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Linear Time Invariant (LTI) processes can be modelled by means of Auto-Regressive Moving Average
(ARMA) model systems. In this paper, we examine whether an ARMA model can be fitted to a process
characterised by switched nonlinearities. In particular, we conduct the following test: we generate data from
known LTI and nonlinear (threshold/dead-zone) models of human balance and analyse the output using
ARMA. We show that both these known systems can be fitted, according to standard criteria, with low
order ARMA models. To check if there are some obvious effects of the dead-zone, we compare the power
spectra of both systems with the power spectra of their ARMA models.We then examine spectral properties
of three posturographic data sets and their ARMA models and compare them with the power spectra of our
model systems. Finally, we examine the dynamics of our model systems in the absence of noise to determine
what is the effect of the switching threshold (dead-zone) on the asymptotic dynamics.

keywords: linear stochastic model, switched model, ARMA fitting, posturographic data.

There is an ongoing controversy, among
the biomechanics community, whether the
neuromuscular system which controls human
posture during quiet standing can be better
described as being linear, continuous and time
invariant (LTI), or whether an intermittent
(switched/containing dead-zones) control
captures better the neuromuscular control.
Fitting the experimental data to models which
are LTI (for instance to Auto Regressive Moving
Average Models ARMA) have been used to imply
that the process, which generates the time series
data to which an LTI model is fitted, is linear and
time invariant. In presented work, we show, by
means of two representative explicit examples,
that ARMA models can be successfully fitted
to models of human balance which are linear as
well as to models which contain discontinuities
(a dead-zone). Moreover, if data generated
from these models are compared with real
posturographic data it is impossible to judge
(without some in-depth and detailed analysis of
the ARMA models) which of the two explicit
models describes better the posturographic
data. Hence, successful linear model fitting (e.g.
ARMA) may lead to over interpretation of the
results.

I. INTRODUCTION

Although investigations of human balance during quiet
standing have a long history, see for instance1–6, the
fundamental question related to the character of the
motor control during quiet standing remains an open
issue. It is often assumed that the motor control,
which ensures balance during quiet standing of humans,
can be modelled using linear, continuous time, feedback
models7–11. Such models exclude nonlinearites, e.g.
thresholds, and time variant processes, e.g. open loops.
Thresholds can create complex dynamics such as periodic
oscillations12 or micro-chaotic behaviour13. In the
presence of multiplicative noise, it is was suggested in14

that the presence of thresholds implies different power
laws in correlation function.

One of the strategies, to fit a linear model to a
times series posturographic data, is to use ARMA
modelling2,7,8. To apply ARMA fitting one assumes
that time series data is generated by a process which
is stationary. Stationarity, in turn, implies that the
process is time invariant and without transient dynamics.
Often adding more dimensions to an ARMA model
improves a data fit. However, it well may be that
the process could be understood better by a nonlinear
time variant model, e.g. a switched model with a
threshold. In fact, it has been recently suggested that
control mechanisms such as intermittent controllers16,17,
which naturally lead to nonlinear models, may also be
used and may provide even better explanation for the
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characteristic features of the posturographic time series
data of human quiet standing. Using as a discriminant
the two classes of controllers, we can broadly divide
mathematical models of quiet standing into a class of (a)
linear stochastic models7,8,10,18 and (b) nonlinear models
(with, for instance, thresholds or time based open loops
in the feedback control)12,15–17,19–22.

The main aim of the paper is to investigate, by means
of a known LTI and a nonlinear system, both of which
are models of quiet standing, whether a time series
data that contains nonlinearities can be consistently
fitted by means of ARMA. The two model systems can
be thought of as ‘experimental black boxes’ which are
fully known to us. We will verify numerically if it is
possible to successfully fit ARMA models to time series
data generated from both model system. We will then
compare the ARMA models of our systems with ARMA
models of experimental data.

In28,29, it has been shown that noise has a linearizing
effect on systems with thresholds provided that its
properties are appropriately tuned. Thus, not to
induce this effect deliberately which would make our
experiment superfluous, we use additive Gaussian noise
without choosing the intensity of the noise to obtain
this linearizing response. We will then seek to find
some signatures of ARMA (e.g. a consistent significant
difference in the order of ARMA models) which could be
used as an indication that a time series was produced by a
nonlinear or a time variant system. To verify the ARMA
fit we compare the power spectra of our ARMA models
with the power spectra of the signals used to produce the
models. We also compare the power spectra of system
generated ARMA models with the power spectra of the
posturographic ARMA model systems to see how well
the ARMA models describe the posturographic data.

The rest of the paper is outlined as follows. In
Sec. II, we link an ARMA model with its continuous
time representation. We highlight that it is a power
spectrum of a signal which is aimed to be fitted by
means of ARMA. Then, in Sec. III and IV our continuous
time model systems – the linear and switched one, which
we use to produce the data sets – are introduced, and
the results of ARMA model fitting are presented. In
Sec. V, we make a comparison between the power spectra
of system generated ARMA models and experimentally
derived ARMA model systems. Finally, in Sec. VI we
conclude the paper and highlight the directions of future
research.

II. ARMA MODELS: DESCRIPTION

To understand the numerical experiments which we
conduct in the main part of the paper, we present an
interpretation of ARMA model systems, of some order
(p, q), as continuous time systems.

A. ARMA as a differential equation

The ARMA model of order (p, q) is

yn = α1yn−1+ · · ·+αpyn−p+εn−β1εn−1−· · ·−βqεn−q,
(1)

where α1, α2, · · · , αp are the autoregressive and
β1, β2, · · · , βq are the moving average coefficients; ε is
white noise process. The aim of this section is to describe
an explicit (stochastic) ordinary differential equation
with a solution at times n∆t equal to the solution of
the ARMA difference equation (1) at time step n. Here
∆t represents the time step at which samples of data are
taken and used to construct the ARMA model. Note
that we can consider the random variables (εj)

∞

j=−q as
a given (fixed) sequence in our construction of a model
equation. The differential equation derived later serves
as the continuous-time descriptive model equivalent to a
discrete time ARMA model of some order (p, q).
By setting

z(1)n = yn−p, z(2)n = yn−p+1, . . . , z(p)n = yn−1,

the difference equation (1) can be written as a p-
dimensional difference equation for the vector zn =

(z
(1)
n , . . . , z

(p)
n ). Namely

zn = Azn−1 + bn, (2)

where the p× p matrix A and the vectors bn ∈ BRp are
given by

A =













0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
αp αp−1 αp−2 . . . α1













, bn =













0
0
...
0
ξn













, (3)

where ξn is a real random variable derived from the εt
via

ξn = εn − β1εn−1 − · · · − βqεn−q. (4)

If (2) is considered as an initial value problem given some
initial z0 then a straightforward induction argument
shows that

zn = Anz0 +
(

bn +Abn−1 + · · ·+An−1b1
)

. (5)

Our aim now is to write down a differential equation
for a p-dimensional variable y such that the solution y(t)
satisfies

y(n∆t) = zn

for all n ≥ 0. Note that this is not the same as
finding a differential equation for which the ARMA
difference equation (1) is a numerical approximation
scheme. We actually seek strict equality (there will be



3

a small technical issue in the answer: equality will hold
only in the limit as t ↓ n∆t, see below).
The key observation is that if u(t) is a given

integrable function then the solution of the p-dimensional
differential equation

ẏ = Cy + u, (6)

where C is a constant p× p matrix, is

y(t) = etCy(0) +

∫ t

0

e(t−s)Cu(s)ds. (7)

This is a standard equation obtained by multiplying
(6) through by the integrating factor e−tC and then
integrating. For the particular choice of

u(t) =

∞
∑

1

bnδ(t− n∆t) for t > 0, (8)

the integral in (7) can be calculated explicitly. Let r+
denote the limit as t tends to r from above. Then for
n > 0 the solution at n∆t+ is obtained by integrating
from 0+ to n∆t+ in (7) giving

y(n∆t+) = en∆tCy(0+) +

n
∑

1

e(n∆t−k∆t)Cbk. (9)

The similarity with (5) is perhaps clearer if this is
rewritten as

y(n∆t+) =
(

e∆tC
)n

y(0+)+
(

en∆tC
)n−1

b1+
(

en∆tC
)n−2

b2+bn.
(10)

which is, of course, precisely the solution (5) if

e∆tC = A. (11)

In our problem the matrix A is known and given by (3),
as is the sampling time ∆t, so (11) is an implicit equation
for a matrix C in terms of a real constant ∆t and a given
real matrix A. Solving for C is not entirely trivial as this
means taking the logarithm of a matrix.
We are interested in (2, q)-ARMA models with

complex eigenvalues to the deterministic part and so we
restrict attention to this case below; second order models
have been suggested as providing a good fit for the time
series data of quiet standing of humans, see for instance8.
Note that we may assume, by a small perturbation

if necessary, that A has simple eigenvalues and hence
that it is diagonalizable. The standard theory of matrix
logarithms then shows that in the general n-dimensional
case the model differential equation is also n-dimensional
unless some of the eigenvalues of A are negative, in which
case the dimension is higher than n as C is necessarily
complex.
In the two-dimensional case we are interested in

A =

(

0 1
α2 α1

)

(12)

with α2 < 0. If α2
1 < −4α2 then the eigenvalues of A are

complex: λ1 = re−iθ and λ2 = λ∗

1, with 0 < θ < π. It is
a simple computation to show that if E is the matrix of
eigenvectors,

E =

(

1 1
λ1 λ2

)

(13)

then

AE = EΛ, Λ = diag(λ1, λ2). (14)

Therefore E−1AE = Λ and by (11) E−1e∆tCE = Λ
from which we can read off one solution (the principal
logarithm) for ∆tC:

∆tC = E

(

σ1 0
0 σ2

)

E−1, (15)

where

σ1 = ℓnr − iθ, and σ2 = ℓnr + iθ. (16)

Now writing (15) out in full gives

n∆tC =
1

λ2 − λ1

(

1 1
λ1 λ2

)(

σ1 0
0 σ2

)(

λ2 −1
−λ1 1

)

(17)
and so multiplying this out explicitly, the obtained
equation can be written as:

∆tC =
1

λ2 − λ1

(

λ2σ1 − λ1σ2 σ2 − σ1

−λ1λ2(σ2 − σ1) λ2σ2 − λ1σ1

)

.

(18)
Although this looks messy, explicit evaluation using (16)
gives a series of cancellations leaving the result

∆tC =

(

ℓnr − θ cot θ θ/(r sin θ)
−rθ/(sin θ) ℓnr + θ cot θ

)

(19)

which is, of course, a real matrix.
We can now write the continuous time equation (6)

that models the ARMA equation of order (2, q), which
is a forced linear second order differential equation with
constant coefficients. However, for our purposes it is
sufficient to analyse the matrix C. The eigenvalues of
C are

µ1 =
1

∆t
(ln(r) + iθ) and µ2 =

1

∆t
(ln(r)− iθ) .

Thus, the natural timescale of motion is of order ∆t;
indeed, ∆t could be eliminated by working in a rescaled
time ∆t−1t. Now, if r < 1 (corresponding to damped
linear motion in the ARMA model) then ln(r) < 0 and
so the system is damped, but also the oscillatory part of
the solution has frequency equal to θ/∆t. By deriving the
second order system from the set of first order equations
(6), we can see that the forcing term is a weighted sum of
Dirac delta distributions (the derivative of a Dirac delta
is a sum of delta distributions) based on the noise input
of ARMA over more than one time.
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B. ARMA – stochastic description

To apply ARMA models, it is assumed that the time
series which is modelled is produced by a stationary
process, which implies that the mean and variance of the
process are constant over time, and the autocovariances
depend only on the time shift, say ∆t, for all ∆t.
Considering (y1, y2, y3, . . . , ym) to be a sequence of
observations at times (t1, t2, t3, . . . , tm) of a stationary
process, we have

Cy1,y1+∆t
= Cy2,y2+∆t

= . . . = Cym−∆t,ym
= γ1,

Cy1,y1+2∆t
= Cy2,y2+2∆t

= . . . = Cym−2∆t,ym
= γ2,

...

Cy1,y1+(m−1)∆t
= γm−1,

where C is the autocovariance

Cyt,yt+∆t
= E[(yt − µ)(yt+∆t − µ)], (20)

with E and µ denoting the expected value and the mean
of the process respectively.
The modelling of a times series is then reduced

to the estimation of a constant mean, say µ = C,
and an autocovariance matrix derived from the m
observations. In the process of ARMA modelling, it
is the autocovariance function coefficients γi/γ0 (i =
1, . . . ,m − 1), where γ0 is the variance of the process,
with their characteristic decay, that indicate the order
of an ARMA process. Since the Fourier transform
of the autocovariance function gives power spectral
density then ARMA modelling is aimed at fitting power
spectra corresponding to a time series that is modelled.
To be precise, it is the Fourier transform of the
autocorrelation function, that is when µ = 0 in the
autocovariance formula (20), which gives power spectral
density of a stochastic signal, by Wiener-Khintchine-
Einstein Theorem23.

III. CONTINUOUS TIME SYSTEMS

We will now introduce the continuous time system of
interest that we use to conduct part of the numerical
investigations which are the subject of the paper. The
nonlinear model with a threshold is introduced later in
Sec. IV.
To understand the model, consider human subjects

standing on both legs with eyes closed or open. We are
interested in investigating the sway motion that occurs
in the sagittal plane, i.e. we consider a forward-backward
body sway. We simplify the biomechanics of the body by
representing it as an inverted pendulum with the body
sway occurring in the sagittal plane about the ankle joint
axis. Gravity g acts on the centre-of-mass when the angle
φ (measured in radians) between the vertical ankle joint
axis and the body’s position becomes non-zero; when
there is no sway the body is vertical and φ = 0. The

centre of mass m is located at height h above the ankle
joint axis. The sway motion will then be modelled by
a delay differential equation with additive white noise of
the form

Jφ̈ = mgh sin(φ) + T + σζ(t), (21)

where J is the moment of inertia of the body about the
ankle joint axis, m is the mass of the body, h is the
distance from the ankle joint axis to the centre of mass
and ζ(t) is Gaussian white noise of intensity σ. The delay
terms are present in the applied torque generated by a
Proportional-Derivative controller. Namely

T = −Kpφ(t− τ) −Kdφ̇(t− τ),

where Kp and Kd are negative constants, and τ > 0 is
the time delay.
We are interested in system dynamics for small values

of the angle φ, and approximating sin(φ) ≈ φ simplifies
the equation (21) to

Jφ̈ = mghφ+ T + σζ(t). (22)

Expressing (22) as a set of first order equations, by

setting φ̇ = x, gives

φ̇ = x

ẋ = mgh/J φ−Kp/J φ(t − τ)−Kd/J x(t− τ) + σ/J ζ(t)

(23)

A. Euler’s method for systems with time delay and white noise

System (23) is a linear stochastic system with time

delay. The angle φ and the angular velocity x = φ̇ are
now random variables. It has been shown in24,25 that
stochastic delay differential equations

ẋ(t) = f(x(t), x(t − τ)) + σζ(t), (24)

where τ is the time delay, ζ(t) is Gaussian white noise
with intensity σ, can be approximated by

xn+1 = xn + f(xn, xn−k)h+ σWn

√
h, (25)

for h sufficiently small; τ is the time delay, h is the step
size, k = τ/h, and Wn is the standard Wiener process.
Similarly, a stochastic differential equation

ẋ(t) = f(x(t)) + σζ(t), (26)

can be approximated by a discrete system

xn+1 = xn + f(xn)h+ σWn

√
h. (27)

Above numerical scheme was used to generate the time
series trajectory of (23). The standard Wiener process is
approximated numerically at each step tn by a function
that generates psudo-random numbers with expected
value µ = E[X ] = 0 and standard deviation σ =
√

E[(X − µ)2] = 1, where X is a random variable.
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FIG. 1. AIC values for different ARMA models (Continuous
system).

B. System dynamics – numerical exploration

For the following simulations, we take physiologically
feasible values, similar to those used in26, and we set
m = 66 kg, h = 0.87 m, g = 9.81m/s2, J = 66 kgm2,
time delay τ = 0.15s, the control coefficients Kp =
720 Nm/rad and KD = 300 Nms/rad, and the noise
torque σ = 2Nm. Numerical simulations were performed
with a fixed step size of 0.001s for the duration of 160s.
The data corresponding to first 120s were discarded as
describing the transient dynamics. The data were then
filtered using the low pass butterworth filter with the
cutoff frequency of 4Hz.

C. ARMA fitting

To perform ARMA fitting, the data were imported
to Matlab systems identification toolbox, which uses
non-linear least squares approximation for parameter
estimation. In each numerical experiment 402
data points were used for the position and velocity
components. One hundred ARMA models were
determined from the hundred time series data sets
generated from the continuous time model system (23).
The Akaike’s Information Criterion (AIC)27 was used to
determine orders (p, q) of the ARMA models. Fig. 1
shows the AIC values for all the ARMA models. The
fit of the model is considered to be better the lower the
value of the AIC23.
The coefficients αi (i = 1, 2) and βj (j = 1, 2)

listed in Tab. I correspond to the average ARMA model
coefficients of order (2,2) obtained from the one hundred
ARMA models. Additionally, the standard deviation
for each ARMA coefficients set were calculated and

TABLE I. ARMA coefficients (for the linear stochastic
system).

α1 α2 β1 β2 Fit %
position (average) 1.5953 -0.6433 0.9722 0.3302 91.25
velocity (average) 1.3211 -0.6129 0.1152 -0.1343 56.23

position (single run) 1.5931 -0.6410 0.9631 0.3296 91.93
velocity (single run) 1.3208 -0.6133 0.1125 -0.1319 56.62
Standard deviation 0.0451 0.0437 0.0660 0.0549

0 100 200 300 400 500
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time

φ

 

 
Continuous system
ARMA model

FIG. 2. Comparison between time series of the continuous
time system, and its equivalent ARMA model (single run).

presented. It should be noted that, to produce the time
series data of an ARMA model using its model equation
(1), it is necessary to calculate the variance of white noise
which appears in the equation. The standard deviation
of white noise was found to be σ = 0.000784 (see30 for
details on how to compute the standard deviation of
white noise of an ARMA model).
We note that better fit was obtained for the position

than for the velocity time series data. In the next
section, we analyse the time series data produced by the
continuous time system (23) and its ARMA equivalent
model determined by the coefficients shown in Tab.I. In
particular, we use time series data corresponding to the
angular position in Tab.I.

D. Frequency spectrum

In this section, we will investigate the frequency
spectra of representative time series data set produced
by our model system (23) and its ARMA discrete time
representation given by equation (1). In Fig. 2 we show a
comparison between a single realisation of the continuous
time system (23) (we consider the position component)
and its ARMA equivalent. It can be seen that ARMA
model captures the main components of the time series
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FIG. 3. Welch power spectral density estimate of the
continuous time system, and its equivalent ARMA model
(single run).

data produced by our continuous time system.
Since ARMA fitting is based on matching the

frequency spectra of a signal, in the following we will take
a look at the character of the frequency-power spectrum
corresponding to the position time series data and its
ARMA model. In Fig. 3, we are depicting a comparison
between the Welch power spectral density estimate31 of
the position signals depicted in Fig. 2. We will also take
a look at the character of the frequency-power spectrum
corresponding to the average position time series data
and its ARMA equivalent (see Fig. 4). It can be seen
that there is a slight power difference between the models
at the low frequency range, while there is a significant
power difference at the higher frequency range, which
is as expected since we would need a higher degree
ARMA model system to capture the higher frequency
components. Note that the effect of considering an
averaged power spectra is that of smoothing the spectral
curves (compare Figures 3 and 4).
To further investigate the ARMA model system and

its equivalent continuous time representation given by
equation (6), we compute the matrix C which gives the
deterministic part of the continuous time representation
of the ARMA model. Using equation (19), the matrix
C (taking the average values, from Tab. I, of the ARMA
position component) can be shown to be equal to

C =

(

−12.046 12.434
−8.113 7.776

)

.

We can verify that the eigenvalues of the matrix C are
equal to λ1 = −2.134 + 1.627i and λ2 = −2.134 −
1.627i. Thus, our original continuous time system (23)
corresponds to a second order linear oscillator with
damped oscillatory motion driven by noise.

0 1 2 3 4 5
−100

−90

−80

−70

−60

−50

−40

−30

Frequency(Hz)

P
ow

er
/fr

eq
ue

nc
y(

dB
/H

z)

 

 
Continuous system
ARMA model

FIG. 4. Averaged power spectral density estimate of the
continuous time system, and its equivalent ARMA model.

IV. DISCONTINUOUS SYSTEM

We now modify the continuous time system (23). We
assume that to control the upright position a corrective
torque T is applied through a PD controller when some
fixed, but non-zero, positive threshold φ0 is detected.
This leads to the following model equations:

Jφ̈ = mgh sin(φ) + σζ(t) for |φ(t− τ)| ≤ φ0, (28)

when there is no control applied to the system, and

Jφ̈ = mgh sin(φ)+T+σζ(t) for |φ(t−τ)| > φ0, (29)

where T = −Kpφ(t − τ) − Kdφ̇(t − τ), when there is
control applied; the meaning of the parameters is the
same as in the continuous time case. Again, making the
approximation sinφ ≈ φ, which is justifiable for small
angles φ of the body sway, the model equations (28) and
(29) become

Jφ̈ = mghφ+ σζ(t) for |φ(t− τ)| ≤ φ0, (30)

and

Jφ̈ = mghφ+ T + σζ(t) for |φ(t− τ)| > φ0. (31)

Expressing (30) and (31) as a set of first order equations,

by setting x = φ̇, we obtain a switched stochastic system.
Namely for φ(t− τ) ≤ φ0, we have

φ̇ = x

ẋ = mgh/Jφ+ σ/Jζ(t) (32)

and for φ(t− τ) > φ0 we obtain

φ̇ = x

ẋ = mgh/J φ−Kp/J φ(t − τ)−Kd/J x(t− τ) + σ/Jζ(t).

(33)
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FIG. 5. AIC values for different ARMA models (Switched
system).

A. A numerical method for switched systems with time delay
and white noise

To perform numerical simulations we use Euler’s
scheme presented is Section III. However, the presence
of the switching function implies that depending on
the value of the random variable φ(t − τ) the system
is either governed by a stochastic differential equation,
or a stochastic delay differential equation. We switch
between these two systems when the random variable
φ(t − τ) is greater or smaller than the threshold value
φ0. We assume the width of the dead zone, which can
be interpreted as the accuracy of sensing, to be equal to
|φ| = 0.02rad, which is approximately one degree.

B. ARMA fitting

We found that, similarly as in the continuous time
case, ARMA model of order (2, 2) fits the position
data. A hundred runs of the switched time system
were generated. Then, one hundred ARMA models were
determined, and the time series data were generated to
obtain equivalent ARMA processes for each time series.
Fig. 5 shows the AIC values for all the ARMA models.

As we have already discussed in Sec. III C, to produce
time series data of an ARMA model system, it is required
to estimate the variance of the underlying white noise
process that drives the model. The standard deviation
of the noise process was found to be σ = 0.000788. The
coefficients listed in Tab. II correspond to the average
ARMA model coefficients of order (2, 2) obtained from
the one hundred ARMA models, with the corresponding
standard deviation for each set. We also included a
representative run for a single output.

TABLE II. ARMA coefficients (for the switched stochastic
system).

α1 α2 β1 β2 Fit %
position (average) 1.7284 -0.7569 1.0523 0.3983 95.34
velocity (average) 1.341 -0.525 0.300 -0.021 67.62

position (single run) 1.6777 -0.8019 0.9637 0.3425 95.82
velocity (single run) 1.2910 -0.6413 0.2881 -0.3834 67.93
Standard deviation 0.0512 0.0519 0.0822 0.0638

C. Frequency spectrum

Similarly as in the case of the continuous time system
(23), in Fig. 6 we show a comparison between the position
component of the time series data of the switched system
(30) and (31) and its ARMA equivalent model, with the
ARMA coefficients given in Tab. II (position component
of a single run).

In Fig. 7 we show the Welch power spectrum of
the position component of the switched system and its
ARMA equivalent, in the case of a single run and by
considering the averaged trajectory. In the case of a
single run, in Fig. 7 we can see that these models shows
a good fit in the low frequency band between 0.5 and 1.5
Hz, while there is a growing difference in the power at
higher frequency range.

For averaged spectral curves shown in Fig. 8, it can be
seen that there is a slight difference in the power density
at the lower frequency range, while there is a signification
power difference at the higher frequency range. As we
discussed earlier, this can be explained by the fact that
it is the lower frequency band which is aimed to be fitted
by means of ARMA. Finally, similarly as for the linear
system, taking the averaged power spectrum has the
effect of smoothing the spectral curve (compare Figures 7
and 8).

We now compute the matrix C which gives the
deterministic part of the continuous time representation
of the ARMA model. The matrix C (equation (19)) is
found to be

C =

(

−11.487 11.671
−8.601 8.435

)

.

We can verify that the eigenvalues of the matrix C are
equal to λ1 = −1.525+ 1.078i and λ2 = −1.525− 1.078i.
Therefore, the switched stochastic system (30) and (31)
corresponds to a second order linear oscillator with
damped oscillatory motion driven by noise, similarly as
in the continuous time case.
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FIG. 6. Comparison between time series of the switched
time system, and its equivalent ARMA model.
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FIG. 7. Welch power spectral density estimate of the
switched time system, and its equivalent ARMAmodel (single
run).

V. LINEAR VERSUS SWITCHED DYNAMICS - COMPARISON
WITH EXPERIMENTAL POSTUROGRAPHIC DATA

A. Phase space – asymptotic evolutions

For parameter values given in Sec. III B and IVA,
we present the results of numerical simulations of the
linear and switched systems in the absence of noise to
understand the differences in the underlying dynamics.
In the case of the linear system, the system evolution
converges to a stable equilibrium (see Fig. 9(c)). On
the other hand, in the case of the switched system, it is
a pair of stable asymmetric limit cycles which capture
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FIG. 8. Averaged power spectral density estimate of the
switched time system, and its equivalent ARMA model.

the asymptotic dynamics; due to the system’s symmetry,
there is a pair of limit cycles in the system, as depicted in
Fig. 9(a) and 9(b). Adding white noise to the switched
system will cause the switchings of the evolution between
neighbourhoods of these asymmetric limit cycles. Similar
switching behaviour, induced by noise, was observed in14.
An example of such an evolution is shown in Fig. 10(b).
In the case of the linear system, the evolution will follow
a random pattern of motion about the origin, as shown in
Fig. 10(a). In Fig. 10(c), we present a phase plot obtained
from experimental data of human quiet standing. From
the phase plot, again we can not make any claims as to
which system (the switched or the liner one) captures
better the experimental posturographic data.

B. Experimental posturographic data

We consider the experiments of the position and
velocity time series data of human subjects standing
quietly with eyes closed or open. The data were
collected at the IRM (Institute of Research into Human
Movement) laboratory at Manchester Metropolitan
University. Eight people, with no balance disorders,
participated in the study. Each subject was standing
quietly with eyes open for the duration of 240s.
Horizontal and vertical ground reaction forces were
measured using a force plate with four strain gauge
sensors (OR6-7; AMTI, Watertown, MA). The position
of the center of pressure of the forward-backward and
side-to-side body sway was calculated from the ground
reaction forces. The time series data was recorded
and sampled at 1 kHz. The experiment was then
repeated with eyes closed. For the purposes of analysis,
we expressed the force signal as angular position and
velocity data. The signal was then filtered using lowpass
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FIG. 9. A pair of stable asymmetric limit cycles, shown in
(a) and (b), are present in the switched system (30) and (31),
and in (c) we depict a convergence of the linear system (23)
to its stable equilibrium point at the origin.

butterworth filter with the cut off frequency of 4Hz. For
our purposes we used 40s snapshots of the data and every
hundredth data point was used.

In Fig. 11 we present a comparison between the
power spectrum of the continuous time system (23),
switched stochastic system (30) and (31), and three
posturographic data sets. It can be seen that the different
systems have similar spectral properties over the entire
frequency range. In Fig. 12 we also show a comparison
between the power spectra generated by the equivalent
ARMA models for all the systems. The agreement is not
as good as when the power spectra of the original signals
are compared and we are not able to make a justifiable
claim as to which ARMA model system (corresponding
to a linear or a switched model) fits better the ARMA
models derived from posturographic data.
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FIG. 10. In (a) we depict a representative example of
an evolution of the linear system (23). In (b) we show
a representative example of an evolution of the switched
stochastic system (30) and (31), and (c) shows the phase space
plot obtained from the experimental data of the movement
during quiet standing.

VI. CONCLUSIONS

In the paper, we numerically investigate a switched
(characterised by a threshold) and a linear model of
human balance control during quiet standing. We
show that both systems can be modelled using second
order ARMA models. To determine if there is any
obvious qualitative effect of the presence of switched
discontinuity on the ARMA model of the switched
system, in comparison to the ARMA model of the linear
system, we compare Welsh power spectral densities of
the two systems with power spectral densities of their
ARMA models. In both cases, that is when we compare
the power spectrum of the switched system with the
power spectrum of its ARMA model as well as when
we compare the power spectrum of the linear system
with the power spectrum of its ARMA model, the power
spectra show a good fit in the lower frequency range (up
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FIG. 11. Comparison between the power spectra of
the continuous time system, switched system, and three
posturographic data sets.
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FIG. 12. Comparison between the power spectrum of the
ARMA equivalents models of the continuous time system,
switched time system, and three posturographic data sets.

to around 2 Hz) with a mismatch for higher frequencies.
This agrees with the theory because low order ARMA
models match low frequency bands. Moreover, there
are no obvious qualitative differences in both cases. We
then compare power spectra of three ARMA models of
three representative experimental posturographic data
sets with ARMA models of the switched and linear
systems. A reasonably good fit, to both models, is
observed in the lower frequency range (up to 1.5 Hz)

with a growing mismatch for larger frequencies. Thus,
AMRA model fitting may lead to misinterpretation of the
results; that is, a good fit of a time series data with an
ARMA model does not imply that the underlying process
is linear and time invariant.

We also investigated the dynamics of underlying
models in the absence of noise. We found qualitative
differences in the asymptotic dynamics of both systems
for parameter values used in our investigations; the
dynamics of the linear system represent the fluctuations
of a noisy equilibrium, whereas the dynamics of the
switched systems are dominated by the effects of noisy
bistable system formed by two co-existent limit cycle
oscillators.

The work presented here suggests that further
investigations are required to resolve the current
controversy whether human balance control during quiet
standing can be better described by a linear continuous
time process or a process which contains discontinuities
and/or open loops. Our research also raises questions of
establishing mutual correlations between deterministic
dynamics and noise and their effect on sway motion
during quiet standing.
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