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ABSTRACT 

Satellite Low Noise Block-down convertors (LNBs) have been evaluated for use in amplitude and intensity 

interferometry.  LNBs have been found to have a high performance to cost ratio which is beneficial for any sensor 

system. They are investigated here for a diversity of applications from the derisking of subsystems for next generation 

aperture synthesis imagers having hundreds of channels 
[1]

 to a platform for the investigation of phase recovery in 

intensity interferometry and experimentation in entangled photons. Measured noise temperatures of LNBs were found to 

lie between 170 K and 300 K which is higher than typical manufacturers’ specifications. A twin channel interferometer 

system was developed using satellite receiver feeds and LNBs at the front-end, other amplifiers, mixers, filters and local 

oscillators at intermediate stages, and 8-bit USB ADCs sampling synchronously at 100 MHz and a PC for data 

processing. LabVIEW was used to digitally demodulate the sampled data and process it into the first and second orders 

of coherence. Measurements of the first order of coherence from a standard low energy discharge lamp indicated 

interference fringes were commensurate with range and spacing of the two receivers and the source. The relationship 

between the measured first and second order of coherence agrees within the experimental error. Variations of the first 

and second orders of coherence with range, R, follow the relationship 1/R and 1/R
2
. The system has the potential for 

investigations into phase extraction for intensity interferometry and for the study of digital demodulation schemes for 

aperture synthesis amplitude interferometry with hundreds of receiver channels for next generation security screening 

systems. A twin, triple or quadruple channel polarimetric LNB interferometer could be used as basis for high precision 

investigations in to entangled photons and quantum communications.     
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INTRODUCTION 
A number of aperture synthesis imaging systems have been 

developed to derisk the development of sensors with a large 

number (300) of receivers with the aim of producing imagery 

with 20,000 pixels sufficient for security screening of 

personnel 
[1]

. This particular project investigates whether the 

low cost (£10 each) LNB satellite receivers have sufficient 

capability for such a future sensor.  Furthermore, in this project 

schemes for band-pass fs/4 sampling and digital down-

conversion can be investigated using LabVIEW as a route to 

derisking these schemes which can later be implemented in 

hardware to achieve much higher bandwidths and sampling 

frequencies in future imagers. By way of system evaluation the 

first and second degrees of coherence were evaluated. The 

system development was also motivated by the interest in 

whether phase information can be extracted from the second 

order of coherence of intensity interferometry. The authors are 

also aware that this architecture might prove useful in the 

search for a source of entangled photons that might be used in quantum communication systems.   

Figure 1: The twin channel 12 GHz LNB combined 

amplitude and intensity interferometry system 



SYSTEM DESCRIPTION 
2.1 Components  

The interferometer, shown in Figure 1, comprises two stages of heterodyne downshifting, the first taking place in the 

satellite LNBs (each costing ~£10 each) and the second taking place at a lower frequency, as detailed in the block 

diagram of Figure 2. The LNB provides front end amplification over the band 10 to 12 GHz followed by the down 

mixing, for which a 10 GHz external local oscillator was injected, and finally intermediate frequency (IF) amplification 

over the band from a few 100 MHz to just over two GHz. The LNB has a total gain measured in the region of 50 dB and 

to boost the signal in the IF band it was followed by a low cost (£2.50) amplifier with a gain of ~18 dB. The second 

stage mixers use a local oscillator at 1.94 GHz, using a pass-band filter centred at 1.865 GHz to reject the image band 

from the band 1.99 GHz to 2.04 GHz. Signals output from the second mixer are pass band filtered from a band 50 MHz 

to 100 MHz prior to bandpass sampling (of order p=2) at a sample frequency of 100 MHz 
[2]

. The down-shifting 

processes in this sensor scheme are illustrated in Figure 3. Together with the filtering, the system is sensitive in the radio 

frequency (RF) section at a centre frequency of 11.865 GHz with a bandwidth of 50 MHz. 
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Figure 3: The spectral signal content in the analogue and digital down-shifting processes of the interferometer 
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Figure 2: The block diagram of the twin channel 12 GHz LNB combined amplitude and intensity interferometer 

 



The radio frequency bandwidths of universal satellite LNBs extends from 10.7 GHz to 12.75 GHz, this being accessible 

using two switchable local oscillators internal to the LNB at frequencies of 9.75 GHz and 10.60 GHz (set by a 0/22 KHz 

tone), these putting the IF bands at 0.95 GHz to 1.95 GHz and 1.1 GHz to 2.15 GHz respectively 
[3]

. For the system to 

operate as an amplitude interferometer, these internal oscillators must be disconnected, and a common external local 

oscillator injected into each LNB. This requires careful work at a static free work station in which the internal oscillator 

track on the LNB circuit is broken and the core and screen of a coaxial line from the external oscillator soldered in its 

place, as illustrated in Figure 4.     

A further requirement for interferometry is for the sampling of the data on the two channels to be synchronous, and this 

is achieved using a National Instrument USB 5133 ADC. It samples on two channels each at 8-bits and at 100 MHz, and 

has 32 MB of storage.   

 

2.2 Digital down conversion and the Hilbert transform 

The effect of sampling the signal creates multiple replicas of the signal in frequency space and the lowest of these is 

digitally filtered out using a low pass filter with a cut-off frequency of 50 MHz. Effectively this process has down-

shifted the analogue signal by fS/2. As the correlation function is by definition complex, an imaginary component to the 

digitised signal now has to be created. This is done by performing the Hilbert transform (Eq. 1) on the sampled data r(t) 

which is then used to build the analytic signal, A(t), as in Eq. 2. All signal information is now contained in the band from 

DC to 25 MHz, the Hilbert transform effectively having down-shifted the signal by fS/4. This signal is then digitally low 

pass filtered with a cut-off frequency of 25 MHz 
[4]

. Processing on the digitised signals all takes place in LabVIEW with 

the spectra of down-shifted signal being shown in Figure 3. 
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COHERENCE FUNCTIONS 
3.1 Coherence length 

The temporal coherence length of natural passive radiometric emission is very short, typically on the scale of the 

radiative transition timescales which are at a fraction of a nano-second, this being a wave train in space a few 

centimetres long 
[7]

. However, once natural emission has been filtered, the narrowing of the radiation bandwidth, BRF, 

imposes an artificial coherence length on the radiation set by Eq. 3. For the system described here, this coherence length 

is of the order of 6 m.   Key parameters in the characterisation of sources and in interferometric imaging are the orders of 

coherence. 
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Figure 4: Disconnection of the LNB internal local oscillators and injection of the external 10 GHz oscillator 

 



 3.1 Degree of first order coherence (amplitude interferometry) 

In amplitude interferometry the key parameter generated by the sensor is the degree of first order coherence, which is the 

mean value of the product of electric field E1 measured at one antenna location with the conjugate of the field E2 at the 

other antenna location 
[8]

. It is a complex quantity, defined mathematically in Eq. 4, where  is a lag time between the 

two sampled signals, which in this system is zero and the angle brackets indicate the long term mean value, which is 

calculated over an integration period of 30 ms, during which 3M data points are sampled. This mean value is normalised 

by dividing by the root mean square of each of the electric fields in the two channels, these values being calculated using 

LabVIEW functions, the circuit block diagrams for this being shown in Figure 5. For two identical signals the degree of 

first order coherence is unity, whereas for completely uncorrelated signals the coherence is zero.      
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The first order of coherence is that function used in standard radio astronomy aperture synthesis, where it is used to build 

up the visibility function by placing these samples on a two dimensional grid of base-lines (antenna pair separations / 

divided by the radiation wavelength) 
[6]

. Taking the Fourier transform of the visibility function gives the image of the 

scene. For this system however, the variation of (1) 
will be investigated by varying source locations, to evaluate the 

effectiveness of this scheme of interferometric sensor development. 

3.2 Degree of second order coherence (intensity interferometry) 

In intensity interferometry the key parameter is the degree of second order coherence, which is the normalised mean 

value of the product of the two intensities I1 and I2 measured at the two antenna locations 
[9]

. It is a purely real quantity, 

defined mathematically by Eq. 5 where I(t) is the short term (cycled average) intensity, and as above the time lag  is 

zero. Normalisation is achieved through division by the long term time averaged intensities in the separate channels and 

these functions are all calculated using the mathematical functions in LabVIEW, the circuit block diagram for these 

calculations being shown in Figure 6. As above with amplitude interferometry 30 ms of data is recorded, a total of 3M 

sample points. For perfectly correlated short term intensity fluctuations the degree of second order coherence has a value 

of two, whilst for completely uncorrelated intensities it has a value of unity.    
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The second order of coherence is that function measured in the Hanbury-Brown and Twiss type experiments of intensity 

interferometry 
[5]

. As the intensity represents a squaring of the amplitude, direct phase information about the incoming 

wave is lost. However, in the process of squaring the summation of a spatial distribution of electric amplitudes across the 

source, phase information about the source is retained in cross-terms. Hanbury-Brown and Twiss measured how the 

second order coherence function varied with delay to estimate stellar diameters. Used in the visible spectrum it proved 

easier to realise than the Michelson stellar interferometry, as it was less sensitive to atmospheric scintillations. Since then 

a small community has tried to extract phase information from the intensity interferometer, using the triple product (bi-

spectral) technique 
[10]

 and the Cauchy-Riemann phase recovery technique 
[11]

, as a means of generating images. If the 

phase problem is solved his may enable the building of ground based high resolution optical interferometric telescopes 

that are insensitive to atmospheric scintillations 
[12]

. The relationship between the degree of first and second order 

coherence is given by Eq.7, the phase information from the first order coherence is lost through the squaring process.  

2
1

21

2

21 1 )(

,

)(

,                                                                                  (7) 

              

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5: The LabVIEW circuit block diagram for calculation of the degree of first order coherence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The LabVIEW circuit block diagram for calculation of the degree of second order coherence. 



Figure 7: The spectrum of intermediate frequency output power (LHS) from a satellite LNB 

(centre frequency: 1.22 GHz; span: 1.8 GHz), the roll off in the response at the higher 

frequency could be due to the spectrum analyser, which had a maximum operating 

frequency of 2 GHz. The noise temperature of the LNB measured as a function of local 

oscillator power at an IF of 1.865 GHz (RHS). 

 

Figure 7: The spectrum of intermediate frequency output power (LHS) from a satellite LNB (centre frequency: 1.22 

GHz; span: 1.8 GHz), the roll off in the response at the higher frequency could be due to the spectrum analyser, which 

had a maximum operating frequency of 2 GHz. The noise temperature of the LNB measured as a function of local 

oscillator power at an IF of 1.865 GHz (RHS). 

 

3.3 Signal to noise ratios in amplitude and intensity interferometry 

The noise level on the degree of first and second order coherence is given by Eq. 8 and 9, where BCORR is the correlator 

bandwidth and tINT is the integration time 
[5]

. The correlator bandwidth is stated as this expression comes from work in 

optical intensity interferometers. It can be seen from this that the higher the correlator bandwidth the lower the noise. In 

both cases the time bandwidth product is exactly the number of measurement points. In the case of the intensity 

interferometer noise becomes smaller with increased correlator bandwidth. In the microwave region the bandwidth of the 

correlator approaches the RF bandwidth, in which case both the amplitude and intensity interferometers have the same 

noise levels.   
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RESULTS 
4.1 Performance of LNBs 

The noise temperature of the LNB at 11.865 GHz was determined using the y-factor test and a power meter to measure 

the signal power output from the LNBs when the system was viewing alternately liquid nitrogen and ambient 

temperature absorber. For a small number of LNBs the receiver noise temperatures were measured at between 170 K and 

300 K.  Manufacturers typically quote the noise figures at between 0.1 dB and 0.3 dB, which are equivalent to noise 

temperatures of 7.5 K and 23.5 K. The disagreement between these and the measured figures may be due to the fact that 

the manufacturers’ specifications might be measured at different frequencies and under different circumstances. Using 

the LNB with the externally injected local oscillator it was possible to measure how the noise temperature of the device 

varied with local oscillator power, and this is shown in Figure 7. Following this measurement, the power injected to the 

LNBs for operation was chosen around 10 dBm to give the best noise performance. The spectrum of the output power 

from the LNB is shown in Figure 7. The peak of the power output is around 1.31 GHz, which given the 10 GHz local 

oscillator frequency corresponds to an RF input of 11.31 GHz. There is a strong roll off in response at frequencies above 

1.9 GHz. 

4.2 Performance of 2
nd

 mixer and analogue IF stages 

Validation that analogue components following the LNBs were working properly, a power meter was used to measure 

signal levels from the liquid nitrogen and ambient temperature absorber sources. Signal levels were in agreement with 

those expected on the basis of gains and bandwidths in the system. The typical measured power levels (~-9 dBm) and 

rms voltages into the ADCs (80 mV) were consistent with a total gain G of 86 dB, a radiation bandwidth of 50 MHz, an 

antenna temperature TA (taken to be that of the ambient room temperature ~290 K), a receiver noise temperature TN 

(measured to be 170 K) and a transmission line impedance R of 50 Ohms, as given by Eq. 10.   
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4.2 Validation of ADCs and synchronous sampling 

Critical for the interferometer is the validation that the two receiver channels are sampling synchronously, as without this 

no interference effects will result, as the samples will be outside the coherence length. This validation was performed by 

examining the response of the system to correlated noise.  This measurement was achieved by splitting a single channel 

of the interferometer into two and inputting these into the two channels of the ADC. It was a simple matter in LabVIEW 

to visibly check the sampled data side by side. Changes in the signal levels were noted to be the same for each sample 

from the start of the sample train through to the end of the 3M sample points. There was however noted a small 

calibration error on the absolute value recoded on each channel, of the order of ~20%. This was consistent over a period 

of time, and as such should be calibrated in a future element of the work.  

Further assessment of correlated noise was performed by calculating the first and second orders of coherence, these were 

found to be consistently 0.8 and 1.71 respectively. It is expected from the definitions of the coherence that the first and 

second coherence orders should be 1.0 and 2.0 respectively for perfectly correlated noise. It is believed these differences 

are due to the calibration errors on the ADCs.  

Also critical for interferometric operation is the validation that uncorrelated noise is indeed measured to be uncorrelated. 

Examination of this verifies that measured correlations are not the result of cross-talk. For the generation of uncorrelated 

noise the feed of each LNB was pointed towards separate sections of absorber. The measurements showed the first and 

second orders of coherence were consistently 0.0009 and 1.0007, whereas the expectation values are 0.0 and 1.0 

respectively. The discrepancy is consistent with fluctuation noise associated with a finite number of measurements, 

which at a value of reciprocal root 3M, ~ 6x10
-4

, is close to the measured difference between measurement and 

expectation.  

4.3 Measurements of the coherence functions 

To validate the system was working as an interferometer the degree of first order and second order coherence functions 

were measured using emission from a low energy Compact Fluorescent Light (CFL) bulb, whilst the light was being 

moved around before the feeds.  

The phase of the first order of coherence (1)
 was measured as the CFL bulb at a range of 13.5 cm was displaced 

transversely before the LNB feeds, separated by distance b of 6 cm, as illustrated in Figure 8. This movement should 

generate fringes directly in front of the LNB having a spacing given by the radiation wavelength (2.527 cm) divided by 

the feed separation, multiplied by the range R, which is ~7.84 cm. The phase of the coherence function from Figure 8 

indicates the fringe separation is 8.0 cm, in good agreement with the prediction. Greater off-axis angles would be 

expected to show an increase in fringe spacing and this is shown to be the case from the measurements in the figure.  It 

may also be noted that these measurements are in the near field, as the Rayleigh distance, 2b
2
/λ, is ~28 cm. 

The Magnitude of the first order coherence function (1)
 has been measured at around 0.06, (which is well above the 

noise level), but there appeared little structure in the variation of this measurement over the displacement before the 

LNB feeds. Assuming the only emission in the scene is a disk of diameter D, at a range R, viewed with LNBs spaced by 

b, the first order coherence function is given 
[8] 

by Eq. 11, where J1 is a Bessel function of the first kind of order one and 

 is the phase term. Substituting the values of D, R and b into this equation gives the magnitude of (1)
 at ~0.6. This is 

ten times higher than the above measured value. This is possibly due to the fact that the CFL bulb has a complex 

structure comprising a discharge tube folded in to six sections each having a diameter of just less than a centimetre and 

emission from the ambient temperature background will cause decorrelating effects.  
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Figure 8: Interference fringes in the phase of the first order coherence function (1)
 were detected by measuring the 

emission from a low energy light bulb as it was displaced before the LNB feeds. Position zero on the x-axis   

 

The magnitudes of the first and second order coherence, (1) 
and (2)

, were measured as the CFL bulb was varied in range 

from the LNBs outwards to a distance of 50 cm, as illustrated in Figure 9. The measurements of the magnitudes of (1) 

and ((2)
-1) are shown as a function of range in Figure 9. The magnitude of, (1) 

is greater than ((2)
-1) by approximately 

an order of magnitude, which is roughly in agreement with Eq. 7. The lamp has a physical width of the order of 3.5 cm 

and variation of the lamp out around 10 cm showed a dip in coherence. However, from around 10 cm out to 50 cm the 

variation in magnitudes of (1) 
and ((2)

-1) follow approximately a 1/R and a 1/R
2
 relationship, these fits also being shown 

in Figure 9. Little coherent structure was found in the variation of the measured phase of the first order coherence with 

range.  

 

Measurements of the variations in the coherence functions (1) 
and ((2)

-1) were also made as the LNB feeds were varied 

in the polar direction at a fixed distance around the CFL bulb. These measurements were made to examine the expected 

reduction in coherence with increased subtended angle, as predicted by the van Cittert Zernike theorem. This may be 

important for portal security screening when threats are viewed using a near-field correlation beam-forming system with 

receivers viewing from widely dispersed angles. The expected effect can be thought of as a spatial decorrelation (fringe 

washing) phenomenon. Respective values of 0.06 and 0.01 were measured for (1) 
and ((2)

-1), which is well above the 

noise level.  

The above system could be further developed into a system to study the generation of entangled photons for quantum 

communications. Using two polarimetric receivers in each arm of the interferometer the Bell’s inequality 
[9]

 could be 

Figure 9: Variations in the magnitude of the coherence functions, (1)
 and ((2)

 -1) as a function of range are detected by 

making measurements of a low energy discharge lamp as it is moved longitudinally outwards from the LNB feeds to a 

range of 50 cm. A 1/R and 1/R
2
 fit to the data is shown 



evaluated in LabVIEW to confirm the existence of the entangled photons. However, for this to happen it is likely that the 

existing system would need to be improved in its precision and stability.  

CONCLUSIONS 

Satellite LNBs have been investigated for use in radiometry and have been measured to have noise temperatures ranging 

from 170 K to 300 K. A power spectrum of the output power confirms the system as sensitive over the band 10.5 GHz to 

11.9 GHz when an external 10 GHz local oscillator was used. Using LNBs and additional amplifiers, filters, mixers and 

ADCs a combined amplitude and intensity interferometer was developed and operated. Using this system first and 

second order coherence functions were measured from a CFL bulb and found to agree with expected results. The total 

cost of components in the system was around £15K, and as such provides a convenient test bed for testing 

interferometric algorithms and doing basic interferometric experiments.   

FUTURE WORK 

The simple laboratory set up of this LNB based interferometer could be extended by calibrating the voltages measured 

by the ADCs to get a more accurate measure of the coherence functions. The number of LNBs and other components 

could be increased to develop an aperture synthesis security screening portal demonstrator having tens or hundreds of 

channels. Further work could be done on understanding the magnitude of the first order coherence functions and fringe 

washing associated with antennas space far apart in the field, thus verifying predictions of the van Cittert Zernike 

theorem relevant for portal type imaging systems. In the area of intensity interferometry, experiments could be 

developed to recover phase using a triple product system and Cauchy-Riemann techniques. The system might be 

extended and improved in its precision and stability to enabled investigation into entangled millimetre wave photons and 

schemes for quantum communications.  
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