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How do animals follow demarcated paths? Different species
are sensitive to optic flow and one control solution is to
maintain the balance of flow symmetry across visual fields;
however, it is unclear whether animals are sensitive to changes
in asymmetries when steering along curved paths. Flow
asymmetries can alter the global properties of flow (i.e. flow
speed) which may also influence steering control. We tested
humans steering curved paths in a virtual environment. The
scene was manipulated so that the ground plane to either side
of the demarcated path produced larger or smaller asymmetries
in optic flow. Independent of asymmetries and the locomotor
speed, the scene properties were altered to produce either faster
or slower globally averaged flow speeds. Results showed that
rather than being influenced by changes in flow asymmetry,
steering responded to global flow speed. We conclude that
the human brain performs global averaging of flow speed
from across the scene and uses this signal as an input for
steering control. This finding is surprising since the demarcated
path provided sufficient information to steer, whereas global
flow speed (by itself) did not. To explain these findings,
existing models of steering must be modified to include a new
perceptual variable: namely global optic flow speed.

1. Introduction
Animals routinely move through the world by following
demarcated paths, trails or runways [1–3]. These paths specify
the locomotor requirements as well as providing the information
necessary for generating successful trajectories (i.e. an immediate
error correction signal from a near point and a prospective
steering control signal from a far point [4]). However, an animal
travelling across a ground surface also experiences the apparent
perceptual motion of texture elements (often referred to as optic
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Figure 1. (a) Observer moving through a world with a textured surface. (b) Apparent motion resulting from (a). During curvilinear
locomotion optic flow, vectors have different velocities across the scene depending on their proximity to the centre of rotation. Here,
a constant curvature path is shown, but the same principle applies to all nonlinear paths. The apparentmotion of flow elements near the
centre of the rotation (L1) will be slower than that of flow elements further away from the centre of rotation (L2). In order for the observer
to extract locomotor speed from optic flow, they would have to sample flow vectors from across the scene and average them.

flow [5]). A wide variety of species are sensitive to optic flow during locomotion, including bees [6,7],
flies [8], birds [9], desert ants [10] and humans [11,12]. Experiments conducted on humans travelling at
walking speeds down a straight corridor [13–17] have shown that an asymmetric flow field (created by
moving one corridor wall) can cause participants to adopt a trajectory closer to the slower moving wall.
This finding has been explained in terms of humans attempting to optically equalize the differences
in the flow vector speeds between the left and right visual fields. A similar equalization response
has been observed in bees [7], but in humans the effect of asymmetric flow often disappears when
additional visual information (akin to a demarcated path) is added to the environment [13]. Figure 1
demonstrates how, for a circular trajectory along a curvilinear path, flow vectors from a textured ground
vary in speed across the scene depending on their proximity to the centre of the circle: the nearer to
the centre, the slower the flow vector that is formed [18,19]. The pattern of these ‘natural’ asymmetries
could be informative for steering, and it has been recently demonstrated that altering the natural flow
asymmetries can influence steering along curvilinear trajectories despite the presence of a demarcated
path [20]. While this work highlights that the signals from the demarcated path and flow both seem to
influence steering, the precise way in which flow is used remains unclear. There are suggestions that the
visual strategies employed by drivers (i.e. where they look and when) are an important component of
steering [21]; however, the literature has not considered the relative contribution of flow asymmetries
and global flow speed when steering down demarcated paths. Local flow speeds have been raised as
a potential control variable for detecting differences in path curvature [22] but only in the absence of a
demarcated path. Confusingly, the term ‘path’ can be used to describe a visible demarcated path (with
distinct visible edges providing information even for a non-moving animal), but it can also refer to the
future location of the animal based on the current rate of steering as perceived purely from optic flow
(i.e. ‘future path’ [23]). In this paper, any reference to path solely relates to the former definition of a
demarcated path with visible edges (figures 1 and 2).

2. Material and methods
To test the relative influence of path information, flow asymmetry and global flow speed, a virtual
reality environment was created that rendered a series of trials containing constant curvature (3 m wide)
bending paths with a separate textured ground region either side (labelled ‘inside’ or ‘outside’) that
could be independently rotated (figure 2; also see [20]). The path is naturally located on the ground,
so generating flow from regions either side of the path meant that when looking at the fixation point
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Figure 2. (a) Example display containing a single ground surface made up of two textured regions (inside and outside of the path;
figure 1) as well as the non-textured path. A fixation cross was displayed at the road centre at a constant 16.1 m (approx. 1.2 s) ahead.
(b) Veridical flow conditionsmatched flow speeds to the locomotor speed and caused ‘natural’ asymmetries. (c) Outside faster conditions
enhanced asymmetries by increasing the speed of the outside region, and reducing the speed of the inside region. (d) Inside faster
conditions increased the speed of the inside region, and reduced the speed of the outside region (this is the slow speed, large asymmetry
condition listed in table 1).

on the path both sources (flow and path) would be available. Critically, this also meant that we were
able to manipulate flow speeds independent of locomotor speeds and path information, keeping all
other variables constant, and without causing obvious conflicts whereby the texture elements appeared
to move underneath/across the path (the path itself was left untextured as per [20]). Nineteen human
participants used a wheel to steer down each bending path while trying to maintain a central position.
Locomotor speed relative to the path edges was kept constant at 13.8 m s−1 (13.2° s−1 on a bend with
a 60 m radius). The inside and outside ground regions were rotated around the centre of the circle
describing the constant curvature bends to create conditions whereby: (i) one region was always moving
faster or slower than the other, (ii) the difference between the rotation speeds of the inside and outside
region was either artificially small or large and (iii) the average speed of the inside and outside was
either slower than actual travelling speed (6° s−1), equal to actual travelling speed (13.2° s−1) or faster
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Table 1. Rotation speeds for the ‘inside faster’ conditions. The speeds used in the ‘outside faster’ conditions were identical but switched
fromoutside to inside (and vice versa). SMAS= smaller asymmetry, LGAS= larger asymmetry. Speeds are shown in degrees per second.

slow speed (6° s−1) medium speed (13.2° s−1) fast speed (26.4° s−1)

region SMAS LGAS SMAS LGAS SMAS LGAS

outside 4.5 1.5 9.9 3.3 19.8 6.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

inside 7.5 10.5 16.5 23.1 33.0 46.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

than travelling speed (26.4° s−1). Table 1 gives the rotation values used when the inside region rotated
faster than the outside region. Conditions where both regions were rotated by the same amount at slow,
medium or fast speeds were also tested. The ‘natural asymmetry medium speed’ condition created flow
that was veridical and matched the locomotor speed (as specified by movement of the observer relative
to the visible path edges).

For each trial, we calculated steering bias, taking the position of the participant in the world for each
frame (60 frames s–1) and finding the closest distance to the (invisible) centreline of the demarcated path.
Steering bias measured whether participants spent most of the trial in the centre of the path (zero bias), or
whether steering caused drift towards the inside path-edge (positive bias) or towards the outside path-
edge (negative bias). Each experimental condition was repeated six times (with conditions randomly
interleaved) and a mean was taken to provide an estimate of bias for each condition for each person.
Statistical evaluation of steering bias was then carried out using a repeated-measures ANOVA using
SPSS 20.

3. Results and discussion
If participants attempted to steer in a way that reduced asymmetries and made the flow vectors either
side of the path more equal, then we would expect: (i) trajectories to be biased towards the slower moving
region, and (ii) the magnitude of steering biases to reflect the difference between the speeds of the two
regions (i.e. larger biases to be caused by larger asymmetries). Our results (figure 3a) do not follow this
pattern; instead, what drives the pattern of results is the global flow speed averaged across both regions.
Participants systematically steered towards the outside of the bend when the average flow speed was
slow and towards the inside of the bend when average flow speed was fast. This effect was independent
of which region was moving faster or slower, and also regardless of the asymmetry magnitude.

Statistical analyses support our observations: a 2 (faster region) × 3 (average speed) × 2 (flow
asymmetry size) repeated-measures ANOVA revealed no effect of whether the inside or the outside was
the faster region (F1,18 = 0.61, p = 0.445) and no interaction between faster region and flow asymmetry
size (F1,18 = 0.58, p = 0.457). Instead, an effect of average speed (F2,36 = 35.37, p < 0.001, η2

p = 0.66),
flow asymmetry size (F1,18 = 18.82, p < 0.001, η2

p = 0.51) and an interaction between average speed and
flow asymmetry size (F2,36 = 5.81, p = 0.006, η2

p = 0.24) were found. The interaction was caused by
participants exhibiting greater biases when flow asymmetry size was smaller (figure 3b), which is the
opposite of what would be expected if the asymmetries were directly influencing steering behaviours.
Rather it appears that greater asymmetries reduced the extent to which participants relied upon optic
flow information to inform their steering. This is consistent with studies showing flexible weighted
combination of information sources based on the variability of the information [24,25].

3.1. Natural asymmetry conditions
When both regions of the flow field were moved together in the same direction, slower (6° s−1) or faster
(26.4° s−1) than actual travelling speeds, systematic changes in steering were also observed. There was
an effect of global flow speed across these conditions (F1.29,23.04 = 25.08, p < 0.001, η2

p = 0.58) as shown in
figure 3c(i). Fisher’s least significant difference comparisons indicated that all flow conditions differed
from each other at the p < 0.05 level.

Taken together these findings provide compelling evidence that flow speed averaging (rather than
a flow speed equalization) is used by humans when steering curvilinear trajectories along demarcated
paths. In asymmetric flow conditions, steering was not influenced by which region moved slower or
faster. Instead steering was influenced by the global flow speed, with systematic changes in steering
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Figure 3. (a) Steering bias in asymmetric conditions. Participantswere influenced by the average flow speed in amanner consistentwith
sampling flow vectors from across the scene and then averaging them to derive global flow speed. Steering patterns were not consistent
with the flow equalization strategy (where it would be expected to see understeering in the ‘inside faster’ conditions and oversteering in
the ‘outside faster’ conditions). (b) The interaction between ‘asymmetry size’ and ‘average speed’ in steering bias, with the equivalent
data for the symmetric conditions plotted. Participants were influenced more by the average speed when there was a small difference
between the rotation speeds of the two regions, and steering biases were of similar magnitude to conditions that had no asymmetries.
(c) Average steering biases over time (lighter coloured regions indicate s.e.m.) for all flow conditions. The biases observed are in line with
participants using speed cues from global flow to influence their steering responses. The patterns of steering bias unfolding over time
are similar for all asymmetry conditions irrespective of which region was rotated. All bars= s.e.m.

across different flow speeds irrespective of the direction of flow speed asymmetries. It seems then, that
there are differences between how humans and bees use optic flow speed. Whereas the bee steers by
responding to asymmetries in flow speed, the human steers by responding to the global magnitude
of flow speed. There are, however, still other remarkable parallels between bees and humans. Neither
species relies upon a single coarse optic flow signal for controlling actions, rather, it seems that these
animals make extensive and subtle use of a variety of cues that are present and available within the optic
flow field [6].

One of the most interesting aspects of the present study is that global flow speed by itself does
not specify the current or future steering requirement for the human (unlike other properties such as
flow direction [12,25–28]), and so this input is not usually included in conventional steering models
(though see [22]). While it seems most likely that flow speed interacts with demarcated path information
(which does specify both the immediate and future steering requirements) further investigations are
needed to establish the extent and nature of the interaction with established perceptual components of
steering [4,27,29]. It should also be highlighted that the flow conditions examined here were purposely
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limited to a single surface: the ground. Self-motion across a textured ground is a common locomotor
scenario, and environments that do not involve some form of ground texture are exceptional. Real-world
conditions, however, will produce a variety of global flow signals, and in some cases stronger optic
flow signals will be generated during self-motion (e.g. when additional textured surfaces are present
such as walls, or trees and hedges, etc.) and richer flow fields should usually be expected to have a
greater influence over steering (e.g. [12]). However, some of these surfaces will move independently of
the observer (e.g. clouds and rivers) which could alter global flow speed estimates. Further work is
needed to determine the extent to which global flow speeds combined across multiple surfaces influence
steering along demarcated paths.

4. Conclusion
This study provides strong evidence that global flow speed from a ground plane has a profound effect on
the trajectories humans take when steering along curvilinear demarcated paths, despite the continuous
presence of veridical trajectory information from the visible path edges. This finding poses a problem for
many models of steering control, which do not include flow speed as an explicit perceptual input. While
asymmetric flow-speed conditions of the type simulated in this study are unlikely to occur naturally,
the speed information from the global flow field can vary considerably across different real-world
environments. Conditions where the quality of flow is degraded (e.g. the presence of fog or driving at
night) can reduce the perceived locomotor speed [30,31], whereas increases in flow quality/quantity (e.g.
driving with a seated position close to the ground along narrow country lanes) would increase perceived
speed. Our findings indicate that such conditions could cause systematic steering errors even when there
are clear visual markings for the position in lane and future steering requirements.
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