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Abstract 

A Kriging regression model is developed as a post-processing technique for the 
treatment of measurement uncertainty in classical subset-based Digital Image 
Correlation (DIC). Regression is achieved by regularising the sample-point 
correlation matrix using a local, subset-based, assessment of the measurement error 
with assumed statistical normality and based on the Sum of Squared Differences (SSD) 
criterion. This leads to a Kriging-regression model in the form of a Gaussian process 
representing uncertainty on the Kriging estimate of the measured displacement field. 
The method is demonstrated using numerical and experimental examples. Kriging 
estimates of displacement fields are shown to be in excellent agreement with ‘true’ 
values for the numerical cases and in the experimental example uncertainty 
quantification is carried out using the Gaussian random process that forms part of the 
Kriging model. The root mean square error (RMSE) on the estimated displacements is 
produced and standard deviations on local strain estimates are determined. Significant 
improvement is observed on strain results produced using a commonly used point-
wise least squares algorithm (PLS). 

Keywords: Digital Image Correlation, Measurement Error, Kriging Regression, 
Uncertainty Quantification. 

 

1. Introduction  

Digital Image Correlation (DIC) is a well-developed and extensively applied 
technique in experimental mechanics while subset-based DIC is probably the most 
commonly used approach because of its simplicity [1]. Inaccuracy, typically caused 
by camera noise, illumination variability, grey-scale interpolation and other sources, 
will always be present regardless of the level of precision of the DIC measurement. 
The resulting error in the measured data affects the accuracy of strain estimates [2] 
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based on displacement data. A common way of dealing with this problem is to apply 
local smoothing [3, 4] or low-pass filtering [5], which has the advantage of simplicity 
but is subject to ad-hoc choice of order and parameterisation, possibly leading only to 
a local optimum. In the present study a global improvement in measurement accuracy 
is sought by post-processing with a Kriging model that incorporates knowledge of 
error estimates determined from classical subset-based DIC. Specifically, the 
measured data is regressed by utilizing an estimate of the measurement error built into 
the leading diagonal of the Kriging correlation matrix [6-9].  

Originally developed in geology [10], Kriging is also widely used in the fields of 
spatial analysis and computer experiments. The complete history and extensive 
overview on the development of Kriging can be found in the work of Cressie [11, 12]. 
As opposed to a piecewise-polynomial spline that optimizes smoothness of the fitted 
data, Kriging is a method that gives the best linear unbiased prediction (BLUP) [12] 
of intermediate values. Also Kriging can be interpreted from a Bayesian framework 
[12, 13] i.e. the interpolated values are modelled by a Gaussian process governed by 
prior covariance. The idea of introducing a regularization factor for the treatment of 
biased estimates in multiple regression can be traced back to the work of Hoerl and 
Kennard [6] in 1970, who termed the technique ‘ridge regression’. Forrester et al. [7] 
applied the same approach to the design and analysis of ‘noisy’ computer experiments 
in the field of computer simulations in order to filter out numerical noise. The 
introduction of a single regularization factor is a global approach for the treatment of 
uniform uncertainty across the domain of interest.  

Jouke et al. [8] extended the error estimate from the global to the local domain and 
proposed a local error estimate technique in particle image velocimetry (PIV) by 
using an uncertainty model based on peak ratios [14] in the cross-correlation map. 
This technique is not transferrable to DIC because of significant differences in the 
cross-correlation map of DIC data compared with PIV. Also DIC algorithms are 
usually based on the Sum of Squared Difference (SSD) criterion and Newton iteration. 
Sutton et al. [1, 15] derived an estimate of displacement error due to the presence of 
Gaussian image noise, which is a function of the standard deviation of Gaussian noise 
and the sum of squared intensity gradients [16]. By considering the various error 
sources existing in the experiments, a more general form of error estimate was derived 
to approximate DIC error bounds as a function of the SSD residual and the inverse of 
Hessian matrix [17, 18]. It is advantageous that the error estimate can be determined 
in the DIC process simultaneously with the displacement data without increasing the 
computational cost. 

A Kriging full-field DIC algorithm was developed by the present authors [19] who 
considered the measurement uncertainty to be independent and identically distributed 
across the entire Region of Interest (RoI). Whilst this approach offers excellent error 
reduction properties, the resulting Gaussian-process estimate is limited by the 
assumption of measurement error that, within the RoI, remains the same from location 
to location. This limitation is addressed in the present article whereby a local error 
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estimate based on the inverse Hessian matrix and the residual of the SSD criterion is 
incorporated in Kriging regression. Whereas in [19] the Kriging model was used as a 
shape function in the full-field DIC Newton iteration, in the present study Kriging 
regression is used as a post-processing technique to improve the accuracy of classical 
subset-based DIC measurement by including a local error estimate determined subset-
by-subset. Numerical and experimental examples are used to test the performance of 
the proposed approach. One of the advantages of Kriging is that it provides not only a 
best linear unbiased prediction of the measurement, but also a Gaussian random 
process that delivers uncertainty quantification (UQ) on the prediction itself. Results 
show that Kriging regression with local error estimation is able to reduce the effect of 
measurement errors and improve the accuracy of the estimated displacement field 
rather than just smoothing it. In an experimental example, the RMSE on the estimated 
displacement field and the standard deviations on locally estimated strains are 
presented. Post-processing with the Kriging model leads to a significant improvement 
in strain results obtained using an extensively used local linear fitting algorithm with a 
strain calculation window of various sizes [4]. The strain results determined directly 
from the gradients of the Kriging displacement field are also presented for comparison.  

2. Uncertainty in Subset-based DIC 

In order to obtain a mathematical expression for the local error estimate to be 
incorporated in the Kriging regression, a generic analysis for the measurement 
uncertainty of subset-based DIC is introduced first. We begin with the assumption of 
deformation continuity of a solid object and for reasons of simplicity a 2-dimensional 

case is considered. A point at coordinate : ( , )c c cx yx  defines the central node of a 

reference grey-level image ( ),f x y , which for convenience takes the form of a square 

subset consisting of N N×  pixels. The central-node coordinate of the smoothly 

deformed grey-level image ( ),g x y% %  is given by : ( , )c c cx yx% % % . 

The grey-level images ( ),f x y  and ( ),g x y% %  consist of the true images, ( ),f x y  and 

( ),g x y% % , plus the grey-intensity error defined by ( ),f x yζ  and ( ),g x yζ % %  respectively, 

 ( ) ( ) ( ), , ,ff x y f x y x yζ= +   (1) 

 ( ) ( ) ( ), , ,gg x y g x y x yζ= +% % % % % %   (2) 

where ( ),f x yζ , ( ),g x yζ % %  , to be estimated experimentally, are assumed Gaussian 

( )20, ζσN , independent and identically distributed across the subset.  

In addition, there is measurement error in the difference between the deformed- and 

reference-image coordinates denoted by eε . Then the arbitrarily measured coordinate 

( ): ,s s sx yx% % %  may be written as, 
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 s s e= +x τ ε%   (3) 

and sτ  denotes the true coordinate of the deformed image. 

The true coordinate, and therefore the displacement error is unknown. However, it is 
assumed that the error across each subset can be modelled using a shape function. 
This leads to the formulation of weighting terms that account for different error levels 
in different regions of the full image. Full detailed derivation of the weighting terms is 
given in Section 3.2 and Appendix 1. 

The Kriging regression with local error estimate, described in the following section, is 
applied in the form of a non-parametric regression model and by including certain 
weighting terms, uncertainty in different parts of the full image may be represented 
probabilistically to develop an estimate of the true displacement field. Numerical and 
experimental examples show that the proposed approach is able to improve the 
measurement results of the classical subset-based method and outperforms the global 
Kriging DIC method [19]. 

3. Kriging Regression with Local Error Estimate 

Typically, DIC data are not measured with perfect accuracy, but are subject to 
measurement noise and imprecision [6, 7, 20-22], which might be reduced by pre-
filtering [5, 23, 24]. However, in this study the Kriging regression approach accounts 
for measurement error in an overall way by regularizing the diagonal elements of the 
Kriging correlation matrix R. This means that the training points (or sample points) 
are not reproduced exactly but allow for error in the measured DIC image, thereby 
enabling the determination of an optimised displacement field represented by the 
Kriging model that represents the true displacement in the sense of a best linear 
unbiased prediction. 

The method applied in this study is Kriging regression, also known as ‘Universal 
Kriging’ or ‘Kriging with External Drift’ [25]. Specifically in this study, the true 

displacement field ( ),w x y  is modelled using Kriging as a realisation in the form of a 

random function ( )ˆ ,w x y , which combines a deterministic regression model with a 

zero-mean stochastic field used to fit the residuals [26, 27] as, 

 
1

ˆ ( , ) ( , ) ( , )
m

w x y c x y Z x yβ
=

= +∑ ℓ ℓ

ℓ

  (4) 

where ( ), , 1, , ,c x y m=
l

l K  are regression functions, β
l
 denotes the thℓ  regression 

parameter and ( , )Z x y  is a Gaussian stochastic field with zero mean and covariance 

between two arbitrary sample points j and k, assumed to take the form, 

 ( ) ( ) ( ) ( )T T2cov ( ), ( ) , , , , ; , ; ,j k jk j k x y j j j k k kZ Z r x y x yσ ϑ ϑ ξ= = =x x x x x x   (5) 
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where ( ) ( ), , , corr ( ), ( )jk j k x y j kr Z Zϑ ϑ =x x x x  is determined by the proximity of points 

j and k. The correlation parameters , ,x yϑ ϑ ξ  and field variance 2σ  are determined by 

an optimisation procedure described in the sequel. 

The regression parameters β
l

 may be estimated from the sample by using the 

generalized least squares (GLS) method [12, 28]. Denoting [ ]T

0 1, , nw w=w L  as the 

vector of displacements calculated by the subset-based DIC for a set of sample points 

( ), , 1,2, , ,j jx y j n= K  the estimated regression parameters β̂  are then expressed as 

[28], 

 ( )( )( ) ( )( )
11 1

T T
0

ˆ , , , ,x y x yϑ ϑ ξ ϑ ϑ ξ
−− −

=β C R C C R w   (6) 

Then, by minimising the mean-square prediction error under an unbiasedness 

constraint [28], the Kriging model at an arbitrarily chosen  point ( ),p p px y=x  is 

obtained as,  

 ( ) ( )( )2ˆ , , , ,  ( , , , )p p x y p x yw w Sϑ ϑ ξ σ ϑ ϑ ξx x x∼N   (7) 

where, 

 ( )( ) ( )1
T T

0
ˆ ˆ( ) ( ) ( , , ) , ,p p p x y x yw ϑ ϑ ϑ ϑ ξ

−
= + −x c x β r x R w Cβ   (8) 

is the Best Linear Unbiased Prediction (BLUP) with the variance given by, 

 
( ) ( ( )

( ) ( ) )
2 2 T 1 T T 1

1 TT 1 T T 1

ˆ ˆ 1 ( ) ( ) ( ) ( )

( ) ( )

p p p p p

p p

Sσ σ − −

−− −

= − + −

× −

x r x R r x c x r x R C

C R C c x r x R C
  (9) 

Covariance terms may be expressed as, 

 
( ) ( )( ( )

( ) ( ) )
2 2 T 1 T T 1

1 TT 1 T T 1

ˆ ˆ, , ( ) ( ) ( ) ( )

( ) ( )

p q pq p q p q p p

q q

S rσ σ − −

−− −

= − + −

× −

x x x x r x R r x c x r x R C

C R C c x r x R C
  (10) 

where ,p qx x may be either sampled or unsampled points and ( )•̂  denotes an estimate. 

In the above expressions, R  is the matrix of sample-point displacement correlation 

functions with terms ( , , , , )jk j k x yr ϑ ϑ ξx x  described above; 
( )( , , )x yp qr x ϑ ϑ  is the vector 

of displacement correlation functions between an arbitrarily chosen location ( )( )p qx  

and each of the sample points ( ) , 1,2, ,j j n=x K ; and ( ), , ,pq p q x yr ϑ ϑx x denotes the 
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correlation between two arbitrarily chosen points ( ),p qx x . C is a matrix consisting of 

regression functions evaluated at the sample points, ( )j jC c= x
l l

; and ( )( )p qc x  is the 

vector of regression functions for an arbitrary location ( )p qx , i.e. ( )( )p qc c= x
l l

. 

The correlation functions are generally assumed to be exponential, also called 
Gaussian [9], and expressed in the form, 

 
2 2( , , , ) exp( ( ) ( ) )pq p q x y x p q y p qr x x y yx x ϑ ϑ ϑ ϑ= − − − −   (11) 

The choice of this correlation function relies on the assumption that the response 
surface inferred by Kriging regression is smooth. It is seen from equation (11) that 
points close to each other have a higher correlation than those that are far away. The 

terms xϑ  and yϑ  determine how far apart both px  and qx  and py  and qy  need to be 

before differences in the estimate given by equation (11) become significant.  

When measurement error is considered the diagonal elements of the correlation 
matrix R  in the Kriging formula should be adjusted by the introduction of an error 
term (multiplicatively in the present work). This allows for regression instead of exact 
interpolation of the data samples. According to the correlation function (11), all the 
diagonal elements of matrix R  are unity for Kriging interpolation which means that 
the Kriging model passes through all the samples exactly. In contrast, measurement 
error is taken into account by regularizing the diagonal elements of the correlation 
matrix R , which allows regression of the Kriging model on the data samples. This 
modified formulation is known as Kriging regression [21] and introduces the 
additional parameter ξ . 

3.1 Global error estimate 

If the error is assumed independent and identically distributed across the entire region 
of interest then an unknown constant factor ξ  may be applied [7, 8, 19] to modify the 

diagonal elements of the correlation matrix R , which then differ from equation (11) 
and are given by, 

 exp( ); 1,2, ,jjr j nξ= = K   (12) 

where n denotes the number of sample points. 

3.2 Local error estimate 

In many cases, the error is not constant over the entire domain but may separately be 
considered independent and identically distributed over a subset of the reference 
image. An estimate of displacement error for each subset due to the presence of 
Gaussian image noise was derived [1, 15] as a function of the standard deviation of 
Gaussian noise and the sum of squared intensity gradients [16]. In this study, a more 
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general form of error estimate is derived to approximate the DIC error bound for each 
subset as a function of the SSD residual and the inverse of Hessian matrix [17, 18]. 
The multiple error sources in DIC measurement are thereby included in a general way. 
It is shown in Appendix 1 that this general form of error estimate for each subset may 
be expressed as, 

 
( )

( )

1
2 11

1
2 77

SSDj
xj

SSDj
yj

C
m

N
C

m
N

−

−

= ⋅

= ⋅

H

H

  (13) 

where xjm  and yjm  are approximations to the error variances associated with x- and y-

direction displacements for the thj  subset of N N×  pixels, having a single sample 

point at its centre. SSDjC  denotes the SSD residual for the thj  subset. H  is the 

calculated Hessian matrix while subscripts 11 and 77 indicate the diagonal elements 

of 1−H  that corresponds to the x- and y-direction displacements of the subset centre 
point. 

If the different error for each subset is taken into account, equation (12) may then be 
expressed in modified form, 

 
2 2
1 1

exp x xj y yj
jj

x y

m m
r

m m

ϑ ϑ
ξ
  − −  =
  +  

  (14) 

where the term 2 2
1 1x ym m+  is a normalising constant. 

The derivation of xjm  and yjm , given in Appendix 1, is achieved under the following 

conditions on the measurement error: 

i. Assumed to be Gaussian with zero mean, independent and identically 
distributed over a subset of N N×  pixels. 

ii.  Approximated using shape functions based on a second-order Taylor series 
expansion (may be first- or higher-order) about a sample point at a subset centre.   

iii.  Linearised at N N×  pixels to relate field uncertainties to shape function 
variables.  

iv. Pixel grey-intensity variances approximated using the SSD between the 
deformed and reference images. 

 

3.3 Solution of unknown parameters { }2ˆ, , ,x yϑ ϑ ξ σ . 
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The parameters { }, ,x yϑ ϑ ξ  determined by maximising the concentrated log likelihood 

function [7, 9] given by, 

 ( ) 2 1
ˆln , , ln( ) ln( ( , , ) )

2 2x y x y

n
L Rϑ ϑ ξ σ ϑ ϑ ξ= +  (15) 

subject to a constraint on the field variance estimated as [7], 

 ( ) ( ) ( )T
2 1

0 0

1 ˆ ˆˆ , ,x yn
σ ϑ ϑ ξ−= − −w Cβ R w Cβ  (16) 

where ( )L •  denotes the likelihood. 

Equation (15) is complex and generally multimodal. Thus, the computation of optimal 

values for ,x yϑ ϑ  and ξ  usually requires specialised optimisation algorithms and 

heuristics such as genetic algorithms or gradient-free methods, e.g. the Hooke and 
Jeeve's algorithm, and the Nelder-Mead simplex algorithm. The latter was employed 
in this work with a first-order regression function chosen for ( , )x yc  [28]. In the case 

of a large number of sample points Q , the computational cost of a conventional 

maximum likelihood estimate (MLE) could become significant. Fast algorithms are 
described in [29]. 

It is necessary in equation (16) to invert the correlation matrix, R , which may be ill-
conditioned and in need of regularisation. Ranjan et al. [30] considered the classical 

Tikhonov regularisation of the form ( )δ+R I  where δ  is the regularisation 

parameter or nugget. The optimised parameter ξ  in equations (16), (12) and (14) has 

the same effect, though in a slightly different form. Regularisation introduces the 
smoothing required in DIC post-processing and results in a regressing, rather than an 
interpolating random function represented by the Kriging model. It is however 
necessary to test the condition of matrix R , which can be done by simply 
determining the condition number. Ranjan et al. [30] developed a formula for the 
lower bound on δ , given by 

 
( )( )

( ) ( )max ,0
1

a
n

lb a

e

e

λ κ
δ

κ

 − =  
−  

R

R
  (17) 

where ( )κ •  denotes the condition number, nλ  is the highest eigenvalue of R  and 

25a ≈  (an empirical term obtained by a large number of numerical simulations). In 

the examples presented in this work the term 
( )( )

( ) ( )1

a
n

a

e

e

λ κ
κ

 −
 
 − 

R

R
 was found in every 

case to be negative, so that the optimised ξ  was able to reduce the measurement error 

without encountering problems in inverting the correlation matrix, R . 
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3.4 Strain Calculation  

Two different methods were used to determine the strains. Firstly, a local fitting 
technique [4] based on the point-wise least squares algorithm (PLS), within a chosen 
strain calculation window, was utilized to estimate the strain result from the measured 
displacement data. Linear coefficients are fitted to approximate the gradients at the 
centre point of each local strain window. It is known [4] that there might be an 
insufficient number of valid data points within the strain calculation window at the 
boundaries or where there are discontinuities. In order to solve this problem, a 
displacement continuity assumption may be used to extend the displacement field [31] 
or alternatively the invalid points may be identified and excluded from the local PLS 
fitting [4]. The latter was applied in this study. It will be demonstrated in the 
following sections that this sort of boundary effect may be significantly reduced by 
applying the proposed Kriging regression approach with the local error estimate.  

Secondly, the strain results were calculated directly from the gradients of the Kriging 
displacement model. This second approach is applied in an experimental case study, 
where estimated strains are compared to those produced by the PLS method. The 
Kriging gradients are calculated from the Jacobian of the vector of regression 
functions ( )pc x  and the vector of correlation functions ( )pr x  as discussed in [28].  

Although the displacement field is Gaussian, the strain field is generally non-Gaussian. 
A sampling method based on Cholesky decomposition was employed to sample the 
displacement field from the multivariate Gaussian distribution [32, 33] with the 
purpose of quantifying the uncertainty on the estimated strain field. Given the 

Cholesky decomposition of the correlation matrix T=S ΛΛ  (equations (9) and (10)) 

where Λ  is a lower triangular matrix, samples of the displacement field, across the 
region of interest, were generated from, 

 ˆ = +w Λn w  (18) 

by sampling from ( )0,  n I∼N . Classical finite differences may then be applied to 

calculate the gradients and generate the strain results. This requires dense sampling of 
displacement field (local sampling) to determine the uncertainty on the estimated 
strains. 

4. Case studies 

Numerical and experimental case studies are presented to illustrate the application of 
Kriging regression with local error estimation. Two sets of numerical simulation 
examples were carried out first so that possible errors introduced by the image 
acquisition system were excluded. In the first numerical example the effectiveness of 
the proposed Kriging method in displacement estimation is investigated using 
numerically generated Gaussian speckles with uniform translations, affine 
deformation and Gaussian image noise. The second numerical example has the same 
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numerically generated Gaussian speckles but a uniaxial tensile deformation with a 
constant strain. Gaussian image noise is employed to verify the performance of 
proposed Kriging method in strain measurement. In the experimental example, a 
cantilever beam test is chosen to investigate the performance of the Kriging method in 
a practical DIC application, since it has a simple analytical solution for comparison 
with DIC results. 

4.1 Numerical case study 1: verification of the Kriging method for displacement 
measurement 

A 2-dimensional numerical example is illustrated, using numerically-produced 
Gaussian speckles [34, 35] (not related directly to the Gaussian process that forms 
part of the Kriging model) with means uniformly distributed over the RoI. Gaussian 
speckles are formulated as, 

 

2 2

2
1

2 2
0 0

2
1

( ) ( )
( , ) exp( )

( ) ( )
( , ) exp( )

M
k k

k
k

M
k x y k x y

k
k

x x y y
I x y A

x x u u x u y y y v v x v y
I x y A

γ

γ

=

=

− + −= −

− − − − + − − − −
= −

∑

∑ɶ

  (19) 

where I  and Iɶ  represent the reference- and deformed-image speckle patterns 

respectively. M  denotes the total number of speckle granules, γ  is the size and kA  

the peak intensity of each speckle granule and ( ),k kx y  represents the position of each 

speckle uniformly distributed over the RoI. In the present case, 8000 independent and 
identically distributed speckles are superimposed on an image consisting of 500×500 
pixels, each Gaussian speckle having a size of 3 pixels and a peak intensity of 60. In 
order to test the proposed method, several deformed images were produced with a 
combination of (a) rigid-body translation in x and y directions, (b) affine deformation, 
and (c) Gaussian image noise. The reference and deformed images were digitised 
using an 8-bit processor. As the grey values of non-integer locations are required in 
the DIC process, a grey-value interpolation scheme is needed and for reasons of 
simplicity a bi-cubic spline interpolation scheme was chosen. 

The RoI was divided into 100 uniformly distributed sample points, each of which was 
defined as the centre node of a subset of 41 × 41 pixels as shown in Figure 1. Subset-
based DIC, based on a Newton-Raphson scheme, was applied to assess the 
measurement uncertainty at all the sample points. Since only a linear deformation 
(affine transformation) was applied, a first-order Taylor-expansion shape function was 
chosen in order to avoid possible over-fitting. On the basis of this measurement, both 
Kriging regression with global and local error estimation were employed to regularize 
the measured data and achieve an estimate of the displacement at each centre node. 
As the true displacements of the sample points are easily derivable, the residual errors 
of subset-based DIC, Kriging global and Kriging local methods are shown and may be 
compared in Figure 2-5. The results shown for Kriging are the mean values of the 
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Gaussian Process that represents the Kriging model. It is observed that the residual 
errors are significantly reduced after the application of Kriging regression with local 
error estimation. There is very little difference in the residual errors of Figure 2 
between the Kriging global and local methods, which is to be expected because 
uniform translation was applied to the whole RoI. The Kriging global method 
performs less well in the case of an affine deformation as shown in Figure 3 because 
the local deformations differ from subset to subset. Both the Kriging global and local 
methods demonstrate effective reduction of measurement errors due to Gaussian 
image noise as shown in Figure 4. In Figure 5 under the effect of combined error 
sources, the Kriging local method considerably out-performs the Kriging global 
method. 

 

Figure 1 Numerically generated speckles and the distribution of sample points (red 
crosses) - 3 subsets are shown in green squares 

 

(a) x-direction                                     (b) y-direction 

Figure 2 Numerical case study 1: residual error comparison for a rigid-body 
translation 0 00.2,  0.3u v= =  pixels - equation (19). 
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(a) x-direction                                     (b) y-direction 

Figure 3 Numerical case study 1: residual error comparison for an affine deformation 
0.005,  0.005,  0.005,  0.005x y x yu u v v= = = =  pixels - equation (19). 

 
(a) x-direction                                     (b) y-direction 

Figure 4 Numerical case study 1: residual error comparison for Gaussian image noise, 
zero mean, 5σ = .  

 

(a) x-direction                                      (b) y-direction 

Figure 5 Numerical case study 1: residual error comparison for the combination of 
translation 0 00.2,  0.3u v= =  pixels, affine deformation 

0.005, 0.005, 0.005, 0.005x y x yu u v v= = = =  pixels and Gaussian image noise, zero 

mean, 5σ = . 

4.2 Numerical case study 2: verification of the Kriging method for strain 
measurement. 
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A uniaxial tensile deformation was applied to investigate the performance of proposed 
Kriging method in strain measurement. The pre-assigned homogenous strain was 

5000 µε  in the x direction i.e. 0.005, 0, 0, 0x y x yu u v v= = = = . The same 

numerically generated Gaussian speckles as in Case Study 1 were used. Gaussian 
image noise with zero mean and 3σ =  was added to the numerical images to 
simulate a practical noise condition. A central-area uniform grid 33 × 33 with a grid 
spacing of 13 pixels was superimposed upon the simulated image of 500 × 500 pixels. 
The displacement at the 1089 grid points was computed by the subset-based DIC 
using a Newton-Raphson scheme and a first-order Taylor-expansion shape function 
using subsets of 41 × 41 pixels. 

Figure 6 (a) shows the displacement field calculated by the subset-based DIC where 
small fluctuations due to the Gaussian image noise can be observed. The regularized 
displacement field obtained by the Kriging local method is demonstrated in Figure 6 
(b) where the error in the displacement field, due to Gaussian noise, has been 
significantly reduced. The strain results calculated by the PLS algorithm for different 
methods are illustrated in Figure 7. For this simple example, it is shown that based on 
the same size of strain calculation window, the Kriging local method is able to 
achieve superior strain results especially in the vicinity of the boundaries. The Kriging 
global and local methods were not significantly affected by the deficiency of valid 
data points at the boundaries of the strain window, since the displacement noise had 
already been substantially removed by the Kriging method. The boundary effect could 
also be reduced by extending of displacement field outside the calculation area 
boundaries [31], but might not be reliable in the case of complex deformations when 
additional errors might be introduced inadvertently.  

 

(a)                                                                   (b) 

Figure 6 Numerical case study 2: calculated displacement fields, (a) by subset-based 
DIC using Newton-Raphson scheme, (b) by Kriging regression with local error 

estimate 
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(a)                                                                 (b) 

 

(c)                                                                 (d) 

Figure 7 Numerical case study 2: calculated strain fields, (a) by subset-based DIC 
using 7×7 strain window, (b) by subset-based DIC using 15×15 strain window (c) by 
Kriging global method using 15×15 strain window (d) by Kriging local method using 

15×15 strain window. 

 

4.3 Experimental case study: cantilever beam test with UQ 

The proposed Kriging regression technique was validated by using experimental data 
from an aluminium cantilever beam of dimensions 160 mm × 40mm × 4 mm thick. A 
thin coat of quick-drying white paint (Matt Super White 1107, Plasti-kote, UK) was 
sprayed onto the surfaces of the cantilever beam using an aerosol can, on top of which 
speckles were sprayed using black paint (Matt Super Black 1102, Plastikote, UK). 
The beam was securely clamped to an optical table as shown in Figure 8 and, in order 
to avoid errors caused by relative movements, the DIC system was also clamped to 
the table with the camera perpendicular to the face-plane of the cantilever. 
Perpendicularity was checked in the present case by using a protractor, though more 
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sophisticated techniques are available [36]. A vertical load, generated by a dead-
weight of 51 kg was applied at the tip, also shown in Figure 8. Two experiments (Test 
1 and Test 2) were carried out using two different cantilever beams. The illumination 
intensity was slightly higher in Test 2 than in Test 1 as shown in Figure 9 while the 
speckles used in two tests were applied at different times and by different operatives. 
The CCD camera (Allied, Model F-125B/C) has a resolution of 1292 pixels × 964 
pixels with a Schneider Xenoplan lens of f-number 1.4 and 12 mm focal length. This 
combination provides resultant magnifications of 7.298 pixels/mm for Test 1 and 
7.326 pixels/mm for Test 2. The average speckle radius in both Test 1 and 2 was 
estimated to be 5 pixels. The experimental setup is also described in detail in [37]. 

 

Figure 8 Experimental setup  

A uniform grid of sample points (16×64) was selected as indicated by the red ‘+’ 
signs shown in the reference images of Figure 9. The subset-based DIC method based 
on a Newton-Raphson scheme and a shape function in the form of a second-order 
Taylor expansion (subset size: 41 × 41 pixels, grid spacing: 15 pixels) was then 
employed to calculate the displacements of the subset centre nodes while the PLS 
algorithm was applied to calculate the strain results. Analytical displacement and 
strain results were calculated according to [38] and shown in Figure 10. The diagonal 
elements of the optimised correlation matrix R  may be used to indicate the relative 
magnitude of quantified DIC measurement error, which differs from subset to subset. 
The fractional part of the diagonal element represents the extent to which the 
regularized sample point deviates from the original sample point. It is seen in Figure 
11 that the measurement error generally increases towards to free end of the cantilever. 
The diagonal element of correlation matrix R  (same for each subset) by using the 
Kriging global method is presented in Table 1.  



16 
 

 

(a)                                                        (b) 

Figure 9 Distribution of sample points (16×64) in the reference image of the 
cantilever beam for Test 1 (a) and Test 2 (b) 

 

Figure 10 Analytical displacement fields (mm): (a) x- and (b) y-directions                
and strain distributions: (c) x-x and (d) y-y strains. 

 

Table 1 Optimized diagonal elements with global error estimate  

Test 1 Test 2 

1.0035 1.0092 

 

Figure 12 shows the RMSE on the y-direction mean Kriging estimate. Similar results 
were found for the x-direction, thought the displacements are of course greatest in the 
y-direction. The tiny error is an indicator of very significant confidence in the estimate. 
The increase in the RMSE at the boundaries is inherent to the Kriging method. The 
Gaussian process deals well with interpolation (in the sense of predicting values 
within the convex hull of the training runs), but, as with most other meta models, it 
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suffers with extrapolation. The reason is because there is no information outside the 
bounds so the covariance function does not have a way to interpret the relationship 
between the outermost point and the nearest neighbours.  

For reasons of simplicity and to avoid an excessive number of figures, only the x-x 
strain results for different methods applied to both the specimens are shown for 
comparison in Figure 13 and 14, i.e. (1) subset-based DIC using 21×21 strain window, 
(2) Kriging global method using 21×21 strain window, (3) Kriging local method using 
21×21 strain window and (4) Kriging local method using the gradients from Kriging 
model, calculated from the Jacobian of the vector of regression functions( )pc x  and 

the vector of correlation functions ( )pr x  [28]. It is worth noting that the strain fields 

shown in Figure 13 and 14 are linearly interpolated from the original discrete strain 
data (16×64) only for the purpose of visualisation. In order to quantify the similarity 
between post-processing results and analytical results, an image decomposition 
technique based on Tchebichef polynomials [39, 40] was used to represent each 
dataset and the concordance correlation coefficient [41] employed to compare the 
resultant moments. Specifically, 400 Tchebichef moments were used and the 
corresponding concordance correlation coefficients are listed in Table 2 where it is 
seen that Kriging regression with error estimation shows superior correlation with the 
analytical solution than does the subset-based DIC method. From the results in 
Figures 13 and 14 and Table 2, it can be seen that superior results are achieved using 
Kriging regression with local error estimation, reducing the difference between the 
estimated strain field and the analytical solution. The DIC measurement error is 
reduced by post-processing with local Kriging regression. 
 

Table 2 Concordance correlation coefficient based on Tchebichef image 
decomposition for the strain fields in x-x 

 Test 1  Test 2 

Subset-based DIC 
PLS 21×21 strain window 

0.9131 0.9327 

Kriging global method 
PLS 21×21 strain window 

0.9579 0.9520 

Kriging local method 
PLS 21×21 strain window 

0.9733 0.9783 

Kriging local method 
using Kriging gradients 

0.9703 0.9795 

 

In order to quantify the uncertainty on strain results, a multivariate Gaussian sampling 
technique [42] described in Section 3.4 can be applied based on the Kriging mean 
values and covariance matrix [28] to generate a series of random samples of the 
displacement field. For reasons of reducing the computational cost, 3 local regions 
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were selected on the cantilever beam labelled A, B and C in Figure 15. Each region 
contains 6×6 sample point and a further 1030 uniformly distributed new untried 
points. 10000 displacement fields were generated and the corresponding strain fields 
calculated by the finite difference method which was also used to compute the 
gradients of the densely sampled displacement field. Finally the strain field 
uncertainty in the local region was determined in terms of the standard deviation. 

Figure 16 illustrates the standard deviation of the strain results of the 3 chosen local 
regions. In Figure 17 the estimated probability densities and the corresponding 95% 
confidence intervals of the strains are illustrated at 3 chosen points (labelled a, b and c, 
one each in the 3 local regions as shown in Figure 15). It is found that the greatest 
uncertainty appears at point c, close to the loading point. The strain at point b at mid-
span and on the neutral axis is the most confidently predicted. 

 

 

(a) Test 1  

 

(b) Test 2 

Figure 11 Diagonal elements of the optimized R matrix (16×64 centre nodes) in (a) 
Test 1, (b) Test 2 
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5. Discussion 

As shown in Figure 13 and 14, applying the proposed local Kriging regression method 
to the displacement data obtained by classical subset-based DIC significantly 
improves the accuracy of the estimated displacement and strain fields. Also, the 
Gaussian process, which forms part of the Kriging model, allows for UQ on estimated 
displacement and strain fields. There is, however, a penalty to be paid for such 
improvements, in terms of computational cost. This might be reduced by using the 
two fast algorithms, FMLE and FSV proposed in [29], to accelerate the optimisation 
process in the Kriging local method without loss of accuracy.  

For the second numerical case study (constant strain and Gaussian noise), the 
calculated strain results based on the Kriging gradients were found to be better than 
the strain results based on local-fitting gradients when a small strain calculation 
window, smaller than 9×9, was chosen, but slightly worse for large strain calculation 
windows greater than 9×9. There was found to be small, but not very significant, 
differences observed in the strain results calculated by Kriging gradients and locally 
fitted gradients for the experimental cantilever-beam case study (Figures 13(c) and (d) 
and 14(c) and (d)). With the regularized Kriging local method the displacement and 
strain results were shown to be improved in all the case studies. 

 

 

(a) Test 1 

 

(b) Test 2 
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Figure 12 RMSE on the mean Kriging estimate of the displacement field (y-direction): 

(a) Test 1; (b) Test 2. 

 

 

(a)                                                              (b) 

 

(c)                                                              (d) 

Figure 13 Test 1 x-x strain field: (a) subset-based DIC using 21×21 strain window; (b) 
Kriging global method using 21×21 strain window; (c) Kriging local method using 

21×21 strain window. (d) Kriging local method using Kriging gradients 
 

  
(a)                                                              (b) 

 

(c)                                                             (d)  
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Figure 14 Test 2 x-x strain field: (a) subset-based DIC using 21×21 strain window; (b) 
Kriging global method using 21×21 strain window; (c) Kriging local method using 

21×21 strain window. (d) Kriging local method using Kriging gradients 
 

 

Figure 15 3 local regions (A, B and C) are chosen on the beam in Test 2; each region 
contains 6×6 sample points shown as red ‘o’ markers and other 1030 uniformly 

distributed new predicted points shown as blue ‘+’ markers; a, b and c are the points 
chosen from the same location of the 3 regions 

 

 

 

(a)                                                       (b) 

 

(c)                                                    (d) 
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(e)                                                  (f) 

Figure 16 Displacement STD (x direction) shown in (a), (c) and (e) and Strain STD 
(x-x direction) shown in (b), (d) and (f) based on 10000 random samples of the local 

displacement fields, from top to bottom: Region A, B and C 

 

Figure 17 The probability density for the strains and 95% confidence interval of the 3 
chosen points in the 3 regions respectively (as shown in Figure 15) 

 

6. Conclusion 

A subset-by-subset approximation of DIC measurement error is derived and 
introduced into the leading-diagonal terms of the Kriging correlation matrix. This 
leads to a Kriging regression with local error estimation based on diagonal elements 
of the inverse Hessian matrix and the SSD residual, for the post-processing of 
measured data produced by subset-based DIC. Unlike spline or other interpolation 
methods, the proposed approach not only allows for regression of the model upon the 
measured data, but also incorporates a Gaussian process that enables RMSEs and 
standard deviations to be determined on the estimated displacement and strain fields. 
The methodology is supported by both numerical and experimental case studies. All 
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the case studies show that the proposed Kriging local method out-performs the 
Kriging global method and is able to improve the accuracy of measured subset-based 
DIC data and achieve more accurate strain results.  

Appendix 1 

In this study the displacements uncertainty ( )e sε x  at an arbitrarily chosen pixel with 

coordinates ( , )s sx y  is derived using a second-order shape function model, 

 ( ) ( )T
e s s e=ε x η x ρ   (20) 

where ( )sη x  denotes the shape function coefficients,  

 ( ) ( ) ( )2 2 T1 1
2 2[1 ]s s s s s s sx y x y x y= ∆ ∆ ∆ ∆ ∆ ∆η x   (21) 

and eρ  is the matrix of the uncertainty of variables in the two directions ,x y , 

 [ ]
T

0

0

u u u u u ux y xx yy xy

e u v
x y xx yy xyv v v v v v

 
= =  

 
ρ ρ ρ  (22) 

where sx∆  and sy∆  are the distances between the pixel point sx  and the centre node 

of the subset at cx . 

The form of local error estimate is developed according to the most commonly used 
DIC criterion [3, 43] i.e. the SSD, 

 [ ]2

1

( ) ( )
N N

SSD s s
s

C g f
×

=

= −∑ x x%   (23) 

or, by equations (1), (2), (3) and (23), 

 ( )( ) ( )( ) ( ) ( )( )( )2
T T

1

N N

SSD s s e g s s e s f s
s

C g fζ ζ
×

=

= + + + − +∑ τ η x ρ τ η x ρ x x  (24) 

Alternatives to the SSD criterion include the normalized sum of squared differences 
(NSSD), zero-normalized sum of squared differences (ZNSSD) etc. The Cross 
Correlation (CC), which is related to and can also be deduced from the SSD criterion 
[3, 43], may also be used.  

The Hessian matrix and determination of eρ .  

In equation (24) the coordinate uncertainty ( )T
s eη x ρ  may be considered to be small, 

in which case the first-order Taylor expansion leads to, 
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( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ))

T

1

2T

C ( )
N N

SSD e s s s e g s
s

g s s e s f s

g g

f

ζ

ζ ζ

×

=

= + ∇ ⋅ +

+ ∇ ⋅ − −

∑ρ τ τ η x ρ τ

τ η x ρ x x

  (25) 

where ( )sg∇ τ  represents the grey gradient. It is known that ( ) ( )s sg f=τ x  and  

( ) ( ) ( ) ( )( ) ( )s g s s g s sg g gζ ζ∇ +∇ = ∇ + = ∇τ τ τ τ τ , 

so that equation (25) may be simplified as, 

 ( ) ( ) ( ) ( )( )2T

1

C ( )
N N

SSD e s s e g s f s
s

g ζ ζ
×

=

= ∇ ⋅ + −∑ρ τ η x ρ τ x   (26) 

If the gradient terms in x and y directions are separated out, then 

  

( ) ( ) ( ) ( )(
( ) ( ))

T T

1

2

C ( )
N N

SSD e x s s u y s s v
s

g s f s

g g

ζ ζ

×

=

= ∇ ⋅ + ∇ ⋅

+ −

∑ρ τ η x ρ τ η x ρ

τ x
 (27) 

Minimisation of the SSD requires that, 0SSD SSDu vdC d dC d= =ρ ρ  which leads to 

the following expression for the determination of ( )T T
u vρ ρ ,  

 u

v

 
= 

 

ρ
H b
ρ

  (28) 

where, 
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   (29) 

is an approximation to the Hessian matrix when the second-order partial derivatives 

are considered to be negligible [1, 44]. The terms ( )x sg∇ τ , ( )y sg∇ τ  and ( )i sη x  are 

abbreviated to xg∇ , yg∇  and iη . The vector b  in equation (28) may be written as, 
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 (30) 

The vector of uncertainties is then given by, 

 1u

v

− 
= 

 

ρ
H b

ρ
  (31) 

Estimation of variance 

The grey-level uncertainty was defined as independent and identically distributed, 

( )20, ζσN , in Section 2, at each pixel. Therefore, by linearisation, 

 
2u T

v

Cov ζσ 
≅ ⋅ ⋅ 

 

ρ
J J

ρ
  (32) 

where J  is the Jacobian matrix, which from equation (31) is given by 

 1− ′=J H b   (33) 

where, 

 ( ) ( ) ( ) ( )1 1g g N N f f N Nζ ζ ζ ζ× ×

 ∂ ∂ ∂ ∂′ =  ∂ ∂ ∂ ∂  

b b b b
b

τ τ τ τ
L L   (34) 

and, 

 ( )T
2′ ′ =b b H   (35)  

Finally, from equations (32), (33) and (35) it is found that, 

 2 12u

v

Cov ζσ − 
≅ ⋅ 

 

ρ
H

ρ
   (36) 

The uncertainty at the centre node of the subset is the first term in each row of eρ  as 

defined in equation (22). The displacement variance at the centre node in one subset 
may then be approximated [1, 15] as,  
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H
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The derivations above is limited by the assumption of Gaussian uncertainty and 
therefore provides only a lower-bound error estimate. A more general case may be 
derived from the residual of the SSD criterion [17, 18] such that the 22 ζσ  in equation 

(37) is replaced by, 
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=

×

∑ x x%

  (38) 

Then the local uncertainty terms xjm  and yjm  associated with x- and y-direction 

displacements for the thj  subset in equation (14) are given by, 
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  (39) 
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