Towards Automatic Memory Tuning for
In-Memory Big Data Analytics in Clusters

Aris-Kyriakos Koliopoulos, Paraskevas Yiapanis, Firat Tekiner, Goran Nenadic, John Keane
School of Computer Science, University of Manchester'
aris.koliopoulos @drivetribe.com, {paraskevas.yiapanis, firat.tekiner, gnenadic, john.keane} @manchester.ac.uk

Abstract—Hadoop provides a scalable solution on traditional
cluster-based Big Data platforms but imposes performance
overheads due to only supporting on-disk data. Data Analytic
algorithms usually require multiple iterations over a dataset
and thus, multiple, slow, disk accesses. In contrast, modern
clusters possess increasing amounts of main memory that can
provide performance benefits by efficiently using main memory
caching mechanisms.

Apache Spark is an innovative distributed computing frame-
work that supports in-memory computations. Even though this
type of computations is very fast, memory is a scarce resource
and this can cause bottlenecks to execution or, even worse, lead
to failures. Spark offers various choices for memory tuning but
this requires in-depth systems-level knowledge and the choices
will be different across various workloads and cluster settings.
Generally, the optimal choice is achieved by adopting a trial
and error approach.

This work describes a first step towards an automated
selection mechanism for memory optimization that assesses
workload and cluster characteristics and selects an appropriate
caching scheme. The proposed caching mechanism decreases
execution times by up to 25% compared to the default strategy
and reduces the risk of main memory exceptions.

Keywords-Spark; Distributed Systems; Data Analytics; Big
Data; Memory

I. INTRODUCTION

Distributed systems provide an infrastructure that can
enable efficient and scalable Big Data Analytics [1], [2], [3].
Such systems, made up of organized clusters of commodity
hardware, process large volumes of data in a distributed
fashion. Hadoop [4], an open source implementation of
MapReduce [5], is the most widely-used platform for large-
scale distributed data processing. Hadoop processes data
from disk which makes it inefficient for data analytics
applications that usually require iteration. Spark [6] is a more
recent distributed framework that works with Hadoop and
provides in-memory computation allowing iterative jobs to
be processed much faster making it a more suitable base for
data analytics.

The in-memory nature of Spark allows the framework
to process data up to 100x faster than Hadoop’s disk-
based MapReduce paradigm on occasions, especially when

'Koliopoulos’ current address: DriveTribe, London, UK; Yiapanis’ cur-
rent address: School of Computing, Mathematics and Digital Technology,
Manchester Metropolitan University, UK.

involving data analytics [7]. Spark takes advantage of an
abstraction called Resilient Distributed Datasets (RDDs) that
allows data to be cached in memory and reused when re-
quired. This enables significant performance improvements
compared to reading and writing data from disk. Despite the
obvious benefits of performance, memory remains a limited
resource and must be handled with care as the user cannot
precisely predict how much memory will be needed for
an application for the following reasons: (1) an RDD can
consume a factor of 2x-5x more space than the raw data
inside their fields, (2) the number of objects generated during
the program’s execution is data-dependent.

Spark’s default caching mechanism is to store data only
in memory. This mechanism is usually the most efficient
as long as all data can fit into main memory. Even if all
data can fit into memory, task failures from out-of-memory
exceptions may still occur when memory is allocated faster
than can be handled by garbage collection. For these reasons
Spark offers various storage level options. Unfortunately,
the choice of the optimal storage level requires in-depth
systems-level knowledge, can be found only through exper-
imentation, and will be different across various workloads
and cluster settings. Here we address this problem by
proposing an automatic storage level selection mechanism
based on problem size and cluster characteristics. This paper
makes the following contributions:

o It explores the memory impact of various workloads
using different storage levels for in-memory distributed
systems;

o It describes a framework that automatically selects
the optimal storage level based on data and cluster
characteristics;

o It applies the automated framework on previously un-
seen data decreasing execution times by up to 25%
as well as reducing failures compared to the default
storage level.

Although this work utilizes Spark as its target platform,
the techniques described are applicable to any in-memory
distributed platform that offers similar memory storage char-
acteristics to Spark.

II. MOTIVATION FOR AN AUTOMATED CACHING
MECHANISM

A. Caching Overheads

An important feature of Spark is the ability to cache
datasets in memory across operations. RDDs [7] are a
distributed main memory abstraction, implemented in Spark,
that enable users to perform in-memory computations in
large systems.

Spark RDDs are represented in memory as distributed
Java objects. These objects are very fast to access and
process, but they may consume up to 5X more memory
than the raw data of their attributes. This overhead can
be attributed to the meta-data that Java stores alongside
the objects and the memory consumed by the object’s
internal pointers. For example, a String class introduces
40 bytes of pure overhead associated with storing characters
separately as Character classes and keeping properties
such as string length. Consequently, a 10 character String
requires 60 bytes of main memory.

Spark’s default caching option is to store Java objects
directly in memory. With this option a fraction of the
memory is used for RDDs with the rest used to store any
objects created during execution. The default caching option
loads the cache fraction of the executors until saturation
and then recomputes additional partitions on demand as and
when required. In our experiments (Section V), this method
was found to be unsuitable in practice. In many cases,
new RDD partitions are allocated memory faster than the
Garbage Collector (GC) is able to discard older partitions.
Consequently, memory leaks and the tasks fail on main
memory exceptions.

B. Spark Storage Options

Spark offers a series of storage configurations to tackle
such overheads. These configurations define whether Spark
should cache objects in-memory, on-disk or use a combina-
tion of the two. These levels can be further customized by
the use of different serialization and compression libraries:
Spark can be configured to use either the built-in Java
serialization or the Kryo [8] serialization libraries. Finally,
Spark’s codecs can further reduce the memory footprint of
RDD objects by compressing serialized byte arrays.

The storage configurations that Spark provides introduce
a trade-off between memory usage and CPU efficiency. The
best option in terms of CPU efficiency is to store the data
decompressed in main memory. If the data does not fit in
memory then serialization and compression can be used to
minimize the space requirement. These options, however,
may introduce performance penalties. If all else fails the
data can be stored on disk, as with Hadoop. However, this
is likely to be the least CPU efficient option and should be
avoided where possible.

Given the above, it is clear that in order to find the best
storage configuration for their dataset, a user must utilize

a trial and error experimental methodology. This is largely
impractical as the result will vary across different datasets
and clusters as well as requiring systems-level evaluation
knowledge. In this work we experiment with the different
storage configurations that Spark offers and propose an
automated mechanism for the most appropriate storage level
based on a few parameters such as cluster memory size and
data size.

III. EXPLORING THE EFFECTIVENESS OF SERIALIZATION
AND COMPRESSION

This section provides experimental results on the space
overheads of RDDs and the effectiveness of serialization
and compression. According to [6], Kryo offers performance
improvements over Java serialization.

A number of different dataset samples from the UCI
Machine Learning Repository [9] and Stanford SNAP [10]
were evaluated in order to measure memory overheads for
different categories of datasets. Tables I and II display
the RDD size using memory only, Java serialization, Kryo
serialization, Java serialization and compression, and Kryo
serialization and compression as a percentage of the original
on-disk value.

JAVA KRYO

DATASET DATA TYPE MEMORY ONLY | SERIALIZATION | SERIALIZATION
Susy Structured Numeric 198.00% 91.60% 91.20%
Higgs Structured Numeric 204.00% 96.00% 95.60%
Generated Structured String Sparse 208.16% 95.92% 95.92%
USCensus Structured Numeric 234.88% 100.87% 101.45%
Record Linkage Structured String 330.00% 105.00% 103.00%
KDD data "10 Structured String 250.00% 103.00% 102.00%
adult Structured String 242.11% 100.00% 99.47%
supermarket Structured String Sparse 221.05% 104.21% 103.16%
Million Song Structured Numeric 206.25% 102.50% 102.50%
Wiki articles Text 220.59% 104.71% 141.12%
Social circles: Twitter Graph 500.00% 107.27% 101.82%
Epinions social network Graph 629.63% 107.41% 100.00%
Google Web Graph Graph 527.27% 100.00% 93.64%

Table I

RDD SIZE USING VARIOUS CACHING METHODS AS A PERCENTAGE OF
THE ORIGINAL ON-DISK VALUE

JAVA SER. & KRYO SER. &

DATASET

DATA TYPE

‘ MEMORY ONLY

COMPRESSION

COMPRESSION

Susy Structured Numeric 198.00% 52.00% 51.60%
Higgs Structured Numeric 204.00% 50.80% 50.80%
Generated Structured String Sparse 208.16% 22.45% 22.45%
USCensus Structured Numeric 234.88% 38.08% 38.08%
Record Linkage Structured String 330.00% 44.00% 43.00%
KDD data "10 Structured String 250.00% 47.00% 47.00%
adult Structured String 242.11% 53.16% 53.16%
supermarket Structured String Sparse 221.05% 26.32% 26.32%
Million Song Structured Numeric 206.25% 55.00% 54.38%
‘Wiki articles Text 220.59% 44.12% 44.12%
Social circles: Twitter Graph 500.00% 44.55% 43.64%
Epinions social network Graph 629.63% 48.15% 44.44%
Google Web Graph Graph 527.27% 40.00% 38.18%
Table II

RDD SIZE USING VARIOUS CACHING METHODS AS A PERCENTAGE OF
THE ORIGINAL ON-DISK VALUE

As the results demonstrate, uncompressed main memory

footprints vary greatly and can reach up to 600% of the
original dataset. However, serialized objects demonstrate
footprints close to the on-disk values in all cases. Compres-
sion demonstrates an additional 50% and 75% reduction for
dense and sparse datasets respectively. In order to further

assess the benefits of caching, a performance analysis of
different caching strategies is required.

Figure 1 presents the average execution time overhead
of each caching strategy. Serialization and compression
mechanisms present significant memory footprint reductions
offset by a small performance penalty.

Execution Time Overhead

6%
4%
2%

Kryo Ser. &
Compression

Java Ser. &
Compression

Java Serialization Kryo Serialization

Caching Strategy

Figure 1. Execution time overhead for different caching strategies in Spark

IV. AUTOMATIC CACHING STRATEGY SELECTION

Spark offers various caching options and enables a user to
implement custom caching strategies. However, this practice
demands expert knowledge of the underlying platform and
extensive experimental evaluation of the different options.
In order to tackle this issue, a custom strategy has been
implemented based on the insights obtained from Section
III. This strategy is triggered in cases where the user does
not explicitly specify a caching mechanism. The selection
process is illustrated in Figure 2.

HS ->size on HDFS
TM -> total cluster wide memory

CF == caching fraction

MO -> maximum overhead

Read HS,TM,CF,MO

MEMORY_AND_DISK_SER| | MEMORY_AND_DISK_SER

compress

DISK_ONLY

MEMORY_AND_DISK

STOP

Figure 2. Caching configuration selection process

This process uses the file’s size on the Hadoop Distributed
File System (HDFS), the total cluster wide memory, the

caching fraction of the executors and the maximum overhead
as input parameters. In large text-based files the overhead
was experimentally computed and in the worst case sce-
nario it approaches 500%. The Apache Spark documentation
mentions the same worst-case overhead without specifying a
dataset type. Consequently, the algorithm uses this value as
default, but allows a user to specify the overhead parameter
that better relates to their data.

If the cluster-wide executor cache memory is enough to
absorb the dataset in the worst case, default caching is
used. Uncompressed objects are faster to access and the
CPU overhead of serialization is avoided. In the case where
the cache approaches the dataset size, serialized objects
are preferred as they demonstrate memory footprints which
are equivalent to the original file size. Kryo serialization
proved to be more efficient and it is used as the default
option. This process introduces serialization overhead but
decreases GC overhead and enables up to 5x more data to
be stored in-memory. Compression is additionally used to
tackle cases where at least 50% of the on-disk data can be
cached. Compression introduces an additional CPU overhead
but further reduces memory footprints by 50% compared
to serialization. Finally, if the dataset is twice as large as
the available cache (and thus the compression mechanisms
cannot ensure that full caching is possible) then disk caching
is used.

V. EXPERIMENTAL EVALUATION

Our automatic caching strategy has been implemented
as a single Scala class and integrated into Spark. When a
task is submitted, the input parameters are read from the
application context and the algorithm selects a Storage Level
and decides on the use of serialization and compression
automatically.

The proposed strategy was tested against the default
caching strategy in a number of experiments. The workload
consisted of a 20GB dataset and the FP-Growth algorithm
[11] on an 8-core cluster (two 4-core m3.xlarge Amazon
EC2 instances). The experiment was repeated using one
thousand (1K) and four thousand (4K) partitions on 15GB
and 2GB (to account for multi-tenant environments [12],
where memory is often limited) of cache memory.

Table III displays the elapsed execution times of Spark’s
default caching strategy in comparison to our custom
caching strategy.

Table IV shows the percentage of tasks that failed across
the experiments when using Spark’s default caching strategy
in comparison to our strategy.

The automatic strategy decreases execution times by up
to 25% and, in these experiments, eliminates failures caused
by insufficient main memory.

In the default strategy, the objects are cached deserialized
(uncompressed Java object structures). This forces the GC
to recursively traverse the object hierarchy before evicting

PARTITIONS | CACHE SIZE DEFAULT CuSsTOM
STRATEGY STRATEGY
4K 15GB 1365 1290
1K 15GB 1620 1405
4K 2GB 1919 1448
1K 2GB Failed 1865
Table III

EXECUTION TIMES (SECONDS) FOR DEFAULT CACHE STRATEGY VS.

AUTOMATIC STRATEGY

PARTITIONS | CACHE SIZE DEFAULT CusTOM
STRATEGY | STRATEGY
4K 15GB 0.00% 0.00%
1K 15GB 17.00% 0.00%
4K 2GB 6.25% 0.00%
1K 2GB 100.00% 0.00%
Table IV
FAILED TASKS FOR DEFAULT CACHE STRATEGY VS. AUTOMATIC
STRATEGY

unreferenced objects. Each time memory runs out, a set
of old partitions is garbage collected and a new set is
fetched from disk. As the size of cache memory decreases,
this procedure is triggered more frequently. If this process
is slower than memory allocation, tasks fail due to main
memory exceptions. Larger partitions contain larger object
hierarchies and thus increase GC overhead (GC has a larger
workload when it is triggered). This is the reason why
larger partitions demonstrated increased fail rates in the
experiments that used the default strategy.

The automatic strategy achieves better performance by
decreasing both the GC overhead and the frequency of the
procedure. The selection algorithm assesses the available
memory and whether the partition replacement mechanism
would be triggered by the given dataset. If this is the
case, the algorithm activates and configures serialization and
compression mechanisms.

Serialized/compressed objects are represented as an ar-
ray of bytes. The GC discards these as a single entity,
regardless of the number of objects they encapsulate. This
avoids the cost of searching object hierarchies for unused
objects. Additionally, these objects consume up to 10x less
memory, thus freeing up to 10x extra in-memory storage and
hence significantly decreasing the frequency of the partition
replacement mechanism. However, this process, in turn,
introduces CPU overhead due to serialization/compression.

The results demonstrate that the cost of serialization is
lower than the cost of partition replacement. Additionally, in
the experiments, reducing the GC overhead achieves 100%
task completion even in cases where the default strategy fails
repeatedly and aborts the execution.

VI. CONCLUSIONS & FUTURE WORK

This work has considered automation of the trial and
error method to select the best caching configuration for
big data workloads running on cache-based systems such
as Spark. For this purpose multiple caching strategies have
been experimentally evaluated. The analysis demonstrates
that serialization and compression mechanisms are able to
significantly decrease memory footprints with small perfor-
mance penalties.

The default caching strategy of Spark was found to be
inefficient in cases where data does not fit into mem-
ory. Analysis of results produced insights about the trade-
offs between different caching strategies, and an automatic
caching strategy selection algorithm was proposed, based
on these insights. Evaluation of this algorithm showed
improved performance of up to 25% compared to the default
strategy as well as reduced risk of main-memory exceptions.
This behavior is attributed to decreasing both the garbage
collection overhead and the garbage collection frequency.

Our results are preliminary but positive. Future work
aims to perform in-depth investigation of the GC behavior
and experiment with a greater variety of workloads and
configurations.

ACKNOWLEDGMENT

The work was supported by an IBM Faculty Award in Big
Data Engineering. The authors wish to thank Dr Mark Hall at
the University of Waikato for his advice and encouragement.

REFERENCES

[1] “Apache Mahout,” http://mahout.apache.org/.

[2] “MLib,” https://spark.apache.org/mllib/.

[3] A. K. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic, and
J. Keane, “A Parallel Distributed Weka Framework for Big
Data Mining Using Spark,” in In IEEE Intl. Congress on Big
Data (BigData Congress), 2015.

[4] “Apache Hadoop,” http://hadoop.apache.org/.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Com ACM, pp. 107-113, 2008.

[6] “Apache Spark,” https://spark.apache.org/.

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica, “Resilient
Distributed Datasets: A Fault-tolerant Abstraction for In-
memory Cluster Computing,” in NSDI, 2012.

[8] “Kryo,” https://github.com/EsotericSoftware/kryo/.

[9] “Machine Learning Repository,”
https://archive.ics.uci.edu/ml/datasets.html.
[10] “Stanford Network Analysis Project,”

http://snap.stanford.edu/.

[11] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns Without
Candidate Generation,” in In ACM SIGMOD Intl Conference
on Management of Data, 2000, pp. 1-12.

[12] C.J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, “A
Framework for Native Multi-Tenancy Application Develop-
ment and Management,” in In Intl Conference on Enterprise
Computing, E-Commerce, and E-Services, 2007, pp. 551-558.

