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Abstract 

Neural crest induction and migration is the culmination of an intricate network of 

signalling from both the ectoderm and underlying mesoderm. Due to the transient 

nature of the neural crest, little is known about the specific interactions of growth 

factors and morphogens required for correct patterning.  

 

Neural crest stem cells were differentiated from embryonic stem cells in serum-free 

feeder-free culture conditions. Cells were further differentiated into functional 

peripheral neurons, expressing the synaptic protein neurexin3, able to spontaneously 

generate action potentials and showing responses to the neuroactive compounds 

GABA and NMDA.  

 

Microarray analyses and subsequent RT-qPCR experiments revealed that gene 

expression of the key pluripotency associated factor Oct-4 was initially 

downregulated upon differentiation before expression levels increased as cells 

developed into a neural crest phenotype. Further experiments indicated an intrinsic 

role for bone morphogenetic protein-4 (BMP-4) in mediating this resurgence of 

expression. In addition to BMP-4 influenced expression of Nanog, members of the 

developmental pluripotency associated family of genes and important adhesion 

molecules with roles in the epithelial to mesenchymal transition of the neural crest. 

 

Global gene expression profiling of differentiating functional neurons offers new 

insights into BMP-4 mediated patterning of the neural crest and peripheral nervous 

system during development. This study implicates BMP-4 as a key factor in neural 

crest differentiation, with a role in diverse cellular processes including proliferation, 

fate determination and cell migration.  The role of BMP-4 in mediating expression of 

pluripotency and adhesion factors highlights a potential role in oncogenesis; neural 

crest cells share many phenotypic traits with cancer cells. Finally, the generation of 

functional peripheral neurons in feeder free culture conditions offers a reliable 

method for the recapitulation of these tissues and the possibility of use in future 

tissue replacement therapy. 
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Chapter 1: Introduction 

1.1 Embryonic Stem Cells 

Embryonic stem cells (ESCs) are derived from the inner cell mass of late stage 

blastocysts (Figure 1.1).  It is possible to culture these cells indefinitely in an 

undifferentiated state, either by growing on a feeder layer of murine embryonic 

fibroblast cells, or in the presence of leukaemia inhibitory factor (LIF) and serum 

(Martin, 1981; Williams, et al., 1988; Thomson, et al., 1998). Embryonic stem cells 

are capable of recapitulating any tissue in the mammalian body and as such are 

described as being pluripotent. (Martin, 1981) 

Leukaemia inhibitory factor mediated maintenance of pluripotency occurs through 

interaction with low affinity receptors coupled to the GP-130 (glycoprotein-130) 

transmembrane protein. A signal transduction cascade is subsequently activated 

culminating in the dimerization of a pair of phosphorylated signal transducer and 

activator of transcription (STAT) 3 proteins. Concomitant activation of the mitogen-

activated protein kinase and the phosphatidylinositol-3 phosphate kinase pathways 

results in the activation of genes responsible for survival and self-renewal (Graf et al, 

2011). 
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Fig. 1.1 Isolation of Embryonic Stem Cells. A four-cell embryo (B) generated from 

a fertilised egg (A) develops into a blastocyst (C). The inner cell mass (D) is isolated 

and plated onto inactivated murine embryonic fibroblast (MEF) cells (E). Upon 

subsequent culture on MEF cells (F) embryonic stem cell lines capable of 

differentiating into tissues from the three germ layers (ectoderm (G), mesoderm (H) 

and endoderm (I) can be derived.  
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 In their natural environment stem cells are capable of remaining quiescent – a state 

which describes cells in a dormant state, neither dividing nor differentiating whilst 

remaining in the stem cell pool. Upon appropriate signals from the surrounding 

tissues, stem cells are known to divide in two distinct fashions, symmetrical in which 

two identical daughter cells arise from a single progenitor and asymmetrical in which 

a parent cell produces one identical and one differentiated cell. Alternatively, stem 

cells can be induced to differentiate without replenishment of the stem cell pool. 

ESCs in this manner populate the three germ layers (endoderm, mesoderm and 

ectoderm) during early development (Thomson, et al., 1998; Biehl and Russel, 

2009). 

The mechanics of stem cell differentiation are regulated by a complex series of 

cellular and molecular interactions. Significant variability in gene expression within 

differentiating cells governed by a number of epigenetic changes occurs (Lunyak and 

Rosenfield, 2008). Such changes act to promote either gene silencing or the 

activation of specific transcription factors (Dai and Rosenfield, 2007). Since the 

1980’s when ESCs were first isolated (Martin 1981) a large body of work has been 

undertaken in order to maximise their therapeutic potential.  Embryonic stem cells 

have been proposed as a source for tissue replacement therapy in a range of 

neurological, cardiovascular and orthopaedic conditions (Goldman and Windrem, 

2006; Caspi, et al., 2007; Fisher, et al., 2012), as well as for disease modelling to 

enable better understanding of the aetiology of conditions such as Huntington’s 

disease (Niclis, et al., 2009). 
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1.1.2 Directed Differentiation of Embryonic Stem Cells 

Removal of LIF from cultured embryonic stem cells has shown to result in the 

reduction of pluripotency markers such as Oct-4, Nanog and Sox2 (Murgatroyd and 

Spengler, 2014). However in order to be used in clinical, diagnostic or investigative 

applications, controlled protocols are required to direct stem cell differentiation 

towards particular somatic lineages. Removal of LIF results in unpredictable ESC 

differentiation to the three germ layers, although evidence suggests ectodermal 

lineages are less well represented than mesodermal or endodermal lineages 

(Jeonghoon, et al., 2005). Directed differentiation experiments have resulted in the 

generation of cells types such as peripheral neurons, Schwann cells and glia (Aihara, 

et al., 2010), cardiac tissue such as arterial and venous endothelial cells and 

myogenic cardiomyocytes (Narazaki, et al., 2008).   
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1.2 The Neural Crest 

1.2.1 Characteristics of the Neural Crest 

The neural crest is a transitory population of stem cells capable of forming numerous 

terminally differentiated lineages found in all vertebrate embryos, in which it is a 

unique feature. As the cells comprising the neural crest are self-renewing and 

multipotent, they are defined as stem cells (Teng, 2006). Since its initial description 

in the latter half of the nineteenth century, significant efforts have been made to 

determine the mechanisms and processes contributing to neural crest development 

from populations of embryonic progenitor cells and its migration and differentiation 

into numerous somatic cells throughout the vertebrate body (His, 1868; Huang and 

Siant-Jeannet, 2004; Simões-Costa and Bronner, 2013).  

Due to the wide array of terminally differentiated progeny arising from neural crest 

stem cells, the neural crest has sometimes been termed the fourth germ layer (Hall, 

2008). The neural crest presents a significant contribution to the physiology of the 

developing embryo with neural crest derived cells being found throughout the body, 

forming the bulk of the peripheral and sympathetic nervous system as well as cranio-

facial cartilage, tooth dentine, melanocytes and cardiac smooth muscle (Anderson, 

2006; Chai, et al., 2000; Henderson and Chaudrey, 2012). Recent experiments have 

recorded the presence of neural crest derived cells in the cornea of mice (Osei-

Bempong, et al., 2012). Subpopulations of neural crest cells (NCCs) have been 

identified and it is known that their position along the rostral-caudal axis in vivo is of 

utmost importance in determining ultimate cell fate. However, in vitro NCCs derived 

from different populations can be programmed to differentiate into any of the 
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somatic cell lines associated with their multipotent state (Olapoa and Conway, 

2012). 

Although the neural crest is exclusive to vertebrates, sensory neurons in ascidians 

derive from a population of cells discrete from those forming the central nervous 

system. Like the neural crest, these require signals from fibroblast growth factors and 

bone morphogenetic proteins to co-ordinate spatial and temporal patterning. 

However, unlike NCCs they display less plasticity and contribute only to the 

formation of peripheral nerves. Nonetheless, comparisons of non-chordate, 

invertebrate chordate and vertebrate development offers an insight into the 

contribution of the neural crest towards vertebrate evolution (Ohtsuka, et al, 2014). 

The wide range of tissue types demonstrated to be of neural crest origin infer that 

there is a great potential for these cells to find therapeutic use, underpinned by recent 

research on tissue engineering strategies (Wang, et al., 2011). However, despite 

numerous advances, a full understanding of the cellular and molecular mechanisms 

governing both initial and terminal differentiation as well as migration has remained 

elusive.  

The inherent difficulties imposed on neural crest investigation by its transient nature 

is exacerbated by the fact that in vivo the neural crest is not a clearly delineated 

structure, being formed at the border of the non-neural and neural ectoderm and 

displaying characteristics associated with both (Sargent, 2006). Although 

populations of adult neural crest stem cells have been identified, they are rare and 

difficult to extract in numbers suitable for analysis (Jiang, et al., 2009). In vivo 

techniques such as stromal derived inducing activity have found success in the 

recapitulation of NCCs from embryonic precursors in both murine and primate 
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systems (Mizuseki, et al., 2003). However, there is evidence that the cells forming 

the feeder layer used in these protocols may have an influence on cell fate selection 

potentially obfuscating important data; as such, protocols using serum free, defined 

media were developed in order to derive neural crest stem cells in constant, 

controlled condition (Aihara, et al., 2010). Finally induced pluripotent stem cells 

(IPSCs) have been proposed as a potential source of NCCs. Briefly, somatic cells 

transfected with certain transcription factors have been shown to revert to an 

embryonic state as originally demonstrated by the pioneering work of Takahashi and 

his co-workers (Takahashi, et al., 2007). However question marks remain as to the 

suitability of IPSCs as a model for differentiation studies and a potential source of 

replacement tissue for clinical practice, most notably differences in cytosine 

methylation patterns between IPSCs and their embryonic counterparts persisting into 

terminally differentiated tissues derived from both have been reported. These 

differences are significant enough that they can be used to identify whether a 

population of stem cells has been induced from somatic tissue or is of embryonic 

origin. Methylation of cytosine residues is a major controlling factor of gene 

expression in mammalian systems and aberrant cytosine methylation is implicated in 

the development of tumours (Djuric and Ellis, 2010; Dolgin, 2011; Lister, et al., 

2011; Perra, 2011). Although IPSCs potentially represent an unlimited source of 

cells for the study of NCCs at present work with these must continue in conjunction 

with ESCs to ensure epigenetic and genetic conformity.  
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1.2.2 Neural Crest Formation and Migration 

In humans, the neural crest forms three to five weeks after conception on the borders 

of each side of the neural plate and the non-neural ectoderm in developing embryos 

prior to closure of the neural tube, which gives rise to the central nervous system 

(Bronner-Fraser, 1994; Amiel, et al., 2010). Upon neural tube closure, NCCs 

delaminate and migrate throughout the developing organism (Figure 1.2). Neural 

crest migration in mice, as well as in zebrafish, Xenopus  and chick embryos begins 

rapidly after formation, typically within a few hours (Sandell and Trainor, 2006; Bae 

and Saint-Jeannet, 2014).  
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Figure 1.2. Neural crest formation during neurulation. The neural crest forms at 

the borders of the neural plate prior to the closure of the neural tube. Neural crest cells 

subsequently delaminate and migrate throughout the developing organism. 

(http://www.cornell.edu). Accessed 27-7-2014. 
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During the formation of the neural crest, signals from both the ectoderm and 

underlying mesoderm are required for proper differentiation (Basch and Bronner-

Fraser, 2006). In addition activation of regulatory genes allowing survival in a 

variety of different tissue environments are necessary as the nascent NCCs undergo 

epithelial to mesenchymal transition along the rostro-caudal axis and migrate 

throughout the developing body (Trainor, 2010; Dupin, et al., 2006; Olaopa and 

Conway, 2012).  

The process by which embryonic stem cells become terminally differentiated neural 

crest derived cells in multiple compartments of the body can be simplified and 

broken down into three distinct stages. The initial stage is induction, whereupon 

embryonic stem cells differentiate into neural crest stem cells in response to various 

cellular cues, most notably from BMPs, Wnts and FGFs (Basch and Bronner-Fraser, 

2006). The next two stages, migration and differentiation are not clearly defined 

temporally, there being evidence that pre-migratory neural crest stem cells are 

lineage restricted in vivo. Nonetheless, neural crest stem cells have been shown to 

migrate to the appropriate tissue before final differentiation into somatic cell types 

(Etchevers et al., 2006).  

1.2.3 Migratory Patterning of Neural Crest Stem Cells 

The fact that neural crest derived cells are found in a profusion of mammalian tissues 

is indicative of varying patterns of migration. For instance, the migrating cells that 

constitute the enteric nervous system must migrate along the whole length of the 

forming gut. Cells close the wavefront of the nascent enteric nervous system move 

preferentially along the rostro-caudal axis, while those behind show less 

directionality. This variability in migration direction leads to the colonisation of the 
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gut with populations of neural crest stem cells, which spread out and process 

neurites, leading to the innervation of the developing gut (Young, et al, 2014). 

Proliferation in migratory NCCs has been measured in vivo in the developing enteric 

nervous systems of mice. Experiments showed that in cells positive for the migratory 

neural crest marker Sox10 the percentage of cells remaining in the cell cycle did not 

vary significantly between E10.5 and E16.5, although cell cycle length increased by 

a factor of 50%. Gut innervation took place in the small intestine at E10.5 and in the 

colon at E12.5 respectively. Interestingly as migrating NCCs entered the gut a 

subsection began to express the neuronal marker Hu in comparison to Sox10 positive 

cells that ceased proliferation and exited the cell cycle (Gonsalvez et al, 2015). 

These data support the theory that proliferative, migratory neural crest stem populate 

the gut sequentially before terminal differentiation occurs. 

Experiments have shown that vascularisation and innervation of many target tissues 

is concurrent and that endothelial cells secrete neurotrophins, while emerging 

neurons secrete vascular endothelial growth factor. These secretory agents conspire 

to guide the nascent vascular and nervous systems, suggesting roles for each in the 

migration of the other. However, in the emerging gut innervation is able to take place 

without vascularisation, indicating a supporting rather than a causative role 

(Delalande, et al, 2014).  

Within a group of migrating cells, movement is directionally consistent across the 

population. Neural crest migration is distinct from that of other cell types in that 

migrating NCCs are more loosely associated, maintaining only transitory adhesion 

between neighbouring cells. Recent studies show that early migrating neural crest 

stem cells express different genes in comparison to their later migrating counterparts 

Uriu et al, 2014). It is hypothesised that in neural crest migration two distinct 
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subgroups arise. Leader cells follow a chemoatteractive signalling gradient to their 

final destination: Follower cells attach to and follow leader cells. The migration of 

the neural crest is both vast and tortuous in cellular terms requiring constant 

communication between cells, their neighbours and their environment (Wynn, et al, 

2013).  

The initial stage of neural crest migration is the epithelial to mesenchymal transition 

(EMT), which precedes delamination, although these terms are often used 

erroneously to describe a single process. The signalling cascades involved in the 

EMT are highly conserved between species, invariably proceeding through the 

BMP/Wnt pathways. Epithelial to mesenchymal transition promotes the expression 

of neural crest specifier genes, such as those of the Sox family of transcription 

factors. Delamination is precipitated via the alteration of cellular adhesion properties 

through the modification of Cadherin expression culminating in the degradation of 

N-Cadherin by the metalloprotease ADAM10.  Before delamination, the expression 

of genes contributing to the process such as Ets1 and Snail, is repressed by the p53 

protein. Upon delamination p53 expression is reduced allowing delamination 

although the precise mechanisms involved are as yet unknown. A concurrent 

decrease in the expression of Noggin is suggestive of a role of BMP-4 in this 

process, as the former is known to be an antagonist of the latter (Theveneau and 

Mayer, 2012). 

In the process of delamination, cells begin migration, extending lamellipods and 

filopods from the cytoplasm as well as bleb, marks associated with motility. In some 

cases emergence from the epithelium is followed by a phase in which cell remain 

immobile but undergo division cycles. During migration, three major factors conjoin 

to ensure appropriate directionality, chemoattractive signals from the target area, 
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repulsive signals from tissues that are not to be colonised and signal transduction 

between neighbouring cells (Clay and Halloran, 2010).  

Signal transduction between cells can be mediated by direct contact or through the 

action of secretory signalling molecules such as the Wnt proteins, which are essential 

components for the migration of polarised cells such as those originating from the 

neural crest (Puroshothama and Kühl, 2010). Perhaps the most important cellular 

interaction controlling the cessation of neural rest migration is contact inhibition of 

locomotion (CIL). In this mechanism a cell, upon contact with a nearby cell 

withdraws the lamellipods and filopods that facilitate motility and alters its 

orientation and direction of movement. Contact inhibition of locomotion disrupts the 

unidirectional flow of cells or results in its cessation. Migrating NCCs form short-

lived adhesion complexes during CIL, although little is known about the signal 

transduction that occurs if indeed any does during these interactions (Moore, et al., 

2013). Recent research in Xenopus has demonstrated that in the neural crest contact 

inhibition of locomotion requires temporary adhesion between both cells and 

developing placodes. This is modulated by cadherin molecules and involves 

transition of expression from Cadherin 1 in pre-migratory NCCs to Cadherin 2 in 

migratory (Scarpa et al, 2015). 

Deficient migratory patterning of neural crest stem cells is responsible for numerous 

pathologies, for example being the leading cause of craniofacial deformation, 

accounting for approximately half of all human birth defects. Cranial NCCs 

originally migrate en masse before segregating into distinct populations, which 

subsequently populate the three branchial arches. The segregation and differentiation 

of populations of migrating neural crest stem cells both in the cranium and 
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throughout the developing embryo has been the subject of a wide body of research 

(Gong, 2014).  

The peripheral nervous system (PNS) derives mainly from cells of the trunk neural 

crest with contributions such as sensory ganglia being generated from the cephalic. 

Just as in cranial neural crest, the fate of trunk NCCs is determined before the onset 

of delamination and migration and before the expression of somatic biomarkers can 

be observed. In the colonisation of the developing PNS with NCCs, specifying 

factors such as BMP-4 and pax3 continue to be expressed and sox10 is essential for 

the survival of migrating PNS precursors. Experiments with murine models show 

that termination of migration acts as a trigger for differentiation into somatic cell 

lines resulting into a ventral-to-dorsal pattern in the appearance of neural crest 

derived tissues. Neurogenesis in murine systems begins with the formation of large 

cell body neurons (Prendergast and Riable, 2014).  

Fate determination plays an important role in the direction of migration of the 

forming neural crest. The rostro-caudal placement of NCCs along the nascent neural 

tube is a key determinant of cell fate (Olaopa and Conway, 2012), although some 

plasticity is observed in populations deriving from the trunk. In avian embryos initial 

migration of the trunk neural crest proceeds along the ventral axis, these cells go on 

to populate the peripheral nervous system and adrenal medulla. Later migrating cells 

from the same region move in a dorsolateral direction, eventually invading the 

epidermis to form melanocytes. Control of this variance in migration is thought to be 

mediated by Ephrin-B proteins, which prevent dorsolateral migration in early 

delaminating NCCs. Interestingly those cells delaminating at a later time point, 

express receptors enabling complexes to be formed with Ephrin-B. This facilitates 

dorsolateral migration by changing the interaction of cells with Ephrin-B from a 
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repulsive to attractive one (Santiago and Erickson, 2002). The pathways followed by 

migrating NCCs are replete with extracellular matrix factors conducive to the 

process in the case of peripheral nerve progenitors deriving from the trunk crest. F-

spondin and versican are considered to act as repellents, guiding migrating cells 

away from non-target tissues whereas stromal cell-derived factor 1 (Sdf1) appears to 

act as a chemoattractant for sympathetic nervous system precursors (Theveneau and 

Mayer, 2014). 

1.2.4 Cellular Interactions Governing Neural Crest Formation and 

Migration 

A complex series of cellular interactions is required for proper patterning, migration 

and differentiation of neural crest stem cells into the wide variety of somatic cell 

types they will eventually form. Although the action of transcription factors 

responding to the influence of extracellular morphogens has been well characterised 

they do not act in isolation. Other types of interactions such as post-translational 

modifications of proteins play an important role. For example, ubiquitination is an 

enzyme-mediated process, which culminates in the addition of a small (8.5 kDa) 

polypeptide to target proteins. Primarily the addition of the ubiquitin peptide results 

in the recruitment of further ubiquitin molecules targeting the protein for degradation 

by the proteasome. Ubiquitination plays an implicit role in other cellular processes, it 

has been observed to adjust protein morphology, potentially affecting stability or 

molecular interactions. Ubiquitination can also positively regulate gene expression 

by targeting antagonist proteins for degradation (Mukhopadhyay and Riezman, 

2007) and promote differentiation by lysis of pluripotent specific genes such as c-

myc (Boix-Perales et al, 2007). 



16 
 

 Within neural crest differentiation, protein kinase NEDD-4 mediated ubiquitination 

is required for cell survival and migration. Nedd4 deficient mice show decreases in 

the expression of neural crest specifiers such as pax3 and sox10, these data may 

indicate that NEDD-4 is a positive regulator of these genes (Wiszniak, et al, 2013). 

Interactions between cells and the extracellular matrix or other cells are mediated by 

the presence of adhesion molecules. The most common type of adhesion molecules 

are the integrins, transmembrane proteins consisting of alpha and beta subunits. The 

cell surface receptors of integrins chiefly bind ligands from the extracellular matrix 

although some are known to facilitate cell-cell signalling by coupling with receptors 

on adjacent cells. Integrins are important components of the mechanisms governing 

cell differentiation, migration and proliferation (Clark and Brugge, 1995). During 

neural crest delamination and migration, integrins are essential for cell survival and 

locomotion. Migrating neural crest stem cells present a wide array of integrins of 

differing functions, both relating to cell-cell and cell-ECM interactions. Functional 

studies of aberrant integrin expression have shown it to be a cause of anoikis where 

cells detach from the ECM and undergo programmed cell death. It has further been 

observed that the array of integrins expressed by post migratory NCCs changes with 

subsequent differentiation suggesting roles other than the facilitation of migration 

(Duband, 2006).  

Although many forms of external receptors have been characterised, the intracellular 

mechanisms of integrin mediated signal transduction are less well understood. A 

number of prospective cytoplasmic targets have been proposed, including integrin 

linked kinase (ILK). Deletion of this gene, in murine neural crest specific tissues, 

causes altered migration patterns and cardiac malformations. These were coupled 

with a reduction in Akt protein, which has roles in cell proliferation and 
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differentiation and is commonly expressed in developing neural crest tissues 

(Nicholson and Anderson, 2002; Dai et al., 2013). 

1.2.5 Contribution of the Neural Crest to the Vertebrate Body 

Due to the wide array of terminally differentiated progeny arising from neural crest 

stem cells, the neural crest has sometimes been termed the fourth germ layer (Hall, 

2008). Initial migration of cells comprising the neural crest is known to be time 

dependant, for instance in chick embryos NCCs proximal to the rostrum delaminate 

almost a full day before the caudal-most population (Theveneau and Mayer, 2012). 

The neural crest is a major contributing factor to the “new head” in which complex 

and specialised sensory structures combined with the formation of an articulated jaw 

allowed primitive vertebrates to develop from filter feeders into predators. Autonomic 

regulation of bodily functions by a sophisticated peripheral nervous system combined 

with additions to the cardiovascular system and the protection from DNA damage by 

ultraviolet light provided by melanocytes, confer upon vertebrates an ability to better 

adapt to the vicissitudes of their environment. The development of these anatomical 

structures has provided a boon for the evolution, spread and proliferation of the diverse 

vertebrate species extant today across a multitude of environments (Le Douarin, 2004; 

Durain and Dupin, 2014). The neural crest; prior to delamination can be divided into 

four main regions, each with distinctive patterning and positions of terminally 

differentiated cells (Table 1.1). 
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Table 1.1. Tissues derived from neural crest. Specific tissues differentiate from 

each region. The cephalic neural crest occupies the rostrum-most position and 

regions move caudally to the trunk (Avery et al., 2014; Jasrapuria-Agrawal and 

Lwigale, 2014; Vincentz and Firulli, 2014). 

Tissue Origin 

Cranial bone Cephalic 

Cranio-facial cartilage Cephalic 

Inner ear bones Cephalic 

Ocular tissue Cephalic 

Dentine of teeth Cephalic 

Cardiac smooth 
muscle 

Cardiac 

Cardiac connective 
tissue 

Cardiac 

Enteric ganglia Vagal 

Glial cells Trunk 

Sensory neurons Trunk 

Autonomic neurons Trunk 

Motor neurons Trunk 

Melanocytes Trunk  

 

1.2.6 Neural Crest Pathology (Neurocristopathy) 

The importance of the neural crest is highlighted by the wide range of pathologies, 

associated with aberrant migration and development of neural crest stem cells in the 

vertebrate body. Although diverse in both symptomatic manifestation and severity, 

these pathologies are grouped together under the term neurocristopathy (Jenson, et 

al., 1992). A wide range of neurocristopathies have been described, including 

neuroendocrine tumours (Rosai, 2011) cardiac defects (Olapoa and Conway, 2012) 

and a range of congenital defects such as Apert Syndrome, CHARGE syndrome, 

Treacher-Collins syndrome and Hirchsprung’s Disease (Wang, et al., 2005; Van De 

Putte, et al., 2003; Trainor, 2010; Henderson and Chaudhry, 2012). 
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Neuroblastoma accounts for approximately 1 in 10 incidences of cancer in children it 

frequently originates in the adrenal glands but can develop from any part of the 

sympathetic nervous system. Other cancers of neural crest origin include 

glioblastoma, Ewing’s sarcoma and various melanomas (Powell et al, 2014). In 

addition to tumours arising because of aberrant prenatal gene expression, cells of 

neural crest origin in adult organisms can de-differentiate to obtain a cancerous 

phenotype. Malignant peripheral nerve sheath tumours (MPNST) arise from 

Schwann cells, typically in heavily enervated organs. Their aetiology is poorly 

understood but is linked to I neurofibromatosis, an inherited disease of the PNS 

indicating a potential connection between MPNST and neural crest development 

(Kaur et al., 2015). 

The aetiology of a number of neurocristopathies has been elucidated or inferred by a 

variety of studies. The majority of cases of Apert Syndrome for example show a 

point mutation where a tryptophan residue replaces the serine residue normally 

found at position 252 in the amino acid chain (S252W) of a receptor for FGF-2, a 

growth factor commonly associated with neural crest formation (Tanimoto, et al., 

2004).  Pax3 has been linked with numerous neural crest associated pathologies such 

as Hirchsprung’s disease and Waardenburg syndrome, acting in accordance with 

sox10 to initialise the proper development of the cells comprising the enteric nervous 

system (Lang, et al., 2000). In addition to this NC related persistent trunk arteriosus, 

a common structural heart defect wherein the aorta and pulmonary artery fail to 

segregate have been linked to aberrant expression of pax3 (Olaopa and Conway, 

2012). Cardiac defects arising from neural crest related tissues are not limited to the 

structural. In murine systems deficiencies in the cell signalling protein tyrosine 

phosphatase 2 lead to the incomplete innervation of the heart by NC derived 
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sympathetic neurons and irregularities in the heartbeat, specifically bradycardia 

(Lajiness et al, 2014).  

CHARGE syndrome was only recently (2010) characterised as a neurocristopathy, 

although due to the nature of the symptoms it presents a connection to the neural 

crest was previously suspected. Sufferers manifest cranio-facial deformities, heart 

defects and deafness (Avery et al, 2014). Little is known of the precise aetiology of 

CHARGE syndrome but a connection to reduced expression of the CHD7 gene has 

been observed. In the murine model, the Whirligig mouse shows symptoms similar 

to CHARGE syndrome in heterozygous animals as a result of a mutation inserting a 

premature stop codon in CHD7; homozygous Whirligig mice display embryonic 

lethality (Schulz et al, 2014).  

Although the precise aetiology of neuroblastoma remains unclear, genome-wide 

association studies have identified a number of single nucleotide polymorphisms 

(SNPs) in various genes that appear to be linked with susceptibility and clinical 

outcomes. For instance around 10% of neuroblastoma cases present a missense 

polymorphism in Caspase8 (C > G) leading to the substitution of aspartic acid 302 

with histidine. This polymorphism adjusts apoptotic behaviour in affected cells and 

is linked to metastatic tumour formation and poor clinical outcomes (Rihani et al, 

2014). Other analyses have shown potential roles for polymorphisms in the 

Interleukin-3, BARD1 and CLF1 genes leading to aberrant developmental and 

apoptotic pathways (Lee et al, 2014). 

Neuroblastomas are known to express the pluripotency-associated gene Oct-4, which 

co-operates with the MYCN oncogene to regulate expression of NCYM. Together 

these genes promote self-renewal and avoidance of apoptotic pathways in 
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oncogenesis. The expression of these genes in neuroblastoma cells is associated with 

poor clinical outcomes (Kaneko et al, 2015). Neuroblastoma cells expressing high 

levels of MYCN additionally express increased levels of the putative oncogenic 

protein Jarid1B. Jarid1B expressing neuroblastoma cells show a more stem cell like 

phenotype and exhibit increased invasive properties and chemoresistance than those 

with lower expression levels although whether this is linked to expression of Oct-4 is 

unknown at present (Kuo et al, 2015). 

 Upregulation in MYCN expression is a common marker in neuroblastoma cases 

although it is not ubiquitous (Huang and Weiss, 2013). This gene is invariably 

expressed in the developing neural crest and continued transcription is noted during 

neurulation (Powell et al, 2014). In cases of neuroblastoma in which MYCN 

expression is not altered it has been demonstrated that the regulatory gene Dicer1 is 

targeted and knocked down following the upregulation of the miR-192 gene 

(Feinburg-Gorenshtein et al, 2013). 
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1.3 Factors Influencing Neural Crest Development 

1.3.1 Growth Factors 

A tightly controlled program of differentiation is required to recapitulate specific cell 

types, a stringent series of signal transduction pathways must be activated at the 

correct time with the appropriate application of cytokines and growth factors both in 

vitro and in vivo. The incorrect regulation of these processes is the causal factor for 

numerous birth defects and congenital diseases such as NC associated tumours and 

birth defects such as Waardenburg syndrome (Etchevers et al, 2006; Rao and Kühl, 

2010).  

Numerous signals, transcriptional activation, and repression events converge in the 

forming neural crest, both from the ectoderm and from the underlying mesoderm. 

Members of the fibroblast growth factor (FGF) especially FGF-2 are ubiquitously 

expressed in NC development in vivo (Basch and Bronner-Fraser, 2006; Marinez-

Morales, et al., 2011). 

FGF-2 is a small (approximately 18 kDa) protein, associated with the development 

of numerous organs and systems, including neural crest derived lineages. FGF-2 is a 

critical component of many morphogenetic and developmental pathways and has 

been shown to interact with four specific fibroblast growth factor receptors (FGFRs) 

numbered FGFR1-4 (Figure 1.3) in interactions mediated by the heperan sulphate 

proteoglycan (Lanner, et al., 2010). All these receptors are positioned on the surface 

of the cell membrane and all share a transmembrane domain facilitating FGF-2s role 

in cell signalling (Bikfalvi et al, 1997; Plotnikov et al, 2000). The interaction of 

FGF-2 with its receptors ultimately results in signal transduction through activation 
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of tyrosine kinase receptors, linking FGF-2 strongly with mammalian organogenesis 

(De Moerlooze et al., 2000) 

 

 

Figure 1.3. Crystal structure of FGF-2. Fibroblast growth factor (right) interacting 

with FGF-2 receptor (left) (http://www.ncbi.nlm.nih.gov accessed 24-9-12). Different 

colours denote different areas of tertiary structure that comprise the subunits of the 

protein. 

 

FGF-2 has been proposed to play a role in the survival and proliferation of 

prospective NCCs, due to its ability to initiate mitosis with studies in quail and 

mouse models showing it to be indispensable in this regard  (Sailer et al., 2005). 

Although of fundamental importance to neural crest differentiation FGF-2 does not 

act alone. Other proteins are known to exert an influence on both neural crest 

specification and migration, most notably members of the bone morphogenetic 

protein family of morphogens (Basch and Bronner-Fraser, 2006). 
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1.3.2 Bone Morphogenetic Protein-4 

Neural crest specification is further governed by the presence of factors promoting or 

inhibiting transcription, either directly or through convoluted pathways. Bone 

morphogenetic protein 4 (BMP-4) is known to be selectively antagonistic towards 

neurulation. Canonically, BMP-4 exerts its influence through the SMAD signalling 

pathway (Figure 1.4).  

 

     
 

  
 

 
 

   

 

 

 

 

        

    
 

   

 

  
 

 

   

        
 

   
 

   

        

        

    
 

   

        

   
 

    

        

    
 

 

 
 
  

      

 
 
  

        
        
        

Figure 1.4. Canonical BMP signalling. BMP-4 forms a complex with a type I 

trans-membrane receptor (cut out circle) which phosphorylates a type II receptor 

(circle). The type II receptor phosphorylates cytoplasm bound SMAD proteins (1, 5 

and 8) which form a complex, migrate to the nucleus and interact with DNA, 

affecting gene transcription (Xu, et al, 2008). 
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A BMP-4 concentration gradient is established across the developing ectoderm. The 

neural tube and subsequently the central nervous system are established from those 

areas of the ectoderm exposed to the least amount of BMP-4. Regions exposed to 

higher amounts, generate the non-neural ectoderm, while a median dose results in 

neural crest lineage specification. Exposure to BMP-4 across the ectoderm is 

difficult to accurately measure in vivo, but in vitro concentrations of 10 ng ml-1 have 

been shown to be sufficient to prevent neurulation and promote neural crest lineage 

(Aihara et al., 2010).  The exact mechanisms controlling the establishment of this 

concentration gradient are unclear but the BMP-4 antagonist noggin may provide a 

role. (Marchant, et al., 1999; Barth, et al., 1999; Milet, et al., 2013). Known targets 

of BMP-4 include Sonic Hedgehog (Shh), a gene that acts in a mutually antagonistic 

manner to BMPs to establish dorso-ventral differentiation patterns. Shh expression in 

the emerging ectoderm is reciprocal to BMP-4 expression (Figure 1.5) (Leim, et al., 

1995; Murgatroyd and Spengler, 2014). 

 

 
 

Figure 1.5 Patterns of expression of pro and anti-neurulation genes across the 

developing ectoderm. Sonic hedgehog and bone morphogenetic protein-4 are 

expressed in reciprocal concentration gradients over the developing ectoderm. 
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1.3.3 Neural Crest Specification Factors 

In the formation of somatic tissues, a network of transcriptional activation and 

repression must converge. This is further complicated in the case of the neural crest 

by the array of somatic cell fates possible and the rigours of migration. Numerous 

transcriptional events are observed in initiation of differentiation, migration and final 

morphogenesis. The sex determining (Sry) high mobility group-box proteins (Sox) 

are a family of transcription factors expressed in a variety of vertebrate tissues. Sox8, 

9, 10 and 11 are expressed at the neural fold during gastrulation although only Sox9 

and 10 are heralded as neural crest specifiers. Sox9 plays multiple roles in the 

emergence of the neural crest. At gastrulation, its expression is observed to cause 

preferential differentiation of cells towards a neural crest rather than a neural 

phenotype. Sox9 is also expressed in migratory NCCs and its post-migratory 

expression causes developmental bias towards glial and melanocyte lineages 

(Cheung and Briscoe, 2003; Gong, 2014). Deletion of Sox10 results in severe defects 

in the PNS in murine models (Wegner and Stolt, 2005), expression of this gene 

being essential for the correct formation of myelinating Schwann cells (Glenn and 

Talbot, 2013). In the developing mouse embryo expression of Sox genes is observed 

3 to 5 days after the induction of FoxD3 (Hong and Saint-Jeannet, 2005).  

FoxD3 is a member of the winged helix transcription factor family and has been 

shown to play a key role in the fate determination of nascent neural crest stem cells 

as well as in the regulation of their migration, through the developing organism. 

Recent research suggests that FoxD3 influences migration through the 

downregulation of Tetraspanin18, a protein regulating the expression of cadherins 

responsible for cell-cell adhesion (Fairchild, et al., 2014). FoxD3 is implicated in 



27 
 

numerous roles during neural crest formation; it promotes lineage selection in neural 

precursors, inducing a neural crest lineage and causes preferential differentiation of 

neural cell types at the expense of melanocytes. FoxD3 expression is anti-

proliferative; cells showing high levels of expression exit the cell cycle and cease 

dividing. Aberrant downregulation of FoxD3 is associated with neuroblastoma and 

lung cancer (Wang et al., 2015). 

 The Wnt protein family has a well-documented association with neural crest 

induction acting in concert with genes such as FTO and AWP1 in distinct signalling 

pathways involving the activation of β-catenin (canonical) and increased calcium ion 

output from the endoplasmic reticulum (non-canonical). Extracellular Wnt molecules 

complex with trans-membrane receptors and initiate a complex cascade of 

interactions, which occur in both the cytoplasm and nucleus. Loss of function in the 

non-canonical pathway has been shown to give rise to craniofacial deformities and 

downregulation of neural crest marker Sox10 in zebrafish (Calisto, et al., 2005; Seo, 

et al., 2013; Osborn, et al., 2014). In both canonical and non-canonical pathways, 

Wnt interacts with the Frizzled transmembrane protein initiating a number of cellular 

cascade reactions. These cascades control diverse cellular processes, such as 

cytoskeleton rearrangement and inhibition and promotion of gene expression (Rao 

and Kühl, 2010). Wnt signalling is implicated in the adhesion of pre-migratory 

NCCs through activation of the frizzled-4 receptor, which subsequently binds to 

ADAM13, a metalloprotease that degrades cell-cell junction molecules reducing its 

ability to cleave these molecules and therefore acting in a refractory manner to 

migration (Abbruzzese et al., 2015) 

The complicated hierarchy of transcriptional activation and repression in the 

developing neural crest remains obscure. There is evidence to suggest that gene 
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regulation is highly conserved between species exhibiting the neural crest (Bronner 

and LeDouarin, 2011).  Insights into the mechanisms governing the epithelial to 

mesenchymal transition of NCCs and their subsequent migration offer the prospect 

of greater understanding of vertebrate development. In addition, the invasive, 

proliferative nature of migrating NCCs infer potential value modelling the 

characteristics of metastatic tumours (Dupin and Sommer, 2012). The Wnt signalling 

pathway that is closely associated with neural crest development, has been observed 

to active in the propagation of some types of mammary cancer (Cleary, et al., 2014). 

Tumour metastasis and the epithelial to mesenchymal transition undergone by neural 

crest stem cells are homologous events sharing many similarities in gene expression 

and cellular interactions. Activation of neural crest specifiers associated with the 

EMT is symptomatic of numerous cancers and cancer cells and NCCs show 

cadhedrin alteration and changes in polarity facilitating migration and invasion of 

disparate tissues (Powell, et al., 2014). 

The migration and survival of neural crest stem cells, through diverse tissue types in 

the developing organism is dependent on an exacting epigenetic program. 

Aberrations in this program are causative of neurocrisopathies such as Hirchsprung’s 

disease in which increased methylation levels of the MeCP2 gene has been 

hypothesised to perturb the proliferation of neural crest stem cells fated to form 

enteric ganglia in the intestine (Zhou, et al., 2013). The epithelial to mesenchymal 

transition (EMT) of NCCs is also underpinned by a delicately balanced series of 

regulatory cues and responses. E-Cadherin expression is repressed by the binding of 

Snail2 to regulatory elements in its gene-coding region. Snail2 is a known target of 

the canonical Wnt signalling pathway suggesting a link between Wnt and the EMT 

(Stemmer, et al., 2008; Schiffmacher, et al., 2014).  
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Experiments involving knockdown of CMYB, a transcription factor more commonly 

associated with the haematopoietic stem cell lineage have allowed some elucidation 

of neural crest differentiation and propagation. Disruption of CMYB expression has 

been shown to repress expression of neural crest associated genes such as Slug. 

However, expression of Sox9 remains constant in the presence or absence of CMYB 

suggesting that it exerts its influence upstream of the Slug but downstream of Sox9 

(Betancour, et al., 2014).  Transcription factors such as Pax3 and Zic1 are known to 

be essential for specification of NCCs at the formation of the neural fold as well as 

migration and fate determination while other genes such as AP2 are expressed only 

transiently during initial NC differentiation (Plouhinec, et al., 2014). Pax3 and Zic1 

have been shown to act synergistically in specifying neural crest fate and treatment 

with these factors alone is sufficient to promote the expression of NC associated 

markers such as Twist, Sox9 and Snail2 as well as novel gene targets (Chang-Joon, et 

al., 2014). Pax3 is a transcription factor containing both  paired and homeobox 

domain DNA recognition sites, complexing with a TAATC motif on the non-coding 

DNA strand and is critical in the development of mammalian nervous systems acting 

in accordance with Sox10 to initialise the proper development and migration of 

neural progenitors (Lang, et al., 2000; Birrane et al., 2009). The presence of Pax3 in 

tissues however is indicative, not definitive of a neural crest lineage. Pax3 and Zic1 

interact with Gli2 in the formation of non-neural crest derived muscle (such as 

skeletal muscle) (Himada, et al., 2013). Like Pax3 Zic1 acts as a transcription factor, 

it is a member of the zinc finger family of protein, which are characterised by the 

presence of a stabilising zinc molecule in the DNA binding domain. The expression 

of the Zic1 gene is essential for proper neural development during organogenesis and 

plays an active role in the differentiation of neural crest stem cells, possibly 
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interacting with the Sonic Hedgehog signalling pathway (Aruga, 2004; Ali et al., 

2012). Although levels of Shh are expressed in lower levels in the neural crest than 

the central nervous system, it is nonetheless essential for correct formation of the 

enteric nervous system. Ablation of Shh in mice leads to abnormal patterning in the 

neurons colonising the small intestine and stomach (Liu and Ngan, 2014). Hedgehog 

signalling is thought to have an essential role in both the specification and 

proliferation of neurons along the developing gut. 

1.3.4 Epigenetics of Neural Crest Formation 

Underpinning the actions of various signalling pathways and genetic cues associated 

with the formation of the neural crest is a concomitant array of epigenetic 

modifications (Kim, et al., 2013). Epigenetics is defined as changes in gene 

expression without changes in the underlying genetic code with the most studied and 

ubiquitous form being DNA methylation. In this form of epigenetic modification, a 

methyl group (CH3) binds to the 5-carbon position of the pyrimidine ring of a 

cytosine residue in a reaction mediated by methyltransferase enzymes (Wolffe, et al., 

1999). These cytosine bases are commonly found to be adjacent to guanine residues 

in the promoter regions of genes forming CpG islands in which are found repeating 

CG residues (Herman, et al., 1996). 

Methylation of CpG islands in the promoter regions of genes silences gene 

expression by acting as an antagonist to the acetylation of histone proteins – an 

epigenetic mark associated with the initiation of transcription. The exact mechanisms 

involved in gene silencing by methylation are largely unknown and methylation of 

CpG islands does not always result in transcriptional repression. Various 

mechanisms have been proposed including the occlusion of DNA binding sites from 
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the transcriptional machinery by methyl groups or the recruitment of methyl specific 

DNA binding proteins that obfuscate these sites (Curradi, et al., 2002). Little data is 

available pertaining to methylation patterns in the developing neural crest perhaps 

owing to its transient nature in vivo (Dupin and Sommer, 2012). Recent research has 

implicated DNA methyltransferase 3B (DNMT3B) as a key factor regulating 

migration of cranial neural crest in chick embryos through methylation of the 

promoter region of Sox10. Loss of function of DNMT3B caused excessive migration 

of neural crest and neural tube cells in vivo and subsequent craniofacial 

abnormalities. DNMT3B was therefore implied in the cessation of migration through 

repression of Sox10. Similar experiments in mice however showed less extreme 

effects suggesting either redundancy in the murine epigenetic program or simply 

differences in expression profiles between species (Hu et al., 2014; Hu et al., 2015). 

The spatial arrangement of DNA within the cell is a further epigenetic mark that 

influences gene expression, the combined length of the complete DNA sequence 

contained within a nucleus of approximately 5µm diameter is almost 2 meters. It is 

logical therefore, that DNA is stored in a highly compacted manner, tightly bound to 

histone proteins in a structure termed chromatin. Chromatin exists in two distinct 

forms, euchromatin and heterochromatin. Euchromatin has a more open structure 

allowing access to the cellular machinery responsible for transcription while 

heterochromatin by comparison has a denser structure that prevents the access of 

transcription factors and impedes gene expression. Enzymatic processes can mediate 

chromatin structure. Histone acetyl transferases (HAT) catalyse the addition of an 

acetyl group to a lysine residue in the histone proteins while histone deacetylases 

(HDACs) reverse this reaction. Highly acetylated histone structures are associated 

with euchromatin and permissive gene expression while low levels of histone 
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acetylation are indicative of transcriptional silencing and a heterochromatin 

structure. The mechanisms by which histone acetylation regulates chromatin 

structure is the subject of some debate. Originally it was theorised that acetylation 

neutralised the positively charged lysine resulting in a change in the interactions with 

the negatively charged phosphate backbone of DNA. Recent research however, 

suggests acetylated histones recruit proteins involved with transcriptional activation. 

(Wu, 1997; Choudhary et al, 2009; Ho and Crabtree, 2010). Methylation of cytosine 

residues appears to act in opposition to the acetylation of histone proteins involved in 

chromatin assembly. Histones packed with artificially methylated DNA have been 

shown to be hypo-acetylated (Drendall, et al., 2010). 

Stem cell chromatin is known to be loosely packed. This facilitates transcription at 

some level of most of the genes comprising the genome of a particular organism. 

Differentiation and cell fate restriction is accompanied by remodelling of the 

chromatin structure mediated by remodelling proteins (Gu et al, 2010). The 

Polycomb group (PcG) group proteins are associated with chromatin modelling in 

both embryonic stem cells and the neural crest. Polycomb repressive complex 2 

(PRC2) consists of four proteins in the mouse, Suz12, Eed, Ezh2 and RbAp48. This 

protein complex is implicated in the methylation of histone proteins leading to 

repression of gene expression although in some cases it can interact with histones to 

promote expression. In Xenopus knockdown of the Ezh2 or Snail2 genes led to 

reduced numbers of cells expressing neural crest markers but did not entirely prevent 

neural crest specification. Interactions between Snail2 and Ezh2 have been observed 

in the promoter region of E-cadherin reducing expression during delamination 

although not in early specification (Tien et al, 2015). Interestingly p53 is known to 

downregulate Snail expression during epithelial to mesenchymal transition (section 
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1.23) and p53 ablation reduces migration of neural crest derivatives in mice (section 

1.26). These data, taken together suggest a role in the modulation of E-Cadherin 

expression during EMT for all three genes through epigenetic interactions with the 

promoter region and one another. The Snail genes have further been shown to 

interact with the methyltransferase enzyme NSD-3 as have FoxD3, Sox9, and Sox10. 

With the exception of Sox10 however, these interactions are more complex than 

simple methylation, leading to repression of expression and the mechanisms of 

interaction with the remaining genes are unclear. It was observed in chick embryos 

that inhibition of NSD-3 resulted in failure of migration in developed NCCs 

(Jacques-Fricke and Gammill, 2014).  

Other important chromatin re-modelling proteins in the neural crest are 

chromodomain helicase DNA binding protein 7 (CHD7) and SWItch/Sucrose Non 

Fermentable B (SWI/SNF-B). Together these proteins act to influence both the 

expression of genes associated with neural crest specification, such as p75, and act 

synergistically with the BMP signalling pathway to maintain the multipotent state of 

neural crest stem cells (Fujita et al, 2014). In vivo, subjects lacking the CHD7 gene 

show numerous defects in neural crest derived tissues manifesting as craniofacial 

deformities and abnormal cardiac muscle development. Studies in Xenopus show 

that in CHD7 knockout embryos neural crest tissue forms, as determined by the 

presence of specifier genes such as Pax3 and Zic1, but fails to migrate (Bae et al., 

2014). As mentioned above (section 1.2.6) CHD7 deficits are linked with the 

neurocristopathy CHARGE syndrome. Recent research has shown that the CHD7 

protein binds to the promoter region of the tumour-suppressor gene p53 ablating its 

expression. Dysfunction in the CDH7 gene disrupted the formation of these 

complexes, causing overexpression of p53 in mouse models. NCCs in affected 
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animals proliferated less and showed increased propensity to exit the cell cycle and 

undergo apoptosis. Mice heterozygous for CHD7 knockdown expressed symptoms 

characteristic of CHARGE syndrome while double knockout was embryonic lethal. 

These data suggest that CHD7 may have a role in the proliferation and rapid 

expansion of the neural crest during development (Van Nostrand et al, 2015).   

A multitude of post-translational histone modifications are involved in the 

specification and differentiation of the neural crest as well as in its subsequent 

delamination and migration, amongst them phosphorylation and ubiquitination. 

Although only the classical marks of  acetylation and methylation have been studied 

in depth it is hypothesised that other post-translational alterations to histone structure 

act to recruit target proteins triggering the activation or silencing of specific genes 

(Strobl—Mazzulla and Bronner, 2013). 

1.3.5 Neural Crest Plasticity 

It has been a long held paradigm that neural crest stem cells undergo fate 

determination before their migration from the neural fold (Etchevers, 2006). 

However although differentiation is strictly and narrowly controlled according to 

position along the rostra-caudal axis some populations of neural crest derived 

somatic cells still retain plasticity. Neural crest derived cells from the skin, inner ear 

and dorsal root ganglia were isolated, those expressing NC marker Sox10 but not 

positive for CD117 were able to be differentiated into a variety of NC derived cell 

types while those positive for Sox10/CD117 were lineage restricted (Motohashi, et 

al., 2013). Schwann cell precursors have been shown to undergo partial 

dedifferentiation and give rise to melanocytes (Kaucka and Ademakyko, 2014). 

Further differentiation into somatic cell types has been shown to be dependent on 
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Notch signalling as well as the action of neuregulin1. These data, taken together 

suggest a complex array of signalling that is partly dependent on microenvironment 

of the cells as well as intrinsic genetic cues (Kipanyula, et al., 2014). The 

neurotrophic factor NT-3 has been implicated in chemotaxis providing a 

concentration gradient up which cranio-facial NCCs migrate (Zanin, et al., 2013). 

Signalling molecules and transcription factors must combine to provide a complex 

network of appropriate cues both spatially and temporally not only to facilitate 

differentiation down the appropriate lineages but to allow survival and proliferation 

of migrating cells (Garcez, et al., 2014). Genes associated with the formation of the 

neural crest have, in recent years, been divided into two categories. Neural crest 

specifiers (such as Slug, Snail and the Sox family) are downstream targets of neural 

plate specifiers such as Pax3 and Zic1, which are responsible for initiating the signal 

transduction pathways governing differentiation and migration of NCCs (Ono, et al., 

2014).  
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1.4 Characterisation of Embryonic and Neural Crest Stem Cells 

1.4.1 Embryonic Stem Cells 

The characteristics of cells in any state of differentiation can be carried out by the 

detection of biomarkers associated with that state. In the case of embryonic stem 

cells, the presence of genes such as Oct-4 (also termed Pou5f1) and Nanog in the 

transcriptome has been used to identify cells in a pluripotent state (Scheubert, et al., 

2011). Oct-4 and Nanog are both transcription factor expressed in the early stages of 

embryonic development and disruption of the expression of either one has been 

shown to result in differentiation of cultured cells suggesting that these factors work 

in tandem, playing a key role in the maintenance of pluripotency. Oct-4 and Nanog 

are both able to bind to numerous sites in the mammalian genome, silencing or 

activating genes as necessary to maintain a pluripotent state (Okumura-Nakanshini, 

et al., 2004; Loh, et al., 2006; Takao, et al., 2007). In addition to Oct-4 and Nanog, 

certain cell surface markers are uniquely expressed by embryonic stem cells. In 

murine systems these include stage-specific embryonic antigen 1 (SSEA-1) (Gu, et 

al., 2010), a carbohydrate closely associated with the facilitation of cellular adhesion 

(Yoshida-Noro, et al., 1999). SSEA-1 is commonly used as a marker of 

pluripotency, especially when co-expressed with proteomic indicators such as Oct-4 

(Baharvnd, et al., 2007). The location of SSEA-1 on the cell surface has enabled the 

isolation of murine embryonic stem cells through techniques such as 

immunomagnetic separation. In this technique anti SSEA-1 antibodies are bound to 

magnetic microbeads, which conjugate to SSEA-1, presenting cells. The cell 

suspension is then passed through a column placed in a magnetic field. The beads are 
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retained by the column while unlabelled cells pass through, effectively isolating 

populations of SSEA-1 positive (pluripotent) cells (Ďurčová, et al., 1998). 

The E14 murine embryonic stem cell line was established in the mid 1980’s from the 

mouse strain 129/ola. The pluripotency of the cell line was established in 

experiments in which somatic cell nuclear transfer was used to transfer E14 nuclei 

into enucleated mouse oocytes. After implantation into a surrogate these transfected 

oocytes were able to produce viable offspring (Figure 1.6) indicating the ability of 

the cell line to form all tissues of the body (Wakayama, 1999). 

 

Figure 1.6. Hooper. A representative mouse cloned from E14 nuclei implanted into 

enucleated murine oocytes (Wakayama, 1999). The generation of a viable animal from 

this stem cell line is indicative of a pluripotent nature. 

 

1.4.2 Neural Crest Stem Cells 

In a manner similar to cells maintained in an embryonic state a number of 

biomarkers are associated with neural crest stem cells. Initial differentiation into 

neuronal precursors can be verified by the presence of the intermediate filament 

protein Nestin (Pruszak et al, 2009). The low affinity nerve growth factor receptor 

p75 is a transmembrane protein closely associated with neurotrophin mediated signal 

transduction during cell differentiation (Stucky and Koltzenburg, 1997) and has been 
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used as a biomarker for neural crest stem cell in both murine and human models  

(Wong, et al., 2006). Intracellular molecular markers have also been described; zic1, 

musashi-1, sox9 and pax3 showing significant levels of upregulation in 

differentiating NCCs while other genes such as Slug, Snail and Twist are also 

quantifiably upregulated although to a lesser extent (Aihara et al., 2010). Finally, the 

identity of neural crest stem cells can be confirmed by their directed differentiation 

into cells known to be of neural crest origin such as peripheral neurons, Schwann 

cells, neural glia and smooth muscle cells, the successful induction of these cell 

types being indicative of neural crest progenitors (Lee, et al., 2008). 

Ret is a tyrosine kinase which is expressed in post - but not pre-migratory NCCs. It 

is exclusive to cells derived from the neural crest and has found use as a selective 

marker to isolate neuronal precursors and other cells. A network of regulatory and 

transcription factors associated with neural crest specification conjoin to induce the 

expression of Ret (Figure 1.7). 

 

 

 

 

 

Figure 1.7. Gene regulatory networks associated with the expression of Ret. 

Dotted lines reresent interactions; arrows represet induction of expression. 

Ret expression  is considered essen tial for the innervation of tissues. For example 

neuralation is severly perturbed most markedly in the gut in Ret knockout mice and 

lethality ensues shortly after birth (Lo and Anderson, 1995; Anderson et al, 2006). 

Upon actiation by extracellular cues Ret stimulates the initiation of intracellular 
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signalling pathways such as the MAP kinase pathway which is required for the 

differentiation of neural crest derived cells (Goding, 2000; Ibáñez, 2013). Expression 

profiles of  Ret through developing neural crest tissues may be dependent on the 

expression of the Homeobox  (Hox) family of transcription factors consisting of a 

number (39 genes in four groups in mammals) of functionally redundant proteins 

controlling mammalian tissue patterning along the rostro-caudal axis. Hox genes 

have been identified as cofactors for BMP signaling and bind to and activate 

transcription of both Sox9 and Sox10. The diverse Hox genes show overlapping 

patterns of expression across the vagal, trunk and sacral neural crest indicating that 

they may have a role in somatic fate determination which is dependent on placement 

along the anterior to posterior axis (Kam and Lui, 2015).  
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1.5 Characterisation of Somatic Cells Derived from the Neural Crest 

1.5.1 Neural Progenitors 

During differentiation and throughout the life of an organism a pool of neuronal 

progenitor cells emerges. Within the PNS, these progenitors are neural crest derived 

cells capable of forming sensory and autonomic neurons as well as glial cells. Neural 

progenitors are distinguished by the continued expression of pluripotency makers 

such as Nanog (Blake and Ziman, 2013) as well as certain exclusive proteins. Nestin 

is an intermediate filament protein expressed in neuronal precursors in both the 

central and peripheral nervous systems. Although there is little knowledge of its 

precise functions in part due to the short time period in which it is expressed it is 

commonly used as a biomarker for rapidly dividing migratory cells in both the PNS 

and CNS (Ramm, et al., 2009; Aihara et al., 2010).  

1.5.2 Peripheral Neurons 

The wide array of cell types of neural crest origin that make up the developing 

organism presents a challenge for their characterisation. In gross terms, the PNS can 

be divided into two distinct components. The somatic nervous system comprises 

neurons responsible for movement and sensory input while the autonomic nervous 

system regulates homeostasis and bodily response to stress (sympathetic) as well as 

controlling myogenic contractions such as those in the intestine (parasympathetic). 

(Swenson, 2006). All peripheral neurons function to transmit input from a sensor to 

an effector via the activation of action potentials. An action potential is generated 

when a neurons stimulus threshold is reached causing sodium ion (Na+) channels to 

open in the cell membrane. This results in an influx of Na+ into the cytosol changing 
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the polarity from negative to positive and allowing the conduction of the nerve 

impulse. Potassium ion (K+) channels open less than one millisecond after the 

opening of the Na+ channels restoring the cell to its original polarity. The passing 

nerve impulse activates the adjacent ion channels allowing the action potential to 

proceed along the axon. After the impulse has been propagated, the adenosine 

triphosphate ATP driven sodium potassium pump restores the ionic balance of the 

cytosol, transporting K+ into the cell and Na+ back into the extracellular fluid. Ion 

channels are found distributed along the axons of neurons either evenly in the case of 

unmyelinated neurons or at gaps in the myelin sheath (Nodes of Ranvier) in the case 

of myelinated neurons. This leads to two variants of impulse propagation, cable in 

which adjacent ion channels are opened sequentially and saltatory in which distal 

channels are activated causing the impulse to jump from node to node. Action 

potentials are initiated by a number of stimuli, for example the input from a 

specialised sensory organ or the endogenous signal generated by cells within 

myogenic structures such as the heart (Tortora and Derrickson, 2006; Purves et al, 

2012). 

Within the Somatic nervous system distinct subpopulations of neurons can be found, 

large body sensory neurons, responsible for proprioception differ morphologically 

and in gene expression profiles from small cell sensory neurons involved in 

nocioception (Table 1.2) (Raible and Ungos, 2006). 
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Table 1.2. Differential gene expression in large and small cell body sensory 

neurons. 

 Gene Large cell body sensory neuron Small cell body sensory neuron 

TrkA   + 

TrkC +  

Brn3a* + + 

Runx1   + 

Runx3 +   

 

The Trk family of tropomyosin-related kinases derive their name from the oncogene 

that facilitated the identification of the first discovered isoform TrkA. Subsequently 

isoforms TrkB and TrkC were isolated and characterised. Each isoform interacts 

preferentially with specific neurotrophin receptors although all are able to complex 

with p75 (Brahimi, et al., 2014). TrkA has been shown to form complexes with 

nerve growth factor (NGF) while TrkB and TrkC interact with brain-derived growth 

factor (BDGF) and neurotrophin-3 (NT-3) respectively. The neurotrophins, through 

ligand interactions with Trk receptors stimulate cellular processes such as dendrite 

growth and axon formation (Huang and Reichardt, 2003).  

The Runt family of transcription factors are associated with specific sensory 

neuronal fates; Runx1 has been shown to be expressed in nocioceptive neurons 

concurrently with Ret, a neurotrophin receptor presented in neural crest derived cells 

after the cessation of transiently expressed TrkA (Chen, et al., 2006). In 

embryogenesis, Runx1 is indispensable in the proper innervation of outlying tissues, 

mice deficient for this gene show marked decreases in sensory neuronal presence in 

the hind paw (Yang, et al., 2013). Sensory neurons engaged in proprioception 

require the activity of Runx3, which is co-expressed with TrKC. Experiments with 

Runx3 null mice have shown that they are characterised by limb ataxia, which is due 
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to disrupted connections between the spinal cord and motor neurons (Levanon, et al., 

2002). Brn3a is a transcription factor expressed in the majority of cells in the sensory 

nervous system. The Runx factors are known downstream targets of this gene. Brn3a 

knockout mice express reduced axon growth and post-natal lethality inferring its role 

in neuronal development. Together, Brn3a and the Runt gene family repress the 

expression of TrkB facilitating proliferation of the TrkA and C responsive sensory 

neurons (Dykes et al, 2010). 

Enteric neurons present a similar challenge in differentiation and characterisation to 

sensory neurons due to their diverse phenotypes. Different neurons in the enteric 

nervous target different cell types through a variety of neurotransmitters such as 

acetylcholine and noradrenaline. The successful recapitulation of specific peripheral 

neuron types from embryonic stem cells is dependent on their isolation from a pool 

of potentially homogenous cells (Anderson, 2006). Studies in which peripheral 

neurons were generated from embryonic stem cells commonly use the presence of 

the intermediate filament protein peripherin as a biomarker (Aihara, et al., 2010; 

Kreitzer, et al., 2013). Peripherin localisation has been detected in both the 

cytoplasm and nuclei of neurons throughout the PNS as well as in selected regions of 

the central nervous system – most notably in those parts adjacent to the dorsal root 

ganglia. The presence of peripherin therefore whilst strongly indicative of peripheral 

neuron generation is not alone sufficient evidence and co-expression of biomarkers 

such as S-100 in ganglia is required for a more accurate classification (Eriksson, et 

al., 2008; Holland, et al., 2010). More robust characterisation would include 

functional analyses. Without evidence of the ability to transmit action potentials in 

putative differentiated neurons, for example it may be argued that differentiation 

protocols may differ from those observed in vivo and naturally, functionality must be 
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ensured if differentiation protocols are to eventually result in tissue replacement 

therapies.  

1.5.3 Schwann Cells 

Schwann cells are the glial cells of the PNS; they are found in close proximity with 

peripheral neurons and develop in several functional and morphological variants. 

Myelinating Schwann cells (MSCs) enshroud the axons of single neurons, providing 

an insulating sheath, which facilitates the conduction of saltatory action potentials. 

Myelinating Schwann cells can be identified by the presence of myelin protein zero, 

which contributes the major protein content of the myelin sheath (LeBlanc et al, 

2006). Non-myelinating Schwann cells (NMSCs) in contrast to MSCs aid the 

conduction of action potentials via the cable method. They are associated with a 

group of clustered sensory neurons known as a Remak bundle. Perisynaptic 

Schwann cells (PSCs) are localised at the neuromuscular junction. PSCs detect and 

respond to synaptic activity and possess a greater number of neurotransmitter 

receptors than either MSCs or NMSCs inferring they play a less passive role in the 

conduction of action potentials than MSCs or NMSCs. Satellite cells (SCs) form a 

barrier around peripheral ganglia. They have supportive and maintenance roles, 

mediating the passage of nutrients and neuroactive chemicals to and from the ganglia 

(Auld and Robitaille, 2003; Corfas, et al., 2004; Hanami, 2005).   

A number of factors modulate differentiation of the diverse types of Schwann cells 

from neural precursors. Neuregulin-1 (NGR-1) has been demonstrated to be 

important in directing NCCs to a glial fate and NGR-1 deficient mice have been 

shown to have reduced Schwann cell numbers and be susceptible to early lethality. 

However the exact role of NGR-1 in Schwann cell development remains unknown 
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(Chen, et al., 2006; Taveggla et al., 2006). In murine adult nervous tissue a small 

subset of non-myelinating, Schwann cells express Pax3 as well as Sox2. The 

presence of cells presenting these transcription factors and a pluripotency associated 

gene transcripts in adult tissues is indicative of a pool of potential glioblast cells with 

a potential role in repair and regeneration of damaged neurons (Blake and Ziman, 

2013). 

1.5.4 Cardiac Smooth Muscle 

The neural crest contributes to a number of essential structures in the developing 

cardiovascular system. The pharyngeal arches, cardiac outflow tract and the great 

arteries (aorta and pulmonary) all feature smooth muscle cells derived from neural 

crest (Wiszniak and Schwartz, 2014). Colonisation of the emerging vascular system 

is dependent on signals originating from the underlying mesoderm and the 

endoderm. Wide varieties of signals converge on the NCCs both before and during 

migration. Myocardin-related transcription factor B (MRTFB) is necessary for both 

cardiac smooth muscle patterning and subsequent colonisation of outlying vessels. 

Mice lacking (MRTFB) present cardiac abnormalities similar to those described in Di 

George syndrome and a lack of smooth muscle actin positive cells in the aorta (Li et 

al., 2005). Interestingly NCCs populating the outflow tract undergo programmed cell 

death upon completion of septation (Henderson and Chaudhry, 2012). As with the 

PNS, the mechanisms governing neural crest differentiation and population of the 

vascular system is poorly understood. It is clear however that a complex regimen of 

signalling is involved. The apoptosis of NCCs in the outflow tract is further evidence 

of their specialised function in the development of numerous mammalian tissues. 
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1.6 Summary 

Development of the neural crest is a complex and involved process in vertebrate 

development. Although it is known that FGF-2 and BMP-4 are sufficient to derive a 

neural crest phenotype in vitro the precise mechanisms involved are at present poorly 

understood. Experiments have isolated numerous genes required for or assisting both 

patterning of neural crest, epithelial to mesenchymal transition and subsequent 

migration. Derivation and characterisation of neural crest tissues is further 

complicated by their transient nature and the lack of a single biomarker for 

identification. A number of genes are known to specify neural crest phenotype such 

as Pax3. However, this gene is expressed throughout the developing central nervous 

and the skeletal muscle systems and as such, expression of individual biomarkers 

cannot be taken as evidence of neural crest. Other neural crest markers such as Sox9 

are likewise expressed in diverse tissue types. Individual studies have identified 

numerous genes required for proper patterning and / or migration of neural crest 

stem cells but little is known about how these factors interact. Studies are further 

complicated by the use of serum or fibroblasts in some protocols, potentially 

perturbing analyses by the presence or excretion of bioactive factors into media. 

Culture in defined media may offer the scope for analyses of individual compounds 

in differentiation programs and global gene expression analysis may offer new 

insights on key factors and regulatory pathways underpinning neural crest 

development. 

Perhaps the best identifier of neural crest stem cells is their multipotency. The ability 

to differentiate into a wide and diverse selection of tissues such as peripheral nerve 

and smooth muscle, taken together with the expression of neural crest associated 
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genes at key stages in differentiation can be indicative of neural crest lineage 

selection. Current methods to differentiate neural crest derived tissue focus on the 

expression of biomarkers such as peripherin for PNS neurons. Although this marker 

is indicative of a peripheral neuron phenotype, these analyses do not take into 

account functionality. Kreitzer et al. (2013) described functional neural crest stem 

cells by their ability to follow a chemotaxic gradient; however, no analyses beyond 

peripherin expression were carried out on terminally differentiated neurons. 

Verification of functionality would underpin transcriptional and translational 

analyses and aid in the validation of differentiation protocols. 

The presented study aimed to investigate key factors in the specification and 

patterning of the neural crest through the development of serum-free, feeder free 

differentiation protocols. Differentiation into somatic cell lineages was focused on 

the peripheral neuron phenotype and analyses were underpinned by functional 

studies. Global gene expression analysis was used to determine the role of the key 

regulatory factor BMP-4 in the fate determination, proliferative and invasive 

characteristics and adhesion profile of the developing neural crest. 
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1.7 Aims and Objectives 

 Generate neural crest derived peripheral neurons in serum-free, feeder-free 

culture conditions.  

o Initial assessment of neural crest phenotype by analysis of neural crest 

associated markers. Further confirmed by differentiation into somatic 

lineages of peripheral neuron and smooth muscle. 

o Peripheral neuron phenotype assessment by expression of peripherin, 

confirmed with functionality assays. 

 Investigate potential novel key transcriptional factors in the differentiation of 

neural crest derived peripheral neurons. 

o Affymetrix® microarray analysis of differentiating peripheral neurons 

at key stages. 

o Computational analyses to identify potential regulatory elements and 

networks. 

o RT-qPCR, flow cytometry and Western blotting used to confirm 

microarray data. 

 Investigate the role of BMP-4 on the development of the neural crest and 

derivative peripheral neurons. 

o Microarray, RT-qPCR and Western blotting analysis as above in cells 

treated with BMP-4 during differentiation and untreated cells. 

o Inhibition with BMP-4 antagonist Noggin to confirm affects and 

determine potential redundancy. 
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Chapter 2: Materials and Methods 

2.1 Preparation of E14 Complete Media 

Foetal calf serum (FCS) (Lonza, UK) was inactivated by placing in a water bath held 

at 57°C for 30 minutes, inverting every 10 minutes. A 50ml aliquot was removed 

from a bottle of Knockout Dulbecco’s Modified Eagles Medium (KO DMEM) 

(Gibco, UK) and 50 ml of inactivated FCS was added to the remainder. The medium 

was then supplemented with 5 ml 200 mM L-glutamine, 2.5 ml penicillin / 

streptomycin, 5 ml non-essential amino acids (NEAA) (100x) and 0.5 ml of 50 mM 

2-mercaptoethanol (all Sigma, UK) as well as 0.5 ml of leukaemia inhibitory factor 

(LIF) (Millipore, UK).  

2.2 Culture, Maintenance and Storage of E14 Murine Embryonic 

Stem Cells 

0.1% (w/v) gelatin in deionised water (Sigma, UK) was sterilised by autoclaving at 

121°C for 15 minutes. Between 2 and 5 ml was added to NunclonTM surface flasks 

with filter caps (Thermo Fisher Scientific UK) for 25 cm2 and 75 cm2 flasks 

respectively. Initial seeding was carried out in 25 cm2 flasks while established 

cultures were passaged into 75 cm2 flasks. The gelatin-coated flasks were placed on 

a shaker at 100 rpm for 1 hour before excess gelatin was poured off and the flask 

rinsed with Dulbecco’s Phosphate Buffered Saline (DPBS) (Oxoid, UK). For initial 

seeding 1 ml cryotubes frozen in liquid nitrogen were defrosted and the contents 

evenly distributed amongst three flasks. E14 complete media pre-warmed in a 37°C 

water bath was added before inoculated flasks were placed in an Autoflow IR direct 

heat CO2 incubator (Nuaire, US) set to 37°C and 5% CO2. After 24 hours medium 
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was changed by aspirating the original media before washing three times with 

DPBS, fresh media was added (both DPBS and media being pre-warmed at 37°C) 

and the flask was returned to the incubator. Medium was subsequently changed 

every two to three days depending on the rate of cell growth as determined by 

observation under an Axiovert 40 C phase contrast microscope (Zeiss, Germany) and 

noting the colour change from red to orange or yellow. Upon reaching approximately 

70-80% confluence ascertained using a phase contrast microscope cells were either 

passaged into fresh flasks or frozen for storage. 

Before passaging cells cultured in flasks were washed three times in DPBS before 

0.5 ml or 1.5 ml (for 25cm2 and 75 cm2 flasks respectively) of 0.25% trypsin-EDTA 

(Sigma) was added. The flasks were then inoculated at 37°C and inspected under a 

phase contrast microscope. In order to break up any clumps of cells the bottom edge 

of the flask was gently tapped. The trypsinisation reaction was halted with the 

addition of serum containing medium (E14 complete) and the cells were evenly 

distributed into three new flasks before incubation as described above. For freezing 

of cells, 5 ml of dimethylsulphoxide (DMSO) (Sigma) was added to 45 ml of E14 

complete medium. Cells were trypsinised and the reaction was halted as above. The 

cells and media were poured into a sterile universal tube, which was then centrifuged 

at 300g in a Sigma 1k10 centrifuge for 5 minutes before the medium was aspirated. 

A 3 ml volume of E14 medium containing DMSO was added and the pellet re-

suspended by pipetting. A 1 ml volume of cell suspension was added to three sterile 

cryotubes, which were sealed and placed in a -20°C freezer for 1 hour. After this 

time the cryotubes were moved to a -80°C freezer, some cells were removed after 1 

hour and placed in liquid nitrogen for long-term storage while the remainder were 

kept at -80°C. 
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2.3 Magnetic Activated Cell Sorting 

Undifferentiated embryonic stem cells were isolated from spontaneously 

differentiated cells by magnetic activated cell sorting (MACS). Washing buffer was 

prepared by adding 0.5% (w/v) bovine serum albumin (BSA) and 2 mM EDTA to 

sterile DPBS and storing between 2-8°C. Flasks containing cells to be sorted were 

first washed twice in DPBS before 1.5 ml of 0.25% (w/v) trypsin EDTA was added. 

The reaction was allowed to proceed for 5 minutes at 37°C before being stopped by 

the addition of 8 ml of KO DMEM supplemented with 10% (v/v) FCS. A 10 ml 

serological pipette was used to generate a single cell suspension by repeated 

pipetting before transfer to a sterile universal tube. Cell counts were obtained using a 

Bio-Rad TC10 cell counter (Bio-Rad, US). An aliquot of cells was mixed with an 

equal volume of 0.4% (w/v) trypan blue. A 10 μl cell-trypan blue mixture was 

pipetted into the chamber of a counting slide (BioRad), which was inserted into the 

slot of the cell counter. The total cell count per ml and the percentage of live cells 

were recorded. The cell suspension was centrifuged at 300g for 10 minutes and the 

supernatant aspirated before the pellet was re-suspended in 80µl of washing buffer 

per 107 total cells. Magnetic labelling was accomplished by adding 20 µl of anti 

SSEA-1 microbeads (Miltenyi Biotec, UK) per 107 cells. Mixing was achieved by 

pipetting and the beads and cells were incubated for 15 minutes at 2-8°C. After this, 

cells were washed by the addition of 1 ml cold (2-8°C) washing buffer per 107 cells 

before being centrifuged for 10 minutes at 300g. The supernatant was aspirated and 

the cells re-suspended in 500 µl of cold washing buffer. An LS MACS column, 

placed in the magnetic field of a MidiMACS separator (Miltenyi Biotec, UK) was 

prepared prior to use by the addition of 3 ml cold washing buffer. The 500 µl cell 

suspension was carefully added to the column ensuring the tip did not contact the 
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membrane. Unbound cells were removed from the column by the application of three 

washes of 3 ml of cold washing buffer.  The flowthrough, containing unlabelled cells 

and any labelled cells not retained on the column was collected in a sterile universal 

tube. The column was subsequently removed from the magnetic field and held above 

a fresh sterile universal tube, 5 ml of cold buffer was added and a plunger used to 

force the cells from the column. Cell counts were obtained as described above. 

2.4 Differentiation of E14 Murine Stem Cells into Neural Crest Cells 

in Defined Media 

A modified version of Aihara et al.’s (2010) protocol was employed to derive neural 

crest stem cells from embryonic precursors. Plates of 24 wells (Thermo-Fisher 

Scientific) were coated with gelatin (Sigma) as previously described. Magnetically 

sorted SSEA-1 positive cells were seeded at a density of 5 x 103 cells per cm2.  Cells 

were grown in complete media for 2 days (Stage 0). Primary induction media  (PIM) 

was produced by supplementing NMN basal media (Sciencell, UK) with 1x NEAA, 

100µM L-glutamine, 10 µg ml-1 insulin, 5 µg ml-1 transferrin, 10 µM 

mercaptoethanol, 10 µM ethanolamine, 20 nM sodium selenite, 100 ng ml-1 heperan 

sulphate and 10 ng ml-1 FGF-2 (all from Sigma). Secondary induction media (SIM) 

was prepared by supplementing PIM with 8 ng ml-1 BMP-4 (Sigma). Cells were 

treated with PIM for four days (Stage 1). Media was removed, the wells were rinsed 

three times with DPBS buffer and fresh media was added daily. A phase contrast 

microscope was used to obtain photomicrographs of the cells on each day. After 4 

days culture in primary media cells were cultured in SIM for a further 10 days (Stage 

2).  Cells from the same isolated SSEA-1 positive fraction were seeded and cultured 

in complete media as a control.  
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2.5 Secondary Differentiation 

After 10 days culture in SIM cells were cultured in PIM to induce differentiation into 

peripheral neuron lineages. To induce smooth muscle differentiation cells were 

cultured in KODMEM supplemented with 10% FCS, 20 µM L-glutamine, 1x NEAA 

and 50 µM mercaptoethanol (SM media). Analyses were carried out on cells at all 

stages of differentiation (Figure 2.1).  
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Figure 2.1. Process flow of embryonic stem cell differentiation. E14 mouse 

embryonic stem cells were differentiated in three stages into somatic cells. Green ovals 

represent cells at varying stages of differentiation; blue oblongs represent processes. 

All times are additive. Analyses were carried out after completion of each stage and 

at varying time-points throughout stage 2. 
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2.6 RNA extraction 

RNA extraction was carried out using TriSureTM reagent (Bioline). Cells were 

cultured in 6 well plates until approximately 80% confluence was reached. Media 

was aspirated and 1 ml of TriSureTM was added. To ensure complete dissolution of 

the nucleoprotein complex cells were incubated for 15 minutes at room temperature. 

Cell lysates were pipetted into eppendorf tubes, 0.2 ml of chloroform was added, 

tubes were shaken for 15 seconds and left to stand at room temperature for 15 

minutes. Phase separation was carried out by centrifuging for 15 minutes at 12000g 

at a temperature of 4°C. The RNA-containing aqueous phase was pipetted into fresh 

Eppendorf tubes taking care not to disturb the DNA containing interphase. RNA was 

precipitated by adding 0.5 ml of cold isopropanol before the tubes were stood for 10 

minutes at room temperature.  Tubes were centrifuged at 12000g for 10 minutes and 

the liquid phase was aspirated taking care not to disturb pelleted RNA. RNA pellets 

were dissolved in 30 µl of nuclease free water and stored at -80°C for up to 12 

months. Cells were differentiated in three stages. During stage-2 of differentiation, 

cells were cultured in SIM to drive neural crest differentiation. Control cells were 

cultured in PIM. RNA was extracted at each stage and at the start (after 1 hour), 

middle (after 5 days) and end (after 10 days) of stage 2. 

2.7 Quantification of Nucleic Acids 

Quantification extracted RNA was carried out using a Nanodrop 2000 (Thermo-

Fisher Scientific). The nucleic acid tab was selected and RNA chosen from the drop-

down menu. A blank reading was obtained by placing 1 µl of nuclease free water on 

the pedestal and selecting blank. The pedestal was wiped with a lens tissue, 1 µl of 

each sample was added, and the measure button selected. The absorbance readings at 
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260 and 280 nm were recorded and the ratio (260:280) calculated. Concentration of 

RNA acids in ng µl-1 were determined by multiplying absorbance at 260 nm by 40. 

RNA was diluted to a concentration of 200 ng µl-1 for cDNA synthesis (section 2.8). 

2.8 cDNA Synthesis 

RNA reaction mixtures were prepared by adding 400 ng of RNA (at a concentration 

of 200 ng µl-1) on ice to a microcentrifuge tube containing 1 µl of random hexamer 

primers (0.5 µg per reaction) (Promega). 2 µl of nuclease free water was added to 

each tube to bring volumes to 5 µl. In order to break down secondary structures and 

ensure complete denaturation this mixture was heated at 70°C in a Quanta Biotech 

Q-Cycler II thermocycler for 5 minutes then chilled on ice for a minimum of 5 

minutes. Experimental reaction mixtures consisting of Improm-II Reaction buffer 

(5x), magnesium chloride, a deoxynucleotide mixture, Improm-II reverse 

transcriptase and recombinant RNasin® ribonuclease inhibitor (all Promega) were 

prepared on ice according to manufacturer’s instructions (Table 2.1). Experimental 

reaction mixture (15 µl) was combined with each 5 µl target RNA reaction mixture 

before the reverse transcriptase reaction was carried out.  
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Table 2.1 Experimental Reaction Mixtures for cDNA Synthesis. 

 

Component 

 

Concentration 

 

Volume 

Reaction buffer 5x 4.0 μl 

Magnesium Chloride 25 mM 4.5 μl 

dNTP mix 10 mM 1 μl 

Reverse transcriptase 50 units µl-1 1 μl 

RNAse inhibitor 20 units µl-1 0.5 μl 

Nuclease free water - 4.0 μl 

Total - 15 μl 

 

Tubes were placed in a thermocycler that was set for an initial annealing step of 

25°C for 5 minutes followed by an extension step of 42°C for 1 hour before the 

reaction was halted by holding the tubes at 70°C for 15 minutes. The tubes were held 

at 4°C until removal from the thermocycler and stored at -20ºC. 

2.9 Amplification of Target Gene Fragments by PCR 

Reaction mixtures for PCR amplification of target gene fragments were prepared 

according to manufacturer’s instructions (Table 2.2). 12.5 µl of 2x PCR mastermix 

(Promega) containing Taq polymerase, dNTPs, magnesium chloride and reaction 

buffer was added to a microcentrifuge tube on ice. Synthesised cDNA (section 2.8) 



58 
 

was diluted to 1:40. Primer solutions were diluted to a concentration of 10 pM  µl-1 

and 1µl of forward and reverse primer was added primer sequences are presented in 

Appendix 2. Reaction mixtures were made up to 25 µl with nuclease free water and 

centrifuged for 30 seconds in a microcentrifuge. 

Table 2.2 Reaction mixes for PCR. 

 Reaction 

mix 

Negative 

control 

2 x PCR master mix  12.5 μl 12.5 μl 

Forward primer 1 μl 1 μl 

Reverse primer 1 μl 1 μl 

cDNA 2 μl - 

Nuclease free water 8.5 μl 10.5 μl 

Total 25 µl 25 µl 

 

The negative control reaction was carried out for each experiment to ensure all 

amplified bands were derived from cDNA and not from an external source. The 

reaction mixes were placed in a thermocycler. Initial denaturation was carried out at 

95ºC for 5 minutes, denaturation at 95º C for 30 seconds was followed by annealing 

at 60-63º C for 15-30 seconds and extension was carried out at 72º C for 30-60s. 

Individual cycles may be found in Appendix 2. Upon completion of the PCR cycle, a 

6 μl aliquot was removed from the tube and mixed with 2μl of loading dye (section 

2.0). A 2% agarose gel was prepared by adding 0.6 g of agarose (Oxoid) to 30 ml of 



59 
 

1X TBE buffer and heating for 10 seconds at a time in a microwave oven on 

maximum power until the agarose was completely dissolved. This mixture was 

cooled to approximately 50°C and 30 μl of GelRed (Cambridge Bioscience, UK) 

was added. The preparation was poured into a mould, a comb was inserted and the 

gel allowed to set after which the comb was removed. The agarose gel was placed in 

a gel tank and immersed in 1X TBE buffer. The PCR product mixed with loading 

buffer was pipetted into the wells and 50V was applied. The current was stopped 

before the loading dye reached the bottom of the gel.  The gel was removed and 

visualised using a G:Box transilluminator (Thermo-Fisher Scientific). Hyperladder I 

(Promega) was used as a size marker. 

2.10 Real Time Quantitative PCR (RT-qPCR) 

SSEA-1 positive E14 murine embryonic stem cells were isolated by magnetic cell 

sorting as previously described, seeded at a density of 50 000 cells cm-3 and grown 

for two days in complete medium. Cells were treated with primary induction media 

for 4 days and secondary induction media for a further 10 days. Control cells were 

co-cultured in complete media. RNA was extracted using TriSureTM as previously 

described (section 2.6) from triplicate samples of treated and control cells. To 

establish baseline expression levels as a viable basis for comparison RNA was 

extracted from cells cultured in complete media for two days after cell sorting.  

Extracted RNA was quantified by Nanodrop (section 2.7) and diluted to a 

concentration of 400 ng µl-1 before cDNA synthesis (section 2.8). Synthesised cDNA 

was further diluted 1:40 prior to PCR. PCR mastermix was prepared on ice 

according to manufacturer’s (Bioline UK) instructions in 96 well plates (Table 2.3). 
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Table 2.3.  Reaction mixture for RT-qPCR. 

Component Vol. per tube 

Sensi-fast lo-rox mastermix 10 μl 

Forward primer 0.8 μl 

Reverse primer 0.8 μl 

Nuclease free water 3.4 μl 

 

Volumes of 5 μl of diluted cDNA was added to each tube, each sample was added in 

duplicate negative control samples were prepared by adding 5 μl of nuclease free 

water to tubes containing reaction mixture before the plate was sealed and pulse spun 

to 500 rpm. PCR reactions were carried out in a Stratagene MX3000 (Agilent, US) 

with melt curve analysis ensuring amplification of single targets. Initial denaturation 

was carried out at 95°C for 2 minutes for all primer sets. Cycling conditions except 

annealing temperature/time and number of cycles were the same for all primer sets 

(Table 2.4). Primer sequences, annealing conditions and cycle number are shown in 

Appendix 2. 
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Table 2.4. Cycling conditions for RT-qPCR. 

 Temperature 

(°C) 

Time 

(s) 

Initial denaturation 95 120 

Denaturation 95 30 

Annealing variable variable 

Extension 72 30 

 

 Standard curves were developed by plotting the Ct of serial dilutions of cDNA 

against the log of the reciprocal of the dilution factor. The slope of the standard 

curves was used to determine primer efficiency, applying the equation efficiency = 

10(-1/slope). Reactions yielding efficiencies outside of the range 90-110 were subject to 

further optimisation. Relative quantification was calculated using the ΔΔCt method 

and all expression values were normalised to the average values of β-actin and 18s 

ribosomal RNA. 

2.11 Immunocytochemistry 

Glass coverslips were sterilised by autoclaving for 15 minutes at 121°C, placed in 

individual wells of a 24 well plate and treated with 0.1% (w/v) gelatin for 1 hour 

with gentle agitation. Cells counts were obtained using a Bio-Rad TC10 cell counter 

as previously described. Approximately 50 000 cells cm-3 were seeded in each well 

and incubated at 37°C overnight. Media was aspirated and cells were fixed by the 

addition of 4% (w/v) paraformaldehyde. After 20 minutes, the paraformaldehyde 

was aspirated and cells were rinsed once with PBS. Permeabilisation of cells was 

carried out by 5 minutes incubation in 2% (w/v) BSA in PBS containing 0.1% (v/v) 
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Triton X-100, followed by blocking in 2% (w/v) BSA in PBS for 30 minutes with 

gentle agitation. Primary antibodies, diluted in 2% (w/v) BSA in PBS in varying 

concentrations (Table 2.5) were added to wells and incubated for 1 hour at room 

temperature. Cells were washed three times for 5 minutes in PBS. Before addition of 

secondary antibody 

Table 2.5. Primary antibodies used in ICC. 

Antibody Dilution Supplier Host 

p75 1:200 AbCam Rabbit 

p0 1:100 AbCam Rabbit 

Peripherin 1:500 AbCam Rabbit 

Sox10 1:200 AbCam Rabbit 

P-SMAD 1:300 AbCam Rabbit 

Neurexin3 1:250 AbCam Rabbit 

F-actin 1:1000 Invitrogen NA* 

 

*F-actin staining was carried out using phalloidin extracted from Amanita phalloides 

pre-conjugated with Texas-red. 

Secondary antibody (Alexa-fluor 488, Life technologies, UK) was diluted to 1:800 in 

2% BSA and added to wells, which were incubated in the dark for 1 hour at room 

temperature. Wells were washed 3 times for 5 minutes in PBS and the coverslips 

were removed and mounted on slides with DAPI Vectashield mounting media 
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(Vector Labs) secured with nail varnish and visualised using Axio vision software 

coupled to a Zeiss Axio Vison Z1 fluorescent microscope within two hours of 

staining. 

2.12 Cell Cycle Analysis 

Cells were cultured as described for RT-qPCR (2.10) before being trypsinised and 

counted. Cells were diluted to a concentration of 100 000 ml-1 in PBS before being 

fixed by adding to 3 ml of ice-cold ethanol while vortexing. Cells were centrifuged 

for 10 minutes at 500xg and the ethanol was aspirated. Cells were washed by the 

addition of 2 ml PBS and centrifuged at 500xg for 10 minutes. A 500 μl volume of 

PBS was added to each sample followed by 25 μl of propidium iodide (PI) and 20 µl 

of RNAse A. Cells were incubated in the dark at 37°C for 30 minutes before 

centrifugation at 500xg for 10 minutes. Staining solution was aspirated, 1 ml of 

FACS flow buffer was added and cell cycle analysis was carried out using a BD 

FACS Calibur (BD Biosciences, US). Fluorescence of PI stained cells was measured 

on the FL-2 channel. Data was collected and analysed using CellQuest Pro (BD 

Biosystems) and Modfit LT (Verity Software House, US) respectively. 

2.13 Protein extraction and quantification 

Protein was extracted using radioimmunoprecipitation assay (RIPA) buffer which 

was prepared beforehand and stored in frozen aliquots. RIPA buffer consisted of 

25mM Tris-HCl, 150mM NaCl, 0.5% sodium deoxycholate, 1mM EDTA 1mM 

EGTA, 1mM PMSF and 1% (v/v) Triton X-100 (all Sigma) in 100 ml dH2O pH 

adjusted to 7.5. Before use 10 µl per ml of protease inhibitor cocktail (Sigma) was 

added. Media was aspirated from cells in 6 well plates at 80% confluence and 300 µl 

of RIPA buffer was added. Wells were scraped using a cell scraper to aid detachment 
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and cell lysates were pipetted into Eppendorf tubes stored on ice. Protein was 

quantified using the Bradford assay. Duplicate stock solutions of bovine serum 

albumin were prepared in dH2O at 1 mg ml-1. These were diluted into aliquots of 0.8, 

0.6, 0.4 and 0.2 mg ml-1. Bio-Rad assay buffer was diluted to 1 part in 5 in dH2O and 

5 ml was pipetted into bijoux tubes. 100 µl of each BSA solution were added to 

diluted Bio-Rad buffer with dH2O used as a blank. Absorbance was measured for 

each dilution in duplicate and averages obtained. Standard curves were obtained by 

plotting absorbance against concentration. To quantify protein concentration 10 µl of 

cell lysate was added to 90 µl of DH2O this was added to 5 ml of diluted Bio-Rad 

buffer and absorbance was determined at 595 nm. The standard curve was used to 

determine protein concentration as a function of absorbance. 

2.14 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) 

Extracted protein was diluted to a concentration of 1 µg ml-1 in Laemmli sample 

buffer (126 mM Tris-HCl, 20% (v/v) glycerol, 0.02% (w/v) bromophenol blue, pH 

adjusted to 6.8, 10 µl ml-1 mercaptoethanol added prior to use) (all Sigma). 

Separating buffer was prepared by adding 45.5g Tris-base (Thermo-Fisher 

Scientific) and 1g of sodium dodecyl sulphate (SDS) (Sigma) to 200 ml of deionised 

water. The pH was adjusted to 8.8 with HCl before deionised water was added to a 

final volume of 250 ml. Separating gel was prepared by adding 4.2 ml of deionised 

water, 3.3 ml of cold 40% bis acrylamide (Bio-Rad), 100 µl 10% (w/v) of 

ammonium persulphate (APS) and 10 µl Tetramethylethylenediamine (TEMED) 

(both Sigma) to 2.5 ml of separating buffer in a universal tube. The tube was 

inverted 2-3 times and 4.5 ml of gel was pipetted into a gel caster (Bio-Rad). 
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Separating gel was left to polymerise at room temperature before the addition of 

stacking gel.  

Stacking buffer was prepared by adding 15g of Tris-base and 1g of SDS to 200 ml of 

deionised water. The pH was adjusted to 6.8 with HCl and distilled water added to a 

final volume of 250 ml. Stacking gel was prepared by adding 6.1 ml of deionised 

water, 1.45 ml of cold 40% bis acrylamide (5% cross linker), 100 µl of 10% (w/v) 

APS and 10 µl TEMED to 2.5 ml of stacking buffer in a universal tube. The tube 

was inverted 2-3 times and stacking gel was pipetted into a gel caster on top of 

polymerised stacking gel to the top of the caster. A comb was added and the stacking 

gel allowed to polymerise at room temperature. 

Two gel casters were placed in a gel tank, which was filled to the top between the 

casters and to the line outside with electrophoresis buffer (6.01g tris-base, 2.0g SDS, 

28.84g glycine in 1 l deionised water). The combs were removed and 20 µg of 

protein was loaded in each well. 5µl of protein size ladder (Qiagen) was loaded in 

the outermost wells. The gel tank was connected to a power pack with voltage set to 

minimum and current to maximum. The pack was switched on and voltage adjusted 

to 60V initially and 200V when the dye front had migrated to the border of the 

stacking and resolving gel. Gels were run until clear separations of bands in the 

protein ladder were observed.  

2.15 Western Blotting 

Protein transfer was carried out by placing gels on a semi-dry blotter (Bio-Rad) on 

top of three sheets of blotting paper and a nitrocellulose membrane (Amersham Life 

Sciences). Paper and membranes were pre-soaked in Towbin buffer (1.51g Tris-base 

(Thermo-Fisher Scientific), 7.2g glycine, 0.167g SDS, 75 ml ethanol (all Sigma), in 
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deionised water, pH adjusted to 8.3 and filled to a final volume of 500 ml with 

deionised water). Three more sheets of pre-soaked blotting paper were added and the 

lid fixed in place. The apparatus was connected to the power supply adjusted to 

maximum voltage and minimum current, adjusted to 50 mA after power was applied; 

the transfer was carried out over 1 hour.  

Membranes were inspected to ensure visible transfer of the protein ladder and 

blocked in 1% (w/v) BSA in TBS-Tween (1.211g tris-base, 8.18g NaCl (Sigma), 1 

ml Tween-20 (Sigma) in deionised water, pH adjusted to 7.4, final volume adjusted 

to 1 litre). Membranes were incubated in blocking solution for 1 hour at room 

temperature with gentle agitation.  

Primary antibodies were diluted in blocking solution according to manufacturer’s 

specification and membranes were incubated at room temperature for one hour with 

gentle agitation. Membranes were given four 5 minute washes in TBS-Tween before 

incubation with secondary antibody, diluted in 5% (w/v) milk powder in TBS-

Tween, according to manufacturer’s specification. Membranes were incubated for 1 

hour at room temperature and given four 5 minute washes in TBS-Tween. 

Developing solution was mixed equally with horseradish peroxidase solution (both 

Thermo-Fisher Scientific) and 1 ml of mixed solution was evenly spread over each 

membrane. After 1 minute excess solution was tipped off and the membranes were 

visualised using a Chemidoc touch transilluminator (Bio-Rad) 

2.16 RNA Microarray Analysis 

 Total RNAs were extracted from cells cultured in induction media in the presence 

and absence of BMP-4 (Figure 2.2) during stage-2 according to section 2.6. RNA 

integrity was determined using an Agilent 2100 bioanalyzer (Agilent, US). Prior to 
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use gel-dye mix was prepared, 550 µl of RNA 6000 Nano gel matrix (Agilent) was 

pipetted into the top receptacle of a spin filter tube. The tube was placed in a 

microcentrifuge and spun at 1500g for 10 minutes. 65 µl aliquots of filtered gel were 

pipetted into microcentrifuge tubes and stored at 4°C. Gel-dye mix was prepared by 

adding 1 µl of RNA 6000 Nano dye concentrate (Agilent) to a 65 µl aliquot of 

filtered gel. The mix was vortexed thoroughly before being centrifuged at 13000g for 

10 minutes. A fresh RNA Nano chip (Agilent) was placed on the chip priming 

station and 9 µl of gel dye mix was pipetted into the well marked G.  The chip was 

closed; the plunger of the syringe was pressed down until held by the clip and 

released after 30 seconds. After a further 5 seconds, the plunger was pulled back to 

the 1 ml position. The chip priming station was opened and 9 µ of gel dye mix 

pipetted into the marked wells. An aliquot of RNA 6000 Nano marker (5 µl) 

(Agilent) was pipetted into the 12 sample wells and the ladder well. RNA was 

quantified as above and aliquots were diluted to 100 ng µl-1. To minimise secondary 

structures samples were heat denatured at 70°C for 2 minutes before loading. Chips 

were loaded by adding 1 µl of sample into each sample well and 1 µl of nuclease 

free water into the ladder well. The chip was vortexed for 60 seconds at 2400 RPM 

before being placed in the bioanalyzer. Analysis was carried out by 2100 Expert 

Software (Agilent), returning ribosomal integrity numbers (RIN) for each sample. 

RNA aliquots of 200 ng µl-1 were prepared and transported in dry ice to the 

University of Manchester Genomic Technologies Core Facility. Gene expression of 

stage-0 cells (embryonic stem cells) were compared to stage-1 cells cultured for 1 

extra hour in PIM. Expression of these cells was compared to that of stage 2 cells 

(neural crest) which was in turn compared to stage 3 cells (peripheral neurons). To 

determine the effects of BMP-4 on differentiation during stage-2 gene expression 



68 
 

was compared between cells at the initial stage (1 hour) and final stage (10 days) to 

cells cultured during stage 2 in PIM cells cultured in SIM during stage 2 were termed 

treated, cells cultured in PIM were termed untreated (Figure 2.2).  
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Figure 2.2. Culture and selection of cells for microarray analysis. White boxes 

denote culture processes, blue boxes denote samples sent for analysis dotted lines 

denote comparisons between samples. Stage 2 times were cumulative. Treated cells 

were cultured with SIM containing BMP-4 during stage 2 of differentiation; untreated 

cells were cultured in PIM. 
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Microarray analyses were carried out by Mr Michael Smiga using an Affymetrix 3 

Prime IVT ID chip (Mouse genome 430 2 array). Data was transferred to the 

University of Manchester Bioinformatics Core Facility where principle component 

analysis and quality assurance was carried out by Dr Leo Zeef (University of 

Manchester). Median probe intensity before normalisation and percentage of outliers 

were recorded for each sample. Microarray data was presented in an Excel file 

detailing the sort function was used to identify the 500 most upregulated and 

downregulated genes in each comparison. 

Pathway data was analysed using the DAVID functional annotation tool (National 

Library of Medicine). The 500 most upregulated or downregulated genes for each 

comparison were selected and pasted into the gene list. The relevant microarray 

(Affymetrix_3Prime_IVT_ID) was selected as the identifier from the drop down 

menu. Functional annotation clusters and charts with enrichment scores above 2 

were analysed and KEGG analysis carried out where available.  

2.17 Microelectrode Array Analysis 

Cells were grown in primary induction media (Sections 2.4 and 2.5) for four days 

before either continued culture in PIM or culture with SIM for a further 10 days. 

Both sets of cells were grown in PIM and routinely cultured for 60 days, at this stage 

treated were shown to be peripherin positive (Figure 5.3). After this time cells were 

trypsinised, counted and approximately 100 000 were plated on MEA chips (Multi 

Channel Systems, Germany). Prior to use chips were washed with 70% IMS before 

being placed under UV light for 30 minutes. Chips were washed 3 times with PBS 

and coated with laminin according to manufacturer’s instructions (Anon, 2015). Two 

hours before testing media was aspirated, chips were washed 3 times with PBS and 

fresh PIM was added. The chips were placed in the head stage of an MEA-2100 
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system, which had been pre-heated to 37°C. Cells were allowed to equilibrate for 5 

minutes before readings were taken and all data were recorded using MC_Rack 

software (The MEA-2100 system and software were loaned from Multi Channel 

Systems). Cells were treated with N-methyl-D-aspartate (NMDA) (120 µl at a 

concentration of 1.7 µM) and gamma amino-butyric acid (GABA) (100 µl at a 

concentration of 1mM) to measure excitatory and inhibitory effects respectively. 

MC-Rack software allowed stimulation of specific or all electrodes. At all times 

when electrodes were stimulated, -120 µV was applied with 3 second pauses 

between pulses. 

2.18 Biomarker Analysis by Flow Cytometry 

Cells were fixed as in cell cycle analysis (2.12) before being re-suspended in 500 µl 

0.1% Triton-x-100 in PBS. Cells were incubated in the dark at room temperature for 

10 minutes before being centrifuged at 500G for 5 minutes before re-suspension in 

500 µl PBS. Cell counts were taken as described in section 2.3 and cells were re-

suspended at a concentration of approximately 106 ml-1 in 0.1% (v/v) Triton X-100 

in PBS. Primary antibody (Rabbit anti-Peripherin (AbCam), 1:100, Rabbit anti-Oct-4 

(Santa-Cruz), 1:100, Rabbit anti-Dppa5 (AbCam), 1:100, mouse anti-Nanog (Santa-

Cruz), 1:50)) was added and cells were incubated in the dark for 1 hour before being 

centrifuged at 500g for 5 minutes and washed with PBS. Secondary antibody (Alexa-

fluor 488 anti-rabbit or anti-mouse IgG conjugated with FITC) at a dilution of 1:800 

was added in 500 µl Triton X-100 in PBS and cells were incubated in the dark for 1 

hour. Cells were centrifuged at 500g for 5 minutes and washed with PBS before 

centrifugation was repeated and cells were re-suspended in FACS Flow. Cells were 

analysed on a BD FACS Calibur (BD systems) flow cytometer using Cell Quest Pro 

(BD systems). 
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2.19 Noggin Inhibition of BMP-4 

Embryonic stem cells were magnetically isolated and cultured as in 2.3 and 2.4 

(above) to induce neural crest differentiation (differentiation stages 1 and 2). During 

stage 2 Noggin (Sigma) was added at a concentration of 10 ng ml-1. SIM 

supplemented with Noggin was termed inhibition media (IM). Culture in IM was 

carried out at the beginning of stage 2 and after culture in SIM for 5 days (Table 

2.6). Cells were cultured for a total of ten days before RNA was harvested (section 

2.6). The expression of pluripotency and neural crest biomarkers was measured 

using RT-qPCR (section 2.10). Expression levels were compared to cells cultured in 

SIM (expression value =1) and Student’s T-tests were used to determine statistical 

significance. As a further point of comparison gene expression in cells cultured in 

PIM during stage 2 was also measured in order to gauge the efficacy of inhibition. 

Table 2.6 Noggin inhibition during stage 2 of differentiation. The BMP-4 agonist 

Noggin was added to cultured cells at different time points during stage 2 of 

differentiation. 

 Culture conditions  Media (days 1-5) Media (days 5-10) 

 Treated SIM SIM 

 10 days inhibition IM IM 

 5 days inhibition SIM IM 

 Untreated PIM PIM 
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2.20 Phylogenetic Analysis 

The National Centre for Biotechnology Information (NCBI) database was used to 

obtain the amino acid sequence for proteins before these were entered into the 

Clustal W2 tool hosted by the European Bioinformatics Institute (EBI) 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/) in order to generate a phylogenetic tree. 

Sequence comparison was carried out using the MUltple Sequence Comparison by 

Log Expectation (MUSCLE) tool (EBI) (http://www.ebi.ac.uk/Tools/msa/muscle/). 

The protein blast function (NCBI) was used to compare domain structures between 

proteins (http://www.ncbi.nlm.nih.gov/protein/).  
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Chapter 3: Growth and Differentiation of E14 Mouse 

Embryonic Stem Cells. 

 

3.1 Introduction 

 

Cellular differentiation is the culmination of a complex network of cell regulatory 

mechanisms. Traditional culture techniques have relied on feeder layers of murine 

embryonic fibroblasts or the presence of FCS. The presence of FCS or feeder cells 

has limited the extent of investigation into the effects of individual growth factors 

due to the possible influence on differentiation from signals originating from either 

of these factors, both of which are known to introduce various inductive agents into 

media (Tamm, 2013). The use of defined factors in serum free media has allowed the 

elucidation of mechanisms of development without potential perturbation from 

exogenous sources (Keller, 2005). Culture in the absence of serum or feeder layers 

allows tighter control of growth parameters, enabling more accurate and 

reproducible experiments. 

Although the development of the neural crest is both convoluted and intricate, it has 

been shown that just two extrinsic factors; FGF-2 and BMP-4 stimulate the 

differentiation of neural precursor cells into invasive, proliferative cells displaying 

markers found in neural crest stem cells. Differentiation of neural crest from ESCs is 

dependent on the establishment of a BMP-4 concentration gradient (Sailer et al., 

2005, Milet et al., 2013). BMP-4 is one of the key regulators of differentiation acting 

in an inhibitory or inductive manner in various cellular processes (Xu, et al., 2008; 

Fei, et al., 2010). No single biomarker unique to the neural crest has been identified 

thus far; characterisation of neural crest stem cells is dependent on a number of 
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factors, commonly increased gene expression levels of Pax3, Sox9, p75 and 

Musashi-1 (Lo et al., 1998; Cheung and Briscoe, 2003; Plouhinec, et al., 2014). 

Neural crest stem cells are able to differentiate into a wide range of somatic cells 

such as peripheral neurons, cranio-facial cartilage, melanocytes and smooth muscle. 

Populations of cells able to form these diverse tissues and expressing the above may 

be identified as neural crest (Dourain and Dupin, 2014). 

3.2 Aims 

 Differentiation of homogenous cultures of embryonic stem cells in defined 

media optimised to induce neural crest lineage. 

 Further differentiation into somatic cell types – peripheral neurons and 

smooth muscle cells. 

 Investigate the effects of BMP-4 on the growth characteristics and expression 

of neural crest biomarkers of embryonic stem cells in serum free culture. 

3.3 Results 

3.3.1 Magnetic Activated Cell Sorting 

After MACS isolation of SSEA-1 positive and negative fractions of E14 mouse 

embryonic stem cells RNA from SSEA-1 both fractions was extracted. RNA was 

reverse transcribed and PCR was used to test expression of Oct-4 (a pluripotency 

marker), NCAM (a marker of early ectodermal differentiation and CD325 

(associated with early endodermal and mesodermal differentiation) (Yaganisawa and 

Yu, 2007; Alimperti and Andreadis, 2015). β-actin was used as an internal control 

(sections 2.6-2.9). Transcription of NCAM and CD325 was not detected in the 

SSEA-1 positive fraction although robust expression Oct-4 was observed. All 

transcripts were detected in the SSEA-1 negative fraction, suggestive of 

spontaneously differentiated cells being selectively removed. The presence of Oct-4 



76 
 

transcripts in the negative fraction may be a function of low levels of expression in 

early differentiating cells or indicative that not all pluripotent cells were retained on 

the column. β-actin expression was shown to be consistent between samples (Figure 

3.1). 

 

 

     

    

    

    
 

Figure 3.1. Agarose gel electrophoresis of PCR amplified stem cell and early 

differentiation markers. SSEA-1 positive and SSEA-1 negative fractions 

differentially expressed markers associated with pluripotency and germ layer 

formation. Representative bands following 2% agarose gel electrophoresis, n=3.  

 

 

Efficacy of magnetic sorting was estimated by calculating yields and viability of 

both retentate and flow through, yields were calculated as a percentage of cells 

exposed to the column. Typical yields were 77% (SEM = 6.7), with 54% of cells 

(SEM = 8.6) being retained and 23% (SEM = 6.1) passing through the column 

(Figure 3.2). 

β-Actin 

Oct-4 

NCAM 

CD325 

SSEA-1 

Positive 

Fraction 

SSEA-1 

Negative

Fraction 



77 
 

 
Figure 3.2. Selection of SSEA-1 positive cells. Magnetic sorting isolated populations 

of SSEA-1 positive cells (retentate) and SSEA-1 negative cells (flowthrough). Error 

bars = SEM, n=3. 

 

Significant increases in viability were observed in the fraction of cells retained on 

the column compared to before sorting and cells passing through the column (p 

values 0.045 and 0.005 respectively (Figure 3.3). Variation in viability was similarly 

reduced in the retained fraction (SSEA-1 positive). To compare variation between 

fractions 95% confidence intervals were calculated for the means of each fraction, 

unsorted and flowthrough (SSEA-1 negative) fractions returned overlapping 

intervals with large spreads (23.4 and 19.6 respectively) while the interval of the 

retained fraction was 2.2, with no overlap with the others (Table 3.1).  
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Figure 3.3.Viable cell counts in magnetically separated fractions. Magnetic sorting 

enriched the viability of populations of SSEA-1 positive cells (retentate). Error bars = 

SEM, n=3. 

 

 

 

Table 3.1. Magnetic cell sorting reduced variability in viability in SSEA-1 

positive cells retained by the column.  

 

 Mean Viability 95% CI 

Pre Sort 72.8 61.1-84.5 

Retentate (SSEA-1 positive cells) 90 88.9-91.1 

Flowthrough 61.7 51.9-71.5 

 

. 

3.3.2 Differentiation of E14 Mouse Embryonic Stem Cells 

To induce the differentiation of E14 cells into neural crest lineages SSEA-1 positive 

cells were cultured in primary induction media for four days before 10 days culture 

in secondary induction media (section 2.4). Cells cultured in complete media (CM) 

were grown alongside cells cultured in induction media to act as a control. 

Differentiation was divided into contiguous stages beginning at day -2 when SSEA-1 

positive cells were cultured in complete media with induction commencing at day 0 

(Table 3.2). 
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Table 3.2 Differentiation stage times and presumptive cells types. 

Stage Culture Period Media Cell Type (End of stage) 

0 Day -2 to day 0 E14 complete 
SSEA-1 positive mouse 
embryonic stem cells 

1 Day 0 to day 4 Primary induction media Initially differentiated cells 

2 Day 4 to day 14 Secondary induction media Neural crest stem cells 

3 Day 14 onwards Primary induction media 
Terminally differentiated 

cells 

 

 Morphological variation in cells cultured in complete and induction media was not 

discernible at the end of stage 1. In both cases, phase contrast microscopy showed 

cells growing in colonies with the morphology of individual cells difficult to 

determine. Culture for a further 5 days (the mid-point of stage 2) resulted in the 

disaggregation of colonies, with cells observed to round off and detach while growth 

characteristics of cells cultured in CM remained the same. Subsequent culture until 

the end of stage 2 resulted in the appearance of distinct morphologies in control and 

induced cells. Induction media treated cells began to take on a more elongated 

“arrowhead” shape and individual cells could be clearly demarked while 

micrographs of cells cultured in CM remained morphologically indistinct from 

earlier images (Figure 3.4). To better observe morphological variation, cells were 

stained with Texas Red conjugated phalloidin to determine cytoskeletal structures. 

Cells were fixed, stained and mounted as described previously (section 2.11). 

Phalloidin staining revealed induced and control cells to have differing cytoskeletal 

structures, control cells appeared more rounded although due to their close proximity 

individual structures were difficult to determine. Treated cells also grew in a 
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contiguous manner although with greater distance between nuclei. Control cells 

appeared to have a higher nuclear/cytoplasmic ratio than treated cells (Figure 3.5).  

 

 

 

 
 

Figure 3.4. Morphological variance in cultured cells. Cells cultured in complete 

media for four days (A) showed little morphological difference to induced cells at the 

end of differentiation stage 1 (B). At the midpoint of stage 2 (9 days treatment) 

morphological differences were discernible between control (C) and induced (D) cells. 

More marked distinctions were observed at the end of stage 2 (14 days treatment):- 

cells in complete media (E) growing in colonies and cells in induction media (F) 

displaying a distinct elongated morphology. Magnification x120 
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Figure 3.5. Cytoskeletal variance in cultured cells. F-actin filaments in the 

cytoplasm of cultured cells were stained with phalloidin (red). After 14 days, cells 

cultured in complete media (A) were morphologically distinct from cells cultured in 

induction media (B), which took on a distinctive arrowhead shape. Cells cultured in 

complete media did not change morphologically between 14 days and 24 days (A-C). 

After 24 days cells cultured in induction media (D) showed elongated cell bodies and 

dendrite like structures (white arrow). Nuclei were stained with DAPI (blue). Scale 

bars = 100 μm. 

 

 

Staining for neural crest biomarkers Sox10 and p75 at the end of stage 2 showed 

strong expression in induced cells, while Sox2, indicative of a pluripotent state was 

present in cells cultured in CM but not in stage 2 induced cells (Figure 3.6). 
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  Complete Media         Induction media 

 

 

 

Figure 3.6. Expression of neural crest and embryonic stem cell markers in E14 

murine embryonic stem cells. Staining for sox10, p75 and sox2 (all green) showed 

differential expression in cultured cells. Weak expression of both sox10 and p75 and 

nuclear localisation of sox2 was observed in cells cultured in complete media. In 

contrast, sox10 and p75 were more potently expressed in cells cultured in induction 

media and sox2 was not detected. Nuclei were stained with DAPI (blue). Scale bars 

100 μm. Cells were fixed after stage 1 and stage 2 of differentiation (14 days total 

treatment). 
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Upon completion of stage 2 presumptive NCCs were cultured in PIM and 

KODMEM supplemented with 10% FCS (Smooth muscle media (SM)) (section 

2.5). Distinct morphological variations were observed in both cultures over 5 days 

by phase contrast microscopy. Cells cultured in SM showed rapidly expanding 

cytoplasmic processes compared to those cultured in PIM (Figure 3.7). 

Staining for smooth muscle actin showed expression in cells cultured in SM but not 

those cultured in induction media. Conversely, expression of the peripheral nervous 

system biomarker peripherin was observed in PIM cultured cells but not in cells 

grown in SM. Cells were counterstained with phalloidin to compare F-Actin 

arrangement in the cytoplasm and nuclei were stained with DAPI. Observation of 

cells after staining showed SM cultured cells had smaller nuclei in relation to 

cytoplasm and grew in closer proximity than PIM cultured cells (Figure 3.8). It was 

unclear at this stage whether morphological differences were as a result of differing 

signals from the media or from differing signals from cells which appeared to 

proliferate more rapidly in PIM (Figure 3.7). However, the ability of the cells to 

manifest variable phenotypes in differing culture conditions was indicative of a 

multipotent state. 
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                                          SM                              PIM 

 

 

 

 

 
 

Figure 3.7. Morphology of cultured cells after secondary differentiation. Cells 

were cultured in either SM or PIM after stage 2 of differentiation (14 days total 

treatment). Cells cultured in SM media had a more heterogeneous morphology and 

large cells with visible striations were observed starting at 3 days (17 days total 

treatment - white arrows). Cells cultured in PIM appeared more homologous and grew 

in closer proximity with visible, linked colonies of cells observed starting at 4 days.   

Magnification 120x.  
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Figure 3.8. Expression of biomarkers of smooth muscle and peripheral neuron in 

cultured cells. Cells were cultured in SM (A and C) or PIM (B and D) after stage 2 of 

differentiation. Cells were stained for smooth muscle actin (yellow, A and B) and the 

peripheral neuron marker peripherin (green, C and D). SM cultured cells were positive 

for smooth muscle actin without peripherin expression, while PIM cultured cells did 

not express smooth muscle actin while expressing peripherin. All cells were 

counterstained with phalloidin, to observe F-actin filaments in the cytoplasm (red); 

nuclei were stained with DAPI (blue). Scale bars 100 μm. 

 

3.3.3 Gene Expression Analysis in Differentiating E14 Murine Embryonic Stem 

Cells 

Gene expression analysis was carried out by RT-qPCR (section 2.10) to characterise 

cells during the process of differentiation. RNA was isolated at 6 time points (Table 

3.4). RNA was also extracted from isolated SSEA-1 positive cells cultured in CM for 

2 days as a baseline control.  
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Table 3.3 Time points and stages for RT-pPCR analysis. 

Culture time (days) Stage Media 

4 days 1 PIM 

9 days 2 (mid-point) SIM 

14 days 2 (end) SIM 

21 days 3 PIM 

32 days 3 PIM 

48 days 3 PIM 

 

All expression values were normalised to β-actin and 18s ribosomal RNA. Two-

tailed Student’s T tests were used to determine significance with each sample 

compared to the previous time point.  Differentiation resulted in significant 

downregulation of Nanog after stage 1 and for the first part of stage 2. A significant 

increase was observed between the middle and end of stage 2. Nanog expression 

remained constant in stage 3 cells up to 32 days and then was again observed to be 

downregulated at 48 days (Figure 3.9). 

 
Figure 3.9. Culture in induction media resulted in variable expression of Nanog 

compared to embryonic stem cells (value = 1). E14 mouse embryonic stem cells 

were cultured in PIM at stage 1, SIM at stage 2 and PIM at stage 3. Expression fell 

rapidly on initiation of differentiation but increased after the mid-point of stage 2  Data 

is mean ± SEM, n=3. * Denotes p value <0.05, ** denotes p value <0.01. 
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Expression of Nestin, a marker associated with neural crest and neural differentiation 

was measured. Expression was constant between embryonic stem cells and the end 

of stage 1. Significant upregulation was observed throughout stage 2 and expression 

remained stable during the initial period of stage 3. As stage 3 progressed expression 

levels increased significantly before remaining stable (Figure 3.10). 

 
Figure 3.10. Culture in induction media increased expression of Nestin compared 

to embryonic stem cells (value = 1). E14 mouse embryonic stem cells were cultured 

in PIM during stage 1, SIM during stage 2 and PIM during stage 3. Peak expression 

was observed after 32 days and no change was observed between 32 and 48 days 

culture. Data is mean ± SEM, n=3. * Denotes p value <0.05, ** denotes p value <0.01. 

 

 

The expression of three neural crest markers, Pax3, Sox9, and Musashi-1 was 

assessed. Both Pax3 and Musashi-1 exhibited peaks in expression beginning during 

stage 2 and peaking during stage 3 before downregulation was observed, peak 

expression occurring at 21 days treatment in the case of Pax3 and at 32 days for 

expression of Musashi-1. Peak upregulation of Pax3 was markedly higher than that 

of Musahi-1 with a 665-fold increase in expression observed compared to a 14-fold 

increase and Musahsi-1 was also downregulated during stage 1 (Figures 3.11 and 

3.12). 
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Figure 3.11. Culture in induction media increased expression of Pax3 in 

comparison to embryonic stem cells (value = 1). E14 mouse embryonic stem cells 

were cultured in PIM during stage 1, SIM during stage 2 and PIM during stage 3. Peak 

upregulation was observed after 21 days, 7 days after removal of BMP-4 

supplementation. Data is mean ± SEM, n=3. * Denotes p value <0.05, ** denotes p 

value <0.01. 

 

 

 
Figure 3.12. Culture in induction media first decreased, then increased 

expression of Musashi-1 in comparison to embryonic stem cells (value = 1). E14 

mouse embryonic stem cells were cultured in PIM during stage 1, SIM during stage 2 

and PIM during stage 3. Peak upregulation was observed after 32 days, 18 days after 

removal of BMP-4 supplementation. Data is mean ± SEM, n=3. * Denotes p value 

<0.05, ** denotes p value <0.01. 
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Culture in PIM initially had no effect on the expression of Sox9; no significant 

differences in expression levels were detected between embryonic stem cells and 

stage 1 cells. A significant increase in expression occurred during stage 2 although 

no differences were observed between the mid and end-points. Stage 3 showed a 

small but significant increase (1.7-fold) at 21 days and more marked (5.75-fold) 

upregulation between 21 and 32 days, after which expression remained stable 

(Figure 3.13). 

 

 
Figure 3.13. Culture in induction media increased expression of Sox9 in 

comparison to embryonic stem cells (value = 1). E14 mouse embryonic stem cells 

were cultured in PIM during stage 1, SIM during stage 2 and PIM during stage 3. Peak 

upregulation was observed after 48 days, 34 days after removal of BMP-4 

supplementation, high expression levels were detected after 32 days. Data is mean ± 

SEM, n=3. * Denotes p value <0.05, ** denotes p value <0.01. 
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3.3.4 The Effect of BMP-4 on Cell Proliferation and Viability in Differentiating 

E14 Mouse Embryonic Stem Cells 

BMP-4 is known to be essential to neural crest differentiation and is a key regulator 

of abundant cellular processes (Varca and Wrana, 2005). In order to determine 

whether BMP-4 altered proliferation and viability during stage 2 of the 

differentiation process were plated at a density of 25 000 per well after completion of 

stage 1. Cells were co-cultured for a further ten days in SIM (treated cells) or PIM 

(untreated cells) during which cell counts and viabilities were measured after 1, 3, 6 

and 10 days. Initially, untreated cells proliferated more rapidly but after 3, 6 and 10 

days BMP-4 treatment was observed to increase proliferation, significantly at 6 and 

10 days (Figure 3.14). In both cases, viabilities were initially low but increased as 

culture was continued; no significant differences were detected between treated and 

untreated cells (Figure 3.15). These data indicate a role for BMP-4 in the increased 

proliferation of treated cells. Similar viabilities indicate that BMP-4 was not simply 

aiding the survival of cultured cells. 

 
Figure 3.14. BMP-4 supplementation affected proliferation of differentiating E14 

embryonic stem cells. Cells were cultured during stage 2 of differentiation with and 

without BMP-4 treatment. Proliferation was more rapid after one day in untreated 

cells, similar after 3 days and significantly increased in treated cells after 6 and 10 

days. Data are mean ± SEM, n=3 ** denotes p value <0.01. 
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Figure 3.15. BMP-4 supplementation did not affect viability of differentiating 

E14 embryonic stem cells. Cells were cultured during stage 2 of differentiation with 

and without BMP-4 treatment. No significant differences were observed in viability 

between treated and untreated cells. Data are mean ± SEM, n=3. 

 

3.3.5 Cell Cycle Analysis 

Cell cycle parameters were examined by culturing stage 2 cells in PIM or SIM for 10 

days before cells were fixed, stained with propidium iodide and subject to flow 

cytometry analysis (section 2.12). All cell cycle phases showed significant 

differences with the most conspicuous being G2 where more than a 10-fold increase 

was observed in treated cells compared to untreated. Cells cultured without BMP-4 

had slightly higher percentages in G1 and S phases. Coefficient of variation did not 

significantly differ between samples (p-value 0.1) (Figure 3.16), indicating 

differences were not due to experimental variation. 
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Figure 3.16. BMP-4 supplementation altered cell cycle parameters of 

differentiating E14 mouse embryonic stem cells. E14 mouse embryonic stem cells 

were cultured with and without BMP-4 treatment during stage 2 of differentiation. A 

lower percentage of treated cells were observed in the gap and synthesis phases with 

a concurrent increase in dividing cells. Data is mean ± SEM, n=3. * denotes p value < 

0.05, ** denotes p value <0.01. 

 

Duration of each cycle was calculated as in 3.3.2 (above) doubling times were 

determined to be 1.6 days for BMP-4 supplemented cells and 1.9 days for untreated 

cells (Figure 3.17). No significant differences were observed between time in G1 

phase (p = 0.06) while BMP-4 supplementation decreased time in S-phase and 

increased time in G2 (p values 0.001 and 4.8 x10-8 respectively). Example 

histograms and doubling time calculations are presented in Appendix 3. 

0

10

20

30

40

50

60

70

80

G1 S G2/M Coefficient of

variation

P
er

ce
n
ta

g
e 

o
f 

ce
ll

s

** 

** 

* 

Untreated 

Treated 



93 
 

 

Figure 3.17. BMP-4 supplementation did not alter time in gap phase (G1), but 

significantly altered time in S and G2 phases in differentiating E14 mouse 

embryonic stem cells. E14 mouse embryonic stem cells were cultured with and 

without BMP-4 treatment during stage 2 of differentiation. Data is mean ± SEM, n=3. 

* denotes p value < 0.05, ** denotes p value <0.01. 

 

 

 

3.3.6 The Effect of BMP-4 on Gene Expression in Differentiating E14 Mouse 

Embryonic Stem Cells 

The influence of BMP-4 supplementation on the expression of embryonic, neural 

and neural crest markers mentioned above (3.3.3) was investigated. Cells were 

cultured until the end of stage 2 as above (q.v. Table 3.2) (treated). Control cells 

were cultured with PIM rather than SIM during the same period (untreated). RNA 

was harvested from each fraction at the beginning (1 hour), middle, (5 days) and end 

(10 days) of stage 2. RT qPCR was carried out as before (section 2.10). Expression 

levels were compared to those of untreated cells at the beginning of stage 2 (value = 

1). All expression values were normalised to β-actin and 18s ribosomal RNA. 

Significance was determined by 2-tailed Student’s T-test, comparing expression 

levels in the BMP-4 positive and negative fractions. 
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Downregulation of Nanog was stable in untreated cells, with the increase in 

expression at 10 days observed in culture with BMP-4 supplemented media not 

occurring. Expression of Nanog was seen to be significantly upregulated 6-fold at 10 

days culture in treated cells compared to untreated. No significant differences in 

Nanog expression were observed after 1 hour and 5 days (Figure 3.18). 

 

 
Figure 3.18. BMP-4 supplementation upregulated Nanog expression after 10 days 

in stage 2 differentiating cells, but did not affect expression after 1 hour or 5 days.  
E14 mouse embryonic stem cells were cultured with and without BMP-4 treatment 

during stage 2 of differentiation. Data is mean ± SEM, n=3. ** denotes p value <0.01.  
 

Nestin expression increased over the culture period for cells cultured in both treated 

and untreated fractions. For both conditions, significant upregulation was observed 

between 1 hour and 5 days and 5 and 10 days. Significant upregulation was recorded 

in untreated cells after 5 and 10 days compared to cells cultured in induction media 

supplemented with BMP-4 (Figure 3.19).  
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Figure 3.19. BMP-4 supplementation reduced upregulation of Nestin after 5 and 

10 days culture in stage 2 differentiating cells, but did not alter expression after 

1 hour. E14 mouse embryonic stem cells were cultured with and without BMP-4 

treatment during stage 2 of differentiation. Data is mean ± SEM, n=3. * denotes p 

value < 0.05, ** denotes p value <0.01. 

 

 

The untreated cell fraction showed transient high levels of Pax3 expression, after 5 

days 338-fold upregulation was observed, dropping to 53 fold after 10 days. BMP-4 

treated cells expressed Pax3 in a sequentially increasing manner. Comparison 

between supplemented and non-supplemented cultures revealed significant 

difference after 5 and 10 days. Pax3 was downregulated 24 fold in BMP-4 

supplemented cells at 5 days and upregulated 3 fold after 10 days compared to 

untreated cells. In both cases, changes in expression were statistically significant 

(Figure 3.20). 

Musashi-1 expression followed a similar pattern to Pax3, albeit with less profound 

changes. After 5 days, expression was reduced 8.7-fold in BMP-4 treated cells. 

Expression was increased 1.4-fold after 10 days although this was not statistically 

significant (p value = 0.11). Again, expression in untreated cells peaked after 5 days 

while treated cells showed increased expression over time (Figure 3.21). 
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Figure 3.20 BMP-4 supplementation altered expression of Pax3 after 5 and 10 

days in stage 2 differentiating cells, but did not alter expression after 1 hour. E14 

mouse embryonic stem cells were cultured with and without BMP-4 treatment during 

stage 2 of differentiation. Data is mean ± SEM, n=3. ** denotes p value <0.01. 

 

 

 
Figure 3.21. BMP-4 supplementation affected expression of Musashi-1 in stage 2 

differentiating cells after 5 days culture, but did not affect expression after 1 hour 

or 10 days. E14 mouse embryonic stem cells were cultured with and without BMP-4 

treatment during stage 2 of differentiation. Data is mean ± SEM, n=3. ** denotes p 

value <0.01. 
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BMP-4 supplementation did not affect the expression of Sox9 after 1 hour and 5 

days. A small but significant (1.7 fold) decrease in expression was observed between 

supplemented (treated) and non-supplemented (untreated) cultures after 10 days. In 

both cases, expression of Sox9 increased between 1 hour and 5 days and remained 

stable in supplemented culture conditions while continuing to increase in untreated 

cells (Figure 3.22). 

 

 
Figure 3.22. BMP-4 supplementation affected Sox9 expression after 10 days, but 

did not affect expression after 1 hour or 5 days. E14 mouse embryonic stem cells 

were cultured with and without BMP-4 treatment during stage 2 of differentiation. 

Data is mean ± SEM, n=3. * denotes p value < 0.05. 
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3.4 Discussion 

Treatment of E14 mouse embryonic stem cells in IM resulted in a 5.3-fold decrease 

in Nanog expression after four days (stage 1) and a further 21.1-fold decrease at the 

mid-point of stage 2 (from 4 to 9 days) corresponding to a net 112-fold 

downregulation between days 0 and 9. This decline in expression is consistent with a 

loss of pluripotent status in differentiating cells (Wang et al, 2012). However, at the 

end of stage 2 (14 days total treatment) Nanog was upregulated 7.8-fold, after which 

expression levels remained relatively stable into stage 3 up until 48 days at which 

point levels approximated those observed at 9 days (Figure 3.9). Nanog is known to 

be expressed in NCCs albeit at lower levels than in embryonic stem cells (Hagiwara 

et al., 2014).  Transcription of the gene encoding the intermediate neurofilament 

protein Nestin underwent alternating periods of stability and upregulation. Low 

expression in early stage (0, 1 and the midpoint of stage 2) cells was followed by an 

approximate 20 fold upregulation at the end of stage 2 (14 days). Expression 

remained stable at the beginning of stage 3 (21 days) before increasing 60 fold at 32 

and 48 days relative to embryonic stem cells, a 3-fold upregulation from stage 2 

(Figure 3.10). Nestin is associated with neuronal precursors and rapidly dividing 

neuronal cells in the immature murine nervous system (Ramm et al, 2009), taken 

with the expression of Nanog at these time points this may be indicative of cells of a 

neural crest lineage.  

To aid confirmation of lineage the gene expression of three neural crest markers, 

Pax3, Musashi-1 and Sox9 was measured. Peak expression of Pax3 was observed at 

21 days (7 days of stage 3), exhibiting 665-fold upregulation compared to embryonic 

stem cells, although high levels of upregulation were also observed at 14 (stage 2) 

and 32 (18 days into stage 3) days. Pax3 is expressed in NCCs before and after 
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delamination where it plays an essential role in cell survival and proliferation 

(Plouhinec, et al., 2014). Musashi-1 and Sox9 showed peak expression later than 

Pax3, during stage 3 at 32 and 48 days respectively (Figures 3.11-3.13). Musashi-1 

is known to be an inducer of neuronal fate in neural crest stem cells and Sox9 is 

expressed in the migratory neural crest (Lo et al., 1998; Cheung and Briscoe, 2003). 

Immunocytochemistry was carried out after differentiation stage 2. Cells were 

positive for the neural crest markers p75 and Sox10, while expression of the 

embryonic stem cell marker Sox2 was reduced. Staining of the actin cytoskeletons 

with phalloidin showed morphologically distinct cells compared to those cultured in 

CM. Culture for an additional 32 days  resulted in the generation of further 

morphologically distinct cell lineages displaying either markers of smooth muscle 

cells (smooth muscle actin) or peripheral neuron markers (peripherin) but not both 

Figures 3.7 and 3.8). Immunocytochemistry data, taken together with genetic 

analyses support the induction of neural crest stem cells capable of differentiating 

into divergent cell types while expressing associated biomarkers (Aihara et al, 2010).  

The role of BMP-4 was investigated in various aspects of neural crest differentiation. 

BMP-4 has previously been associated with the regulation and proliferation of stem 

cells, and is a factor positively influencing the survival of neuronal progenitor cells 

during later differentiation. (Zhang and Li, 2005; Chalazontis and Kessler, 2012). 

BMP-4 accelerated cell proliferation after an initial fall with no effect in viability 

observed. In culture with treated and untreated media, both populations of cells 

decreased in viability then recovered over time (Figures 3.14 and 3.15). It is possible 

this can be attributed to adaptions to growth in serum free culture. Culture in serum 

free conditions has been shown to affect the survival of murine embryonic stem cells 

(Aihara et al., 2010). 
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Cell cycle analysis after completion of stage 2 supported data gained from 

proliferation experiments. Upon completion of stage 1 cells were cultured for 10 

days in either PIM or SIM (untreated and treated respectively). A slight but 

significant reduction in G1 and S phases in treated cells compared to untreated cells 

cultured for the same time period coupled with over a 10-fold increase in G2 phase 

in treated cells was indicative of more rapid cell division. Calculations of phase 

times reinforced these data with significant reductions in synthesis time recorded for 

the BMP-4 supplemented samples, indicative of more rapidly proliferating cells and 

concurrent with data from proliferation experiments (Pozarowski and Darynkiewicz, 

2004). 

Supplementation of BMP-4 had no effect on transcription of Nanog, Nestin, Pax3, 

Musashi-1 or Sox10 after 1 hour during differentiation stage 2. After 5 days of stage 

2 expression of Nanog was similarly reduced in both treated and untreated cells (no 

significant difference between samples p-value 0.6). At 10 days Nanog expression in 

cells cultured without BMP-4 supplementation (untreated) remained stable, not 

exhibiting the increase observed in cells cultured in BMP-4 supplemented media 

(treated) (Figure 3.18). A 5.9-fold increase in expression in treated cells compared to 

untreated was observed (p-value 2 x10-5). These data indicate that the increase in 

expression was mediated by BMP-4 but through a pathway potentially involving a 

number of downstream targets as indicated by the delay in upregulation following an 

initial fall in expression levels. BMP-4 has been implicated in the differentiation of 

(Wang et al., 2012), as well as the maintenance of pluripotency of embryonic stem 

cells. BMP-4 in concert with leukaemia inhibitory factor is used to inhibit the 

differentiation of murine embryonic stem cells and induce self-renewal in vitro 

(Zhang et al., 2013). 
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Nestin expression was upregulated for both treated and untreated cells. A relatively 

modest (4.1-fold) increase in expression was observed in treated cells and more 

potent expression (21.8-fold increase) in untreated cells after 5 days. 10 days culture 

yielded a smaller but still statistically significant difference (38.5-fold and 29.1-fold 

for treated  and untreated cells respectively) (Figure 3.19). BMP-4 has been shown to 

be antagonistic towards neurulation in the ectoderm, giving rise to non-neural 

ectoderm in higher concentrations and neural crest at lower concentrations 

(Marchant et al., 1998). These data suggest that low levels of BMP-4 may slow the 

expression of factors associated with neurulation rather than act in an inhibitory 

manner. This is in keeping with the paradigm that ectodermal patterning is 

dependent on a concentration gradient of BMP-4. Neural crest stem cells are known 

to express Nestin (Aihara, et al., 2010) and be exposed to median levels of BMP-4 

after gastrulation (Barth et al, 1999). 

Pax3 is a commonly expressed biomarker of NCCs both at the neural plate border 

and during migration and colonisation of the developing embryo (Milet et al., 2013). 

It is known to be expressed in cells in the nascent stages of central nervous system 

development (Maczkowiak et al., 2010) although transcription is tightly regulated 

and restricted to the dorsal neural tube (Moore et al., 2013). As with Nestin, 

treatment with BMP-4 acted to delay increasing gene expression of Pax3 but 

prolonged period of expression. In untreated cells, Pax3 expression was seen to 

swiftly peak and then decline as opposed to expression in treated cells, which 

increased more slowly but maintained increasing expression levels (Figure 3.20). 

Earlier experiments showed Pax3 expression to peak after 1 week of stage 3 (21 days 

total treatment) in induction conditions (Figure 3.11). Pax3 is expressed transiently 

in a number of tissues in the developing organism, although expression is normally 
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curtailed before progenitor cells differentiate into somatic lineages. Prolonged 

expression of Pax3 has been described in neural crest derivatives such as peripheral 

neurons (Blake and Ziman, 2013) and it may act to maintain NCCs in a multipotent 

state before and during delamination and migration. (Wu et al, 2008). Neural crest 

differentiation is a multistep process and initial development can occur in the 

absence of Pax3 although deficiencies in neural crest derived cell types, particularly 

melanocytes can be observed in addition to vestigial formation of skeletal muscle 

(Maczkowiak, et al, 2010). These data suggest that Pax3 plays a key role in the 

migration but not the initial formation of the neural crest (Moore et al., 2013). BMP-

4 may play a role in these early stages by regulating Pax3 expression prior to 

delamination. 

Musashi-1 is similarly associated with nervous system and neural crest development 

(Abreu et al., 2009). The pattern of expression of Musashi-1 followed similar trend 

to Pax3 with delayed upregulation in BMP-4 treated cells. Expression in untreated 

cells did not significantly change between 5 and 10 days while increasing in treated 

cells over the same period (Figure 3.21). Musashi-1 is part of the same regulatory 

network as Pax3, combining to stimulate the expression of Ret, a gene found in cells 

of neural crest lineage (Figure 1.10) indicating that co-expression of these genes is 

required for neural crest differentiation.  

The role of BMP-4 on expression of Sox9 during differentiation stage 2 was less 

clear. Cells cultured in BMP-4-supplemented (treated) and non-supplemented media 

(untreated) showed similar levels of upregulation (80-fold and 67-fold upregulation 

respectively) between the beginning and the mid-point (5 days) of stage 2. No 

significant difference was noted at this stage (p value = 0.34). Sox9 expression in 
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treated cells remained relatively constant between the middle and end of stage 2 

while expression in untreated cells almost doubled. The difference in expression 

levels was deemed significant (p value = 0.03) (Figure 3.22). These data indicate a 

regulatory role for BMP-4 in Sox9 expression; potentially maintaining a particular 

level of expression. Sox9 is inhibitory to neurulation and necessary for the 

delamination and migration of neural crest stem cells in its phosphorylated form. 

Transcriptional analysis was unable to determine the state of phosphorylation and 

whether or not this is affected by BMP-4 (Liu et al, 2013). 

The expression of biomarkers, Pax3, Musashi-1 and Sox9 coupled with the ability of 

treated cells to differentiate into distinct lineages immunopositive for peripheral 

neuron and smooth muscle markers is indicative of a neural crest cell type for cells at 

stage 2 of differentiation. Transcriptional data requires verification through 

proteomic analysis such as Western blotting or immunocytochemistry (Chapter 6). 

The precise mechanisms of BMP-4 regulation on neural crest development remain 

unclear. Investigation of methylation status of affected genes such as Nanog may 

offer some insights into its transcriptional mechanisms. It is known that BMP-4 is 

sufficient together with the presence of LIF to maintain murine embryonic stem cells 

in an undifferentiated state, allowing for high levels of proliferation and self-renewal 

(Tamm et al., 2013).  Conversely, BMP-4 through the SMAD pathway, acts as a 

driver for early neural differentiation (Fei et al., 2010) it is possible that BMP-4 

plays more than one role in the onset of neural crest differentiation.  Global genome 

analysis may be efficacious in identifying novel long and short-term targets. Finally, 

functional analysis of prospective neuronal cells is necessary for verification of 

targeted differentiation (Chapter 6). The development of functional neurons would 
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serve too act as validation of the culture process and perhaps a potential source of 

cells for future tissue replacement therapies. 
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Chapter 4: Transcriptional Analysis of Neural Crest 

Derived Peripheral Neuron Differentiation from 

Mouse Embryonic Stem Cells. 

4.1 Introduction 

Global gene expression analysis has proven vastly beneficial in the analysis of stem 

cell differentiation. It enables the rapid characterisation and comparison of cells at 

different stages of differentiation. It also provides a method for the verification of 

differentiation protocols and potentially identifies key regulatory factors (Takahashi 

and Yamanaka, 2006).  Previous studies in the field have measured the 

transcriptional changes inherent in the differentiation of NCCs from embryonic 

precursors (Kreitzer et al, 2013) but little information is available on the impact of 

specific factors such as BMP-4 that influence lineage selection. 

Affymetrix Gene Chip microarrays are commonly used for the transcriptional 

analysis of multiple cell types, containing multiple probes representing thousands of 

genes across various species such as mouse, rat and human (Irizarry et al., 2003). 

The large number of genes examined can prove challenging to analyse without 

deconvolution. However, software packages such as DAVID 

(http://david.abcc.ncifcrf.gov/tools.jsp) hosted by the National Institute of Health, 

which provide algorithms to sort and categorise microarray data are freely available 

(Huang et al., 2007). These analyses quickly and efficiently provide candidate genes 

for verification by more sensitive techniques such as real time PCR (Rajeevan et al., 

2001).  

 

 

http://david.abcc.ncifcrf.gov/tools.jsp
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4.2 Aims  

 Carry out global transcription analysis of differentiating putative neural crest 

cells and peripheral neurons to elucidate transcriptional changes during 

differentiation and assess the role of BMP-4 in neural crest specification 

 Use deconvolution software such as DAVID to assay possible regulatory 

factors 

 Confirm expression profiles with RT-qPCR 

4.3 Results 

4.3.1 TriSureTM Extraction of RNA 

Although Nanodrop analysis is ideal for determining the quantity and purity of 

nucleic acids it cannot differentiate between degraded and non-degraded samples. 

Accurate microarray analysis relies on high quality RNA (RNA integrity number 

(RIN) >7) and little variation between replicates (Thompson et al., 2007). 

Electropherograms were produced for each sample earmarked for microarray 

analysis (Figure 4.1) and 2100 Expert Software (Agilent) was used to determine 

RINS. Non-degraded RNA shows characteristic peaks corresponding to 28s and 18s 

ribosomal RNA at 40 and 50 seconds respectively with no signal generated before, 

between or after the peaks.  Degraded RNA shows the same ribosomal peaks but 

with other, lower peaks indicative of smaller fragments of RNA visible. A 25 bp 

marker added to the reaction mixtures was visualised as a peak at 25 seconds (Anon, 

2013). 
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Figure 4.1. Integrity of extracted RNA. RNA was extracted with TriSure™ and 

analysed using Agilent 2100 software. (A) Representative electropherogram for non-

degraded (RIN 10) RNA. (B) Representative electropherogram for degraded (RIN 2.6) 

RNA.  

 

 

RNA from stage 0, 1, 2 and 3 cells was extracted and sent for analysis, each sample 

representing a discrete step in the differentiation process (Table 3.2). Stage 3 cells 

were harvested 20 days after withdrawal of BMP-4 supplementation (34 days total 

culture). To determine the immediate effects of BMP-4 on gene expression RNA 

was extracted from treated cells 1 hour into stage 2, this was compared to RNA from 

stage 1 cells. To ensure any differences were a result of BMP-4 supplementation 

fresh PIM was added to untreated cells at the same time and cells were incubated at 

37°C for 1 hour. To assess the long-term effects of BMP-4 supplementation cells 

were cultured for the same time-period as stage 2 cells but media was not 

supplemented with BMP-4 after stage 1. These cells were termed stage 2 treated and 

untreated as previously described. Only RNA samples with RINS of 8 or higher 

were considered for microarray analysis. Bioanalyzer data showed that non-degraded 

RNA of consistent quality was produced by TriSureTM extraction (Table 4.1).  

 

 

A B 
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Table 4.1. Extracted RNA for microarray experiments was of consistent, high 

integrity. RNA was extracted in triplicate samples at each time point and analysed 

using an Agilent 2100 Bioanalyzer. All samples were above the threshold value and 

little variation in RIN was observed between samples. 

Differentiation stage 

Culture period 

(cumulative) Media 
RIN 

(Sample 1) 

RIN 

(Sample 2) 
RIN 

(Sample 3) 

Stage 0 0 days E14 CM 10 9.9 10 

Stage 1 

4 days +1 hour (4 days +1 

hour) PIM 10 9.7 9.9 

Stage 2 (1 hour) 

4 days +1 hour (4 days +1 

hour) SIM 10 10 9.7 

Stage 2 (treated) 10 days (14 days) SIM 10 10 9.9 

Stage 2 (untreated) 10 days (14 days) PIM 10 9.9 10 

Stage 3  20 days (34 days) PIM 9.9 9.7 10 

 

4.3.2 Affymetrix Microarray of Differentiating Mouse Embryonic Stem Cells 

Microarray experiments were carried out by Mr Michael Smiga (University of 

Manchester Genomic Sciences Core Facility). Initial analyses were performed by Dr 

Leo Zeef at the University of Manchester Bioinformatics Core Facility. Quality 

control (QC) analysis showed little variance in median intensity before 

normalisation, a low percentage of outliers and no warnings triggered for any of the 

samples (Table 4.2).  

Table 4.2 Pre-normalisation intensities and outliers for Affymetrix Microarray 

experiments. Median intensities for each sample were similar, no probes were called 

absent and low outlier percentages were noted. 

Array 

Median Intensity 

(unnormalised) 

P call 

% 

% Array 

outlier 

% Single 

outlier Warning 

Stage 0 144 0 0.058 0.021 - 

Stage 1 178 0 0 0.01 - 

Stage 2 (1 hour) 156 0 0.002 0.007 - 

Stage 2 (end) 187 0 0.193 0.032 - 

Stage 2 (BMP-4 

negative) 179 0 0.064 0.013 - 

Stage 3  151 0 1.055 0.169 - 
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Datasets were considered of sufficient quality for further analysis, following QC 

principal component analysis (PCA) was carried out to examine levels of variation 

between the samples. PCA analysis showed that principle components 1 and 2 

accounted for 87.3 percent of variance across all samples with the majority of this 

(70.5%) due to principle component 1. Variations in both principle components were 

observed at each stage of the differentiation process. BMP-4 treatment manifested 

small changes after 1 hour and more discernible variance after 10 days treatment 

(Figure 4.2). 

Data was converted into PUMA antilog format and reported as fold change in gene 

expression between variables, a threshold of 2.5-fold change in expression for 

upregulated genes and 2.5-fold for downregulated was selected. At each stage the 

majority of genes remained unchanged, however a number of genes were observed 

to be differentially expressed at each stage both positively and negatively (Table 

4.3). 
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Figure 4.2. Principle component analysis of global gene expression in 

differentiating E14 mouse embryonic stem cells. Variation in gene expression was 

observed as stage 0 cells (cyan) were differentiated into stage 1 (tan), stage 2 (red) and 

stage 3 cells (green). After 1 hour of stage 2 small variations in gene expression were 

observed between treated and untreated cells (tan -purple). Greater variation was seen 

between treated (red) and untreated (blue) cells after stage 2. 

 

 

Table 4.3. Gene expression analysis of differentiating E14 mouse embryonic stem 

cells. Cells were cultured as previously described (Table 3.2). Expression levels were 

compared between the later stage and earlier stage in each case. 

 

Differentiation stage Upregulated Downregulated Unchanged 

Stage 0 - Stage 1 3566 4910 36562 

Stage 1 - Stage 2 6086 5345 33607 

Stage 2 – Stage 3 7892 6220 30926 

Stage 1 

Stage 2 

Stage 3 

Stage 0 

treated 

untreated 

treated 

untreated 
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BMP-4 treatment was shown to exert an immediate effect with over 3000 genes 

upregulated and almost 1500 downregulated after 1 hour. After 10 days, slightly more 

genes (4355) were observed to be upregulated while over twice as many (3666) 

exhibited downregulation (Table 4.4). These early data may indicate a convoluted role 

for BMP-4 in neural crest development, involving the differential regulation of many 

genes.   

Table 4.4 BMP-4 treatment alters gene expression in differentiating stem cells. 

RNA expression levels in stage 2 treated cells were compared to those in stage 2 

untreated cells after 1 hour (immediate effects of BMP-4 treatment) and 10 days (long-

term effects of BMP-4 treatment). 

 

Differentiation stage Upregulated Downregulated Unchanged 

Stage 2 - 1 hour 3255 1486 40297 

Stage 2 - 10 days 4355 3666 37017 

 

It must be noted that the total number of probes (45038) does not correspond to the 

total number of genes analysed. Many genes in the microarray are represented by 

multiple probes. In order to identify possible regulatory factors computer analysis 

was used to deconvolute the data. 

4.3.3 Putative Targets of BMP-4 in Differentiation of Mouse Embryonic Stem 

Cells 

Microarray analyses revealed expression changes in thousands of genes for each 

point of comparison. The DAVID functional annotation tool was used to 

deconvolute data and assay potential pathways. Genes constituting parts of the cell 

adhesion molecule pathway were within the 500 most upregulated and 

downregulated genes in three of the five comparison points, with significant changes 
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in expression in differentiation stages 2 and 3 noted and potential BMP-4 mediated 

alterations during stage 2 (Table 4.5). 

Table 4.5 Cell adhesion molecules were differentially expressed during 

differentiation of E14 mouse embryonic stem cells. DAVID analysis demonstrated 

significant changes in expression of adhesion molecules at each stage of 

differentiation. 

 

Stage P-value 

Stage 1-2 0.00059 

Stage 2-3 0.008 

Stage 2 treated / untreated comparison 0.0001 

 

In each case, the p-value was well below 0.05, suggesting a significant role for 

adhesion molecules in the differentiation process. Further analysis using the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) – supported by DAVID revealed 

two particular pathways – the neural system and tight junction formation pathways 

(Figure 4.3). KEGG analysis detailed known pathways with highly upregulated or 

downregulated genes marked by stars. Analysis of the genes in these pathways 

revealed that in particular the Claudin family, the Cadherin family of adhesion and 

the synaptic gene families coding for Neurexins and Neuroligins were important 

throughout the differentiation process and potential targets of BMP-4. Data from 

multiple probes was generated for Cadherin and Claudin families (summarised in 

Appendix 4), while Neuroligin1, Neuroligin3 and their corresponding Neurexin 

genes were specifically noted as putative BMP-4 targets during neural crest 

differentiation.  
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Figure 4.3. KEGG analysis of microarray data. The neural system and tight 

junction pathways are potentially important both in the formation of the neural crest 

and its derivative and as targets for BMP-4 signalling. KEGG analysis indicated the 

Claudin family of tight junction associated genes and the prosynaptogenesis genes of 

the β-Neurexin and Neuroligin families were differentially regulated by BMP-4 during 

differentiation into peripheral neurons, particularly Claudin and Neurexin-Neuroligin 

expression (marked by stars). 

 

4.3.4 RT-qPCR of Candidate Genes Identified by Microarray Analysis 

Analysis of microarray data indicated a number pluripotency associated genes were 

upregulated in the presence of BMP-4, specifically Oct-4 and members of the 

developmental pluripotency family of genes. In order to confirm these data RT-

qPCR was carried out using RNA from stages 0, 1, 2 and 3 corresponding to the time 
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points selected for microarray analyses. As previous data (Figure 3.12) showed that 

Nanog expression was at first downregulated and then upregulated during stage 2 

RNA extracted at the midpoint of this stage was additionally extracted and analysed 

to determine whether this resurgence occurred in other genes (Table 4.6). 

Table 4.6 time points selected for RT-qPCR analysis after microarray 

experiments. Cells were cultured in induction media with BMP-4 treatment during 

stage 2. 

Culture time (days) Stage Media 

0 days 0 (SSEA-1 positive embryonic stem cells) E14 CM 

4 days 1 PIM 

9 days 2 (mid-point) SIM 

14 days 2 (end) SIM 

34 days 3 PIM 

 

Five pluripotency associated genes were investigated, Oct-4, Dppa2, Dppa3, Dppa4 

and Dppa5 as each was indicated as a putative BMP-4 target after microarray 

analyses. In each case a similar expression pattern was seen. Initially expression of 

these genes declined slightly or remained stable with between stages 0 and 1 

followed by a sharp decline at the mid-point of stage 2. As with Nanog expression 

levels increased for all genes between the middle and end of stage 2. Except in the 

case of Dppa2 and Dppa3 expression levels decreased upon BMP-4 withdrawal. 

(Figures 4.4-4.8). All data was normalised to the housekeeping genes β-actin and 18s 

ribosomal RNA, both of which showed consistent levels of expression at each stage 

and significance was determined by students T-test comparing each time point 

sequentially. 
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Figure 4.4. Culture in induction media resulted in differential Oct-4 expression 

relative to embryonic stem cells (value = 1). E14 mouse embryonic stem cells were 

cultured in PIM during stage 1, SIM during stage 2 and PIM during stage 3. Rapid 

downregulation during stage 1 and the first half of stage 2 was reversed by the end of 

stage 2. Data is mean ± SEM, n=3. ** denotes p-value < 0.01. Denotes p-value < 0.01 

 

 

 

Figure 4.5. Culture in induction media at first downregulated then upregulated 

Dppa2 expression relative to embryonic stem cells (value = 1). E14 mouse 

embryonic stem cells were cultured in PIM during stage 1, SIM during stage 2 and 

PIM during stage 3. Gene expression initially decreased and was upregulated 

following withdrawal of BMP-4 treatment after stage 2. Data is mean ± SEM, n=3. * 

Denotes p-value < 0.05. ** Denotes p-value < 0.01. 
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Figure 4.6. Culture in induction media at first downregulated then upregulated 

expression of Dppa3 compared to embryonic stem cells (value = 1). E14 mouse 

embryonic stem cells were cultured in PIM during stage 1, SIM during stage 2 and 

PIM during stage 3. BMP-4 treatment increased expression after 10 days following an 

initial drop. Data is mean ± SEM, n=3. * Denotes p-value < 0.05. 

 

 

 

Figure 4.7. Culture in induction media resulted in differential expression of 

Dppa4 relative to embryonic stem cells (value = 1). E14 mouse embryonic stem 

cells were cultured in PIM during stage 1, SIM during stage 2 and PIM during stage 

3. BMP-4 supplementation significantly upregulated expression between the mid and 

end points of stage 2.Data is mean ± SEM, n=3 ** Denotes p-value < 0.01. 
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Figure 4.8. Culture in induction media resulted in differential expression of 

Dppa5 relative to embryonic stem cells (value = 1). E14 mouse embryonic stem 

cells were cultured in PIM during stage 1, SIM during stage 2 and PIM during stage 

3. BMP-4 supplementation significantly upregulated expression between the mid and 

end points of stage 2. Data is mean ± SEM, n=3. ** Denotes p-value < 0.01. 

 

To assess the effects of BMP-4 on the above genes expression was tested as in 

section 3.3.6. No differences were observed after 1 hour and 5 days culture for four 

of the six genes examined. Dppa2 and 3 showed increased expression levels of 4.4 

and 6.9 fold respectively but high levels of variation in samples meant this was not 

significant. After 10 days in culture BMP-4 was shown to upregulate each gene, 

differences in expression levels were shown to be statistically significant except for 

Dppa2 (p-value 0.09)  (Figure 4.9). Expression values of treated cells were 

compared to those of untreated cells (value =1), data was normalised to the 

housekeeping genes β-actin and 18s ribosomal RNA. Students 2-tailed T-tests were 

used to determine significance. 

0

0.2

0.4

0.6

0.8

1

1.2

Embryonic
srem cells

4 days 9 days 14 days 34 days

R
el

at
iv

e 
R

N
A

 e
x
p

re
ss

io
n

Time in culture

** 

** ** 

Stage 3 Stage 2 Stage 1 



118 
 

 

Figure 4.9. BMP-4 increased expression of pluripotency associated genes after 10 

days in culture. Cells were cultured during stage 2 and gene expression was 

calculated relative to expression in untreated cells. Upregulation was observed in 5 out 

of 6 genes after 10 days. No significant difference in expression was noted after 1 hour 

and 5 days  Data is mean ± SEM, n=3. * denotes p value < 0.05 ** denotes p value < 

0.01. Expression levels in untreated cells are denoted by the dotted line (value = 1). 

 

 Shh expression is reported in the PNS, being essential for correct innervation of the 

gut (Jin et al, 2015) but is repressed by the secreted BMP-4 (Liem, et al, 1995). 

Microarray data showed two probes corresponding to Shh with differing values. RT-

qPCR was used to determine whether or not transcriptional repression of Shh was 

taking place and whether this was mediated by BMP-4. Analysis over time showed a 

gradual increase in expression from stages 0-2 although these changes were not 

significant. Upon removal of BMP-4, significant upregulation (p-value 0.0007) was 

observed (Figure 4.10).  
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Figure 4.10. Culture in induction media resulted in upregulation of Sonic 

Hedgehog, after removal of BMP-4. E14 mouse embryonic stem cells were cultured 

in PIM during stage 1, SIM during stage 2 and PIM during stage 3. All values are 

compared to embryonic stem cells (value = 1). Data is mean ± SEM, n = 3. ** Denotes 

p-value < 0.01. 

 

Pathway analysis was carried out using DAVID functional annotation tools 

(National Institute of Health) (section 4.4.3). A number of genes associated with 

cellular adhesion and migration were identified as putative targets of BMP-4 with a 

potential role in neural crest formation. Confirmation of microarray data was carried 

out by RT-qPCR as above. The tight junction proteins Claudin1 and Claudin23 were 

shown to be increasingly expressed over the period of differentiation. Clauin23 

expression remained unchanged after stage 2, while Claudin1 was highly 

upregulated (Figure 4.11 and 4.12).  
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Figure 4.11. Claudin1 expression increased in comparison to embryonic stem cells 

(value = 1) in induction media. E14 mouse embryonic stem cells were cultured in 

PIM during stage 1, SIM during stage 2 and PIM during stage 3. Data is mean ± SEM, 

n=3. ** Denotes p-value < 0.01. 

 

 

 

Figure 4.12. Claudin23 expression increased in comparison to embryonic stem 

cells (value = 1) in induction media. E14 mouse embryonic stem cells were cultured 

in PIM during stage 1, SIM during stage 2 and PIM during stage 3. Data is mean ± 

SEM, n = 3. * Denotes p-value < 0.05. ** Denotes p-value < 0.01. 
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Expression of the synaptogenesis associated adhesion genesNeuroligin1 and 

Neuroligin3 were both upregulated during the differentiation process most notably in 

stage 3 after the withdrawal of BMP-4 supplementation. In the case of both, 

transcription was not detected in embryonic stem cells or stage 1 differentiated cells 

(4 days treatment). (Figures 4.13 and 4.14).   

 

 

Figure 4.13. Neuroligin1 was weakly expressed in cells cultured in induction 

media supplemented with BMP-4. E14 mouse embryonic stem cells were cultured 

in PIM during stage 1, SIM during stage 2 and PIM during stage 3. Expression was 

not detected before 9 days. Removal of BMP-4 resulted in significant upregulation. 

(Values compared to cells after 9 days culture = 1). Data is mean ± SEM, n = 3. ** 

Denotes p-value < 0.01. 
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Figure 4.14. Neuroligin3 was weakly expressed in cells cultured in induction 

media supplemented with BMP-4. E14 mouse embryonic stem cells were cultured 

in PIM during stage 1, SIM during stage 2 and PIM during stage 3. Expression was 

not detected before 9 days. Removal of BMP-4 resulted in significant upregulation. 

(Values compared to cells after 9 days culture = 1). Data is mean ± SEM, n = 3). ** 

Denotes p-value < 0.01 

 

Expression levels of two adhesion and migration associated POU domain-containing 

genes (Pou3f4 and Pou4f2) were interrogated after DAVID analysis revealed a 

potential role for both in the neurulation and adhesion of differentiating cells. Small 

changes in Pou3f4 expression were observed between stage 0 and the mid-point of 

stage 2. However, between this point and the end of stage 2 an 11.9-fold 

upregulation was recorded. Removal of BMP-4 supplementation resulted in a further 

10.8-fold increase (Figure 4.15). Pou4f2 expression decreased in culture from stage 0 

to stage 1 and was not detected at the midpoint of stage 2. Transcription was 

observed to resume by the end of stage 2 and was significantly upregulation during 

stage 3 (Figure   4.16).  
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Figure 4.15. Pou3f4 was moderately expressed after 10 days culture with BMP-

4, highly expressed after withdrawal of BMP-4 supplementation. E14 mouse 

embryonic stem cells were cultured in PIM during stage 1, SIM during stage 2 and 

PIM during stage 3. Values compared to embryonic stem cells (= 1). Data is mean ± 

SEM, n = 3. * Denotes p-value < 0.05 ** Denotes p-value < 0.01.  

 

 

Figure 4.16. Culture in induction media initially downregulated then upregulated 

Pou4f2 expression compared to embryonic stem cells (Value = 1). E14 mouse 

embryonic stem cells were cultured in PIM during stage 1, SIM during stage 2 and 

PIM during stage 3. Expression was not detected at 9 days. Data is mean ± SEM, n = 

3. * Denotes p-value < 0.05. 
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Tudor Domain Containing Protein 12 (Td12) gene showed 97132-fold upregulation 

after 10 days culture in the presence of BMP-4 compared to culture without. No 

previous connections between neural crest development and expression were found. 

On the basis that such profound changes in expression levels may be indicative of a 

role in neural crest formation RT-qPCR was carried out as before. Td12 expression 

remained stable between stage 0 and 1 days but declined during stage 2. The 

remainder of the treatment showed some fluctuation but changes were not significant 

varying between 2.6 and 6.3 fold downregulation compared to embryonic stem cells 

(Figure 4.17). 

 

 

Figure 4.17. Culture in induction media decreased expression of Td12 after an 

initial period of stability. Expression levels did not vary thereafter. E14 mouse 

embryonic stem cells were cultured in PIM during stage 1, SIM during stage 2 and 

PIM during stage 3. Expression levels were compared to embryonic stem cells =1. 

Data is mean ± SEM, n=3. * Denotes p-value < 0.05. 
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Expression of the above genes was measured after BMP-4 treatment for 1 hour, 5 

days and 10 days as before, compared to untreated stage 2 cells (section 3.3.6). No 

significant changes were detected for any of the genes after 1 hour and neither 

Neuroligin1 or Neuroligin3 were not detected at this point. Culture for 5 days 

resulted in significant downregulation of Shh (4.3-fold), Claudin1 (18.8-fold), 

Neuroligin3 (2.2-fold) Pou3f4 (88.2-fold) and Pou4f2 (not detected in the treated 

sample) in treated cells compared to untreated. After 10 days Shh (6.4-fold), 

Claudin1 (6.1-fold), Pou3f4 (3.5-fold) and Pou4f2 (4.4-fold) were all downregulated 

in cells cultured in BMP-4 supplemented media. Neuroligin1 was downregulated 

significantly after 10 days (6.6-fold) while Neuroligin3 expression was the same. In 

contrast to Claudin1, Claudin23 expression was upregulated by BMP-4 showing a 

3.5-fold increase after 10 days. Td12 also exhibited an increase in transcriptional 

activity to a more modest extent then indicated by microarray data (10.1-fold), 

(Figure 4.18). 
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Figure 4.18. BMP-4 supplementation altered expression of adhesion and neuronal associated genes. Cells were cultured in primary 

induction media for four days (stage 1) before BMP-4 treatment for ten days (stage 2). Expression values were compared to stage 2 

untreated cells (dotted line, value = 1). Data was normalised to β-actin and 18s ribosomal RNA. Data are mean ± SEM, n = 3. * denotes 

p > 0.05 ** denotes p > 0.01. 
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4.4 Discussion 

Global gene expression analysis identified a number of putative genes that may play 

a regulatory role in BMP-4 mediated differentiation of murine embryonic stem cells. 

Confirmation by RT-qPCR confirmed expression changes in a quantifiable manner. 

BMP-4 was shown to have a positive regulatory effect on the expression of a number 

of genes associated with pluripotency. Initial downregulation was followed by 

upregulation after stage 2 in culture in all the genes surveyed. With the exception of 

Dppa2 and Dppa3, withdrawal of BMP-4 resulted in these genes again being 

downregulated (Figures 4.4-4.8). The role of Nanog and Oct-4 in the maintenance of 

pluripotency is well documented, (Loh, et al, 2006) the role of the Dppa genes is less 

well characterised although they are known as markers of pluripotency (Ruau et al, 

2008). A role for these genes in the maintenance of pluripotency can be inferred as 

knockdown of Dppa2 limited the self-renewal potential of murine embryonic stem 

cells and mediated differentiation. Knockdown of Oct-4 resulted in reduced Dppa2 

expression suggesting a possibly regulatory role for the former (Du, et al, 2010). 

Dppa2 and Dppa4 have been recently identified as oncogenic and through the SAP 

signalling pathway increase cell proliferation, representing a possible model for their 

role in embryonic stem cells (Tung et al, 2013). Dppa3 regulates gene expression by 

modification of the chromatin structure, facilitating the open heterochromatin rich 

structures of ESCs (Liu et al, 2012) while Dppa5 is less well characterised but 

present in murine and human embryonic stem cells (Kim et al., 2005). 

The role of BMP-4 in stem cell biology is complex and diverse. Culture of murine 

embryonic stem cells with LIF and 10 ng ml-1 BMP-4 acts antagonistically towards 

differentiation and stimulates self-renewal in the absence of serum. (Zhang, et al, 

2013). Conversely, in human embryonic stem cells BMP-4, albeit at a higher 
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concentration (100 ng ml-1) downregulates expression of the pluripotency factors 

Nanog, Sox2 and Oct-4 (Xu et al, 2008) acting to induce differentiation. BMP-4 

plays an inhibitory role in the development of the murine nervous system and an 

inductive role in the development numerous cell lineages including hepatic, cardiac 

and osteoblast (van Bezooijen et al, 2005; Fei, et al, 2010). It is evident that BMP-4 

signalling is a complex and dynamic process responding to variations in 

concentration and environment. The almost ubiquitous presence of BMP-4 signalling 

in the developing organism is indicative of the ability to respond to a number of 

extracellular and intracellular cues underlying its importance as a key regulator of 

gene expression (Varga and Wrana, 2005). 

Microarray data, and subsequent RT-qPCR analyses revealed upregulation of 

pluripotency factors and downregulation of neurulation associated genes such as Shh 

(Figures 4.19 and 4.18). Differentiating cells were treated with similar levels of 

BMP-4 to those described by Zhang et al (2013) (8ng ml-1) indicating a similar role 

for BMP-4 in proliferation and maintenance of multipotency in the developing 

neural crest. The positive regulation of several genes associated with ESCs, which 

are highly proliferative, is consistent with previous data. Proliferation and viability 

analyses showed BMP-4 treated cells to expand more rapidly in culture without 

concomitant alteration in viability (Figures 3.16 and 3.17). Altered cell cycle 

parameters (Figures 3.18 and 3.19) further supported the role of BMP-4 in regulating 

proliferation and multipotency through upregulation of ESC related genes. 

The SMAD family of proteins are responsive elements in the transforming growth 

factor β (TGF-β) signalling pathway in which BMP-4 comprises an essential role. 

The interaction of BMP with transmembrane receptors results in phosphorylation 

and nuclear localisation of SMAD complexes, which exert an effect on the 
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expression of a number of genes, influencing cellular development and proliferation 

responses. SMADs can act in both an inhibitory and stimulatory manner (Heldin et 

al, 1997; Wrighton et al, 2009). Microarray data revealed modest upregulation of 

SMAD1 during neural crest differentiation (approximately 1.5-fold) and by BMP-4 

exposure (Approximately 1.2-fold); however, pplr values were 0.75 and 0.86 

respectively necessitating further analyses. 

DAVID analysis indicated that cell adhesion related genes might be of importance 

during the differentiation of the neural crest. The role of adhesion molecules in 

neural crest induction is poorly understood but recent studies have indicated that they 

are essential for epithelial to mesenchymal transition, migration and contact 

inhibition of locomotion during migration prior to somatic differentiation (Moore et 

al, 2013; Alimperti and Andreadis, 2015). Expression levels of a number of adhesion 

molecules was assessed by RT-qPCR. 

Neuroligins are associated with the formation of synaptic junctions; they associate 

with neurons and modulate cell adhesion in the developing nervous system. 

Adhesion between adjoining neurons offers an effective method of transmitting 

signals between cells, enabling the transmission of nerve impulses (Dean and 

Dresbach, 2006; Fabrinchy et al., 2007). In induction culture conditions expression 

of neither Neuroligin1 nor 3 was detected until midway through stage 2 and removal 

of BMP-4 supplementation prior to stage 3 resulted in significant upregulation of 

both. BMP-4 supplementation resulted in downregulation of Neuroligin1 after 5 and 

10 days although this was not statistically significant at 5 days and transient 

downregulation of Neuroligin3 (Figures 4.13, 4.14, 4.18). These data are conversant 

with the role of BMP-4 as an inhibitor of neurulation, backing up earlier data 
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showing BMP-4 mediated repression of Nestin expression and concurrent with the 

downregulation of the neuronal specifier Shh. 

The Claudin family of genes is associated with the formation of tight junctions, they 

help to regulate the structure of tissues by maintain cellular positions; in the neural 

crest repression of Claudin1 is necessary to maintain a migrating population of cells. 

In adult tissue, loss of function of Claudin1 is associated with the initiation of 

mammary tumours (Fishwick, et al, 2012; Di Cello et al, 2013). Claudin23 is known 

to be differentially expressed in invasive and non-invasive pancreatic cancer cells 

(Wang et al, 2010). Downregulation of this gene is observed in more invasive cells, 

suggesting a role in the maintenance of cellular adhesion. Treatment in induction 

media resulted in gradual increases in gene expression and more marked increases 

upon removal of BMP-4 supplementation. BMP-4 was shown to repress expression 

of Claudin1 but not Claudin23; in the case of the former, this may be indicative of a 

role for BMP-4 in the modulation of cellular adhesion and migration (Figures 4.11, 

4.12, 4.18)  

POU4f2 expression was not altered during initial differentiation. Withdrawal of 

BMP-4 resulted in significant upregulation but this was only 2.34-fold above 

transcription levels expressed in embryonic stem cells. The repression of expression 

demonstrated by culture in BMP-4 supplemented media may be indicative of its anti-

neurulation properties. POU4f2 is associated with the development of neuron 

structures in the eye, the low levels of transcription may be indicative that cells were 

not differentiating into this lineage (Mao et al, 2008). POU3f4 is similarly associated 

with sensory neuronal development, specifically in the inner ear where perturbations 

in expression result in sensorineural hearing loss (Lee et al., 2009). Significant and 

profound upregulation was observed after withdrawal of BMP-4 supplementation 
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with a 238-fold increase in expression recorded compared to embryonic stem cells. 

Expression in culture conditions with BMP-4 treatment was decreased compared to 

conditions without, in untreated cells expression peaked after 9 days in culture (5 

days after initiation of differentiation) (Figures 4.15, 4.16, 4.18). The high levels of 

expression in of this gene may be indicative of a sensory neuronal lineage. The Td12 

gene has no reported links to neural crest differentiation, being associated with 

repression of transposons in germline development in the murine gonads. This role 

functions to prevent mutations during spermatogenesis (Pandey et al., 2013). Other 

than this little is known about its function. The pronounced decrease in expression 

levels after four days differentiation may be indicative of a function during early 

stages of development. It is possible that culture with BMP-4 mitigates this 

downregulation; however, microarray data showed extremely low expression in the 

untreated sample – intensity was 0.002 compared to a mean of 768.49 for all probes. 

This may have affected the accuracy of the analyses, falsely amplifying any 

differences. RT-qPCR data confirmed upregulation with BMP-4 treatment but low 

levels of expression combined with inherent inaccuracies in microarray analyses 

exaggerated the extent (Figures 4.17 and 4.18). It is unlikely that Td12 plays a role in 

neural crest development being repressed in opposition to the upregulation of neural 

crest markers such as Pax3 and Sox10. 
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Chapter 5: Characterisation of Neural Crest Derived 

Peripheral Neurons Differentiated from Mouse 

Embryonic Stem Cells  

5.1 Introduction 

Differentiation of cells comprising the PNS has proven challenging. Early studies on 

ESCs plated on PA6 stromal demonstrated that the stromal cells induced 

differentiation into central nervous system lineages. Treatment with BMP-4 was 

shown to retard this lineage selection and give rise to neural crest derived tissues 

such as peripheral neurons and smooth muscle (Mizuseki et al, 2003). The use of 

feeder cells results in exposure of ESCs to a variety of secreted factors, any or all of 

which may contribute to cell fate determination. More recently, culture in serum-free 

conditions has been shown to generate neural crest derived cell types in vitro, 

however little information on the specific effects of important transcription factors in 

this process such as BMP-4 are currently available (Aihara et al, 2010). 

Functionality studies in vivo have focused on the successful grafting of induced 

tissue into rodent brain, however this process is delicate and time consuming in 

addition to being unavailable to some research groups (Zhang et al, 2013; Lavasani 

et al, 2014). In vitro analysis of the ability of cultured neurons to relay action 

potentials may be able to provide insights into mechanisms of differentiation and 

allow rapid and easily repeatable experiments into the effects of compounds such as 

neurotoxins or neurotransmitters. MEA chips have been used to determine the 

response of cultured rat cortical tissue to toxins by observing the change in 

electrophysiological activity. Computer software converts this activity into 

characteristic spikes that can be altered by the administration of various compounds 

(Scelfo et al, 2012). At present there is little information regarding the 
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electrophysical properties of differentiated neurons and their response to various 

chemical stimuli. Development of protocols for this may allow for rapid turnaround 

of experiments and support neuronal differentiation procedures as well as facilitating 

characterisation. 

In the previous study protocols to induce terminally differentiated progeny from E14 

mouse embryonic stem cells were developed. Differentiation was carried out in three 

distinct stages based on a modified version of the protocol developed by Aihara and 

co-workers (2010) (Sections 2.4, 2.5, Figure 2.1) 

5.2 Aims 

 Characterise differentiated cells as peripheral neurons by examining 

expression of neuronal marker genes 

 Assess functionality of differentiated cells through MEA analysis 

 Assess Efficacy of differentiation protocols using flow cytometry 
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5.3 Results 

5.3.1 Expression of Neuronal Marker Genes was Different in Cells Cultured 

With and Without BMP-4 Treatment during Stage 2 of Differentiation  

PCR analysis of cells cultured for 60 days in differentiation conditions revealed the 

expression of a number of neuronal associated markers. Cells cultured with and 

without BMP-4 treatment during stage two both expressed Neuroligin1, Neuroligin3 

and Neurexin3. These proteins are essential for the formation of functional synapses 

in maturing organisms and facilitate the formation of pre-synaptic and post-synaptic 

signalling complexes. (Krueger et al, 2012). Transcription of Neuexin1 was not 

detected. Similar expression profiles for TrkC were observed in treated and untreated 

culture conditions while faint levels of TrkA were detected in the supplemented cells. 

Runx1 and Runx3 expression was not observed in non-supplemented cells and 

recorded in one of three populations of supplemented cells tested (Figure 5.1). 

Cells were cultured and fixed as described in 2.11. Staining with phalloidin revealed 

different cytoskeletal structures (Figure 5.2). Peripherin was detected in the treated 

fraction with some evidence of distribution as a filamentous structure that was more 

readily observable under high power (400x magnification) (Figures 5.3 and 5.4). The 

untreated fraction showed sporadic, weak expression of Peripherin while both 

fractions were highly positive for Neurexin3 (Figure 5.3). These data suggest that 

different fate selections occurred in cells cultured with and without BMP-4 

treatment. 
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                      Untreated                            Treated               NTC 

     Beta Actin 

             TrkA 

             TrkC 

 Neuroligin 1 

 Neuroligin 3 

   Neurexin 1 

   Neurexin 3 

           Runx1 

           Runx3 

Figure 5.1. Expression of neuronal biomarkers. RNA from cells cultured for 60 

days in induction media was extracted, reverse transcribed and analysed by PCR, 

compared to cells cultured in induction media without BMP-4 treatment during stage 

2. Expression of synaptic genes Neuroligin1, Neuroligin3 and Neurexin3 was 

observed in all samples while Neurexin1 was not detected. Altered expression of 

neurotrophin receptors (TrkA and TrkC) was observed. Expression of the transcription 

factors Runx1 and Runx3 was observed in one population of treated cells. cDNA was 

normalised to β-actin, which showed consistent expression. NTC = no template 

control. 
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Figure 5.2. Cytoskeletal structures of cells cultured for 60 days in differentiation 

conditions. (A) BMP-4 treated (B) Untreated fraction. Phalloidin staining (red) was 

used to visualise F-actin filaments in the cytoplasm, nuclei were stained with DAPI 

(Blue). Scale bars = 100 µm. 
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                          Treated                                                  Untreated                   

   

  

  

Figure 5.3. Expression of neuronal markers in cultured cells. Stage 3 cells were 

cultured for a total of 60 days. During stage 2 cells were cultured in either SIM (BMP-

4 treated) or PIM (untreated). Both treated and untreated fractions expressed the 

peripheral neuronal marker peripherin (A and B - green) although staining in untreated 

cells was weak. Robust expression of the synaptic protein Neurexin 3 was detected in 

both samples (C and D - green). No primary antibody controls are shown in E and F. 

Nuclei in all samples were stained with DAPI (blue). Scale bars = 100 µm. 
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Figure 5.4. Peripherin expression in differentiated cells. Cells were cultured in 

induction media for 60 days with BMP-4 treatment during stage 2. Cells were 

immunopositive for peripherin (green) and displayed axonal (red arrow) and dendrite 

(white arrow) like structures. Nuclei were stained with DAPI (blue). Scale bar = 100 

µm. 

 

 

5.3.2 Peripherin Expression in BMP-4 Treated and Untreated Fractions 

In order to determine gating for flow cytometry experiments the human 

neuroblastoma cell line sy-5y was used as a positive control. This cell line is known 

to express (Pederson et al, 1993). Unstained sy-5y cells were used as a negative 

control and the fluorescence threshold for Peripherin positive cells was set so that no 

more than 2% of unstained cells were in the right hand (positive) quadrant.  

Unstained and stained controls were measured as 1.36% positive (SEM 0.16) and 

83.74% positive (SEM 0.83 respectively). BMP-4 positive and BMP-4 negative cells 

were analysed; higher intensity of staining was observed in the BMP-4 positive 

fraction (Figure 5.5 and 5.6).  Cell Quest Pro was used to determine the percentage 

of Peripherin expressing cells. Significant variation was detected between the two 

samples with over 88% of BMP-4 treated cells presenting Peripherin epitopes 

compared to 52.2% in the untreated fraction (p-value o.oo5) (Figure 5.7). 

Peripherin DAPI 
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Figure 5.5. BMP-4 supplementation increased peripherin expression. Expression 

was measured by intensity of staining in the FITC channel (FL1-H). SSC-H measured 

granularity of cells, which was similar between samples. Cells were cultured with and 

without BMP-4 exposure during differentiation stage 2 before further culture for a 

total of 60 days. Treated cells (A) showed higher levels of expression than untreated 

cells (B).  

 

 

 

Figure 5.6. Representative comparative histograms of Peripherin expression 

levels in cultured cells. The treated fraction (right) showed higher intensity of staining 

than the untreated fraction (left).  

 

A B 
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Figure 5.7. Peripherin expression was significantly altered in culture with BMP-

4 supplemented medium during differentiation of E14 mouse embryonic stem 

cells. Cells were cultured for 60 days in induction media and the number of peripherin 

expressing cells compared. Cells cultured in BMP-4 supplemented media during stage 

2 (treated) were compared to cells cultured in non-supplemented media (untreated). 

Data is mean ± SEM, n=3. ** denotes p-value less than 0.01. 

 

 

 

5.3.3 Microelectrode Array Analysis of Cultured Cells 

Cells after 60 days culture were observed to grow on MEA chips and form 

connections between electrodes (Figure 5.8). Preliminary data indicated that 

electrophysiological activity was occurring in cells cultured under both conditions. 

Both fractions displayed characteristic spikes with similar frequency but higher 

amplitude in untreated cells (Figure 5.9). 
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Figure 5.8. Cultured cells on an MEA chip. Differentiated cells were able to adhere 

and grow on MEA chips. Cells formed connections between electrodes in single and 

multiple cell relays. Magnification x120. 

 

 

          

Figure 5.9. Electrophysiological activity in cultured cells. BMP-4 positive (A) and 

Negative (B) fractions displayed spontaneous electrophysiological activity with 

characteristic peaks. Both fractions were able to produce activity in the abence of 

stimulation. 

 

400 μV 

48s 

A B 



142 
 

5.3.4 The effects of NMDA and GABA on the Electrophysiological Activity of 

Cultured Cells 

Treatment of cells with NMDA produced variable results. Addition of 20 µl 1.7 µM 

NMDA solution facilitated  after a delay of approximately 1 minute in the BMP-4 

treated fraction when added to cells previously not displaying spontaneous electrical 

activity. Cessation of these bursts occured immediately after the addition of  GABA 

(Figure 5.10). Addition of the same volume to untreated cells resulted in no reaction 

in unresponsive cells (data not shown) and rapid decreases in both  frequency and 

amplitude of traces after a delay of approximately 1 minute (Figure 5.10). No 

response to GABA was recorded in any of the untreated cells tested. Increasing the 

dosage of GABA to 400 µl at 1 mM also failed to ilicit a response (data not shown).  
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Figure 5.10. Response of cultured cells to neuroactive compounds. Treated cells (A) were responsive to NMDA and GABA. Non-responsive 

cells were stimulated with NMDA (black arrow) after approximately 1 minute electrophysiological activity was observed. The addition of GABA 

(red arrow) resulted in immediate reduction of spike frequency and amplitude. Untreated cells (B) showed reduction in amplitude and frequency 

of traces approximately 1 minute after the addition of NMDA.
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5.4 Discussion 

Neurexins and neuroligins interact across the synaptic cleft and enable the 

recruitment of structural molecules and receptors that are essential for the correct 

functioning of the nervous system. Neurexins and neuroligins form GABA and 

glutamatergic synapses in vivo. Both neuroligins 1 and 3 and neurexin3 were 

expressed in cells cultured with and without BMP-4 treatment during differentiation 

stage 2 but transcription of Neuexin1 was not detected in either (Figure 5.1). 

However, a large number of splice variants (more than 2000) have been identified 

deriving from these genes, which may obstruct accurate measurement, by PCR 

(Craig and Kang, 2007). Expression of Neurexin3 was confirmed by 

immunocytochemistry with the majority of cells in both fractions positive for this 

protein (Figure 5.3). Transcription of these molecules and translation of Neurexin3 

may be suggestive of functional synapse formation for both culture conditions. 

BMP-4 supplementation appeared to be necessary for the transcription of TrkA but 

not TrkC Figure 5.1). The presence of both transcripts in BMP-4 treated cultured 

cells is indicative of heterologous populations. These genes are expressed in large 

body and small body sensory neurons respectively within the PNS (Raible and 

Ungos, 2006). Testing for transcription of TrkB may further characterise neuronal 

types as this receptor is for the most part confined to CNS neurons whilst TrkA and 

C are found in both peripheral and central tissues (Nikoletopoulu et al., 2010). All 

three Trk genes contribute to the numerous roles of neurons in both the central and 

peripheral nervous system during development and within mature animals. Each 

receptor has an extracellular domain, which forms complexes with specific ligands to 

initiate signalling cascades (Stoleru et al., 2013). These ligands – the neurotrophins 

are secreted proteins, which promote neuronal survival as well as facilitating 
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synaptogenesis, axonal and dendritic expansion and the formation of ion channels 

although the exact mechanisms of their functions remain unclear (Huang and 

Reichardt, 2003; Scaper, 2012).  

Expression of the Runt family of transcription factors was observed only in one 

population of cells cultured with BMP-4. Both Runx1 and Runx3 were expressed by 

this population (Figure 5.1). The runt-related family of transcription factors act to 

delineate proprioceptive and nociceptive peripheral neurons in vivo. Runx1 is 

coupled with the expression of TrkA in large body sensory neurons while Runx3 is 

associated with TrkC and small body sensory neurons. Runx1 and 3 control the 

characteristics of the ion channel necessary for proprioception and nociception 

respectively.  Expression patterns of both Runx1 and Runx3 is chiefly confined to 

post mitotic neurons, in the central and peripheral nervous systems in the case of the 

former and solely in the peripheral for the latter (Inoue et al, 2008; Bhatt et al, 

2013). Cells at 60 days were able to proliferate on MEA chips indicating that mitotic 

populations were still extant. 

Immunocytochemistry and flow cytometry data suggest that BMP-4 supplementation 

enhances expression of Peripherin in cultured cells. Cells not treated with BMP-4 

were also shown to express peripherin albeit with weaker staining and fewer cells 

presenting the epitope (Figures 5.3 A and D, 5.5, 5.6 and 5.7). Functional 

redundancy of BMP molecules has been observed in skeletal development 

(Bandyopadhyay et al, 2006) and Peripherin is not solely confined to the PNS (Ko et 

al, 2005).  Nonetheless, the high levels of cells presenting Peripherin alongside 

transcripts of Neurexin3, Neuroligins1 and 3 and TrkA and C is indicative of a 

peripheral neuron lineage in the BMP-4 treated fraction. Peripherin filaments in 
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these cells were further observed to form axon and dendrite-like structures (Figures 

5.1-5.4). 

Cells were capable of spontaneous generation of electrophysiological activity 

pointing towards the generation of functional neurons. Preliminary experiments 

showed that differentiated cells were sensitive to NMDA albeit with different 

responses; stimulatory in the BMP-4 treated fraction and inhibitory in the untreated 

fraction (Figures 5.10 and 5.11). NMDA has been shown to be deleterious to 

neurons through the mechanism of excitotoxicity. Overexposure to NMDA can 

severely limit cell function and ultimately induce cell death (Li et al, 2012). It is 

likely that the BMP-4 negative cells, which saw cessation of electrophysiological 

activity after the application of NMDA, were damaged through this mechanism 

rather than by NMDA acting in an outright inhibitory manner (Section 5.3.4). 

NMDA receptors function by opening ion channels within the neuron, stimulating 

the passage of action potentials. NMDA receptors are more numerous in the central 

nervous system than the peripheral, suggesting untreated cells may be of a central 

phenotype whilst BMP-4 treated cells may be of a peripheral (Blanke and 

VanDongen, 2009). GABA is one of the most well known synaptic inhibitors, 

affecting a wide variety of neurons. GABA receptors are known to complex with 

Neurexins, as are NMDA receptors (Magnaghi et al, 2006; Zhang, et al, 2010). The 

presence of Neurexins as well as responses to both NMDA and GABA in BMP-4 

treated cells coupled with the high number of Peripherin presenting cells strongly 

suggests that differentiation resulted in populations of peripheral neurons. The 

presence of proprioceptive and nociceptive markers may indicate heterologous 

populations but individual cell types may be able to be isolated through mechanisms 

such as magnetic activated cell sorting or fluorescence activated cell sorting.  
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Peripheral neuron differentiation through the neural crest is induced by activation of 

the SMAD pathway (Kreitzer et al, 2013). BMP-4 is known to activate SMAD1 

although BMP-2 and BMP-7 can also exert a similar effect. The TGF-β signalling 

pathway through which BMP activation of SMAD1 results in phosphorylation of 

several serine residues on the protein and causes nuclear localisation (Heldin et al, 

1997; Fei et al, 2010). Transcriptional analysis, Western blotting and 

immunocytochemistry targeting phosphorylated SMAD residues may offer greater 

insights into whether or not BMP-4 is required for SMAD-mediated neurulaution. 
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Chapter 6: Proteomic Analyses and Noggin 

Inhibition of BMP-4 in the Differentiation of E14 

Mouse Embryonic Stem Cells 

6.1 Introduction 

6.1.1 Proteomic Analysis of Target Gene Expression 

Microarray and RT-qPCR analysis indicated that expression levels of number of 

pluripotency-associated genes were comparable in cells cultured in SIM or PIM after 

1 hour and 5 days of differentiation stage 2. However after 10 days of stage 2 (14 

days total culture) differential expression was observed with all genes being 

significantly upregulated in cells cultured in SIM compared to those cultured in PIM 

(Figure 3.20, Figure 4.9 ). Initial declines in expression of these genes in 

differentiating cells was reversed between days 5 and 10 in cells cultured in SIM 

(Figure 3.11, Figures 4.4-4.8). These data indicate a potential role for BMP-4 in 

regulating expression of pluripotency-associated genes during neural crest 

development. Selected factors identified previously were subject to proteomic 

analysis via Western blot (Sections 2.13-2.15) and flow cytometry (Section 2.19) to 

determine whether transcriptional regulation was reflected in the translational 

landscape.  

BMP-4 is known to contribute through the maintenance of pluripotency of 

embryonic stem cells in concert with LIF through activation of Cochlin expression 

(Zhang et al., 2013). Immunocytochemistry, flow cytometry and MEA experiments 

demonstrated that BMP-4 treatment altered lineage outcome of differentiating cells. 
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BMP signalling through SMAD is an intrinsic factor to a wide variety of cellular 

functions (Retting et al, 2009; Fei et al, 2010; Feng et al, 2014). Within the nervous 

system SMAD signalling is involved in the development in both peripheral and 

central nervous system neurons and is essential for the formation of the neural crest 

(Hegarty et al, 2013). Induced cells of neural crest lineage are derived through 

activation of the SMAD pathway in the human system (Kreitzer et al, 2013).  

In order to determine whether BMP-4 signalling was upregulating pluripotency 

associated markers through induction of Cochlin Western blotting was used to 

compare Cochlin protein expression after stage 2 in cells that had been treated in 

treated and untreated cells. Expression of SMAD1, a factor in the transforming 

growth factor β pathway mediated by BMP-4 was investigated through Rt-qPCR and 

Western blotting.  

6.1.2 Noggin Inhibition of BMP-4 

BMP signalling is indispensable in the correct formation of ectoderm-derived 

tissues. Correct patterning of the neural crest as well as the neural and non-neural 

ectoderm is dependent on BMP-4 exposure in varying amounts. The selective 

antagonism of BMP-4 by Noggin is one mechanism of control exercised in 

developing vertebrates. Noggin binds to BMP-4 and prevents complex formation 

with its receptors (McMahon, et al., 1998). During early organogenesis a balance 

between Noggin and BMP-4 expression is vital; ablation of Noggin is embryonic 

lethal in murine systems and phenotypically manifest in the form of axial skeletal 

deformation (Wijgerde et al, 2005). Patterning of the nascent neural tube is 

dependent on Noggin-mediated inhibition of BMP signalling. Exposure of the neural 

plate of murine embryos to Noggin induced the formation of dorsolateral hinge 
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points, which facilitate the closure of the neural tube in vitro. These morphological 

effects were concurrent with a reduction in phospho-SMAD1/5/8, expression. The 

SMAD proteins are downstream targets of the BMP mediated transforming growth 

factor signalling pathway, abrogation of their expression is indicative of the 

inhibitory role of Noggin (Ybot-Gonzalez, 2007). Exposure to Noggin to promotes 

expression of Shh  and other genes associated with central nervous system 

development in the generation of seratogenic neurons in vitro (Shimada  et al, 2012). 

Previous experiments (Sections 5.3.1 and 5.3.2) determined that culture with BMP-4 

induced lineage selection to peripheral neurons and that pluripotency-associated 

factors and neural crest markers were upregulated between the middle and end of 

stage 2 of differentiation and this upregulation was mediated by BMP-4 (Figures 

3.12-3.15, Figures 3.21-3.24, Figure 4.4-4.9). In order to further elucidate the effect 

of BMP-4 on these factors cells were incubated in the presence of Noggin (Section 

2.18). 
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6.2. Aims 

 Carry out flow cytometry analysis to ascertain whether transcriptional 

upregulation of pluripotency factors observed between days 5 and 10 of 

differentiation stage 2 results in increased levels of protein expression. 

 Confirm of the role of BMP-4 in mediating expression levels of pluripotency 

and adhesion molecules by examining protein expression through Western 

blot analysis. 

 Examination of mRNA expression levels of pluripotency and neural crest 

biomarkers by RT-qPCR following Noggin inhibition of BMP-4 signalling 

during stage 2 of differentiation. 
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6.3 Results 

Expression of Pluripotency Factors during Stage 2 of Differentiation  

Flow cytometry was performed as in section (2.19) for the pluripotency markers Oct-

4, Nanog and Dppa5. Embryonic stem cells were used to define gates, which were 

assigned so that fewer than 2% of ESCs that were incubated with secondary antibody 

without exposure to primary were counted positive. Gene expression was measured 

at 2, 5 and 10 days during stage 2 of differentiation.  Oct-4 expression was low 

during the earlier stages but was shown to increase at 10 days as marked by 

increasing intensity of signal in the FITC channel. In contrast, Dppa5 expression 

remained more stable throughout stage 2 although lower intensity of FITC staining 

was observed after 5 days, suggesting fewer Dppa-5 expressing cells. Expression of 

Nanog remained stable with a small decrease between days 2 and 5, which was 

reversed between days 5 and 10 (Figures 6.1-6.3). 

Numbers of cells presenting the above markers were calculated relative to cells at 2 

days of stage 2. The number of Oct-4 expressing cells increased sequentially with a 

1.8-fold increase (p value 0.16) between days 2 and 5 and a 15.8-fold increase 

between days 5 and 10 (p-value 0.02).  Dppa5 expression at first declined (3.3-fold 

decrease, p-value 7 x 10-5) and then increased (1.84-fold compared to 2 days, 6.1-

fold compared to 5) significantly (p-value 2 x 10-5 compared to 2 days) at 10 days. 

Nanog presenting cell numbers did not significantly alter during stage 2. A 2.1-fold 

reduction (p-value 0.06) between 2 and 5 days was followed by a 1.9-fold rise in the 

number of cells positive for Nanog expression (p-value 0.7) (Figs 6.1-6.3). 
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Figure 6.1. Oct-4 expression increased during stage 2 of differentiation of mouse 

embryonic stem cells. (A) Expression was measured by intensity of FITC staining in 

the FL-1channel, FSC-H measured size of cells. Relative number of Oct-4 presenting 

cells compared to 2 days (=1). Data are mean ± SEM, n =3. * denotes p value < 0.05.  
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Figure 6.2. Dppa5 expression during stage 2 of differentiation of mouse 

embryonic stem cells. (A) Expression decreased between 2 and 5 days increased 

between 5 and 10 days as measured by intensity of FITC staining in the FL-1 channel. 

FSC-H measured size of cells. (B) Number of cells expressing Dppa5 relative to 2 

days (=1). Data are mean ± SEM, n =3. ** denotes p value < 0.01. 
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Figure 6.3. Nanog expression during stage 2 of differentiation of mouse 

embryonic stem cells. (A) Little change was observed over the period of 

differentiation as observed by consistent signals in the FL1-H channel. Cell size was 

measured by FSC-H. (B) Number of cells expressing Nanog relative to 2 days (=1). 

Data are mean ± SEM, n =3.  
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6.3.2 The effects of BMP-4 Supplementation on Transcription of SMAD-1 

Expression levels were measured to determine whether BMP-4 mediated SMAD 

signalling was occurring during differentiation into peripheral neurons. RT-qPCR 

was carried out as in section 4.3.4 (Table 4.6). No significant difference was 

observed in expression between stage 0 and 1 cells (p-value 0.7). A 3.02-fold 

increase was noted between stage 1 and mid stage 2 cells. Between the mid-point 

and end of stage to expression declined slightly (1.25-fold reduction p-value 0.2) and 

another slight decrease (1.16-fold reduction, p-value = 0.6) was observed between 

stages 2 and 3 (Figure 6.4).  

 

 

Figure 6.4. SMAD-1 expression in differentiating E14 mouse embryonic stem 

cells. Cells were cultured in PIM during stage 1, SIM during stage 2 and PIM during 

stage 3. Culture of Embryonic stem cells in PIM for four days did not alter expression 

of SMAD-1. The addition of BMP-4 at four days resulted in upregulation after a 

further 5 days culture (9 days total) after which expression remained elevated. Data is 

mean ± SEM, n = 3. All values were compared to embryonic stem cells (value = 1) 

and normalised to β-actin and 18s ribosomal RNA. ** denotes p value < 0.01. 
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As expression remained unchanged during stage 1 and increased at stage 2, it was 

hypothesised that BMP-4 signalling was mediating SMAD-1 expression during 

differentiation RT-qPCR was carried out as in section 3.3.6 on stage 2 differentiating 

cells. No significant difference in expression was observed after 1 hour, 5 days or 10 

days (p-values 0.4, 0.4 and 0.3 respectively).  Expression profiles in both samples 

remained similar with peak expression at 5 days (Figure 6.5).  

 

 
Figure 6.5. BMP-4 supplementation did not alter expression of SMAD-1 during 

stage 2 of differentiation. Data is mean ± SEM, n = 3. All values were compared to 

the 1 hour untreated sample (value = 1) and normalised to β-actin and 18s ribosomal 

RNA. 

 

 

BMP-4 signalling causes phosphorylation of SMAD1 at specific serine residues (187, 

195, 206 and 214). As PCR is unable to distinguish differentially phosphorylated 

proteins an antibody specific to SMAD1 phosphorylated at S187 was used for 

Western blotting.  

  

0

0.5

1

1.5

2

2.5

3

3.5

4

1 hour 5 days 10 days

R
el

at
iv

e 
R

N
A

 e
xp

re
ss

io
n

Time in culture

Treated 

Untreated 



158 
 

6.3.3 Western Blot Analysis of Pluripotency and Adhesion Molecules during 

Differentiation Stage 2   

In all extracted protein samples, observed Oct-4 expression was higher in cells 

cultured with BMP-4 supplementation during stage 2. Dppa5 expression was also 

increased albeit to a lesser extent these data were concurrent with data from RT-

qPCR analyses. No differences could be determined in Neurexin expression between 

BMP-4 treated and untreated samples. Similarly, expression of SMAD1 

phosphorylated at S187 was detected in both cases although blots were faint in both 

samples.  Expression levels of the housekeeping genes α-tubulin and β-actin was 

consistent between samples (Figure 6.6). Expression of Cochlin and Nanog were not 

detected by Western blot in either sample (data not shown).  

 

                                    Untreated             Treated       

     

    

    

              

                       

    

 

Figure 6.6. Representative Western blots of putative BMP-4 targets during stage 

2 of differentiation. BMP-4 supplementation upregulated Oct-4 and Dppa5 but did 

not alter expression of Neurexin3 or p-SMAD1 (serine 187). Representative blots for 

cells cultured in PIM (untreated) and SIM (treated) during differentiation stage 2. 

  

Oct-4 

Dppa5 

Neurexin3 

p-SMAD1 

α-tubulin 

Β-actin 



159 
 

6.3.4 Inhibition of BMP-4 Signalling by Noggin  

 

The effect of Noggin supplementation of SIM on expression of pluripotency and 

neural crest markers in treated cells was measured as in section 2.18. After culture 

with inhibition for 10 days three of the six pluripotency genes tested (Oct-4, Dppa2 

and Dppa4) showed increases in expression compared to cells cultured in SIM. 

These changes were not statistically significant (p values 0.80, 0.62 and 0.13 

respectively). Changes in expression levels were slight, with the highest being a 

1.15-fold increase in the case of Dppa4. Dppa5 expression decreased 1.09-fold (p-

value 0.6) while significant reduction in expression was observed for Nanog (1.29-

fold, p-value 0.008) and Dppa3 (2.3-fold, p-value 0.03). IM cultured cells showed 

increased expression of the pluripotency factors Oct-4, Nanog, Dppa2, Dppa4 and 

Dppa5 but not Dppa3 when compared to cells cultured in PIM (untreated cells) 

during stage 2. Expression of Dppa3 in 10 day inhibited cells was increased 1.4-fold 

(p-value 0.5). Fold change in expression levels varied from 310-fold upregulation 

(Dppa5, p-value 0.002) to 3.4-fold upregulation (Nanog p-value 0.001) for the other 

tested genes. Significant changes in expression levels were seen after inhibition for 

all three tested neural crest marker genes. Pax3 was downregulated (3.13-fold, p-

value 0.0001) in inhibited cells compared to non-inhibited (treated) cells. Expression 

was consistent with that in untreated cells (1.22-fold increase in expression, p-value 

0.26). In comparison with treated cells Sox9 and Nestin expression was 

downregulated to a similar degree (1.84-fold, p-value 001 and 1.86-fold, p-value 

0.007 respectively) compared to inhibited cells. However, expression levels were not 

consistent with those in untreated cells. Sox-9 expression was reduced 3.1-fold (p-

value, 0.02) while Nestin was downregulated 3.2-fold (p-value 7 x 10-5).  
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Culture in inhibition conditions after 5 days culture in treated cells during stage 2 

produced similar results for Dppa2, Dppa3 and Dppa5. Expression of Dppa2 after 5 

days inhibition was increased compared to 10 days (1.33-fold upregulation compared 

to treated cells as opposed to 1.04) but this increase was not statistically significant 

(p-value 0.2). Expression was significantly higher than in untreated cells (5.54-fold 

upregulation, p value 0.004). Inhibition at 5 days of stage 2 did not alter Dppa3 

expression compared to inhibition for the full 10 days – a 2.2-fold reduction was 

observed, this was deemed statistically significant (p-value 0.02). Compared to 

untreated cells expression levels were similar, a 1.5-fold increase was observed but 

this was not significant (p-value 0.4). Expression profiles of Dppa5 were similar 

after inhibition for the full 10 days or between days 5 and 10 of stage 2. No 

significant difference was detected between cells cultured in IM between days 5 and 

10 and treated cells (1.22-fold reduction in expression, p-value 0.1).  Compared to 

untreated cells Dppa5 expression was profoundly upregulated (273-fold, p-value 

0.0002) in 5 day inhibited cells, similar values to those obtained after inhibition for 

10 days. In contrast, Dppa4 expression was significantly upregulated in cells treated 

with Noggin after 5 days. Expression was 3.58-fold that of uninhibited cells and 

32.50-fold higher than in non-supplemented cells (p-values were 0.08 and 0.03 

respectively). Expression of Oct-4 and Nanog was increased by Noggin inhibition 

after 5 days. Nanog expression was 2.77-fold (p-value 0.01) that of non-inhibited 

cells and 12-fold (p-value 0.004) that of non-supplemented cells. Oct-4 expression 

was upregulated 7.55-fold compared to non-inhibited cells and 27.96-fold compared 

to non-supplemented cells (p-values were 0.0009 and 0.0006 respectively).  

Neural crest marker transcription was differentially affected by inhibition at the mid-

point of stage 2. Pax3 expression was reduced significantly with an 18.87-fold (p-
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value 4 x 10-6) and a 4.91-fold (p value 0.0004) decrease observed compared with 

non-inhibited and non-supplemented cells respectively. Sox9 expression was 

similarly reduced – 6.66-fold (p-value 0.0001) when compared to non-inhibited cells 

and 11.07-fold (p-value0.007) compared to non-supplemented cells. Inhibition after 

5 days had less effect on the expression of Nestin. Reductions were observed 

compared to both non-inhibited and non-supplemented cells but these changes were 

1.47-fold (p-value 0.04) and 2.5-fold (p-value 0.0004) respectively, in both cases less 

profound than after 10 days inhibition (Figures 6.7 and 6.8).  
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Figure 6.7. The expression of pluripotency and NC marker genes following the inhibition of BMP-4 by Noggin for 10 days. Gene expression 

was measured in cells cultured in IM during stage 2 of differentiation (Inhibited (10 days)). Relative expression was compared to cells cultured in 

SIM (treated) and PIM (untreated). *denotes p-value <0.05, ** denotes p-value <0.01. Data are mean ± SEM, n=3.   
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Figure 6.8. The expression of pluripotency and NC marker genes following the inhibition of BMP-4 by Noggin for 5 days. Gene expression 

was measured in cells cultured in IM for 5 days after 5 days culture in SIM during stage 2 of differentiation. Relative expression was compared to 

cells cultured in SIM (no inhibition) and PIM (no supplementation). *denotes p-value <0.05, ** denotes p-value <0.01. Data are mean ± SEM, 

n=3. 
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Efficacy of Noggin inhibition was determined by comparison of expression profiles 

of Shh; which is known to be downregulated by BMP-4 and E-cadherin; which is 

known to be upregulated. Previous experiments demonstrated downregulation of Shh 

in culture with BMP-4 supplemented medium (Figure 4.18). E-cadherin was shown 

to be upregulated in treated cells compared to untreated after 5 days and 10 days of 

stage 2 with increased upregulation observed after 10 days (8-fold upregulation 

opposed to 2.5-fold, p values were 0.008 and 0.0006 respectively). No significant 

variation was noted after 1 hour (Figure 6.9). 

 
Figure 6.9. BMP-4 Upregulates E-cadherin expression in stage 2 differentiating 

mouse embryonic stem cells. Data is mean ± SEM, n = 3. All values were compared 

to the 1 hour BMP-4- sample (value = 1) and normalised to β-actin and 18s ribosomal 

RNA. ** denotes p-value <0.01. 

 

 

Expression of Shh and E-cadherin was tested after Noggin inhibition as before. All 

values were compared to treated cells (value = 1) and Student’s T-tests were used to 

determine significance. Inhibition for the full 10 days of stage 2 showed that Shh was 

upregulated (3.79-fold, p-value 0.004) compared to treated cells but downregulated 

(2.68-fold, p-value 0.04) compared to untreated cells. E-Cadherin expression was 

likewise intermediate between treated and untreated cells with a 3.1-fold 
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downregulation (p-value 0.03) and a 1.88-fold upregulation (p-value 0.004) 

compared to non-supplemented cells (Figure 6.10). These data indicate that Noggin 

treatment was partially but not wholly effective at reducing BMP-4 signalling. 

 
 

Figure 6.10 Noggin inhibition partially ablated BMP-4 activity in differentiating 

cells. Cells were cultured during stage 2 of differentiation in SIM (treated), IM 

(Inhibited (10 days) or PIM (untreated). Data is mean ± SEM, n=3. * denotes p-value 

<0.05, ** denotes p-value < 0.01.Statistical analyses compared inhibited cells to both 

non-inhibited and non-supplemented cells. 

 

 

When Noggin inhibition was applied five days into stage 2, the reverse effect was 

observed. Shh was downregulated (4.34-fold) compared to untreated cells and E-

cadherin was upregulated (2.89-fold). In both cases, statistical significance was 

observed with p-values of 0.04 for Shh and 0.01 for E-cadherin (Fig 6.11). 
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Figure 6.11. Noggin inhibition of BMP-4 midway through stage 2 differentially 

altered BMP-4 mediated gene expression compared to inhibition at the start. 

Cells were cultured during stage 2 of differentiation in SIM (treated), IM after 5 days 

culture in SIM (Inhibited 5 days) or PIM (Untreated). Data is mean ± SEM, n=3. * 

denotes p-value <0.05, ** denotes p-value < 0.01.Statistical analyses compared 

inhibited cells to both non-inhibited and non-supplemented cells. 

 

  

 

 

 

6.3.5 Phlyogenetic Comparisons of Pluripotency Factors Mediated by BMP-4 

during Neural Crest Differentiation 

Phylogenetic analysis of pluripotency factors revealed that Oct-4 and Dppa3 were 

closely related (Figure 6.12) and Multiple Sequence Comparison by Log-Expectation 

(MUSCLE) revealed areas of conservation in sequences between the two (Figure 

6.13) (Section 2.19). Conserved domain analysis of the two revealed a lack of 

common domain architecture suggesting that these proteins do not have a similar 

function or any similarities are due to the action of as yet undescribed domains. In 

contrast, Dppa2 and Dppa4 share the Dppa2-4 conserved domain and between them 

display no other domain architecture. Other domains in these pluripotency factors 

were unique to individual proteins.  
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Figure 6.12. Phylogenetic tree of putative BMP-4-mediated pluripotency factors. 

More closely related proteins occupy adjacent branches on the tree.  

 

 

 

Figure 6.13. MUSCLE alignment of Oct-4 (top) and Dppa3 (bottom) amino acid 

sequences.  

* represents identical amino acids 

: denotes non-identical but structurally similar amino acid residues.  
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6.3.6 Microarray Analysis of Cochlin Expression in Differentiating E14 Mouse 

Embryonic Stem Cells 

BMP-4 supplementation during differentiation stage 2 appeared to have no effects on 

the expression of the synapse adhesion molecule Neurexin3 or p-SMAD1. 

Investigation of the effects of BMP-4 on Cochlin expression were inconclusive, as it 

remained undetected by Western blot in either sample. Examination of microarray 

data showed evidence of differential transcription during differentiation and possible 

regulation by BMP-4 (Figures 6.14 and 6.15). However, significance could not be 

determined as microarray samples were confined to a single experiment for each 

time point. 

 

  
Figure 6.14. Cochlin expression during peripheral neuron development.  Cells 

were cultured in PIM for stage 1, SIM for stage 2 and PIM for stage 3. Expression of 

Cochlin first decreased at stage 1, then increased at stage 2 with BMP-4 

supplementation Withdrawal of BMP-4 treatment during stage 3 resulted in a decrease 

in expression. Values were compared to embryonic stem cells (value 1, denoted by the 

dotted line). 
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Figure 6.15. BMP-4 affects Cochlin expression during stage 2 of differentiation. 

Cochlin expression was measured in stage 2 cells after 1 hour and 10 days of BMP-4 

treatment. Values were compared to untreated cells cultured for the same time (value 

= 1, denoted by the dotted line). Cochlin expression was upregulated by BMP-4 after 

10 days of stage 2 differentiation but unchanged after 1 hour. 
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6.4 Discussion 

Flow cytometry experiments demonstrated that Oct-4 expression increased during 

stage 2 of differentiation (Figure 6.1). Western blotting determined that expression 

levels of Oct-4 were higher in cells cultured in SIM during stage 2 than those 

cultured in PIM (Figure 6.6). These findings correlate with microarray and Rt-qPCR 

data from the previous study (Figures 4.4 and 4.9).Taken together these data point to 

BMP-4 as a key regulator of the pluripotency factor Oct-4 during the induction of 

neural crest stem cells.  

Oct-4 is one of the major pluripotency associated genes characterising embryonic 

stem cells. Canonically it is held to be the most important of the triumvirate (Oct-4, 

Sox2 and Nanog) governing multipotency and self-renewal ability in murine stem 

cells and conferring resistance to differentiation into somatic cell types or 

dedifferentiation into trophoectoderm (Niwa et al., 2000). Oct-4 is known to work in 

concert with Sox-2; binding of the promoter region of Nanog by the translated 

proteins of these genes is thought to be necessary for the continuation, although not 

the initiation, of Nanog expression in developing organisms (Rodda et al., 2005). In 

vivo Oct-4 and Sox-2 form a complex that facilitates interaction with the enhancer 

regions of genes associated with self-renewal (Ng et al, 2012). It is known to be 

expressed in neural crest stem cells but the mechanisms of its continued expression 

are unclear as it is rapidly downregulated in differentiating stem cells (Pesce et al., 

1998). 

Noggin inhibition of BMP-4 during stage two was partially effective at altering 

transcriptional control of pluripotency factors (Figure 6.7). Expression of Nanog and 

Dppa3 was significantly reduced although Nanog was not downregulated to a level 
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conversant with that in untreated cells unlike Dppa3. Expression of Oct-4, Dppa2, 

Dppa4 and Dppa5 remained unchanged compared to treated cells. In vivo a 

concentration gradient of BMP-4 governs fate determination post-gastrulation in the 

ectoderm (Milet et al, 2013). However, the borders between neural ectoderm, neural 

crest and non-neural ectoderm are not clearly delineated (Sargent, 2006). That 

Noggin inhibition was sufficient to influence expression of only two of five genes 

tested may be indicative of differential sensitivity. Expression of Dppa3 and to a 

lesser extent Nanog may require higher levels of exogenous BMP-4. Effectiveness of 

inhibition was determined by measurement of expression levels of known BMP-4 

targets, E-cadherin and Shh (Scott et al, 2010; Bond et al, 2012; Theveneau and 

Mayer, 2012) were respectively down and upregulated by following inhibition for 

the 10 days of stage 2. However, expression levels were between treated cells and 

untreated cells indicating that complete ablation of BMP-4 activity did not take 

place. Higher concentrations of Noggin may have given a greater inhibitory effect. 

The increase in expression levels of Nanog, Oct-4 and Dppa4 following inhibition at 

5 days of stage 2 (Figure 6.8) is indicative of a complex role of BMP-4 in the control 

of gene expression. In murine ESCs BMP-4 has been used as a serum replacement in 

culture with LIF to promote self-renewal and the maintenance of pluripotency 

(Zhang et al, 2013). Nanog is also a target of SMAD signalling which is activated by 

transforming growth factor β signalling, a pathway in which BMP-4 is a major 

component (Xu et al., 2008). Conversely in the absence of LIF BMP-4 plays an 

integral role in the differentiation of ESCs into trophoblast (Hayashi et al., 2010), 

chondrocytes (Kramer et al., 2000) and lung cell lineages (Lee et al, 2014). Previous 

experiments on expression of pluripotency factors showed a positive correlation 

between BMP-4 supplementation and gene expression (Figure 4.8). Flow cytometry 
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analysis and Western blot of Oct-4 support this hypothesis on a translational as well 

as transcriptional level. The upregulation of factors such as Oct-4 and Nanog after 

stage 2 in 5 day-inhibited cells demonstrate that BMP-4 may act in a negative 

regulatory fashion.                                                               

Phylogenetic analysis revealed that Oct-4 and Dppa3 closely related compared to 

other pluripotency factors and share regions of similar amino acid sequence (Figures 

6.12 and 6.13). Similarity in amino acid sequence may indicate similarity in 

function, however although both Dppa3 and Oct-4 are crucial for self-renewal and 

pluripotency Oct-4 exerts its influence as a transcription factor as described above 

whilst Dppa3 acts to prevent demethylation of imprinted and maternal genes that 

induce differentiation (Niwa et al., 2000; Liu et al., 2012; Xu et al., 2013).  

Noggin inhibition for the full 10 days of differentiation stage 2 reduced Pax3 

expression compared to treated cells. Expression levels were similar to untreated 

cells. Further downregulation was observed in cells inhibited for 5 days; with levels 

significantly lower than in untreated cells (Figures 6.7 and 6.8). Similar expression 

levels between inhibited and non-supplemented cells when BMP-4 was inhibited for 

the entire stage point to a role for BMP-4 in the regulation of Pax3 expression. 

However, previous experiments suggest that this role is also diverse. Peak expression 

of Pax3 in differentiating cells occurred after withdrawal of BMP-4 (Figure 3.13).  

BMP-4 supplementation initially decreased, then increased expression during stage 2 

compared to non-supplemented (untreated) cells (Figure 3.22). It is possible that 

BMP-4 mediates the temporal expression of Pax3; a gene known to influence 

migration of numerous cell types during development. Treatment with exogenous 

BMP-4 can induce invasive characteristics and increased migration in non-invasive 
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rat neural stem cells (Sailer et al., 2013).  Interestingly Pax3 can itself inhibit BMP-4 

signalling pathways through regulation of the expression of Sostdc1 potentially 

conferring resistance to differentiation in neural crest stem cells (Wu et al., 2008). 

Both BMP-4 and Pax3 are crucial for neural crest development (Varga and Wrana, 

2005) although little is known about their interactions. 

Sox9 expression is not necessary for neural crest specification but is essential for 

epithelial to mesenchymal transition and subsequent migration (Liu et al, 2013). 

Treatment with BMP-4 during stage 2 did not prevent expression of Sox9; 

expression levels were similar at the mid-point for treated and untreated cells but 

downregulated at the end of stage 2 in treated populations (Figure 3.25). Shh  

signalling initiates Sox9 transcription therefore BMP-4 supplementation can be 

expected to exert an inhibitory effect as the two are mutual antagonists in vivo (Scott 

et al, 2010;  Bond et al, 2012).  Early experiments corroborated this as Sox9 

expression increased markedly (more than 10-fold over 34 days) after withdrawal of 

BMP-4 supplementation from differentiating cells (Figure 3.16).  Inhibition of BMP-

4 signalling by Noggin however did not increase Sox9 expression. Transcription 

levels were significantly lower than untreated cells whether inhibition was initiated 

at the beginning or mid-point of stage 2 (Figures 6.7 and 6.8). These data indicate 

that while BMP-4 is a regulator of Sox9 expression it acts neither in a 

straightforward inhibitory or stimulatory manner.  

Inhibition of BMP-4 signalling had similar effects on Nestin expression as on Sox9. 

Significant reductions in expression were observed compared to treated cells at both 

time-points (Figure 6.7 and 6.8). This was not conversant with earlier experiments in 

which BMP-4 treatment reduced expression compared to untreated cells. BMP-4 can 
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act in an inhibitory manner to neurulation (Li et al., 2011) or promote neuronal 

specification (Chalazontis and Kessler, 2011). These data support this paradigm 

showing increased downregulation when BMP-4 signalling was abrogated by 

Noggin supplementation and suggesting dual modes of action based on 

concentration. 

Although microarray data suggested BMP-4 upregulated expression of Cochlin, 

potentially inferring a pathway through which pluripotency genes are positively 

regulated this data should not be taken in isolation. Further investigation would be 

required before it can be definitively stated that BMP-4 exerts it influence on 

differentiating neural crest stem cells through activation of Cochlin expression. 

Immunocytochemical staining or flow cytometry may offer insights furthering the 

elucidation of BMP-4 mediated pathways during neural crest differentiation. 
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Chapter 7: Discussion, Conclusions and Future work 

This study initially described a method to differentiate peripherin positive cells of a 

neuronal phenotype from mouse ESCs in serum-free culture in vitro. The 

differentiation protocol was based on the methods described by Aihara et al (2010) 

and may be seen as a replacement, given that the media used in this preceding study 

is no longer commercially available. This method has several advantages over 

traditional methods of neuronal generation using stromal derived inducing activity 

(SDIA) (Shimada et al, 2012) or serum for all or part of the differentiation process 

(Kreitzer et al, 2012), in that the defined medium allowed the influence of a single 

growth factor (BMP-4) to be analysed. Electrophysical analysis after plating cultured 

cells on MEA chips showed that differentiated cells were capable of transmitting 

action potentials and were responsive to GABA and NMDA (Figure 5.10). 

Functionality assays are important, as the recapitulation of non-functional neurons 

may not give an accurate portrayal of the genetic landscape during differentiation. 

To the author’s knowledge this is the first study to combine functionality assays with 

global gene expression analysis evaluating not only genes dictating lineage selection 

but the influence of BMP-4 on neural crest derivation in serum-free, feeder layer free 

conditions. 

 

7.1 BMP-4 Treatment Increased Expression of the Key Pluripotency Factor 

Oct-4 and the RNA Binding Pluripotency Associated Factor Dppa5  

Microarray and RT-qPCR analysis indicated that several key factors pertaining to the 

maintenance of self-renewal potential and inhibitory to differentiation were 



176 
 

upregulated by BMP-4 treatment during stage 2 of differentiation.  Several factors 

were further investigated by Western Blot and flow cytometry analyses. Expression 

of Dppa5 was observed to decline then increase during stage 2 and protein 

expression was observed to be higher in cells treated with BMP-4 compared to 

untreated cells (Figures 6.2 and 6.7). Little is known about the role of Dppa5 in 

neural crest development and to our knowledge a link between expression and BMP-

4 has not previously been established. The function of Dppa5 in another multipotent 

cell lineage has recently been discerned. Dppa5 acts to reduce apoptosis and 

facilitate cell division by the reduction of endoplasmic reticulum stress. The exact 

role of Dppa5 remains currently unclear although it is known to regulate gene 

expression through RNA binding (Miharada et al, 2014).  

Similarly, to Dppa5 Oct-4 expression decreased between the start and mid-point of 

stage 2 before increasing in BMP-4 treated cells. Flow cytometry analysis supported 

microarray and RT-qPCR data showing an initial reduction then an increase in Oct-4 

presenting cells as stage 2 progressed. The initial decrease is consistent with current 

knowledge of Oct-4 expression, which is silenced, early in the developmental 

process (Jerabek et al, 2014). NCCs however are known to express Oct-4, which 

contributes to the epithelial to mesenchymal transition (Simões-Costa and Bronner, 

2013). Western blot analysis confirmed the upregulation of Oct-4 on a proteomic as 

well as transcriptional level. Taken together these data point to a key role of BMP-4 

in the reassertion of Oct-4 expression during neural crest development. BMP-4 is 

known to mediate the expression of Oct-4 in ESCs but its role in expression in neural 

crest was previously unrecognised.  
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7.2 BMP-4 Treatment Caused Differential Expression of Neurulaution 

Associated Genes and of Neural Crest Associated Factors.  

BMP-4 treatment caused downregulation of Nestin during stage 2 of differentiation 

compared to cells grown in similar media without supplementation as well as 

delayed expression of the neuronal associated adhesion genes Neuroligin1, 

Neuroligin3, Pou3f4 and Pou4f2 (Figures 3.21 and 4.17). This delay in expression is 

conversant with the role of BMP-4 as an inhibitor of neurulaution (Ying et al, 2003). 

In the developing murine embryo, BMP-4 acts antagonistically to the pro-

neurulation transcription factor Shh (Bastida et al, 2009). RT-qPCR data 

demonstrated downregulation of Shh in BMP-4 treated cells although expression was 

not ablated (Figure 4.17). These data suggest that BMP-4 and Shh may work 

synergistically in neural crest formation, with Shh specifying a neural lineage while 

BMP-4 delays differentiation. Higher levels of BMP-4 are observed in the non-

neural ectoderm indicating a higher level of antagonism towards Shh expression. 

Although increases in expression were seen in both BMP-4 supplemented and 

untreated stage 2 cells for the neural crest markers Pax3 and Musashi-1 both genes 

were upregulated earlier in the untreated fraction before expression fell (Figures 3.22 

and 3.23). These data further indicate a complex role for BMP-4 in neurulation and 

neural crest formation. Musashi-1 is linked to asymmetric cell division in stem cells 

(Okano et al, 2005). Expression of Pax3 is required for proper migration of the 

neural crest (Milet et al, 2013) Initial BMP-4-mediated downregulation of these 

genes after the first five days of stage 2 may act to maintain a stem cell like state, 

allowing for the symmetric division and rapid proliferation of neural crest stem cells 

while limiting migration. These data are supported in that BMP-4 withdrawal after 



178 
 

stage 2 caused upregulation of both genes before expression levels once again fell 

(Figures 3.14 and 3.15). 

 

7.3 Noggin Inhibition Altered BMP-4 Mediated Expression of Pluripotency and 

Neural Crest Related Genes 

Efficacy of Noggin inhibition was determined by measuring expression of Shh and 

Cadherin in inhibited cells. Cells inhibited at day 0 of stage 2 showed increased 

expression of Shh after 10 days although expression was less than in untreated cells 

with 3.8-fold upregulation in inhibited cells compared to treated and a further 2.6-

fold between inhibited and untreated. E-Cadherin expression in inhibited cells was 

lower than that of treated and higher than untreated cultures with 3.13-fold 

downregulation and 1.88-fold upregulation observed respectively (Figure 6.7). These 

data are indicative that culture of BMP-4 treated samples with Noggin 

supplementation partially inhibited BMP-4 activity. Culture with Noggin at the mid-

point of stage 2 (5 days, 9 days total differentiation), however resulted in differing 

changes in expression. E-Cadherin expression, rather than being reduced compared 

to treated cells was increased significantly (2.89-fold, p-value 0.001) and Shh 

expression was reduced (4.35-fold reduction compared to treated cells, p-value 

0.009). Inhibition at 5 days served to enhance rather than decrease the effects of 

BMP-4 on these genes (Figure 6.8). These data indicate that BMP-4 may modulate 

its own expression in the developing neural crest, although whether directly or 

through downstream targets is unclear. In order to ascertain whether these data 

corresponded to similar changes in gene expression in pluripotency factors and 
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neural crest specifiers genes investigated previously were subject to RT-qPCR 

analysis after inhibition. 

Noggin treatment at the beginning of stage two reduced Pax3 expression to similar 

levels expressed in cells cultured in the absence of supplementation. These data 

support previous microarray and RT-qPCR data that Pax3 expression after stage 2 

was influenced by BMP-4 supplementation. Research has shown that BMP-4 is 

inhibitory to Pax3 mediated myogenesis but promotes transcription in the central 

nervous system while Shh is known to be antagonistic towards its expression 

(Kennedy et al, 2009; Moore et al, 2013). A decrease in expression in this case may 

be the effect of transcriptional regulation by Shh, which could exert a greater 

influence due to reduced antagonism brought about by inhibition of BMP-4 

signalling. Interestingly Pax3 itself has shown to act on transcription factors that 

inhibit the BMP-4 signal cascade, specifically Sclerostin Domain Containing 1 

(SostdC1) (Wu et al, 2008). Microarray analysis showed that this gene was 

upregulated 22.62-fold during stage 2 of differentiation and a further 86.43-fold 

during stage3. Follistatin, a second BMP-4 inhibitory compound was also 

upregulated during stage 2 although to a lesser extent (9.49-fold) and downregulated 

during stage 3 (1.74-fold). A third antagonist, Chordin did not show greater than 1.5-

fold upregulation in any sample tested. Potentially BMP-4 and Pax3 may form a 

feedback loop in which BMP-4 slows but does not prevent early expression of Pax3 

during neural crest formation (Figure 3.20) before an accumulation of Pax3 protein 

activates suppressors of BMP-4.  

Inhibition of Dpap3 and Nanog expression was observed following Noggin 

inhibition during stage 2. Both were significantly downregulated by inhibition 

although this was less profound in the case of Nanog in which 1.28-fold 
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downregulation was observed as opposed to the 2.43-fold decrease in expression of 

Dppa3. These data support previous RT-qPCR analyses suggesting BMP-4 plays a 

role in mediating their expression during neural crest differentiation.  

Sox9 and Nestin expression were further downregulated by Noggin inhibition. BMP-

4 is a known regulator of Sox9 expression (Theveneu and Mayor, 2012) in culture 

during stage 2 expression increased between the start and mid-point (0-5 days) 

before remaining stable for the remainder (5-10 days). The lower expression levels 

observed after Noggin treatment may simply be indicative of direct inhibition of 

Sox9 transcription by Noggin. Increased Sox9 expression in the absence of BMP-4 

during stage 2 is indicative of multiple factors influencing the expression of 

differentiation-associated genes. The downregulation of Nestin expression by 

inhibition was unexpected, BMP-4 is known to restrict neurulaution therefore 

inhibition of signalling (Bastida et al, 2009) may be expected to increase the 

expression of a neural precursor gene. However, BMP-4 in presence with other 

factors has been shown to promote Nestin expression in differentiating cells (Torres 

et al, 2012). Potentially BMP-4 could act synergistically with other factors present in 

both PIM and SIM media (transferrin or insulin) to promote modest upregulation of 

Nestin compared to culture in untreated cells; inhibition of this interaction could lead 

to reduced expression.  

Expression of Oct-4, Dppa2, Dppa4 and Dppa5 was not significantly altered by 

inhibition, suggesting either redundancy leading to their expression through 

alternative signalling or increased sensitivity to BMP-4. A reduction in Shh 

expression to a level between non-inhibited and non-supplemented cells 

demonstrated that that inhibition did not ablate BMP-4 signalling (Figure 6.7). 

Where inhibition was recorded, it was observed to lead to expression levels 
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intermediate to non-inhibited and non-supplemented cells. Additional experiments 

with increasing concentrations of Noggin would be required to further elucidate the 

effect of BMP-4 inhibition on expression of these genes.  Additional time-points 

(e.g. mid-point of stage 2) would also allow greater insights into the process. 

Inhibition by Noggin after 5 days of stage 2 resulted in highly variable expression of 

pluripotency and neural crest specification factors. Dppa3 was downregulated to an 

extent comparable to inhibition for the entirety of stage 2 with no significant 

difference observed between expression in the inhibited cells and untreated cells. 

Similarly, Dppa2 and Dppa5 expression was consistent in cells inhibited at 0 and 5 

days of stage 2, no significant difference was observed between these cells and 

treated cells. In contrast, Oct-4, Nanog and Dppa4 were all upregulated after 

inhibition and Pax3, Sox9 and Nestin were downregulated, all differences were 

significant with p-values ranging from 0.04 to 4 x 10-6. Initially no patterns could be 

discerned but when expression values of uninhibited cells and cells inhibited at 5 

days of stage 2 were compared to untreated cells (value = 1) variations in expression 

were seen to be enhanced or remain unaltered in 7 out of 9 genes examined (Table 

7.1). Dppa3 was upregulated but to a lesser extent in the inhibited sample and the 

expression change in Pax3 was reversed. Dppa2 and Dppa5 expression remained 

constant.  
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Table 7.1 Noggin inhibition after 5 days of stage 2 altered the effects of BMP-4 

on pluripotency and neural crest biomarker expression.  

Gene 

Relative RNA expression 

(Treated) 

Relative RNA expression (noggin 

inhibition at day 5) 

Oct-4 5.03 12.04 

Nanog 5.29 27.93 

Dppa2 5.24 5.54 

Dppa3 6.33 1.49 

Dppa4 13.03 32.55 

Dppa5 19.1 15.56 

Pax3 3.25 0.2 

Sox9 0.71 0.1 

Nestin 0.76 0.4 

 

These data may support a regulatory relationship between BMP-4 and Pax3 with 

inhibition at 5 days disrupting regulation. In differentiating cells, Pax3 upregulation 

was observed across stage 2 (Figure 3.11) during the later section of stage 2, BMP-4 

supplementation was shown to increase Pax3 expression compared to untreated cells 

(Figure 3.20). Inhibition of BMP-4 signalling by noggin for the entirety of stage 2 

reduced expression to levels similar to that of untreated cells. Inhibition after 5 days 

of stage 2 reduced the expression of Pax3 significantly, with a 5-fold reduction from 

levels in untreated cells observed (Fig. 7.1). If as previously hypothesised increasing 

Pax3 expression causes reduction in BMP-4 signalling an increase in expression of 

putative BMP-4 targets is a logical expectation. As above additional investigation is 

required in order to confirm changes, additional time-points during stage 2 may give 

a greater insight into the transcriptional landscape altered by BMP-4 and pax3 

interactions. 
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Figure 7.1. Noggin inhibition revealed potential interactions between BMP-4 and 

pax3 in neural crest specification. Theoretical interactions between BMP-4 and 

pax3After 10 days treatment inhibited cells expressed Pax3 at levels similar to 

untreated cells – levels were reduced 3.2-fold from treated cells (Figure 6.7) indicating 

a regulatory relationship between BMP-4 and pax3. In contrast, inhibition at 5 days 

almost completely abrogated expression – levels were 5-fold reduced compared to 

untreated cells (Figure 6.8). The expression of neural crest markers was also 

downregulated and expression of pluripotency associated genes Oct-4, Nanog and 

Dppa4 was increased (Table 7.1). BMP-4 treatment was previously shown to delay 

expression of Pax3 and upregulate expression of pluripotency associated genes 

(Figures 3.18, 3.20 and 4.9). Pax3 is known to inhibit BMP-4 signalling (c.f. section 

6.4), potentially these data point to an interaction of these two factors in neural crest 

patterning, with BMP-4 delaying expression of pax3 but not abrogating it, contributing 

to maintenance of pluripotency before pax3 interrupts BMP-4 signalling for somatic 

fate selection prior to migration. 
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7.4 BMP-4 Treated Cells Presented Differential Expression of Adhesion 

Molecules 

During differentiation patterns of expression of the tight junction molecules 

Claudin1 and Claudin23 exhibited differences. Both were sequentially upregulated 

during stages 1 and 2 but Claudin1 continued to be more strongly expressed during 

stage3 whilst Claudin23 expression remained constant (Figures 4.10 and 4.11). 

BMP-4 response in these genes was in contrast, Claudin1 expression was 

significantly downregulated by BMP-4 after 5 and 10 days of stage 2 whereas 

Claudin23 expression was increased (although not significantly) after 1 hour and 5 

days and significantly after 10 days culture (Figure 4.17). Cadherin1 expression was 

observed to decline over each stage of differentiation though this was mitigated 

significantly by BMP-4 during stage 2. Cells cultured during stage 2 without BMP-4 

supplementation demonstrated increased Cadherin1 downregulation compared to 

supplemented cells (Figure 4.17). Microarray analysis showed variance in expression 

of both Cadherins and Claudins (Appendix 4). Of the 19 Cadherins probed 10 were 

upregulated after stage 1, 11 after stage 2 and 13 after stage 3 with 5, 7 and 4 

downregulated at the equivalent stages. The 22 Claudin probes plus the closely 

related Occludin probe indicated 13 genes upregulated during stage1, 10 during stage 

2 and 8 during stage 3 with 7, 9 and 12 being downregulated at the same time points. 

BMP-4 treatment for 1 hour during stage 2 increased expression in 6 Cadherin genes 

and 10 Claudins whilst downregulating 8 and 5 respectively. After 10 days of stage 2 

culture with BMP-4 6 Cadherins were upregulated and 11 downregulated, 15 

Claudins showed increased gene expression and 7 decreased. BMP-4 is known to 

play a role in the expression of adhesion molecules during neural crest specification 

and delamination (Theveneneau and Mayor, 2012). However, its scale of influence is 
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not yet known. Further research on the effects of BMP-4 on expression of Claudins 

and Occludins, particularly those that are known to be tissue specific may elucidate 

the role of this molecule in mediating adhesion complexes in differentiating and 

terminally derived cells. BMP-4 has been shown to affect the expression of cell 

adhesion molecules such as cadherins and Claudins (Figure 4.14, Appendix 4). 

Inhibition of signalling may be a trigger for adhesion changes in pre-migratory 

committed NCCs. The high levels of expression of Sox9 which is required for EMT 

and migration after withdrawal of BMP-4 supplementation somewhat support this 

although investigation in detail would be required to confirm this hypothesis (Liu et 

al, 2013). 

7.5 BMP-4 Signalling May Mediate Regulation of Pluripotency Genes through 

the Cochlin Pathway 

Culture with BMP-4 in conjunction with LIF has been shown to retard the 

differentiation of ESCs in vitro in addition to promoting the expression of 

pluripotency factors, such as Oct-4. Experiments have shown that the LIF-Stat 

pathway, which canonically promotes self-renewal in the presence of serum or a 

feeder layer, is not involved in this process (Ying et al, 2003). Later studies indicated 

that BMP-4 mediated pluripotency in ESCs through the expression of Cochlin 

(Zhang et al, 2013). The current study assessed whether this mechanism was also 

active in promoting the expression of embryonic stem cell associated genes in NCCs, 

elucidating a key role for BMP-4 in NC selection, differentiation and expansion. 

Microarray data supported this theory with Cochlin expression being upregulated in 

cells cultured in SIM during stage 2 of differentiation. Cochlin expression decreased 

during stage 3 after withdrawal of BMP-4 supplementation. These data infer a role 

for BMP-4 in mediating Cochlin expression which in turn may promote expression 
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of pluripotency factors, facilitating the proliferation, multipotency and self-renewal 

potential of neural crest stem cells. Proteomic analysis however, did not support 

transcriptional data, neither Western blotting nor immunocytochemistry detected 

expression in any samples tested. Further analysis should focus on alternate methods 

of measuring protein expression such as flow cytometry or the efficiency and 

sensitivity of the antibody could be examined through the use of a positive loading 

control for Western blotting, facilitating optimisation of reaction conditions. 

7.6 Differentiated Cells were Positive for Neural Associated Genes Arising from 

the Trunk Neural Crest after Stage 3. 

Differentiation using stripped media containing FGF-2 and BMP-4 resulted in cell 

types expressing genes associated with neural crest upon which removal of BMP-4 

supplementation yielded cells positive for peripheral neuron biomarkers. Microarray 

analysis revealed several thousand genes were differentially regulated at each 

differentiation stage and a similar number were altered by culture with and without 

BMP-4 during stage 2 (Tables 4.3 and 4.4). Confirmation of microarray results by 

RT-qPCR confirmed alternate expression patterns in numerous genes associated with 

pluripotency and cell adhesion, which was further confirmed with Western blotting, 

and flow cytometry analysis. Complete analysis of transcriptional changes however 

was not possible due to the quantity of genes alternately expressed at each stage and 

with and without BMP-4 supplementation. Microarray data was used to further 

categorise differentiated cells and elucidate the effects of BMP-4 on gene expression 

during neural crest and peripheral neuron differentiation. 

Craniofacial cartilage derives exclusively from cranial neural crest. During 

specification osteochondrogenesis is supressed by Hox genes; inactivation of the 
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gene Ezh2 reduces Hox methylation and prevents cartilage formation in cranial NC 

cells, ablation of Ezh2 expression did not affect differentiation into sensory and 

autonomic neurons. Knockout of Ezh2 reduced expression of Runx2, osterix and 

Alkaline phosphatase as well as reducing all the Hox genes (Schwarz, et al, 2014). 

Microarray analysis showed little change in Hox gene expression over the 

differentiation period as was the case with expression of runx2 and alkaline 

phosphatase. Data for expression of Osterix was not given by microarray analysis. 

These expression patterns are not characteristic of patterns expected in 

osteochondrogenesis, indicating that treatment with FGF-2 and BMP-4 does not 

activate Ezh2 in vitro and other signals are required for cranio-facial cartilage 

development. Experiments on chondrocyte development have revealed a role of 

Hox2a in the blocking of Sox9 after neural crest specification to divert cells from a 

neuronal fate (Bhatt et al, 2013). Research undertaken over the past century or more 

has determined that craniofacial neural crest specification is initiated after the 

epithelial to mesenchymal transition and is dependent on signalling from the 

developing somites as migratory NCCs pass amongst them (Schilling and Le Plabec, 

2014) 

The adrenal medulla is distinct both physiologically and functionally from the 

adrenal cortex. It serves to modulate the Fight-or-flight response by releasing 

quantities of adrenaline or noradrenaline in response to stress (Fung et al, 2008). 

Differentiation of adrenal medulla cells from neural crest is dependent on the 

transient expression of Sox8 and Sox10. Sox 10 null mice lack the adrenal medulla in 

its entirety but this phenotype can be rescued with overexpression of Sox8. Early 

expression of Sox9 is required for initial delamination and migration but this gene is 

not expressed in the developing medulla (Reiprich et al, 2008). RT-qPCR data 
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showed expression of Sox9 into stage 3 while immunocytochemistry confirmed 

expression of Sox10 after stage 2. Microarray analysis however showed that Sox8 

expression changed little during differentiation. The continued expression of Sox9 is 

indicative that differentiating cells are not selected for an adrenal medulla phenotype. 

Melan-A and mitf are differentiation factors expressed both during lineage selection 

to melanocytes from NCCs and in certain melanomas (Weinstein et al., 2013). 

Microarray data showed little changes in expression of these markers from ESCs 

through all stages of differentiation, indicative of a lack of response to BMP-4 

signalling. 

Vimentin and glial fibrillary acid protein (GFAP) are commonly used biomarkers of 

neuroglial lineage. Early during differentiation, vimentin is expressed preferentially 

but this is replaced by GFAP later during gestation (Bramanti et al., 2010). 

Potentially differentiation of E14 murine stem cells resulted in the formation of 

heterogeneous populations containing neuroglia as well as other peripheral neuron 

types as evidenced by the expression of GFAP during stage 3 following an increase 

in vimentin expression during stage 2. 

In murine systems developing Schwann cells are characterised by the expression of 

numerous genes at early stages. Nascent Schwann cells deriving from the neural 

crest express myelin protein 0 (p0), Gap43 and F-spondin. Between neural crest 

delamination and birth myelin p0 expression decreases with a concomitant increase 

in S100β expression (Corfas et al, 2004). During differentiation, microarray data 

revealed an increase in expression of p0; however, pplr values were approximately 

0.5 at all stages, indicating low significance for these changes. S100β expression 

significantly increased during differentiation, increasing 4.5 fold during stage 2 and a 
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further 13.8 fold during stage 3. GAP43 similarly increased in stage 2 and 3, 21.1-

fold and a further 7.8-fold respectively with similar patterns of expression of F-

spondin observed during the same periods. 

Cardiac NCCs require expression of numerous genes for premigratory lineage 

selection and subsequent colonisation. In murine systems, the genes lbx1 and Pdgfrα 

are required for cardiac smooth muscle specification. Correct migration patterns and 

ultimate spatial patterning necessitate expression of Et-1, Et-A and Vegfr2 (Olaopa 

and Conway, 2012). Lbx1 expression was found to increase during stage 3 of 

differentiation but little change was exhibited previously. ET-1 and ET-A were 

downregulated at the same stage. Microarray data for expression of Pdgfra and 

Vegfr2 was unavailable. Data for gene expression is summarised in Appendix 5. 

Taken together with immunocytochemistry, transcriptional analyses and 

functionality tests these data indicate that differentiation produced peripheral 

neurons of trunk neural crest lineages. Microarray data revealed genes linked to 

differentiation into cranio-facial and cardiovascular derivatives were not 

upregulated. A variety of neural associated genes were downregulated compared to 

untreated controls during stage 2 of differentiation and subsequently upregulated 

after withdrawal of BMP-4 at stage 3. Synaptogenesis was not impaired by culture 

with BMP-4, as both treated and untreated cells were able to transmit 

electrochemical signals when cultured on MEA chips. However, transcriptional 

production of the synaptic junction protein family Neuroligin was delayed by culture 

with BMP-4. For the first time global gene expression analysis was carried out on 

functional neural crest derived neurons, investigating the role of BMP-4 in neural 

crest specification data indicated that a number of pluripotency and adhesion factors 

were altered. 
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7.7 Future Work 

Oct-4 expression was shown to be mediated transcriptionally and translationally by 

BMP-4 treatment. Initially expression declined before recovering to a point 

approximately 10% of that of ESCs. Decline and decrease in expression were 

confirmed by flow cytometry and protein expression was confirmed by Western blot. 

Analysis of methylation patterns at various time points during stage 2 of 

differentiation would add depth to these findings and potentially offer new insights 

into mechanisms of control of pluripotency factors in the developing neural crest. 

Western blotting and immunocytochemistry were used to interrogate Cochlin and 

Phospho-SMAD1 expression in differentiating cells. No difference was noted in P-

SMAD expression and data from Cochlin experiments was inconclusive. Flow 

cytometry may offer additional insights into expression of these proteins during the 

differentiation process. 

Further confirmation of microarray data may be possible on a higher scale by the use 

of 2D differential gel electrophoresis (DIGE).  This method involves pooled samples 

labelled with different fluorophores on the same gel, negating the differences in 

loading and transfer that can be experienced with older methods such as Western 

blotting (Lilley and Freidman, 2005). DIGE has seen use in proteomic analysis 

investigating differential expression in cells comprising the hematopoietic system 

(Mihrada et al, 2014). 

Chromatin immunoprecipitation experiments may highlight the potential interaction 

between Pax3 and BMP-4. Identifying genes bound by Pax3 during stage 2, 

particularly the BMP-4 inhibitory factors Follistatin and SostdC1. RT-qPCR 

experiments would confirm microarray data for these genes indicating the presence 
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of BMP-4 inhibitors at a transcriptional level at this stage. Proteomic analysis of 

Pax3 at various time points, with, and without Noggin inhibition could provide 

important insights into the role of this protein in could be combined with analysis of 

its putative targets in neural crest induction. These experiments could be run in 

parallel with migration experiments to elucidate the role of Pax3 in EMT and 

migration.  

Culture of ESCs before cell sorting in media containing LIF and BMP-4 may have 

resulted in higher viability and allowed analyses at a greater number of time-points, 

particularly stage 2. Cell viability during stage 2 initially dropped to approximately 

40% after 1 day before climbing steadily over the stage (Figure 3.15). Adaption to 

growth in serum free culture earlier may have resulted in increased yields of cells, 

particularly during the mid-point of stage 2 at which point low viabilities made the 

extraction of sufficient quantities of RNA for analysis difficult.  

Murine ESCs were used in the experiment; findings should be confirmed in human 

ESCs and human induced pluripotent cells. If successful differentiation through this 

protocol is possible a potential source of neural tissue for investigation of 

neurochristopathies such as neuroblastoma and Hirchsprung’s disease. Tissue 

replacement therapies may be possible in the long term; however, data suggests that 

heterologous populations of neurons were derived. Methods such as fluorescence 

activated cell sorting should be employed to isolate homologous strains before this 

can be considered. 
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Appendix 1: Buffers and Solutions 
 

6x DNA loading Dye 
10 mM Tris-HCl (pH 7.6) 

0.03% bromophenol blue 

0.03% xylene cyanol FF 

0.15% orange G 

60% (v/v in deionised water) glycerol 

60 mM EDTA. 

Dilute to 2x with deionised water for usage 

 

Electrophoresis buffer 

6.01g Tris Base 

2.0 g SDS 

28.84 g glycine 

Add deionised water to a final volume of 2 l 

 

Laemmli sample buffer (2x) 

1.51 g Tris-base 

20 ml glycerol                                                                                                                                 

4g SDS                                                                                                                                    

0.02g bromophenol blue                                                                                                                              

Add 70 ml deionised water, adjust pH to 6.8. Add deoinised water to a final volume 

of 100 ml 

 

MACS Washing Buffer 

100 ml sterile PBS 

0.5 g bovine serum albumin 

0.12 g EDTA 

 

PBS 

Add 1 PBS tablet per 100 ml deionised water and autoclave for 10 minutes at 115°C 

 

PBS-Tween 

To 1 l of PBS, add 0.5 ml of Tween-20 and mix on a magnetic stirrer at room 

temperature 

 

RIPA lysis buffer 

3.94g Tris-HCl 

8.77 NaCl 

5g Sodium deoxycholate 

5g SDS 

0.37 g EDTA 

0.18 g EGTA 

10 ml Triton X-100 

Add 800 ml of deionised water, adjust pH to 7.5 add 0.17g PMSF. Before use, add 

protease inhibitor cocktail (1:100) 
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Separating buffer 

45.5g Tris-base 

1g SDS 

Add 200 ml deionised water, adjust pH to 8.8. Add deionised water to a final volume 

of 250 ml 

 

Stacking buffer 
15 g Tris-base 

1g SDS 

Add 200 ml deionised water. Adjust pH to 6.8. Add deionised water to 250 ml 

 

TBE Buffer (10x) 

54.5 g Tris base 

27.5 g Boric acid 

2.375g EDTA 

Add 400 ml deionised water, adjust pH to 8.3. Add deionised water for a final 

volume of 500 ml 

 

TBS-Tween 

1.211 Tris-base 

8.18 NaCl 

1 ml Tween-20 

Add 900 ml deionised water, adjust pH to 7.4. Add deionised water to a final volume 

of 1 l 

 

Towbin buffer 

1.51 g Tris-base 

7.2 g Glycine 

0.167 g SDS 

Add to 400 ml of deionised water, add 75 ml methanol. Adjust pH to 8.3. Add 

deionised water to a final volume of 500 m
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Appendix 2: PCR Primer Sets 

Gene Forward 5'-3' Reverse 5'-3'  Amplicon size (bp) Annealing temp. (°C)/time (s) Number of cycles 

NCAM cgccgctgacagaacccgaaa ccagagtgccacactccgca 806 61/15 32 

CD325 gctcactgctcaggaccccg ggcgctctttatcccgccgt 707 61/15 32 

Tudor domain containing 12 agcacacggagaagtgtactg agccgttcttctcgtcacag 165 61/30 35 

Oct-4 ggatggcatactgtggacct tttcatgtcctgggactcctcg 200 60/30 35 

Dppa2 tgagtacggatggcaagaaagt ggcccgattcctctgaagac 151 61/30 35 

Dppa3 gccgtacctgtggagaacaa tcactgtcccgttcaaactca 182 60/30 35 

Dppa4 tgagcagcaaaggccagaaat ctgtcttcaacctggcgtct 120 61/30 35 

Dppa5 ccgtgggtgaaagttcctga ccctgtgggccaaacagata 89 61/30 35 

Nanog gacaagggccctgaggaggagg  ccgttccaggactgagcggt 150 61/30 35 

Nestin tttcctgaccccaagctgaag aggctgtcacaggagtctca 136 62/30 36 

Pax3 aggaaacaagctggagccaa gatctgacacggcttgtgga 148 62/15 40 

Sox9 gccacggaacagactcacat cctgagattgcccagagtgc 124 63/15 40 

Musashi-1 gttccaagccacgacctacg cacggaattcggggaactgg 80 62/30 36 

E-Cadherin aacccaagcacgtatcaggg gagtgttgggggcatcatca 94 60/30 40 

Sonic hedgehog agctgacccctttagc ttgcacctctgagtcatcagc 196 61/30 40 

SMAD1 cagaggagatgttcaggcagt ccggttaacgttggagagca 190 60/30 32 

Neuroligin1 cctggtctgacatccggaac cccgaatatcatcttcagttggg 195 61/30 40 

Neuroligin3 gaagatggatccggcgctaa acgatgacgttgccgtaact 185 61/30 40 

Pou3f4 gtatggcaacgtgttctcgc cgggcttcctgtggatgaat 133 61/30 40 

Pou4f2 ttccaaccccaccgagcaat tactctgggagacgatgtcca 96 61/30 40 

Claudin1* actccttgctgaatctgaacagt  ggacacaaagattgcgatcag  92 61/30 35 

Claudin23* aggtcaagccttccttttctg  ccttaaaagataaatgaacccaacc  71 61/30 35 
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Gene Forward 5'-3' Reverse 5'-3'  Amplicon size (bp) Annealing temp. (°C)/time (s) Number of cycles 

TrKA acaacgggaactacaccctg tgtgctgttaccgtccactg 146 60/30 35 

TrKC tggcttcccagcactttgta gtgtgtcctcccaccctgta 139 60/30 35 

Runx1 agtcgttcatgagagatgcca gtggtcagctagtacctccac 173 63/15 35 

Runx3 atggcttccaacagcatcttt ctggtgctcgggtctcgtat 71 60/30 35 

β-Actin ** agagaagctgtgctatgttg  ctcgttgccaatagtgatga 150 61/30 25 

18s Ribosomal RNA* aaatcagttatggttcttttggtc gctctagaattaccacagttattcaa 100 61/30 25 

 

Primers marked * were donated by Dr. Qiuyu Wang (School of Healthcare Sciences, Manchester Metropolitan University), Sequences for 

primers marked ** were developed and provided by the real time primer database (http://www.rtprimerdb.org) (accessed 25-7-12). All other primer 

sets were designed using the NCBI primer design tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast)   (accessed  between 7-12 and 9-14).

http://www.rtprimerdb.org/
http://www.ncbi.nlm.nih.gov/tools/primer-blast
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Appendix 3: Cell Representative Cell Cycle Histograms and 

Calculations 

 

Cells after stage 2 (14 days total treatment). Stage 2 was carried out with PIM 

        

Cells after stage 2 (14 days total treatment). Stage 2 was carried out with SIM 
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Example Doubling Time Calculation: 

Doubling time is calculated using the formula: 

t2 – t1 

(log(n2) – log(n1)) x 3.32 

 

Where: n1 = cell count time point 1, n2 = cell count time point 2, t1 = time point 1 (days) t2 = 

time point 2 (days). 

If cell counts at 0 and 3 days were determined to be 25000 and 139000 cells respectively 

doubling time would equate to: 

3-0                                    

             (log(139000) – log(25000)) x 3.32           = 

 

 

3 

                           (5.14 – 4.40)*3.32                         =      

 

3 

                                                           2.47                                     = 1.21 days 
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Appendix 4: Microarray Analysis of Claudin and Cadherin 

Expression 

Gene expression was measured by microarray analysis (section 2.16). Expression of 

selected gene families was calculated compared to embryonic stem cells at three 

stages; stage 1 (initially differentiating cells), stage 2 (neural crest cells) and stage 3. 

The effects of BMP-4 during differentiation between stage 1 and 2 was assessed at 

the start (1 hour) and end (10 days) of this stage. Expression level analyses of the 

Claudin  and Cadherin  families of adhesion protein coding genes was carried out.    

Differential expression was observed in a number of genes from both families, both 

across the differentiation program and mediated by BMP-4 during stage 2 (Figs A1-

A4).  The regulation of adhesion  molecules by BMP-4 appears to be intrinsic to 

neural crest patterning and migration and further studies to examine these effects in 

greater detail would be beneficial.
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Figure A1. Claudin expression during peripheral neuron differentiation from mouse embryonic stem cells. Expression profiles of the tight 

junction associated Claudin genes and the closely related Occludin showed high levels of variability following microarray analysis. 
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Figure A2. BMP-4 supplementation altered expression of Claudins in stage 2 differentiating cells.  Supplementation positively regulated 12 

of 23 genes assayed after 10 days while negatively regulating 3. 
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Figure A3. Cadherin expression during peripheral neuron differentiation from mouse embryonic stem cells. Expression profiles of the 

adhesion protein coding Cadherin gene family were positively regulated in 11 of 19 probes tested. 
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Figure A2. BMP-4 supplementation altered expression of Cadherins in stage 2 differentiating cells.  Supplementation positively regulated 3 

of 19 genes assayed after 10 days while negatively regulating 10. 

 

 

 

0.1

1

10

ca
d
h

er
in

 1

ca
d
h

er
in

 2

ca
d
h

er
in

 3

ca
d
h

er
in

 4

ca
d
h

er
in

 5

ca
d
h

er
in

 6

ca
d
h

er
in

 7

ca
d
h

er
in

 8

ca
d
h

er
in

 9

ca
d
h

er
in

 1
0

ca
d
h

er
in

 1
1

ca
d
h

er
in

 1
3

ca
d
h

er
in

 1
5

ca
d
h

er
in

 1
6

ca
d
h

er
in

 1
7

ca
d
h

er
in

 1
8

ca
d
h

er
in

 2
0

ca
d
h

er
in

 2
2

ca
d
h

er
in

 2
3

L
o

g
1

0
 r

el
at

iv
e 

R
N

A
 e

x
p

re
ss

io
n

1 hour 10 days



226 
 

Appendix 5: Microarray Analysis of Trunk and Cranial Neural Crest Markers 

 
Table A1. Cranial and trunk neural crest biomarker expression. Neuronal associated markers were upregulated during differentiation of E14 

murine embryonic stem cells into peripheral neurons. Gene expression of cranial neural crest associated genes did not change. Trunk neural crest 

biomarkers  

 

Gene 

Region Upregulate

d by BMP-4 

Downregulated 

by BMP-4 

Unchanged by 

BMP-4 

Upregulated after BMP-4 

withdrawal 

Downregulated after BMP-4 

withdrawal  

Unchanged by 

BMP-4 withdrawal 

Hox genes Cranial   x   x 

Melan-A Crainial   x   x 

Mitf Cranial   x   x 

Vimentin Trunk x     x 

GFAP Trunk   x x   

p0 Trunk x   x   

S100β Trunk x   x   

GAP43 Trunk x   x   

F-spondin Trunk x   x   

Lbx1 Trunk   x  x  

ET-1 Trunk   x  x  

ET-A Trunk   x  x  

d 


