough characterisation of a device should, therefore, include information about the 179 

performance of the chassis34 (which, in our case, is P.putida KT244035). Rather than simply 180 

providing “added value", this information is of vital importance in the case of multicellular 181 

applications,36,37 which are becoming increasingly important as cell-to-cell communications are 182 

increasingly well-understood and customised.38,39  183 

In order to study the behaviour of circuits in vivo, we use DiSCUS,40 which is an agent-based 184 

simulation package we have previously developed to study bacterial growth. Importantly, this 185 

platform considers physical forces between rod-shaped bacteria, and is applicable to a wide range 186 

of organisms. This tool uses the previously generated Python scripts for the intra-cellular genetic 187 

network that is implemented by our cells. The SBML model is therefore embedded into the 188 

cellular objects of the agent-based simulator. It is important to note that there is a standard, 189 
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currently under development, called the Multi-Cellular Data Standard (MultiCellDS, 190 

http://multicellds.org/), which aims to create a data standard for sharing multicellular 191 

experimental, simulation, and clinical data. Hopefully, when released, it will facilitate sharing of 192 

configuration parameters for a specific chassis performance.  193 

Concurrently, we prepare a 2-dimensional culture on an agarose pad,41 and let the cells grow on 194 

a monolayer in order to facilitate visualisation in the microscope.  195 

Single-cell measurements. 196 

We first calibrate the movement and the growth of the simulated cells according to experimental 197 

observations. We monitor the successive positions of a specific cell until division, and then 198 

follow the displacement of its daughters during their lifetime(s). We then match these results 199 

against the equivalent information obtained from the simulations, and adjust DiSCUS parameters 200 

to fit the experiments. In short (see Methods for more details), this information yields the most 201 

relevant features to prioritise in DiSCUS in order to reproduce the movement of our cells in vivo 202 

(in the Case study, below, we give specific examples).  203 

Spatial measurements. 204 

After characterising the dynamics of the chassis that host our circuit, we measure its performance 205 

in a spatial scenario. We measure the fluorescence intensity of our device in vivo, and obtain a 206 

pixel-based image analysis of the specific colour (in our example, red) captured by the 207 

microscope. In our analysis, we translate the scale bar of the analysis into values proportional to 208 

those used in the mathematical model (see Methods for details of this conversion). As a 209 

consequence, a simulation run with the system’s equations inside DiSCUS bodies, can be directly 210 

compared against experiments in regard to circuit function.  211 

Case study 212 

In this Section we present the results of a combined in vivo/in silico case study, in which we 213 

construct a simple device using our workflow. We start with a simple “always-on" source; that is, 214 
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a constitutive expression cassette. Although this device is relatively simple, compared to existing 215 

synthetic genetic constructs (such as the oscillator), we emphasise that the main focus of the 216 

current paper lies with the measurement of such devices. That is, the complexity of the device to 217 

be constructed is less significant for the purposes of this work, as we are concerned only with 218 

handling its output. Fluorescence measurements are taken in fundamentally the same way, 219 

regardless of the size or complexity of a synthetic device; what interests us here is how we might 220 

standardise such metrics, and relate them back to in silico studies in a useful and meaningful way. 221 

The two subcomponents of the circuit are (1) the pEM7 constitutive promoter, and (2) the red 222 

fluorescence reporter gene mCherry (see Methods for details - File S1). Once the initial design is 223 

in place we move to the Description stage, where the system pEM7-mCherry is digitally 224 

formalised and physically built. The SEVA vector pSEVA 231 (Figure 2B) is selected to carry 225 

the design. This contains a Kanamycin marker (labelled 2), origin of replication pBBR1 (labelled 226 

3), and the default cargo sector (labelled 1). As the cargo sector is a sequence of restriction sites, 227 

we need to select specific locations into which to paste our modules. As depicted in Figure 2A, 228 

we complete the promoter component by flanking the sequences of restriction sites PacI and 229 

AvrII, and using HindIII and SpeI for the reporter gene (this leaves empty space in between for 230 

future usage). Once the Description phase is complete, we move to Implementation.  231 

In Figure 3A we highlight the kinetic rates involved and the Ordinary Differential Equations 232 

(ODEs) that govern the continuous functioning of our always-on device. After cloning, Figure 4A 233 

shows the results for average fluorescence value per cell in the culture, along with deterministic 234 

simulation runs (based on the ODEs) for both the SBML model (implemented using iBioSim) 235 

and its corresponding Python script. We then move to the Population measurement phase.  236 

Figure 4B shows the fluctuations in molecular levels of the reactions of Figure 3A when running 237 

the Gillespie algorithm on the SBML model (iBioSim) and its corresponding Python file. As 238 

expected, the observed variability is the same in both, as the kinetic rates remain unchanged (i.e., 239 

the same as in the ODEs). The mean value is precisely situated on the steady state value of the 240 

deterministic simulation.  241 
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Raw data from the cytometer are plotted on Figure 4C, where the bimodal curve tells that 242 

approximately half of the cells display strong fluorescence, while the rest express none (or very 243 

little). The latter group corresponds to invalid values, and can be discarded, as indicated by the 244 

control data (the same strain without the plasmid) and the already processed graph (Figure S1). 245 

Moreover, further microscope tests show strong fluorescence in all the cells with a relatively 246 

narrow noise interval, which confirms the correct elimination of that non-expressing cell group. 247 

As described in the workflow description, this gives a computationally standard way of 248 

discarding invalid values from raw cytometry information. Moreover, it yields a method for 249 

correlating outputs from different pieces of laboratory equipment. We illustrate this in the graph 250 

of Figure 4C; we are able to correlate the arbitrary units (au) of the cytometer with those from the 251 

spectrophotometer: 1 au in the former, and � 1.2 au in the latter (see Methods for more 252 

information). After performing population-level measurements, we move to single-cell 253 

measurements.  254 

5A shows the result of experiments to track cell movements. 5B shows the positions of a cell 255 

(from Figure 5A) until division, and then the displacement of its daughters during their lifetime. 256 

5C shows the most relevant features we need to add in DiSCUS in order to reproduce the 257 

movement of our cells, starting from a very simple growth algorithm (which returns unrealistic 258 

patterns) (Figure 5C.1). Ultimately, we find that we need to include: (1) cell size variations (due 259 

to conditional growth), (2) variation in transversal angles after division, (3) randomised 260 

directions of movement, and (4) slight attraction between cells (in order to avoid the appearance 261 

of holes within the colony).  262 

Figure 5D compares the synchrony of growth within experimental and simulated cells, yielding 263 

suggestions as to how to uncouple growth events. These graphs show the length of each cell in 264 

the population over time (in the laboratory experiments) or iterations (in the simulation). Starting 265 

with just two cells (the same setup as in 5A) which grow and divide at the same time, we observe 266 

that, after the second division (eight cells in total), the length of the cells is no longer 267 

synchronised.  268 

We then consider the spatial scenario. Figure 6A shows the results of measuring the fluorescence 269 
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intensity of our pEM7-mCherry device inside the KT2440 strain, and a pixel-based image 270 

analysis of the red colour captured by the microscope. As stated above, the scale bar of the 271 

analysis is translated into values proportional to those in the mathematical model of 4b. A 272 

simulation run in DiSCUS, using the system’s equations (6B (left)) can be directly compared 273 

against experiments. We verify, for instance, that daughter cells share output levels as they 274 

directly copy their mother’s circuit at a given time (6B), and the fact that cells with slower growth 275 

tend to display a stronger light signal (due to the accumulation of fluorescence proteins).  276 

Discussion and conclusions 277 

Arriving at a fully standardised workflow that allow for robust and reproducible constructs will 278 

benefit synthetic biology. We describe procedures used in our lab to build and measure synthetic 279 

devices, explaining both computational and experimental investigations via a simple use case. 280 

Many recent efforts focus on a specific step depending on application interests. That is the case of 281 

automated circuit design,5,16,18 mathematical modelling,20 single-cell analysis,41 metrology,28 282 

data representation26 or post-construction modification.6 Indeed, there is significant room for 283 

improvement in each step along the workflow. However, instead of focussing on a single 284 

technique, we showed how to make use of several of them in an end-to-end workflow, 285 

concentrating on output measurements. There are recent reviews of other workflows,15 but these 286 

tend to focus on enumeration rather than application of techniques. Apart from the didactic 287 

contribution of this paper, we provide new materials needed for linking standards, such as the 288 

tool to merge SBOL documents for SEVA description, or the scripts to translate SBML into 289 

Python. In this way, we provide a useful initial workflow for newcomers to the field, as well as 290 

(more generally) a standard workflow for robust programmable biology.  291 

Materials and Methods 292 

Strains and plasmids. The strain used was Pseudomonas putida KT2440,35 the wild-type strain 293 

derived from mt-242 strain cured of the TOL plasmid pWW0. The carrier plasmid for our circuit 294 

was pSEVA 231 (2: Kanamycin resistance; 3: pBBR1 origin of replication; 1: default cargo) 295 
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selected from the SEVA database (http://seva.cnb.csic.es/). We then inserted the promoter pEM7 296 

with PacI/AvrII and the mCherry reporter with HindIII/SpeI. The final plasmid was renamed 297 

pSEVA 237R-pEM7 (already available in the database). Importantly, the sequences of interest 298 

(target circuit) were edited to remove any restriction site that the SEVA standard uses as 299 

structural elements.  300 

SBOL-SEVA description. The SEVA format is highly structured in unambiguous functional 301 

sectors, as shown in  2B. We described, using SBOL-2.0 (specifications on the website, 302 

http://sbolstandard.org/), the SEVA vector 231 (Figure S2). The previous existing description of 303 

this vector using GenBank format43 is then improved by adding missing features (like assembly 304 

scars) and establishing structural and functional links. Separately, we produced two more SBOL 305 

documents, one for each component of the circuit. Ultimately, we developed a Java based 306 

application that can be fed with the carrier plasmid and the cassettes that needs to be inserted, and 307 

outputs the new vector. The application searches in the carrier file for those restriction sites 308 

present in the cassettes (iteratively) and substitutes the sequence in between. The resulting SBOL 309 

document has all location parameters (i.e. bioStart) updated.  310 

Mathematical modelling and SBML-to-Python conversion. In the model of Figure 3A, P we 311 

show the promoter-reporter pair (18 copies, as estimated by previous observations for pBBR1 312 

origin of replication44), mRNA the messenger RNA and rfp the red fluorescent protein (both at 0 313 

molecules at the beginning of the simulation). Regarding the kinetic rates: k1 is the transcription 314 

rate (27/18 hour-1, k2 represents the translation rate (2.5 hour-1) and k3 (0.65 hour-1) and k4 (0.265 315 

hour-1) the degradation rates of the mRNA and the protein respectively. For such a small network, 316 

parameter assignment is a difficult task due to the restricted number of constraints. Efforts on 317 

assigning numbers to rates45 are of vital importance at this stage.  318 

We then used the software iBioSim (http://www.async.ece.utah.edu/iBioSim/) to write the model 319 

in SBML format and run the simulations with the Hierarchical Runge-Kutta method for ODEs 320 

solution, and the Gillespie algorithm for stochastic behaviour. The model was exported in a flat 321 

(iBioSim option) XML file and converted into Python scripts with the tool provided (Tool S2). 322 

Flow cytometry data was obtained from the FCS files without processing, and the simulated 323 
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graph was obtained by (1) sampling a stochastic run in time (equal time intervals), and (2) 324 

counting intensity values over a long enough (≈ 600 hours) period.  325 

By making the simulations match experimental plots in Figure 4A, we conclude that �400 326 

simulated molecules (s.m.) correspond to ≈400 arbitrary units in the spectrophotometer (a.u.s). 327 

As the computational measurements (s.m.) in the stochastic simulation are exactly the same, we 328 

used them to correlate the fluorescent units of the cytometer (a.u.c). As Figure 4C shows, ≈400 329 

s.m. = ≈330 a.u.c; so 1 a.u.s = 400/330 a.u.c. We assume that the sources of fluorescent signal are 330 

the same, as the cells are unaltered.  331 

Two-dimensional in-vivo setup. In order to prepare of the microscope sample, we used an 332 

agarose pad following the method described in.46 A slide glass with an attached gene frame (1.7 333 

X 2.8 cm, life technologies) was prepared. Then 500 ul of LB, including 2% agarose, which is 334 

melted in the medium, was added into the middle of the gene frame and assembled with another 335 

slide glass. After 30 min at room temperature, one of the slide glasses was carefully removed, 336 

maintaining an intact agarose pad. Then, the pad was cut out to 5 mm width within the gene 337 

frame using a razor blade. Two strips of the pad were left to grow bacterial cells.  338 

The strain carrying pSEVA 237R-pEM7 was precultured overnight in LB medium at 37�C and 339 

bacterial cultures were then diluted 100-fold in the same medium and grown to the exponential 340 

phase (OD600 = 0.2). 2.5 ul of the samples were then spotted on to the agarose pad and 341 

assembled with cover glasses (24 X 50 mm) for following microscopy analysis.  342 

The widefield fluorescent microscope was used to observe the sample (Leica DMI6000B, Leica 343 

Microsystems) with a digital CCD camera Orca-R2 (Hamamatsu). The cell growth was 344 

monitored for 75 min under the microscope at 37º C and images were captured every 3 min with 345 

a40.0x/0.75 NA dry objective or 63.0x/1.3 NA glycerol immersion objective (depending on the 346 

experiment) with a bandpass filter for mCherry (BP 560/40 and EM 645/75.) using the LAS AF v. 347 

2.6.0 software (Leica Microsystems). Images were analyzed with the MATLAB-based code 348 

Schnitzcells47 in order to track both the positions of the cells and their length while growing.  349 
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Two-dimensional in-silico setup. DiSCUS (http://code.google.com/p/discus/) is an agent-based 350 

software for bacterial growth that uses Pymunk (http://pymunk.readthedocs.org/en/latest/), a 2D 351 

physics library, to resolve collisions among cells. In the most basic test of Figure 5C.1 each cell 352 

is a body of 16x30 square lattice that grows lengthwise until division, when the cell is cut in half. 353 

Pressure-based growth is simulated by counting the cells that push a body of interest (threshold at 354 

4 cells) and slowing down the growth events (without stopping them). Random angle variations 355 

were introduced after division, whereby the daughter cells copy the angle of the mother and add a 356 

number in the interval (-25,25) degrees. Furthermore, angle variations were included at the 357 

normal growth events, although to a smaller extent (maximum variation of 5 degrees). The fact 358 

that the cells grow in vivo forming a circular group without holes was simulated using a slight 359 

gravity-like value that pushed the cells towards the middle of the population. This force can be 360 

eliminated when the population is about 20 cells big, at which point the circular shape is 361 

conserved without any other attraction. Further analysis on this force is needed.  362 

Regarding pixel intensity in the analysis of Figure 6A, we set the maximum value to be at the 363 

same level as the highest peak of the stochastic simulation of Figure 4B or the cytometry data of 364 

Figure 4C. Therefore we calculated the percentage rate (≈470*100 divided by maximum pixel 365 

value) to convert the intensity of every pixel into the scale shown by experiments. Again, we 366 

assume that the source of light is the same (KT2440) and variances are due to different machine 367 

measurements.  368 

Acknowledgement  369 

References  370 

(1) Church, G. M.; Elowitz, M. B.; Smolke, C. D.; Voigt, C. A.; Weiss, R. (2014) Realizing 371 

the potential of Synthetic Biology. Nature Reviews Molecular Cell Biology, 15, 289–294. 372 

(2) Andrianantoandro, E.; Basu, S.; Karig, D. K.; Weiss, R. (2006) Synthetic biology: new 373 

engineering rules for an emerging discipline. Molecular Systems Biology, 2:1. 374 

(3) Heinemann, M.; Panke, S. (2006). Synthetic biology - putting engineering into biology. 375 



15 

Bioinformatics, 22, 2790–9. 376 

(4) Kitney, R.; Freemont, P. (2012) Synthetic biology - the state of play. FEBS Letters, 586, 377 

2029–2036. 378 

(5) Beal, J.; Weiss, R.; Densmore, D.; Adler, A.; Appleton, E.; Babb, J.; Bhatia, S.; Davidsohn, 379 

N.; Haddock, T.; Loyall, J.; Schantz, R.; Vasilev, V.; Yaman, F. (2012) An end-to-end 380 

workflow for engineering of biological networks from high-level specifications. ACS 381 

Synthetic Biology, 1, 317–331. 382 

(6) Litcofsky, K. D.; Afeyan, R. B.; Krom, R. J.; Khalil, A. S.; Collins, J. J. (2012) Iterative 383 

plug-and-play methodology for constructing and modifying synthetic gene networks. 384 

Nature Methods, 9, 1077–1080. 385 

(7) Brophy, J. A.; Voigt, C. A. (2014) Principles of genetic circuit design. Nature Methods, 11, 386 

508–520. 387 

(8) Densmore, D. M.; Bhatia, S. (2014) Bio-design automation: software + biology + robots. 388 

Trends in Biotechnology, 32, 111–113. 389 

(9) Baker, D.; Church, G.; Collins, J.; Endy, D.; Jacobson, J.; Keasling, J.; Modrich, P.; 390 

Smolke, C.; Weiss, R. (2006) Engineering life: building a fab for biology. Scientific 391 

American, 294, 44–51. 392 

(10)  Varadarajan, P. A.; Del Vecchio, D. (2009) Design and characterization of a three-393 

terminal transcriptional device through polymerase per second. NanoBioscience, IEEE 394 

Transactions on, 8, 281–289. 395 

(11)  Nielsen, A. A.; Segall-Shapiro, T. H.; Voigt, C. A. (2013) Advances in genetic circuit 396 

design: novel biochemistries, deep part mining, and precision gene expression. Current 397 

Opinion in Chemical Biology, 17, 878–892. 398 

(12)  Khalil, A. S.; Lu, T. K.; Bashor, C. J.; Ramirez, C. L.; Pyenson, N. C.; Joung, J. K.; 399 

Collins, J. J. (2012) A synthetic biology framework for programming eukaryotic 400 

transcription functions. Cell, 150, 647–658. 401 

(13)  Villalobos, A.; Ness, J. E.; Gustafsson, C.; Minshull, J.; Govindarajan, S. (2006) Gene 402 

Designer: a synthetic biology tool for constructing artificial DNA segments. BMC 403 

Bioinformatics, 7, 285. 404 

(14)  Canton, B.; Labno, A.; Endy, D. (2008) Refinement and standardization of synthetic 405 



16 

biological parts and devices. Nature Biotechnology, 26, 787–793. 406 

(15)  MacDonald, J. T.; Barnes, C.; Kitney, R. I.; Freemont, P. S.; Stan, G.-B. V. (2011) 407 

Computational design approaches and tools for synthetic biology. Integrative Biology, 3, 408 

97–108. 409 

(16)  Marchisio, M. A.; Stelling, J. (2009) Computational design tools for synthetic biology. 410 

Current Opinion in Biotechnology, 20, 479–485. 411 

(17)  Huynh, L.; Tsoukalas, A.; Köppe, M.; Tagkopoulos, I. (2013) SBROME: a scalable 412 

optimization and module matching framework for automated biosystems design. ACS 413 

Synthetic Biology, 2, 263–273. 414 

(18)  Huynh, L.; Tagkopoulos, I. (2014) Optimal part and module selection for synthetic gene 415 

circuit design automation. ACS Synthetic Biology, 3, 556–564. 416 

(19)  Chandran, D.; Bergmann, F. T.; Sauro, H. M. and others. (2009) TinkerCell: modular 417 

CAD tool for synthetic biology. Journal of Biological Engineering, 3, 19. 418 

(20)  Hill, A. D.; Tomshine, J. R.; Weeding, E. M.; Sotiropoulos, V.; Kaznessis, Y. N. (2008) 419 

SynBioSS: the synthetic biology modeling suite. Bioinformatics, 24, 2551–2553. 420 

(21)  Cao, H.; Romero-Campero, F. J.; Heeb, S.; Cámara, M.; Krasnogor, N. (2010) Evolving 421 

cell models for systems and synthetic biology. Systems and Synthetic Biology, 4, 55–84. 422 

(22)  Knight, T. (2003) Idempotent vector design for standard assembly of biobricks; DTIC 423 

Document. 424 

(23)  Shetty, R. P.; Endy, D.; Knight Jr, T. F. (2008) Engineering BioBrick vectors from 425 

BioBrick parts. Journal of Biological Engineering, 2, 1–12. 426 

(24)  Preston, A. (2003) Choosing a cloning vector. E. coli Plasmid Vectors; Springer, 2003; 427 

pp 19–26. 428 

(25)  Martínez-García, E.; Aparicio, T.; Goñi-Moreno, A.; Fraile, S.; de Lorenzo, V. (2014) 429 

SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction 430 

of bacterial functionalities. Nucleic Acids Research, gku1114. 431 

(26)  Galdzicki, M.; Clancy, K. P.; Oberortner, E.; Pocock, M.; Quinn, J. Y.; Rodriguez, C. A.; 432 

Roehner, N.; Wilson, M. L.; Adam, L.; Anderson, J. C. and others (2014) The Synthetic 433 

Biology Open Language (SBOL) provides a community standard for communicating 434 

designs in synthetic biology. Nature Biotechnology, 32, 545–550. 435 



17 

(27)  Kelwick, R.; MacDonald, J. T.; Webb, A. J.; Freemont, P. (2014) Developments in the 436 

tools and methodologies of synthetic biology. Frontiers in Bioengineering and 437 

Biotechnology, 2. 438 

(28)  Kelly, J. R.; Rubin, A. J.; Davis, J. H.; Ajo-Franklin, C. M.; Cumbers, J.; Czar, M. J.; de 439 

Mora, K.; Glieberman, A. L.; Monie, D. D.; Endy, D. (2009) Measuring the activity of 440 

BioBrick promoters using an in vivo reference standard. Journal of Biological 441 

Engineering, 3, 4. 442 

(29)  Myers, C. J.; Barker, N.; Jones, K.; Kuwahara, H.; Madsen, C.; Nguyen, N.-P. D. (2009) 443 

iBioSim: a tool for the analysis and design of genetic circuits. Bioinformatics, 25, 2848–444 

2849. 445 

(30)  Hucka, M.; Finney, A.; Sauro, H. M.; Bolouri, H.; Doyle, J. C.; Kitano, H.; Arkin, A. P.; 446 

Bornstein, B. J.; Bray, D.; Cornish-Bowden, A. and others. (2003) The systems biology 447 

markup language (SBML): a medium for representation and exchange of biochemical 448 

network models. Bioinformatics, 19, 524–531. 449 

(31)  Roehner, N.; Myers, C. J. (2013) A methodology to annotate systems biology markup 450 

language models with the synthetic biology open language. ACS Synthetic Biology 3, 57–451 

66. 452 

(32)  Bornstein, B. J.; Keating, S. M.; Jouraku, A.; Hucka, M. (2008) LibSBML: an API 453 

library for SBML Bioinformatics, 24, 880–881. 454 

(33)  Gillespie, D. T. (1976) A general method for numerically simulating the stochastic time 455 

evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434. 456 

(34)  Danchin, A. (2012) Scaling up synthetic biology: do not forget the chassis. FEBS Letters 457 

586, 2129–2137. 458 

(35)  Nelson, K.; Weinel, C.; Paulsen, I.; Dodson, R.; Hilbert, H.; Martins dos Santos, V.; 459 

Fouts, D.; Gill, S.; Pop, M.; Holmes, M. and others. (2002) Complete genome sequence 460 

and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. 461 

Environmental Microbiology 4, 799–808. 462 

(36)  Amos, M. (2014) Population-based microbial computing: a third wave of synthetic 463 

biology?. International Journal of General Systems 43, 770–782. 464 

(37)  Macía, J.; Posas, F.; Solé, R. V. (2012) Distributed computation: the new wave of 465 



18 

synthetic biology devices. Trends in Biotechnology 30, 342–9. 466 

(38)  Tamsir, A.; Tabor, J. J.; Voigt, C. A. Robust multicellular computing using genetically 467 

encoded NOR gates and chemical 'wires'. Nature 469, 212–5. 468 

(39)  Goñi-Moreno, A.; Amos, M.; de la Cruz, F. (2013) Multicellular computing using 469 

conjugation for wiring. PLOS ONE 8, e65986. 470 

(40)  Goni-Moreno, A.; Amos, M. (2015) DiSCUS: A simulation platform for conjugation 471 

computing. Unconventional and Natural Computation (UCNC 2015), Auckland, New 472 

Zealand, August 31-September 4, 2015. 473 

(41)  Skinner,S.O.; Sepúlveda, L. A.; Xu, H.; Golding, I. (2013) Measuring mRNA copy 474 

number in individual Escherichia coli cells using single-molecule fluorescent in situ 475 

hybridization. Nature Protocols 8, 1100–1113. 476 

(42)  Worsey, M. J.; Williams, P. A. (1975) Metabolism of toluene and xylenes by 477 

Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid.. 478 

Journal of Bacteriology 124, 7–13. 479 

(43)  Benson, D. A.; Karsch-Mizrachi, I.; Lipman, D. J.; Ostell, J.; Rapp, B. A.; Wheeler, D. L. 480 

(2000) GenBank. Nucleic Acids Research 28, 15–18. 481 

(44)  Lee, T. S.; Krupa, R. A.; Zhang, F.; Hajimorad, M.; Holtz, W. J.; Prasad, N.; Lee, S. K.; 482 

Keasling, J. D. (2011) BglBrick vectors and datasheets: a synthetic biology platform for 483 

gene expression. Journal of Biological Engineering 5, 1–14. 484 

(45)  Ronen, M.; Rosenberg, R.; Shraiman, B. I.; Alon, U. (2002) Assigning numbers to the 485 

arrows: parameterizing a gene regulation network by using accurate expression kinetics. 486 

Proceedings of the National Academy of Sciences 99, 10555–10560. 487 

(46)  de Jong, I. G.; Beilharz, K.; Kuipers, O. P.; Veening, J.-W. (2001) Live cell imaging of 488 

Bacillus subtilis and Streptococcus pneumoniae using automated time-lapse microscopy. 489 

Journal of Visualized Experiments: JoVE, 53.. 490 

(47)  Young, J. W.; Locke, J. C.; Altinok, A.; Rosenfeld, N.; Bacarian, T.; Swain, P. S.; 491 

Mjolsness, E.; Elowitz, M. B. (2012) Measuring single-cell gene expression dynamics in 492 

bacteria using fluorescence time-lapse microscopy. Nature Protocols 7, 80–88.  493 

 494 



19 

Supporting Information Legends 495 

File S1. Sequences of promoter pEM7 and gene mCherry. 496 

File S2. SBOL files. For a) plasmid, b) promoter and c) reporter.  497 

Tool S1. Software tool to merge SBOL files and insert cassettes into a vector.  498 

File S3. SBML files.  499 

File S4. Annotated SBML file.  500 

Tool S2. Software tool to convert a SBML model into a Python script.  501 

File S5. Python scripts  502 

Figure S1. Cytometry results. Graph output by cytometer after processing.  503 

 504 
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Figure Legends 505 

Figure 1: Workflow for an end-to-end synthetic biology use case. The description that follows 506 

(and modify) the design of an idea is the starting point for the consequent experimental and 507 

computational methods. The circuit and its carrier vector are described using the SEVA (Standard 508 

European Vector Architecture) format for the in-vivo workflow and the SBOL (Synthetic 509 

Biology Open Language) standard for the parallel in-silico process. A first implementation round 510 

is then performed via synthesis and cloning methods in the wet-lab and via SBML (Systems 511 

Biology Markup Language) for the modelling. The resulting material is then used for different 512 

measurements. First, we make use of usual laboratory equipment for population-based 513 

experiments (spectophotometry and flow cytometry) to compare the output against simulation 514 

software (iBioSim and ad hoc python code). Another implementation round prepares the samples 515 

for single-cell measurements. On the computational side, the SBML model is exported to a 516 

python script ready to be used with our software for cell movement DiSCUS (Discrete 517 

Simulation of Conjugation Using Springs). Relevant efforts are being currently done to 518 

standardise these simulations via the MultiCellDS (Multi Cellular Data Standard) project. On the 519 

other side, the cells are grown on an agarose pad for 2-dimensional populations that allow us to 520 

match results.  521 
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Figure 2: SBOL description of circuit and SEVA components. A. Circuit design modification 522 

where the components are flanked by the selected restriction sites that specify their situation 523 

inside the SEVA vector. The constitutive promoter pEM7 is surrounded by PacI and AvrII 524 

whereas the reporter mCherry is bordered by HindIII and SpeI. An SBOL document per 525 

component is created. B. The selected SEVA plasmid to harbour our circuit is SEVA number 231 526 

(2: Kanamycin resistance; 3: pBBR1 origin of replication; 1: default cargo). All vector features 527 

are recorded in a single SBOL document, including cargo (multiple cloning site) components for 528 

a further assembling of circuit parts. C. Both in-vivo and in-silico protocols for building the final 529 

construct have the same basics: introduce, sequentially, circuit parts in the carrier vector. A 530 

software tool (Tool S1) allows to do so with SBOL documents.  531 
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 532 

Figure3: Mathematical modelling and its SBML format A. Kinetic reactions (up) and system’s 533 

differential equations (bottom). The circuit’s behaviour can be effectively simulated with just 534 

four kinetic constants: the constitutive promoter P facilitates reporter transcription with rate k1, 535 

resulting mRNA is translated with rate k2 leading to the formation of RFP (red fluorescent 536 

protein) and both elements are degradated with rates k3 and k4 respectively. ODEs (Ordinary 537 

Differential Equations) governing continuous dynamics are shown. B. Schema of the SBML 538 

model produced with the software iBioSim, a CAD (computer-aided design) package for systems 539 

biology. In the screenshot, blue elements represent substrates and red circles hide reaction rates. 540 

After setting the parameters, iBioSim allows the user to export the model to an XML file 541 

formatted following the SBML standard.  542 
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Figure 4: Population-based measurements in experimental and simulation setups. A. 543 

Deterministic functioning of the circuit, in terms of fluorescence intensity over time (during 14 544 

hours), averaging the value of the whole population. Red line corresponds to experimental results, 545 

while blue and black lines show simulation runs of the model’s differential equations with 546 

iBioSim and python code respectively. Experimental values are used to fit rate numbers in 547 

mathematical models so they produce similar continuous lines. B. Stochastic behaviour of the 548 

system according to simulations. The blue line results of running the Gillespie algorithm with 549 

iBioSim whereas the black line shows the python script behaviour. As expected (same algorithm 550 

with equal parameters), the fluctuations are alike. C Fluorescence intensity values of each cell in 551 

the population measures variability and expression noise. Experimental raw data extracted by 552 

flow cytometry (without processing by the cytometer, see text for details) corresponds to the red 553 

line. Black line results from counting expression values in the simulation with the python script, 554 

while grey area represents the control (plasmid-free cells) measured experimentally. Note that 555 

scales are different in simulation and experimental lines, standing for variability within arbitrary 556 

units (a.u.).  557 
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 558 

Figure 5: Characterisation of chassis mechanics. A. Tracking cell lineages in a experimental 559 

setup. Starting from the division of a single cell (up) we follow the movement of its daughters 560 

(middle and bottom) in order to define their movement behaviour until next division. B. Position 561 

coordinates are recorded during the experiment (red line) and simulation (black line) to fit 562 

parameters by comparing both outputs. Cell traces are overlapped for visualisation purposes and 563 

axis rotated accordingly to show dimensions. C. Parameter estimation for cell movement. 564 

Different features are included, sequentially, in order to get the final moving procedure for in-565 

silico simulations. Starting from inaccurate movement (C.1) we add size variability due to 566 

pressure (C.2), random angles after division (C.3), irregular motion changes (C.4) and slight cell 567 

attraction to simulate viscous bodies (C.5). All simulations start from a single cell, and one 568 

lineage is coloured to monitor coordinate positions. D. Synchrony of cell growth. The length of 569 
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each cell (y axis) is monitored over time (x axis) in both scenarios (experiment, up; simulation, 570 

bottom). The initial cells grow at the same time until division point is reached, whereas the third 571 

generation of cells grow asynchronously.  572 
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Figure 6: Spatial progress of the genetic device. A. Phase contrast image of population (left), 573 

fluorescent picture (middle) and computational analysis (right). In the latter, the colour scheme 574 

(right bar) represents the value of the red channel of every pixel from 0 to 255. However it is 575 

transformed into a [0..450] scale in order to allow comparisons with previous fluorescence 576 

measurements. B. On the left, we show a simulation of a colony starting from a single cell. 577 

Upper-left arrow highlights cells with slower growth rate and RFP accumulation while bottom-578 

right arrow points at a recently divided cell where both daughters share similar RFP 579 

concentration. On the right, expression noise inheritance is indicated with an arrow. Furthermore, 580 

RFP accumulation caused by slow growth can be observed by the black line separation: a single 581 

cell started from each side.  582 


