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Abstract

We describe two examples of three-dimensional Filippov type flows in which
multiple attractors are created by grazing-sliding bifurcations. To the best
of our knowledge these are the first examples to show multistability in the
literature. In both examples we identify the coefficients of the normal form
map describing the bifurcation, and use this to find parameters with the
desired behaviour. In the first example this can be done analytically whilst
the second is a classic dry friction model and the identification is numerical.
This explicit correspondence between the flows and a truncated normal form
map reveals an important feature of the sensitivity of the predicted dynam-
ics normal form map: the scale of the variation of the bifurcation parameter
past the grazing-sliding has to be very carefully chosen. Although no detailed
analysis is given we believe that this may indicate a much greater sensitivity
to parameters than experience with smooth flows might suggest. We conjec-
ture that the grazing-sliding bifurcations leading to multistability remained
unreported in the literature due to this sensitivity to parameter variations.
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1. Introduction

The dynamics of systems with both continuous and discrete evolution
has been the subject of many recent studies, see for instance [1, 4, 5, 8, 14].
This interest is motivated by the use of digital devices (microprocessors)
which communicate with sensors that operate in continuous time in many
industries, e.g. car industry, telecommunications or aerospace. Also, on
the macroscopic level, there are many physical processes which can be mod-
elled using a combination of continuous and discrete dynamics. Examples
include genetic regulatory networks [6] which have recently been modelled
using switched vector fields, power electronic converters [2, 3], mechanical
systems friction, [13] or modern control systems [9].

Such systems have been shown to undergo topological transitions (bifur-
cations) which are triggered by a combination of both continuous and discrete
dynamics. In particular, systems characterized by the presence of manifolds
in phase space where continuous time evolution undergoes a sudden jump, ei-
ther in state variables or its derivatives, have been shown to exhibit so called
discontinuity induced bifurcations (DIBs for short). The manifolds across
which switching takes place are called switching manifolds or discontinuity
sets. A DIB can occur if a limit cycle has a tangential (or grazing) intersec-
tion with a discontinuity set. It has been shown that such an instance may
cause a sudden onset of chaotic dynamics [7]. Another intriguing scenario,
observed only in systems with discontinuity manifolds, is the possibility of
the creation of multiple attractors triggered by a DIB [1, 10]. However, so
far, such a scenario has been reported to occur only in piecewise smooth
maps. In this paper we present an example of a Filippov type flow, that is a
flow generated by the vector field which is discontinuous across the switching
surface, where grazing-sliding bifurcation leads to the onset of multiple at-
tractors. We believe that the multiple attractors found in our model example
may occur in many systems of relevance to applications, and perhaps they
can be utilised in developing control strategies; depending on the application
certain type of an attractor may have a more desirable characteristics than
another one, and by appropriate choice of system parameters we may force
our system on the desired attractor. In particular, in Sec. 6 we present a
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dry-friction oscillator model where grazing-sliding bifurcation leads to multi-
stability of period-two and period-three limit cycles with a segment of sliding.
This is the first instance of reporting this type of grazing-sliding bifurcation
in dry-friction oscillator models.

Our analysis begins with the normal form of the grazing-sliding bifurca-
tion, where parameter values have at which different forms of coexistence
have been identified [11]. Ignoring higher order corrections these maps are
piecewise linear, and so there is no natural scale for the bifurcation parame-
ter µ. However, the coefficients of the linear map are related to the Floquet
multipliers of the grazing orbit and the first example is a toy model con-
structed so that this correspondence can be written down analytically. In
the second (dry friction) example, the correspondence with the coefficients
of the truncated normal form is calculated numerically. Thus in both cases
we can identify the truncated normal form and hence we know the dynamics
predicted by the normal form. Coefficients in the normal fom are chosen
so that three qualitatively different bifurcations occur: (a) the creation of
period-two and period-three stable orbits with one sliding segment, (b) a
chaotic attractor coexisting with stable period-three orbit characterized by a
segment of sliding motion, and (c) the coexistence of a period-three sliding
orbit with two sliding segments and a limit cycle with no sliding segments.
Thus, in principle, if parameters in the flows are chosen so that the coeffi-
cients of the truncated normal form are those selected, we know the dynamics
immediately after bifurcation.

The numerical simulations presented here confirm the connection between
the dynamics of the truncated normal form and the flows, but only for very
small values of the bifurcation parameter. This sensitivity seems to be a com-
mon observation in numerical simulations; for example, this may be due to
complicated configurations of bifurcations as in [16], where a similar analysis
of flows via the truncated normal form is made. In that case multistability
is seen in a smoothed version of the flow, though it is not predicted by the
truncated normal form. However, we are not aware that this issue has ever
been stated explicitly or explored. We believe this is potentially important
and should be followed up (though we do not attempt this here). In the toy
model one of the attractors (the period three orbit) is very sensitive to pa-
rameter variation and is soon lost, whilst in the dry friction model the same
orbit undergoes a switching-sliding bifurcation [7], i.e. a new bifurcation due
to global features of the flow not modelled by the normal form, soon after
bifurcation.
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The remainder of the paper is arranged as follows. In Sec. 2 the method-
ology used to construct the explicit toy example is described. In Sec. 3 the
derivation of the linearized return map (truncated normal form) about the
grazing-sliding bifurcation is derived. Parameters can be chosen such that
the grazing orbit has complex Floquet multipliers. The method of determin-
ing the sliding vector field to obtain any truncated normal form is described
in Sec. 4, and Sec. 5 is then devoted to presenting different cases of multi-
stability described via maps in [11]. In Sec. 6 the coexistence of two stable
periodic orbits is shown using the same techniques but for a standard dry
friction model. Finally, in the conclusion, Sec. 7, we suggest one reason why
greater sensitivity to the parameter might be more likely in these bifurca-
tions.

2. A Model System

The starting point for the construction of a three-dimensional Filippov
system with grazing and sliding for which all the relevant features (return
map, switching surface, the coefficient of the sliding vector field) can be
calculated explicitly, is a simple underlying flow with a periodic orbit. This
flow needs to be chosen so that the (linearized) return map about the periodic
orbit is easy to calculate analytically with sufficient freedom to be able to
match any required linearization.

There are, no doubt, many ways to achieve this. We have chosen to start
with a two-dimensional flow such that one axis (the z−axis) is invariant and
restrict to the positive half-plane in the other variable (r). By arranging
for the existence of a stable stationary point in r > 0 the simple expedient
of rotating the entire half-plane by introducing a polar angle θ with θ̇ > 0
produces a flow on R

3 with a stable periodic orbit having fixed r and z
coordinates.

The first step towards defining the motion in the (r, z)− plane is to con-
sider the system

ṙ = −4kr + 2rz
ż = 4α2 − r2 − z2.

(1)

Stationary points of this equation have r = 0 or z = 2k (from the ṙ equation)
and then if r = 0, z = ±2α; whilst if z = 2k then r = 2

√
α2 − k2 provided

α > k. Fixed points in r > 0 correspond to periodic orbits of the full three-
dimensional system, whilst fixed points with r = 0 are also fixed points of
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Figure 1: Solutions of the two dimensional flow: (a) α = 2, k = 0; (b) α = 2, k = 0.2.

the full system. If k = 0 (1) is Hamiltonian, with Hamiltonian h defined by

h(z, r) = 4α2r − rz2 − 1

3
r3

so ṙ = −∂h
∂z

and ż = ∂h
∂r
. If k 6= 0 then the stationary point in r > 0 exists

if α2 > k2 and it is stable if k > 0 and unstable if k < 0,. It is a focus if
5k2 < 4α2 and a node if 5k2 > 4α2 > 4k2. Sample phase portraits are shown
in Figure 1.

Introducing an angle θ with θ̇ = ω, gives a flow in R
3 which is given in

cylindrical polar coordinates (r, θ, z) by

ṙ = −4kr + 2rz

θ̇ = ω
ż = 4α2 − r2 − z2

(2)

or, in standard Cartesian coordinates,

ẋ = −4kx− ωy + 2xz
ẏ = ωx− 4ky + 2yz
ż = 4α2 − x2 − y2 − z2

(3)

This system has a periodic orbit if α2 > k2 with r = 2
√
α2 − k2, z = 2k

and 0 ≤ θ < 2π. This is the stationary point of the two-dimensional system
rotated about the z−axis. In the next section we analyze this periodic orbit,
deriving an explicit formula for the linear part return map near the periodic
orbit on the plane y = 0. We can then create a Filippov system by defining
a flow on a half-space, e.g. x < 2

√
α2 − k2 + µ.

5



3. The linearized return map

Suppose that 5k2 < 4α2, so the periodic orbit of the full system exists

and has period 2π
ω . Consider a small perturbation starting on the surface

θ = 0 at t = 0, and write

z = 2k + u, r = 2
√
α2 − k2 + v, |u|, |v| � 1.

Substituting into (1) and ignoring higher order terms gives the linearized
system

u̇ = −4ku− 4
√
α2 − k2v

v̇ = 4
√
α2 − k2u

(4)

or
v̈ + 4kv̇ + 16(α2 − k2)v = 0 (5)

with characteristic equation s2 + 4ks+ 16(α2 − k2) = 0 having roots −2k ±
2
√
5k2 − 4α2. Let Ω2 = 4(4α2 − 5k2), Ω > 0, so the roots are −2k ± iΩ and

the solution of (5) is

v = e−2kt (A cosΩt +B sinΩt) (6)

and the second equation of (4) implies

u =
e−2kt

4
√
α2 − k2

((−2kA +BΩ) cosΩt + (−2kB − AΩ) sinΩt) . (7)

Now suppose that at t = 0 (v, u) = (v0, u0), so in terms of the full three-
dimensional system u0 is the perturbation from the periodic orbit in the
z−coordinate, and v the perturbation in the x−coordinate on the plane
y = 0, then

A = v0, B =
1

Ω
(4
√
α2 − k2u0 + 2kv0)

and after a time of 2π
ω the solutions return to the plane y = 0 with pertur-

bations (v1, u1) where
(

v1
u1

)

=

(

a11 a12
a21 a22

)(

v0
u0

)

(8)

with, setting E = exp(−4πk/ω),

a11 = E(cos 2πΩ
ω

+ 2k
Ω
sin 2πΩ

ω
)

a12 = 4
√
α2−k2E
Ω

sin 2πΩ
ω

a21 = E

4
√
α2−k2

(−Ω− 4k2

Ω
) sin 2πΩ

ω

a22 = E(cos 2πΩ
ω

− 2k
Ω
sin 2πΩ

ω
).

(9)
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Note that consideration of the divergence of the vector field in (1) shows that
the determinant of the matrix (9) is E2, which can be verified directly from
(9), so if we refer to this matrix as R then

det R = E2 = exp(−8πk/ω), Tr R = 2E cos
2πΩ

ω
(10)

and so, with ω = 1, we can choose det R via k and then Tr R using α.
It is equally possible to treat the case of real eigenvalues, but the complex

eigenvalue case is the one discussed in [11], so we stop the analysis here.

4. Constructing the sliding motion

In [11] the parameters for multistability are specified in coordinates in
which the linear map near the periodic orbit takes the form

(

T 1
−D 0

)

(11)

and since we are working in a different set of coordinates we will need to
take care that the coefficients are those corresponding to the correct choice
of coordinates. For simplicity we will place the sliding bifurcation parameter
µ in the switching surface H rather than in the differential equation and
consider

ẋ(t) =

{

F1(x(t)) if H(x(t), µ) > 0

F2(x(t)) if H(x(t), µ) < 0,
(12)

where F1, F2 are sufficiently smooth vector functions, F1, F2 : R
3 7→ R

3

and H(x(t), µ) : R3 × R 7→ R
3 is some smooth scalar function depending on

system states x ∈ R
3, and parameters µ ∈ R; t ∈ R is the time variable.

We will work with

H(x, µ) = 2
√
α2 − k2 + µ− x (13)

and F1 defined by (1) with the fixed parameters chosen below to satisfy
the criteria of [11] for multistability. These choices imply that the periodic
orbit analyzed in the previous section lies entirely in the region H(x, µ) > 0
(where the Filippov flow is defined by F1) provided µ > 0. If µ = 0 then the
periodic orbit grazes H at the point (2

√
α2 − k2, 0, 2k), whilst if µ < 0 then

the periodic orbit intersects the switching surface transversally at two points
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(for small µ) and the flow near the periodic orbit will depend on the choice
of F2 in (12). The linear approximation of the PDM (see [8] for a detailed
derivation) can be written as

PDM(X,Z) =











X for X > 0
(

0 0

Ĉ 1

)(

X

Z

)

for X ≤ 0
(14)

in terms of shifted local coordinates X = (X,Z) on {y = 0}. The constant Ĉ
is a function of the vector field F2 = (F x

2 , F
y
2 , F

z
2 )

T and the Jacobian matrix
fij of F1 evaluated at the grazing point:

Ĉ = −F z
2

F x
2

+

(

f11
f12

+ f12
F z
2

F x
2

)

F z
1 . (15)

The choice of PDM used in [11] to derive conditions for multistability is in
coordinates in which the linear map takes the form given by (11) with the
coefficient Ĉ replaced by C, with the relation between the coefficients given
by

C = a22 + Ĉa12. (16)

We end this section with a brief explanation of these formulae. Following
[8] we can write the two-dimensional PDM, in the case of a three-dimensional
Filippov type flow and using (X,Z) coordinates, as

PDM(X,Z, q;µ) =

(

X
Z

)

+ β(X,Z, q;µ)q2, (17)

where
q2 +H(X,Z;µ) = 0

with q being an independent variable that measures the penetration of trajec-
tories below the switching surface for orbits sufficiently close to the grazing
orbit. The coordinates (X,Z) are chosen such that the grazing incidence
takes place at (X,Z, q;µ) = (0, 0, 0; 0). The linearization of (17) at grazing
gives

PDML(X,Z, q;µ) =

(

X
Z

)

− β(0, 0, 0; 0)〈Hx, [X,Z]〉 − β(0, 0, 0; 0)Hµµ,

(18)
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where

β(0, 0, 0 0) =
1

〈Hx, (F2 − F1)〉
F2 +

〈(HxF1)x, F2〉
〈(HxF1)x, F1〉

F1

with the right-hand side evaluated at the grazing point (0, 0, 0; 0), and 〈, 〉
denoting the standard dot product. At grazing the X-component of the
vector field F1 is zero. Using the definition of the switching function and
ignoring the parameter dependence we arrive at the map (14) given above.

5. The example and multistability

Qualitatively different types of multistability which can be observed in
the particular case of a grazing-sliding bifurcation scenario are dependent
on the trace T , determinant D of the linear map (10), and the coefficient
C given in (16), which is also a non-trivial Floquet multiplier of the grazing
limit cycle with a zero-length sliding segment. We note that the grazing limit
cycle can be viewed as a limit cycle with no sliding segments or as having a
zero-length sliding segment (see [12] for further details).

5.1. Case I: Two stable orbits

As we proved in [11] multistability corresponding to the co-existence of
period-two and period-three orbits with a sliding segment will be observed in
a grazing-sliding bifurcation provided that 1 > T > 0, D > T 2, −C > 1 and

T < −C − 1
C2 + C + 1

. These conditions are sufficient. The necessary conditions

are not known.
We now take a specific example of multistability from [11]: T = 0.05,

D = 0.31 and C = −3. Using (10) we require

0.31 = E2 = exp(−8πk/ω), 0.005 = 2E cos

(

2πΩ

ω

)

.

By setting ω = 1 we find α = 0.08 and k = 0.0466. In our case F z
1 = 0

and since F x
2 < 0, if we let F x

2 = −1, we then have F z
2 = −4.7192. A stable

period-three orbit with a sliding segment is depicted in Fig. 2 and a stable
period-two orbit in Fig. 3.
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Figure 2: Stable period-3 orbit with sliding for ω = 1, k = 0.0466 and α = 0.08, with the
initial condition [x, y, z]T = [0.036291, 0.124810, 0.093028]T and µ = −0.000005
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Figure 3: Stable period-2 orbit with sliding for ω = 1, k = 0.0466 and α = 0.08, with the
initial condition [x, y, z]T = [−0.028117, −0.126974, 0.093209]T and µ = −0.000005
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Figure 4: Stable period-3 orbit with sliding for ω = 1, k = 0.04790, α = 0.07297 and
µ = −0.00005, with the initial condition [x, y, z]T = [0.0259013, 0.1067204, 0.0959262]T
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Figure 5: Chaotic attractor for ω = 1, k = 0.04790, α = 0.07297 and µ = −0.00005. The
initial condition [x, y, z]T = [−0.085976, −0.068551, 0.095775]T

5.2. Case II: A stable orbit and a chaotic attractor

The second case of multistability reported in [11] is the case of a chaotic
attractor coexisting with a stable periodic orbit with sliding. This scenario
was found for T = 0.35, D = 0.3 and C = −3. Fixing ω = 1 gives k =
0.04790, α = 0.07297 and FZ

2 = −5.0727 (for F x
2 = −1). A stable period-

three orbit is depicted in Fig. 4 and a chaotic attractor in Fig. 5.

5.3. Case III: A stable orbit with sliding and a stable non-sliding orbit

The last case of multistability reported in [11] is that of a stable period-3
orbit coexisting with a stable non-sliding orbit. Representative parameter
values at which these attractors where reported to exist are T = −0.1, D =
0.7, C = −1.8 with µ > 0. Fixing ω = 1 gives k = 0.01419, α = 0.06679,
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Figure 6: A stable period-3 orbit with two sliding segments for ω = 1, k = 0.01419,
α = 0.06679 and µ = 5 × 10−6. For the simulations the initial condition [x, y, z]T =
[2
√
α2 − k2 + µ+ 10−4, 10−5, 2k]T was used (we disregard the transient).

and FZ
2 = −1.97425287 with FX

1 = −1. A period-three stable orbit detected
for µ = 5 × 10−6 is depicted in Fig. 6. A simple stable non-sliding periodic
orbit (not shown) can also be found using the initial conditions [x, y, z]T =
[0.129880, 0.013031, 0.028383]T .

6. Dry-friction oscillator model

We now consider a model of a dry-friction oscillator which consists of
a mass m resting on a belt moving with a constant velocity. The mass is
attached to a rigid wall through a damper and a nonlinear spring which is
characterized by the cubic stiffness law (a Duffing oscillator model). The
friction force between the moving belt and the mass resting on it is modelled
by means of a discontinuous friction characteristic given by the Coulomb
friction law:

Ffriction = Fssgn(vrel), (19)

where vrel refers to the difference between the velocity of the driving belt
and moving mass. The system equation is then given by

mq̈ + cq̇ + α1q + α2q
3 = Ffriction + A cos(ωt). (20)

We will scale the time and position so that the frequency of the harmonic
forcing and the amplitude of the friction force will be both set to 1. Intro-

ducing the non-dimensional time τ = ωt and position x = qmω2

Fs
, we can
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now rewrite (20) as

Fsẍ+
Fsc

mω
ẋ+

α1Fs

mω2
x+

α2F
3
s

m3ω6
x3 = Fssgn(v0 − ẋ) + A cos(τ). (21)

Since Fs > 0, we have

ẍ+
c

mω
ẋ+

α1

mω2
x+

α2F
2
s

m3ω6
x3 = sgn(v0 − ẋ) +

A

Fs

cos(τ). (22)

Using non-dimensional parameters p1 = c/mω, p2 = α1/mω2, p3 = α2F
2
s /m

3ω6

and p4 = A/Fs, we can express (22) as

ẍ+ p1ẋ+ p2x+ p3x
3 = sgn(v0 − ẋ) + p4 cos(τ), (23)

where v0 is the non-dimensionalized velocity of the moving belt.
We detected a grazing-sliding bifurcation leading to the onset of period-

two and period-three stable orbits for p1 = 0.1864, p2 = −5.862812, p3 =
0.092913, p4 = 3.333 and v∗0 = 14.770518 where the grazing periodic point
on the limit cycle is given by [x, ẋ, τ ] = [7.9147, 14.7705, 1.1317]. Decreasing
v0 to v0 = 14.769 will lead to the creation of stable attractors of period-two
and three (see Fig. 7), but if v0 = 14.765 the period three orbit has changed
– it has an extra segment in ẋ > v0, i.e. it has undergone a switching -sliding
bifurcation not present in the truncated normal form analysis.

We can easily verify conditions from Sec. 5 for the onset of multistability

in grazing-sliding, namely 1 > T > 0, D > T 2, −C > 1 and T < −C − 1
C2 + C + 1

.

The value of T is the product of the Floquet multipliers corresponding to
the grazing orbit ignoring the interaction with the switching surface and D
is the product of the multipliers. We found the non-sliding grazing orbit
to be characterized by the Floquet multipliers λ1 = 0.025 + 0.5562i and
λ2 = 0.025 − 0.5562i, which implies that T = 0.05 and D = 0.31. The
grazing orbit viewed as having a zero-length sliding segment is characterized
by a non-trivial Floquet multiplier equal to C = −3. We note that in our dry-
friction oscillator model, by means of a numerical continuation, we found a
grazing-sliding bifurcation leading to multistability for the same values of the
reduced map as in the constructed example of case I in Sec. 5. Similarly as
in the constructed example model we observed that this scenario is sensitive
to further parameter variations.

The nontrivial multiplier of the period-two orbit is equal to λP2 = −0.46
and the non-trivial multiplier of the period-three orbit is equal to λP3 =

13
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Figure 7: Phase plane [x, y] = [x, ẋ]. (a) Stable period-two orbit with a slid-
ing segment born in the grazing-sliding bifurcation with initial values [x, y, τ ] =
[0.528502,−2.077219, 2.990137], and (b) zoom depicting the sliding segment of the or-
bit and a segment missing the switching surface. (c) Period-three stable attractor with
sliding for initial values [4.689348, 11.772725, 0.886640] and (d) zoom depicting a sliding
segment and two segments of the orbit missing the switching surface. Initial values are
given to six decimal places, though greater accuracy was used in the numerics.
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0.9070, which values were found numerically by computing variational equa-
tions of the respective orbits. We could also use the normal form map given
in [11] to compute the stability of the two limit cycles.

7. Conclusions

In this paper we have found, for the first time, an example of an explicit
Filippov type flow where grazing-sliding bifurcation leads to the onset of mul-
tiple attractors. Three qualitatively different scenarios of multiple attractors
in grazing-sliding bifurcations are shown. To find the parameter values for
which these qualitatively different scenarios occur we use the analytical con-
ditions reported in [11], where the classification of a one-dimensional normal
form map for grazing-sliding bifurcations for three-dimensional Filippov type
flows was conducted.

The theoretical predictions verified in this paper are based on the normal
form for grazing sliding bifurcations [8]. This normal form is, by definition,
local, in that it is derived by considering solutions near the periodic orbit at
grazing in phase space and near the bifurcation value in parameter space. As
with almost all such local theories, the domain on which the normal form is
defined is not specified by the analysis, which holds for a ‘sufficiently small’
neighbourhood of the bifurcation. One of the consequences of our analysis is
that it is possible to make some comments about how small ‘small’ really is
in this example.

The attentive reader will have noted that the examples are shown for
µ of the order of 10−3 to 10−6. For larger, but still small, values of µ we
observe dynamics which is different from that predicted, though in some
cases it is consistent with the expectations of the normal form, but not for
the parameter values we have so carefully chosen. In other words, had we
simply matched behaviour in the flow with the general behaviour in the
normal form we would have found no contradiction for some examples, but
this would have been due to the fact that we were matching to parameters
other than those that really apply. It is only at the smaller values of µ used
in the reported simulations that the precise predictions of the normal form
analysis are observed.

Then in Sec. 6 we investigated numerically a dry-friction oscillator model
in view of finding any of the three cases of grazing-sliding bifurcations that
would produce multistability. We found only one of the three cases; it is the
first case of grazing-sliding bifurcations leading to multistability reported in
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dry-friction oscillators. Similarly as in the constructed example the range
of parameter values for which the stable orbits coexist past the bifurcation
is small (Although larger than in the constructed example). Here, as noted
earlier, the period three orbit gains an extra non-sliding segment which is
not part of the grazing-sliding analysis within 0.003 of the bifurcation value
of µ.

This poses two questions. First, why is ‘small’ so small (in smooth systems
one can frequently get away with 10−2 or even larger)? It may of course be
bad luck, and induction from just two examples is fool-hardy, but we could
speculate that this is generally true for grazing bifurcations; the parameter√
µ intervenes naturally here as the width of the sliding region, and small√
µ implies very small µ.
Another feature that may have a bearing on this problem is that the

corrections to the normal form are order |x| 32 rather than the standard x2

terms for smooth systems – this is because the PDM is of the form

xn+1 = µ+ axn + b|xn|
3

2 +O(x2). (24)

Rescaling x by a factor of |µ| gives

Xn+1 = sign(µ) + aXn + b
√

|µ||Xn|
3

2 +O(µX2) (25)

and so the magnitude of µ is irrelevant for the truncated normal form, but the
error term is

√

|µ|, which is much larger than the O(µ) error in the smooth
case.

The second question is about how normal forms are used. If the aim is
simply to make the numerical results more reasonable theoretically, then it
might not be necessary to obtain a precise correspondence between param-
eters in the normal form and parameters in the flow, but if the aim is to
use the normal form as a predictive tool then the examples here underline
the importance of ensuring that parameters really are close enough in the
two cases. Whether our somewhat pessimistic view of the domain of strict
applicability of the normal form analysis in nonsmooth sliding bifurcations
is justified remains to be seen.

Our finding of the explicit Filippov flow with multiple attractors points
to a number of research directions and open problems. Simpson has recently
shown that the border collision normal form can have infinitely many coex-
isting stable periodic orbits [15]. It would be interesting to determine if this
phenomenon can occur in grazing-sliding bifurcations of three-dimensional
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type flows. It would also be interesting to use the idea for constructing ex-
plicit examples presented here to construct Filippov type flows where corner-
collision bifurcations lead to the onset of multiple attractors. The question
then arises if the possible pattern of emerging attractors is equivalent to the
ones for grazing-sliding bifurcations. Finally, it might be possible to the use
the knowledge on the existence on multiple attractors in grazing-sliding bifur-
cations as a control strategy. Suppose we have a Filippov system operating
in some stable oscillatory state, can we use the knowledge on the existence of
multiple attractors in discontinuity induced bifurcations to make our system
evolve on some other attractor?

Acknowledgements PG and PK were partially funded by the CICADA
project, EPSRC grant EP/E050441/1.

[1] S. Banerjee, C. Grebogi, Border collision bifurcations in two-dimensional
piecewise smooth maps, Physical Review E 59 (1999) 4052–4061.

[2] S. Banerjee, P. Ranjan, C. Grebogi, Bifurcations in two-dimensional
piecewise smooth maps – theory and applications in switching circuits,
IEEE Transactions on Circuits and Systems – 1: Fundamental Theory
and Applications 47 (2000) 633–643.

[3] S. Banerjee, G. Verghese, Nonlinear phenomena in power electronics:
attractors, bifurcations, chaos, and nonlinear control, IEEE Press, New
York, 2001.

[4] B. Brogliato, Impacts in mechanical systems — analysis and modelling,
volume 551 of Lecture Notes in Physics, Springer-Verlag, 2000.

[5] H. Dankowicz, A. B. Nordmark, On the origin and bifurcations of stick-
slip oscillations, Physica D 136 (1999) 280–302.

[6] H. de Jong, Modelling and simulations of genetic regulatory systems: A
literature review, Journal of computational biology 9 (2002) 67–103.

[7] M. di Bernardo, P. Kowalczyk, A. Nordmark, Sliding bifurcations: A
novel mechanism for the sudden onset of chaos in dry-friction oscillators,
International Journal of Bifurcation and Chaos 13 (2003) 2935–2948.

17



[8] M. di Bernardo, C. Budd, A. Champneys, P. Kowalczyk, Piecewise-
smooth Dynamical Systems — Theory and Applications, volume 163 of
Applied Mathematical Sciences, Springer-Verlag, 2008.

[9] R. C. Dorf, R. H. Bishop, Modern control systems, Aeeizh, 2002.

[10] M. Dutta, H. E. Nusse, E. Ott, J. A. Yorke, G. Yuan, Multiple attractor
bifurcations: A source of unpredictability in piecewise smooth systems,
Physical Review Letters 83 (1999) 4281–4281.

[11] P. Glendinning, P. Kowalczyk, A. B. Nordmark, Attractors near grazing-
sliding bifurcations, Nonlinearity 25 (2012) 1867–1885.

[12] A. B. Nordmark, P. Kowalczyk, A codimension-two scenario of sliding
solutions in grazing-sliding bifurcations, Nonlinearity 19(1) (2006) 1–26.

[13] K. Popp, P. Stelter, Stick-slip vibrations and chaos, Philosophical Trans-
actions: Physical Sciences and Engineering 332 (2000) 89–105.

[14] J. Sieber, Dynamics of delayed relay systems, Nonlinearity 19 (2006)
2489–2527.

[15] D.J.W. Simpson, Sequences of Periodic Solutions and Infinitely Many
Coexisting Attractors in the Border-Collision Normal Form, Interna-
tional Journal of Bifurcation and Chaos 24 (2014) 1430018.

[16] R. Szalai, H.M. Osinga, Arnol′d Tongues Arising from a Grazing-Sliding
Bifurcation, SIAM J. Appl. Dyn. Syst. 8 (2009) 1434–1461.

18


