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Abstract 

There is considerable evidence to suggest that male fertility is decreasing 

worldwide, and it is thought that lifestyle and environmental factors could 

play a role. Lifestyle and environmental information was collected from men 

attending a fertility clinic by questionnaire and correlated with sperm 

parameters and the outcomes of assisted reproductive techniques (ART). 

Global and gene-specific DNA methylation in these men was measured by 

bisulphite pyrosequencing and compared with questionnaire results. Finally, 

an in vitro glycation assay was developed to investigate the effects of 

advanced glycation end products (AGEs) on sperm: AGE formation, 

oxidative DNA damage and reactive oxygen species (ROS) production were 

then measured using flow cytometry and immunocytochemical methods. 

BMI was the main determining factor for sperm quality and ART outcomes in 

this study: high BMI was associated with lower sperm concentration and 

lower fertilisation rates in in vitro cytoplasmic sperm injection (ICSI) patients. 

Surprisingly, having an unhealthy diet was positively associated with 

progressive sperm motility. DNA methylation analysis revealed that exposure 

to glues, adhesives and resins was associated with higher global DNA 

methylation. A major marker of low sperm concentration was promoter 

hypermethylation of the spermatogenesis-associated gene, DAZL. 

Furthermore, global DNA methylation and MEG3 methylation were higher in 

men with greater numbers of immotile sperm and those with low sperm 

motility, respectively. Overall, elevated DNA methylation was found to be the 

main feature of poor sperm quality, however prepared sperm showed higher 

methylation than whole sperm from neat semen. This large study indicates 

that DNA methylation is likely to be linked to sperm function, although the 

role of lifestyle-acquired epimutations in this may be minor. 

Treatment of sperm with glyoxal in vitro caused rapid formation of the major 

AGE-adduct, CML. This occurred alongside an increase in oxidative DNA 

damage but did not affect sperm hyaluronidase activity. This study shows 

that one of the mechanisms of AGE-related DNA damage is due to oxidative 

stress and this may present a risk to sperm DNA integrity in vivo. 
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Chapter 1 

Introduction 

1.1 The male gamete 

1.1.1 Sperm cell structure and function 

The sperm cell is the physiological carrier of the haploid paternal 

deoxyribonucleic acid (DNA) to the oocyte containing the haploid maternal 

DNA whereupon fertilisation occurs and the fusion of the parental genomes 

gives rise to a developing embryo. The sperm cell is a highly specialised 

motile cell, containing features that enable optimal transit from the male 

reproductive tract, through the female reproductive tract and to the oocyte 

with the paternal genome protected throughout.  

The sperm cell is 60-70 µm in length and made up of three major sections: 

the head, the midpiece and the tail (fig. 1.1) (Jones & Lopez, 2013). The 

sperm head contains the nucleus which carries the tightly compacted DNA 

and, unlike somatic cells, contains very little cytoplasm. At the anterior 

position of the head is the acrosome, a specialised secretory vesicle that 

contains digestive enzymes exocytosed upon sperm-egg binding during the 

acrosome reaction to break down the structural components of the zona 

pellucida surrounding the oocyte (Harper et al., 2008). The midpiece section 

contains large numbers of mitochondria which generate adenosine 

triphosphate (ATP) by oxidative phosphorylation to drive tail movement. The 

motile tail contains a central axoneme surrounded by two central singlet 

microtubules and nine doublet microtubules and flagellar movement is 

caused by the sliding of microtubule doublets past each other by ATP-driven 

dynein motor proteins  (Alberts, Johnson, Lewis, Raff, Roberts, & Walter, 

2002). The sperm centriole, located in the sperm neck at the anterior 

midpiece is the origin of the flagellar axoneme  
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1.1.2 Spermatogenesis 

The journey of a sperm cell begins in the testis, specifically within the 

nbvseminiferous tubules where sperm stem cells, known as spermatogonia, 

give rise to mature sperm. Spermatogonia are diploid (2n) and divide 

mitotically to maintain the pool of sperm stem cells. To generate mature 

sperm, a spermatogonium first divides meiotically to produce primary and 

then secondary haploid spermatocytes (n). Secondary spermatocytes then 

undergo a second meiotic division to produce four haploid cells, called 

spermatids. Spermatids finally differentiate into mature sperm by 

spermiogenesis, through which spermatids become elongated, the acrosome 

forms and the nucleus condenses (Zhang et al., 2014; Jones and Lopez, 

2013). These events take place adjacent to supporting Sertoli cells which 

release mature sperm into the lumen of the seminiferous tubules. The time 

frame for the development of mature sperm from spermatogonia is around 

Figure 1.1 Structure of the sperm cell 

Morphology of the sperm cell as visualised with a light microscope 

following staining (A) and a schematic diagram of cellular 

components (B).  

A B 
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74 days and as this is a continual process, at any given time, cells at all 

stages are present in the seminiferous epithelium. 

1.1.3 Sperm chromatin packaging 

During spermatogenesis, sperm DNA undergoes structural and chemical 

reorganisation in order to form a condensed nucleus in which the DNA is 

protected during transit to the oocyte, is transcriptionally inactive and which 

has a reduced volume to aid motility. Unlike in somatic cells in which DNA-

bound histones arrange into larger nucleosomes, the major DNA-binding 

protein in sperm is the protamine (Braun, 2001). During spermatogenesis, 

histone proteins are replaced firstly by intermediary transition proteins, then 

by protamines 1 and 2 which allows packaging of the DNA into a volume less 

than 5% of a somatic cell nucleus (Miller et al., 2010)+. The importance of 

this process is illustrated by the fact that improper histone replacement 

causes infertility in mice has also been linked to infertility in men (Cho et al., 

2001; Zhang et al., 2006). Other post-translational modifications of histones 

occur to achieve a compact chromatin state including controlled region-

specific acetylation, phosphorylation and methylation (Govin et al., 2007; 

Meyer-Ficca et al., 2005; Godmann et al., 2007).  

1.1.4 Capacitation, the acrosome reaction and fertilisation 

After ejaculation and following deposition in the female reproductive tract 

sperm undergo a number of physiological changes to acquire their fertilising 

capacity. Capacitation is the process in which the sperm cell becomes 

hypermotile to enable rapid directional swimming towards the oocyte and 

undergoes membrane changes that prime the cell for zona pellucida binding 

and the acrosome reaction. This occurs in the female genital tract. 
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The molecular changes to the cell include increased membrane fluidity which 

is achieved by modifying the cholesterol content of the membrane and 

increased permeability to Ca2+ ions; these changes are necessary for full 

capacitation and to prepare sperm for Ca2+signalling which leads to 

acrosomal exocytosis (Morales et al., 2012; O’Toole et al., 2000). Reactive 

oxygen species (ROS) production, protein tyrosine phosphorylation and actin 

polymerisation are other important processes in capacitation (review in 

Figure 1.2 Fertilisation 

Membrane-bound hyaluronidase degrades HA in the ECM following initial attachment 

to the cumulus layer (1 and 2). Soluble hyaluronidase is released during the acrosome 

reaction (3) to degrade HA at the ZP (4), allowing fertilisation (4). 

Adapted from (Salustri & Fulop, 1998) 
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Aitken and Nixon, 2013; Flesch et al., 2001; Lopez-Gonzalez et al., 2014; 

Itach et al., 2012). These changes are essential as only capacitated sperm 

can fertilise an oocyte (Quill et al., 2003). 

Prior to reaching the ZP, sperm must penetrate the surrounding cumulus 

layer. This layer contains a large number of loosely packed cumulus cells 

embedded in a dense extracellular matrix (ECM) of hyaluronic acid (HA) 

oligosaccharide chains. The sperm hyaluronidase Sperm Adhesion Molecule 

1 (SPAM1/PH-20) is a membrane glycosyl phosphatidylinositol-(GPI)-linked 

enzyme that is responsible for the initial degradation of HA in the cumulus 

ECM at a neutral pH (Lin et al., 1994) (fig 2.2). Sperm hypermotility, 

activated during capacitation, facilitates forceful burrowing through the 

cumulus layer where sperm then can bind to the ZP. The ZP is an ECM 

made up of three glycoproteins: ZP1, ZP2 and ZP3, to which as yet 

unclassified receptors on the sperm membrane bind (reviewed in Chiu et al., 

2014a). This binding triggers the acrosome reaction in sperm, in which the 

membrane of the acrosomal vesicle fuses with the sperm plasma membrane 

and its contents is exocytosed. The enzymes released allow degradation of 

the ZP and include a soluble form of SPAM1 with acidic pH, which allows 

further cleavage of HA in the ZP (Reese et al., 2010) (fig. 2.2).  

The paternal DNA is deposited into the ovum upon fusion of the sperm and 

ovum plasma membranes whereupon the paternal DNA is decondensed and 

the paternal and maternal pronuclei merge and the zygote is formed. 

1.1.5 Reactive oxygen species and oxidative stress 

Reactive oxygen species (ROS) such as the superoxide anion (.O2
-), 

hydroxyl radicals (.OH) and hydrogen peroxide (H2O2) are produced during 

normal aerobic metabolism in all cells including sperm. ROS are essential for 

normal sperm function, including for capacitation, hyperactive motility, and 

sperm maturation (de Lamirande and Gagnon, 1993; Gil-Guzman et al., 

2001). Despite the beneficial actions of ROS, their levels must be controlled 

to prevent toxicity, particularly against free radicals which are highly reactive 
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due to their unpaired electrons which allow them to oxidise lipids, amino 

acids and carbohydrates. Sperm are protected from the effects of these free 

radicals by the action of radical scavenging enzymes present in sperm and in 

seminal plasma. These enzymes include superoxide dismutase, catalase 

and glutathione peroxidase, which provide antioxidant protection to the 

sperm (Zini et al., 2002; Giannattasio et al., 2002; Lewis et al., 1995; 

Noblanc et al., 2011). However, when ROS levels exceed the cell’s 

antioxidant capacity, oxidative stress occurs, to which sperm are particular 

susceptible due to the high levels of polyunsaturated fatty acids in the 

plasma membrane (reviewed in Aitken, Jones and Robertson, 2012). One of 

the most damaging consequences of oxidative stress is that is causes DNA 

damage, and this has been identified as a characteristic of sperm from 

infertile men (Mahfouz et al., 2010; Agarwal et al., 2006). Furthermore, DNA 

damage in the male germ line has been linked to adverse outcomes of 

assisted reproductive techniques (ART), particularly in patients undergoing in 

vitro cytoplasmic injection (ICSI) (Simon et al., 2013; Loft et al., 2003; Zini et 

al., 2011), therefore this is a critical risk factor for disrupted development. 

Animal studies have shown that exposure to compounds that induce 

oxidative stress can cause miscarriage or morbidity in the offspring.  

1.2 Male factor infertility 

The global prevalence of infertility is reported to be approximately 15% with 

males accounting for 20-30% of infertile cases (European Society of Human 

Reproduction and Embryology, 2014). Causative factors of male factor 

infertility (MFI) impair sperm function and integrity, affecting sperm motility, 

morphology and vitality (Guzick et al., 2001) and a number of studies have 

reported decreasing male fertility in recent years (Carlsen et al., 1992; Auger 

et al., 1995; Rolland et al., 2013; Romero-Otero et al., 2015; Centola et al., 

2016). Male factor infertility can be acquired, as in testicular injury, sexually 

transmitted disease and cancer (Rowe, 2000); or it can arise from congenital 

problems, including endocrinopathies such as androgen insensitivity 
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syndrome (Pitteloud and Dwyer, 2014), developmental disorders such as 

cryptorchidism (Lee et al., 1997), and chromosomal abnormalities such as 

Klinefelter syndrome or Y chromosome microdelections (Stouffs et al., 2014). 

Sperm production and quality can also be influenced by aspects of lifestyle, 

such as diet and exercise, and environmental exposures to toxicants, or 

other xenobiotics (reviewed by Sharpe, 2010). As the most common type of 

male infertility is idiopathic – exhibiting one or more abnormal semen 

parameters with no identifiable cause (Baker, 1994) – there is increasing 

interest in the impact of these latter factors, and the epigenetic mechanisms 

underlying them. The changes to semen parameters associated with MFI 

include reduced concentration (oligozoospermia) or a complete absence of 

sperm (azoospermia), poor sperm motility (asthenozoospermia), abnormal 

sperm morphology, or significantly reduced seminal volume. The World 

Health Organisation (WHO) has classified threshold values of semen 

parameters for male infertility and these are as follows: sperm concentration, 

15x106/ml; total motility, 40%; progressive motility, <32%, total sperm count, 

39x106; morphology, 4% normal forms; and semen volume, <1.5 ml (Cooper 

et al., 2010). 

1.2.1 Assisted reproductive technologies 

As the levels of infertility have risen, so has the use of ART due to the 

increased availability of treatment in most countries (Inhorn and Patrizio, 

2015). The number of children born through ART now stands at over 5 

million (European Society of Human Reproduction and Embryology, 2014), 

which highlights the importance of this as a standardised therapy for 

infertility. Upon consultation at a fertility clinic, semen parameters are 

analysed to determine if the patient has MFI according to the criteria 

described above. In cases where these parameters are normal, in vitro 

fertilisation (IVF) is usually carried out, in which sperm and egg are incubated 

together and sperm must bind and penetrate the ZP and fuse with the egg 

plasma membrane as described earlier. IVF treatment is mostly used for 

female factor infertility. For cases with MFI, the primary treatment is ICSI 
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whereupon a single sperm is selected by an observer and injected directly 

into the oocyte. In this scenario, sperm bypass the normal cellular and 

molecular barriers to fertilisation and the paternal DNA is delivered directly. 

ICSI is in fact the primary technology used, comprising approximately two 

thirds of all fertility treatments worldwide (European Society of Human 

Reproduction and Embryology, 2014). 

1.2.2 Lifestyle and environmental factors associated with MFI 

The increase in prevalence of MFI is thought to be linked to several 

environmental and lifestyle factors which are affecting sperm parameters. A 

major concern is that many of the damaging consequences of these lifestyle 

factors may manifest at the molecular and DNA level, in which case they will 

not be identified by standard semen analysis upon consultation for ART.  

1.2.2.1 Obesity 

Overweight and obesity are the most important predictors of diabetes, and 

the current obesity epidemic is due to a combination of genetic, epigenetic 

and environmental factors including diet and sedentary lifestyles (Hu et al., 

2001; Chen et al., 2012; Locke et al., 2015). The rapid rise in obesity has 

occurred alongside the reported decreases in semen quality and many 

studies have investigated the effects of this on MFI. A 2010 meta-analysis by 

McDonald et al. involving 31 studies found no evidence of an association 

between body mass index (BMI) and sperm concentration or total sperm 

count, although there were differences in testosterone and sex-hormone 

binding globulin. However, more recent studies have suggested that there is 

a role for obesity in reducing sperm quality (Sermondade et al., 2013; 

Eisenberg et al., 2014). Furthermore, obesity is associated with a longer time 

to pregnancy in the general population (Ramlau-Hansen et al., 2007a). The 

deregulation of male reproductive hormones is one of the main hypotheses 

behind reproductive dysfunction in obese men. Al-Ali et al. (2014) found that 

BMI was not related to sperm quality, based on concentration, motility and 

morphology, but they did find significant changes in male hormone levels, 
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luteinising hormone (LH) and testosterone. In males, oestrogens exert a 

negative feedback effect on the hypothalamic-pituitary-gonadal (HPG) 

system causing a decrease in the production of gonadotrophins (LH and 

follicle stimulating hormone (FSH)) and there is a strong hypothesis that 

obesity deregulates this HPG axis. Furthermore, although there may not be 

changes in standard semen parameters, numerous studies have shown 

increases in DNA damage in the sperm of obese men attending fertility 

clinics (Chavarro et al., 2010; Dupont et al., 2013), although a recent study of 

1503 men from the general population found no association between sperm 

DNA damage and BMI (Bandel et al., 2015). Nevertheless, this DNA damage 

is thought to be driven by obesity-induced ROS production leading to 

oxidative stress (Tunc et al., 2011) and as ROS levels are already a marker 

for infertility, the effects of obesity on sperm may be more pronounced in 

men with existing fertility problems.  

1.2.2.2 Smoking 

Tobacco smoke is known to be hugely detrimental to many aspects of health 

and yet smoking prevalence remains staggeringly high with no clear sign of 

reducing (Ng, et al., 2014). Many publications have reported adverse effects 

of smoking on sperm parameters (Künzle et al., 2003; Zhang et al., 2013; 

Hamad et al., 2014), which is thought to occur in a dose-dependent manner 

(Ramlau-Hansen et al., 2007b) and to improve upon smoking cessation 

(Santos et al., 2011). Similarly to the effects of obesity, smoking has been 

shown to be associated with altered reproductive hormone levels through 

altering the HPG axis (Jeng et al., 2014; Ramlau-Hansen et al., 2007b), 

which could be a source of deregulated spermatogenesis leading to poorer 

sperm quality. However, hormone levels were not found to be different in the 

sperm of fertile smokers (Pasqualotto et al., 2006). Alternatively, or in 

conjunction with this effect, the generation of oxidative stress through 

smoking could be a source of damage to sperm (Saleh et al., 2002). As 

smoking has been linked to abnormal histone to protamine transition (Hamad 

et al., 2014), this disrupted chromatin state could lead to a vulnerability of 

sperm DNA to oxidative stress. Furthermore, smoking has been found to be 
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associated with aberrant sperm parameters in fertile men, highlighting the 

wide-ranging effect of this habit (Vine, 1996). Higher levels of sperm DNA 

damage could explain the poorer pregnancy outcomes that have been 

associated with paternal smoking (Joesbury et al., 1998; Venners, 2004), 

however the evidence for this is limited as smokers are excluded from having 

ART treatment and therefore data on this is not available. 

1.2.2.3 Environmental toxicants 

The damaging health implications of environmental toxicants are well 

documented and there is increasing concern over whether chemical 

exposure in industrialised countries, which is becoming more common, is 

affecting male reproductive function. Cross-sectional studies on chemical 

exposure have been the main source of information on the impacts on 

sperm. For example, Rubes et al. (2005) found an increase in sperm DNA 

fragmentation in men with higher exposure to air pollution, and importantly 

this occurred without a change in standard semen parameters. Furthermore, 

a study of men exposed to traffic pollutants through working at motorway 

tollgates found a decrease in total motility and forward progression in their 

sperm (De Rosa et al., 2003). As air quality standards in urban environments 

remain low (World Health Organisation, 2014), there is cause for concern for 

male reproductive health. 

Endocrine disrupting chemicals (EDCs) are chemicals which disrupt normal 

endocrine function by mimicking hormones or antagonising receptors, and 

have been implicated in abnormal reproductive development (Chevalier et 

al., 2015). Studies where physiological concentrations of EDCs have been 

measured in study participants provide more conclusive results than 

correlative studies. Phthalates are one such example of EDC which are used 

in the manufacturing of numerous everyday products such as food 

packaging, shampoos and soaps, which confer flexible binding properties 

and have been highlighted as a concern for health.  Phthalate concentration 

in urine has been associated with lower sperm concentration and sperm 

motility (Duty et al., 2003; Jurewicz et al., 2013), and a more thorough study 
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which investigated urinary phthalate levels on repeated occasions found 

higher levels of DNA damage and apoptosis in sperm with increasing 

exposure (Wang et al., 2015). Bisphenol A (BPA) is another high volume 

EDC used in plastics manufacturing and has been found to be elevated in 

the urine of exposed factory workers and this correlated with decreased 

semen quality and increased DNA damage (Meeker et al., 2010). Pesticides 

are also considered to be a widespread source of EDCs. A recent study 

measured pesticide levels in the urine of men attending a fertility clinic to 

which sperm concentration and motility were negatively correlated 

(Melgarejo et al., 2015), and in accordance with this the consumption of 

pesticide residues on fruit and vegetables has also been negatively 

correlated with sperm count and the number of morphologically normal forms 

(Chiu et al., 2015). Considering that EDCs have also been linked to birth 

defects and aberrant long term health and reproductive outcomes in children 

of exposed parents (Kristensen et al., 1997; Wohlfahrt-Veje et al., 2011; 

Anderson et al., 2006), it is important to determine whether the use of ART 

increases the likelihood of the transmission of these developmental faults. 

1.2.2.4 Diet 

Three studies arising from the Rochester Young Men’s Study found that 

certain dietary factors affect sperm quality. Firstly, dairy food intake was 

negatively correlated with sperm morphology (Afeiche et al., 2013). 

Secondly, men with a “prudent” dietary pattern consisting of high intake of 

legumes, fish, chicken, fruit, wholegrains and vegetables had higher % 

progressively motile sperm (Gaskins et al., 2012). Finally, consumption of 

sugar-sweetened beverages (SSB) was negatively correlated with % 

progressively motile sperm (Chiu et al., 2014b). Critically, the reference 

population used for these studies was young healthy men (aged 18-22 

years). This is important as it shows that dietary factors have an impact on 

men from the general population, in contrast to studies which recruit their 

study participants from fertility clinics. 
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1.2.2.5 Physical activity and sedentarism 

The number of hours of physical activity that men participated in per week 

was directly correlated with sperm concentration and sperm count, while 

sedentary behaviour measured as hours of TV watched per week was 

negatively correlated with these outcomes (Gaskins et al., 2015). Using taxi-

drivers as a proxy for sedentary behaviour due to the long number of hours 

spent driving showed that these men had a lower % morphologically normal 

sperm forms, although exposure to pollutants could have been a 

confounding factor, as a result of the effects described above. Conversely, 

there is evidence that high strenuous physical activity can be damaging for 

reproductive function such as in the case of professional cyclists 

(Gebreegziabher et al., 2004), and as was shown in an intervention study in 

which men who carried out intense treadmill running had decreased male 

reproductive hormone levels and lower sperm quality compared to a 

moderate exercise group (Safarinejad et al., 2009). However, considering the 

overall widespread health benefits of exercise, it is important to highlight that 

in general being physically active is more beneficial for semen quality and 

reproductive function than being physically inactive (Vaamonde et al., 2012).  

1.3 Sperm epigenetics 

Gene expression through the integration of transcription factors and 

modulators result in the synthesis of the messenger (m) RNA transcript from 

the DNA template. mRNA is then translated to the peptide sequence forming 

a vast variety of proteins for cellular structure and function. This canonical 

regulative control of gene transcription has been challenged by the emerging 

field of epigenomics.   
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Epigenetics refers to the heritable changes in gene function by mechanisms 

other than changes in the underlying DNA sequence (Russo et al., 1996). In 

contrast to traditional genetics in which mutation causes direct modification 

to the genetic sequence, epigenetics involves a complex set of regulatory 

machinery that function from the DNA to chromatin levels to influence gene 

expression, without affecting the fundamental nucleotide sequence itself 

(Jaenisch and Bird, 2003). Epigenetic control can therefore modify a 

phenotypic outcome without affecting the genotype. This process is the 

fundamental driving force of variation in cell type and function in cells during 

differentiation from zygote to multicellular organism. Historically, this was 

illustrated in Conrad Waddington’s discovery of cell-fate determination by 

epigenetics (Waddington, 1957), which revealed the importance of 

Figure 1.3 DNA methylation 

The principle epigenetic modification of DNA in the mammalian genome is 

methylation of cytosine nucleotides. Methylation occurs mainly on the 5th 

carbon of the cytosine base, forming 5-methylcytosine (5-mC). DNA 

methylation is catalyzed by a family of enzymes called DNA 

methyltransferases and include DNMT1, DNMT3a and DNMT3b (box). 

Methylation mainly occurs around CpG clusters (CpG islands) at gene 

promoter regions and is associated with gene silencing. 

Adapted from Nevin and Carroll, 2015 
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epigenetics in development. The molecular systems known to initiate and 

maintain the epigenome are DNA methylation and chromatin modifications, 

including histone methylation and acetylation (Murgatroyd and Spengler, 

2011). There is a critical cross-talk between this epigenetic machinery which 

ensures correct gene expression and silencing in response to environmental 

cues (Mutskov et al., 2002; Curradi et al., 2002). 

1.3.1 DNA Methylation  

DNA methylation is the most well-studied epigenetic mechanism in mammals 

(Jones and Takai, 2001). It is a major regulator of gene expression and cell 

differentiation (Li, Bestor and Jaenisch, 1992), and therefore the capacity for 

DNA methylation marks to be stably maintained (i.e. somatically inherited) 

through cell division is the fundamental principle behind differentiation and 

the processes in which cells are able to interact with the environment.  DNA 

methylation occurs on the 5’ position of cytosine bases on eukaryotic DNA. 

Cytosines targeted for methylation usually occur in CpG dinucleotides, where 

a cytosine precedes a guanine nucleotide, although cytosine methylation can 

also occur at CpA, CpT and CpC sites (Maunakea et al., 2010). CpG sites 

are mostly located close together in clusters known as CpG islands (CGIs), 

and are commonly found in the 5’ promoter region of genes or in gene 

bodies (Lander, Linton and Birren et al., 2001; Maunakea et al., 2010).   

The process of DNA methylation is driven by the action of the DNA 

methyltransferases (DNMTs) DNMT1, DNMT3a and DNMT3b which convert 

cytosine to 5-methylcytosine (5mC) using the universal methyl donor S-

adenosylmethionine (SAM) (Okano et al., 1999) (fig. 1.3 box). DNMT1 is the 

“maintenance” methyltransferase as its primary role is to copy methylation 

patterns onto newly replicated DNA, while DNMT3a and DNMT3b are 

responsible for de novo methylation of DNA (Kaneda et al., 2004a). These 

enzymes are essential for viability as gene knockouts experiments in mice 

have shown embryonic and postnatal lethality (Li, Bestor and Jaenisch, 

1992; Okano et al., 1999). 
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CpG methylation at promoters or regulatory regions is typically associated 

with gene repression while lack of methylation promotes transcriptional 

activity (Siegfried et al., 1999; Polansky et al., 2008). Transcriptional 

repression is caused either through the direct blocking of transcription factor 

binding to DNA, or through the attraction of methyl-CpG-binding protein 

which recognise methylated sites and subsequently recruit co-repressors 

(Watt and Molloy, 1988; Nan et al., 1998; Boyes and Bird, 1991) (fig. 1.3). 

DNA methylation has a number of crucial roles in embryonic development 

and differentiation (Okano et al., 1999), X-chromosome inactivation (Kaneda 

et al., 2004b), suppression of transposable element activity (Nagamori et al., 

2015) and genomic imprinting (Kaneda et al., 2004b). 

1.3.2 Epigenetic reprogramming and imprinted genes  

Epigenetic processes in the gametes of mammals are different to those in 

somatic cells. During development, DNA undergoes two rounds of epigenetic 

reprogramming (fig. 1.4). The first is shortly after fertilisation, where the 

paternal DNA is stripped of the parental methylation signature. This global 

demethylation occurs in sperm and oocyte DNA (Guo et al., 2014; Oswald et 

al., 2000; Santos and Dean, 2004) and permits the totipotent zygote to 

initiate new gene transcription (Hacket and Surani, 2013). 
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Figure 1.4 Epigenetic reprogramming 

The paternal DNA (green) is rapidly demethylated following fertilisation while maternal DNA methylation (red) is 

maintained until the 2-cell stage when it is passively removed. Primordial germ cells undergo rapid global demethylation 

after their migration into the gonadal ridge to remove parental imprints and allow establishment of gender-specific imprints.  

Adapted from Nevin and Carroll, 2015 
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These processes allow the developing zygote to initiate de novo methylation 

in cells of the inner cell mass (Santos et al., 2002) to regulate the expression 

of genes important in the differentiation pathways leading to the 

specialisation of cell types.  

Despite this global demethylation, some genes are excluded and retain the 

methylation marks of the parental genome. These genes are known as 

imprinted genes, and are critical for embryonic development during the early 

rounds of transcription in the embryo. Imprinted genes show mono-allelic 

parent-of-origin expression: they are only expressed from one parental allele 

(Court et al., 2014). The importance of this imprinting was illustrated in early 

pro-nuclei transfer experiments carried out by McGrath and Solter (1984). 

They found that when two haploid male pronuclei or two haploid female 

pronuclei were combined, although each genome was contributing half of the 

genetic information, there were sex-specific epigenetic marks corresponding 

to paternal or maternal DNA that were critical for embryonic development. 

Imprinted genes escape demethylation so that correct gene expression can 

be initiated in the developing embryo, hence why their mutation results in 

severe developmental imprinting disorders (Reik and Walter, 2001; Soejima 

and Higashimoto, 2013).  

These imprints continue to persist in somatic cells after fertilisation, however 

developing germ cells must undergo a second round of reprogramming to 

allow the establishment of new imprinting regions (Reik and Walter, 2001; 

Kaneda et al., 2004b). PGCs have already acquired regional DNA 

methylation on their migration to the gonadal ridge (precursor to the gonads), 

similar to somatic cells (Maatouk et al., 2006), and demethylation therefore 

allows establishment of mature germ cell gender-specific genetic imprints 

(Hajkova et al., 2002). The establishment of male imprints are complete in 

prospermatogonia by the newborn stage and global methylation of repeat 

sequences are highly methylated by the fetal prospermatogonia stage 

(Sasaki and Matsui, 2008). 
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Imprinted genes are controlled by differentially methylated regions (DMRs) at 

CpG sites or CpG islands within or close to the gene itself (Neumann et al., 

1995). If a gene is paternally imprinted, its DMR is heavily methylated in 

sperm while unmethylated in oocytes, whilst a maternally imprinted gene is 

unmethylated in sperm but methylated in oocytes. Maternally and paternally 

imprinted genes usually exist in clusters where their expression is controlled 

by DNA methylation at cis-regulatory sites known as imprinting control 

regions (ICR). The methylation state of the ICR determines the methylation 

status of the genes in the cluster either over short- or long-range (Lin et al., 

2003).  

Figure 1.5 Methylation at the IGF2-H19 imprinting control region (ICR) 

Imprinted genes exhibit parent of origin gene expression. This is achieved 

through methylation-dependent gene silencing at imprinting control regions 

(ICR). On the maternal allele at the IGF2-H19 locus the ICR is not 

methylated, allowing CTCF binding which silences IGF2 gene transcription 

through downstream enhancer activity. Maternally unmethylated H19 

promoter (white lollipops) allows H19 transcription. On the paternal allele, 

CpG sites are methylated (black lollipops) on the ICR and in the H19 

promoter region. This prevents CTCF binding, which allows enhancers to 

activate IGF2 while silencing H19. 

Adapted from Nevin and Carroll 2015 
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One of the best characterised ICRs is at chromosome 11q15 which contains 

the insulin-like growth factor 2 (IGF2) and the downstream non-coding RNA 

gene, H19, which are expressed from the paternal and maternal 

chromosomes, respectively. Their expression is controlled by an enhancer 

downstream of H19, which is in turn controlled by methylation at an ICR 

located between the two genes (Hark et al., 2000) (fig. 1.5). The ICR 

contains a number of binding sites for the transcriptional repressor, zinc 

finger CCCTC-binding factor (CTCF), which in the absence of methylation 

can bind to the ICR and activate the downstream enhancer. This in turn 

activates H19 transcription while IGF2 is silenced. When the ICR is 

methylated, as it is in sperm, CTCF cannot bind and the downstream 

enhancers are free to activate IGF2 expression while H19 becomes silenced 

(Kerjean et al., 2000). Beckwith-Weidemann syndrome is an imprinting 

disorder which arises from the loss of imprinting at the IGF2-H19 locus. 

When uniparental disomy occurs, both alleles are inherited from one parent. 

In the case of Beckwith-Weidemann syndrome, both alleles come from the 

father and none from the mother (Henry et al., 1991). This results in 

hyperactivation of IGF2 as the ICR is methylated on both alleles. As IGF2 is 

a growth promoter, the disease is characterised by serious foetal and 

neonatal overgrowth as well as a predisposition to tumour growth (Morison 

and Reeve, 1998).  

Another example of an important ICR is located at chromosome 14q32 at the 

intergenic (IG) region between the paternally expressed (i.e. maternally 

imprinted) delta-like 1 homolog (DLK1) gene and the maternally expressed 

gene 3 (MEG3) (i.e. paternally imprinted) (Kagami et al., 2010). This region 

bares similarities with the IGF2-H19 locus as it contains a CTCF binding 

region (Wylie et al., 2000). The IG-DMR is methylated on the paternal 

chromosome and unmethylated on the maternal chromosome, and 

inheritance of the paternal allele as a result of maternal deletion results in 

complete silencing of MEG3 and overexpression of DLK1 resulting in a lethal 

phenotype (Lin et al., 2003). Numerous other genes are controlled through 

this ICR and loss of imprinting therefore causes severe developmental 

defects in humans (Kagami et al., 2010). Furthermore, aberrant imprinting of 
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this region is considered to be a possible marker for predisposition to type 1 

diabetes (Wallace et al., 2010). 

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are examples of 

imprinting disorders that occur due to opposing errors on the same locus on 

chromosome 15q11-q13 (Buiting et al., 2003). PWS occurs as a result of a 

deletion of part of the paternal chromosome or as a result of maternal 

uniparental disomy, while AS occurs as a result of maternal chromosome 

deletion. This region contains a number of genes that are maternally 

imprinted and exclusively paternally expressed, including the small nuclear 

ribonucloprotein polypeptide N (SNRPN) gene (Reed and Leff, 1994). 

Therefore, deletions of the paternal allele results in no expression of this 

gene leading to the PWS phenotype. In a small number of cases, PWS and 

AS can arise due to methylation errors, or epimutations, at the imprinted 

genes within this region, instead of causing a change to the DNA sequence. 

These epimutations are likely to arise due to improper reprogramming during 

development (Buiting et al., 2003). 

There are over 100 known imprinted genes in humans (Kelsey and 

Bartolomei, 2012), most of which are involved in foetal, placental and brain 

development, post-natal growth, behaviour and metabolism (Tycko and 

Morison, 2002). Imprinting ensures that a critical balance of gene dosage is 

maintained when parental chromosomes act together and its disruption can 

lead to abnormalities in male fertility as well as the severe developmental 

defects discussed. 

1.3.3 DNA methylation in sperm function and male infertility  

The identification of aberrant methylation in the sperm of infertile men has 

led to speculation that deregulated epigenetic control may be one of the 

causes of infertility. The differentiation of spermatids into mature sperm 

occurs simultaneously with remethylation of the genome following the 

second wave of reprogramming where new imprints are laid down (Kishigami 

et al., 2006; Oakes et al., 2007) (fig. 1.4). Disruption of methylation at this 
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point may therefore be a source of abnormal germ cell development, leading 

to MFI. 

Most studies investigating the association between aberrant DNA 

methylation and infertility have focused on candidate imprinted genes 

(Poplinski et al., 2010; Kobayashi et al., 2007; Minor et al., 2011; Ankolkar et 

al., 2013; Boissonnas et al., 2010). This is because imprinted genes in germ 

cells have unique reprogramming events which means they show specific 

methylation signatures, and due to the importance of paternally imprinted 

genes in post-zygotic gene expression (Carrell and Hammoud, 2010).  

Initial epigenetic studies comparing imprinted gene methylation in sperm 

DNA of oligozoospermic men, in comparison with normozoospermic men, 

have tended to show a decrease in methylation of paternally imprinted genes 

such as H19 and an increase in maternally imprinted genes such as 

mesodern-specific transcript (MEST) (Marques et al., 2007). Specifically, 

loss of methylation at the 6th CTCF binding site upstream of H19 has been 

associated with severe sperm defects in morphology, motility and 

concentration (Marques et al., 2007; Boissonnas et al., 2010). Others have 

corroborated this methylation pattern seen in the H19 gene in further studies 

with oligozoospermic men (Poplinski et al., 2010; Kobayashi et al., 2007; 

Montjean et al., 2013). Interestingly, Minor et al. (2011) found that sperm 

retrieved from the testes of men with obstructive azoospermia also 

demonstrated hypomethylation of H19, suggesting that aberrant methylation 

may be a product of the testicular environment and not singularly due to 

spermatogenesis failure. MEG3, also known as GTL2, is highly methylated in 

sperm (Geuns et al., 2007) and has also been shown to be hypomethylated 

in oligozoospermic men compared to normal men, similar to that of H19 

(Kobayashi et al., 2007; El Hajj et al., 2011). 

Maternally imprinted genes which normally show low levels of methylation in 

sperm have exhibited increases in methylation in men with poor sperm 

quality. MEST hypermethylation has repeatedly been linked to low sperm 

count, low progressive sperm motility and poor sperm morphology (Poplinski 

et al., 2010; Kläver et al., 2013; Houshdaran et al., 2007). MEST is a 
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candidate gene for the developmental disorder Silver-Russel Syndrome 

(SRS) and interestingly, in leukocyte DNA from a patient with SRS, Kagami 

(2007) found hypermethylation at CpG sites in the MEST gene occurred at a 

number of the same sites in the paternal DNA, suggesting improper 

reprogramming in the offspring and a heritability of some paternal 

methylation marks. Similarly, the SNRPN gene was found to be 

hypermethylated in oligozoospermic patients as well as patients with 

abnormal protamine ratios (Hammoud et al., 2010), However SNPRN 

hypomethylation has been associated with infertility elsewhere (El Hajj et al., 

2011). Increased methylation of pleiomorphic adenoma gene like 1 

(PLAGL1), also maternally imprinted, has been associated with poor sperm 

quality (Houshdaran et al., 2007), and proper methylation of this gene is 

critical for prenatal and post-natal growth in healthy infants (Azzi et al., 

2014). 

Studies mostly focus on a particular set of genes and gene-regulatory 

regions to determine how lifestyle and environment affect methylation, as 

these are the sites which are most likely to affect their associated gene’s 

expression. However, investigating global DNA methylation has been 

important for determining genome-wide changes to DNA including at 

intergenic regions and at repetitive elements (Maunakea et al., 2010). The 

short-interspersed element, ALU, and the long interspersed element 1 (LINE-

1) are examples of repeat elements which are used as markers for global 

methylation (Chalitagorn et al., 2004; Yang et al., 2004). They comprise 10% 

and 17% of the human genome, respectively and therefore largely represent 

epigenetic changes at multiple loci (International Human Genome 

Sequencing Consortium, 2004). These elements have retrotransposon 

activity which means they can replicate and move about the genome if 

uncontrolled, leading to disrupted function of other genes. Therefore they are 

heavily methylated to prevent this activity (Yoder et al., 1997). LINE-1 and 

ALU methylation has been used as a marker for global methylation in sperm, 

and ALU hypomethylation has been linked to poorer sperm quality and 

negative ART outcomes (El Hajj et al., 2011); this may be therefore be more 

informative than imprinted gene methylation. Another method for the 
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determination of global methylation is the use of enzyme-linked 

immunosorbent assays (ELISA) to measure 5-methyl-cytosine (5MedCyd) 

concentration. As with the repeat elements, 5MedCyd concentration has also 

been found to be positively correlated with sperm parameters (Montjean et 

al., 2014). However, not all studies have reported significant differences in 

global methylation between fertile and infertile men (Kobayashi et al., 2007; 

Ankolkar et al., 2013; Boissonnas et al., 2010).  

Aberrant DNA methylation at imprinted genes has been widely associated 

with sperm abnormalities and infertility, as discussed. However, methylation 

at non-imprinted sites may also be important for expression of the paternal 

genome in the developing embryo. High throughput array technology has 

allowed the exploration of methylation across the whole genome, and has 

resulted in the finding that many non-imprinted genes are also linked to poor 

semen parameters (Houshdaran et al., 2007; Schütte et al., 2013).   

Methylenetetrahydrofolate reductase (MTHFR) is a major regulatory gene in 

folate metabolism, remethylation and DNA synthesis. It is vital for providing 

sufficient methyl groups for DNA synthesis and methylation and is thought to 

have an important role in spermatogenesis due to its association with low 

sperm count and non-obstructive azoospermia (Khazamipour et al., 2009; 

Singh et al., 2005). MTHFR promoter hypermethylation has been strongly 

associated with idiopathic male infertility (Wu et al., 2010), and interestingly, 

this hypermethylation has been shown to occur alongside hypomethylation of 

H19 (Rotondo et al., 2013). Given the role of MTHFR in normal methylation, 

its deregulation could have knock-on effects for other genes. Not only has 

MTHFR hypermethylation been associated with male infertility, but also with 

spontaneous abortion rates (Rotondo et al., 2012), highlighting the potential 

consequences of aberrant methylation.   

Spermatogenesis genes are also susceptible to DNA modifications and can 

be directly linked to male infertility. Deleted in azoospermia-like (DAZL) is a 

key spermatogenesis gene important for primordial germ cell formation, while 

it is also expressed in mature sperm (Kee et al., 2009; Lin et al., 2002). 

Single nucleotide polymorphisms (SNP) as well as aberrant methylation in 
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the promoter of DAZL are associated with abnormal semen parameters 

(Teng et al., 2012; Navarro-Costa et al., 2010), indicating that this is an 

important gene for male fertility. DAZL has been found to be abundantly 

expressed in the pre-implantation embryo from the 2-cell stage, however this 

is thought to come through maternal genome control, and so the contribution 

of paternal DAZL methylation is yet to be determined (Cauffman et al., 2005).  

As 50% of male infertility cases have an unknown cause, this suggests that it 

is in fact a multifactorial disease. As DNA methylation is an important 

regulator of biological processes, including spermatogenesis, and given the 

examples of aberrant methylation in infertile men, it is likely that this 

epigenetic mechanism plays a part.  

1.3.4 Lifestyle and environmental effects on sperm DNA methylation  

The crucial feature of the epigenome is that it is receptive to the 

environment; this is the fundamental principle behind the cellular response to 

external stimuli. However, it also means that damaging environmental and 

lifestyle factors can negatively influence DNA methylation and consequently 

cause aberrant gene expression, leading to cellular dysfunction and disease 

(Murgatroyd et al., 2010; Jones and Baylin, 2002). Evidence that lifestyle and 

environmental factors can alter sperm DNA methylation suggests that these 

factors may contribute to MFI.  

1.3.4.1 Age  

The effects of paternal age on semen quality and reproductive outcomes 

have been explored for years with variable findings. A 2010 review confirmed 

that there are significant reductions in semen parameters with increasing 

age, and that paternal age is also associated with reduced fertility, 

pregnancy complications, and adverse childhood health outcomes (Sartorius 

and Neischlag, 2010). Global DNA methylation, as well as gene-specific 

methylation, changes across different cell types and tissues with advancing 

age (Hovarth, 2013). This is also the case for sperm, as was revealed by one 
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study which looked at sperm DNA methylation in the same individuals 10 

years apart: the authors found subsets of genes exhibiting age-related hypo- 

and hypermethylation (Jenkins et al., 2014). As such, it is possible that 

deregulated gene expression through changes in the epigenome could 

contribute to the age-related declines in fertility. Interestingly, Adkins et al. 

(2011) found correlations between methylation at a number of CpG sites in 

newborns and paternal age, indicating that age-induced paternal epigenetic 

modifications may be maintained in the embryo.  

1.3.4.2 Obesity  

There is considerable evidence to show that obese individuals exhibit altered 

DNA methylation at numerous gene promoters and CpG islands in blood 

samples (Ding et al., 2015). Obesity has been found to be associated with 

aberrant sperm methylation in some, but not all, studies (Donkin et al., 2015; 

Hesson et al., 2015). Although the evidence for the effects on sperm DNA 

methylation is inconclusive, imprinted genes have been shown to be 

hypomethylated in the children of obese fathers compared with normal 

weight fathers (Soubry et al., 2013). This suggests that obesity does induce 

some epigenetic changes. Critically, this disruption of DNA methylation 

profiles in newborns can have implications for future health, as illustrated by 

Godfrey et al. (2011) who found that altered methylation in adiposity-related 

genes at birth was related to adolescent obesity. This research suggests that 

there may be a preconceptual influence of paternal health on long-term gene 

regulation in offspring. Interestingly, the changes in DNA methylation as a 

result of obesity could be reversible as one study found positive changes in 

sperm DNA methylation in men on an exercise intervention programme 

(Denham et al., 2015).  

There is considerable interest in whether paternal germline epimutations are 

heritable as this suggests a much more important role for paternal lifestyle 

and environmental exposures than previously thought. One study, which 

investigated DNA methylation in the offspring of obese fathers, found that a 

DMR involved in control of the IGF2 gene was found to be hypomethylated in 
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umbilical cord blood leukocyte DNA of offspring from obese fathers (Soubry 

et al., 2013). Longitudinal health studies have also suggested a role for 

paternal epigenetic inheritance. The pre-pubescent slow growth period 

(SGP) in males coincides with the emergence of the first viable pools of 

spermatocytes where the cells may be particularly vulnerable to epigenetic 

change. A study of a large cohort of Swedish males found increased 

mortality rates of individuals whose grandfathers experienced over-

nourishment during the SGP (Pembrey et al., 2006). Concurrently, 

cardiovascular mortality rates were found to be lower in men whose 

grandfathers experienced a restricted food supply during the SGP, yet when 

food supply was in excess, diabetes mortality in grandchildren was high 

(Kaati, Bygren and Edvinson, 2002). These studies highlight a possibility for 

epigenetic inheritance through multiple generations, and DNA methylation 

could be a mechanism for this.  

Mouse models have been an insightful platform for the study of the 

transgenerational epigenetic effects of nutrition on offspring health and 

disease. Overfeeding and starvation of male mice prior to mating can result 

in metabolic deregulation in their offspring (Jimenez-Chillaron et al., 2009; 

Binder et al., 2012). A recent seminal study that sought to determine whether 

these characteristics are transmitted through the epigenome found that 

induced paternal prediabetes led to altered methylation in the sperm DNA. 

This caused altered gene expression in glucose uptake and metabolism 

genes and insulin signalling genes in the offspring, leading to glucose 

intolerance and insulin resistance (Wei et al., 2014). Furthermore, Fullston et 

al. (2013) found that the effects of paternal obesity could be detected as far 

as the F2 mouse generation and affected sperm mRNA profiles as well as 

DNA methylation. Therefore, paternal environmentally-acquired epigenetic 

changes, such as through obesity, could have serious implications for 

offspring health.  
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1.3.4.3 Smoking  

Cigarette smoking is considered to be one of the major environmental 

modifiers of CpG methylation (Breitling et al., 2013). Smoking has been 

shown to reduce DNA methylation at multiple loci, and critically, these 

modifications can be partially reversed on smoking cessation (Tsaprouni et 

al., 2014). It is well known that prenatal maternal smoking has serious 

implications for developmental gene expression, and consequently offspring 

health (Markunas et al., 2014; Richmond et al., 2015), however, the role of 

paternal smoking in DNA methylation in offspring is less understood. Xu et 

al. (2013) found significant differences in gene-specific methylation in sperm 

DNA of mice exposed to cigarette smoke, however, in humans paternal 

smoking was not found to be linked to altered H19 or IGF2 DMR methylation 

in umbilical cord DNA of newborn children (Bouwland-Both et al., 2015).   

1.3.4.4 Environmental toxicants  

One of the causes of MFI through environmental exposures is likely to be 

through the hormonal deregulation caused as a result of exposure to EDCs. 

Aberrant DNA methylation of sperm DNA may occur as a result of this 

disruption or through a separate mechanism. LINE-1 hypomethylation has 

been detected in the sperm of men exposed to BPA compared with non-

exposed men (Miao et al., 2014). Mouse studies, again, have shed light on 

the transmission of these epigenetic modifications through the male 

germline: Igf2 DMR methylation was perturbed in the F2 males of pregnant 

mice exposed to BPA resulting in metabolic dysfunction (Susiarjo et al., 

2015). Animals exposed to vinclozolin and dichlorodiphenyltrichloroethane 

(DDT) have also demonstrated generational epigenetic modifications and 

associated diseases (Guerrero-Bosagna et al., 2012; Skinner et al., 2013). 

However, the extent of this epigenetic memory in humans in response to 

environmental chemicals is yet to be elucidated.   



 
 

29 
 

1.3.5 Imprinting defects and ART  

With the use of ART treatment increasing (European Society of Human 

Reproduction and Embryology, 2014), there is concern over the use of 

subquality sperm during these procedures, which may harbour DNA damage 

or aberrant DNA methylation marks. There is also concern over the effects of 

ART methods themselves on gamete DNA integrity, as cells are exposed to 

various culture conditions in vitro, alongside female hormonal stimulation and 

cryopreservation of sperm and oocytes.  This concern has arisen due to the 

reported increase in the frequency of imprinting disorders, such as BWS, in 

children born through ART, which are normally extremely rare in the general 

population (Lazaraviciute et al., 2014; Olivennes et al., 2001). Therefore, 

ART may present some risks to gamete DNA integrity. 

Cryopreservation of sperm and oocytes is a routine process in ART 

procedures and has become more popular as couples delay parenting until 

later in life. Studies in mice have linked oocyte vitrification to reduced 

methylation at imprinted genes in blastocysts, and this was attributed to 

reduced DNMT expression (Cheng et al., 2014). This was partially supported 

in a human oocyte cryopreservation study (Petrussa et al., 2014). Human 

sperm cryopreservation, however, has been reported to be completely safe, 

conferring no changes to methylation at imprinted genes, spermatogenesis-

related genes or MTHFR in the sperm DNA (Kläver et al., 2012).  Ovarian 

stimulation has also been linked to altered imprinted gene methylation of 

embryos in some cases, but not in others (Sato et al., 2006; Market-Velker et 

al., 2010; Denomme et al., 2011).  

There are a number of debates ongoing with regards to the impact of 

aberrant sperm methylation on ART outcomes. The first concerns whether 

sperm imprinting defects are associated with poorer ART outcomes 

(Ankolkar et al., 2013; Camprubi et al., 2012). The second is whether 

aberrant methylation marks are inherited and may affect embryonic 

development and offspring health. Kobayashi et al. (2009) found that some 

imprinted gene methylation errors in conceptuses conceived through ART 

could be directly associated with the paternal genome. Conversely, although 
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Lazaravicuite et al. (2014) found higher rates of imprinting disorders in ART 

compared with non-ART children, they could not identify any significant 

methylation differences at specific imprinted genes between these groups. 

The extent of the contribution of DNA methylation to male infertility and 

germline inheritance is still unclear. However, as the epigenome evidently 

acts as the connection between the environment and gene regulation, 

lifestyle and environmental interventions may play some part in improving 

fertility and preventing offspring disease. 

1.4 Advanced glycation end products and male reproductive 

function 

Advanced glycation end products (AGEs) are a heterogeneous group of 

compounds that form as a result of the reaction between sugars and 

biomolecules, and are the cause of a number of diabetes- and age-related 

diseases where AGE levels are elevated. These diseases include 

cardiovascular disease, diabetic nephropathy, nerve damage, retinopathy 

and atherosclerosis (Hanssen et al., 2015; Forbes and Cooper, 2012; Duran-

Jiminez et al., 2009; Ahmed et al., 1997; Stitt et al., 1997). Ultimately, AGEs 

are thought to be an important contribution to the multisystem functional 

decline in health that occurs with ageing. Obesity, diabetes and ageing have 

been linked to declines in semen quality and fertility (Eisenberg et al., 2014; 

Sartorius and Neischlag, 2010). Despite the prevalence of AGEs in these 

conditions, there is very little research on their effects on reproductive 

function. So far, AGEs have been located in the male reproductive tract, on 

sperm cells and in soluble form in the seminal plasma (Mallidis et al., 2009; 

Karimi et al., 2011). This suggests that they may form modifications on 

functionally important sperm proteins or DNA adducts, or additionally as AGE 

formation is implicated in ROS production, this could be a source of oxidative 

DNA damage to sperm (Mallidis et al., 2009).  
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1.4.1 Structure and function of AGE 

AGEs are formed in vivo from the spontaneous non-enzymatic reaction of 

reducing sugars with proteins, lipids and nucleic acids, through the Maillard 

reaction, lipid peroxidation and the polyol pathway (Ott et al., 2014). AGE 

adducts accumulate in the body over time as a normal part of the ageing 

process; however their formation is accelerated under hyperglycaemic 

conditions, insulin resistance, dyslipidemia and due to oxidative stress in 

diabetes (Ulrich and Cerami, 2001; Thomas et al., 2005; Unoki and 

Yamagishi, 2008). AGE compounds are also formed exogenously from the 

cooking of foods at high temperatures and in tobacco smoke (Uribarri et al., 

2010; Cerami et al., 1997), meaning that lifestyle and environment can 

introduce high levels of AGE to the body. Endogenous and exogenous AGE 

interact with the cell membrane receptor for AGE (RAGE), initiating 

downstream inflammatory signalling (Cerami et al., 1997).  
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1.4.2 Formation and action of AGEs 

Glycation incorporates a chain of reactions known as the Maillard reaction 

which begins with the non-enzymatic reaction of a carbonyl group from a 

reducing sugar, with free amino groups in protein, lipid or nucleic acids 

(Goldin et al., 2006). AGEs form as a normal part of metabolism as glucose 

reacts with biomolecules, and their accumulation in the body is a normal part 

of aging. However, under conditions of hyperglycaemia, hyperlipidaemia and 

Figure 1.6 Glycation of lysine by glucose 

The carbonyl group of glucose reacts with the amine group of a lysine 

residue, forming a reversible Schiff’s base adduct. A number of 

rearrangements occur to form an Amadori product. This then undergoes 

further glycation and oxidation reactions to form Nε-(carboxymethyl)lysine 

(CML). 

Adapted from Bohlender, 2005 
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under oxidative conditions, AGE formation is accelerated and becomes 

pathogenic (Singh et al., 2001). AGE formation occurs on extracellular and, 

more rapidly, on intracellular proteins (Giardino, Edelstein and Brownlee, 

1994; Thornalley et al., 2003). 

The first stage of the Maillard reaction is the condensation reaction between 

the carbonyl group of a reducing sugar, such as glucose, with the free amino 

group of a protein, initially forming a Schiff’s base which is completely 

reversible. The main residues in proteins targeted for this are arginine and 

lysine. Schiff base levels are maintained at equilibrium with the surrounding 

glucose concentration (Brownlee et al., 1984). Covalent modifications then 

more slowly turn the Schiff’s base into a stable Amadori product (fig. 1.6). 

The most familiar Amadori products are fructosamine and glycated 

haemoglobin (HbA1c) which are used widely as markers for serum glucose 

levels. These products are known as early-glycation adducts and are 

reversible although the rate of formation is faster than the rate of the reverse 

reaction (Brownlee et al., 1984). To form end-stage glycation adducts, or 

AGEs, Amadori products undergo a number of further reactions including 

condensation, fragmentation and rearrangements that reorder their functional 

groups and these may occur under oxidative and non-oxidative conditions 

(Booth et al., 1997). This results in the formation of stable irreversible adduct 

formation on the target molecule. AGEs cause damage by generating ROS, 

fluorescing, forming cross-links and binding to cell surface receptors 

(Thornalley, 1998). One of the major AGE-protein epitopes is N-ε-

carboxymethyl lysine (CML), formed on lysine residues as a result of 

sequential glycation and oxidative reactions of Amadori products (Booth et 

al., 1997) (fig. 1.6). The presence of CML in numerous tissues, including the 

male reproductive tract, suggests it could be involved in several AGE-

associated pathologies. In addition, CML is formed earlier on in the Maillard 

reaction than other non-CML AGEs, making it a useful AGE compound to 

target for short in vitro studies. As the most prevalent biological sugar, 

glucose levels are the major contributor to the Maillard reaction, however 

other reducing sugars such as fructose, ribose  and glucose-6-phosphate 

can react in a similar way to result in numerous chemically distinct AGEs. 
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AGEs can be broadly grouped into three categories: firstly, fluorescent cross-

linking AGE such as pentosidine; secondly, non-fluorescent cross-linking 

AGEs such as imidazolium dilysine cross-links; and finally, non-crosslinking 

AGEs such as pyrraline and CML. 

AGEs can also be generated from through the polyol pathway, also known 

as the sorbitol pathway, which shows prevalent activity in diabetes (Oates et 

al., 2002). This is a two-step enzymatic pathway in which glucose is firstly 

converted to sorbitol by aldose reductase and then oxidised to fructose by 

sorbitol dehydrogenase (fig. 1.7). This reaction is also elevated as a result of 

hyperglycaemia and the enzymes required for the reaction are elevated in 

diabetic tissues (Lorenzi, 2007). The pathway eventually generates AGEs as 

Figure 1.7 Formation of advanced glycation end products 

AGEs form from the non-enzymatic glycation of proteins by glucose 

through the Maillard reaction, or through the enzymatic polyol pathway, or 

through autoxidation of glycose. Reactive AGE intermediates are formed 

from all pathways. 
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fructose is phosphorylated and broken down into 3-deoxyglucosone (3-DG), 

an AGE precursor (Szwergold et al., 1990). 3-DG is a potent AGE-

intermediate that rapidly forms AGE-adducts (Hamanda et al., 1996). 

Furthermore, AGEs can also be generated from the autoxidation of 

monosaccharides including glucose.  

As well as forming Amadori products, a Schiff’s base can also fragment to 

generate reactive AGE intermediates, namely α-oxoaldehydes or α-

dicarbonyls, which are about 20,000 times more reactive than glucose in 

glycation reactions, and these compounds themselves react with proteins, 

lipids and nucleic acids to form AGEs (Thornalley, 1996). These 

Figure 1.8 Formation of AGEs by methylglyoxal and glyoxal 

The dicarbonyl compounds methylglyoxal (MG) and glyoxal (GO) are reactive 

intermediates produced by cell metabolism, glucose autoxidation, and lipid 

peroxidation. 

These highly reactive compounds may react with amino and sulfhydryl groups 

in proteins to form irreversible advanced glycation end products (AGEs). Nε-

(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) are the major 

AGE adducts formed from GO and MGO, respectively. 
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intermediates include methylglyoxal (MG), glyoxal (GO) and 3-DG. MG and 

GO are also formed from the degradation of proteins glycated by glycose 

and from the autoxidation of monosaccharides (Thornalley et al., 1999) (fig. 

1.8). This widespread formation of AGE intermediates means they are 

present in almost all cases where AGEs are present. The rapid glycating 

activity of these intermediates makes them a useful tool for in vitro glycation 

experiments. When these intermediate react with proteins, they can form a 

range of products. MG predominantly reacts with lysine residues to form the 

minor AGE Nε-(1-carboxyethyl)lysine (CEL) (fig. 1.8) and the imidazolium 

crosslink, methylglyoxal-lysine dimer (MOLD) (Al-Abed and Bucala, 1995; 

Ahmed et al., 1997), while its major product is the arginine-derived 

hydroimidazolone Nδ-(5-hydro-5-methyl4-imidazolon-2-yl)-ornithine (MG-H1) 

which accounts for 90% of adducts (Biemel et al., 2002; Ahmed and 

Thornalley, 2005; Dobler et al., 2006). The major AGE products of glyoxal 

are CML (fig. 1.8) and glyoxal-lysine dimer (GOLD) (Odani et al., 1998; 

Glomb and Monnier, 1995). These AGEs are the major biomarkers of the 

Maillard reaction in tissue proteins that accumulate in the body with age and 

in chronic diseases, generating oxidative stress (Ahmed, 1997; Shangari et 

al., 2004).  

Sugars vary in their reactivity in the Maillard reaction, with the rate of AGE 

formation on intracellular proteins being slowest in the presence of glucose 

and more rapid with intracellular natural sugars such as fructose, glucose-3-

phosphate and glucose-6-phosphate (McPherson et al., 1988). The principal 

carbohydrate used as an energy source for glycolysis by spermatozoa is 

fructose, though glucose is thought to also have a role, and both drive 

hyperactivated sperm motility (Mann, 1946; Williams and Ford, 2001). During 

metabolism, these sugars could also potentially be the substrates of 

glycation reactions, and consequently, the source of AGE formation on 

sperm. 
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1.4.3 AGEs in male reproduction 

Studies have reported the effect of diabetes on standard semen parameters 

and pregnancy outcome with conflicting results (Mulholland et al., 2011; La 

Vignera et al., 2012; Agbaje et al., 2007). However, there have been 

consistent reports showing that male diabetics have higher sperm DNA 

damage, higher ROS levels, and lower antioxidant capacity than non-diabetic 

subjects (Agbaje et al., 2007). Karimi et al. (2011) found that expression 

levels of RAGE were higher in sperm samples from diabetic patients and this 

correlated with an increase in sperm DNA fragmentation. It is likely that the 

AGE-mediated damage arises due to oxidative stress. 8-oxoguanine is a 

biomarker for oxidative DNA damage and has also been detected at elevated 

levels in diabetic patients in correlation with DNA fragmentation (Agbaje et 

al., 2008). Sperm DNA damage has previously been associated with lower 

probability of pregnancy and lower implantation rates (Meseguer et al., 

2011). However, the real effects of sperm DNA fragmentation on embryo 

quality and development are inconclusive and require further investigation 

(Zini et al., 2011). 

The principal mode of action of AGE occurs through interaction with the cell 

surface receptor, RAGE. RAGE belongs to the immunoglobulin (Ig) 

superfamily and is a pattern recognition receptor which can bind to numerous 

ligands. The AGE-RAGE pathway has been implicated in a number of 

diabetic complications (reviewed in Yan et al., 2008). It has also been 

implicated in adverse birth weight outcomes   (Chiavaroli et al. 2012). AGE-

RAGE signalling activates pro-inflammatory pathways through the 

transcription factor nuclear factor ĸB (NF-ĸB) (Yan et al., 2008; Bierhaus et 

al., 2001).  Once activated, NF-ĸB binds and activates a number of pro-

inflammatory genes including cytokines and adhesion molecules. NF-ĸB also 

feeds back to trigger expression of more RAGE and the production of ROS 

(Yao and Brownlee, 2010). Therefore, activated cells remain viable while 

also becoming more responsive to AGEs (Bierhaus et al., 2001). RAGE has 

been detected in cells of the testis, epididymis, and on the sperm acrosome 

(Mallidis et al., 2007) and a major consequence of AGE-RAGE binding for 
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sperm is in the generation of ROS through activation of NADPH oxidase 

(Wautier et al., 2001), which can be damaging to sperm due to their 

vulnerability to oxidative stress.  

In vitro glycation of proteins with sugars or AGE intermediates has provided 

insight into the exact mechanisms of protein modification in terms of which 

amino acids are targeted and of the functional consequences of glycation. 

For example, MG and GO inhibit the binding capacity of epidermal growth 

factor receptor (EGFR) with EGF in a time and dose-dependent manner in 

cultured cells due to modification of the receptor (Portero-Otin et al., 2002). 

The impact of glycation on the structure and function of platelet-derived 

growth factor receptor and insulin have also been illustrated using MG 

(Cantero et al., 2007; Jia et al., 2006). As AGEs are present on sperm 

(Mallidis et al., 2007), it is likely that glycation of sperm proteins occurs 

during spermatogenesis. If this occurs on functionally important proteins, 

fertilisation capacity could be diminished and could explain the poorer sperm 

quality in diabetics. As described in section 1.1.4, Spam1 is a sperm plasma 

membrane protein with hyaluronidase activity that breaks down HA in the 

ECM of the cumulus layer surrounding the oocyte and the ZP. Izumo1 is 

another sperm membrane protein essential for sperm-egg binding: IZUMO-

null sperm can penetrate the zona pellucida but cannot bind to the egg 

(Inoue et al., 2005; Inoue et al., 2013). Finally, Fertilin beta (ADAM2) is one 

subunit of the Fertilin complex present on the sperm plasma membrane that 

interacts with integrins on the egg surface through its disintegrin domain 

during fertilisation (Chen et al., 1999). These proteins are indispensable for 

successful fertilisation and their exposure to glycating agents during 

spermatogenesis in the testes and in the seminal plasma could contribute to 

their malfunction. 

1.5 Summary 

An extensive amount of research on the causes of idiopathic male infertility 

has been carried out. However, it is still unclear to what extent lifestyle and 
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environmental factors can modify sperm quality at the physiological, 

molecular or genetic level.  

As some studies have found evidence that certain exposures may be 

heritable through the male germline, epigenetic changes have been 

implicated as the primary mechanism. Given the breadth of roles of the 

epigenome, and specifically of DNA methylation, numerous different 

pathways could be leading to sperm dysfunction and to adverse ART 

outcomes. Many studies have focussed on the imprinted genes and on 

global methylation as the source of this dysfunction, while others have found 

that candidate non-imprinted genes associated with infertility are affected by 

lifestyle and environment.  Although controlled mouse studies have 

conclusively shown that lifestyle and environment can affect sperm quality, 

methylation and pregnancy outcomes, further human studies are needed to 

determine which, if any, of these factors are true risks.  

Obesity, diabetes and ageing have been implicated as drivers of male 

infertility, yet very little research has been carried out on the role of AGE 

compounds in disrupting reproductive function. Given that AGEs have a 

primary role in age- and diabetes-related comorbidities, they could present 

an important risk to sperm function. In vitro cellular glycation experiments 

have shed light on the effects of glycation in other cell types, however, none 

so far have done this with sperm. The use of a relatively straight forward in 

vitro glycation assay to highlight the effects of AGEs on sperm could 

stimulate further research into this new field and help to expose additional 

mechanisms behind infertility. 

Overall, in order to successfully tackle the increasing rates of male infertility, 

it is important to identify which lifestyle and environmental factors cause 

changes to sperm function and what the mechanisms behind them are. 



 
 

40 
 

1.6 Aims 

The aims of this study were to determine whether lifestyle and environmental 

factors affect sperm quality through the analysis of standard semen 

parameters and of sperm DNA methylation. We then sought to determine 

whether these changes to sperm function or DNA quality could have 

implications for ART outcomes. Using an in vitro assay for glycation as a 

model for ageing and diabetes, we also sought to investigate the action of 

AGEs in sperm and on functionally relevant sperm proteins. 

1.6.1 Objectives: 

1. To develop assays for and use bisulphite pyrosequencing to quantify DNA 

methylation at functionally important DMRs at maternally and paternally 

imprinted genes and at important non-imprinted genes in sperm. To 

determine whether this methylation and global methylation levels in sperm 

are affected by lifestyle and environmental factors, in men attending a fertility 

clinic, and whether these affect ART outcomes. 

2. To determine whether lifestyle and environmental factors are associated 

with aberrant semen parameters and ART outcomes in men attending a 

fertility clinic. 

3. To develop an in vitro glycation assay to investigate the effects of 

glycation on sperm and sperm DNA damage. To determine whether AGE-

modifications affect specific sperm protein function. 
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Chapter 2 

Materials and methods 

2.1 Lifestyle, DNA methylation and ART outcomes  

Men undergoing assisted reproductive techniques at the department of 

Reproductive Medicine, Saint Mary’s Hospital, Central Manchester NHS 

Foundation Trust, were recruited for research approved by NRES Committee 

North West-Preston, REC Reference: 12/NW/0482, ERP/91/078 (Altakroni, 

2015) and REC Reference: 14/NS/0082 (appendix 4).  

Upon consultation for treatment, men where asked whether they would like 

to participate in the study by donating the remainder of their sperm sample 

following treatment, and by completing a questionnaire detailing their health, 

lifestyle, environmental exposures and diet (Altakroni, 2015; appendix 1). 

Sperm samples were produced and the questionnaire filled out on the day of 

egg collection. Figure 2.1 shows the number of sperm samples collected with 

corresponding questionnaires that were used for DNA methylation analysis 

and the number of questionnaires that were collected for analysis of lifestyle, 

sperm parameters and ART outcomes only.  

[*The questionnaire was designed by A. Povey and B. Altakroni from the 

Institute of Population Health, University of Manchester (Altakroni, 2015)]. 

2.1.1 Sample collection 

Samples were produced by masturbation after 2-5 days of abstinence as 

recommended by the hospital. Two sperm samples were collected for each 

participant on the day of their treatment in sterile plastic containers: one 

containing neat semen, and the other containing prepared sperm which had 

undergone density gradient centrifugation in preparation for ART. Semen 
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analysis was carried out by clinical staff for neat and prepared sperm 

according to the WHO references guidelines (WHO 5th edition). Prepared 

sperm was not obtained on all occasions when there was no sample 

remaining after treatment. Sperm was then transferred from the hospital to 

the laboratory for DNA analysis. Whole sperm in neat semen samples was 

separated from seminal plasma by centrifugation at 500 x g for 10 minutes 

and removal of the plasma supernatant, followed by two washes in 1xPBS at 

500 x g for 10 minutes. Prepared sperm samples were washed twice in 

1xPBS as above to remove sperm preparation media. Sperm was counted, 

pelleted and frozen at -80°C until further analysis. Initial samples [91] were 

collected, processed and stored by B. Altakroni. Subsequent samples [31] 

were collected, processed and stored by C. Nevin. 

 

 

Figure 2.1 Outcomes of recruited participants for DNA methylation analysis 

and questionnaire analysis 
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Data on for each participant was collected from the hospital database. Sperm 

parameters data obtained included semen volume, sperm concentration, % 

progressively motile and % immotile sperm. IVF and ICSI outcomes data 

included the number of oocytes used in treatment, the number of fertilised 

oocytes, the number of cleavage stage embryos, the number of embryos 

transferred into the female, and the pregnancy outcome (yes or no). 

Information was also obtained on the hormonal protocol used for oocyte 

stimulation in the female as well as male and female age. The fertilisation 

rate (%) was calculated by dividing the number of successfully fertilised 

oocytes by the number of oocytes used for treatment and the cleavage rate 

(%) was calculated by dividing the number of cleavage stage embryos by the 

number of fertilised oocytes. 
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2.1.2 Normalisation of semen parameter data 

Statistical analysis requires input data to follow a Gaussian, or normal, 

distribution. When this is not the case, transformations must be applied to the 

data to reach normality. An initial analysis of histograms and Quantile-

Quantile (Q-Q) plots for semen parameters was carried out to check for 

normality (appendix 6). A histogram illustrates the frequency distribution of 

the data while Q-Q plots show the observed versus predicted values in the 

data set: if the data points follow a linear trend in the Q-Q plot (a straight line) 

then the assumption of normality has been met. A Gaussian distribution in a 

frequency histogram should show a bell-shaped curve. Shapiro-Wilk values 

for skewness were also considered for each sample as an approximation of 

normality but observation of the shape of the data was the ultimate 

consideration to prevent too many exclusions of samples in the data set.   

Figure 2.2 Schematic diagram picturing the structure of the IGF2-H19 locus.  

H19 exists 130 kb downstream of IGF2 on the reverse strand of Chr11. CTCF 

binding sites are shown as orange circles. A more detailed version of the H19 gene 

is shown with exons 1-5 as blue boxes. The green area beneath the 1st and 2nd 

exons represents a CpG island. Two red lines show the approximate regions that 

were analysed by pyrosequencing. 
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Data for sperm concentration and sperm count were not normally distributed 

and had a positive skew. To convert the data to a normal Gaussian 

distribution the log base 10 function was used in the equation 𝑥′ = 𝑙𝑜𝑔10(𝑥) 

where 𝑥′ is the transformed value, and 𝑥 is the raw value. The geometric 

means and 95% confidence intervals (CIs) were calculated by back-

transforming the log10 values, which consists of taking the anti-log (𝑙𝑜𝑔𝑥′
=

𝑥). Data for % progressive motility (PM) and % immotile sperm did not 

require transformation as these showed a normal distribution. Both data sets 

followed the linear expected values on the Q-Q plots. Semen volume was 

normally distributed when extreme outliers were removed.  

2.2 DNA methylation analysis by pyrosequencing 

Quantification of DNA methylation at CpG sites was achieved using 

bisulphite pyrosequencing. Briefly, genomic DNA was extracted and treated 

with sodium bisulphite to convert non-methylated cytosine nucleotides to 

uracil, followed by PCR amplification of the region of interest using primers 

designed to target the bisulphite DNA. A sequencing primer was designed to 

target the region of interest and pyrosequencing was carried out using the 

PyroMark Q24 system (Qiagen, UK).  

2.2.1 Pyrosequencing assay design 

Regions of interest for each gene were chosen based on current literature 

which were deemed to be important regulatory regions for DNA methylation. 

Gene structure was observed on human genome assembly GRCh37/hg19 

using the UCSC genome browser (Genome Biolinformatics Groups of UC 

Santa Cruz, 2015). Regions of interest were determined by looking at the 

presence of CpG islands, and for promoters, the histone acetylated lysine 

mark (H3K27Ac) which is found near regulatory regions and thought to 

enhance transcription (Shyueva et al., 2014). If no CpG islands were 

detected in the region of interest, for example with MEG3 intergenic- (IG-) 
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DMR, sequences were input to EMBOSS CpG predictor software (Genome 

Bioinformatics Groups of UC Santa Cruz) and the minimum CpG length was 

set to 100 bp; primers were then designed for within or near these regions. 

Primer sequences for each region were either purchased as pre-designed 

CpG assays from Qiagen UK (table 2.1), or custom oligonucleotides were 

designed using the PyroMark Assay Design software (Qiagen, UK) and 

purchased through Life Technologies (UK) (table 2.2). Sites analysed 

included the H19 exon 1-spanning CpG island and the 6th CTCF binding site 

of the upstream ICR which controls H19 and IGF2 expression (fig. 2.2). 

Targets for analysis included the ICR between MEG3 and DLK1, the 

PLAGL1 CpG island spanning the first exon, the upstream region of the 

SNRPN CpG island, and the promoter regions of MTHFR, DAZL and NR3C1 

promoters (fig 2.3). Chromosomal locations and the number of CpG sites 

analysed are given in tables 2.2 along with the sequence analysed for the 

pre-designed assays (table 2.1). 
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Figure 2.3 Gene schematics 

Blue boxes represent individual exons for PLAGL1, SNRPN, DAZL, MTHFR, NR3C1 

and whole genes for MEG3 IG-DMR. Green bars represent CpG islands. White 

circles show the number and distribution of CpG sites analysed. Black bars show 

approximate genomic distances. 
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2.2.2 Sperm DNA extraction for bisulphite pyrosequencing 

DNA was extracted from up to 25x106 sperm using the Qiagen Blood and 

Tissue Midi Kit (Qiagen, UK). Kit components contained the following: G2 

(lysis) buffer, QC (wash) buffer, QBT (equilibriation) buffer, QF (elution) 

buffer and filter columns. Consistent methods were used for DNA extractions 

carried out by B. Altakroni and on later samples by C. Nevin. 

Sperm pellets were resuspended in 1 ml of 1xPBS, and were added to a 

falcon tube containing 9.5 ml of G2 buffer with 19 µl RNase (10 mg/ml) 

(Sigma, UK) and 250 µl Proteinase K (1 mg/ml) (Sigma, UK). The tubes were 

incubated at 4°C overnight on a rotator. Next day, 0.5 ml dithiothreitol (DTT) 

(5 mM) (Sigma, UK) was added to the tubes and incubated at 4°C for 1 hour 

on a rotator (PODC Scientific, UK). The tubes were then transferred to a 

37°C water bath for 1 hour. A sufficient number of Qiagen filter columns were 

set up and equilibriated with 4ml of QBT buffer. The entire contents of the 

samples were then added to the columns which passed through by gravity 

flow. The columns were then washed twice with 7.5 ml QC buffer. DNA was 

eluted from the columns with 4 ml QF buffer and the flow through was 

collected. DNA was precipitated by adding 2.8 ml room temperature 

isopropanol (Fisher, UK) to each collection tube and inverting several times. 

Samples were centrifuged 12,000xg for 15 minutes at 4°C. Isopropanol was 

removed and 1 ml of 70% ethanol (Sigma, UK) was added to the pellet, 

resuspended and centrifuged 12,000xg for 5 minutes at 4°C. Ethanol was 

removed and the pellet was spun again for 2 minutes. All remaining ethanol 

was removed and pellets were allowed to air dry from approximately 2 

minutes before dissolving in 50-100 µl of TE buffer (pH 7.5). DNA was 

quantified using a Synergene HT nucleic acid plate (Biotek, UK).  

2.2.2 Bisulphite conversion 

DNA methylation involves the chemical modification of cytosine nucleotides 

by the addition of a methyl group. When treated with sodium bisulphite, 

unmethylated cytosine residues undergo deamination to uracil, while 
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methylated cytosine (5mC) remains as cytosine (fig. 2.4). Uracils are 

subsequently converted to thymine during PCR amplification while the 

methylated cytosines are amplified as cytosines. Subsequent sequencing of 

the PCR product allows the discerning of the methylation status of each CpG 

site. 

Sperm DNA was diluted to 100 ng/µl in nuclease-free water and 500 ng was 

used for bisulphite conversion with the EpiTect Fast DNA Bisulphite Kit 

(Qiagen, UK). According to the manufacturer’s instructions, 500 ng DNA was 

added to reaction tubes containing 80 µl bisulphite solution and 15 µl DNA 

protect buffer, to a final volume of 140 µl. The PCR tubes were placed in a 

thermal cycler (Thermo Scientific) and bisulphite conversion was completed 

using the programme detailed in table 2.3.  

Upon completion, bisulphite converted DNA was transferred to sterile 1.5 ml 

Eppendorf tubes and 310 µl of buffer BL was added and vortexed to mix. 250 

µl of ethanol (100%) was then added and again pulse vortexed to mix. The 

contents of each tube was transferred to a corresponding EpiTect Fast DNA 

Bisulphite Kit spin column for clean-up. Columns were centrifuged at 

maximum speed and washed once with 500 µl buffer BW followed by 

incubation of the tubes with 500 µl buffer BD for 15 minutes at room 

temperature. Spin columns were centrifuged, flow-through discarded, and 

two washes with 500 µl buffer BW were performed, followed by one wash 

with 250 µl ethanol (100%). One further spin was carried out to remove 

residual liquid and columns were incubated in a heat block for 5 minutes at 

60°C to evaporate remaining liquid. Following a 1 minute incubation, DNA 

was eluted from the columns in 15 µl buffer EB. Bisulphite DNA 

concentration was estimated using the Nanodrop plate reader (Thermo-

Fisher Scientific, UK) under single-stranded DNA settings and diluted to 5 

ng/µl in TE buffer. Bisulphite DNA was stored at -20°C. 
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Figure 2.4 Bisulphite conversion of genomic DNA and PCR 

amplification 

Methylated cytosine nucleotides present in CpG sites (red) remain as 

cytosines while non-methylated cytosines (blue) within and outside CpG 

sites are converted to uracil and subsequently replaced by tyrosine 

during PCR. 
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Table 2.1 Pre-designed Qiagen CpG assays for pyrosequencing. All biotin modifications were on the reverse 

primer 
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Table 2.2 Pyrosequencing custom oligonucleotides  
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2.2.4 Amplification of bisulphite DNA 

Pyrosequencing target regions were amplified using the PyroMark PCR Kit 

(Qiagen, UK). 25 µl PCR reaction tubes were set up according to table 2.4. 

Gradient PCR was initially carried out to determine the optimal annealing 

temperature for amplification ranging from 52-60°C and cycling conditions 

were carried out according to table 2.5. 95°C for 15 minutes; followed by 45 

cycles of denaturation, 94°C for 30 seconds; annealing, 56°C for 30 seconds; 

extension, 72°C for 30 seconds. Finally, an extension of 72°C for 10 minutes 

was included. Gradient PCR products were run on a 3% agarose gel 

containing Midori Green (0.005%) in TBE buffer at 80 V for 30 minutes and 

observed under a UV transilluminator (GBOX) for visualisation of bands. 

PCR products were frozen at -20°C until pyrosequencing. 

 2.2.5 Pyrosequencing 

Bisulphite pyrosequencing was used to quantify the mean methylation of 

single CpG sites in sperm samples. This method is a sequencing-by-

synthesis process in which the nucleotides, adenine (A), cytosine (C), 

thymine (T) and guanine (G), are sequentially added to a known DNA 

Table 2.3 Cycling conditions for bisulphite 

conversion. 
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sequence and nucleotides that are complementary to the DNA template are 

incorporated by DNA polymerase (fig. 2.5). Each time a nucleotide is 

incorporated to the sequence a molecule of pyrophosphate (PPi) is released 

which is converted to ATP by ATP sulfurylase. This ATP drives the 

conversion of luciferin to oxyluciferin by luciferase, resulting in the release of 

visible light which is detected by the pyrosequencer and appears as a peak 

on the resulting pyrogram. The release of light is directly proportional to the 

number of nucleotides incorporated. For example, if two guanine nucleotides 

are incorporated at once, the peak height will be twice that of when one 

guanine nucleotide is incorporated. The sequential incorporation of 

nucleotides allows the determination of the sequence. 
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Pyrosequencing was carried out using the PyroMark Q24 and Q24 Advanced 

software and kits. Firstly, DNA was bound to Streptavidin Sepharose High 

Performance beads (GE Healthcare, UK). A master mix was made up for the 

required number of samples to be run with each sample containing 1 µl of 

beads, 40 µl binding buffer and 29 µl water. 70 µl master mix was transferred 

to a 0.2 ml PCR tube and 10 µl bisulphite DNA (5 ng/µl) was added bringing 

the total volume to 80 µl. Tubes were incubated on a shaker at maximum 

speed for 10 minutes at room temperature. Meanwhile, the sequencing 

primer was prepared. Firstly, a new assay was generated on the PyroMark 

Q24 software for each specific site and the sequence to analyse was input 

and a nucleotide dispensation order was produced. The required assay was 

Figure 2.5 The pyrosequencing reaction 

The incorporation of a nucleotide into the sequence by DNA 

polymerase results in the emission of light through a series of 

reactions. The amount of light emitted is proportional to the number of 

nucleotides incorporated. 
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selected for each run along with the number of samples in the plate which 

gave the volumes of Enzyme and Substrate mixtures and of dNTPs to load 

into the cartridge (Qiagen, UK) based on the length of the assay sequence. 

The cartridge was loaded and secured in place in the Pyrosequencer. 

Sequencing primers were either diluted to 1X if using pre-designed CpG 

assays or to 0.3 µM for custom primers in annealing buffer (Qiagen, UK) and 

25 µl was dispensed into each well of a 24-well PyroMark sequencing plate 

(Qiagen, UK). The PyroMark Q24 workstation was then run: using a vacuum 

tool, DNA-bound beads were sequentially washed in 70% ethanol (Sigma, 

UK), denaturing buffer (Qiagen, UK), annealing buffer and wash buffer 

(Qiagen, UK). Beads were then transferred to the sequencing plate 

containing the sequencing primer. The plate was immediately transferred to 

a heat block set to 80°C and incubated for 2 minutes. Following this, the 

plate was secured into the Pyrosequencer and the sequencing experiment 

was run. Pyrosequencing output was in the form of a pyrogram (fig. 2.6) and 

results were analysed using the PyroMark Q24 software.  

PyroMark Q24 software gave an accuracy reading for each of the CpG sites 

analysed based on how correct the nucleotides in the surrounding sequence 

had been sequenced: red (failed), yellow (check), blue (passed). Red reads 

were repeated or excluded from the analysis.  

Table 2.4 Reaction mix for PyroMark PCR 
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2.2.6 Intra-individual variability (inter- and intra-day variability) 

Coefficient of variation (%CV) was calculated to determine the variation 

between pyrosequencing reads between samples obtained from the same 

PCR product and those obtained from different PCR products. %CV was 

calculated as ((SD/mean)*100). The mean %CV for the same PCR products 

run on the same sequencing plate was 1.69%. The mean variation for the 

same PCR products sequenced on different sequencing plates was 3.93% 

and the mean variation for different PCR products sequenced on the same 

sequencing plate was 2.74%. The hypomethylated genes, PEG10, SNRPN, 

PLAGL1, DAZL and MTHFR were not used to calculate the %CV as their 

extremely low methylation values caused huge changes to the %CV values 

when there were very small changes, i.e. a 1% change from a gene that is 

5% methylated would generate a %CV much greater than a 1% change in a 

gene that is 90% methylated. 

  

Table 2.5 PyroMark PCR cycling conditions 
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2.3 Global DNA methylation ELISA 

Global DNA methylation was measured by the concentration of 5-methyl-

cytosine (5MedCyd) using the Global DNA Methylation ELISA Kit 

(Cambridge Biosciences, UK). Kit components included a 96-well 5MedCyd 

DNA conjugate plate, anti-5MedCyd antibody, secondary HRP-conjugated 

antibody, assay diluent, 10x wash buffer, substrate solution, stop solution 

and 5MedCyd standard. 

2.3.1 Preparation of DNA 

500 ng of genomic DNA which was extracted using the above method 

(section 2.2.2), was converted to single-stranded DNA by incubating at 95°C 

for 5 minutes and chilling on ice. DNA was then digested into nucleosides by 

incubating with 5 units of nuclease P1 (Sigma, UK) for 2 hours at 37°C, 

followed by treatment with alkaline phosphatase (Sigma, UK) for 1 hour at 

Figure 2.6 The pyrosequencing output: pyrogram 

 

Peak height in the pyrogram correspond to the number of nucleotides incorporated. 

A negative control is included (orange line) which shows no peak. Blue boxes show 

the methylation reads (%) correspond to the percentage of methylated sites in the 

sample. 
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37°C in 100 mM Tris, pH 7.5. The reaction mixture was centrifuged for 5 

minutes at 6000xg and the supernatant was used for the ELISA assay. 

2.3.2 Preparation of conjugate ELISA plate 

Standards of 5MedCyd were prepared from a stock solution provided in the 

kit ranging from 0-10 µM in assay diluent. The conjugate plate was 

rehydrated in assay diluent for 1 hour at room temperature on an orbital 

shaker and washed once in 1xPBS. 50 µl of prepared DNA sample or 

5MedCyd standard was added to the wells and incubated for 10 minutes on 

an orbital shaker. All standards were assayed in duplicate while five DNA 

samples were assayed in duplicate. 50 µl of anti-5MedCyd antibody was 

then added to each well, mixed and incubated for 2 hours at room 

temperature on an orbital shaker. Following incubation, wells were washed 

four times in 1x wash buffer and 100 µl secondary HRP-conjugated antibody 

was added to each well and incubated at room temperature for 1 hour on an 

orbital shaker.  Wells were again washed four times in 1x wash buffer. For 

the colorimetric detection, 100 µl substrate solution was added to all wells 

and incubated on an orbital shaker until a distinct colour range appeared 

across the standards. The reaction was then stopped by adding 100 µl stop 

solution to each well. Absorbance was read at a wavelength of 450 nm on a 

Synergene HT plate reader (Biotek, UK). 

2.4 Health and lifestyle questionnaire  

Participants completed a questionnaire consisting of two sections (appendix 

1): in the first section they were asked to report their exposure to smoke, 

attendance at work and diet in the last 24 hours. In the second part, 

participants were asked about their occupational exposures and hazards, 

their exposure to chemical or physical agents at home or in their job, their 

health, lifestyle and finally a food frequency questionnaire. This questionnaire 
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was designed for a previous study investigating male infertility (Altakroni, 

2015) and was implemented here as a large source of information relevant to 

DNA methylation analysis. 

2.4.1 Categorisation of health and lifestyle data 

In the health section of the questionnaire, all answers were put on a binary 

scale, “0” or “1”. Having fever or flu, or job illness was recorded as binary and 

the duration was not considered. Participants were asked about job-related 

illnesses; having stress, depression or anxiety was the only variable included 

in subsequent analyses due to its previous association with effects on sperm, 

while physical injury (e.g. breathing or lung problems) were not. Of those 

participants who self-reported sleep problems, most of these also confirmed 

to suffer from stress, therefore these two variables were combined under the 

single variable of “stress”. Type of underwear worn was recorded as either 

wearing boxer shorts or not wearing boxer shorts. 

Smoking habit was investigated on a binary scale as either non- or ex-

smokers as no participants reported to be current smokers, and also on a 

continuous scale as the number of years the participant had smoked. 

Smoking duration (years) was calculated from the difference in the reported 

age of starting and stopping smoking. The type of cigarettes smoked was not 

included in the analysis.  Alcohol consumption was similarly investigated on 

a binary scale as those who drink <1 drink per week or ≥1 drink per week, 

and on a continuous scale as units consumed per week. Participants 

recorded the type and number of alcoholic beverages they consumed per 

week and units of alcohol per drink were recorded as: one pint of 4% beer, 

2.3 units; one pint of 4.5% lager or cider, 2.6 units; one 175ml glass of 13% 

wine, 2.3 units; one 25 ml measure of 40% spirits, 1 unit (Drinkaware, 2016). 

To determine physical activity levels, participants were asked how many 

times a week they participated in mild, moderate and strenuous physical 

activity. The values given for moderate and strenuous exercise were then 
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input to the Godin equation which gave a leisure score index (LSI) for each 

participant: 𝐿𝑆𝐼 = (5 ∗ 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒) + (3 ∗ 𝑠𝑡𝑟𝑒𝑛𝑢𝑜𝑢𝑠). Participants that scored 

≤23 were classed as insufficiently active and those that scored ≥24 were 

classed as active based on previous reports (Amireault and Godin, 2015).   

Participants were asked about their exposure to a number of hazards either 

at work or at home, and answered as “yes” or “no”. Factors which had less 

than 10% of participants either exposed or not exposed were excluded from 

further analysis due to the possibility for low numbers to give false positive 

results. 

2.4.2 Food frequency questionnaire 

Men were asked how regularly they consumed seventy-eight food items on a 

scale of 1-7 for 1) never, 2) less than once a month, 3) once or twice a 

month, 4) once per week, 5) 2-3 times per week, 6) 4-6 times per week and 

7) every day. These food items were then grouped into 28 categories and the 

mean frequency of consumption was calculated for all the foods in each 

category. This data was analysed by principal components analysis (PCA) to 

identify where the greatest variation existed in diets of the study population 

based on foods consumed. PCA revealed that there were two distinct diet 

types with the greatest amount of variation found in the first and second 

principal components; these were diets generally deemed to be “healthy” and 

“unhealthy”. The foods that correlated together in the healthy diet included 

vegetables, nuts, cereals, green tea, vitamins, soy and low fat dairy, 

compared with the unhealthy diet in which foods that correlated included red, 

fried and processed meat, fries, butter, high fat dairy, bread, sugar and 

confectionary, and caffeinated sugar sweetened beverages (Coca-Cola, 

Pepsi, Red Bull). Items excluded from the analysis were food wrapped in 

cling-film, tinned food and spicy food as their contribution to either of these 

diets was ambiguous. 
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Each food group had a proportional loading value in each diet, which can be 

explained as the relative contribution of that food to the variation in that diet, 

e.g. red meat has a high loading in the unhealthy diet (0.33) and a very low 

loading in the healthy diet (0.08), while nuts have a high loading in the 

healthy diet (0.33) and a low loading in the unhealthy diet (0.03). Food 

groups which had a loading >0.1 in one diet and <0.1 loading in the other 

diet were classed as being associated with the former diet. Food groups with 

loading values <0.1 in both diets were excluded as these contributed very 

little to the variation in both diets; these included eggs and caffeinated non-

sugar sweetened beverages (tea and coffee). In addition, food groups that 

had high (>0.1) loading values in both diets were excluded as they 

contributed equally to both diets, i.e. participants that had a high “healthy” 

score consumed foods that were also consumed by participants that had a 

high “unhealthy” score. These items included chicken/poultry, liver, fish, fried 

fish, vegetable oil, fruit, and whole grains.  

Healthy and unhealthy diet scores were calculated for each participant by 

multiplying the frequency of consumption of each food group by the food’s 

loading value and taking the sum of these scores for each item. Men were 

then classified into quartiles for each diet type: quartiles for unhealthy diet 

were <3.975, 3.9751-4.885, 4.8851-5.82, ≥5.821. Quartiles for healthy diet 

were ≤1.47, 1.471-2.465, 2.4651-3.4025, ≥3.4025. 

2.4.3 Statistical analysis 

Statistical analysis was carried out using the IBM SPSS Statistics 20 

package while graphs were generated using GraphPad Prism 6 software. 

Descriptive statistics were analysed for each independent and dependent 

variable, observing means and standard deviations (SD) for raw methylation 

and semen parameters data, and geometric means and 95% CI when means 

had been obtained from transformed data.  
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Differences in all continuous dependent variables (DV) including % 

methylation, semen parameters, fertilisation and cleavage rates between 

binary independent variables (IV) (e.g. non-/ex-smoker) were analysed using 

an independent t-test. Differences in continuous DVs between IVs with three 

or more categories (e.g. diet quartiles) were analysed by one-way ANOVA 

and followed up using Tukey’s post-hoc test to identify differences between 

specific groups. Tests were carried out under the assumption of equal 

variance; when Levene’s test for equality of variances was not met (p<0.05), 

results were taken from the t-test not assuming equal variance. Differences 

in binary DVs (e.g. pregnancy outcome) between continuous IVs were 

analysed with non-parametric Mann-Whitney U test, and for binary DVs 

between categorical IVs the Chi squared (χ2) test was used. Multiple 

regression analysis was carried out to determine effects of significant IVs 

whilst controlling for other variables. IVs that showed multi-collinearity were 

not included in the same regressions to prevent redundancy. Spearman’s 

and Pearson’s correlations were used to identify linear relationship between 

continuous IV and DVs. 

DNA methylation data was transformed according to section 2.1.2. Genes 

that underwent transformation to normality were SNRPN, MEG3, NR3C1 and 

DAZL (appendix 12, figures 1-4). 

2.5 An in vitro sperm glycation assay 

To investigate the effects of glycation on human sperm, an in vitro model 

was developed in which sperm were incubated with various glycating agents 

and formation of a major AGE, CML, was measured. The effects of this 

glycation on sperm motility, oxidative DNA damage, intracellular ROS levels 

and HA binding were also measured. 
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2.5.1 Procurement of semen  

Semen samples were obtained from consenting donors (aged 19-51 years), 

covered by faculty ethical approval at Manchester Metropolitan University 

(appendix 7). Donors were verbally informed of the study details and given a 

participant information sheet (appendix 8). They then completed a medical 

screening questionnaire (appendix 9) and finally signed the participant 

consent form (appendix 10). Semen was produced on site in a designated, 

secured room. Participants were instructed how to produce the sample and 

given a sample collection pot (Sterilin, UK). Participants subsequently signed 

a semen procurement form each time they donated a sperm sample 

(appendix 11). 

All neat semen samples underwent standard semen analysis according to 

the WHO 5th edition before processing. Firstly, semen was liquefied at 37°C 

for 30 minutes. The total volume of semen was then measured and recorded. 

To measure sperm motility and concentration, 5 µl of semen was applied to a 

cell counting slide (Vitrolife, UK) and analysed by a Computer Assisted 

Sperm Analyser (CASA – Sperminator®, Procreative).  Depending on 

downstream experiments, semen samples were then either washed or 

prepared by density gradient centrifugation as described below. 

2.5.2 Washing of sperm and preparation by density gradient 

centrifugation 

Liquefied semen was centrifuged 800 x g for 10 minutes to separate sperm 

cells from seminal plasma. Seminal plasma was removed and flash frozen in 

liquid nitrogen before storage at -80C. Some sperm pellets were frozen at 

this point at -80°C until use. Thawed sperm pellets or fresh sperm pellets 

were resuspended in 3 ml of Sperm Preparation Media™ (SPM) (Origio, 

Denmark) and centrifuged 300 x g for 10 minutes. This wash step was 

repeated once more and cells were resuspended in 1 ml SPM or PBS and 

counted. 
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Alternatively, motile sperm were separated from immotile and immature 

sperm and from non-sperm cells by density gradient centrifugation. Briefly, 

up to 1 ml of neat semen was layered on top of a gradient of 55% and 80% 

SupraSperm™ media (Origio, Denmark) and centrifuged 300 x g for 20 

minutes. The supernatant was removed and discarded and the sperm pellet 

was washed twice in SPM (Origio, Denmark), centrifuging at 300 x g for 5 

minutes each. The cells were then resuspended in 1 ml SPM and counted. 

2.5.3 In vitro glycation of sperm 

Motile sperm that had been separated by density gradient centrifugation 

were pelleted and resuspended in solutions of SPM containing either D-

glucose (10 mM, 30 mM or 50 mM), methylglyoxal (MG) (50 µM) or glyoxal 

(GO) (50 µM) (Sigma, UK) at a concentration of 20x106 cells/ml. Sperm were 

incubated at 34°C on a rotator for 6 days before analysis for CML formation 

and oxidative DNA damage. Sperm were also glycated for up to 4 hours with 

cells removed at 0, 2 and 4 hour time points for analysis of motility, 

hyaluronan binding capacity and CML formation.  

2.5.4 MG toxicity assay 

The concentration of MG and GO to use in the experiments was determined 

using a toxicity assay in which sperm were incubated with concentrations of 

MG at 0, 50, 100, 250 and 500 µM in SPM for 48 hours at 34°C before a 

vitality stain was carried out to determine the percentage of live sperm. 

2.3.4.1 Vitality staining 

The one step eosin-nigrosin stain for sperm vitality was prepared based on 

the guidelines published in WHO 5th edition. The stain is dye-exclusion 

mechanism in which dead membrane-damaged sperm are stained pink or 

purple, while live membrane-intact sperm exclude the dye and appear white. 
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Briefly, eosin Y (0.67%) (Sigma, UK) and sodium chloride (NaCl) (0.9%) 

(Sigma, UK) were dissolved in water with gentle heating, before nigrosin 

(10%) (Sigma, UK) was added, and the solution was boiled, then allowed to 

cool and filtered. Equal volumes of eosin-nigrosin stain and resuspended 

sperm sample were mixed and smeared onto a microscope slide using the 

feathering technique. A second smear was made using a fresh aliquot of 

sperm. Using a light microscope, 200 sperm were counted and the number 

of live and dead sperm were recorded. % live sperm were calculated as 

((#𝑙𝑖𝑣𝑒 𝑠𝑝𝑒𝑟𝑚/#𝑡𝑜𝑡𝑎𝑙) ∗ 100). 

2.5.6 Measurement of CML by flow cytometry 

Sperm were removed from the 6 hour glycation experiments at 0, 2 and 4 

hours, and pelleted by centrifugation at 350 x g to remove glycation media. 

Cells were resuspended in paraformaldehyde (4%) (Sigma, UK) and 

incubated at room temperature on an eppendorf rotator for 20 minutes. Cells 

were pelleted again and permeabilised by resuspension in 0.1% PBS-tween 

for 15 minutes. Sperm were then blocked in 10% normal goat serum (Vector 

laboratories, UK) in 1xPBS for 1 hour at room temperature. Cells were 

incubated with a mouse anti-CML primary antibody (1:50) (Life technologies 

UK) for one hour at room temperature, followed by a goat anti-mouse Alexa 

Fluor 488 secondary antibody (1:2000) (Abcam, UK) for 45 minutes at room 

temperature in the dark. A control in which primary antibody was omitted 

from the procedure was also prepared under the same conditions. Cells were 

then washed once and resuspended in 1xPBS before acquisition and 

analysis using a Facs Calibur flow cytometer (BD Biosciences, UK). Cells 

were gated using the forward-scatter/side-scatter (FSC/SSC) channels 

recorded in a dot plot, to exclude debris and large cells. Fluorescence was 

measured in the FL-1 channel and CML levels were recorded as the mean 

fluorescence intensity (MFI) of cells and recorded on a histogram. The 

boundary of fluorescence-negative and fluorescence-positive cells was set 

by gating 1-1.5% of unstained cells in the positive region. 
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2.5.7 Measurement of intracellular reactive oxygen species 

Intracellular reactive oxygen species (ROS) in sperm treated with either 

glucose, fructose, mannitol, MG or GO was measured using the CM-

H2DCFDA General Oxidative Stress Indicator (Invitrogen, UK). CM-

H2DCFDA diffuses into cells where it is oxidised to yield a fluorescent adduct 

that is trapped inside the cell and its emission can be measured in the 

Fluorescein spectrum. Briefly, treated sperm were washed in pre-warmed 

PBS and resuspended in PBS containing the ROS probe at 5 µM. The cells 

were incubated at 34°C for 30 minutes. The dye was then removed by 

centrifugation and the cells resuspended in PBS and fluorescent intensity 

was detected in the FITC emission range of the BD Facs Calibur (BD 

Biosciences, UK). A negative control of sperm unexposed to the dye was 

made and a positive control of sperm exposed to H2O2 for 15 minutes prior to 

the assay. 

2.5.8 Measurement of 8-oxoguanine by flow cytometry 

The level of oxidative DNA damage in spermatozoa incubated with glycating 

agents over 6 days was determined using the fluorometric OxyDNA Assay 

Kit (Calbiochem®, EMD Millipore, US). The assay is based on a FITC-

conjugate that binds to the 8-oxoguanine moiety of 8-oxoguanosine of 

oxidized DNA. Sperm cells were centrifuged 300 x g for 7 minutes to pellet 

the cells and remove media. Cells were fixed in 4% PFA and permeabilised 

with 70% ethanol. Cells were washed with Wash Solution (1x) and 

resuspended in 100 µL FITC-conjugate (1x), before incubation in the dark for 

1 hour at room temperature. Cells were washed once in Wash Solution (1x), 

resuspended in 1xPBS and analysed by flow cytometry. Flow cytometry was 

performed as described above, also using the FL-1 channel to determine 

fluorescence at excitation wavelength of 495 nm. 
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2.5.9 Immunocytochemical staining of sperm for AGEs and CML 

Glycated sperm were stained for AGEs using a general anti-AGE antibody 

(Abcam, UK) and specifically for CML using an anti-CML antibody (Abcam, 

UK). 10 µl of sperm was placed on one end of a glass microscope slide and 

smeared across the slide using the feathering technique and allowed to air 

dry. Slides were then fixed by submersion in ice-cold methanol (100%) for 15 

minutes. Once dry, a water-resistant pen (Life technologies, UK) was used to 

seal the area around the cells. Slides were rehydrated in PBS-tween (PBS-T) 

for 3 minutes before blocking in 10% normal goat serum in PBS-T (0.05%) 

for 1 hour at room temperature. Slides were washed in 3x fresh changes of 

PBS-T for 1 minute each. Primary antibodies (anti-AGE or anti-CML) were 

diluted in PBS-T and added to the slides (1:200) and incubated in a 

humidified chamber overnight at 4°C. Negative controls were included in 

which the primary antibody was omitted. Next day, slides were washed in 3x 

changes of PBS-T and secondary goat anti-mouse (1:2000) or goat anti-

rabbit (1:2000) antibodies (Life Technologies, UK) were added to the slides 

staining for CML and AGEs, respectively.  Slides were incubated with 

secondary antibodies for 1 hour at room temperature in a darkened 

humidified chamber. Slides were washed a final 3 times in PBS-T before 

Figure 2.7 Slide preparation of sperm for vitality staining  

Sperm vitality was determined using the eosin-nigrosin stain. Stained 

sperm were smeared onto a glass slide by feathering (A) and visualised 

as live (white) and dead (pink) by light microscope analysis (B). 

A B 
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excess reagent was drained off and sperm nuclei were stained for using 

Vectashield Mounting Medium with DAPI (Vectashield, UK) and finally 

coverslipped. Fluorescent images were taken using an Axio Imager Z1 

(Zeiss, HBO 100 mercury lamp) with AxioVision 4 software. Sperm head 

fluorescence was quantified using ImageJ software and the Corrected Total 

Cell Fluorescence (CCF) was obtained using the equation CCF = initial cell 

density – (cell area x background intensity). 

2.5.10 Sperm hyaluronan binding assay 

Functional activity of plasma membrane hyaluronidase in glycated and non-

glycated sperm was measured using Hyaluronan Binding Assay (HBA) slides 

(Origio, Denmark). At 0, 2 and 4 hours of incubation with MG, GO or SPM, 8 

μL of sperm suspension was removed and placed onto a hyaluronan-coated 

slide and a coverslip applied. After a 10 minute incubation period in which 

sperm were allowed to bind to hyaluronan, the number of bound motile 

sperm and the number of unbound motile sperm on a 10x10 square grid 

were counted at 40X magnification (fig. 2.1). Immotile sperm were not 

counted. The percentage of bound sperm is the hyaluronan binding capacity 

Figure 2.8 Sperm Hyaluronan Binding Assay (HBA) 

Sperm exposed to glycation conditions were place on HBA slides and 
assessed for HA binding. Bound sperm are differentiated from unbound 
sperm by their beating tails with heads that make no progressive 
movement (from Origio.com).  
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of the cells. Sperm motility was also assessed at these stages using a 

computer assisted sperm analyser (CASA) recording grades A (fast 

progressive motility), B (slow progressive motility), C (non-progressive 

motility) and D (immotile). 

2.5.11 CML levels in obese subjects 

To determine whether obese individuals have higher levels of sperm AGEs, 

CML was measured in obese men and compared with that of normal weight 

individuals. 15 men were recruited via local newspaper advertisements and 

word of mouth. Nine of the participants were obese according to World 

Health Organization guidelines (WHO, 2013), having a BMI ≥ 30 kg/m2, and 

six participants had a normal BMI of 18-24 kg/m2. The obese and normal-

BMI groups were not age-matched due to the low number of volunteers. 

Semen analysis was carried out as described in section 2.5.1. Three of the 

subjects had sperm count of <10x106 cells/ml and did not have the minimum 

required for the CML assay. One individual could not produce a sample, 

resulting in five participants for each group. The immunoassay was run as 

detailed in section 2.5.6 and stained cells were analysed by flow cytometry. 

2.6 In vitro glycation of hyaluronidase protein 

To determine the effects of glycation on the SPAM1 hyaluronidase activity, 

firstly molecular cloning was carried out to generate the recombinant form of 

the protein. However, this was not successful, and so a commercially 

available hyaluronidase, Cumulase™ (Origio, Denmark), was used. This 

enzyme is used in preparation for ICSI to disperse the cumulus cells in 

retrieved oocytes. Furthermore, to determine the effects of glycation, a 

hyaluronidase substrate gel assay was developed to measure enzyme 

activity. 
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2.6.1 Generation of recombinant SPAM1 protein 

2.6.1.1 Molecular cloning 

A pENTR223 vector containing cDNA insert of sperm adhesion molecule 1 

(SPAM1/PH-20/hyaluronidase) was obtained from the Harvard Medical 

School PlasmID Repository (Clone ID: HsCD00375886). The SPAM1 insert 

was amplified by PCR using primers designed based on the full length 

SPAM1, transcript variant 1 (XM_011516523). SPAM1F: 5’- 

TGGCATGGATCCATGGGAGTGCTAAAATTCAAGCAC -3’, and SPAM1R: 

5’- TGGCAAGTCGACGAAGAAACCAATTCTGCTAATA -3’.  Briefly, 1 ng 

plasmid DNA was added to SPAM1 primers (0.3 µM) and 5x MyTaq 

Reaction Buffer (Bioline, UK). Cycling conditions included an initial 

denaturation at 95°C for 15 minutes, followed by 30 cycles of denaturation at 

95°C for 15 s, annealing at 61°C for 30 s, extension at 72°C for 30 s, and a 

final extension of 72°C for 5 minutes.  

The PCR products were separated on a 0.8% agarose gel at 50 volts for 1 

hour and visualised under ultraviolet (UV) light using a Gel Imaging System 

G-BOX (BioRad). The product was expected to be 1533 bp. Bands were 

excised and cleaned up using QIAquick Gel Extraction Kit (Qiagen, UK). 

Molecular cloning was carried out at the Laboratoire de Biologie du 

Développement de Villefranche-sur-mer, Sorbonne Universités. Briefly, 

sequences were cloned into the pGEX 4T1 vector, which contained a 

glutathione-S-transferase (GST) tag sequence. A restriction digest was 

performed on pGEX 4T1 vector using the restriction enzymes BamHI and 

SalI and the SPAM1 insert was ligated into the multiple cloning site. Clones 

were transformed into E.coli BL21 RiPL cells (Agilent, UK) using heat shock 

for 2 minutes at 42°C followed by plunging on ice. Cells were plated out onto 

liquid broth (LB) agar (10% tryptone, 5% yeast extract, 10% NaCl) with 

ampicillin (1 mg/ml) (Thermo Scientific, UK) and allowed to grow overnight at 

37°C. 
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2.6.1.2 Bacterial cell culture and induction with IPTG 

A single successful recombinant colony was inoculated into 5 ml LB media 

(10% tryptone, 5% yeast extract, 10% NaCl) and allowed to grow overnight 

at 37°C, with shaking for aeration at 270 rpm (Thermo Scientific, UK) . The 

following day, 0.5 ml or 5 ml overnight culture was added to 50 ml LB media 

or 1 L LB media and grown for 2.5 hours until the log growth phase. When an 

OD600 value between 0.4 and 0.6 nm was reached, 1 ml of non-induced 

culture was removed and saved for later analysis while the remaining cells 

were induced with 0.5 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

(Sigma, UK). Cells were harvested at 2 and 5 hours post-induction. Later, to 

reduce the formation of inclusion bodies, cells were grown as above and 

allowed to cool to room temperature before induction with IPTG, followed by 

growth at 16°C or 20°C overnight with shaking at 270 rpm. Cells were 

centrifuged at 600 x g for 10 minutes and pellets were frozen until lysis. 

2.6.1.3 Protein purification 

Bacterial cells were lysed in 1xPBS containing lysozyme (1 mg/ml) and 

Triton X-100 (0.2%) on ice for 30 minutes. DNase and RNase were added to 

a final concentration of 5 µg/ml to reduce the viscosity of the solution. Cells 

were spun down to separate soluble protein, and the insoluble pellet was 

resuspended in a detergent-based lysis buffer containing N-lauroylsarcosine 

(1.5%), diethanolamine (25 mM) and EDTA (1 mM). The GST-SPAM1 

recombinant proteins were purified on a column using Glutathione 

Sepharose 4B (Sigma, UK) and eluted with 20 mM reduced glutathione (50 

mM Tris, pH 8.0) (Sigma, UK). Protein could not be successfully purified so 

the experiment was terminated here and a commercial hyaluronidase 

enzyme was used. 
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2.6.2 Hyaluronidase substrate gel assay 

2.6.2.1 Assay development 

A substrate gel assay was developed to quantify hyaluronidase activity of the 

commercial enzyme Cumulase™ (Origio, UK) by polyacrylamide gel 

electrophoresis (PAGE). A 10% polyacrylamide separating gel was prepared 

using 30% acrylamide/bisacrylamide. Hyaluronic acid (10 mg/ml) was 

dissolved in water at 4°C for 24 hours and added to the separating gel mix to 

a final concentration of 0.1 mg/ml. A 7.5% stacking gel was prepared without 

hyaluronic acid. Gels were loaded with 5-10 µg of Cumulase protein™ and 

run at 15 mA per gel for 1 hour 40 minutes. Following electrophoresis, gels 

were washed in 3% Triton X-100 in 50 mM HEPES (pH 7.4) for 2 hours on a 

benchtop rotator to remove SDS. A number of buffers were tested for 

enzymatic activation of the hyaluronidases: 0.1 M sodium formate (pH 3.75) 

with 0.15 M NaCl; 50 mM HEPES (pH 7.4) with 0.15 M NaCl; 12.5 mM 

sodium acetate (pH 3.0), 25 mM sodium acetate (pH 4.0), 50 mM sodium 

acetate (pH 6.0) and 100 mM sodium acetate (pH 7.0). Gels were incubated 

with the buffers for 16-39 hours, followed by staining with Alcian blue (0.5%, 

3% acetic acid) for 2 hours. Gels were destained in 7% acetic acid until clear 

bands could be seen on the gels. Following this, protein bands were stained 

using Coomassie blue (0.5%, 50% methanol, 10% acetic acid) and destained 

in 50% methanol, 10% acetic acid. Gels were visualised and photographed 

on a Chemidoc touch transilluminator (Bio-Rad, UK). Band sizes were 

analysed using Image Lab (Bioline, UK). 

2.6.2.2 Glycation of Cumulase™  

Cumulase™ protein concentration was measured using the Pierce BCA 

Protein Assay Kit (Thermo Fisher Scientific, UK) using bovine serum albumin 

(BSA) standards provided with the kit. Glycating agents MG (5 µM), GO (5 

µM), glucose (20 mM), fructose (20 mM) and mannitol (20 mM) were then 

diluted in PBS (pH 7.4) (Fisher, UK) with sodium azide (0.02 mM) and added 
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to an equal volume of Cumulase™ enzyme (0.5 mg/ml). A sample of 

Cumulase™ enzyme with PBS alone was included (0.5 mg/ml) to account for 

non-glycation induced changes in the protein. A sample of BSA protein alone 

with PBS was also included to account for support protein activity as there is 

human serum albumin (HSA) present in Cumulase™. Samples were 

incubated at 37°C and 50 µl aliquots were removed at days 0, 3, 7 and 14 

and snap frozen in liquid nitrogen until measurement. 

2.6.2.3 Measurement of glycated Cumµase™ using the hyaluronidase 

substrate gel assay 

A 10% polyacrylamide separating gel containing HA and 7.5% 

polyacrylamide stacking gel were prepared as described in section 2.6.2.1. 

Cumulase samples were mixed with sample buffer at a 4:1 ratio and 20 µl of 

this was loaded on to the gels. Gels were run at 15 mA per gel for 1 hour 30 

minutes. Gels were treated for hyaluronidase activity as described in section 

2.6.2.1, with the exception that the hyaluronidase assay buffer used was 25 

mM sodium acetate (pH 4.0) for all gels, and this was carried out at 37°C for 

16 hours as described. 
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Chapter 3 

Effects of lifestyle and environment on DNA 

methylation and infertility 

3.1 Introduction 

Over half of male factor infertility cases are idiopathic and the discovery of 

differences in methylation between fertile and infertile men has led to 

speculation that this could be one of the causes (Hammoud et al., 2010; 

Aston et al., 2015). DNA methylation is a major regulatory mechanism for 

gene expression and primarily silences genes by preventing transcription 

factor interaction with DNA at important regulatory sites, such as promoters. 

Several lifestyle factors have been linked to changes in the sperm DNA 

methylation as well as to aberrant semen parameters, including age, obesity, 

alcohol consumption, nutrition, physical activity and exposure to 

environmental toxicants (Jenkins et al., 2014; Donkin et al., 2015; Ouko et 

al., 2009; Aarabi et al., 2015; Denham et al., 2015; Chiu et al., 2015; De 

Rosa et al., 2003). Therefore, current research seeks to determine whether 

the decrease seen in male fertility is linked to lifestyle-induced changes in the 

methylome.  

Much of the research on sperm methylation has focussed on imprinted 

genes (Kobayashi et al., 2007; Boissonnas et al., 2010; Geuns et al., 2007; 

Ankolkar et al., 2013; Poplinski et al., 2009). Imprinting is the process of 

silencing or activating certain genes in a parent of origin-specific manner, to 

confer mono-allelic gene expression. These genes are crucial to ensure the 

correct balance of gene expression in the developing embryo, which if 

disturbed results in developmental abnormalities (Jacob et al., 2013) and 

DNA methylation is the main regulatory mechanism controlling this (Kaneda 

et al., 2004). As many studies have reported differences in imprinted gene 
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methylation between the sperm of fertile and infertile men, a major question 

resides over whether this has arisen due to abnormal reprogramming during 

germ cell development, which could be a source of deregulated gene 

expression leading to infertility, or alternatively, whether sperm epimutations 

are acquired during post-natal life from lifestyle and environmental 

exposures, leading to aberrant methylation.  

DNA methylation also varies at non-imprinted genes important for regulating 

epigenetic machinery or important in sperm function. The 5,10-

methylenetetrahydrofolate reductase (MTHFR) gene codes for a key enzyme 

involved in folate metabolism, the pathway by which methyl groups are 

obtained for DNA methylation. Hypermethylation of the MTFHR promoter has 

been found in infertile men (Wu et al., 2010; Botezatu et al., 2014), and 

critically, this hypermethylation has been linked to hypomethylation at other 

genes in infertile men (Rotondo et al., 2013) suggesting a disruption of the 

methylation process itself. Furthermore, array-based sequencing studies 

have shown that fertile and infertile men actually have very distinct 

methylation patterns across numerous genes with varying roles (Houshdaran 

et al., 2007; Urdiguino et al., 2015; Shütte et al., 2013). These differences in 

normal DNA methylation may have implications for offspring health and may 

be a mechanism behind the transgenerational effects of male health 

(Northstone et al., 2014; Axelsson et al., 2013; Soubry et al., 2015). 

Understanding the transmission of non-genetic factors through the male 

germ line is critical to elucidating the origins of disease. 

The “deleted in azoospermia-like” (DAZL) gene encodes an RNA-binding 

protein which is essential for gametogenesis. Disruption of Dazl in C. 

elegans, causes meiotic arrest in oogenesis (Karashima et al., 2000), in 

Xenopus, is required for early primordial germ cell differentiation (Houston 

and King, 2000), and in mice, leads to spermatogenic arrest (Schrans-

Stassen et al., 2001). In humans a lack of DAZL transcript causes 

azoospermia (Lin et al., 2001). Importantly DAZL expression is regulated by 

DNA methylation at a CpG island at its promoter, which is unmethylated in 

reproductive cells (Linher et al., 2009). A few recent studies have shown that 
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alterations in DAZL DNA methylation closely associate with spermatogenesis 

disorders in patients with infertility (Navvaro-Costa et al., 2010), suggesting 

this may be a strong candidate gene for spermatogenic failure. 

Assisted reproductive techniques (ART) bypass the selection processes that 

happen during normal fertilisation, particularly in ICSI when a single sperm is 

injected into the oocyte which circumvents sperm binding and penetration of 

the ZP. Therefore, there is much interest in whether aberrant DNA 

methylation signatures in the sperm of infertile men could have 

consequences and for fertilisation rates and for success of the developing 

embryo. As there is some evidence of an increase in imprinting disorders 

following ART, it is possible that aberrant sperm methylation could play a role 

(Lazaraviciute et al., 2014). Indeed, some studies have shown that 

methylation errors in sperm are associated with poor ART outcomes (Kuhtz 

et al., 2014) and even that the same epimutations have been found in the 

offspring as in the paternal sperm DNA (Kobayashi et al., 2009). However, 

other research shows that aberrant embryonic methylation is not linked to 

sperm DNA methylation (Camprubi et al., 2012) and aberrant sperm 

methylation does not affect ART outcomes (Ibala-Romdhane et al., 2011). As 

more than 5 million babies have been born through ART, this is an important 

area of public health research that requires further study. 

3.1.1 Aims 

The aims of this chapter were to:  

1. Identify the associations between sperm DNA methylation, health, 

lifestyle, and chemical or physical hazard exposure.  

2. Determine whether sperm DNA methylation is associated with 

aberrant semen parameters. 

3. Determine whether differences in sperm DNA methylation are 

associated with ART outcomes. 
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3.2 Results 

3.2.1 DNA methylation and lifestyle 

3.2.1.1 Global and gene-specific sperm DNA methylation 

Percentage DNA methylation is binary, i.e. methylated or not and refers to 

the proportion of DNA copies (i.e. cells) that are methylated. Firstly, the 

descriptive statistics were analysed for each gene. Table 3.1 shows the 

mean methylation of all neat semen samples. The paternally imprinted genes 

H19 exon 1 and MEG3 were hypermethylated, showing close to 100% 

methylation. H19 CTCF6 showed a mean methylation of 40.06% with a large 

range including hypomethylated (6.2%) and hypermethylated (76.2%) 

samples. The maternally imprinted genes PLAGL1 and SNRPN were 

hypomethylated, having methylation levels close to 0%. The non-imprinted 

genes MTHFR and NR3C1 also had low levels of methylation, and the 

spermatogenesis-associated gene DAZL had a low mean methylation with a 

large amount of variation ranging from 0.42% to 20%. 

Table 3.1 DNA methylation summary table 

Raw data for global and gene specific DNA methylation (%) is shown. Patients 

with varicocele (n=3) were excluded. 
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3.2.1.2 CpG site-specific methylation 

In many genes, certain CpG sites in a regulatory region can be more 

important than others. Individual CpG site methylation was analysed within 

each gene region using box and whisker plots to identify sites with greater 

variability, and therefore more likelihood of demonstrating lifestyle-influenced 

changes. CpG site methylation was also correlated with mean methylation 

across all sites in the region and Pearson’s correlation (r) values were 

analysed to identify those sites that differed from the mean trend (table 3.2). 

In sperm, at paternally imprinted genes, patients that show low levels of 

methylation are considered aberrant, while at maternally imprinted genes, 

those that show higher levels of methylation are considered aberrant. 

H19 CTCF6 

H19 is a paternally imprinted, and therefore methylated, gene. The 6th CTCF 

binding site exhibits variable methylation due to its role in CTCF binding. 

Figure 3.1 A shows the box and whisker diagrams for the 6th CTCF binding 

site (CTCF6). There are 30 CpG sites overall in the 6th CTCF binding site 

and these sites represent CpGs 5-12 within that region. There was a large 

amount of variation across all sites with the largest SDs at CpGs 4, 6 and 8 

and the smallest SD at CpG 3, which also had the lowest mean methylation 

at 25.51% (table 3.2). The mean methylation of all the CpG sites was 40.07 

(table 3.1) and all individual CpG sites were highly correlated with this 

(p<0.0001). The extreme cases in the 95th percentile and 5th percentile all 

appeared at more than 1 CpG site and no cases present in the 95th 

percentile appeared in the 5th percentile at any sites, and vice-versa. 

Therefore, generally samples were hyper- or hypo-methylated at several 

CpG sites. All cases that were in the 5th percentile had normal semen 

parameters. 

H19 exon 1 

H19 exon 1 showed methylation levels more typical of a paternally imprinted 

gene, i.e. heavily methylated (fig. 3.1 B).  All CpG sites in this region showed 
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hypermethylation with CpG sites 1, 2, 4 and 5 having mean methylation 

above 90% and CpG 3 having the lowest methylation at 86.45% and the 

largest SD at 4.43 (table 3.2) which signifies the largest and most deviant 

amount of variation in the population, however this site along with all others 

was highly correlated with the mean CpG methylation (p<0.0001). Cases that 

appeared most frequently in the 5th percentile (low methylation) were more 

likely to be oligozoospermic than those in the 95th percentile: three out of five 

patients that appeared in the 5th percentile were oligozoospermic. Some of 

the cases in the 95th percentile of exon 1 were also in the 95th percentile of 

the 6th CTCF binding site, though not all. None of the cases in the 5th 

percentile were present in the 5th percentile of the 6th CTCF binding site. It 

seems likely, therefore that these two sites are operating differently.  

PLAGL1 

PLAGL1 and SNRPN are maternally imprinted genes, therefore in sperm 

they exhibit low levels of methylation. Figure 3.2 A supports this as PLAGL1 

showed mean methylation less than 5% at all CpG sites. All sites showed 

Figure 3.1 H19 CTCF6 and exon 1 box and whisker plots 

CpG site-specific methylation (%) is shown for the H19 gene at the 6th CTCF 

binding site (A) and at exon 1 (B). Boxes show the median, 25th and 75th 

percentiles. 
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similar SDs (0.5-0.78%) and all were highly correlated with the mean CpG 

methylation (p<0.0001). 

SNRPN 

SNRPN methylation showed a large amount of variation at all CpG sites, with 

many patients showing higher than average methylation which can be seen 

by the extension of the upper whisker (fig. 3.2 B). In the 95th percentile, two 

out of four patients were oligozoospermic, and in the 5th percentile, one out 

of two patients was oligozoospermic. The cases in the 95th percentile were 

not the same cases as those for PLAGL1 suggesting not all individuals 

showed hypermethylation across all sites.  Furthermore, patients in the 5th 

percentile were not found in the 95th percentile in the paternally imprinted 

genes H19 and MEG3, which suggests that aberrant de-methylation at 

paternal imprints is not related to aberrant re-methylation at maternal 

imprints. All CpG sites were highly correlated with the mean (p<0.0001). 

Figure 3.2 PLAGL1 and SNRPN box and whisker plots 

% DNA methylation at individual CpG sites is shown for the maternally 

imprinted PLAGL1 (A) and SNPRN (B) genes. Boxes show the median, 

25th and 75th percentiles. 
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MEG3-IG DMR  

Like H19, MEG3 is also a paternally imprinted gene, and shows close to 

100% methylation (fig. 3.3). CpGs 6, 7 and 9 had the lowest methylation 

means at 69.49% (±3.83), 69.02% (±7.46), 54.93% (±5.34). CpG 8 had the 

largest SD at 10.77%. All sites were highly significantly associated with the 

mean CpG methylation (p<0.0001) except for CpG 6 (p<0.01) and CpG 9 

which was not correlated with the mean (p>0.05). Therefore the two sites of 

interest would be CpG 8 which has the largest variation and CpG 9 which 

deviates largely from the mean. Two patients which were hypomethylated at 

CpG 7 (12%) and CpG 9 (16%) were normozoospermic. The individuals in 

the 5th percentile for MEG3 were not consistently in the 5th percentile at all 

CpG sites, unlike for H19. Two of the cases that were in the 5th percentile for 

MEG3 were also in the 5th percentile of H19 exon 1, however none matched 

the cases in the 5th percentile of H19 CTCF6.  

MTHFR promoter 

MTHFR is a non-imprinted gene whose transcript is critical to the methylation 

cycle itself, and its promoter therefore shows low levels of methylation (fig. 

3.3 B). The CpG sites showed methylation levels of 1.93% (±0.68), 1.24% 

(±0.48) and 2.5% (±0.71). The variation (SD) was similar across the sites 

and all sites correlated significantly with the mean (p>0.0001). As higher 

MTHFR methylation could lead to lower methylation at other genes, 

similarities between patients in the 95th percentile of MTHFR were compared 

with those in the 5th percentile of other genes but no associations were 

found. 
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NR3C1 

The NR3C1 gene is involved in the stress pathway and is not an imprinted 

gene. The promoter usually shows about 5% methylation in sperm. CpG 

sites 1-4 showed large levels of variation which is clear from the SDs (fig 3.4 

A and table 3.2). CpG 2 had the highest mean methylation (8.9%) and the 

largest SD (2.64%). CpGs 5-7 had low levels of methylation and very small 

SDs. CpG 5 had the lowest methylation 1.36% and the smallest SD (0.81%). 

CpGs 5-7 may be important CpG sites as their variation is low, therefore 

tightly controlled, while CpGs 1-4 might be most affected by lifestyle and 

environmental stimuli. There was no consistency in patients appearing in the 

95th or 5th percentiles indicating no blanket hypo- or hyper-methylation for all 

sites. 

Figure 3.3 MEG3 and MTHFR box and whisker plots  

% DNA methylation at individual CpG sites is shown for the paternally imprinted 

MEG3 gene (A) and MTHFR gene (B). Boxes show the median, 25th and 75th 

percentiles. 



 

84 
 

DAZL 

The DAZL gene has important roles in spermatogenesis and therefore 

normally has low levels of methylation in sperm. DAZL showed large levels 

of variation across all CpG sites. Mean methylation was below 7% at all 

CpGs however the upper range was extremely large indicating many men 

with hypermethylation of this gene (fig. 3.4 B). Participants with the highest 

levels of methylation were consistently heavily methylated at all CpG sites. In 

the 95th percentile, three out of four men were oligozoospermia, while none 

of the participants in the 5th percentile were. There was no association 

between hypermethylated sites in DAZL and hypomethylation at paternally 

imprinted genes or hypermethylation at maternally imprinted genes. 

Figure 3.4 NR3C1 and DAZL box and whisker plots 

% DNA methylation at individual CpG sites is shown for the non-imprinted 

genes NR3C1 (A) and DAZL (B). Boxes show the median, 25th and 75th 

percentiles. 
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Table 3.2 Individual CpG site methylation (%) 

Means and SD were calculated for all participants at each CpG site. Correlations (r) were made between CpG site methylation 

and mean methylation across all CpG sites in each gene to identify those which did not follow the mean changes. Significant 

correlations are shown in bold. *p<0.05 
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3.2.1.3 Normalisation of DNA methylation data 

In order for parametric statistical analysis to be carried out, data must show a 

Gaussian, or normal, distribution, typified as a bell-shaped curve on a 

frequency distribution graph. Many of the genes showed positively or 

negatively skewed data which require transformations to a Gaussian 

distribution. 

For example, SNRPN was highly positively skewed and a reciprocal 

transformation (1/𝑥) was carried out (fig. 3.5 A and B). DAZL also underwent 

a reciprocal transformation. NR3C1 was log10 transformed and MEG3 was 

reversed and log10 transformed. 5MedCyd, H19 CTCF6. H19 exon 1, 

MTHFR and PLAGL1 did not require transformation.  

Table 3.3 shows the means and 95% confidence intervals for global and 

gene-specific methylation following transformation. Geometric means were 

calculated either from original methylation values if the data was not 

transformed, or by back-transforming the means and 95% CI of data that 

was transformed.  

 

Figure 3.5 Normalisation of SNPRN data 

Histograms illustrating the normalisation of SNRPN data from a highly 

positively skewed distribution (A) to a more Gaussian distribution (B) 

(n=85). 
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3.2.1.4 Participant demographics, health and lifestyle 

 

 

Table 3.3 Summary of transformed global and gene-specific methylation data 

Table 3.4 Frequencies of exposures 24 hours 

prior to sample collection 
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Participants completed a questionnaire regarding their health, lifestyle and 

exposures. In the first section of the questionnaire (appendix 1), participants 

were asked about their exposure to secondary cigarette smoke, attendance 

at work and diet in the 24 hours prior to giving their sperm sample (table 3.4). 

In the second part of the questionnaire, participants were asked about their 

health and lifestyle (tables 3.5 and 3.6) and exposure the certain chemical 

and physical agents (table 3.7). An initial exploration of the questionnaire 

results was carried out to examine trends in the data set.  

 

Table 3.5 Participants health and lifestyle 3 months 

prior to the study 
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The median age was 36 years (25 to 57 years), however most ages 

clustered closer to the median as the 25th and 75th percentiles were 32 and 

39, respectively (table 5). The study population was mostly White men with 

one Black “other” male and one Pakistani male. 10.4% of men were exposed 

to smoke in the previous 24 hours, and 71.1% had attended work. Red meat 

was the most common type of meat consumed in the previous 24 hours 

(51.5%) compared with white meat (39.2%) and fish (25.8%). 

 

 

 

Thirteen participants (13.4%) reported to have had fever or flu in the 3 

months prior to the study, and 6/13 of these reported cases also had an 

illness that was caused by or made worse by their job (table 3.5). Sixteen 

individuals reported to have a work-related illness and half of these were due 

to stress, depression or anxiety (n=8) and sleep problems (n=3). Other 

reasoning included breathing or lung problems (n=3), headaches and/or 

eyestrain (n=5), bone, joint or muscle problems affecting 

arms/hands/neck/shoulders (n=3), hips, legs or feet (n=1) or back (n=1), 

however these were not excluded from further analyses as these physical 

problems are not relevant to sperm DNA methylation. The smoking history of 

patients consisted of non-smokers (52.6%) or ex-smokers (47.4%) and the 

number of years of smoking was considered due to the consequences of 

long term smoking on health (table 3.6). The median BMI was 25.18 kg/m2 

with around 51.7% of men having a normal weight, 32.7% being overweight 

Table 3.6 Continuous participant demographics 
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and 15.7% being obese; furthermore, roughly 50% of men were physically 

active and 50% were insufficiently active (table 3.5). Alcohol consumption 

was moderate as although 69.1% of men reported to consume more than 

one alcoholic drink per week (table 3.5), the number of units consumed were 

relatively low: the 75th percentile was 15.6 units (table 3.6) which is 

considerably lower than the weekly recommended limit of 21 units. 

 

Table 3.7 Participants exposure to chemical or physical 

agents at work or at home 3 months prior to the study 

Frequencies and percentages of exposure to each chemical 

or physical agent are shown. Heavy vibrating machinery 

includes equipment or vehicles. 
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Participants were questioned about their exposure to various chemical and 

physical hazards (table 3.7). Some participants additionally reported long 

periods of driving and exposure to X-rays and these are included in the 

summary data. Exposure to pesticides, herbicides, fertilisers, dry cleaning 

fluids, PVC/plasticisers, hot environments, non-ionizing radiation, driving and 

X-rays was low, with less than 10% of men exposed. These variables were 

not included in any further analysis due to the low statistical power and false 

positives that low numbers could generate. The most frequent exposures 

were metal dust or fumes, oils or greases, detergents and soaps, glues and 

adhesives and resins, paints and varnishes and lacquers, printing inks or 

dyestuffs, solvents, and heavy vibrating machinery, equipment or vehicles. 

3.2.1.5 DNA methylation and lifestyle factors 

3.2.1.5.1 Sperm DNA methylation and age, BMI, smoking duration 

(years) and alcohol use 

Current literature suggests that with increasing age, global DNA methylation 

decreases, while gene-specific methylation may become hypo- or hyper-

methylated. In this study, spearman’s correlation revealed that neither global 

nor gene-specific methylation was correlated with age (table 3.8). When only 

men classed as fertile upon consultation at the hospital were investigated, 

global methylation still did not show a significant change with age 

(Spearman’s ρ = -0.329; p=0.146; n=21). When infertile men were 

investigated, global methylation was not significantly different with age 

(Spearman’s ρ=-0.137; p=0.387; n=42). 

The associations between BMI, duration of previous smoking, physical 

activity levels (LSI) and weekly alcohol consumption with DNA methylation 

were also investigated. Spearman’s correlation revealed no significant 

correlations between these variables and DNA methylation (table 3.9).  
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Table 3.8 Age and sperm DNA methylation 

Spearman’s correlation, ρ, was carried out for 

global methylation and for each gene or region 

with age. Age was not related to DNA 

methylation.  
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3.2.1.5.2 Effects of 24 hour exposures on DNA methylation 

Although this study focussed on lifestyle and environment in the 3 months 

prior to the study, exposures in the 24 hours prior to the sample donation 

were investigated for their potential to confound the methylation results. Men 

who consumed white meat in the previous 24 hours had a 6.51% higher 

methylation at H19 CTCF6 and 0.24% lower methylation at PLAGL1 (table 

3.10). Other gene-specific and global methylation were not altered in 

response to 24 hour exposures (tables 3.10 and 3.11).   

3.2.1.5.3 Effects of lifestyle and health factors on DNA methylation 

Lifestyle factors in the 3 months prior to the study were investigated as this is 

the approximate duration of spermatogenesis, in which time sperm in a 

Table 3.9 DNA methylation and lifestyle correlations 

Spearman’s correlation, ρ, was carried out for global methylation and for 

each gene or region with BMI, leisure score index (LSI), smoking years, and 

alcohol consumption. Sig. (p) values are shown in brackets.  
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single sample would be affected by these factors. Tables 3.12 and 3.13 list 

these health and lifestyle factors along with the differences in % DNA 

methylation at each gene. Those who reported to have a job illness had 

higher levels of global methylation (413.91 nM) than those who did not 

(370.3 nM) (p=0.06). Those who reported illness due to stress had higher 

levels of MEG3 methylation (89.57%) compared to those who were not 

stressed (88.2%) (p=0.008). Ex-smokers had higher SNRPN methylation 

(2.3%) than non-smokers (1.96%) (p=0.047). Men who had a diet consisting 

of meat and fish had higher global methylation (387.74 nM) than those who 

consumed meat only (328.75 nM) (p=0.039), however the number in the 

meat-only category was very low (n=5) which questions the validity of this 

result. DNA methylation at other sites was not affected by these lifestyle 

factors.
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Table 3.10 Imprinted gene methylation and 24-hour exposures 

Independent t-test t-statistics and p-values are shown. Significant correlations are shown in bold. p<0.05* 
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Table 3.11 Global and gene-specific methylation and 24-hour exposures  

Independent t-test t-statistics and p-values are shown. 
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Table 3.12 Imprinted gene methylation and lifestyle factors. Independent t-test t-statistics and p-

values are shown. Correlations with p-value <0.1 are shown in bold. *p<0.05, **p<0.01. 



 

98 
 

 
Table 3.13 Global and non-imprinted gene methylation and lifestyle factors. Independent t-test t-

statistics and p-values are shown. Correlations with p-value <0.1 are shown in bold. *p<0.05, **p<0.01. 
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Table 3.14 Imprinted gene methylation and chemical and physical exposures. Independent t-test t-statistics and 

p-values are shown. Correlations with p-value <0.1 are shown in bold. *p<0.05, **p<0.01. 
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Table 3.15 Global and non-imprinted gene methylation and chemical and physical exposures 

Independent t-test t-statistics and p-values are shown. Correlations with p-value <0.1 are shown in bold. 

*p<0.05, **p<0.01. 
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3.2.1.5.4. Effects of chemical and physical exposures on DNA 

methylation 

Men were asked about whether they were exposed to certain chemical and 

physical hazards at home or at work. Men who were exposed to glues, 

adhesives or resins had significantly lower SNRPN methylation (p=0.001), 

significantly higher global methylation (p=0.026) (table 3.14 and 3.15). A 

multivariate analysis was then performed with each of these variables. 

Exposures which showed an association with DNA methylation with a p-

value less than 0.1 were also included in the multivariate analysis. These 

included heavy vibrating machinery and PLAGL1 methylation (p=0.06), metal 

dust or fumes and DAZL methylation (p=0.07), and, finally, detergents and 

MEG3 methylation (p=0.09).  MTHFR, NR3C1 and H19 CTCF6 did not show 

any associations with chemical or physical exposures (p>0.1).  

Each row represents a different linear regression model showing the effect of listed 
IVs on DVs while controlling for age, BMI and abstinence time (a) and 24 hour 
white meat consumption (b). Sig. (p-values) are shown for each IV. Control 
variables, not listed, did not show any significance (p-value>0.05) except white 
meat which was linked to H19 exon 1(p=0.038). ANOVA p-values show the overall 
significance of the model as a good predictor of DV outcome considering all IVs. 

 

Table 3.16  Multivariate analysis of the effects of lifestyle and environmental 

exposures on DNA methylation 
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3.2.1.5.5. Multivariate analysis of lifestyle and environmental exposures 

on DNA methylation 

To confirm whether the exposures in the univariate analysis were significant 

when controlling for other factors, multiple linear regression models were 

carried out controlling for age, BMI and abstinence time. Although these 

control variables were not found to be associated with methylation 

independently, they may influence the trends of other exposures, and were 

therefore included as independent variables (IV).  

The results showed that exposure to glues, adhesives and resins was still 

significantly associated with an increase in global DNA methylation 

(p=0.019), but it was no longer linked to a change in SNRPN methylation 

(p=0.137). The remaining chemical and physical exposures did not show 

significant associations with DNA methylation. 
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3.2.1.6 Comparisons and trends in DNA methylation between genes 

Alterations in DNA methylation can occur at single sites or affect multiple 

genes. This can result in two or more genes showing similar patterns of 

increasing or decreasing methylation, or genes may show opposing effects, 

i.e. higher methylation at one site can be linked to lower methylation at 

Table 3.17 DNA methylation correlation matrix 

Sig. (p) values for Spearman’s correlation, ρ, between global methylation and 

gene-specific methylation. Significant correlations are shown in bold. 

*p<0.05, **p<0.01. The direction of  the correlations for SNRPN and DAZL 

have been reversed as the reciprocal transformation had been used for these 

data sets. 
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another. Furthermore, a marker of aberrant methylation processes is the 

disruption of paternal and maternal imprints, so paternally imprinted genes 

may become demethylated while maternally imprinted genes become 

methylated in sperm. Correlation analyses between genes and between 

genes and global methylation were carried out to determine whether there 

were associations between those under consideration in this study (table 

3.17). 

Bivariate correlations between global methylation and each gene showed 

that global methylation was not significantly associated with gene-specific 

methylation. 

Methylation of maternally imprinted PLAGL1 was negatively correlated with 

paternally imprinted H19 CTCF6 (p=0.03) and also negatively correlated with 

DAZL methylation (p=0.028) (fig. 3.6 B and D). DAZL methylation was highly 

positively correlated with SNRPN methylation (p=0.003) (fig. 3.6 C). Finally, 

the gene with a critical role in the methylation of DNA, MTHFR, was 

positively correlated with the NR3C1 methylation (p=0.015) (fig. 3.6 A). 
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Figure 3.6 Gene correlations 

 

Graphical representation of gene methylation correlations showing goodness of fit, r2, 

values. Correlations were made using transformed data so the real trends for DAZL 

and SNRPN are the reverse of that shown, so DAZL is negatively correlated with 

PLAGL1. 

A B 

C

 

D
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3.2.2 Sperm DNA methylation and semen parameters 

3.2.2.1 Normalisation of semen parameter data 

Semen parameters were collected from 94 men and consisted of sperm 

concentration, sperm motility grades (i.e. A, B, C and D) and semen volume. 

The different motility grades were categorised as % progressive motility (PM) 

(grade A and B) and % immotile cells (grade D) and total sperm count was 

calculated from the concentration and volume.  Table 3.18 shows the means, 

standard deviation (SD), minimum and maximum values, 25th and 75th 

percentiles and 95% confidence intervals for the raw data and following 

transformation (see section 2.1.2 for further explanation of data 

transformations). 

 

Table 3.18 Original and transformed semen parameters data 

summary 

The top section of the table illustrates the original semen parameter data while the 

bottom section shows the same parameters after transformation and/or outlier 

removal. Means for transformed data are geometric means and 95% confidence 

intervals and percentiles and min/max values were back-transformed from the log10 

data.  
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3.2.2.2 DNA methylation and sperm parameters 

3.2.2.2.1 Univariate analysis of DNA methylation and sperm parameters 

To investigate the association between semen parameters and DNA 

methylation, correlations were made for each parameter and each gene or 

global methylation. The analysis revealed that global DNA methylation was 

negatively correlated with % PM (p=0.016) and positively correlated with % 

immotile cells (p=0.005) (fig. 3.7 A and B). DAZL methylation was highly 

Figure 3.7 DNA methylation and semen parameters correlations  

Global methylation was negatively correlated with % progressive motility (A) and 

positively correlated with % immotile cells (B). 1/DAZL was positively correlated 

with sperm concentration (p<0.001) (C). MEG3 was negatively correlated with % 

progressive motility (D). 

D 

B 

C 

A 
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correlated with sperm concentration (p<0.001) and sperm count (p=0.005) 

(fig. 3.7 C). As the reciprocal transformation of DAZL (1/𝐷𝐴𝑍𝐿) was used for 

data analysis, the correlation shown in the graph is in fact negative: higher 

DAZL methylation is linked to lower sperm concentration and sperm count. 

Univariate analysis showed that MEG3 methylation was negatively correlated 

with % PM (p=0.023) and that SNRPN methylation was positively correlated 

with sperm count (p=0.048).  

When sperm parameters within the WHO threshold for normality were 

analysed, the positive correlation between global methylation and % immotile 

sperm was still significant (p=0.028) and the positive correlation between 

DAZL methylation and sperm concentration was also still highly significant 

(p=0.009) (appendix 13, table 2). DNA methylation of H19 CTCF6, H19 exon 

1, PLAGL1, SNRPN, MEG3, MTHFR, and NR3C1 were not correlated with 

any semen parameters in men within the WHO threshold for normality 

(appendix 13, table 1).  

3.2.2.2.2 Multivariate analysis of DNA methylation and sperm 

parameters 

To confirm the associations between DNA methylation and sperm 

parameters found in the univariate models while controlling confounding 

Table 3.19 Multivariate analysis of DNA methylation and sperm parameters 

Each row represents a different multiple linear regression model showing the effect 

of DNA methylation (IV) on sperm parameters (DV) while controlling for age, BMI 

and abstinence time. Sig. (p-values) are shown for each IV. Control variables, not 

listed, did not show any significance (p-value>0.05). ANOVA p-values show the 

overall significance of the model. 
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factors, multiple regression analyses were carried out with age, BMI and 

abstinence time as additional IVs. All genes that showed significance <0.1 

were included in the analysis. The results showed that increasing global DNA 

methylation is still significantly positively associated with % immotile sperm 

and negatively associated with % PM (table 3.19). Standardised β-

coefficients, which represent the relative change in the DV based on each IV, 

show that changes in global methylation are more closely linked to changes 

in % immotile sperm (p=0.017) than in % PM (p=0.043) as there is a larger 

coefficient value. 1/DAZL methylation was still significantly highly correlated 

with sperm concentration (p=0.001); so increasing DAZL methylation is 

linked to lower sperm concentration. Finally, MEG3 methylation was 

negatively correlated with % PM (p=0.024). 

 

 

Figure 3.8 DNA methylation in fertile and infertile men  

Independent t-tests were carried out between fertile and infertile men. 

MTHFR showed higher methylation in the infertile group **p<0.001. Data sets 

either side of the dotted line are plotted on the left and right y-axes. Error 

bars represent 95% CI. 
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3.2.2.3. DNA methylation in fertile and infertile men 

Following consultation and semen analysis at the fertility hospital, men were 

classed as either fertile or infertile based on their semen parameters or on 

failed previous fertility. Some men classed as infertile had semen parameters 

in the normal range, suggesting that the cause of their infertility may be due 

to factors other than the standard observable semen parameters. Therefore, 

DNA methylation was compared between these two groups of men (fig. 3.8). 

MTHFR methylation was higher in the sperm of infertile men compared with 

fertile men (p=0.006). No other genes or global methylation showed a 

significant difference in methylation. 

 

 

 

 

Figure 3.9 DNA methylation in normozoospermic and oligozoospermic 

men 

Independent t-tests were carried out between the two groups. DAZL showed 

higher methylation in the oligozoospermic group ****p<0.0001. Data sets either 

side of the dotted line are plotted on the left and right y-axes. Error bars 

represent 95% CI. 
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3.2.2.4 DNA methylation in oligozoospermic men 

Men with sperm count less than 15x106/ml are classed as oligozoospermic. 

To identify whether this subgroup of men have different methylation levels to 

men with normal sperm concentration, DNA methylation was investigated in 

men with oligozoospermia (n=72) compared to men with normal semen 

parameters (n=12). The numbers of oligozoospermic men were low overall 

therefore consideration was taken to prevent false positive results (see 

appendix 13, table 4). 

DAZL was the only gene to show a significant difference between the 

oligozoospermic and normozoospermic groups, having methylation values of 

5.16% and 2.36%, respectively. The oligozoospermic group contained the 

two highest methylation values in the data set: 18.5% and 20% methylation 

which had concentrations of 9x106 and 13x106 cells/ml, respectively. 

3.2.2.5 DNA methylation in whole and prepared sperm 

During the preparation of sperm for ART, motile and mature sperm are 

separated from immature non-motile sperm, cellular debris and non-sperm 

cells using density gradient centrifugation. A fundamental question of this 

process is whether the purified sperm population is distinct at the epigenetic 

level from the whole sperm population as the former is subsequently used for 

IVF or ICSI. To investigate this, DNA methylation was compared between 

whole sperm, obtained from neat semen washed in PBS only, and that of 

prepared sperm, which had undergone density gradient centrifugation using 

preparation media. 

DNA methylation was significantly higher in prepared sperm than in whole 

semen for all the imprinted genes including H19 exon 1 (p<0.0001), PLAGL1 

(p=0.0052) and PEG10 (p=0.0062), as well as for MTHFR (p=0.037) (fig. 

3.10 B). Global DNA methylation was also significanly higher in prepared 

sperm with a mean of 502.4 nM (±43.42) compared with whole sperm at 

369.8 nM (±39.97) (p=0.016) (fig. 3.10 A).   
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3.2.2.6 DNA methylation as a marker of WBC contaminants in whole 

sperm 

White blood cell (WBC) contamination in semen often occurs due to 

infection, and high numbers of WBCs (leukocytospermia) can cause 

infertility. Clinical sperm preparation should remove these contaminating 

cells. Two genes that are specifically expressed and non-methylated in 

WBCs are CD247 and LSP1. These genes should show hypermethylation, 

and therefore low/no expression, in sperm. Methylation of these genes was 

therefore investigated as a potential marker for WBC contamination in whole 

sperm, as this should show lower methylation levels than prepared sperm. 

Figure 3.10 DNA methylation in whole and prepared sperm  

Global methylation (n=4) (A) and methylation of the imprinted genes H19, 

PLAGL1 and PEG10 and MTHFR (B) in whole sperm (light grey bars) and 

prepared sperm (dark grey bars). Independent t-tests between whole and 

prepared sperm were carried out. Data sets either side of the dotted line 

(B) are plotted on the left and right y-axes. Error bars represent upper and 

lower 95% Cis. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  

A B 
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The results showed that CD247 was in fact hypomethylated in sperm (fig. 

3.11 A) and furthermore, methylation levels were significantly lower in 

prepared than whole sperm. This contrasts the trend seen with all other 

genes and global methylation which show higher methylation in prepared 

sperm (fig. 3.10). 

LSP1 showed a hypermethylated state that was expected of this WBC 

marker in sperm, however no significant difference was found between LSP1 

methylation in whole and prepared sperm (fig. 3.11 B). WBC counts were not 

available but would have confirmed whether the change in CD247 and LSP1 

were related to WBC numbers. 

3.2.3 DNA methylation and ART outcomes 

To determine whether differential methylation was associated with altered 

fertilisation, cleavage and pregnancy rates, global and imprinted gene 

Figure 3.11 CD247 and LSP1 methylation in whole and prepared sperm 

Methylation of the WBC markers CD247 (n=16) (A) and LSP1 (n=26) (B) in 

whole and prepared sperm. Independent t-tests were used to find significant 

differences between groups. Error bars represent upper and lower 95% CIs. 

**p<0.01. 

A B 
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methylation were compared between IVF and ICSI patients and correlated 

with outcomes in each group. 

3.2.3.1 Comparison of DNA methylation in IVF and ICSI patients 

3.2.3.1.1. ART demographics and outcomes 

ART data was collected for IVF and ICSI patients and results were 

interpreted separately for DNA methylation analysis. To identify differences 

between the two types of ART treatment, parameters including protocol type, 

days of stimulation, and transfer day, and outcomes including fertilisation, 

cleavage and pregnancy rates, were compared. There was no significant 

difference in age, % fertilisation, % cleavage or % pregnancy between IVF 

and ICSI groups. However, cleavage rates were considerably higher in the 

Fig. 3.12 IVF and ICSI data  

There were no significant differences in treatment conditions or outcomes 

between IVF (n=52) and ICSI (n=37) groups as determined by the Mann-Whitney 

U test for non-parametric continuous variables (a) and χ2 test for categorical 

variables (b). Data sets either side of the dotted line are plotted on the left and 

right y-axes. Error bars represent standard deviation values. Protocol represents 

%patients that received the LD 21 protocol. 
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IVF group than the ICSI group at 83.5% and 65.5%, respectively. Pregnancy 

rates were also higher in the IVF group compared with the ICSI group 

(44.2% and 35.7%, respectively), however this was not significant. 

3.2.3.1.2 DNA methylation in IVF and ICSI patients 

Sperm DNA methylation was compared between men undergoing IVF and 

those undergoing ICSI to determine whether differences in success rates 

were related to sperm methylation. The analysis showed that SNRPN and 

DAZL methylation were significantly higher in the ICSI group compared with 

the IVF group (p=0.01 and p=0.002, respectively) (fig. 3.13). None of the 

other genes nor global methylation showed significant differences between 

the groups. 

Figure 3.13 Sperm DNA methylation in IVF and ICSI patients  

Gene-specific (A) and global DNA methylation (B) means and 95% CI are 

shown. Data sets either side of the dotted line (A) are plotted on the left and 

right y-axes. Independent t-tests were carried out to identify differences 

between the groups. Error bars represent upper and lower 95% CIs. *p<0.05, 

**p<0.01. 

A B 
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3.2.3.2 DNA methylation and ART outcomes  

3.2.3.2.1 Univariate analysis of DNA methylation in whole sperm with 

ART outcomes 

 

To identify whether aberrant sperm methylation of whole sperm may be 

linked to negative ART outcomes, methylation data was correlated with 

fertilisation and cleavage rates for IVF and ICSI patients. The results show 

that global DNA methylation is significantly negatively correlated with 

fertilisation rate in IVF patients (p=0.034) (fig. 3.14). No gene-specific 

methylation was found to be associated with fertilisation or cleavage rates. In 

IVF patients, NR3C1 methylation was higher in those who successfully 

achieved pregnancy compared with those who did not (p=0.027) (appendix 

13, table 5). 

Fig. 3.14 Global DNA methylation and fertilisation rate 

5MedCyd concentration was negatively correlated with 

fertilisation rates in IVF patients (n=36) (p=0.034). 
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3.2.3.2.2 Multivariate analysis of DNA methylation in neat semen and 

ART outcomes 

To determine whether global methylation is truly linked to fertilisation rates, 

and whether NR3C1 methylation is linked to a greater chance of pregnancy, 

multiple linear regression and logistical regression were carried out, 

respectively. The regressions controlled for factors that primarily influence 

ART outcomes, including female age (which is known to be the major 

prognostic factor). Male age was also controlled for, despite not previously 

being associated with DNA methylation in this study (table 3.8), due to 

existing evidence that male age can be an influencing factor for ART 

outcomes. Protocol type and the duration of stimulation of the female partner 

for egg collection were included as independent control variables, as well as 

the transfer day for pregnancy outcomes. Results are shown in table 3.20. 

Table 3.20 Multiple regression analysis of global methylation and fertilisation 

rates in IVF patients 

The association between global methylation and fertilisation rates in IVF 

patients was analysed using multiple linear regression while controlling for 

female and male age, duration of stimulation (days), and protocol type (LD 21 

or antagonist). p-values indicate the significance of each independent variable 

on fertilisation rates while controlling for all other variables. Standardised β 

values represent the number of SD changes expected in the outcome variable 

for 1 SD change in the independent variable, while all other factors are held 

constant. Unstandardised B values are the coefficients in their original units. 
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The linear regression analysis showed that global methylation was no longer 

Table 3.22 Prepared sperm DNA methylation and ART outcomes 

Statistical analysis was performed using the Pearson’s correlation for continuous 

variables (a) and the independent t-test for categorical variables (b).  

Table 3.21 Logistical regression for NR3C1 

methylation and pregnancy outcome 

Significance (p) values and odds ratios are shown for the likelihood of 

each of the IVs contributing to a change in the DV. There were no 

significant associations (p>0.05). 
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statistically significantly associated with fertilisation rates in IVF patients.  

The regression showed that the main determining factor for fertilisation rates 

was female age (p=0.011), while male age, duration of stimulation and 

protocol type did not significantly contribute.  

Logistical regression for the association between NR3C1 methylation and 

pregnancy likelihood did not show significance for any of the independent 

variables (table 3.21).  

3.2.3.2.3 DNA methylation in prepared sperm and ART outcomes 

As it is the prepared sperm which is used for IVF and ICSI, the association 

between methylation of these cells and ART outcomes was investigated. 

Pearson’s correlation between prepared sperm methylation and fertilisation 

rate and cleavage rate showed no significant associations (table 3.22). In 

addition, methylation levels were not different in prepared sperm from those 

who achieved pregnancy and those who did not. 
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3.3 Discussion 

This study set out to determine the influences of health and lifestyle factors 

and environmental exposures on sperm DNA methylation, and whether 

disrupted methylation is associated with sperm parameters and IVF and ICSI 

outcomes. DNA methylation at CpG sites plays a critical role in genome 

function, including establishing parent-of-origin imprints in sperm and 

oocytes. Due to the importance of imprinted genes in embryonic 

development and to existing research that shows that aberrant methylation at 

these sites is found in infertile men, the genes H19, MEG3, PLAGL1 and 

SNRPN were investigated. The MTHFR and DAZL genes are non-imprinted 

genes which have roles in the folate pathway and in spermatogenesis, 

respectively. As DNA methylation is one of the primary regulators of gene 

expression, aberrant methylation of these genes could have consequences 

for sperm function. The NR3C1 gene is involved in the stress response 

pathway and has been widely shown to undergo methylation changes in 

response to stress and environmental pressure; it was therefore included in 

this study as a potential marker for stress. Finally, global methyl-cytosine 

levels were measured as a wider marker for methylation changes, including 

methylation at non-CpG sites and in non-regulatory regions such as 

repetitive elements. The main purpose of this study was therefore to 

determine which lifestyle and environmental factors influence global and 

gene-specific methylation and to identify whether this is consequential for 

semen parameters and ART outcomes. 

The major finding of the association between lifestyle and environment and 

sperm DNA methylation, was that global methylation levels were significantly 

higher in men who were exposed to glues, adhesives or resins. This 

contradicts existing research that suggests that exposure to damaging 

environmental toxicants cause a decrease in global sperm methylation (Miao 

et al., 2014). Global methylation was also higher in men who were meat and 

fish eaters compared with meat eaters alone, however the number of 
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reported meat-only eaters was also very low (n=5) and was not investigated 

further. 

Factors that are thought to pose the greatest risk for male infertility are age, 

BMI and smoking (Begueria et al., 2014; Eisenberg et al., 2013; Hamad et 

al., 2014). However, this study did not find any association between these 

health risks and global or gene-specific methylation. However, SNRPN 

methylation was found to be higher in ex-smokers than in those who had 

never smoked, but this significance was lost when controlling for other 

factors. SNRPN methylation was also not correlated with the number of 

years that the individual had smoked. Jenkins et al. (2014) found an overall 

increase in global methylation levels in sperm while simultaneously showing 

site-specific hypomethylation of genes. In this study, a comparison of global 

methylation levels with gene-specific methylation did not show any significant 

correlations. 

The association between DNA methylation and sperm parameters showed 

some strong correlations. DAZL, MEG3 and global methylation were 

significantly negatively associated with sperm concentration and sperm 

motility. When looking at the study population as a whole, sperm 

concentration was found to be highly negatively correlated with methylation 

of the DAZL gene promoter. This strong association was still present when 

subjects were separated into normozoospermic and oligozoospermic groups, 

in which case methylation was significantly higher in the latter. As DNA 

methylation at regulatory sites in genes generally leads to gene silencing, 

this provides evidence that hypomethylation of the DAZL promoter as an 

essential regulatory feature for expression of this gene. Moreover, DAZL 

methylation was correlated with sperm concentration in men who had 

concentration in the normal range (≥15x106/ml), indicating that inhibition of 

spermatogenesis occurs in a dose-dependent manner based on DAZL 

methylation. This is in concordance with a study by Navarro-Costa et al. 

(2010) who found that the CpG island spanning the DAZL promoter had a 

higher number of methylated sites in sperm from oligoasthenozoospermic 

men compared to normozoospermic men. The method of analysis in the 
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study referred to was bisulphite genomic sequencing of cloned fragments of 

sperm DNA. The methylation status of CpG sites is then shown as either 

unmethylated, hemi-methylated or methylated, and the % methylation 

quantified from the number of methylated clones. In contrast, the present 

study used bisulphite pyrosequencing, for which the output results in a read 

of the percentage of methylated DNA copies (i.e. cells) in a sample, and is 

considered to be more robust. The analysis showed that there was a large 

variation in DAZL methylation within the population, with some samples 

having methylation of over 20%, which would have a considerable impact on 

expression levels. CpG site-specific analysis also revealed that all sites 

within the DAZL promoter region were correlated with the mean methylation, 

therefore the aberrant methylation we have found associated with low sperm 

concentration is broadly affecting all CpG sites rather than a select few. Li et 

al. (2013) showed similar results for the effects of DAZL on semen 

parameters and also found that the 6th CTCF binding site of H19 was 

hypomethylated in oligozoospermic men, a trend which was not found here. 

The only exposure factor that had an effect on DAZL methylation was 

exposure to metal dust or fumes, however this was not significant. Metals, 

such as lead and cadmium, are considered to be damaging to male 

reproductive function (Wirth and Mijal, 2010), and could be one of the 

mechanisms in which elevated DAZL methylation leads to lower sperm 

concentration, however further research is needed to clarify this.  

The MEG3 IG-DMR was the only imprinted gene region to show a significant 

correlation with semen parameters. Interestingly, MEG3 methylation was 

negatively correlated with % progressive sperm motility which is contrast to 

two studies which showed a negative influence of MEG3 hypomethylation: 

Kobayashi et al. (2007) found that MEG3 methylation was lower in 

oligozoospermic men, and El Hajj et al. (2011) found lower MEG3 

methylation in infertile men compared to fertile men, but did not describe any 

effects on sperm parameters. Furthermore, MEG3 was not linked to any 

lifestyle or environmental exposures in this study. 
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Global DNA methylation was significantly positively correlated with % 

immotile sperm following multivariate analysis. This is in accordance with 

studies which found that methylation of LINE-1, a surrogate marker for global 

methylation, was associated with lower sperm motility (Tian et al., 2014) and 

this suggests that hypermethylation of sperm DNA is linked to an increase in 

% immotile sperm. However, this directly contrasts the findings of Montjean 

et al. (2015) who found that global methylation was positively correlated with 

sperm progressive motility and sperm concentration, and used a similar 

ELISA method to that used in this study. The study also found an inverse 

relationship between global methylation and DNA fragmentation, suggesting 

that low levels of global methylation signify a general decrease in genomic 

integrity. Critically, a recent study which analysed DNA damage in the same 

cohort of men (Altakroni, 2015) found that high levels of DNA double strand 

breaks were found in sperm samples with high numbers of % immotile 

sperm. One of the sources of such damage is oxidative stress, and ROS 

levels have also been linked to a decrease in global methylation in sperm 

(Tunc and Tremellen, 2009). Given this evidence, lower methylation might be 

expected to be characteristic of samples with a high number of immotile 

sperm, however this is not the case according to the results of this study. In 

accordance with the finding that global methylation is positively correlated 

with % immotile sperm, the present study also showed a negative correlation 

with fertilisation rate in IVF patients, although insignificant. This again 

contradicts existing evidence that points to hypomethylation as a cause of 

poor ART outcomes (Benchaib et al., 2005). Apart from global methylation, 

the major determinant of fertilisation outcomes was maternal age, which is 

already widely acknowledged. 

A comparison of DNA methylation between IVF and ICSI patients revealed 

that DAZL methylation was significantly higher in the sperm of men 

undergoing ICSI treatment, which likely reflects the fact that ICSI treatment is 

most often used for men with poor sperm quality. There was no significant 

trend in DAZL methylation between fertile and infertile men, however, which 

can be explained by male infertility caused by factors other than low 
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concentration, such as poor motility which was not correlated with DAZL 

methylation. Additionally, infertile men can show normal semen parameters. 

Therefore the primary function of DAZL appears to be in sperm production, 

but as the results show, it has no effect on ART outcomes. 

Interestingly, the MTHFR gene showed higher methylation levels in infertile 

men yet did not show any relation to semen parameters. Mthfr plays an 

essential role in the folate/homocysteine pathway that produces methyl 

donors for the methylation process. Wu et al. (2010) found that MTHFR 

promoter hypermethylation was associated with idiopathic male infertility 

and, importantly, that men with normal semen parameters had higher 

methylation than fertile men. This supports the results of this study, which 

suggest that increased MTHFR methylation is linked to infertility without 

causing differences in standard semen parameters. This study also 

examined associations between MTHFR methylation and other genes to 

determine whether aberrant MTHFR expression might affect methylation at 

other sites, as has been shown elsewhere (Rotondo et al., 2013), however 

no significant trends were found.  This may be due to the low number of CpG 

sites analysed compared to the studies above, which despite being located 

in the same CpG island spanning the MTHFR promoter, may have missed 

more informative CpG sites. Considering the indispensable roles of DNA 

methylation in embryogenesis, it may be expected to see some correlations 

between MTHFR gene methylation and ART outcomes. Indeed, MTHFR 

hypermethylation has previously been correlated with spontaneous 

miscarriage (Rotondo et al., 2012); however no significant associations were 

found for fertilisation, cleavage or pregnancy rates in this study. 

SNRPN showed a similar trend to DAZL in that it showed higher methylation 

in the sperm of men undergoing ICSI compared to men undergoing IVF, yet 

this gene was not correlated with sperm parameters nor was it significantly 

different when comparing fertile and infertile men. This maternally imprinted 

gene typically has low levels of methylation in sperm, compared with oocytes 

in which SNRPN methylation is high (Geuns et al., 2003). Again, as sperm 

used for ICSI is generally of lower quality, this significant increase in 
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methylation may be associated with substandard sperm. Indeed, SNRPN 

hypermethylation has previously been linked to low sperm motility (Botezatu 

et al., 2014), which is the major determining factor for whether IVF or ICSI 

treatment is carried out. DAZL and SNPRN were in fact highly positively 

correlated with each other, and may be acting synchronously to affect sperm.  

Differences in methylation between neat semen and prepared sperm were 

analysed as prepared sperm is used for IVF and ICSI, and therefore the 

integrity of this DNA is important for embryogenesis. This study found that 

prepared sperm had consistently significantly higher levels of methylation 

than sperm from neat semen. This included global methylation, the paternally 

imprinted H19 exon 1 and PLAGL1, the maternally imprinted gene PEG10 

and MTHFR. Whether this increase in methylation is a positive or negative 

change is an important question. As already known, an increase in 

methylation of the hypomethylated genes PEG10 and MTHFR could be 

detrimental as it reduces expression levels. However, an increase in global 

methylation is thought to be beneficial as it indicates good genomic stability 

(Rodriguez et al., 2006). In the sister study on the same male cohort 

(Altakroni, 2015), the level of DNA strand breaks was lower in prepared 

sperm, suggesting the DNA of the purified fraction is of higher quality, which 

supports evidence from published studies (Jayaraman et al., 2012). Given 

this evidence, it can be concluded that the prepared sperm fraction had 

higher levels of methylation, which is indicative of selection of good quality 

sperm with high quality DNA. Methylation of prepared sperm was not 

associated with fertilisation, cleavage and pregnancy rates. Although this is 

in conjunction with other studies which found no association between 

prepared sperm methylation and ART outcomes (Camprubi et al., 2012), a 

major limitation here was the low number of prepared samples for analysis. 

Therefore, a definite conclusion cannot be drawn on the effects of prepared 

sperm methylation on ART outcomes. 

The use of a leukocyte-expressing gene was investigated as a prognostic 

marker for WBC contamination in sperm because specific methylation 

fingerprints can be observed for different cell types. This was investigated 
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here based on the idea that WBC genes are heavily methylated and silenced 

in sperm but unmethylated and expressed in contaminating WBCs. Firstly, 

the CD247 gene was investigated as it forms part of the T-cell receptor and 

is therefore unmethylated in these cells. However, contrary to expectations, 

this gene also showed low levels of methylation in whole and prepared 

sperm, which may suggest some role for it in sperm function. Furthermore, 

we would expect a WBC gene such as this to show higher levels of 

methylation in prepared sperm, however the opposite trend was observed. 

Again, this is reasonable if CD247 has some role in sperm function, and is 

therefore unmethylated in fractionated high quality motile sperm. Secondly, 

the LSP1 gene was investigated as a possible marker of WBC 

contamination. This gene showed high levels of methylation in sperm as 

expected, indicative of gene silencing. However there was no difference in 

methylation between prepared sperm and neat semen. This lack of finding 

may be due to semen samples containing relatively low WBCs. WBC counts 

were not available for this study, but would be required to confirm the 

differences in methylation between neat and prepared sperm and between 

different semen samples. This method for detection of different cell types by 

methylation fingerprinting has been used successfully in blood and tumour 

tissue samples (Wieczorek et al., 2009; Sehouli et al., 2011), however no 

study has yet used this method to quantify non-sperm cell DNA in neat 

semen. Although determination of WBC levels in this manner would have 

little relevance in the clinical setting as staining methods for WBC 

determination are straight forward and low-cost, this would be a useful and 

important control for sperm sequencing studies. 

3.3.1 Conclusion 

This study found that the contribution of lifestyle and environmental factors to 

changes in DNA methylation of imprinted and non-imprinted genes was low, 

but may be more significant for global DNA methylation. Although little 

association was found between imprinted gene methylation and sperm 

quality, aberrant methylation of a spermatogenesis-associated gene, DAZL, 
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is directly linked to lower sperm concentration, but has no impact on ART 

outcomes. Furthermore, global DNA methylation may be an important 

marker of overall sperm quality and ART outcomes, as global methylation 

was found to be associated with sperm motility and fertilisation rates in IVF 

patients. Overall, the results suggest that aberrant sperm methylation may 

have consequences for sperm function and ART outcomes. 
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Chapter 4 

Effects of lifestyle and environment on semen 

parameters and ART outcomes 

4.1 Introduction 

Several studies have reported a decrease in semen quality, such as the 

reductions in semen volume, reductions in sperm concentration, motility and 

normal morphology (Carlsen et al., 1992; Auger et al., 1995; Rolland et al., 

2013; Romero-Otero et al., 2015; Centola et al., 2016). Infertility is now 

experienced by 1 in 6 couples, with 30% of cases explained by factors in the 

male partner (European Society of Human Reproduction and Embryology, 

2014). Therefore, determining the main effectors of semen parameter 

changes is paramount. These decreasing fertility trends have paralleled 

lifestyle changes in Western countries such as an increase in sedentary 

behaviour and a transition to diets high in sugar, saturated fat and salt 

(Department of Health, 2010; Public Health England 2014), calling into 

question the contribution of environmental and lifestyle factors to male 

infertility. 

Diet has been shown to be an important factor associated with good fertility 

outcomes and consumption of certain foods has been linked with lower 

sperm quality (Afeiche et al., 2013; Gaskins et al., 2012; Chiu et al., 2014). 

Furthermore, a lack of physical activity has also been shown to have 

detrimental effects on fertility (Gaskins et al., 2015). Another common and 

detrimental characteristic of modern society is occupational stress (Labour 

Force Survey, 2015). Stress has been shown to interfere with fertility 

treatment (reviewed in Campagne, 2006) and direct evidence of the 

damaging effects of stress on sperm has been shown previously (Janevic et 

al., 2014). Exposure to environmental toxicants is also a risk factor for 
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infertility: consumption of pesticide-contaminated foods has been linked to 

lower numbers of morphologically normal sperm (Chiu et al., 2015) and 

occupational exposures such as glyxol ethers have been linked to a 

reduction in motile sperm count (Cherry et al., 2014). It is possible that a 

combination of some of these modifiable lifestyle factors lead to substandard 

semen quality. Additionally, advancing age has been shown to be an 

important risk factor for poor semen quality (Johnson et al., 2015) which is 

relevant at this time as more couples choose to delay child-bearing by some 

years (Royal College of Obstetricians and Gynaecologists, 2009).  

As the number of couples undergoing ART worldwide continues to rise, 

improving success rates is a priority. It is widely known that maternal factors, 

particularly age, have a major influence on both natural pregnancy and ART 

outcomes (Jolly et al., 2000; Sazonova et al., 2011). However, paternal 

influences do play an essential role. Sperm quality can affect fertilisation, 

cleavage rates, and embryo quality indicating that sperm can affect pre-

implantation development (Loutradi et al., 2006), however the influence on 

pregnancy rates is not conclusive (van der Westerlaken et al., 2009). It is 

possible for lifestyle and environmental factors to affect ART outcomes 

without causing clear changes to standard semen parameters, instead 

causing alterations at the molecular or genetic level (Anifandis et al., 2013; 

Wegner et al., 2010). In this case, the contribution of paternal lifestyle effects 

to ART outcomes could be significant.  

4.1.1 Aims 

The aims of this chapter were to 

1. To identify which lifestyle and environmental factors associate with 

sperm concentration, motility, total sperm count and semen volume in 

a population of men attending a fertility clinic. 

2. To determine whether sperm quality in neat semen and in prepared 

sperm is related to fertilisation, cleavage and pregnancy rates in IVF 

and ICSI patients. 
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3. To determine whether paternal lifestyle factors are associated with 

fertilisation, cleavage and pregnancy rates in IVF and ICSI patients. 

4.2 Results 

4.2.1 Lifestyle and semen parameters 

4.2.1.1 Semen parameters of the study population 

4.2.1.1.1 Semen parameters raw data 

A total of 169 participants were included in this study. Nine patients 

presenting with a current varicocele were excluded from the study, bringing 

the total to 160 men. Two participants did not complete the questionnaire. 

Table 4.1 shows the original semen parameters data.  

 

4.2.1.1.2 Normalisation of semen parameters 

For parametric statistical analysis purposes, continuous data must show a 

Gaussian, or normal bell-shaped, distribution, therefore the frequency 

distributions of sperm concentration, progressive motility, immotile cells, 

Table 4.1 Semen parameters of the study population 
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volume and sperm count were analysed on histograms and Q-Q plots. 

Sperm concentration and sperm count showed non-normal data and were 

mathematically transformed to log10 (see section 2.1.2 and appendix 6). 

Geometric means and back-converted 95% CI are therefore presented in the 

results for these parameters. % progressively motile, % immotile sperm and 

semen volume are presented as raw data values. 

4.2.1.1.3 Semen parameters correlation matrix 

Poor quality semen often manifests as abnormalities in more than one sperm 

parameter. The association between sperm concentration, % PM, % 

immotile, volume and total sperm count were therefore analysed to 

determine whether these parameters are linked. Pearson’s correlation 

showed that sperm concentration was strongly positively correlated with % 

PM sperm and negatively correlated with % immotile sperm (table 4.2). % 

PM and % immotile cells were highly negatively correlated which is expected 

as these variables are oppositely linked. Sperm count was highly correlated 

with concentration and volume, which was expected as total count is 

determined directly by these factors. Sperm count was also highly positively 

and negatively correlated with %PM and %immotile, respectively. Finally, 

seminal volume was not correlated with parameters other than sperm count. 

Seminal volume is highly variable, and as sperm count is directly linked to 

this, it must be taken into account that changes in sperm count could be as a 

result of natural variation in volume e.g. seasonal variation (Di Georgi et al., 

2015), rather than lifestyle-induced changes. Volume can also be reduced by 

male reproductive tract infections which can affect accessory gland function, 

including the prostate and seminal vesicles, which secrete seminal fluid and 

its components (Marconi et al., 2009). 
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4.2.1.1.4 Abstinence, seminal volume and sperm count 

The duration of abstinence is one of the biggest predictors of seminal 

volume; therefore to determine whether volume, and consequently sperm 

count, was affected by abstinence time, differences were assessed between 

the number of days the participants abstained for (fig. 4.1). Most participants 

reported to have abstained from intercourse or masturbation for 2-5 days 

(n=122), while some had abstained for 6 days (n=4), 7 days (n=1), 8 days 

(n=1), 9 days (n=1) and 10 days (n=1). Twenty-seven participants did not 

give an answer to this question in the questionnaire. Mean semen volume 

showed an overall decrease between those abstaining for 2 days and those 

abstaining for 6 days, however the only significant correlation was between 

days 3 and 4 which showed an increase (p=0.037). Days 3 and 4 had the 

highest numbers of participants abstaining (n=53 and n=44) which suggests 

this is the most likely representation of true population. Sperm count was not 

significantly different between any of the time points (p=0.059). 

Table 4.2 Semen parameters correlation matrix 

Pearson’s correlation, r, and sig. (p) values are shown for associations 

between semen parameters. 
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4.2.1.2 Study population health and lifestyle demographics 

4.2.1.2.1 Health and lifestyle 3 months prior to the study 

In this study, we were interested in modifiable and non-modifiable risk factors 

that may be associated with aberrant sperm parameters such as age and 

illness. Therefore we initially analysed the data set as a whole to look at the 

overall demographics and lifestyle trends of the participants.  

 

Participants’ ages (years) were collected by the hospital as part of the patient 

consultation. The mean age of the study population was 35.86 years (23 to 

57 years) (table 4.3). BMI was categorised as healthy, <25 kg/m2; 

overweight, 25-29.9 kg/m2; and obese ≥30 kg/m2 and these made up 49%, 

31.7% and 13.9% of the study population, respectively. There was also one 

Figure 4.1 Effects of abstinence time on semen volume and sperm 

count 

There was no clear trend in semen volume and sperm count with duration 

of abstinence. One-way ANOVA statistics and Tukey post-hoc tests 

identified a significant difference in volume between three and four days. 

Significant differences are flagged (*). Error bars represent 95% CI. For 

sperm count, the mean represents the geometric mean. Numbers of men 

abstaining for 2, 3, 4, 5 and 6 days were 12, 53, 44, 13 and 4, respectively.  
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underweight case (17.5 kg/m2). 50% of men were classed as physically 

active and 50% were insufficiently active according to their leisure score 

index (LSI) which was calculated from the amount of moderate and 

strenuous exercise they reported (table 4.3). Alcohol consumption was 

moderate with 69% of men consuming at least one drink per week (table 4.4) 

and within the drinking group  the 75th percentile was 19.15 units, which is 

under the recommended limit of 21 units per week (table 4.3). The mean and 

median were similar indicating that most men were light or moderate 

drinkers. 10.3% of men said they did not wear boxer shorts. The number 

non-smokers (56.7%) was roughly equal to that of ex-smokers (43.3%) with 

a wide variation in the number of years smoked (0.5-33 years). 

With regards to health, 17.2% of men reported to have suffered from fever or 

flu in the 3 months prior to the study. 14% of men reported suffering from a 

work-related illness and 9.6% of men said that a work-related illness was due 

to stress (table 4.4). 43.7% of men were ex-smokers and within this group, 

the mean duration of smoking was 12.76±6.89 years.  

 

Table 4.3 Lifestyle demographics on a continuous 

scale 

Descriptive statistics are shown. Data for alcohol consumption and smoking 

duration is taken from only those who reported to drink alcohol more than once per 

week and who were ex-smokers. 
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Table 4.4 Participants health and lifestyle 3 months prior to the study 
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4.2.1.2.2 Chemical and physical exposures 

Men were then asked about their exposure to certain chemical and physical 

agents in the 3 months prior to the study. The number of men exposed to 

each factor was analysed to determine which factors could be investigated 

for their effects on semen parameter quality, i.e. which factors had sufficient 

numbers of men exposed and not exposed. Table 4.5 shows the frequencies 

of reported exposures to each factor. It shows that less than 10% of 

participants were exposed to pesticides, herbicides, fertilisers, dry cleaning 

fluids, PVC or plasticisers, extremely hot environments, non-ionizing 

radiation, X-rays or reported driving for long periods. These variables were 

not included in any further analysis.  

 

Table 4.5 Chemical and physical exposures 3 months prior to the 

study 
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Figure 4.2 Effects of age on semen parameters 
 
Analysis of semen parameters and male age in the entire data set (A) and in 
men with normal semen parameter values (B). Age was categorised into 
quartiles (key) and a one-way ANOVA analysis of differences in each 
parameter between quartiles was carried out. No significant differences were 
found in semen parameters with age. Error bars represent upper and lower 
95% CI. 

A 

B 
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4.2.1.3 Semen parameters, health and lifestyle 

4.2.1.3.1 Semen parameters and age 

To investigate the association between age and semen parameters, age 

(years) was analysed on a continuous scale and also separated into 

categorical quartiles. Age was not correlated with sperm concentration, % 

progressively motile cells, % immotile cells, seminal volume or total sperm 

count on a continuous or categorical scale (fig. 4.2 A). As the severity of 

abnormalities in men with sperm parameters below the normal reference 

limits may hide the effect of age, semen parameters were also analysed 

when restricted to the WHO recommendations for normal values: 

concentration, ≥15x106 cells/ml; progressive motility, ≥32%; immotile cells 

<60%, total sperm count, ≥39x106 cells and seminal volume, ≥1.5 ml. Men 

with normal semen parameters also showed no associations with age (fig. 

4.2 B).  
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Table 4.6 Semen parameters and exposures in the 24 hours prior to the study 

Independent t-test statistics and significance (p) values are shown. Significant associations are highlighted in bold. 

*p<0.05. 
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4.2.1.3.1 Exposures in the 24 hours prior to the study: effect on semen 

parameters 

Sperm concentration was not correlated with any of the 24 hour exposure 

variables (table 4.6). This was the case when all samples were analysed and 

when outliers were excluded (>3x106/ml), and when an analysis was carried 

out only in men with normal sperm concentration (≥15x106/ml). Men who ate 

fish in the 24 hours before the study had lower % progressively motile sperm 

(p=0.033) and higher % immotile sperm (p=0.014). This was still significant 

when the number of progressively motile sperm was restricted to >10% 

(p=0.025) and when the number of immotile cells was restricted to <80%. 

However, neither of these trends were significant in sperm which had a 

minimum % PM of 32% (p=0.05). When samples with % PM of 32% were 

analysed, white meat consumption was linked to a reduction in % PM 

(p=0.018). Seminal volume was not correlated with any 24 hour exposures 

and this remained the case when extreme outliers were excluded, or when a 

samples ≥1.5 ml were analysed.  

4.2.1.3.2 Semen parameters, health and lifestyle 3 months previous 

An analysis of health and lifestyle in the 3 months prior to the study (table 

4.7) found that semen parameters were not related to whether the participant 

had fever or flu in the previous 3 months, whether they had a job-related 

illness, or whether this illness was due to stress. Semen parameters were 

also not related to whether the participant was an ex-smoker or had never 

smoked, or whether they were a meat-eater or meat- and fish-eater. 

Participants who were physically active (LSI≥24) compared with those who 

were insufficiently active (LSI≤23) did not show differences in their semen 

parameters (table 4.7) nor was there a difference in semen parameters when 

looking at LSI on a continuous scale (table 4.8). 

A decrease in % immotile sperm was found in men who wore boxer shorts 

(p=0.025), and this correlation was still significant in men who had normal 

motility parameters of ≥32% progressively motile cells but not when % 
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immotile cells was restricted to <80%. There were no significant differences 

in seminal volume with any of the lifestyle variables.  

Alcohol consumption was measured as the number of units consumed per 

week and men were categorised as non- or light-drinkers (<1 unit per week), 

moderate drinkers (1-21 units per week) and heavy drinkers (>21 units per 

week). Sperm concentration was found to be significantly higher in the heavy 

drinking group than the moderate group (p=0.016). When only men with 

sperm concentration ≥15x106/ml were analysed, the trend was still significant 

(p=0.028). When analysed on a continuous scale (table 4.8), alcohol 

consumption was positively correlated with sperm concentration (p=0.04), 

however this was not significant when looking at samples with ≥15x106 

cells/ml (p=0.101, n=128). Alcohol consumption was not associated with any 

other semen parameters. 
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Spearman’s correlation showed that BMI was negatively correlated with 

sperm concentration (p=0.035) and total sperm count (p=0.005) (table 4.9). 

When sperm concentration was restricted to ≥15x106/ml, BMI was no longer 

Table 4.7 Semen parameters, health and lifestyle 3 months prior to the study 

Independent t-test and one-way ANOVA F-statistics are shown along with 

significance (p) values. Significant associations are highlighted in bold.*p<0.05, 

**p<0.01. 
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correlated with sperm concentration (p=0.604, n=124) and when sperm 

count was restricted to ≥39x106 cells, this was also not significant (p=0.256). 

%PM and %immotile cells were not correlated with BMI, LSI, alcohol 

consumption or smoking years when all samples were analysed nor when 

only samples ≥32% PM or samples <60% immotile were analysed. Seminal 

volume was not correlated with these lifestyle variables when looking at all 

data or at samples ≥1.5 ml only. 

4.2.1.3.3 Semen parameters and chemical and physical hazards 3 

months previous 

Sperm concentration was not correlated with any of the chemical or physical 

hazards when all data points were analysed (table 4.9). However, 

concentration was significantly lower in men who were exposed to metal dust 

or fumes (n=24) than men who were not exposed (n=104) when only men 

with a normal sperm concentration of ≥15x106/ml were considered (p=0.018). 

Table 4.8 Semen parameters and lifestyle correlations 

Spearman’s correlation, ρ, and significance (p) values are shown. Significant 

correlations are shown in bold. *p<0.05, **p<0.01.  
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%PM sperm, %immotile sperm and seminal volume were not correlated with 

any of the chemical or physical hazards when all samples were included, nor 

when samples were restricted to the WHO reference limits (table 2.9). 

Table 4.9 Semen parameters and chemical and physical exposures 3 months prior to 

the study 

Sig. differences between exposed and non-exposed men were determined using 

independent t-tests. T-statistics and sig. (p) values are shown. Means and 95% CI are 

shown for each exposure. Sig. results are shown in bold. *p<0.05. 



 

145 
 

4.2.1.3.4 Semen parameters and diet 

4.2.1.2.3 Food frequency questionnaire 

Twenty-eight food categories were generated from seventy-eight food items 

on the food frequency questionnaire. Principal components analysis revealed 

that there were two primary diet types in the population which corresponded 

to typically “healthy” and “unhealthy” diets. Figure 4.3 illustrates the relative 

contribution of each food group to both diets with each bar on the graph 

representing a different group. The contribution (or loading) of each item to 

the variance is shown by the length of the bars: longer bars contribute a 

larger amount of variance to the diet. Furthermore, the direction of the bars 

(positive or negative) indicates food items that are correlating with each other 

(refer to methods section for further explanation).  The healthy diet was 

typified by consumption of soy, low-fat dairy, all types of vegetables, 

chickpeas, nuts, cereals, green tea and vitamins while the unhealthy diet was 

typified by consumption of red, fried and processed meat, fries, butter, high-

fat dairy, bread, sugar and confectionary, and caffeinated sugar-sweetened 

beverages (CSSB). Loading values are shown in table 4.10. 
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Each participant was assigned a “healthy” and an “unhealthy” diet score 

Figure 4.3 Principal components analysis of diet composition 

PCA was used to determine the loading of each food group in the “healthy” and 

“unhealthy” diets, which correspond to the first and second principal components, 

respectively. Each bar represents a food group or item. The loading of each item on 

the variance in the data is illustrated by the bar length. Bar direction shows positive 

or negative correlations in the data. Labelled food groups or items are: 

chicken/poultry (1), red meat (2), very fried meat (3), processed meat (4), liver (5), 

fish (6), fried fish (7), fries (8), soy (9), vegetable oil (10), butter (11), high-fat dairy 

(12), low-fat dairy (13), eggs (14), fruit (15), vegetables (16), cruciferous vegetables 

(17), green and leafy vegetables (18), chickpeas (19), nuts (20), cereals (21), bread 

(22), whole grains (23), sugar and confectionary (24), caffeinated non-sugar 

sweetened beverages (25), green tea (26), caffeinated sugar-sweetened beverages 

(27), vitamins (28). 

A 
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which were calculated by multiplying the frequency of consumption of each 

food group by the item’s loading value and taking the sum of these scores. 

Total variance explained is the amount of variance that this combination of 

food groups represents in the diet data: the healthy diet represents the 

largest amount of variance in the data, while the unhealthy diet represents 

the second largest level of variance. 

Table 4.10 Food group loading values for “healthy” and 

“unhealthy diets 

Food groups not included in the table are chicken, liver, fish, fried fish, 

vegetable oil, eggs, fruit, whole grains and caffeinated non-sugar-

sweetened beverages due to having little effect in both diets (loading 

<0.1) or having some effect in both diets (loading >0.1). Principal 

components analysis was used to determine the loading of each food 

groups on both diets.  
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The “healthy” and “unhealthy” diets were not correlated with leisure score 

index, i.e. physical activity levels (p=0.573 and p=0.382, respectively), BMI 

(p=0.772 and 0.294), or alcohol consumption (p=0.376 and 0.736). Diet 

scores were categorised into quartiles and semen parameters were analysed 

for each quartile (table 2.11). Sperm concentration, %PM and semen volume 

did not show any association with low, low-moderate, moderate-high or high 

healthy or unhealthy diets. Men in the highest quartile for “unhealthy” diet 

had significantly lower % immotile sperm (p=0.046) than the men with the 

lowest quartile. Sperm count was significantly higher in the third quartile of 

“unhealthy” diet than in the second quartile (p=0.028), however the lowest 

and higher quartiles were not different from each other. When only samples 

in the normal range of semen parameters were analysed (table 4.12) there 

was no significance between “healthy” or “unhealthy” diet scores and semen 

parameters. There was a gradual increase in sperm concentration, volume 

and count as men’s “healthy” diet score increased, however all showed a 

drop in the highest quartile. Conversely, % PM decreased and % immotile 

sperm increased as men consumed more of a healthy diet, which also 

reflects the negative association between % immotile sperm and “unhealthy” 

diet.



 

149 
 

Table 4.11 Semen parameters based on “healthy” and “unhealthy” diets 

Means and 95% CIs are shown for semen parameters in each quartile of the “healthy” and “unhealthy” diets. Significant differences between 

quartiles were calculated using one-way ANOVA; F-statistics and p-values are shown for each parameter. Significant correlations are 

highlighted in bold. *p<0.05. 
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4.2.1.4 Multivariate analysis of lifestyle and semen parameters  

Univariate analysis revealed that sperm concentration was negatively 

correlated with BMI (p=0.035) and positively correlated with alcohol 

consumption (0.04). Sperm count showed similar but insignificant 

associations with these variables also. In addition, unhealthy diet score was 

negatively correlated with % immotile sperm (p=0.046) and positively 

correlated with total sperm count (p=0.028). To control for confounding 

variables that may be influencing these associations, multiple regression 

analyses were performed. 

Due to the evidence of the interactions between diet, BMI, physical activity 

levels and smoking habits, smoking history (ex-/non-) and LSI were included 

as control independent variables (IV), alongside ethnicity. Age was not 

included in the regression analyses as it was positively correlated with BMI 

(p= 0.031) and negatively correlated with having an unhealthy diet (p=0.001), 

and would therefore give rise to multicollinearity in the model, causing 

redundancy of some variables. In addition, age had not shown any 

association with semen parameters in the univariate analysis so could be 

Table 4.12 Effects of diet in men with normal semen parameters 

Differences in semen parameters between quartiles of 

“healthy” and “unhealthy” diets were analysed using one-

way ANOVA. F-statistics (p-value) are shown. 
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justifiably excluded. Seminal volume and total sperm count were also 

controlled for with abstinence time. 

The regression models (table 4.13) showed that BMI was significantly 

negatively correlated with sperm concentration (p=0.031) while alcohol 

consumption was no longer correlated with sperm concentration (p=0.166) 

when controlling for other variables. Overall, the model was not significant 

due to the lack of predictive power of the other IVs for concentration 

(p=0.058). The association between total sperm count and BMI was less 

significant in the regression model, decreasing from p=0.005 to 0.052, while 

the effect of alcohol consumption increased in significance slightly from 

p=0.093 to 0.083. However, the overall model was still significant (p=0.048). 

% Immotile sperm was still significantly negatively correlated with having an 

unhealthy diet in the regression model (p=0.018). Ethnicity was an important 

control variable as it showed significance for both concentration and 

%immotile sperm. 

 

In a separate multiple regression, the effect of solvents on semen volume, 

which was originally found to have a positive correlation (p=0.03) was 

Table 4.13 Multivariate analysis of the effects of BMI, diet and alcohol on 

sperm parameters 

A multiple linear regression was run with each semen parameter as the 

dependent (outcome) variable. Each row corresponds to a different 

regression model. IVs with sig. <0.1 are shown. Sig. (p) values of the overall 

model are shown in the ANOVA p-value column. IVs used in each model 

were BMI, smoking history, unhealthy diet score, LSI, ethnicity (a), plus 

alcohol consumption (b) and abstinence time (c). 
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controlled for abstinence time. The regression removed the significance of 

solvents on volume (p=0.097).  

To summarise, the multivariate analyses showed that higher BMI was 

associated with lower sperm concentration and sperm count, while those 

who consumed high amounts of alcohol had higher sperm counts. Finally, 

men with an unhealthy diet had lower levels of immotile sperm.  

4.2.2 Semen parameters and ART outcomes 

4.2.2.1 Semen parameters in IVF and ICSI patients 

The effect of different semen parameters on the outcome of IVF and ICSI 

treatment was investigated. During ART mature and motile sperm are 

Figure 4.4 Sperm parameters in IVF and ICSI patients 

Sperm concentration, count and % PM were higher while % immotile cells were 

lower in neat semen in IVF patients (A). Following preparation, sperm 

concentration and % PM were still higher in IVF than in ICSI patients (B).  Error 

bars represent upper and lower 95% CIs. Significant results of independent t-

tests are shown. ***p<0.001. 

A B 
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separated from the seminal plasma and washed in media prior to fertilisation; 

this fraction is known as prepared sperm. The standard of neat semen 

parameters before preparation may convey the likelihood of ART outcomes 

as it reflects the quality of the sample as a whole. Following preparation, 

although the better quality sperm have been isolated, sperm quality may still 

reflect ART outcomes.  

In this study, 50.9% of patients underwent IVF treatment while 48.4% 

underwent ICSI. Neat semen parameters were all higher in the IVF than the 

ICSI group. Sperm concentration, % PM cells and total sperm count were 

significantly higher and %immotile cells significantly lower in the IVF group 

(fig. 4.4 A). This is reflected in the fact that there were a higher percentage of 

infertile men in the ICSI group (fig 4.5 B) (76.62%). Following preparation of 

these neat samples, sperm concentration and % PM remained significantly 

higher in the IVF than the ICSI group (fig. 4.4 B). Centrifugation of sperm 

cells results in hyperactivation, which manifests in an increase in forward 

progressive motility; this can be seen as the increase in %PM from neat to 

prepared sperm (fig. 4.4 A and B). In both neat semen and in prepared 

sperm, concentration was highly positively correlated with %PM (p<0.001). 

Due to the stark differences in semen quality in IVF and ICSI patients, ART 

outcomes for these groups were analysed separately.  

4.2.2.2 ART outcomes and demographics for IVF and ICSI patients 

Overall ART outcomes in the IVF and ICSI groups were compared along with 

primary factors that can affect ART outcomes including the egg stimulation 

protocol (L D21 or antagonist), duration of stimulation (days) and the day of 

transfer of embryos into the female (fig. 4.5 A). Fertilisation and cleavage 

rates were not significantly different between the IVF and ICSI groups. Of 

those patients who had successful fertilisation and cleavage, and following 

transfer of the embryos, pregnancy rates were slightly higher in the ICSI 

group (50%) compared to the IVF group (42.9%) however this was not 

statistically significant (p=0.401). 
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Figure 4.5 Outcomes and demographics of IVF and ICSI treatment 

Figure A shows means for fertilisation rates, cleavage rates, days of stimulation 
and transfer day, while showing the %successful pregnancies and %patients who 
underwent the L D21 protocol as a pose to the antagonist protocol. Figure B 
shows means for female and male age, ethnicity as %White British men and also 
%infertile men. Significant differences between IVF and ICSI groups were 
calculated using the Mann-Whitney U test for continuous variables (a) and χ2 for 
categorical variables (b). Total numbers of patients are shown for each bar (A). 
Total number of IVF and ICSI patients was 81 and 75, respectfully (B). Purple 
and green bars correspond to scales on left and right y-axes respectively. 
**p<0.01. 

 

A 
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Female age was significantly higher in the IVF group than the ICSI group 

(p=0.005) while male age was not different between the groups (fig. 4.5 B). 

All men in the IVF group were White British, while in the ICSI group 12.99% 

were of another ethnic background. There was no statistically significant 

difference in the number of infertile men between the two groups. 

4.2.2.3 Univariate analysis of sperm parameters with IVF and ICSI 

outcomes 

Associations between sperm quality and ART outcomes in IVF and ICSI 

patients were investigated using Spearman’s correlation and the Mann-

Whitney U test (table  4.14). Sperm concentraiton, %PM and total sperm 

count were positively correlated with fertilisation rate (p<0.05). 

Concomitantly, % immotile cells were negatively correlated with fertilisation 

rate (p<0.05). As there was multi-collinearity between the semen parameters 

(p<0.001), it was necessary to try to identify the main impacting factor. Total 

Table 4.14 Correlations between semen parameters, fertilisation, cleavage and 

pregnancy rates in IVF and ICSI patients 

Associations between semen parameters and ART outcomes were analysed 

using Spearman’s correlation (a) for continuous variables and Mann-Whitney U 

test for categorical variables (b). Significant results are shown in bold. All semen 

parameters were correlated with fertilisation rates in ICSI samples. *p<0.05. 
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sperm count is a function of sperm concentration and is also dependent on 

seminal volume which is highly variable, so this can be excluded. % PM is 

considered to be a more informative marker of semen quality than % 

immotile cells, as % immotile sperm is a direct opposite measurement to % 

total motility. Therefore, sperm concentration and sperm % PM in neat 

semen are associated with fertilisation rates and were considered for 

multivariate analysis.  

4.2.2.4 Multivariate analysis of sperm parameters with IVF and ICSI 

outcomes 

As sperm concentration and % PM in neat semen was positively correlated 

with fertilisation rates in ICSI patients, the next step was to control for other 

factors that could influence the ART outcomes. Therefore, a multiple linear 

regression analysis was carried out to control for protocol type, days of 

stimulation, female and male age, attempt number and ethnicity.  

The multivariate analysis showed that in ICSI patients sperm concentration 

was borderline significantly associated (p=0.051) and % PM was significantly 

Table 4.15 Multiple regression analysis of sperm parameters and 

fertilisation rates in ICSI patients 

Regression analysis was performed for concentration and % PM on 

fertilisation rates in two separate models while controlling for female age, 

ethnicity, attempt, protocol and days of stimulation.  Unstandardised B and 

standardised β values are shown. p-values indicate the significance of each 

independent variable on fertilisation rates while controlling for all other 

variables. Standardised β values represent the number of SD changes 

expected in the outcome variable for 1 SD change in the independent variable, 

while all other factors are held constant. Unstandardised B values are the 

coefficients in their original units. *p<0.05. 
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associated (p=0.042) with fertilisation rates (table 4.15). The two parameters 

were run in separate regression models as they were highly correlated with 

each other, and this can lead to redundancy in the results. The strength of a 

variable’s effect can be interpreted from the standardised β-values: both 

variables had the highest β-coefficients in the models, with ethnicity also 

having some influence (β=-0.223 and -0.235 for model 1 and 2, respectively). 

Male age was initially included in the regression, however it had an 

extremely low β-value and was highly correlated with female age; this 

justified its removal. Female age did not show a significant effect in model 1 

(p=0.119) or 2 (p=0.171). None of the other variables were significant or 

borderline significant.  

Multiple regression analysis was also performed to confirm the association of 

% PM with cleavage rates in IVF patients. Table 4.16 shows that the 

significance of % PM, whilst controlling for all other factors, actually 

increased from 0.049 to 0.023. No other independent variables showed a 

significant effect on cleavage rates. Ethnicity was not included in the analysis 

as all IVF participants were White British. Standardised β-coefficients 

showed that % PM has the greatest weighting, while attempt and protocol 

type also had strong negative effects on cleavage rate. The overall 

significance of the model was 0.09. 

Table 4.16 Multiple regression analysis of % progressive motility in neat 

semen and cleavage rates in IVF patients. 

Unstandardised B and standardised β values are shown. p-values indicate the 

significance of each independent variable on fertilisation rates while controlling 

for all other variables. Progressive motility (%) was positively correlated with 

fertilisation rates. *p<0.05. 
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To summarise the effects of semen parameters on ART outcomes, sperm 

concentration and % PM were positively correlated with fertilisation rates in 

ICSI patients, however these were not significant. Furthermore, % PM was 

highly correlated with cleavage rates in IVF patients. Prepared sperm 

parameters were not associated with ART outcomes in ICSI or IVF patients. 

4.2.3 Lifestyle and ART outcomes 

4.2.3.1 Univariate analysis of lifestyle factors and ART outcomes 

To investigate the effects of lifestyle on ART outcomes, univariate analyses 

were firstly carried out between lifestyle factors and fertilisation, cleavage 

and pregnancy rates. One-way ANOVA and Tukey post-hoc tests were used 

to identify differences between categorical variables (table 4.17). Univariate 

analysis revealed that having an unhealthy diet was significantly negatively 

Table 4.17 Univariate analysis of lifestyle factors and ART outcomes in IVF 
and ICSI patients 

Continuous lifestyle variables were categorised into quartiles and analysed 
by one-way ANOVA for fertilisation and cleavage rates. IVF and ICSI 
patients were analysed separately. Significance values below 0.1 are 
reported. Tukey post-hoc tests revealed which categories were different, 
shown as flagged (*). **p<0.01. 
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correlated with cleavage rates in ICSI patients (p=0.008). Variables which 

showed p-values of <0.1 for association with fertilisation, cleavage and 

pregnancy rates were BMI, alcohol consumption and physical activity levels 

(LSI)  (table 4.18). Results which showed a significance of at least 1.0 were 

included in a multivariate analysis. Other lifestyle factors were not associated 

with ART outcomes.  

4.2.3.2 Multivariate analysis of lifestyle and ART outcomes 

When controlling for female age, duration of stimulation, protocol and 

attempt, BMI and alcohol consumption were no longer correlated with 

fertilisation and cleavage rates in IVF patients, respectively (p=0.365, 

p=0.105). The significant univariate association between unhealthy diets and 

lower cleavage rates in ICSI patients was also no longer significant when 

controlling for other factors (p=0.109). However, the main finding was that 

BMI was significantly negatively correlated with fertilisation rates in ICSI 

patients (p=0.044) (table 4.19). In this regression analysis, % PM was also 

added to the control variables as previous analyses showed that % PM was 

slightly positively correlated with fertilisation rates (section 4.2.4). Sperm 

concentration was not included in the regression as multicollinearity between 

these variables (p=0.06) can cause redundancy. % PM and BMI were not 

correlated (p=0.943). Overall, increased BMI was linked to lower fertilisation 

rates, when controlling for other factors; ethnicity was also negatively 

correlated and % PM was positively correlated with fertilisation rates. 

Logistical regression was performed to investigate the likelihood of 

pregnancy outcome with an increase or decrease in physical activity (LSI). 

These factors were not significantly associated when controlling for female 

age, stimulation, protocol and attempt.  
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Table 4.18 Univariate analysis of LSI with 

pregnancy rate in IVF patients 

χ
2 

 analysis for categorical variables was 
carried out to identify differences in 
pregnancy rates between LSI quartiles.  

Table 4.19 Multiple regression analysis of BMI and fertilisation rates in ICSI 

patients 

Unstandardised B and standardised β values are shown. p-values indicate 

the significance of each independent variable on fertilisation rates while 

controlling for all other variables. BMI, ethnicity and progressive motility 

(%) were correlated with fertilisation rates. *p<0.05. 
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4.3 Discussion  

This study investigated the associations between lifestyle factors and semen 

parameters in male partners of couples presenting to a fertility clinic. The 

study also looked at IVF and ICSI outcomes in the study population to 

determine whether semen parameters were an important factor in successful 

fertilisation, cleavage and pregnancy rates, and whether male lifestyle 

influenced this. After controlling for confounding variables, the results 

showed first and foremost that BMI was strongly negatively associated with 

sperm concentration and sperm count. Furthermore, sperm concentration 

was slightly positively correlated with alcohol consumption, while having an 

unhealthy diet was negatively correlated with the percentage of immotile 

sperm. % progressive motility of sperm from neat semen was associated 

with higher cleavage rates in IVF patients, while neat semen concentration 

and progressive motility were associated (insignificantly) with higher 

fertilisation rates in IVF patients. Finally, BMI was also associated with lower 

fertilisation rates in IVF patients. 

BMI was the only lifestyle variable found to be consistently negatively 

associated with sperm concentration throughout the various statistical 

analyses, which corroborates other findings (Sermondade et al., 2013; 

Chavarro et al., 2010; Luque et al., 2015).  However, due to the number of 

studies that have found no association between BMI and sperm quality, the 

causal link remains inconclusive (MacDonald et al., 2013). Additionally, BMI 

was not associated with sperm concentration above 15x106/ml suggesting 

that this may primarily affect men with substandard sperm quality. Inclusion 

of other estimates of body adiposity, such as waist circumference, have 

found an association with lower sperm volume and sperm count and BMI 

(Eisenberg et al., 2014), and there is evidence that weight loss intervention 

can improve sperm DNA integrity (Faure et al., 2014). Notably, this latter 

weight loss study found changes in abdominal fat without changes in BMI, 

which again highlights the inadequacy of BMI as a marker of health. Male 

obesity can lead to a lower likelihood of achieving successful pregnancy 

within 12 months of attempting (Ramlau-Hansen et al., 2007), however the 
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consequences for ART outcomes are inconclusive. Two meta-analyses 

published in 2015 found conflicting results: Le et al. (10 studies) found no 

association between BMI and pregnancy rates while Campbell et al. (30 

studies) found that higher BMI was linked to lower live birth rate; importantly, 

both studies found no differences in semen parameters. Anifandis et al. 

(2013) found a reduction in embryo quality with male BMI which was also 

independent of semen parameters. These studies collectively suggest that 

the sperm quality and ART outcomes may be independently affected by BMI. 

The result presented here found that higher male BMI was associated with 

lower fertilisation rates in ICSI patients.  This cannot be attributed to poor 

standard semen parameters as sperm are injected into the oocyte for ICSI. 

As sperm concentration was lower in men with higher BMI this may indicate 

some error in spermatogenesis. BMI can affect hormonal regulation without 

affecting standard sperm parameters (Al-Ali et al., 2014),  suggesting that 

sperm may be affected at a molecular or genetic level instead which is 

preventing successful fertilisation. The major drawback of our finding is that 

female BMI was not available and therefore could not be controlled for, which 

is known to affect egg quality and fertilisation rates (Shah et al., 2011). 

Further investigations controlling for these factors are necessary to fully 

conclude that male BMI is indeed associated with reduced fertilisation rates 

in IVF. 

How sperm quality changes with advancing age has been a topic of ongoing 

investigation. Research has shown that advancing male age is associated 

with compromised genomic integrity (review in Sharma et al., 2015), yet this 

is not always accompanied by changes to semen parameters (Nijs et al., 

2011). In this study, male age was not correlated with any of the semen 

parameters analysed. Although this corroborates some studies, a recent 

thorough meta-analysis of 90 studies concluded that male age was 

associated with decreases in semen volume, total sperm count, % total 

motility, % progressive motility, % morphologically normal sperm and also 

with an increase in DNA fragmentation (Johnson et al., 2015). The lack of 

association found in this study may be due to the relatively small range of 

ages (23-57 years) under investigation (mean=36 years) which may not 
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reveal the true extent of the trends. With regard to IVF and ICSI outcomes in 

this study, male age had no effect on fertilisation, cleavage or pregnancy 

rates, which supports the findings of existing studies (Nijs et al., 2011; 

Begueria et al., 2014; Wu et al., 2015), although some evidence remains that 

there is a paternal age effect, particularly over 40 years (Kidd et al., 2001; de 

La Rochebrochard et al., 2006). Maternal age remains the most important 

prognostic factor for ART outcomes (ESHRE Capri Workship, 2005; Hourvitz 

et al., 2009). 

The effect of modifiable lifestyle factors on sperm quality and ART is 

important to elucidate as simple lifestyle changes could improve reproductive 

outcomes. This study investigated unhealthy and healthy diets in relation to 

semen parameters and IVF and ICSI outcomes. The two diets were similar to 

those identified elsewhere of men in the United Kingdom which verifies the 

PCA analysis (Slimani et al., 2002). Men who had a more unhealthy diet 

consisting of red, fried and processed meat, fries, butter, high-fat dairy, 

bread, sugar and confectionary, and CSSBs, had lower levels of % immotile 

sperm. This is the opposite trend to what would generally be expected from 

an unhealthy lifestyle and contrasts directly to the results of one study in 

which a “prudent” diet typified by consumption of fish, chicken, fruit 

vegetables and whole grains was linked to higher levels of % progressive 

motility (Gaskins et al., 2012). In this study, Gaskins et al. recruited 

participants from a young healthy men’s study, rather than from an infertility 

clinic, suggesting that diet types may show different trends in the general 

population. This issue was confronted by analysing diet trends in men with at 

least one normal semen parameter, in which case having an unhealthy diet 

was no longer linked to lower % immotile sperm. The healthy diet was 

associated with increases in sperm concentration, volume and count up to 

the moderate-high group, but then dropped in the highest group. One 

explanation for this could be that some products associated with the healthy 

diet such as soy, can be damaging to sperm due to the phyto-estrogens 

present. Phyto-estrogens are plant-derived endocrine disruptors which mimic 

oestrogen hormone activity by binding to the oestrogen receptor and have 

been linked to lower sperm concentration, but not motility, in a study also 
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looking at men attending a fertility clinic (Chavarro et al., 2008). However, 

elsewhere phyto-oestrogens have been shown to have no effect on sperm 

parameters or hormone levels (Mitchell et al., 2001). 

It is difficult to firmly conclude the causal effects of specific food items on 

sperm parameters as individual diets vary so widely, which is why this study 

focussed on general diet trends. However some studies have attributed 

specific foods to changes in semen parameters, including sugar sweetened 

beverages, trans-fatty acids, fish and the breadth of research on anti-oxidant 

containing foods (Chiu et al., 2014; Chavvaro et al., 2014; Afeiche et al., 

2014; Zareba et al., 2013). There are few studies investigating the effects of 

male diet on ART outcomes but Xia et al. (2015) found that increased 

consumption of processed meat is associated with lower fertilisation rates. 

Although processed meat was one of the foods with the largest loading in the 

unhealthy diet, this study did not find an association between unhealthy 

lifestyles and IVF or ICSI outcomes. 

A point of consideration with regard to grouping the diets as “healthy” and 

“unhealthy” is that the other lifestyle factors in the analysis did not fit with 

typical healthy or unhealthy lifestyles, i.e. there was no association between 

healthy and unhealthy diets and BMI, physical activity or alcohol 

consumption. Therefore those individuals with unhealthier diets were not 

sharing the traditional attributes of being unhealthy, i.e. being overweight or 

obese, having low activity levels and drinking more alcohol. BMI itself was 

also not related to physical activity levels, calling into question the reliability 

of the self-reported data in the questionnaire. 

The benefits of being physically active for human health are extensive. LSI 

was calculated from the number of times per week participants carried out 

moderate and strenuous exercise for more than 15 minutes, which was 

designed and is still commonly used as a method for estimating physical 

activity levels (Godin and Shephard, 1985). LSI scores were analysed in 

terms of being active or insufficiently active, as well as on a continuous 

scale, and no correlation was identified between physical activity levels and 

semen parameters. This result is not surprising as in the current literature, 
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like BMI, there is a disparity as to whether and to what extent physical 

activity affects semen parameters. Two similar studies on young healthy men 

found contrasting results, with one reporting no effect and another reporting 

a significant improvement in sperm quality with physical activity on a 

continuous scale (Gaskins et al., 2014; Minguez-Alarcon, et al., 2014). In 

comparison, men who participated in a large amount of sedentary behaviour 

(measured as TV watching) had lower sperm concentration (Gaskin et al., 

2015). There is evidence that the type of physical activity men engage in can 

have different bearings on sperm quality, which was not accounted for in this 

study, and may be one of the reasons for no differences being detected 

(Gaskin et al., 2014). A more likely reason for no association being found in 

this study may be due to the subfertility of the study population, in which 

case any small changes in sperm quality due to physical activity may be 

negligible. However, when LSI was analysed only in men with semen 

parameters above the WHO recommendations for a normal semen sample, 

there was still no association. Gaskins et al. (2014) also found that paternal 

physical activity was not associated with clinical outcomes of ART, which is 

also the case in this study.   

Curiously, alcohol consumption was associated with higher sperm 

concentration and sperm count in the univariate analyses, with the greatest 

increase in sperm concentration being in men who consumed more than the 

recommended guidelines of 21 units per week. When controlling for 

confounding variables, these were no longer significant. Despite alcohol 

being linked to low semen quality in healthy men (Jensen et al., 2014), 

Povey et al. (2012) also found that men who consumed alcohol in the 3 

months prior to their study had lower likelihood of low-motile sperm 

concentration. This was not significant following multivariate analysis, 

however when considered in conjunction with the results from this study, 

which provided more detail in terms of the quantity of alcoholic units 

consumed per week, it suggests that there may be more to the thus far 

superficial information on alcohol and semen parameters. It is possible that 

certain personality traits that define a man’s drinking habits may also 

influence other lifestyle choices, through which moderate alcohol 
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consumption could lead to improved semen parameters. Paternal alcohol 

consumption was associated with decreased live birth rates and increased 

miscarriage rates in couples undergoing IVF treatment (Klonoff-Cohen et al., 

2003), yet no trend was seen between alcohol consumption and IVF or ART 

outcomes in this study. 

The effects of current smoking could not be investigated on this cohort of 

men as smoking is prohibited during ART treatment. Therefore, men 

reported to be either ex-smokers or non-smokers and no difference was 

found in any of the semen parameters between the non- and ex-smoking 

groups. This is in accordance with other findings related to men attending 

fertility clinics (Pacey et al., 2014; Povey et al.,2012). The duration of 

smoking (years) was also investigated to determine if long-term smoking 

could have an effect on fertility, however this also did not show any 

association with semen parameters. If men had stopped smoking more than 

3 months before giving their sperm sample, any smoking-induced damage 

may not have manifest in the present sperm, as a full round of 

spermatogenesis would have completed in that time. A more insightful 

variable to consider would be whether men had been exposed to maternal 

smoking in utero as this is known to drastically affect sperm and fertility of 

male offspring (Axelsson et al., 2013) and the extent of this damage has 

been shown in controlled animal studies (Sobinoff et al., 2014). Correct germ 

cell development is crucial for a man’s adult fertility as spermatogonia are the 

source of mature sperm post-puberty. At this vulnerable stage sperm would 

therefore be affected by exposure to toxins such as tobacco smoke. Thus, it 

would be insightful to ask men about their mother’s smoking habits  while 

pregnant as this could describe a large proportion of the variation in semen 

quality seen here. Smoking was also not associated with IVF or ICSI 

outcomes in this study.  

Men attending the fertility clinic were advised to wear loose fitting underwear 

and were asked in the questionnaire whether they wore boxer shorts. The 

results showed that wearing boxer shorts was associated with a lower 

number of immotile sperm, which supports a previous study which found that 

wearing boxer shorts was associated with better low-motile sperm 



 

167 
 

concentration (Povey et al., 2012). This supports evidence that suggests that 

tight underwear can impair testicular function due to elevated scrotal 

temperatures, however the imbalance of numbers of men reporting to wear 

boxer shorts (n=139) versus not wearing (n=16) could suggest a false 

positive result here. Furthermore, some participants in the “no boxer shorts” 

group reported to wear no underwear at all which would not present the 

same risk as tight boxers.  These results should therefore be interpreted with 

caution.  

Chemical and physical exposures were not found to be associated with 

semen parameters in this study, which is in accordance with Jurewicz et al. 

(2014) who found that only exposure to high levels of noise was linked to 

poorer semen parameters, while sitting, exposure to PVC and high 

temperatures were not significantly associated. Notably, exposures which did 

not result in a change in semen parameters did show an increase in DNA 

fragmentation, indicating that many of these modifiable lifestyle factors are 

having damaging effects at the DNA rather than the morphological level. 

Other studies have shown significant effects of chemical and physical 

exposures, including lower sperm quality with heavy metals and solvents 

exposure, and specifically lower sperm motility associated with vibrating 

machinery and hot environments (De Fleurian et al., 2009).  

Exposure to pesticides, herbicides, fertilisers, dry cleaning fluids, PVC or 

plasticisers, extremely hot environments, non-ionizing radiation, X-rays or 

driving for long periods were not analysed due to low participant numbers. 

However, some of these have previously been shown to affect semen 

parameters: De Fleurian et al. found that hot environments were linked to 

lower sperm motility while Chiu et al. (2015) found an association between 

poor sperm morphology and pesticide-contaminated foods and Kumar et al. 

(2013) found poor sperm morphology in men exposed to ionisation radiation, 

i.e. X-rays. Sperm morphology was not analysed in this study, but seems to 

be an important parameter to measure for sperm quality.   

In this study, IVF and ICSI patients both represented roughly half of the study 

population. Semen parameters were all significantly poorer in the ICSI group 
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as expected; ICSI treatment involves the selection of a single sperm for 

injection into the oocyte usually due to very poor semen parameters that 

prevent fertilisation in conventional IVF. There was no difference in 

fertilisation, cleavage or pregnancy rates between IVF and ICSI groups, 

which is agreeable with existing research that shows that once embryos 

have reached the transfer stage, there is no difference in pregnancy outcome 

based on treatment type although embryo quality can differ (van der 

Westerlaken et al., 2006). Sperm quality was associated with some ART 

outcome measures. Increased sperm concentration and % PM in neat 

semen were both associated with higher fertilisation rates in ICSI patients 

which has been shown elsewhere (Lu et al., 2012; Loutradi et al., 2006). 

These two variables are also highly correlated with each other so it is difficult 

to distinguish which is the dominant factor. As ICSI involves sperm injection, 

the low fertilisation rates cannot be due to failure of sperm to successfully 

travel to or penetrate the egg plasma membrane. It is therefore probable that 

other mechanisms, possibly molecular or genetic, can interrupt fertilisation, 

such as improper expression or activity of phospholipase C zeta (PLCζ). 

PLCζ is a sperm factor released into the egg upon fertilisation which 

activates the egg by initiating intracellular calcium oscillations (Kashir et al., 

2010). Increased BMI was also found to be associated with lower fertilisation 

rates in these ICSI patients. As BMI and sperm concentration are correlated 

with each other, it is difficult to know which is causing the change in 

fertilisation rates. Again, as female BMI or other female lifestyle factors were 

not controlled for, these findings require further validation. Finally, in IVF 

patients, higher % PM in neat semen was associated with higher cleavage 

rates. 

4.3.2 Conclusion 

In conclusion, some modifiable environmental and lifestyle factors may 

influence sperm parameters, which could have consequences for IVF and 

ICSI, but male lifestyle alone has little bearing on ART outcomes. As others 

have suggested (Povey et al. 2012), although some lifestyle changes may 
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lead to small improvements in semen quality, it is unlikely that this will occur 

to an extent that the chances of successful ART are increased.  

Chapter 5 

An in vitro model to investigate the effects of 

glycation on human sperm 

5.1  Introduction 

Lifestyle habits known to be detrimental to health include poor diet, obesity, 

sedentary behaviour and smoking. The non-enzymatic glycation of proteins, 

lipids and nucleic acids by reducing sugars to form stable covalent advanced 

glycation end products (AGEs) is thought to be one mechanism behind the 

progression of disease states as a result of these damaging lifestyle factors. 

AGE formation on biomolecules occurs as a result of the reaction of the 

carbonyl (C=O) group of reducing sugars with the amine (NH2) group of 

proteins, lipids or nucleic acids through the Maillard reaction. Glycation is 

accelerated in hyperglycaemic conditions and AGEs accumulate in the body 

over time, implicating AGEs in many diabetes- and age-related diseases. 

AGEs are also formed exogenously: cigarette smoking is a source of toxic 

AGEs that leads to an accumulation of AGEs in the tissues of smokers 

(Cerami et al., 1997; Nicholl et al., 1998); while high-temperature cooking of 

foods, particularly meats, is a dietary source of AGEs (Goldberg et al., 2004).  

Several lifestyle traits and environmental exposures can therefore contribute 

toward increasing levels of AGEs in the body. 

A decline in male fertility over recent decades has been reported in several 

studies looking at changes in semen parameters (Auger et al., 1995; Carlsen 

et al., 1992; Rolland et al., 2013; Romero-Otero et al., 2015). AGEs have 

been investigated as a potential contributor to this decline in sperm function 
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as one of the major AGEs, carboxymethyl-lysine (CML) has been found 

elevated on the sperm of diabetic men (Karimi et al., 2011; Mallidis et al., 

2009). CML is a glycoxidation product: it is formed on proteins by a 

combination of glycation and oxidation reactions (Fu et al., 1996). The major 

mechanisms of damage by AGEs are in altering protein structure and 

function, crosslinking extracellular matrix (ECM) proteins, and activating the 

inflammatory response in cells on interaction with the receptor for AGE, 

RAGE (Goldin et al., 2006; Ahmed, 2005; Zhang et al., 2006; Guimaraes et 

al., 2010). AGEs are also a potent source of reactive oxygen species (ROS), 

and as sperm are particularly susceptible to oxidative damage, elevated 

ROS levels can contribute to poor sperm function (Sharma et al., 1999; Aziz 

et al., 2004; Agarwal et al., 2014b).  

Research suggests that AGEs could be a source of damage to sperm. 

Firstly, higher levels of seminal plasma AGEs correlate with sperm lipid 

peroxidation levels, indicating a direct role for the action of AGE-generated 

ROS (Karimi et al., 2011). Secondly, RAGE is located on sperm cells as well 

as throughout the testis and epididymis, suggesting that the inflammatory 

response pathway could be a mechanism for ROS generation in sperm and 

in surrounding cells. Interestingly, higher levels of RAGE are found in 

diabetics than non-diabetics (Mallidis et al., 2007) and this directly correlates 

with nuclear DNA fragmentation though it does not reflect changes in 

standard semen parameters (Karimi et al., 2012). It seems that AGE-

mediated damage could occur as far as the DNA level without showing 

differences in sperm concentration, motility or morphology. This is important 

to consider as infertility is defined clinically by these features only. 

The occurrence of AGE and RAGE in healthy males shows that these 

compounds have some baseline effect on sperm function, and may cause 

oxidative stress, lipid peroxidation and sperm DNA damage. It is important to 

illustrate the mechanistic action of AGEs on these markers of sperm 

damage, and this can be achieved through the use of in vitro cell assays. 

Many in vitro glycation assays have been carried out on different cell types 

as well as on purified proteins to elucidate causes and consequences AGE-
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mediated damage (Portero-Otin et al., 2002; Nass et al., 2010; Ahmed et al., 

2005b). An in vitro assay for human sperm will provide some evidence for 

whether these compounds are an important factor to consider in regards to 

infertility, as has been achieved with oocytes (Liu et al., 2013). Importantly, 

as AGE levels are related to lifestyle and environment, AGE-mediated sperm 

damage could be reduced through lifestyle interventions. 

5.1.1 Aims 

1. To develop an in vitro cell-based assay to investigate the effects of 

glycation on sperm function. 

2. To measure CML formation in glycated sperm and determine the 

impacts on ROS generation, oxidative DNA damage and HA binding 

capacity. 

3. To investigate differences in CML levels between obese men 

compared with normal weight men. 

4. To determine the effects of in vitro glycation of the hyaluronidase 

protein.  

5.2 Results 

5.2.1 Formation of AGEs on sperm glycated in vitro over 6 days 

5.2.1.1 Glucose does not glycate sperm in vitro 

Glucose sugar was first utilised as the glycating agent for in vitro incubation 

with prepared sperm for 6 days at 37°C. The formation of the prominent 

AGE, carboxymethyllysine (CML), was measured in sperm glycated in the 

presence of SPM and glucose at 30 and 50 mM (fig. 5.1). As sperm are non-

dividing cells, they can be maintained in culture for a limited period of time. 

The number of days that sperm could be kept in culture in the presence of 

various compounds was determined based on sperm vitality measured using 
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the eosin-nigrosin stain (fig. 5.2). The results revealed that incubating sperm 

with glucose at 30 and 50 mM promoted much greater sperm survival after 6 

days of 43.4% (p<0.0001) and 51.4% (p<0.0001) compared with SPM 

samples at 7.1% survival. 

Incubation of sperm with glucose did not result in a significant difference in 

CML levels between sperm incubated with glucose at either concentration 

and sperm incubated with SPM alone (fig. 5.1, p>0.05). Sperm motility was 

also measured over the course of the first 72 hours of incubation. At 72 

hours, glucose supplementation had maintained sperm progressive motility 

at around 50% which was higher than sperm incubated with SPM, though not 

significantly so (p>0.05) (fig. 5.3). It is possible that the incubation period was 

Figure 5.1 CML formation on sperm glycated with glucose for 6 days  

Relative CML levels were measured as mean fluorescence intensity 
(MFI). CML levels in sperm incubated with glucose at 30 mM (n=4) and 50 
mM (n=3) were not significantly different from sperm incubated with SPM 
alone (n=4) (p>0.05). Error bars represent the standard deviation of the 
mean. 
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not sufficient for glycation by glucose to take place, however it was 

unadvisable to extend the incubation period as the vitality of sperm incubated 

with the control media (SPM) would have reached 0%. 

5.2.1.2 Fructose and mannitol do not glycate sperm in vitro 

Since glycation of sperm with glucose was not evident in the time frame 

necessary, fructose was then tested as a potential physiological glycating 

agent. Fructose is a reducing sugar with the same molecular weight as 

glucose (180.16) and is the abundant sugar in seminal plasma. As a control, 

the non-reducing sugar mannitol was used. This sugar lacks the glycating 

Figure 5.2 Vitality testing of glycated sperm incubated with glucose  

Results show the % live sperm following glycation with glucose (n=7) (30 
mM and 50 mM), MG (n=7) (50 µM) and GO (n=4) (50 µM) for 6 days, 
measured using the eosin-nigrosin stain. Sperm vitality decreased in all 
treatment groups during the incubation period but the presence of glucose 
significantly maintained vitality at a much higher level than SPM, MG and 
GO (**** = p<0.0001). 
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capacity of glucose and fructose yet also has a similar molecular weight 

(182.16). Neither fructose nor mannitol treatment resulted in a significant 

difference in CML levels compared to other treatments (p>0.05). 

5.2.1.3 Toxicity testing of MG 

As the reducing sugars were ineffective at glycating sperm over the 6 day 

time period, the reactive AGE intermediate, methylglyoxal (MG), was used. 

MG is a potent and rapid AGE precursor, reacting more readily with proteins 

than the aforementioned simple sugars.  A kill curve was carried out over 48 

hours and vitality measured with the eosin-nigrosin stain to determine the 

optimal concentration to use. Cell vitality was expected to consistently 

decrease over time, and as 48 hours was one third of the total incubation 

time of 6 days, a toxicity cut-off point was set at a decrease of one third of 

the original vitality. The concentration at which the number of live cells was 

reduced by less than one third was 50 µM (fig. 5.4), and this concentration 

was used for all further experiments with MG. 

Figure 5.3 Effects of glycation on sperm motility 

% Progressively motile sperm after 72 hours in culture with SPM, glucose, 

fructose, mannitol MG and GO (n=3). Two-way ANOVA with multiple 

comparisons showed that all treatments showed a significant decrease in 

sperm motility over time (p<0.05), however, none of the treatments were 

significantly different at 72 hours (p>0.05). Error bars represent the standard 

deviation of the mean. 
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MG treatment caused a substantial decrease in sperm vitality over 6 days to 

14.1% and this was not significantly different from survival rate in SPM 

(p>0.05). This vitality data correlated with sperm motility data which showed 

that by the end of the incubation period, 100% of cells exposed to SPM and 

MG were immotile, while 30 mM and 50 mM glucose samples showed 31% 

and 41% total motility, respectively. 

 

5.2.1.4 Glyoxal glycates sperm in vitro 

Another reactive AGE intermediate - glyoxal (GO) - was included in the 

glycation experiments as it is the major intermediate source of CML, while 

MG primarily forms carboxy-ethyl-lysine (CEL), a structurally similar AGE. In 

glycation research these compounds are usually investigated simultaneously 

as they have a similar potency and prevalence in the body and are both 

implicated in AGE-related disease. Due to their structural similarity and 

Figure 5.4 Methylgloxal kill curve 

Grey bars show the % live sperm after 48 hours incubation with 
various concentrations of MG (0-500 µM). Vitality was determined by 
the eosin-nigrosin stain. 
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similar physiological concentrations, GO was used alongside MG in all 

experiments at 50 µM.  

Figure 5.5 Glycation of sperm with MG and GO 

CML formation on human sperm after a 6 day incubation with SPM (n=8) and 
with glycating agents, MG (n=8) and GO (n=5). Relative CML was measured 
as mean fluorescence intensity (MFI) of flow cytometry detection. One-way 
ANOVA analysis showed that GO caused significantly more CML formation 
than MG or SPM. Error bars represent the standard deviation of the mean. 
****p<0.0001, **p<0.01.  
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Glycation of sperm with reactive AGE intermediates over 6 days resulted in 

higher levels of CML formation in sperm treated with MG and GO compared 

with SPM-treated sperm (fig. 5.5). However, a one-way ANOVA showed that 

only GO was significantly different from MG (p<0.01) and SPM (p<0.0001), 

while MG did not cause significantly higher levels of CML than SPM control 

(p=0.771). In terms of the effects of these factors on sperm motility, there 

was a significant drop in sperm motility after 72 hours incubation, however 

motility was not significantly different to sperm incubated with SPM (p>0.05) 

(fig. 5.3).  

5.2.1.5 Intracellular ROS production is not affected by glycating agents 

Glycation of proteins and binding of AGEs to RAGE causes the release of 

reactive oxygen species (ROS). Intracellular ROS was therefore measured in 

sperm after the 6 day incubation period with sugars or intermediates to 

Figure 5.6 Intracellular ROS production in glycated sperm  

Relative ROS levels in sperm treated with SPM (n=6), with the reducing sugars 
glucose (n=3) and fructose (n=3) (10 mM), a non-reducing sugar control mannitol 
(n=3) (10 mM), MG (n=6) or GO (n=3) (50 µM) for 6 days. ROS was measured 
as mean fluorescence intensity (MFI) of flow cytometry detection. One-way 
ANOVA analysis revealed no difference in ROS levels between any of the 
treatment groups. Error bars represent the standard deviation of the mean. 
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identify if ROS generation was occurring. The results showed no significant 

difference in ROS levels between sperm from any of the treatment groups 

(p=0.992) (fig. 5.6). As the ROS levels were so low, a test was carried out 

with varying concentrations of MG (0-500 µM) to determine at what point 

high ROS production would occur (fig.5.7). There was a slight increase in 

ROS production from 50 µM onwards, but the clearest change was after the 

use of 500 µM MG, at which point ROS levels triple that of the preceding 

concentration.  

5.2.1.6 Oxidative DNA damage is elevated in sperm treated with MG and 

GO 

Due to the unstable nature of free radicals, ROS measurement can be 

unreliable and underestimate the level of damage caused to cells. Instead, 

the biological effects of damage by ROS were determined by measuring 8-

oxoguanine levels as a marker of oxidative DNA damage. The results 

showed that 8-oxoguanine levels were significantly higher in sperm treated 

with GO than with MG (p=0.043) and SPM (p=0.018) (fig. 5.8). However, MG 

did not cause significantly more oxidative DNA damage than SPM (p=0.754). 

This trend mirrored the results of the glycation experiment in which GO 

caused an increase in CML levels.  
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Figure 5.7 Intracellular ROS levels in sperm treated with MG  

Relative ROS levels were measured in sperm treated with MG at various 

concentrations (0-500 µM) for 48 hours. ROS levels were drastically elevated 

only at the highest concentration of MG. ROS levels were measured as mean 

fluorescence intensity (MFI) during flow cytometry detection.  
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5.2.1.7 Immunocytochemistry for AGEs 

Glycated sperm were stained by immunocytochemistry (ICC) for general 

AGEs and CML to identify the cellular locations of these compounds on the 

cells. Initial observations show AGE and CML staining on all anatomical 

regions of the sperm: the head, midpiece and tail. Corrected total cell 

fluorescence (CCF) was calculated to account for background levels of 

fluorescence in the images. This analysis was only carried out on the head 

regions of the sperm. 

AGEs seem to show an even distribution across all parts of the sperm cell 

(fig. 5.9 B, E, H). At higher magnification (100X), the AGE staining on the 

sperm head shows a fine speckled pattern. This staining, as well as tail 

staining, showed higher reactivity in sperm treated with GO than with SPM or 

Figure 5.8 Oxidative DNA damage in glycated sperm  

8-oxoguanine levels were measured in sperm treated with SPM (n=3) and 
reactive AGE intermediates, MG (n=3) and GO (n=3) (50 µM). 8-oxoguanine 
levels were determined as the mean fluorescence intensity (MFI) of flow 
cytometry detection. GO treatment caused significantly more 8-oxoguanine 
generation than SPM or MG (*p<0.05). Error bars represent the standard 
deviation of the mean. 
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MG. However, the CCF analysis showed that relative AGE intensity in the 

head region of GO-sperm was significantly higher than MG (p=0.0048) but 

not SPM (0.3232) (fig. 5.11). SPM-sperm also showed significantly higher 

AGE intensity than MG cells (p=0.044). The data suggest that AGE intensity 

in GO-sperm was not different from SPM-sperm, however it is clear from the 

images that tail intensity was very different between the treatment groups 

and should be accounted for alongside the CCF data. 

CML fluorescence was faint in SPM-treated sperm, while showing a more 

intense staining in the tail region of the MG- and GO- treated cells (fig. 5.10 

B, E, H). This was particularly prominent in the acrosomal head region in GO 

sperm, from the mid-section to the most anterior point (fig. 5.10 G). This is 

supported in the CCF data (fig. 5.12) which showed that GO cells had 

significantly higher CML staining than SPM (p=0.0419) and MG cells 

(p=0.0237), while CML in heads of MG-sperm was not different to SPM-

sperm (p=0.999). These CCF data match that of the flow cytometry results 

for CML levels in sperm. As the CCF data does not account for tail intensity, 

it is possible that CML levels on tail regions in MG-sperm could be higher 

than that of SPM-sperm, as the images suggest (fig. 5.10 B and E).  

Negative controls for AGEs (fig. 5.9 J-L) and CML (fig. 5.10 J-L) showed a 

slight amount of autofluorescence or non-specific binding, but these levels 

were minimal and unlikely to compromise the observations.  
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Figure 5.9 Immunocytochemistry for the detection of general AGEs on sperm. ICC was performed on sperm incubated with SPM 

(A-C), MG (D-F) and GO (G-I) for 6 days. Nuclear staining with DAPI is shown in the middle column, AGE positivity measured in the FITC 

channel is shown in the right hand column, and merged images are shown in the left-hand column. All treatment groups showed positive 

staining for AGEs in the head and tail regions. In MG and GO groups, there was more intense staining, particularly on the tail region in the 

MG and GO groups. Overall, GO had the most intense head staining. Magnification at 100x oil immersion. 
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Figure 5.10 Immunocytochemistry for the detection of CML on sperm. ICC was performed on sperm incubated with SPM (A-C), 

MG (D-F) and GO (G-I) for 6 days. CML was not as abundant on sperm treated with SPM as it was on MG- and GO-treated sperm, 

and this difference is clear from the images and is supported by cell intensity quantification. Magnification at 100x oil immersion. 
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Figure 5.11 Corrected Total Cell Fluorescence for AGE ICC 

Fluorescence intensity of general AGEs in sperm treated with SPM, MG and 

GO for 6 days (n=3). Corrected total cell fluorescence (CCF) represents 

fluorescence of sperm heads only. GO showed higher CCF than MG and 

SPM showed higher CCF than MG. Error bars represent standard deviation 

of the mean. *p<0.05, **p<0.01. 

Figure 5.12 Corrected Total Cell Fluorescence for CML ICC  

Fluorescence intensity of CML in sperm treated with SPM, MG and GO for 6 

days (n=3). Corrected total cell fluorescence (CCF) represents fluorescence of 

sperm heads only. GO treatment showed significantly higher CML reactivity in 

sperm heads than SPM and MG treatment. Error bars represent standard 

deviation of the mean *p<0.05. 
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5.2.2 Short term glycation of sperm 

5.2.2.1 Glyoxal glycates sperm in 2 hours 

As the level of glycation was extremely high in sperm treated with GO after 6 

days, the same glycation experiment was carried out over a 4 hour time 

period, with CML measurements taken at 2 hour intervals. When comparing 

time points 0, 2 and 4 hours, a two-way ANOVA with Tukey’s test for multiple 

comparisons showed a significant increase in CML levels in GO-treated cells 

from 0 to 2 hours (p<0.0001), 0 to 4 hours (p<0.0001) and 2 to 4 hours 

(p<0.01) (fig. 5.13). However, there was no significant change with either 

SPM or MG across any of the time points (p>0.05). The levels of CML in GO-

treated cells was significantly higher than that of MG- and SPM-treated cells 

at 2 hours (p<0.0001) and 4 hours (p<0.0001). MG treatment was not 

significantly different to SPM treatment at any time (p>0.05). 

When CML values were compared as the percentage difference from the 

initial time point (0 hours), GO treatment showed a 225% increase after 2 

hours which increased to 259% at 4 hours and a 500% increase after 6 days. 

MG treatment showed a non-significant 37% increase after 2 hours and this 

did not change up to 4 hours, and there was a 179% increase in MG levels 

after 6 days, but this was not significantly different to SPM treated cells. 
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5.2.2.2 Sperm motility is not affected by short term glycation 

To determine whether the increase in glycation seen in sperm is associated 

with a change in sperm motility, the percentage of progressively motile 

sperm was simultaneously measured at each time point when removing cells 

for CML analysis. The results showed no significant difference in sperm 

motility across the 4 hours of incubation with SPM, MG or GO treatments 

(fig. 5.14). 

  

Figure 5.13 Short-term glycation of sperm 

CML levels in sperm treated with SPM, MG and GO for 4 hours (n=3). CML 
was measured as the mean fluorescence intensity (MFI) of flow cytometry 
fluorescein detection. Sperm incubated with GO showed an increase in 
CML at 2 hours (BA) and 4 hours (BB), and this was significantly higher 
than MG and GO at these time points (AA and AB). Error bars represent 
standard deviation of the mean. ****p<0.0001, **p<0.01. 
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Figure 5.14 Effects of short-term glycation on sperm motility 

Sperm progressive motility during 4 hour glycation with SPM, MG and GO (n=3). 

Two-way ANOVA was performed to identify differences between treatment and 

time. There was no significant difference in progressive motility over 4 hours. 

Error bars represent standard deviation of the mean. 
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5.2.3 Sperm glycation in obese men 

5.2.3.1 Semen parameters are not different between obese and normal 

weight men 

To determine whether there is an elevation in sperm AGEs in obese men, 

CML levels were compared between two groups of obese and normal weight 

men. The mean BMI of the obese group was significantly higher than the 

control group at 34.34±3.88 kg/m2 compared to 23.28±1.31 kg/m2 (p=0.001). 

The semen parameters for both groups are shown in table 5.1. The mean 

sperm concentration, semen volume, % progressive motility and % total 

motility were all lower in the obese group, however this was not significant 

(p>0.05). Similarly, the % immotile cells was higher in the obese group but 

again this was not significant (p>0.05). The mean age for the obese group 

was 48.4 years (±4.88) while the mean age for the control group was 29.2 

years (±5.12) (p=0.0003). Abstinence time was between 2 and 5 days for all 

cases. 

Figure 5.16 CML levels in the sperm of obese and non-obese men  

CML was detected using an anti-CML fluorescent antibody and the Mean 

Fluorescence Intensity (MFI) was recorded by flow cytometry by fluorescein 

detection. There was no significant difference in sperm CML levels between 

obese men (n=5) and normal weight men (n=5). Error bars represent 

standard deviation of the mean.  
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5.2.3.2 CML levels are not elevated in the sperm of obese men 

CML levels were measured in the prepared sperm of obese and control men 

by flow cytometry using the same method as for sperm that underwent in 

vitro glycation. There was no significant different in CML levels between the 

obese and control groups (p=0.344) (fig. 5.16).  

5.2.4 Effects of glycation on sperm hyaluronidase 

Increased AGE production has been associated with male infertility (Mallidis, 

et al 2009). This study has demonstrated that glycation does not affect 

sperm motility. However, as AGEs are important instigators of oxidative 

stress and cell dysfunction in numerous diabetic complications, lifestyle 

exposures and aging, we tested if these compounds would have an effect on 

sperm at a molecular level by perturbing hyaluronidase function. We chose 

to investigate hyaluronan binding capacity of sperm as this is an essential 

process for successful fertilization. To investigate the effects of glycation on 

Table 5.1 Semen parameters of obese and non-obese men  

Means and SD are shown for each semen parameter in the obese 

(n=5) and control (n=5) groups. Independent t-tests for differences 

between the groups were carried out and p-values are shown. 

Semen parameters were not statistically significantly different 

between the groups (p>0.05). 
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hyaluronan binding, the hyaluronan binding assay (HBA) was therefore 

carried out on glycated sperm over 4 hours to determine whether there was a 

change in capacity for sperm to bind to HA. In addition to the cell-based 

assay, we also glycated recombinant hyaluronidase in vitro and used a 

hyaluonidase-substrate gel assay to determine enzymatic activity. Molecular 

cloning was first attempted to generate the recombinant protein, however this 

was unsuccessful. As an alternative, a commercial hyaluronidase enzyme, 

Cumulase™, was used for the in vitro glycation. 

5.2.4.1 Hyaluronan binding capacity is not affected by short term 

glycation 

The HBA assay showed that sperm showed no significant changes in binding 

to HA following incubation with MG or GO (fig. 5.17). Hyaluronan binding did 

not drop below 90% in any of the treatment groups, showing that the 

glycation seen in 4 hours by GO was most likely not affecting the function of 

the cell surface hyaluronidase protein.  

Figure 5.17 Hyaluronan binding assay for glycated sperm  

HA binding of sperm incubated with MG and GO over 4 hours (n=3). 
No difference was seen in hyaluronan binding capacity at 2 or 4 hours. 
Sperm maintained a high level of binding throughout. Error bars 
represent the standard deviation of the mean. 
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5.2.4.2 Recombinant SPAM1 is insoluble when expressed in E.coli 

Numerous extraction methods were tested for the purification of cloned 

SPAM1 protein, however it remained insoluble and could be seen in the 

insoluble pellet following each extraction (fig. 5.18 lane 6). The protein was 

successfully expressed in E.coli when the cells were induced (fig. 5.18, 

arrow), however, the protein could not be seen in the supernatants of the 

extraction buffers (wells 3, 4 and 5) whereas a large band was seen in the 

pellet. The SPAM1 transcript product was 58 kDa and the GST tag is 

approximately 26 kDa, making the total weight around 84 kDa, which can be 

seen as the band above the 75 kDa molecular weight mark.

Figure 5.18 Recombinant SPAM1  

SPAM1 was expressed in E.coli and extracted with lysozyme, sodium 

deoxycholate, lysis buffer 1 and 2 and extracted in solubilisation buffers 1 

and 2. Wells represent 1) E.coli cells not induced, 2) E.coli induced with 

0.2 mM IPTG, 3) 1st supernatant, 4) 2nd supernatant, 5) 3rd supernatant, 6) 

cell pellet. All SPAM1 transcript was present in the insoluble protein pellet. 
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5.2.4.3 Hyaluronidase substrate gel assay development 

In order to determine the effect of glycation on hyaluronidase function, a 

substrate gel assay was developed in which a polyacrylamide gel was 

embedded with HA, which was then degraded by the hyaluronidase enzyme 

that was electrophoresed onto the gel. The gel is then stained for 

undegraded HA: the gel stains blue for HA while degraded zones remain 

unstained, resulting in a negative image. A second stain with coomassie blue 

reveals the remaining electrophoresed protein that is left in the gel, 

visualised as a dark band (fig. 5.19). The optimal incubation buffer 

composition and pH for observing hyaluronidase activity in the Cumulase 

enzyme was determined. All tests using sodium acetate buffer showed some 

degradation of HA in the gels (fig. 5.19), however incubation buffers at pH 4 

Figure 5.19 Hyaluronidase substrate gel assay development 

Measurement of Cumulase activity in a substrate gel assay using enzyme 

activation buffer at pH 3 (A), pH 4 (B), pH 6 (C) and pH 7 (D). Two 

concentrations of Cumulase were used: 0.25 mg/ml (well 1) and 0.125 mg/ml 

(well 2). BSA was also tested at 0.25 mg/ml (well 3). White bands represent 

areas of the gel where HA has been degraded due to hyaluronidase activity. A 

higher concentration of Cumulase caused greater degradation of HA in the gel, 

observable as larger and brighter bands, while BSA showed no degradation of 

HA. pH 4 (B) and pH 7 (D) showed the clearest bands in this experiment. 
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and pH 7 were the most optimal (fig. 5.19 B and 1D). The Cumulase enzyme 

contains HSA (66.5 kDa) as a cofactor and a control was run for this 

containing BSA (66.5 kDa) at 0.25 mg/ml (fig. 5.19 A-D, well 3). The protein 

bands in the Cumulase wells (1 and 2) showed the same sized protein band 

as the BSA control well. Therefore the protein band visualised most likely 

corresponds to the cofactor, rather than the hyaluronidase. Although the gels 

incubated at pH 7 showed high levels of enzyme reactivity and clear regions 

of HA degradation, they did not stain well for protein (fig. 5.19 D). This is in 

comparison with pH 4 where the protein bands could be seen clearly (fig. 

5.19 B). Different concentrations of Cumulase were used in this assay 

development (0.25 mg/ml and 0.125 mg/ml) and can be identified by the size 

of the dark protein bands (fig 5.18 A and B). 

5.2.4.4 Glycation of Cumulase does not affect enzyme function 

The conditions used for the hyaluronidase substrate gel assay, based on the 

assay development, were incubation in sodium acetate buffer at pH 4 for 16 

hours. Cumulase which had been glycated with glucose, fructose, mannitol, 

MG or GO for 0, 3, 7 or 14 days were electrophoresed onto the gel and their 

HA degradation capacity was observed. The results showed that HA 

degradation by Cumulase, measured by the size of degraded HA sites, was 

not different following incubation with sugars and AGE intermediates (fig. 

5.19). The enzyme retained a similar level of activity at 14 days as at start of 

the experiment. Unlike during the assay development, the protein band 

which was visualised as a dark band, was not present. Instead, a clear band 

appeared in the same position but was absent from the control BSA well. 

This could indicate HA degradation, or alternatively the protein present in the 

gel could be preventing penetration of the dye, however this is unlikely as the 

BSA sample did not reveal this same white band (fig. 5.19, well 7).  
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Figure 5.20 Cumulase activity measured using a hyaluronidase 

substrate gel assay 

Cumulase was incubated with 1) PBS; 2) glucose; 3) fructose; 4) mannitol; 

5) MG and 6) GO over 0, 3, 7 and 14 days (A-D, respectfully) to determine 

the changes that could occur in this enzyme as a result of glycating 

conditions. There was no observable difference in band size between the 

treatment groups (1-6) indicating no change in hyalurondiase activity. BSA 

alone (7) did not cause any HA degradation. Two bands appear around the 

63 kDa and 48 kDa molecular weight markers. All gels were run on the 

same day. 
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5.3 Discussion 

Glycation is the spontaneous non-enzymatic reaction of a carbonyl group of 

a reducing sugar with a protein amine group, which through multiple 

successive reactions forms covalent irreversible AGEs. AGE-modification 

causes damage to biomolecules and modifies their function as well as 

causing cellular stress through the generation of ROS and become elevated 

with age and in disease. As AGEs have been located on sperm cells and in 

the male reproductive tract, this study sought to use an in vitro experimental 

model to show the mechanism by which sperm is glycated by physiological 

compounds. The reactive AGE intermediates, MG and GO are potent 

glycating agents, around 20,000 times more reactive than glucose 

(Thornalley, 1996), and are physiologically elevated in disease states. These 

intermediates were therefore used as an accelerated model for glycation. 

The main findings of this study were that CML, a common and potent AGE, 

was rapidly formed on sperm when incubated with the AGE intermediate GO. 

Glycated sperm experienced higher levels of oxidative DNA damage, 

indicating a role for oxidative stress in AGE-mediated cellular damage.  

Over a 6 day period in culture, CML levels did not increase in sperm 

incubated with glucose compared with SPM alone. This was unsurprising as 

most studies investigating the chemical processes of glucose-mediated 

glycation have shown that this can take from 1 to 4 weeks, often as long as 

the turnover time of the proteins in vivo (Coussons et al., 1997; Kislinger et 

al., 2003). This low reactivity is logical as being the most abundant sugar 

within biological systems, glucose reactivity would cause immense damage 

to biomolecules. Glycation is directly dependent on glucose concentration 

and time (Kislinger et al., 2003) but due to the limited time that sperm can be 

maintained in culture, the concentration of glucose was used at 

concentrations (30 mM and 50 mM) higher than physiological levels (5 mM in 

blood; 1 mM in seminal plasma). However, neither 30 mM nor 50 mM 

glucose had an effect on CML levels. Although this end-stage AGE had not 

been formed, early-stage products of the Maillard reaction such as fructose-

lysine may have been generated. In fertility clinics, sperm are maintained in 
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sperm preparation media for a number of hours. This media is optimised for 

sperm function and contains glucose at approximate levels of less than 0.1% 

(Origio, 2015), which the results of this study suggest would be insufficient 

for glycation-mediated damage to occur to sperm.  

Another reason for the lack of CML formation could be in part due to sperm 

metabolising the glucose in solution, causing the concentration to decrease 

to levels insufficient for glycation. In support of this, the vitality test showed 

that the presence of glucose promoted sperm survival in comparison to SPM, 

MG and GO, and furthermore, sperm progressive motility was maintained at 

a high level following three days of incubation in comparison to other 

compounds. This suggests that sperm are actively utilising the glucose as a 

source for ATP generation through glycolysis as well as using oxidative 

phosphorylation for ATP generation in the mitochondria. Both these 

mechanisms for ATP generation are thought to be relevant to sperm function 

(reviewed in du Plessis et al., 2015). Although replenishment of glucose in 

the media would have increased the rate of glycation, this is likely to have 

been negligible in this time frame.  

Unlike the stable ring carbonyl structure of glucose, fructose exists more 

abundantly in the open-chain aldose form (Bunn and Higgins, 1981) and can 

form AGEs up to 10 times more readily than glucose, resulting in fluorescent 

and cross-linking products (Suárez et al., 1989; Takeuchi et al., 2010). 

However, in this study fructose (10 mM) did not show higher CML levels than 

SPM or glucose when incubated with sperm. Fructose is secreted from the 

seminal vesicles and is another energy source for sperm in the ejaculate to 

drive motility, however sperm only come into contact with seminal plasma 

upon ejaculation, in which case there would be no window of time for 

glycation to occur.  

The AGE intermediates GO, MG and 3-deoxyglucosone (3DG) are reactive 

carbonyl compounds (RCC). They are formed during the Maillard reaction 

but also from the oxidation of AGEs (Thornalley et al., 1999). RCCs rapidly 

form Schiff’s bases with amino acids, hence their greater reactivity than 

glucose, and eventually form imidazolone adducts with molecules. This can 
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cause cytotoxicity to different cell types (Suzuki et al., 2010). This study 

showed that exposing sperm to GO for as little as 2 hours caused a 

significant increase in CML levels compared with SPM and MG. This semi-

quantitative method of analysis showed that CML levels were 225% higher 

after 2 hours, 259% higher after 4 hours and a 500% higher after 6 days in 

culture. Therefore this in vitro model has resulted in extremely rapid glycation 

by this intermediate compound. In vivo concentrations of MG and GO are 

approximately 1-5 µM and 0.1-1 µM intracellularly and 100-120 nM in blood 

plasma (Thornalley et al., 1999). Although the in vitro concentrations used in 

this study were much higher than physiological levels, this was necessary in 

order to illustrate the potential effects of these compounds at a measurable 

level. Furthermore, the concentrations were lower than those used in in vitro 

cell assays elsewhere (Cantero et al., 2007). The major AGE product of MG 

is carboxyethyllysine (CEL), and isomer of CML. This may explain the small 

increase in CML levels in MG-treated sperm as some antibodies against 

these compounds show cross-reactivity (Koito et al., 2004). To further this 

investigation, CEL could be measured to determine the full effects of MG, as 

well measurement of the glyoxal-lysine-dimer (GOLD) and methylglyoxal-

lysine-dimer (MOLD) would reveal whether glycated molecules were 

undergoing cross-linking, one of the damaging features of glycation (Odani et 

al., 1998). 

Immunocytochemical staining of glycated sperm was carried out in order to 

demonstrate the distribution of general AGEs and CML on the sperm cells. 

The staining of AGEs and CML along the entire length of the cell, including 

head, midpiece and tail is in accordance with that staining pattern found by 

Mallidis et al. (2009). The paper also describes high immunoreactivity to 

CML on the head acrosomal cap region in diabetics, compared to non-

diabetics where immunoreactivity was low, and this is similar to the higher 

level of CML staining found here on sperm glycated with GO compared with 

SPM. The use of this in vitro assay may therefore be a good model for 

mimicking the diabetic environment and shows that this region may be 

particularly vulnerable to glycation in diabetic and ageing men.  
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AGEs and AGE intermediates have been found to increase with advancing 

age and in obese individuals (Uribbari et al., 2007; Uribbari et al., 2015) and 

sperm quality has also been shown to be reduced in these groups (Begueria 

et al., 2014; Hammoud et al., 2008). To investigate whether obesity might 

also lead to elevated sperm AGEs, CML was measured in obese men. No 

significant difference was found in CML or semen parameters between the 

groups, despite sperm concentration, motility and volume being lower in the 

obese group. One explanation for there being no difference in CML levels 

may be that prepared sperm was used for the flow cytometry analysis, which 

was separated by density gradient centrifugation before CML measurement. 

This was for the purpose of removing non-sperm cells and debris, however it 

would also have removed non-motile or immature sperm from the samples 

which could be the cells with the highest levels of AGEs. Mallidis et al., 

(2009) located CML throughout the cells of the seminiferous epithelium, and 

particularly in the nuclei of spermatogonia and spermatocytes, while less so 

in the nuclei of mature spermatids. Therefore, the reason for no difference 

being seen in CML between obese and normal weight men may be because 

of the removal of the CML-positive population of immature sperm. The 

finding of no difference in semen parameters between the obese and non-

obese group has been shown elsewhere (Eisenberg et al., 2014), but the low 

numbers of participants used in this small study mean that there is 

insufficient evidence to draw conclusions from. 

RCCs cause rapid changes to proteins: GO and MG have been shown to 

cause rapid generation of CML on proteins such as BSA and lysozyme in 

vitro (Glomb and Monnier et al., 1995; Millar et al., 2002). Therefore the CML 

production seen in the first four hours on sperm is probably occurring on 

structurally available proteins such as receptors on the sperm membrane, 

while later CML generation is occurring as a result of adduct formation on 

intracellular proteins and DNA. Although AGE formation was originally 

thought to only effect stable extracellular proteins, such as collagen, 

research now shows that glycation adducts can quickly occur on intracellular 

molecules such as actin (Boucher et al., 2015) and on DNA (Wang et al., 

2010). 
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Cell-based in vitro glycation assays have previously shown that cell 

receptors such as the platelet derived growth factor receptor are vulnerable 

to glycation (Cantero et al., 2007). Critically, modification of these receptors 

by AGE intermediates can alter their function, as was shown through 

inhibited epidermal growth factor receptor signalling (Portero-Oterin et al., 

2002). Sperm participate in a number of receptor-ligand interactions to which 

glycation could be detrimental, such as for the hyaluronidase activity of 

Spam1, which is responsible for degradation of HA oligosaccharide chains 

found in the cumulus layer of granulosa cells surrounding the oocyte (Evison 

et al., 2009). Additionally, as Spam1 is located on the acrosomal membrane 

where a high level of CML immunoreactivity was observed and as Spam1 

contains a number of lysine and arginine residues, this enzyme could be 

affected by glycation. Therefore, the function of cellular and recombinant 

Spam1 protein was investigated in response to glycation. 

Cellular hyaluronidase activity was analysed using a HA binding assay 

(HBA), in which sperm bind to HA-coated plates, and is often used as a 

measure of sperm quality though not routinely in fertility clinics. Sperm 

binding to HA was not affected following short-term glycation and this may be 

because the CML levels seen at this stage are affecting proteins other than 

Spam1. As the HBA requires motile sperm in order to distinguish between 

sperm that are bound (hyaluronidase active) and unbound (hyaluronidase 

inactive), the experiment could not be carried out at 6 days when sperm 

motility is mostly zero. 

As an alternative, the effects of glycation on recombinant Spam1 were 

investigated for up to 14 days. Other in vitro protein glycation models have 

shown significant effects on protein structure and function in response to 

AGE intermediates, such as with histones (Ashraf et al., 2015) and insulin 

(Jia et al, 2006). A hyaluronidase substrate gel assay was developed to 

measure the changes in hyaluronidase activity and this was successful in the 

first stages. The assay was based on two previous studies (Mio et al., 2001; 

Zhu et al., 1994) and the optimal conditions used for subsequent analysis of 

activity of a commercial hyaluronidase enzyme, Cumulase, were incubation 

of gels in sodium acetate buffer (pH 4) for 16 hours. As the use of 
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recombinant protein allowed the assay duration to be extended, the simple 

reducing sugars glucose and fructose and the non-reducing sugar mannitol 

were investigated alongside MG and GO. No difference was observed in the 

hyaluronidase activity between Cumulase incubated with any of these 

compounds and SPM alone. In addition, the enzyme maintained the same 

level of activity after 14 days as at the beginning of the assay. This therefore 

likely concludes that the CML compounds located on sperm in this study and 

elsewhere (Mallidis et al., 2009) were not affecting the membrane-bound 

Spam1 protein. 

Sabeur et al. (1997) previously reported two versions of Spam1. The first 64 

kDa protein is GPI-anchored to the sperm plasma membrane and has a role 

in initial degradation of HA in the cumulus layer surrounding the oocyte and 

is functional at neutral pH (Lin et al., 1994). Following binding to the ZP, the 

acrosome reaction is initiated and a soluble cleaved version of Spam1 is 

released which has acidic function and is responsible for further HA 

degradation following ZP binding. In this assay, the full length Spam1 (64 

kDa) was observed to have activity at both pH 7 and pH 4. In the Cumulase 

assay, the protein bands which revealed the HSA cofactor and BSA were not 

observed. Instead, a white band appeared in the test wells below the 

degraded HA.  

In this study oxidative DNA damage, measured by the levels of oxidised 

guanine nucleotide (8-oxoguanine), was elevated in samples which showed 

higher CML levels. Oxidative damage is caused when ROS become 

extremely elevated and/or when the antioxidant capacity of cells is unable to 

protect against ROS. AGE-related ROS generation can happen in a number 

of ways. Firstly, AGE intermediates can cause ROS generation during the 

glycation process as well as independently of AGE formation (Amicarelli et 

al., 2003). Therefore the process of CML formation seen here is likely to be 

triggering ROS formation, such as has been demonstrated in endothelial 

cells, and which is inhibited in the presence of radical-scavenging 

antioxidants (Liu et al., 2013). Secondly, another major source of ROS is 

from AGEs binding to their receptor, RAGE, on the cell membrane. This 
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activates NFκB-induced expression of pro-inflammatory genes and also of 

RAGE, leading to a sustained inflammatory response. AGE-RAGE binding is 

important in AGE pathology in various tissues but RAGE has also been 

located on the sperm membrane and its expression positively correlates with 

DNA damage (Mallidis et al., 2007; Karimi et al., 2012). Importantly, both of 

these parameters are elevated in the sperm of diabetic men (Karimi et al., 

2012). Although mature sperm are transcriptionally quiescent, which may 

suggest a limited capacity for NFκB cell signalling, immature sperm still have 

active gene expression and would be vulnerable to ROS generation through 

this pathway. This is in accordance with the results from Karimi et al. (2012) 

who found that RAGE expression was more prominent in the immature cells 

of the seminiferous epithelium. Furthermore, although almost no human 

studies have investigated NFkB in sperm, a mouse study has shown that 

NFkB is activated in stage-specific manner in spermatogenesis. 

Despite there being changes in the level of oxidative DNA damage, ROS 

levels were not different between sperm incubated with different compounds. 

This may be due to the fact that sperm had been incubated for an extensive 

period of time, in which case ROS generation would be at a maximum across 

all samples as cell death began to occur. Furthermore, as the sperm were 

separated from the seminal plasma, which is the source of antioxidants and 

radical scavenging enzymes important for fertility (Lewis et al., 1997; 

Khosravi et al., 2014), protection again ROS would be low, allowing levels to 

accumulate. Finally, the lack of difference in ROS levels might be explained 

by the fact that ROS are unstable, so the sensitivity of the assay may 

insufficient for determining differences between these cells. 

Sperm are particularly susceptible to DNA damage as they lack the repair 

mechanisms usually present in cells. Furthermore, the glyoxalase pathway, 

which detoxifies AGE intermediates through the action of Glyoxalase 1 (Xue 

et al., 2011), has not been identified in sperm. This makes sperm particularly 

vulnerable to DNA damage which occurs primarily due to oxidative stress in 

these cells (Aitken et al., 2010). The implications of such damage for sperm 

in vivo are reduced cell function, ultimately leading to poorer fertilisation 
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capacity. In accordance with this, 8-oxoguanine levels have been linked to 

lower pregnancy rates independent of semen quality (Loft et al., 2003; 

Mulholland et al., 2011). This supports the results here which did not see a 

significant change in the motility of sperm treated with GO where oxidative 

damage was highest. Oxidative DNA damage can occur in normal sperm as 

well as in abnormal sperm, and as ART treatment does not involve the 

analysis of DNA damage, this may have consequences for embryonic 

development and offspring health (Zhang et al., 2008; Erenpreiss et al., 

2008; Oleszczuk et al., 2013).  

5.3.1 Conclusion 

AGEs have important roles in the pathologies of ageing and disease. This 

study found that AGEs are formed on human sperm when exposed to 

reactive AGE intermediates in vitro and leads to oxidative DNA damage in 

these cells. As high levels of AGE and RAGE are found in the seminiferous 

epithelium (Mallidis et al., 2009; Karimi et al., 2012), it is possible that sperm 

are exposed to AGE modification and AGE-RAGE signalling during 

spermatogenesis. This could present a risk to older men or diabetics where 

intermediates and AGEs are elevated. The consequences of this for sperm 

function may not manifest as a change to standard semen parameters as 

this study found no inhibition of sperm motility in response to glycation, 

however evidence from other studies suggests that glycation-mediated 

oxidative damage could impair fertility (Oleszczuk et al., 2013). Finally, 

although in vitro glycation elicited no change to cellular or recombinant 

sperm hyaluronidase function, the high levels of AGEs found on the sperm 

cell suggest that other sperm proteins, lipids or nucleic acids are modified. 
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Chapter 6 

Final discussion 

Elucidating the effects of lifestyle and environmental factors on fertility has 

become a major research question in recent years in light of the changing 

lifestyle habits that have profoundly transformed developed and developing 

countries (Popkin et al., 2006). Some of the consequences resulting from 

these changes include the obesity and diabetes epidemics, exposure to 

environmental toxicants and an ageing population. These changes have 

paralleled the publication of numerous reports describing a decrease in 

semen quality in various populations of men, and the role of lifestyle and 

environment in this therefore requires investigation (Carlsen et al., 1992; 

Auger et al., 1995; Rolland et al., 2013; Romero-Otero et al., 2015; Centola 

et al., 2016). Furthermore, lifestyle-induced changes to sperm quality may 

occur beyond the parameters observed by standard semen analysis, 

resulting in deregulate DNA methylation and increased oxidative DNA 

damage.  

This study, which investigated semen quality and DNA methylation in men 

attending a fertility clinic, found that the BMI was negatively associated with 

sperm concentration, while alcohol consumption and having an unhealthy 

diet were positively associated with sperm concentration and sperm motility, 

respectively. Furthermore, wearing boxer shorts was negatively correlated 

with % immotile sperm. Exposure to glues, adhesives and resins was 

correlated with an increase in global methylation while ex-smokers showed a 

higher level of SNPRN methylation than non-smokers. Global DNA 

methylation was negatively correlated with fertilisation rates in IVF patients 

while BMI was negatively correlated with fertilisation rates in ICSI patients. 

Overall, concentration and % progressive motility were associated with 

higher fertilisation rates in ICSI patients and % progressive motility was 

associated with higher cleavage rates in IVF patients. An investigation into 

the effects of glycation on sperm as a model for diabetes and obesity 

showed that CML is formed on sperm incubated with AGE intermediates in 
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as little as two hours and this was linked to an increase in oxidative DNA 

damage. However, sperm parameters and levels of sperm-CML were not 

different between obese and normal weight men in this study.  

A number of studies have investigated the complex relationship between 

lifestyle, DNA methylation, sperm parameters and ART outcomes with 

varying results. This study showed that increased global DNA methylation 

was present in men exposed to glues, adhesives or resins, and this also 

positively correlated with % immotile sperm and negatively correlated with 

fertilisation rates in IVF patients. Many epoxy resins, as well as widespread 

everyday-use polymers, contain the endocrine disruptor Bisphenol A (BPA). 

High levels of urinary BPA have been associated with decreased semen 

parameters in exposed factory workers compared to non-exposed factory 

workers in China (Li et al., 2011), and therefore the components of these 

glues, adhesives and resins could be a reason for the abnormal methylation 

seen in the men in this study. In terms of the effects of EDCs on sperm 

methylation, BPA exposure has previously been linked to a decrease in 

global methylation in sperm, measured using LINE-1 methylation as a proxy 

(Miao et al., 2011), however this is the opposite trend to that seen in this 

study. Indeed, our results contradict many existing studies which report a 

decrease in global methylation in response to environmental stress, i.e. 

exposures, which is often associated with an increase in DNA damage 

(Montjean et al., 2015; Tunc and Tremellen, 2009). Of particular relevance, 

Meeker et al. (2010) found higher levels of DNA damage in the sperm of men 

exposed to BPA. The mechanism behind this is that the relaxing of chromatin 

in response to demethylation makes DNA vulnerable to oxidative attack, 

causing DNA damage. Furthermore, as one of the major roles of methylation 

is in the suppression of transposable elements to prevent their movement 

about the DNA strand, a decrease in global methylation could deregulate this 

and contribute further to genomic instability. Studies have shown that this 

genomic instability is associated with demethylation and can have negative 

implications for fertilisation rate, in contrast to that presented in this study, 

which found a decrease in fertilisation rates with increasing global 

methylation in IVF patients. Despite this logical mechanism for the effects of 
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global hypomethylation, other groups have shown that exposure to certain 

hazards, such as ionizing radiation, can increase global methylation, 

concurrent to the findings of this study (Kumar et al., 2013).  

The world is currently in the midst of an obesity epidemic, with around 13% 

of the world’s population being obese (World Health Organization, 2015). 

Obesity gives rise to numerous comorbidities of which male infertility is 

thought to be one. In this study, few lifestyle factors were associated with 

sperm parameters and ART outcomes, however BMI was strongly negatively 

correlated with sperm concentration and fertilisation rates in ICSI patients. 

The link between obesity and low sperm quality has been reported 

elsewhere (Sermondade et al., 2013), although MacDonald et al. (2013) 

found no such association. Mouse studies have been conclusive of findings 

in support of these associations (Bakos et al., 2011). One of the 

consequences of obesity for sperm is thought to be the disruption of DNA 

methylation and therefore gene expression, leading to cellular dysfunction. 

This was illustrated in a recent human study which showed that men who 

underwent rapid weight loss following bariatric surgery showed completely 

remodelled sperm methylome (Donkin et al., 2016). However, the study did 

not find significant differences in methylation of any of the imprinted genes 

with BMI, which is in accordance with the findings here, rather the effected 

genes were already known to be implicated in the severe onset of obesity. 

Alternatively to methylation, obesity could be having an effect on sperm by 

causing DNA damage. Our in vitro glycation assay presented a potential 

model for investigating obesity-related risks to sperm, namely exposure to 

reactive AGE intermediates and AGE compounds themselves, which are 

elevated under hyperglycaemic conditions, a metabolic characteristic of 

obesity. The major causes of DNA damage in sperm are oxidative stress and 

poor chromatin compaction (De luliis et al., 2009) and the glycation model 

showed that CML formation was accompanied by an increase in oxidative 

DNA damage. This is in accordance with other studies that have found 

higher levels of DNA damage in the sperm of obese men (Dupont et al., 

2013) and with our sister study which used a similar population of men at the 

same fertility clinic and found a non-significant increase in DNA damage in 
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the obese group (Altakroni, 2015). In the present study, BMI was also found 

to be negatively correlated with fertilisation rates in ICSI patients, during 

which treatment sperm bypass the normal sperm selection processes, 

suggesting that oxidative DNA damage could be a mechanism behind this 

failed fertilisation. In support of this idea, DNA damage has been shown to 

be negatively associated with ART outcomes in a small number of human 

studies, and is thought to be more relevant following ICSI treatment (Simon 

et al., 2011; Simon et al., 2013; Jin et al., 2015; Loft et al., 2003; Zini et al., 

2011).  

As AGEs have such widespread damaging effects on various tissue types 

(Goldin et al., 2006), it is likely that they might also influence reproductive 

function. AGEs are primarily a function of age and hyperglycaemia, and 

therefore pose a significant risk to the health of the world’s ageing population 

in which the prevalence of high-sugar diets is negatively affecting global 

health trends (Siervo et al., 2014). Additionally, as delaying childbearing has 

become a common life choice for couples, the risks of AGE-accumulation on 

fertility may be greater in these cases. In the light of the claims of decreasing 

semen quality, AGEs are a possible contributing factor to these trends. 

Although numerous mouse models have been used for glycation, only one to 

date has investigated the effects on male reproduction (O’Neill et al., 2010). 

However, this study simply supported existing human studies which show the 

localisation of CML on sperm and in the reproductive tract (Mallidis et al., 

2009; Karimi et al., 2011), but did not investigate the effects on fertilisation 

capacity or pregnancy outcomes. In women undergoing ART, studies have 

shown that AGE accumulation is associated with reduced oocyte quality, 

lower fertilisation rates and poor embryonic development (Jinno et al., 2011) 

and is thought to be one of the causes of ovarian ageing (Stensen et al., 

2013). The presence of AGEs on sperm, particularly DNA adducts, may 

therefore also have an effect on the embryo. Although this study did not 

identify on which biomolecules AGE-adducts were forming, as there was a 

high level of oxidative DNA damage, it is likely that there would also have 

been DNA adduct formation and intermediate-adducts which have been 

described in vitro (Frischmann et al., 2005). What is more, as DNA adducts 
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have been found to be elevated in sperm of infertile men, this therefore 

warrants further investigation (Horak et al., 2003; Gaspari et al., 2003).  

One of the major findings of this study was that prepared sperm and neat 

semen show distinct methylation patterns, with prepared sperm showing 

significantly higher methylation levels across all genes as well as for global 

methylation. Preparation of sperm for ART involves the removal of non-

sperm cells, debris and immotile and immature sperm, and results in a 

purified population of high quality sperm. Considering the implications 

discussed with regards to the instability of the genome in a hypomethylated 

state, these findings fit with the idea that these prepared sperm which exhibit 

good general sperm characteristics (i.e. mature and motile) also contain 

quality DNA. This is in accordance with our sister study that found DNA 

fragmentation was lower, and therefore genomic integrity higher, in prepared 

sperm than neat semen (Altakroni, 2015). However, there is a disparity here 

against our other finding that global methylation was positively correlated 

with % immotile sperm as these cells are removed during the preparation 

process. There were not sufficient prepared sperm samples with DNA 

methylation analysis to determine whether methylation of these cells used for 

ART were associated with the outcomes. Laurentino et al. (2014) found that 

sperm exhibit methylation mosaicism where discrete populations of sperm 

from infertile men show abnormal methylation, in comparison to fertile men 

who show a generally homogeneous methylation pattern in cells of a single 

sample. Therefore, density gradient centrifugation of samples is likely to 

result in the isolation of sperm with a distinct methylation profile from the neat 

sample, which limits the validity of using neat semen analysis when 

considering ART outcomes, although these analyses are still insightful. 

One of the main aims of this study was to determine the effects of lifestyle 

and environmental factors on imprinted gene methylation, as these factors 

are the target of much of the research on the sperm methylome. The reason 

for such attention is due to the crucial role of these genes in embryonic 

parent-of-origin gene expression. As these genes avoid the first round of 

epigenetic reprogramming that occurs following fertilisation (Reik et al., 

2001), it is hypothesised that aberrant methylation marks harboured from the 



 

208 
 

parental gametes could affect embryonic development and consequently 

offspring health. The epigenome is responsive to environmental cues which 

confers the ability of cells to respond to their environment, and which also 

makes cells vulnerable to damage. In sperm, DNA methylation has been 

shown to be affected by age, obesity, smoking and other environmental 

toxicants (Jenkins et al., 2014; Ding et al., 2015; Xu et al., 2013; Miao et al., 

2014).  In this study, imprinted genes that showed variation with lifestyle and 

environment were SNRPN and H19. These genes showed elevated 

methylation levels in men who were ex-smokers and men who were exposed 

to glues, adhesives and resins, respectively, despite not being significant 

following multivariate analysis, and this has not been shown elsewhere. 

Another reason for the particular interest in imprinted genes is that 

aberrations are associated with poor sperm quality. Several studies have 

described aberrant imprinted gene methylation in the sperm of infertile men 

(Hammoud et al., 2010; Houshdaran et al., 2007; Marques et al., 2008; 

Poplinski et al., 2009), however imprinted gene changes do not always 

manifest in changes to semen parameters. In accordance with this, our study 

found that only MEG3 was negatively correlated with sperm progressive 

motility, while H19, SNRPN and PLAGL1 were not associated with semen 

parameters. The fact that changes in DNA methylation may not always be 

reflected in a change in semen parameters is important as sperm DNA 

quality is not assessed before ART. There is a growing amount of evidence 

arguing for routine DNA damage testing, which can be carried out using 

various assays such as Terminal Deoxynucleotidyl Transferase-mediated 

Nick End Labeling (TUNEL) (Sun et al., 1997), Single Cell Gel 

Electrophoresis (COMET) assay (Ribas-Maynou et al., 2012) or the Sperm 

Chromatin Structure Assay (SCSA) (Bungum et al., 2011), however markers 

that definitively indicate adverse sperm DNA methylation have not yet been 

identified, and therefore do not warrant routine clinical use. 

One candidate gene for the determination of sperm quality is DAZL. The 

present study found that DAZL methylation was consistently highly 

negatively correlated with sperm concentration and was a characteristic of all 

oligozoospermic men, which is supported in other studies (Navarro-Costa et 
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al., 2010; Li et al., 2013). DAZL expression is controlled by methylation at its 

promoter and is essential for spermatogenesis and spermiogenesis; if the 

causes behind deregulated DAZL methylation and gene silencing were 

identified, this could be an important therapeutic target. The lifestyle and 

environmental exposures investigated here did not show any associations 

with differential DAZL methylation, although exposure to metal dust and 

fumes was almost significantly associated with an increase in methylation. 

No human studies have investigated the effects of environmental exposures 

on DAZL expression, however, one mouse study found that low dose 

exposure to an endocrine-disrupting pesticide, methoxychlor, downregulated 

expression of DAZL among other spermatogenic genes resulting in 

disruption of sperm differentiation (Du et al., 2014). Given the importance of 

DAZL expression during germ cell development, in which it inhibits 

pluripotency in PGCs and prevents differentiation to somatic cell lineages 

while inducing apoptosis if this does occur (Chen et al., 2014), environmental 

modifications during the PGC development period would negatively affect 

adult male offsprings’ fertility. In this study DAZL methylation was not related 

to IVF or ICSI outcomes. Therefore, although this gene has critical roles for 

spermatogenesis, it may have less significance for the developing embryo. In 

accordance with this, maternal-derived DAZL has been shown to be 

important during embryogenesis at the 2-cell stage while the contribution of 

paternal DAZL has not yet been determined (Cauffman et al., 2005). Overall, 

this work suggests that defining which lifestyle and environmental factors 

affect DAZL could provide an important target for interventions to improve 

male fertility, but to our knowledge, the use of sperm with aberrant DAZL 

methylation in IVF and ICSI treatment is not a risk for embryonic 

development. 

Overall, DNA methylation tended to show an increase when men were 

exposed to factors considered to be damaging and in men with abnormal 

sperm, and this was in both imprinted and non-imprinted genes. For 

example, DAZL methylation was elevated in men with low sperm 

concentration and MEG3 methylation was higher in men with lower % 

progressive motility. In combination with the global methylation results which 
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were elevated in response to environmental exposures and in men with high 

% immotile sperm, this implies that generally an increase in methylation is 

associated with negative outcomes. It is logical to suspect that the source of 

this hypermethylation is aberrant de novo methylation occurring during 

sperm development at various life stages, potentially caused by improper 

DNMT activation. DNMTs are activated during PGC development to 

establish new gender-specific imprints following the global demethylation that 

occurs in PGCs (Kaneda et al., 2004), but their overexpression causes gene 

silencing and has been implicated in a number of cancers and in aberrant 

imprinting (Robertson et al., 1999; Biniszkiewicz et al., 2002). In fact, a 

recent study did investigate the correlation between DNMT expression and 

global methylation, and not only did they find a similar trend to that of this 

study in that global methylation was elevated in the sperm of men with 

impaired spermatogenesis, but this also correlated with an increase in 

DNMT1 and DNMT3a expression (Jaiswal et al., 2013).  

Another candidate gene for deregulated methylation is MTHFR. The 

transcript of this gene, mthfr, is essential for the generation of methyl donors 

for methylation by DNMTs and therefore its disruption could affect the 

methylation of other genes. Indeed, aberrant MTHFR methylation has been 

implicated in infertility (Botezatu et al., 2014) and hypermethylation of its 

promoter has been linked to hypomethylation of H19 previously (Rotondo et 

al., 2013), which therefore warrants further investigation. An alternative 

explanation for the higher levels of methylation described here is that there 

has been improper erasure of methylation during the second wave of 

developmental reprogramming in PGCs (Mayer et al., 2000), as opposed to 

de novo methylation, in which case these aberrant methylation marks would 

have occurred in utero during PGC development. This would indicate that in 

effect it is maternal lifestyle factors and environmental exposures that are the 

cause of aberrant sperm methylation in adult men, rather than these being 

acquired paternal epimutations. Animal models have been crucial for 

exploring these scenarios, and in utero exposure experiments have 

illustrated the importance of the vulnerable time of PGC formation for adult 

sperm quality (Sobinoff et al., 2014). This has been supported in a small 
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number of human studies in which subfertility has been linked to parental 

exposures (Axelsson et al., 2013; Cirillo et al., 2011).  

These data lead on to the question of whether these epigenetic abnormalities 

have the potential to be inherited transgenerationally, and forming the crux of 

these investigations. Longitudinal health studies have suggested that the 

paternal germline can harbour both beneficial and harmful marks that are 

influence the health of future generations (Bygren et al., 2001; Northstone et 

al., 2014). This is supported by mouse studies which highlight an important 

role for male exposures on offspring health, for example in the nutritional 

availability of fathers on the metabolism of offspring (Anderson et al., 2006; 

Binder et al., 2012; Fullston et al., 2013; Jiminez-Chillaron et al., 2009), and 

in relation to other factors such as stress (Mychasiuk et al., 2013) and toxins 

exposure (Mao et al., 2015). Some studies have found that aberrant 

methylation is involved in this (Soubry et al., 2015; Kobayashi et al., 2009). In 

this study, the first indication of whether epimutations could be heritable was 

in looking at the effects of ART outcomes. Although our study showed that 

global DNA methylation was elevated in the sperm of men with lower 

fertilisation rates, we did not see an association with pregnancy outcomes 

which would suggest that sufficiently accurate epigenetic reprogramming had 

occurred during development, and which would have erased aberrant 

paternal methylation patterns. This robust reprogramming has been 

illustrated in animal studies in which epigenetic aberrations caused by 

parental exposures are prevented in the embryo and offspring (Iqbal et al., 

2015; Hesson et al., 2015).  

6.1 Conclusion 

In conclusion, while the data presented in this study does not show a 

causative relationship between lifestyle and environment and changes to 

sperm parameters, DNA methylation or ART outcomes, some of the variation 

within the study population may be explained by this. It seems that small 

changes to lifestyle and environment may not drastically improve semen 
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parameters or the success rates of those using ART, however, 

improvements to DNA methylation and reduction in oxidative DNA damage 

may be achievable. This is critical in the advent of increasing use of ART 

treatment, where DNA integrity is not currently considered for analysis. As 

some studies have reported an increase in imprinting disorders in children 

born through ART (Lazaraviciute et al., 2014), and as DNA modifications 

may be heritable through the paternal germ line (Laubenthal et al., 2012), it 

is important that possible improvements via lifestyle and environment are 

made known.  

6.2 Future work 

1. To further investigate MTHFR and DNMT methylation and transcript levels 

in human sperm. These are functionally important genes for the methylation 

process, and this may shed light on the mechanisms behind changes in DNA 

methylation and particularly the overall increase in methylation seen here. 

2. To investigate the correlations between DNA methylation and DNA 

damage to determine whether these processes are linked, leading to a 

collective effect on genomic integrity. To determine whether the combination 

of both methylation defects and DNA damage could confer a more severe 

infertile phenotype and poorer ART outcomes. 

3. Use an aged, obese or diabetic mouse model to determine the effects of 

glycation and AGE accumulation on sperm function and on fertilisation 

capacity of mouse oocytes and embryonic development. In humans, to 

determine whether sperm AGEs are correlated with serum AGEs and to 

define the protein, lipid and DNA adducts forming on sperm other than CML.  
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6.3 Study limitations 

This study used bisulphite pyrosequencing to analyse CpG site methylation 

which is considered to be a robust and precise method for measuring DNA 

methylation. However, the fragment length for sequencing was limited to 50 

bp, since we found that longer sequences with dense CpG sites or 

sequences with a high number of cytosines and thymines resulted in poorer 

reads. This limit on the number of CpG sites that could be analysed meant 

that potentially relevant sites could have been missed. The CpG site-specific 

analysis carried out in this study showed that most of the CpG sites within 

each region had the same kind of variation, i.e. positively correlated with the 

mean methylation across the region, except for MEG3 which had one 

differential site and NR3C1 in which the 5th CpG site was less strongly 

correlated with the mean. However, some studies do show that certain CpG 

sites are more relevant than others. 

Participants were recruited for this study from a fertility clinic. A major 

limitation of this is that semen quality is likely to be lower than that of the 

general population, even considering that many couples will present to the 

clinic with female-factor infertility, therefore significant lifestyle and 

environmental effects will only be specific for this subpopulation. This is the 

main issue with all studies involving subfertile men. Furthermore, within men 

undergoing ART, there may be a difference between men who chose to 

participate in the research study and those who did not. Our sister study 

which analysed the same cohort of men that were included in our 

methylation analysis (chapter 3), but not for the questionnaire (chapter 4), 

found that sperm concentration and % progressive motility were higher in the 

research group compared to the group which underwent ART treatment but 

did not participate. Fertilisation rate was also higher in the research group, 

while pregnancy rate was higher in the non-participant group. Finally, in 

terms of men who decided to complete the questionnaire, semen parameters 

and clinical outcomes were not significantly different from men who did not 

complete the questionnaire (Altakroni, 2015). 
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The questionnaire format used in this study is one used widely for collecting 

public health data. However, self-reported data can often be under or over-

stated. Upon consultation at the hospital, men were advised to improve their 

diet and to stop smoking. Therefore, many participants may not declare 

certain information on the questionnaire for fear of repercussions. 

Furthermore, those who participated in the questionnaire may have been 

aware of their semen quality. Additionally, the questionnaire did not include 

any information on the female partner’s lifestyle habits, so the ART results 

were compromised to an extent, since maternal factors could not be 

controlled for. These may have included BMI, previous smoking, lifestyle 

exposures and oocyte quality. 

There are some limitations with regard to the in vitro glycation study. These 

include that exposure of sperm to AGE intermediates may not be 

physiologically relevant as these compounds have not been identified in the 

male reproductive tract. Furthermore, the concentrations used were higher 

than normal physiological levels. However, all in vitro studies must consider 

these limitations in that they cannot truly represent in vivo scenario. Finally, 

all in vitro studies on mature sperm have the same drawback which is that 

these cells are physiologically distinct from pre-ejaculate sperm and have a 

limited lifespan post-ejaculate. However, as a model to determine whether 

these cells may be vulnerable to damage by certain compounds, this is a 

valid investigatory starting point that future studies may take forward. 
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Appendices 

Appendix 1: Lifestyle questionnaire
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Appendix 2: Semen DNA Damage Consent Form 
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Appendix 3: Clinical Research Network Support Letter
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Appendix 4: CMFT R&D Approval Letter
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Appendix 5: Semen DNA Damage Protocol
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Appendix 6: Normalisation of semen parameter data 
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Figure 1. Frequency distribution histograms and Q-Q plots for 

untransformed and transformed semen parameters.  

Sperm concentration and total sperm count were positively skewed (A and E) 

and did not show the expected linear trend (B and F). Log10 transformation 

made sperm concentration normal (C and D) while sperm count still showed 

some skewness (G and H). % Progressive motility and % immotile cells 

showed a normal bell-shaped Gaussian curve (I and K) and fitted the expected 

normal distribution (J and L), therefore did not require transformation. 
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Appendix 7: MMU Ethical Approval 
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Appendix 8: Participant information sheet 
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Appendix 9: Medical Screening Questionnaire 
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Appendix 10: MMU Participant Consent form 
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Appendix 11: Semen Procurement Form 
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Appendix 12: Methylation Data Transformations 

Figure 1  

Histograms showing the normal distributions of raw data for global DNA 

methylation (A) (n=64) and the 6th CTCF binding site of H19 (B) (n=91). Two 

outliers were excluded from the global methylation dataset (686 µM and 719 µM) 

as these caused a skew in the data. Once removed the Shapiro-Wilk statistic was 

0.968 (p=0.098). No outliers were excluded from H19/CTCF6 and the Shapiro-Wilk 

statistic was 0.985 (p=0.406). 

Figure 2  

Transformation of DAZL methylation data to a normal distribution using a 

reciprocal transformation. One extreme lower outlier (0.42%) was excluded from 

the analysis. Shapiro-Wilk value after transformation was 0.979 (p=0.283) 

showing no skewness in the data. 
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Figure 4 

Histograms illustrating the distribution of the MEG3 gene before (A) and after 

(B) reflection and log10 transformation.  

Figure 3  

Histograms showing original (A) and log10 transformed (B) hNR3C1 data. The 

original data was slightly positively skewed (Shapiro-Wilk 0.95, p=0.006) while 

the transformed data showed a distribution closer to a Gaussian curve 

(Shapiro-Wilk 0.98, p=0.286). 
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Appendix 13: Data Tables 

 

  

Table 1 Sperm DNA methylation and semen parameters  

Pearson’s correlation, r, and significance (p) values are shown. 

Table 2 Sperm DNA methylation and semen parameters in men with 

normal sperm 

Pearson’s correlation, r, and significance (p) values are shown. 
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Table 3 DNA methylation in fertile and infertile men 

Independent t-test significance (p-values) are shown along with the number of 

participants in each group. ***p<0.001. 

Table 4 DNA methylation in oligozoospermic men and men with normal 

sperm  

Independent t-test significance (p-values) are shown along with the number of 

participants in each group. Levene’s test was used to confirm homogeneity of 

variance between normal and oligo groups. If Levene’s test was not significant (
a
) 

then results were taken from t-tests assuming equal variance, while if Levene’s 

test was significant (
b
) results were taken from t-tests not assuming equal 

variance. ****p<0.0001. 



 

257 
 

  

Significant associations were identified using Pearson’s correlation between 

fertilisation and cleavage rates and DNA methylation (
a
), and Mann-Whitney U test 

for DNA methylation in sperm of pregnant and not pregnant couples (
b
) Tests were 

run for IVF and ICSI patients separately. Significant correlations are shown in bold. 
*p<0.05. 

Table 5 DNA methylation and IVF and ICSI outcomes 
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