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Abstract
Synthetic biology is an emerging scientific field that promotes the standardized manufac-

turing of biological components without natural equivalents. Its goal is to create artificial living
systems that can meet various needs in health care or energy domains. While most works are
focused on the individual bacterium as a chemical reactor, our project, SynBioTIC, addresses
a novel and more complex challenge: shape engineering, i.e. the redesign of natural morpho-
genesis toward a new kind of “developmental 3D printing”. Potential applications include
organ growth, natural computing in biocircuits, or future vegetal houses. To create in silico
multicellular organisms that exhibit specific shapes, we construe their development as an iter-
ative process combining fundamental collective phenomena such as homeostasis, patterning,
segmentation, and limb growth. Our numerical experiments rely on the existing Escherichia
coli simulator Gro, a physico-chemical computation platform offering reaction-diffusion and
collision dynamics solvers. The synthetic “bioware” of our model executes a set of rules, or
“genome”, in each cell. Cells can differentiate into several predefined types associated with
specific actions (divide, emit signal, detect signal, die). Transitions between types are trig-
gered by conditions involving internal and external sensors that detect various protein levels
inside and around the cell. Indirect communication between bacteria is relayed by morphogen
diffusion and the mechanical constraints of 2D packing. Starting from a single bacterium, the
overall architecture emerges in a purely endogenous fashion through a series of developmental
stages, inlcuding proliferation, differentiation, morphogen diffusion and synchronization. The
genome can be parametrized to control the growth and features of appendages individually. As
exemplified by the L and T shapes that we obtain, certain precursor cells can be inhibited while
others can create limbs of varying size (“divergence of the homology”). Such morphogenetic
phenotypes open the way to more complex shapes made of a recursive array of core bodies
and limbs and, most importantly, to an evolutionary developmental (“evo-devo”) exploration
of unplanned functional forms.
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S YNTHETIC biology is currently in search of design principles to achieve a reliable and se-

cure level of functionality from reusable biological parts, as exemplified by the BioBricks

framework (1). The goal is to create artificial living systems that can meet various needs in ap-

plication domains such as health care, nanotechnology, energy, and chemistry. So far, most of the

studies in this field have focused on the low level, seeking to characterize and validate the elemen-

tary properties of an individual bacterium. However, beyond genetic engineering problems and

bioinformatics tools, computer scientists also view synthetic biology as a systems design endeavor,

likened to large software systems and electronic circuits.
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In this context, our project, SynBioTIC, is positioned upstream and addresses a novel and

more complex challenge at the cell population level: shape engineering, i.e. the redesign of natural

morphogenesis toward a new kind of “developmental 3D printing”. Potential applications include

organ growth, natural computing in biocircuits, or future vegetal houses (2) and self-repairing

buildings (3). To this aim, we use realistic agent-based simulations of bacterial mats to experi-

ment with mechanisms allowing cell assemblies to collectively self-repair and develop complex

structures.

From the “bioware” viewpoint, the motivation is to exploit of the nontrivial collective properties

of bacteria. From the software viewpoint, SynBioTIC proposes to design and develop formalisms

and computer tools to literally “compile” (as in programming languages) the overall behavior of a

population of cells into processes local to each cell. It relies on the specification of a global spatial

behavior and its description across a tower of languages. Each language at a given level addresses

distinct features. Its set of instructions can be compiled into the lower level, and ultimately down

to the final bioware into a cellular regulation network (gene network, signaling and metabolic

pathways). This “soft-to-wet” approach, similar to a classical soft-to-hard compiler, aims to fill the

gap between the high-level description of a biosystem and its low-level physical requirements.

This long-term core research project is part of the broader “unconventional/natural computing”

family (4), which promotes non-Turing, in materio architectures at the interface between computer

science and biological engineering. It relies on the development of new approaches such as spa-

tially explicit bacterial modeling with the Gro language (5), or more abstract “spatial computing”

or “amorphous computing” with the MGS language (6) and Proto language (7), to deal with new

classes of applications characterized by the emergence of a global behavior in a large population

of cells that are irregularly located and dynamically interconnected.

Background and Motivation. Cameron et al. (8) propose a brief history of synthetic biology

across three major periods, covering important milestones from the 1960’s to this day. The authors

trace the origins of the field to a publication by Jacob and Monod (9) that postulated the existence of
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genetic circuits involved in the cell’s response to its environment, and already envisioned the design

of new regulatory elements. However, a deeper understanding of the gene regulation machinery

was still lacking in order to view synthetic biology as a true engineering challenge. With the

advent of the genomic era and the rise of systems biology in the 1990’s, genome sequencing and

analysis became commonplace and opened the way to solving the difficult challenge of reverse-

engineering gene regulatory networks (GRNs) (10). By that time, it was a widely accepted notion

that molecular constituents could be considered “units of computation” (11).

From the Individual Cell to Patterns. Initially, synthetic biology focused on the individual be-

havior of cells. The main goal was to design GRNs that could behave functionally in ways similar

to electronic circuits (12). For example, Gardner et al. (13) proposed a model of “toggle switch”

driving the production of two mutually inhibitory repressors, i.e. in which a cell could express

either one of two proteins in response to external stimuli. Another example, the “repressilator” by

Elowitz et al. (14), consists of a triple negative-feedback loop that leads the GRN to periodically

induce the synthesis of green fluorescent protein as a readout of its state in individual cells. Overall,

the beginnings of modern synthetic biology were guided by analogies between the fabrication of

organisms and computer engineering. Notable achievements within this paradigm comprised the

implementation of logic gates (15, 16) and a form of memory (17). These approaches, however,

essentially studied the behavior of local genetic circuits in single cells without aiming toward the

design of collective multigene and/or multicellular function. As pointed out by Palsson (18), in

silico biology needs to move from a reductionist paradigm to one that views cells as systems and

agents in interaction.

An important step toward the development of actual multicellular behavior was the engineering

of cell-cell communication modules in E. coli (19). With this, a first achievement of collective

function design was the creation of a homeostatic bacterial population by coupling gene expression

and cell death through “quorum sensing” (20). Attention also turned to the spatial extension of

cell populations. In a seminal work on static pattern formation by Basu et al. (21), sender and
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receiver bacteria evolve together on the proliferation medium. Cellular differentiation is based

on a chemical gradient synthesized by sender cells, while receiver cells respond to a range of

chemical concentrations and form ring-like patterns. Tabor et al. (22) proposed an edge-detection

algorithm genetically encoded into an isogenic community of E. coli sensing an image of light.

Communication among bacteria allows them to identify the light-dark transition edges and present

the result of the computation visually. More recently, Liu et al. (23) built a synthetic genetic circuit

that couples density and motility and enables the sequential self-formation of periodic stripes of

high and low E. coli cell densities.

As argued by Amos (24), synthetic biology will be undergoing a “third wave”, marking its

progression from a single-cell approach to a population approach—a trend he likens to the past

expansion from individual computers to the Internet. Following this direction, the present work

aims to push the exploration of spatial self-assembly further by bridging the gap between synthetic

biology and artificial morphogenesis. Generally, a clear distinction can be drawn between two

major types of form-creating complex systems: ones that display simple repetitive patterns (spots

and stripes), and ones that produce sophisticated functional forms (bodies and constructions). At

the time of his famous paper on the chemical basis of morphogenesis, Turing (25) was already well

aware of this qualitative difference, as he is said to have quipped: “The stripes are easy, it’s the

horse part that troubles me”. To pursue Turing’s “zebra” challenge in synthetic biology, we present

here a methodology based on realistic in silico simulations of structured self-organization in bacte-

rial mats. This proof of concept should constitute the basis for a future real-world implementation

in bioware.

The Perspective from Artificial Development. Doursat et al. (26, 27) propose a four-part clas-

sification of the field of Morphogenetic Engineering, based on the type of self-assembly process

that produces a top-level architecture or organism: “constructing” systems, in which a few agents

build a precise, relatively sparse structure (as in modular robotics); “coalescing” systems, in which

large flocks or swarms of agents create certain patterns or adopt global shapes (mostly in simula-
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tion); “developing” systems, in which agents are recursively added by division or aggregation to an

initial seed or group; and “generating” systems, in which parts are rewritten, i.e. replaced by others

based on a grammar (as in L-systems). The work presented here belongs to the third category,

which refers to a recent avenue of bio-inspired works such as “artificial ontogeny” (28), “artificial

embryogeny” (29, 30), “embryomorphic engineering” (31, 32) or “in silico evo-devo” (33), all

taking multicellular development as a model and aiming to grow artificial structures starting from

a single cell or a few cells.

From the viewpoint of evolutionary computation (genetic algorithms, genetic programming),

developing systems do not rely on a “direct encoding” of their morphology in the genome, but

an indirect encoding in the parameters of the growth process. In this first version of our work,

the genotype-to-phenotype mapping is fixed and parameters contain the necessary information to

achieve a specific shape. In a later stage, we intend to reintroduce evolution and combine it with ra-

tional design to create new shapes. Beyond computer simulations, ideas about developing systems

were also partially realized in hardware, or “roboware”, such as Rubenstein’s Kilobot swarm (34).

Ultimately, our goal here is also to return to in materio computation in the biological substrate and,

in a feedback loop, re-engineer morphogenesis into multicellular assemblies—whether prokaryotic

species not usually forming complex structures, or eukaryotic species that could be programmed

differently, such as plant cells to grow buildings or animal cells to grow organs. In sum, morpho-

genetic synthetic biology could be described as as a form of “bio-inspired bioware”.

To set up the reverse-engineering chain going from a high-level specification of a structure

all the way down to the generation of local cellular components, we need to solve fundamental

questions pertaining to the representation of a phenotype by a genotype, which are also shared

by swarm robotics and spatial/amorphous computing systems. Defining the morphology of an

artificial creature or robot through its building blocks has been a classical approach for the past two

decades. In that category, Komosinski’s Framsticks (35) were an early attempt to specify complex

organisms from simple sticks. In these examples, however, the specification of the structure relied

on direct encoding in a text file—which made it easy for a human operator to modify, or possibly
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for evolution to create high-level mutations, but not for any developmental process to take place.

On that basis, Lipson and Pollack’s Golem project (36) showed that it was possible to cross the

reality gap: actual robots were created following the techniques tested and optimized in simulation.

First, morphologies and controllers were evolved in a virtual environment, then the best individuals

were realized mechanically and immersed in the real world. Together, these works proved the

suitability of in silico experiments as an “engineering wizard”, even though their building blocks

were not self-made via a growth process.

Artificial development is now of great interest to robot design and mostly studied in simula-

tion (27, 37, 38), since physical 3D self-assembling systems are still rare. In these works, multi-

cellular development is used as a means to produce fine-grained morphologies and improve them

by evolution. From the first steps made by Eggenberger (39) to the latest production of Disset et

al. (40), which uses continuous cell shapes in a continuous medium, morphological complexity

has greatly increased. Nevertheless, three main components remain: stigmergic interactions via

chemical diffusion and gradient-based chemotaxis; gene regulation triggering differentiation into

types; and cell division, motion and death.

� MORPHOGENETIC SYNTHETIC BIOLOGY

Current applications of synthetic biology, which focus on the individual bacterium as a chemical

reactor, come from biochemistry and cellular biology. The main types of applications are the pro-

duction of useful molecules and materials (drugs, biofuels, bioplastics) and the detection of specific

conditions in the environment, for example by changing color (biosensors). The shape engineer-

ing challenge of SynBioTIC, for its part, belongs to “morphogenetic engineering” (ME), a field

founded by Doursat et al. (26, 27) which studies the transfer of natural morphogenesis to the de-

sign of the self-organizing abilities of the elements of complex systems. Generally, natural pattern

formation (stripes, spots, waves, branches) is stochastic and repetitive, in the sense that the charac-

teristic scale of the motifs can be known but not exact their position, whereas elaborate devices are

the deterministic product of human design. Yet, multicellular biological organisms are striking ex-
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amples of complex systems that are both entirely self-organized and strongly architectural, as they

display a precise arrangement of parts (41). Accordingly, ME establishes a new object of research

at the intersection between traditionally disconnected domains: it stresses the programmability of

self-organization, underappreciated in complex systems science, and, conversely, the benefits of

self-organization, which are underappreciated in engineering.

To support a wide variety of shapes in bioware, the growth process needs to be sufficiently

generic and parametric at the same time. Our purpose is not to produce a few particular outcomes

but provide a developmental framework capable of generating a whole family of them. In this

study, we choose a high-level morphological specification based on two types of elementary mul-

ticellular structures: core bodies, also called “wheels”, and limbs, also called “sticks” (Fig. 1).

Network architectures made of nodes and links are a universal form of organization observable

at all levels of life: gene regulation networks, brain, skeleton, branching systems (vascular, res-

piratory and peripheral nervous systems; virtually all plants). It embodies a building-block game

that can produce rich and complex morphologies from simple primitives, especially by isotropic

(wheel) and unidirectional (stick) development. Sticks can grow out of wheels at various angles

and with various lengths, while wheels of various diameters can burgeon at the extremities of

newly grown sticks. The set of shapes obtained by combining these building blocks can generally

be described by planar graphs or “circuits”, in which neighboring nodes are connected or not by

an edge. Here our purpose is to control the exact geometric features of the overall phenotype,

by programming them indirectly in the genotype, not just let any mesh grow randomly. We are

interested in architectures, not textures.

To this aim, we propose a five-class taxonomy of wheel-and-stick shapes sorted in order of

increasing morphological and developmental complexity, i.e. difficulty of design (Fig. 1A):

• Class I: Radially symmetrical degree-1 shapes. In this first class, shapes are based on a

single isotropic wheel (the core body of the organism) fitted with identical sticks positioned

at regular angles (its limbs), in the style of a “cross sign” or “starfish”. Development proceeds

in two stages: isotropic proliferation of the initial cell into the wheel of the organism, then
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MorphoBrick 1: Homeostatic Core

MorphoBrick 3: Precursor
Positioning

MorphoBrick 2: Limb Growth

I II

III IV V

A

B

Figure 1. Targeted wheel-and-stick shapes. (A) Five-class taxonomy in increasing developmental complex-
ity. Class I, radially symmetrical degree-1 shapes: a single wheel is fitted with identical sticks positioned at
regular angles. Class II, asymmetrical degree-1 shapes: heterogeneous sticks are attached to a single polar-
ized wheel. Class III, unaligned degree-n shapes: two or more wheels are linked by sticks, while other sticks
grow at unrelated angles. Class IV, aligned degree-n shapes: sticks grow at correlated angles. Class V, cyclic
degree-n shapes: sticks from different wheels can merge. (B) The three elementary “MorphoBricks” whose
composition supports this variety of shapes: homeostatic core (wheel), limb growth (stick) and precursor
cell (wheel-stick joint). The examples given here belong to Class I (pink and green domains) and Class IV
(blue domain). Their implementation in the multicellular medium is explained in the “Results” section.
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growth of a few sticks (typically 2 to 8) from precursor cells that have differentiated around

the crown. These precursor cells are of the same type, giving rise to individuals that exhibit

“serial homology”. The number, length and thickness of the sticks can be tuned in the

genome.

• Class II: Asymmetrical degree-1 shapes. Here precursor cells adopt different types, hence

sticks attached to a single wheel may have diverse characteristics. In some of them, stick

growth can be inhibited altogether, creating a gap compared to a regular cross or star shape.

Examples include letter shapes such as “T”, “L”, “V” and“Y”. The main feature of this class

is that the wheel is polarized, allowing cells to acquire positional information with respect to

two main axes, anterioposterior (AP) and dorsoventral (DV) supported by four poles (north,

south, east, west). More axes based on intermediate poles (northwest, etc.) can also be

introduced.

• Class III: Unaligned degree-n shapes. This class represents the first level of a recursive

developmental process. It comprises shapes with two or more wheels linked by sticks. Stick

extremities lead to the development of wheels that initiate new sets of sticks. Although

wheels can be locally polarized, they do not maintain relative orientation with respect to

each other. Attached wheels only share one axis along their common stick. Typical shapes

can look like articulated “snakes” (simple chains of stick segments) or “centipedes”, where

segments alternate with pairs of legs, possibly of different lengths.

• Class IV: Aligned degree-n shapes. Next, an additional requirement is that sticks growing

on connected wheels do so at specific relative angles, for example parallel or perpendicular

to each other. This is where we can design more controlled geometries such as letters with

two joints (“Z”, “F”) and three joints (“W”, “E”).

• Class V: Cyclic degree-n shapes. Finally, the most complex shapes of the wheel-and-stick

family involve sticks of different origins crossing paths and merging into the same wheel,

thereby creating cycles in the graph structure. They include characters “A” and “4”. Once
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the convergent growth of two sticks is under control, any mesh figure or circuit architecture

can potentially be reached by carefully designing the genetic program. Before that level,

however, the previous four classes must also be mastered and issues of computing speed

resolved.

The present study does not cover this full taxonomy but explores its different levels in increasing

order of complexity by model and simulation. It presents original results about the theoretical

and practical possibility of (re)programming bacteria to create certain multibacterial shapes in a

controlled way. Starting with Classes I and II, we progressively build the elementary components

needed for higher classes: single wheel, single stick, undifferentiated then differentiated precursor

cells, wheel with sticks, stick with a wheel, and so on. However, since each one of these compo-

nents may include hundreds of cells, we also quickly face computational limitations that prevent

us from calculating truly complex organisms. This is why our numerical experiments stop for now

at the entrance of Class III, and we only describe principles and mechanisms for the rest.

The remainder of the article is organized as follows. In the “Results” section, we describe how

the mapping from an abstract geometry to the multicellular medium can be realized in principle, via

in silico numerical experiments. We show the development of three “MorphoBricks” (wheel, stick,

and wheel-stick joint) and their composition into more complex Class-I and Class-II organisms—

all starting from the controlled proliferation of a single cell. Then, in the “Discussion” section,

we review the simplifications made in the model and their shortcomings, particularly from the

perspective of crossing the “reality gap” toward in vivo implementations1. In “Future Work”, we

mention possible alternatives and new avenues of research worth exploring. Finally, in “Methods”,

we present the model of “bacterial behavior ontology” at the basis of the simulations, and the

programming language that we designed to encode its associated genomic representations.

1We use “in vivo” in the synthetic-biological sense of genetic material (DNA, plasmids) implemented inside live
cells, as opposed to being isolated in a test tube. Although the bacterial colony may be contained in a petri dish, it is
not considered “in vitro” because it constitutes a living organism in itself.
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� RESULTS

Homeostatic Core: MorphoBrick 1. As presented above, the two morphological components

of our shape specifications are wheels and sticks, which can be combined in a variety of ways

to generate increasingly complex forms. In the next few paragraphs, we describe how these two

components are able to arise from the controlled proliferation of a single cell, i.e. how the mapping

from abstract geometries to the multicellular medium can be realized. In a third stage, we provide

the composition mechanism between the wheel and the stick in the form of “precursor cells”, a

targeted differentiation mechanism on the outer rim of the wheel body by which sticks are affixed

to wheels. Precursor cell positioning will be the cornerstone of the developmental process as it is

responsible for building the joints between the core body and the limbs at locations specified by

the morphogenetic program.

Altogether, we call MorphoBricks this set of three self-made, self-assembling components,

in a reference to the concept of BioBricks (1) translated from the molecular, genotypic level to

the morphological, phenotypic level (Fig. 1B). In each case, we will pay special attention to the

reproducibility and programmability of the virtual growth experiments through sensitivity analysis

and parametric exploration. This will also offer a glimpse of the great diversity of shapes that could

theoretically be engineered through the proposed method. To this aim, we used OpenMOLE (42),

a middleware platform facilitating massive experimental parametric search of complex systems

models on a computing cluster, leveraging the power of the European Grid Infrastructure (EGI).

MorphoBrick-1 Homeostatic Development. Homeostasis, the process by which the internal

state of a system remains constant through self-regulation, is a major characteristic of life. There-

fore, homeostatic properties should be a prime concern of synthetic biology efforts aiming to build

complex structures. Here our first goal is to create a “core” morphological component that main-

tains itself in place. This requires finding a means to maintain a stable population size. In the shape

engineering challenge, the ability to control the size of a colony of bacteria over time is crucial to

ensure the sustainability of their collective behavior.
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The mechanism that we propose for the development and maintenance of a homeostatic core

starting from a single cell relies on a morphogenetic field emitted by a “leader cell”, which could

be the initial cell or not (Fig. 2B, t2). There are two design strategies to ensure the unicity of the

leader: either by inhibiting its mitosis, or by making it asymmetric (43), i.e. one of its two daughter

cells immediately differentiates into another type, keeping the leader role in the other daughter.

The problem with the latter scenario is that it creates a continual random-walk displacement of

the leader at each generation, which produces a lopsided wheel shape due to the morphogen trail

left by the leader’s displacement (a similar effect will be in fact exploited, not suppressed, in

MorphoBrick 2). Thus we opt for a nondividing leader cell, instead. A consequence is that it

cannot be the initial cell and must appear later (but soon enough) via differentiation of another

cell—while proliferation is ensured by the presence of a sufficient number of non-leader cells.

The genome designed for this purpose is represented graphically in Fig. 2A (see explanation in

“Methods”, in particular “Genomic Representation”; the full program can be found in Supporting

Information, Code 1a). Initialization and leader cell generation are key mechanisms for the success

of the development of this MorphoBrick and the others. The single cell of origin is in a neutral INIT

state, which can differentiate into any of three active types composing the assembly: LEADER, POP1

and POP2. The emergence of the first one is a rare stochastic event; the other two depend on local

morphogen concentrations, themselves resulting from emission by the cells and passive diffusion.

The LEADER cell continuously secretes a chemical α by accumulating a fixed concentration amount

Cα = 50, which we refer to as the “rate” of emission, in the source location at each time step (the

actual concentration [α] reaches a plateau due to degradation and diffusion perpetually at work in

every point). This triggers the differentiation of nearby cells into POP1 and creates a first circular

layer of this type until a certain concentration θα = 0.8, called differentiation threshold (controlling

three transitions). Meanwhile, POP1 cells emit chemical β, which creates a second circular layer

of POP2 until θβ = 2.5, called survival threshold (controlling two transitions). The net result is the

establishment of two stationary (but not static) rings of cell populations around the LEADER cell,

each one responsible for the next. They are characterized by “fountain”-like collective motion, as
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INIT

POP2POP1LEADER

EmitSignal(α,50)
StopDivide()

EmitSignal(β,50)
 

 

DEAD

Die()

α

β

Kdiff  = 2.5
Kdeg = 0.1 

Kdiff  = 1.5
Kdeg = 0.1 

Rate(0.01)

[β] > 2.5

[β] < 2.5

[α] < 0.8

[α] > 0.8

[α] > 0.8

t0 t1 t2

t5t4t3

t6 t7 t8

A

B

Figure 2. Genomic representation and simulation of MorphoBrick 1, “homeostatic core”. (A) The differ-
entiation graph (as in Fig. 12A) comprises four active cell types plus a DEAD type that triggers cell death.
(B) Nine snapshots of the cell assembly showing the main developmental stages (Supporting Information,
Video 1a). All cells except LEADER and DEAD continually divide by default. Two chemical fields, α and β,
emitted and detected by the bacteria control their proliferation, leading to homeostasis of the assembly and
maintenance of a wheel shape once a certain size is reached. The developmental scenario can be summarized
as follows: The INIT type (in gray) differentiates into a LEADER cell (in red) upon a rare stochastic event (here
at t2). The LEADER cell secretes a diffusive morphogen field α (pink cloud) at rate Cα = 50, which causes
nearby INIT cells to differentiate into POP1 (in yellow), preventing them from creating another leader. In
turn, POP1 cells diffuse β (yellow cloud), which causes the remaining INIT cells (where [α] < θα = 0.8) to
turn into POP2 (in cyan). Moreover, POP2 cells die at the border of the β field, where its concentration drops
below θβ = 2.5. In the end, a stationary (but not static) bilayered core emerges: the leader cell maintains
the first layer, which maintains the second layer.
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bacteria are being pushed out by their own proliferation, becoming alternatively (and reversibly)

POP1 or POP2, then eventually dying, depending on the underlying morphogenetic fields that they

collectively generate.

The final size of the organism and the thickness of the layers depend on several parameters.

In a given chemical environment, morphological characteristics vary with the differentiation and

survival thresholds, which are features of the genome: clearly, the smaller θα or θβ, the thicker the

POP1 or POP2 layer, respectively. Conversely, given a certain genome, the trend would be similar

if bacteria were immersed in a different chemical environment where α or β had a higher diffu-

sion rate κdiff or a smaller degradation rate κdeg. In the next paragraphs, we study quantitatively

these phenotypic variations as a function of the genetic parameters and environmental conditions,

starting with robustness with respect to random initialization.

MorphoBrick-1 Sensitivity Analysis. First, the invariance of the homeostatic core behavior

with respect to experimental conditions is studied by repeating many times the same simulation

under the same parameters, only using different random generator seeds. The main consequence is

felt at the level of the INIT→ LEADER transition, as the stochastic differentiation event may affect

a different cell than the one in Fig. 2B at t2 and/or occur at an earlier or later time step. Other, sub-

tler effects are caused by the fact that daughter cells are not exact clones of the mother. The Gro

simulator ascribes slightly different properties to bacteria when they divide, such as their growth

rate, by drawing them from Gaussian distributions (it also models fluctuations through a variable

dt obeying a Gamma distribution), which produces bacteria colonies of variable size and layout.

In any case, we analyze the outcome of the developmental process based on three main geo-

metric measures: the total radius of the whole organism, the inner radius of the inner layer, and

their difference, the crown thickness (outer layer’s radius). The global radius is simply the average

of the four distances that separate the LEADER cell from the left-most, right-most, top-most and

bottom-most bacteria (all cell center coordinates being known). The inner radius is obtained in the

same way, counting only the POP1 cells. Fig. 3A shows the distributions of these three quantities
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Figure 3. Sensitivity analysis and parametric exploration of MorphoBrick 1, “homeostatic core”. (A) Dis-
tributions of three morphological characteristics, left to right: outer radius, inner radius, and their difference,
the crown thickness. All radial sizes were measured directly in the Gro environment based on minimum and
maximum cell coordinates. These distributions were obtained by repeating the same simulation 300 times
with the parameters of Fig. 2 (out of which 30 failed on average and were discarded), only changing the ran-
dom seed every time. The profiles are essentially bell-shaped, with low variance, showing that our approach
based on morphogenetic fields is sufficiently robust to support the morphogenetic engineering of targeted
shapes. (B) Morphological characteristics as function of the survival threshold θβ, varied in [0.2, 20] by
increments of 0.2 (all other parameters as in Fig. 2). Since θβ induces death in the POP2 cells (cyan bac-
teria) which make up the crown, then the lower θβ, the larger the crown thickness (cyan curve) and outer
radius (black curve) because the inner radius is not affected (yellow curve). All radial sizes were measured
directly in the Gro environment based on minimum and maximum cell coordinates. The gray area indicates
the standard deviation of the total radius, calculated over 100 simulations in each point (10% discarded on
average). (a-d) Four examples of wheel shapes obtained under different θβ values (final snapshots at home-
ostatic equilibrium corresponding to t8 in Fig. 2), indicated by pins on the horizontal axis. (C) Influence of
the diffusion rate κdiff(α) varied in [0.03, 3.0] by increments of 0.03. Since chemical signal α is emitted by
the LEADER cell and affects the differentiation boundary between the POP1 and POP2 layers, then the higher
its diffusion rate, the wider the inner radius and the total radius while the crown thickness remains constant.
(a-d) Four final snapshots of wheel shapes at different rate values.
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for 300 trials under the parametric conditions of Fig. 2. Only about 10% of the simulations were

rejected because two or more LEADER cells emerged and compromised the development of the

core. The narrow bell-curve aspect of these distributions shows that our simulated developmen-

tal process produces robust morphologies, and legitimates the study of morphological variations

through numerical experiments.

In sum, these results highlight the reliability of the morphogenetic engineering approach, based

here on chemical fields. The whole assembly is capable of maintaining a wheel shape of a certain

size at the same time all its cells (except the leader) are constantly renewed. On the other hand, this

happens only as long as there exists a LEADER cell that emits the proper morphogen. Naturally,

the dependency on a singularity of this kind is a much less desirable feature since, as soon as

the leader dies, the bilayered-core organization disappears through uncontrolled proliferation, then

massive death of POP1 and POP2 cells deprived of α and β morphogens. Additional mechanisms

are required for a more realistic biological implementation of this scenario, either by triggering

the spontaneous replacement of the leader (e.g. through self-election) or by allowing a clump of

multiple LEADER cells, or by dispensing with the need of leaders entirely (see “Discussion” for a

review of alternatives).

MorphoBrick-1 Genomic Variations: Transition Thresholds. We now analyze the influence

of the variation of thresholds θα and θβ, starting with the latter. One of the roles of the survival

threshold is to induce death in POP2 cells when they detect a low β concentration. Therefore,

θβ should have a direct influence on the thickness of the POP2 crown. This is verified in the

statistical analysis of Fig. 3B: increasing θβ results in an average decrease of the crown thickness.

On the other hand, the inner radius of the POP1 layer remains constant, therefore the outer radius

of the whole assembly, which is the sum of both, also decreases. These curves were obtained by

simulating 100 specimens for each one of 100 different θβ values, with the other parameters set as

in Fig. 2. Note that the thickness decrease is not linear, since at high survival thresholds the border

cells are in a steep region of [β] gradient, therefore threshold variations incur only relatively small
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thickness variations; whereas at low survival threshold the border cells are in the flatter tail region

of the gradient, hence slight threshold variations can cause larger size differences.

A similar analysis was conducted over the differentiation threshold θα, which controls the

POP1↔ POP2 reversible transition. In this case, as expected, the effect was a decrease of the inner

radius (hence the total radius) with higher values of θα (curve not shown). Unlike the previous

scenario, however, θα variations end up affecting both geometric measures, not just one of them.

When the inner radius becomes too small, the outer crown also collapses, since there are not enough

POP1 cells to create a morphogenetic field of β suitable to POP2 cells for their development.

MorphoBrick-1 Environmental Variations: Chemical Rates. Phenotypic variations can also

be elicited by modifying the properties of the surrounding chemicals, instead of the bacteria. This

is a case of “polyphenism”, where the same genotype immersed in different environments can

produce a different phenotypes. Here, by varying the diffusion and degradation rates κdiff and

κdeg, the main homeostasis property of the core shape can be preserved while its morphological

characteristics are modified. Fig. 3C displays the results of a statistical analysis over a range of

diffusion rates of morphogen α. As before, 100 simulations were carried out in each one of these

100 points. Unsurprisingly, the curve shows that when the diffusion rate increases, the inner radius

and total radius also increase.

We also analyzed the organism size as a function of the degradation rate κdeg(α), which de-

scribes how fast morphogen α disappears. In this case, also reassuringly, the higher the degradation

rate, the smaller the inner radius (curve not shown). When the degradation rate becomes too high,

[α] drops faster than it can be replenished by the LEADER cell’s signal emission. This results in

a small area of concentration around the leader, hence a small inner layer, which in turn has a

damaging influence on the crown thickness as explained above.

MorphoBrick-1 Genomic Mutation: Number of Types. In a last part of this MorphoBrick-1

study, we look at a hand-mutated genome structure, in which a third cell type POP3 is created

and new conditional transitions introduced between POP2 and DEAD (Fig. 4A; see full program
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EmitSignal(β,50)

Rate(0.01)
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[β] < 2.5[α] < 0.8
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Figure 4. Extra type and chemical in the implementation of MorphoBrick 1, “homeostatic core” (Supporting
Information, Video 1b). (A) Compared to Fig. 2, this new genome design contains a third type, POP3,
inserted in POP2’s path to cell death. Instead of dying at the edge of the β gradient, the POP2 bacteria (in
yellow) first differentiate into POP3 (in green), then disappear at the edge of a new γ gradient emitted by
POP2 (with threshold θγ = 2.5). (B) As a consequence, the growing organism gains a third layer of cells.
Notice the spontaneous spatial rearrangement in the last stages of the homeostatic convergence (from t6 to
t8), as the initially asymmetric layer disposition caused by the linear, upward growth of populations 1, 2 and
3 (from t2 to t5) becomes centered again.
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in Supporting Information, Code 1b). Moreover, POP2 now emits another morphogen, γ, which

sustains the emergence of POP3 cells and also regulates their disappearance on the outer rim. In

essence, the INIT→ POP1→ POP2 differentiation chain is augmented with a third link, POP1→

POP3, and the consequence is the appearance of a third layer in the collective phenotype (in green in

Fig. 4B). As before, the thickness of the layers and the global radius of the wheel-shaped assembly

are parametrized by the various threshold and rate values. Theoretically, this approach can be

easily generalized to N POP types: given a desired number of layers N , a generative approach

could automatically produce the corresponding SBGP genome, then the Gro script.

The advantage of increasing the number of types and layers is to improve positional infor-

mation, hence positioning diversity and accuracy for the future appendages in later stages (see

“MorphoBrick 3” paragraphs below). This is because more signals can be interpreted more locally

over shorter distances, where gradients are steeper and less sensitive to noise, i.e. can provide bet-

ter control than flat ones. On the other hand, the problem is the complexity of handling multiple

chemical signals and the difficulty of implementing them in the lab (see “Discussion”).

Limb Growth: MorphoBrick 2. The second component of our morphogenetic experiments

is a stick, or “limb”. Here we describe an implementation of standalone limb development in

the multicellular medium. In the next section, we show how it can grow out of the body, using

MorphoBrick-3 precursor cells as “joint” structures. The limb’s differentiation graph is based

on four active cell types: LEADER, QUIESCENT, FLESH and SKIN (Fig. 5; see full program in

Supporting Information, Code 2a). Initially, only initial cells of the first two types are needed to

start the process, which unfolds in a way similar to meristem offshoot in plants. The LEADER plays

the role of a precursor cell, while the QUIESCENT cell, upon stimulation by the leader cell’s signal

α, turns into a FLESH cell and enters a proliferative cycle. Overall, the net effect is that the leader

is continually pushed away, leaving a diffusive “plume” of cells in its path. FLESH cells spread out

in the region [α] > θα = 0.8 and also emit β, surrounding themselves with an outer layer of SKIN

cells (in the same way POP1 cells surround themselves with POP2 in MorphoBrick 1), to the extent
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Figure 5. Genomic representation and simulation of MorphoBrick 2, “limb growth”. (A-B) Two cells of two
distinct types initiate the developmental process: a LEADER cell (in red) and a QUIESCENT cell (in green).
The former emits a chemical α activating the latter’s proliferation via its differentiation into another type,
FLESH (in cyan), which in turn emits a signal β where a fourth type, SKIN (in yellow) survives. Similar
to MorphoBrick 1 (Fig. 2), the size of the inner and outer regions and yellow areas are parametrized by
thresholds θα = 0.5 and θβ = 0.8. Proliferation and mechanical forces continually push the LEADER cell
to the outer skirts of the assembly. Because this cell leaves a trail of α morphogen along its displacement,
the result is the development of a “teardrop”-shaped limb (Supporting Information, Video 2a). The final
length is determined by the accumulation of an internal protein λ in the leader, which differentiates into
FLESH beyond a third threshold θλ. (C) Different outcome based on a higher survival threshold θβ = 1.5,
and showing distortions due to a windier path taken by the leader (Supporting Information, Video 2b).
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determined by a lower threshold: [β] > θβ = 0.8.

The slow diffusion (κdiff = 0.05) and low degradation rate (κdeg = 0.01) of morphogen α

emitted by the LEADER cell builds a kind of “chemical shelter” for FLESH cells, as it allows the

concentration to stay high and FLESH cells to proliferate while the source cell has time to move

away, which fuels the lengthening and widening of the limb. In fact, this is the most important

difference with the development of the core (for which κdiff = 2.5 and κdeg = 0.1). As in Mor-

phoBrick 1, however, the success of limb development rests upon the survival of a single LEADER

cell. Here its unicity is guaranteed since the leader is already present at the start and does not

need a rare stochastic event to appear later in the process (it will be in fact provided by Morpho-

Brick 3 in the next stage). Yet again, the same questions as before arise (see “Discussion”): can

the design be modified to accommodate the regeneration of the LEADER cell in case of its untimely

disappearance? Or could there be a clump of multiple leaders—or none at all?

In any case, a specificity of the limb structure is that its extension depends on the life duration of

the LEADER cell. Here homeostatis is only partial, in the sense that the SKIN layer adopts a certain

thickness while still proliferating, whereas no limit length is reached and maintained. Therefore, to

control the length of the limb, we introduce a clock mechanism in the source. Once it starts emitting

the proliferation activator α, it also accumulates an internal protein λ, and when this concentration

reaches a given threshold θλ, then LEADER differentiates into FLESH, mingles with the crowd, and

the growth process stops. The limb length can therefore be parametrized in two ways: by varying

θλ or the accumulation rate Cλ of the protein. The sensitivity to noise and the influence of the

genomic and chemical parameters on the geometrical features are studied next.

MorphoBrick-2 Sensitivity Analysis. As in the previous section, it is important to analyze the

robustness of limb growth, if we want to use it as a reliable developmental building block. To

this aim, we performed again 100 runs under the default parametric conditions of Fig. 5 and mea-

sured the average thickness and length of the obtained morphology (Fig. 6). Both were obtained

by extracting the topological skeleton from the limb shape, i.e. the pixelized domain covered by
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the bacteria after smoothing to avoid too many spurious branches (see algorithm in Supporting

Information, “Morphological Analysis”). The thickness corresponds to the number of iterations

required to “eat out” the flesh and converge to the skeleton, while the path length is given roughly

by the number of pixels that constitute the final skeleton (see conversion to µm in figure caption).

As with the homeostatic core structure, these distributions appear essentially bell-shaped with a

relatively narrow variance, except for a slight tendency of the length distribution to bimodality,

showing a relative lack of mid-range values. A third measure, the meandering index, which is the

limb length divided by distance between the initial and final positions of the LEADER cell, indicates

that the great majority of phenotypes are linear (value close to 1)—although a significant number

of them are also sufficiently curved or convoluted to produce indices of 2 or 3 (e.g. hook-shaped

limbs whose extremities are close to each other).

MorphoBrick-2 Genomic Variations: Transition Thresholds. Next, we need again to under-

stand the effect of genomic parameters and environmental conditions on the phenotype to be able

to target specific morphological characteristics. Since morphogens α and β play a role equivalent

to the MorphoBrick-1 study, we also call θα “differentiation threshold” and θβ “survival threshold”

Figure 6 (preceding page). Sensitivity analysis and parametric exploration of MorphoBrick 2, “limb
growth”. (A) Distributions of three geometric measures, from left to right: limb thickness, limb length,
and meandering index. The limb thickness corresponds to twice the number of iterations required to fin-
ish skeletonization, where each iteration removes a 1-pixel thick layer, then applying a rescaling factor of
10 pixels = 5.8 µm (without correcting for the possible excess of pixels in diagonal “staircase” segments,
compared to straight segments). Through morphological analysis, the limb length corresponds to the num-
ber of pixels remaining after skeletonization, applying the same scale. The meandering index is a unitless
quantity equal to the limb length divided by distance between the leader’s initial and final positions. These
distributions were obtained by repeating the same simulation 100 times with the parameters of Fig. 5, only
changing the random generator seed every time. As in Fig. 3A, the first two distributions are bell-shaped,
except for some bimodality in the length feature. The third one shows that most limbs grow out straight,
a few others end up curved, with extremities very close. (B) Organism thickness as a function of survival
threshold θβ. (C) Organism length as a function of differentiation threshold θα. (D) Thickness and length
as a function of degradation rate κdeg(β), varied in [0.03, 3] by increments of 0.03 (other parameters as in
Fig. 5). All sizes calculated by morphological analysis, here with a rescaling factor of 10 pixels = 2.7 µm.
In each case, means are calculated over 100 simulations for each parameter set, and images (a) to (d) show
examples of shapes obtained under different values just before final differentiation of the LEADER cell (in
red) and growth stop (equivalent to t9 and t′9 in Fig. 5), indicated by pins on the horizontal axis.
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here. For reasons similar to the previous study, the results shown in Fig. 6B,C confirm that an

increase in θβ provokes a decrease in the thickness of the SKIN layer (formerly POP2), hence the

whole limb, while an increase in θα provokes a decrease in the FLESH population size (formerly

POP1), hence the overall length since the leader is pushed away slower by less active proliferation

and packing forces.

MorphoBrick-2 Environmental Variations: Chemical Rates. External conditions also influ-

ence the developmental process. Here we display the influence of the degradation rate κdeg of

the survival morphogen β (Fig. 6D). A higher rate causes a decrease in both dimensions of the

limb, thickness and length, although in different ways. Clearly, the more degradable β, the more

restricted the area where [β] > θβ, hence the less prolific the SKIN cells. If κdeg is too high, the

morphogen never reaches a level suitable for SKIN to develop and survive. The FLESH cells, for

their part, are not sensitive to β, yet limb length still indirectly depends on the degradation rate.

The reason, again, is that the trajectory and speed of displacement of the LEADER cell along the

major axis are a result of mechanical interactions and spatial constraints exerted by the SKIN layer

pressing laterally on the FLESH core. In the case of a more volatile chemical, there is less density

and these forces are weaker. Note that, in any case, cleavage planes are oriented randomly and do

not contribute to the direction taken by the elongation; only the leader’s displacement does.

Precursor Cells and Assembly: MorphoBrick 3. The third and last component we present

in this study consists of placing at the periphery of a wheel a precursor cell that will give rise

to a stick. For this, we need a spatiotemporal differentiation mechanism by which certain POP2

cells around the core can self-elect at regular intervals and become the new LEADER cells of limb

growth. This is a form of segmentation, a pervasive developmental episode across multicellular

species (e.g. somitogenesis in vertebrates), which will be based here on the combination of two

low-level mechanisms: wave propagation and oscillations.
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Figure 7. Segmentation mechanism at the basis of MorphoBrick 3, “precursor cell positioning”. The
directed propagation of a wave of morphogen (pink cloud) across a fixed band of 4 × 20 cells (here dis-
played four times) results from their detection-and-reemission behavior interrupted by a refractory pe-
riod ρ (i.e. they behave like “excitable units”). It is combined with an oscillatory state of angular fre-
quency ω in each cell to produce a striped pattern of differentiation (white type), which will be the
site of precursor cells (Supporting Information, Video 3c). (A) Decreasing refractory periods under
ω = 2.5 rad.min−1 (i.e. an oscillation period of T = 2π/2.5 = 2.5 min= 25 ∆t), from top row to bottom
row: ρ = 8, 6, 4, 2 min. (B) Increasing oscillation frequencies under ρ = 6 min, from top row to bottom
row: ω = 0.5, 1.5, 2.5, 3.5 rad.min−1 (i.e. oscillation periods T = 12.6, 4.2, 2.5, 1.8 min, respectively).

MorphoBrick-3 Segmentation. Wave propagation is generated by signal emission and detection

via a refractory period ρ in each cell. It is illustrated in Fig. 7A on a fixed rectangular grid of cells.

A signal (pink cloud) is emitted once by a special cell (in red) at one end of the chain. When

neighboring cells are stimulated by this signal, they produce it in turn. After emission, however,

each cell waits for a small period of time before it is able to detect-and-emit again. In this manner,

the morphogen can be transmitted only in one direction (here from the left to the right). This

phenomenon is typical of “excitable media”, such as the Belousov-Zhabotinsky reaction or cAMP

communication among slime mold amoebae. Clearly, the longer the refractory period, the longer

the wavelength.

By coupling this propagation mechanism with an internal clock in each cell, one can obtain

a segmentation of the grid into alternating stripes representing two cell types (Fig. 7B): a differ-

entiated type (in white), which appears when the wave traverses the cell at the same time that its

internal phase reaches a certain value (say, 2πn); and an undifferentiated type (in green) if wave
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passage and clock phase do not coincide. The number of segments and their typical widths de-

pend on the refractory period ρ and the oscillation frequency ω, in addition to several other factors

such as the chemical rates κdiff and κdeg, and the phase window ∆φ of differentiation opportunity

around 2πn.

MorphoBrick-3 Precursor Cell Positioning. The emergence of segments is only the first stage

of the precursor cell positioning process. The differentiated stripes constitute groups of cells eligi-

ble to become leaders of a limb growth, but in the current state of the model there can be only one

such cell per group. Therefore, another rare stochastic event is needed to allow one candidate cell

to self-elect and quickly shut down its neighbors via a local inhibitor signal. Both stages largely

overlap: the reduction of groups of candidates to single leaders may already happen while the wave

is still running and the segmentation process has not finished creating all the groups.

Such a scenario is illustrated in Fig. 8A (see full program in Supporting Information, Code 3a):

first, at t9, a signal is triggered from a random seed cell and sweeps across the circular layer of

POP2 cells (here in yellow) in the same way as the linear band of Fig. 7 (on immobilized bacteria,

to simplify the experiment). The difference here is that the wave propagates symmetrically in both

directions (the signaling morphogen is not shown), and the formerly undifferentiated cells are now

converted into a “disabled” black type when traversed by the wave outside of their phase window.

Then, at t12 one of the candidate white cells from the group in the lower left quadrant differentiates

into a limb LEADER and emits another short-range morphogen (pink clouds), which has the effect

of deactivating the other white cells from this group (making them black). Meanwhile, the wave

has finished covering the whole outer layer at t14: in this case, the ρ and ω values are such that a

total of five radial stripes (white groups) are created. Short thereafter, the other four groups reduce

themselves to single LEADER cells, too (in red). The result at t17 is an approximately regular

pentagonal structure. In this case, the final layout of the five precursors will always be a pentagon;

only its absolute orientation (between 0 and 72 degrees) may vary depending on the location of

the first seed cell. This is not a problem for Classes I to III, but in Classes IV and V additional
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Figure 8. MorphoBrick 3, “precursor cell positioning”. Development starts from MorphoBrick 1 at
t8 (Fig. 2) with different colors (POP1 in green, POP2 in yellow) and parameter values ρ = 8 min,
ω = 1.4 rad.min−1 (i.e. T = 2π/1.4 = 4.5 min). To simplify, bacteria are also artificially held in place.
(A) (t9-t14) The first stage consists of a double wavefront on the outer POP2 layer, clockwise and counter-
clockwise, establishing five groups of candidate precursor cells (in white) and deactivating all the others (in
black) in the same way as Fig. 7. (t12-t17) Largely overlapping, the second stage consists of the spontaneous
reduction of each group of candidate precursor cells into single LEADER cells (in red) by stochastic self-
election and quick snuffing of the neighbors (from white to black), based on a short-range inhibitor signal
(red cloud). The outcome here is the basis for a five-pointed star shape (Supporting Information, Video 3a).
(B) Different internal oscillation frequencies ω give rise to different degrees of periodicity around the core,
e.g. three, four or six-pointed stars (respective oscillation periods: T = 7, 5, 3.3). In some cases, a few
POP2 cells (at the border with POP1) have escaped the inital wave of deactivation, but their spontaneous
differentiation into new candidate cells remains extremely unlikely.
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staging mechanisms (possibly involving external stimuli such as light) must be introduced to align

or correlate limbs between distant bodies. Fig. 8B shows different degrees of periodicity (triangle,

square, and hexagon) arising from different oscillation frequencies ω.

Class-I Shapes: Radially Symmetric Wheels. Putting all three types of MorphoBricks together,

we can create the first shapes belonging to Class I, composed of a wheel with a radially symmetric

arrangement of limbs. Once the core has developed (MorphoBrick 1) and the precursor cells have

appeared (MorphoBrick 3), local proliferation is stimulated at the root of the limbs, provoking

their growth (MorphoBrick 2). This latter part is shown in Fig. 9A (see full program in Supporting

Information, Code 4a): starting from the last step of Fig. 8, we arrive at a four-armed starfish

organism. Fig. 9B shows the variants originating from three, five and six precursor cells.

MorphoBrick-3 Precursor Cell Differentiation. Modularity is a fundamental principle of genotype-

phenotype economics in development and evolution (44). Biological organisms often contain nu-

merous repeated or serially homologous parts in their body plan (45). This is most striking in

the segments of arthropods (several hundreds in millipedes) or the vertebrae, teeth and digits of

vertebrates. After duplication, however, these parts tend to diversify and evolve more specialized

structures (lumbar vs. cervical vertebrae, canines vs. molars). Homology exists not only within

individuals but also between different species, as classically shown by comparing the forelimbs of

tetrapods from the bat to the whale. Recently, genetic sequencing has revealed that many stretches

of DNA are in fact identical or highly similar. This came in support of the idea that homology is

the evolutionary result of duplication followed by divergence through mutation—and, sometimes,

loss again.

Accordingly, to reach the radially asymmetric shapes of Class II, an additional mechanism

of superdifferentiation among precursor cells is needed. In this way, sticks can be activated or

inhibited at certain positions around the wheel, and also ascribed different genomic parameters to

obtain different geometrical characteristics (here mostly different lengths). This is implemented

here on a four-pointed wheel in several steps (Fig. 10; see full program in Supporting Information,
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t17 t18 t19

t22t21t20

t23 t24 t25

(a) t25, ω = 0.9 (b) t25, ω = 1.4 (c) t25, ω = 1.88

Figure 9. Class-I shapes: radially symmetric wheels (Supporting Information, Video 4a). (A) A four-armed
starfish organism is obtained by chaining the three MorphoBricks presented in the above sections (Fig. 2, 8
and 5) with parameters ρ = 8 min, ω = 1.25 rad.min−1 (T = 5). Here precursor cells are of the same type
and lead to homogeneous limbs (compare with Fig. 11). (B) Different starfish organisms can be obtained by
varying the number of precursors (here three, five or six) via the oscillation frequency value ω.
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t9 t10 t11

t12 t13 t14

t15 t16 t17

Figure 10. Precursor Cell Differentiation (see text). (t9) Homeostatic core and emergence of North precur-
sor. (t10-t11) First wave propagation. (t12-t13) Emergence of South group and precursor cell. (t14) Equa-
torial groups. (t15) West precursor cell. (t16) Second wave propagation. (t17) East and final precursor cell
(Supporting Information, Video 3b).

Code 3b): first, with respect to the wave origin (North red cell), ω is decreased to the point that

only one candidate group appears at the antipode, in effect producing a two-pointed wheel (t9-t12).

Then, an essential difference with symmetric organisms is that the spontaneous reduction of this

antipode group produces another type for the self-elected leader (South cyan cell, t13) compared

to the inital cell. Next, two new groups emerge on the equatorial line between the first two groups

(t14), but this time based on the MidPlane condition presented in the “Methods” section. Finally,

another wave based on a new morphogen propagates out of a self-elected cell from one of the

equatorial groups (West yellow cell, t15) and eventually determines the last precursor (East green
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cell, t17) in the same way as the first North/South pair.

After that, it is possible to insert four other specialized points, NW, NE, SW and SE, at 45◦

betwen the first four precursors by relying again on the MidPlane condition. In sum, the mechanism

creating asymmetrical precursors leads to a four-pointed or eight-pointed wheel (and generally 2n,

if there is enough material and space), since it must start with a pair of antipodes, then another

pair of antipodes on the equator of the first pair. It cannot produce an odd number of points. This

is hardly a restriction, however, since the goal was precisely to tune each precursor independently

from the others so that diverse types of appendages can grow at different angles around the crown.

Therefore, multiples of 90◦, 45◦ or even 22.5◦ can do as well, if not better, than regular configura-

tions based on 120◦, 72◦ or 60◦.

Class-II Shapes: Asymmetric Wheels. At this point, the homeostatic core with asymmetrically

arranged precursor spots is akin to an early-stage embryo: no morphology is visible yet, but the

“hidden geography” (46) of the body plan is already in place and “divergent homologous” ap-

pendages are ready to grow. Fig. 11 presents two experiments producing an L-shape and a T-shape

(see full programs in Supporting Information, Code 4b,c): starting from the end of Fig. 10, limbs

of different lengths develop from of certain precursor cells elected as limb leaders (North and

East for the “L”; West, South and East for the “T”) but not others, whose type prevent them from

proliferating.

� DISCUSSION

The ultimate goal of these proof-of-concept numerical experiments in morphogenetic synthetic

biology is to help bridge the reality gap toward actual implementation in biosystems. The work

presented here should contribute to the automated design and “compilation” of genomes, from

high-level scripts such as SBGP and Gro down to DNA sequences, supporting an algorithmic

developmental process based on self-made and self-organized components. Strong assumptions

had to be made in order to realize the simulations presented here, some of them still relatively far
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Figure 11. Class-II shapes: asymmetric wheels. (A) Development of an L-shape (Supporting Information,
Video 4b). (B) Development of a T-shape (Supporting Information, Video 4c). Note that both organisms start
with the exact same core component (MorphoBrick 1) in t17 due to an identical random generator seed. Only
after that do they diverge because of their genomic differences in precursor differentiation (MorphoBrick 3)
and limb growth (MorphoBrick 2).
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from biological plausibility. In this section, we bring elements of answers to the issues raised by our

approach. The first point concerns the sustainability of morphologies resting upon single leaders.

Then, the multiplicity of diffusive chemical species could also be a problem when envisioning a

wet-lab transfer. Finally, we discuss the difficulties of getting a globally synchronized population

and the feasibility of the MidPlane construct.

Robustness of Leader Singularity. The main weakness of our approach is that it seems to

largely depend on the emergence and survival of a unique precursor or “leader” cell. On the one

hand, if multiple MorphoBrick-1 leaders pop up, the homeostatic core will exhibit an irregular form

that will perturb the wave propagation and subsequent number of limbs. Moreover, if an emerging

MorphoBrick-3 precursor cell cannot inhibit its neighborhood rapidly enough, the resulting limb

could split during its growth and lead to an abnormal appendage. On the other hand, if a unique

leader disappears for any reason, e.g. external stress, the chemicals that it emits quickly vanish due

to degradation, driving surrounding cells to die. Eventually, the whole organism collapses as all

the morphogenetic fields that support its structure disappear.

What kind of mechanism could be envisioned to allow leader regeneration and ensure organ-

ismal sustainability? For example, a “death alert” signal could be introduced in the leader cell’s

behavior, e.g. it could emit a specific protein upon transitioning to cell death. Next, cells that are

close to the leader (the first layer of the homeostatic core) could try to differentiate and self-elect to

the rank of new leaders when they detect this alert protein. Then, the first new leader emits an in-

hibitor to ensure that it remains unique. Yet again, despite being more adaptive, this approach still

relies on the maintenance of a single leader and, even with protection mechanisms in place, any

incident during the growth process could lead to an abnormal phenotype. Therefore, it is important

to come up with a genuinely decentralized and robust system in order to tackle this problem, either

by multiplying leaders or by forgoing the LEADER type altogether.

A well-known behavior evolved by living bacteria to ensure homeostasis of the group is quo-

rum sensing (QS) (47), the ability of individual cells to sense and react to the density of the colony.
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Under stress, bacteria can emit a chemical that triggers cell death above a certain concentration,

resulting in self-regulated population size. Within the great diversity of QS signals and behaviors,

an example is S. pneumoniae which can differentiate into a “competent” state, i.e. one where the

cell is more prone to genetic mutation but also, at the same time, to growth arrest and autolysis

based on a QS-dependent on/off switch (48). Thus a possible way to solve the dependency on one

or several leader cells would be to use a QS mechanism to limit proliferation. In MorphoBrick 1,

starting with all initial cells already in the POP1 type, a proper balance between diffusion, degra-

dation and emission rates could probably be found in order to create a stationary concentration of

morphogens, hence a stable POP1 cluster. It is also likely that this cluster would stabilize into a

roughly circular shape, hence that the core would correctly develop from there as planned. Al-

ternatively, it should also be possible to reinforce the tendency to form a circle by using a small

cluster of LEADER cells in lieu of a single one. Thus rather than installing QS among the POP1

cells, it would be practiced by the LEADER cells and POP1 would then simply grow around them.

More layers could also be added (as in Fig. 4) to improve the roundness of the shape even further.

Multiplicity of Chemical Species. Another aspect that could make a direct application to in

vivo experiments problematic is the multiplicity of diffusive chemical species hypothesized in the

environment. For example, the Class-II organisms presented here (the letter shapes) consume no

less than seven different and highly specific signals. At higher levels of biological complexity

(Class III and beyond), the number of chemical species involved in bacterial communication will

be even greater according to the MorphoBrick compositional design. Moreover, in the current

framework, no chemical reactions are modeled, i.e. molecular species are not supposed to react

with each other if we want to avoid side-effects during development. These conditions will be a

challenge to maintain in the real world. A more realistic model will need to allow reuse of mor-

phogens in different locations and at different stages of the organismal growth. It must also take

reaction kinetics into account and exploit the new compounds thus produced to serve as new sig-

naling molecules. On the other hand, the added complexity of a network of chemical reactions will
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also require fine-tuning of a great number of parameters, which can ultimately be only achieved by

evolutionary computation (such as genetic algorithms)—or, why not, actual biological evolution,

by letting the artificially engineered bacteria re-adapt to new conditions on their own.

Synchrony of Bacterial Population. So far, to ensure the success of MorphoBrick 3, the bac-

terial population needs to be synchronized. The coordinated polarization of the initial core of the

organism is necessary to allow conditional differentiation of candidate precursor cells at regular

intervals on the outer crown. Yet, this is the only stage where global synchrony is required: at any

other point during development, bacteria’s internal clocks or oscillatory behavior are not part of

the dynamics. Therefore, it would be more realistic to devise a solution relying on local synchrony

only. This said, the method of forcing cell synchronization, then measuring how they gradually get

out of phase during relaxation is commonly employed to analyze cell cycles, and in silico model-

ing and simulation of this phenomenon were also proposed (49). This is why we assumed that the

global synchrony stage was a natural and relatively easily reproducible phenomenon, and we could

dispense with a more accurate depiction of it in our present numerical framework. At the synthetic

GRN level, we can briefly mention the work of Danino et al. (50), who propose engineered genetic

circuits able to produce and maintain synchronized oscillations in a growing population of cells.

This could for example constitute a suitable component in a future implementation of Morpho-

Brick 3.

Midplane Feasibility. Finally, growing organisms of Class II and above depends on the MidPlane

mechanism, which allows a cell to recognize whether it is approximately midway between two

different sources of chemical gradients. In the abstract, this is achieved by comparing local product

concentrations and assessing whether they are sufficiently close. In reality, the question of how the

required combination of “subtracter” and “zero-tester” logic is implemented in the GRN can be

answered by signal-mediated toggle-switch subcircuits. For example, two repressible promoters

can be arranged in a mutually inhibitory loop (13) or concurrent promotion/repression can be

exerted by the same transcription factor in conjunction with two different signals (51). In any case,
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there are several possibilities of making the regulation dynamics exhibit bistability, such that a

cell can fall into one of two states depending on the relative levels of two ligand concentrations it

receives.

� FUTURE WORK

Toward Higher-Level Classes. This paper covered Class-I and Class-II organisms. To reach

higher-level classes, other issues need to be solved. First, simulations should be run at a lower

computing cost and/or time, since for now almost an entire hour is needed to calculate the devel-

opment of one T-shape or L-shape (even as a batch job, without online visualization). This could

be done by parallelizing execution, for instance on graphics processing units (GPUs), and eventu-

ally using a more powerful platform than Gro, such as CellModeller developed by Rudge et al. (52)

or our own TB under construction (53). The next question is the ability to grow and polarize sec-

ondary cores. It should be relatively easy to make a new wheel sprout at the extremity of a stick,

simply by letting the limb’s LEADER cell at the tip (the red cell pushed away in all simulations)

become the new central leader of a homeostatic core, while the nearby FLESH cells become POP1

and POP2 and proliferate around it. Then, precursor positioning and limb growth would proceed

as usual, leading to Class-III organisms (Fig. 1).

Developmental complexity increases sharply with Class IV, however, as these organisms re-

quire long-range correlated positional information across multiple cores to be able to display limbs

that are globally parallel or aligned. This would require an additional component, MorphoBrick 4,

dedicated to communication among crown cells in order to allow them to detect their bearing (N,

S, W or E) with respect to the root limb that gave rise to the core, and control the start of the wave

of differentiation so that the N/S polarization axis is not random. Finally, the gap between Class IV

and Class V seems relatively less challenging as it would only require a new ability for two limbs

growing toward each other to meet at their tips and merge into one.
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Polymorphism, Polyphenism and Evolution. The basis of the morphogenetic engineering ef-

fort consists of a developmental process executed by a “morphogenetic engine” (here a bacterial

simulator, or a Petri dish), whose purpose is to take in input an agent-level genotype G and trans-

form it into a collective phenotype P in output. It does this via a swarm of G-carrying agents that

coordinate their behavior and differentiate (by direct peer-to-peer signaling and/or indirect stigmer-

gic cues deposited in the environment), move and self-assemble (by division and/or aggregation),

and collectively construct an architecture. We believe that our rational-design methodology based

on compositional building blocks such as MorphoBricks is particularly appropriate when targeting

a generative family of shapes or classes of shapes.

To achieve polymorphism inside a given species (here a “class”), a crafted G 7→ P mapping

like ours must offer the possibility of internal parametrization of G (regulatory parameters such as

thresholds, rates, and frequencies) so that it can give rise to different “traits” in P (here different

limbs). This is similar to the classical laws of population genetics, schematically corresponding

to the concepts of alleles or SNPs in the DNA. When grown freely, in absence of environmental

perturbation, the effect of genotypic parametrization is to offer a family of different “breeds” within

the same species, as in Mendel’s peas or Darwin’s pigeons (here the various star shapes of Class I,

and letter shapes of Class II).

Moreover, under a given (possibly parametrized) G 7→ P mapping, the development process

itself should also be sensitive to, and modifiable by environmental conditions. External conditions

or stimuli encountered by one individual during its growth, whether mechanical or signaling (here

obstacles and chemicals), should be able to influence the outcome, giving rise to polyphenism. This

is the level of P , for which natural analogies can be found more readily in plants than animals.

Trees can be spruced, pruned, bent, arranged, sculpted, etc., whether intentionally by humans

(bonsais, espaliers, topiaries) or spontaneously when faced with adverse or favorable conditions

(wind, rocks, light, humidity). The same “gardening” metaphor could apply here to morphogenetic

synthetic biology.

Ultimately, however, the rigidity of pure top-down genome design, parametrized or not, is
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incompatible with the highly adaptive living material that is supposed to implement it. This is why

beyond the quantitative variations underlying polymorphism and polyphenism, we also need to rely

on the most obvious and powerful force of qualitative variations and true innovation in biology:

evolution—which consists of random mutations and nonrandom selection. In simulation, it means

the use of evolutionary computation methods, such as genetic programming, accompanied by a

diversity-preserving fitness function to encourage novelty search. In a wet-lab setup, it may also

mean letting the bacteria re-evolve by themselves in vivo. This should be the topic of a forthcoming

article.

� METHODS

Model of Bacterial Behavior Ontology. Because prokaryotic cells generally possess a simpler

organization and genome than eukaryotic cells, they are the favorite object of synthetic biology

experiments and applications. Our first step was to define an abstract model of virtual prokaryote

based on E. coli. This bacterium contains embedded sensors and effectors that allow it to assess

and modify its internal state and environmental conditions (Fig. 12). Through the sensors, it can

detect whether concentrations of specific internal proteins or external ligands cross certain thresh-

olds, including signals emitted by its internal clock. For simplicity, we chose an explicit clocking

scheme, assuming that its realization in terms of biochemical oscillators is well known. Through

the effectors, it is able to release or absorb external signals, and accumulate or deplete internal

proteins. Naturally, our bacterium must also be able to divide, rest, and disappear. Division is not

instantaneous but the outcome of a “proliferating state” in which the cell enters: in order to divide,

it needs to elongate and double its size by executing an internal growth cycle. Death, however, is an

atomic action directly triggered by the cell itself. Besides division and death, a bacterium can also

move forward and/or tumble but these abilities are not be exploited in the present work. Finally,

there is no direct molecular signaling between two neighboring bacteria, only indirect communi-

cation via morphogen diffusion (quorum sensing) and the mechanical constraints of 2D packing.

In any case, the overall architecture emerges in an endogenous fashion.
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Bacterial dynamics, consisting of differentiation and behavior, is encapsulated in a finite state

machine (FSM) whose nodes represent discrete cell types, and edges represent conditional tran-

sitions between types (Fig. 12A). Each type, denoted in the example of Fig. 12 by D,F,Q, ...

corresponds to a behavioral repertoire of possible actions {a1, a2, ..., an}. Transitions between

types, i.e. differentiation events, are triggered by Boolean expressions composed of conditions

{c1, c2, ..., cm} pertaining to protein concentrations and time. In reality, the FSM formalism with

its explicit type nodes and differentiation edges is a convenient abstraction of a complex under-

lying GRN: types are a shortcut for “attractors”, cliques of genes promoting and repressing each

other in a cycle or a fixed point; while differentiation events represent “trajectories” in phase space

between basins of attraction, followed when receiving certain signals. The present model, how-

ever, is a “grammar” of integer types and logical transitions that does not include the finer scale of

genetic dynamics.

Genomic Representation. This model is represented by a declarative language of our design,

Synthetic Biology Genetic Programming (SBGP), which supports the description of a “bacterial

behavior ontology” (BBO) based on internal and external conditions (Fig. 12B). In an SBGP script,

blocks of signals and reactions describe the chemical environment of the simulation, while the other

blocks describe the bacteria’s behavior. The type and transition blocks specify the nodes and edges

of the FSM graph. Respectively, the behavior block describes the type-specific output actions, while

the cond_transition block codes for the input Boolean expressions that trigger the transitions (see full

specifications in Supporting Information, “SBGP language”).

The latter two blocks are defined on the basis of two groups of commands: effector primitives

calling the cell’s actions, and sensor primitives allowing the designer to interface with the state of

internal and external sensors (both tuned by parameters). More precisely:

• Type-specific actions: when a cell belongs to a given type, it executes behaviors associated

with this type until it differentiates again or dies. These belong to three categories: (1) ex-

ternal interactions, by which cells can absorb or diffuse morphogens in the environment
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(typically, EmitSignal); (2) internal interactions, by which cells can accumulate or deplete

internal proteins; and (3) mechanical rules, making cells tumble, proliferate, rest, etc.—and

die (typically, Divide, StopDivide).

• Type-differentiation conditions: a transition to a new type is triggered when certain condi-

tions are fulfilled. These also belong to three categories: (1) chemical conditions, monitoring

whether the concentration level of an external signal or internal protein is above or below

a threshold parameter (typically, GreaterThreshold and LessThreshold); (2) stochastic condi-

tions, introducing probabilities to model rare events or stochastic noise (based on the rate

keyword); and (3) “first-or-second-daughter” conditions, allowing asymmetric divisions by

letting only one of the daughter cells (chosen at random) differentiate after mitosis.

For the first implementation our model, as presented in this paper, we chose the Gro platform

by Klavins et al. (5), a convenient tool offering a simple procedural language and 2D graphical

simulator to model the development and behavior of microcolonies of microorganisms. In parallel,

we are also currently preparing our own “synthetic biology engine” and visualization software,

called Traveling Bacteria (TB) (53), which we plan on using later in replacement of Gro. Other,

less physically realistic, agent-based modeling and simulation platforms, such as BacSim (54) and

INDISIM (55), have also been created in the past, some of them used for example in the predictive

microbiology of wastewater and food safety (56).

For now, the high-level SBGP specifications are translated into Gro commands. Note that,

in this framework, division is not implemented as an abstract temporal event, whether regular or

probabilistic, but is triggered by the physical growth of the rod-shape bacterium when it reaches

a certain length. Spatial elongation is modeled in Gro by a differential equation on the volume

(not detailed here) (5). The end effect is that division happens on average every 200 time steps,

i.e. 20 min with a time step ∆t representing 0.1 min. In our simulations, all cells grow-and-divide

in the same way, except when they execute the custom command StopDivide, which sets their growth

rate to zero.
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A 

B "signals": [
     [ "alpha", "0.05", "1" ],
     [ "beta", "1.5", "1" ]
   ],

"reactions": [],

"type": [ "Quiescent", "Leader",
              "Flesh", "Skin", "Dead" ]

"behavior": {
       "Quiescent": [ { "StopDivide": [] } ],
       "Leader"     : [ { "EmitSignal": ["alpha","150"] },
                              { "StopDivide": [] } ],
       "Flesh"        : [ { "Divide": [] },
                              {"EmitSignal": ["beta","150"]} ],
       "Skin"         : [],
       "Dead"       : [ { "Die",[] } ]
}

"cond_transition": {
       "CQF" : { "GreaterThreshold" : ["alpha","35"] },
       "CFS" : { "LessThreshold" : ["alpha","0.5"] },
       "CSF" : { "GreaterThreshold" : ["alpha","0.5"] },
       "CSD" : { "LessThreshold" : ["alpha","0.8"] }
}

"transition": [
       [ "NA_", "NA_", "CQF", "NA_", "NA_" ],
       [ "NA_", "NA_", "NA_", "NA_", "NA_" ],
       [ "NA_", "NA_", "NA_", "CFS", "NA_" ],
       [ "NA_", "NA_", "CSF", "NA_", "CSD" ],
       [ "NA_", "NA_", "NA_", "NA_", "NA_" ]
]
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Figure 12. Virtual E. coli genome and associated symbolic representation. (A) Individual cell features are
encapsulated in an abstract genome consisting of a type-differentiation graph (finite-state machine). It is
composed of logical conditions controlling the transitions on the edges, and actions specific to each node.
Conditions are based on the state of the cell’s sensors, here detecting whether certain chemical concentra-
tions have crossed given thresholds. Actions represent a “bacterial behavior ontology” (BBO) comprising
mechanical and chemical events such as dividing or emitting a signal. Thus when a condition is fulfilled,
a bacterium differentiates into a new type and starts executing its associated actions until it differentiates
again or dies. (B) The Synthetic Biology Genetic Programming (SBGP) declarative language represents
the genome and includes several related blocks. In this script example: signals and reactions describe the
chemical environment of the simulation (α and β molecules), type and behavior define the genomic graph’s
nodes, transition and cond_transition define its edges.
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Higher-Level Biological Functions. The SBGP scripting language was also designed to handle

more complex cellular mechanisms by providing useful shortcut keywords compiled into lengthier

sets of Gro instructions. In addition to the low-level sensor and effector primitives, four higher-

level functions are currently available to the modeler: self-election of leaders, refractory periods,

internal oscillatory clocks, and centerlines between gradients. An essential feature supporting the

production of complex morphologies is the ability for seed cells to pop up spontaneously without

the need to predefine them. This property is implemented here by a rare stochastic event generator

inside each bacterium, handled via the Gro instruction rate. Differentiation events are analogous to

chemical reactions at low rate constants, which are very slow on average and give rise to discrete

occurrences with high variability over time and populations. Using this mechanism, the probability

to observe two bacteria differentiate (nearly) simultaneously is very small.

The second feature is based on Gro’s edge detection example (5), in which the detection or

emission of a signal is followed by a refractory period where the signal cannot be sensed or released

again. This results in wave propagation typical of excitable media, which is another form of

communication among bacteria in an assembly. A traveling wave can carry a message fast across

neighboring cells, which can react and handle it as needed. Overall, the main advantage of a

refraction mechanism is better temporal and spatial accuracy of interbacterial communication than

mere concentration gradients, especially when used in conjunction with an internal oscillatory

mechanism (see third feature below), as is the case in the MorphoBrick-3 stage of our model.

Refraction in each bacterium relies on a counter marking the elapsed time since the last detection

or emission event occured. Once the counter reaches a specific threshold, the disabled function is

enabled again. Biologically, this internal counter variable represents a simple model of temporary

saturation of membrane receptors or blocking of molecular transport and exocytosis. For example,

the refractory period may represent the time it takes for receptors or vesicles to be replenished. In

SBGP, a typical refraction command is LessThresholdRefracted.

Another important high-level mechanism handled by an SBGP command is the ability to mon-

itor the state of an internal oscillator in each cell. Here we also made the strong assumption that
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cellular oscillators are already globally synchronized at the population level, instead of modeling

each of them independently, coupling them and waiting for phase-locking to emerge. This “clock-

on-the-wall” approach is justified by the fact that global synchrony and quorum sensing are rather

common phenomena. Naturally, the advantage of this shortcut assumption is to greatly decrease

the dimensionality of parameter space, the behavioral complexity of the model and the computing

time of the simulation, in order to reach morphogenetic outputs more quickly.

Finally, to reach Class II and higher classes of programmable multibacterial shapes in SBGP,

cells need to be able to self-identify as belonging to an equatorial boundary between two emitting

sources of gradients. This mechanism is a well-known morphogenetic “design pattern” used in

amorphous/spatial computing (7, 57) and morphogenetic engineering (26). It is handled here by

a Boolean function MidPlane (A,B, θ) where A,B are the two emitting sources of α and β, and

θ is a threshold tuning the width of the centerline, which translates to a double inequality 0 ≤

| [α]− [β] | ≤ θ in the script language.

Hierarchical Composition. Ultimately, the compositional aspect of the MorphoBrick frame-

work could be implemented in hierarchical gene circuits, as outlined by Doursat (41). Taking

after the early regulatory cascade of Drosophila, which goes from global protein gradients to the

precise positioning of appendages, the idea is to rely on “identity genes” expressed in specific re-

gions of the multicellular colony (similar to “imaginal discs”). Identity genes switch on dedicated

subcircuits that further subdivide regions into subregions and shape their expansion by differential

proliferation. New positional information also arises inside regions via the propagation of local

gradients, and so on. In sum, the morphogenesis of a complex articulated structure can ultimately

proceed by recursive, multiscale refinement of details—except that the absolute scale remains the

same (the individual bacterium), it is only the relative scale that decreases while the multicellular

organism grows, as pointed out by Coen (46).

Chemical Environment. The bacterial population is immersed in a diffusive chemical environ-

ment represented by a discrete diffusion grid in Gro, which relies on Euler’s method to solve the
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associated partial differential equations. The Gro environment is non-toroidal and its size typically

set to 160 µm × 160 µm in our experiments. The underlying diffusion grid consists of square

locations of size (0.5 µm)2 each, i.e. 320× 320 of them. Cell coordinates are real-valued and not

bound to a discrete lattice. A typical E. coli rod in Gro simulations measures 2 µm × 1 µm (real

E. coli bacteria range between 0.5 and 3 µm), thus covers 8 diffusion grid squares on average. A

surface area of (160 µm)2 can contain about 12,800 cells. There are no specific boundary condi-

tions: signals diffusing outside the grid are lost. Although a “no-flux” boundary condition would

have been more realistic, the accumulation of signal along the borders is negligible and will not

disturb the morphogenetic process as long as the organism remains significantly smaller than the

virtual square petri dish. Chemical species α,β,γ, . . . are declared in the environment by specify-

ing both their diffusion and degradation rates (signals block in Fig. 12B). Molecules can be emitted,

detected and absorbed by the bacteria. They can also react with each other via chemical equations

classically expressed by reactants, products and reaction rates (athough no reaction was specified

here).
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