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Abstract

A Kriging regression model is developed as a postgssing technique for the
treatment of measurement uncertainty in classieddset-based Digital Image
Correlation (DIC). Regression is achieved by regsilag the sample-point
correlation matrix using a local, subset-basedesssaent of the measurement error
with assumed statistical normality and based orStma of Squared Differences (SSD)
criterion. This leads to a Kriging-regression moitkethe form of a Gaussian process
representing uncertainty on the Kriging estimatéhef measured displacement field.
The method is demonstrated using numerical andrigmpetal examples. Kriging
estimates of displacement fields are shown to bextellent agreement with ‘true’
values for the numerical cases and in the expetaheexample uncertainty
guantification is carried out using the Gaussiardoa process that forms part of the
Kriging model. The root mean square error (RMSEjlenestimated displacements is
produced and standard deviations on local straimates are determined. Significant
improvement is observed on strain results produgdg a commonly used point-
wise least squares algorithm (PLS).

Keywords. Digital Image Correlation, Measurement Error, Knmigi Regression,
Uncertainty Quantification.

1. Introduction

Digital Image Correlation (DIC) is a well-developeahd extensively applied
technique in experimental mechanics while subssedaIC is probably the most
commonly used approach because of its simplicity I[ffaccuracy, typically caused
by camera noise, illumination variability, grey-Ecanterpolation and other sources,
will always be present regardless of the level mcision of the DIC measurement.
The resulting error in the measured data affeasattturacy of strain estimates [2]
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based on displacement data. A common way of dealitigthis problem is to apply
local smoothing [3, 4] or low-pass filterirj§], which has the advantage of simplicity
but is subject to ad-hoc choice of order and patansation, possibly leading only to
a local optimum. In the present study a global mrpment in measurement accuracy
is sought by post-processing with a Kriging modelttincorporates knowledge of
error estimates determined from classical subsstédaDIC. Specifically, the
measured data is regressed by utilizing an estiofdtee measurement error built into
the leading diagonal of the Kriging correlation maf6-9].

Originally developed in geology [10], Kriging issal widely used in the fields of
spatial analysis and computer experiments. The tmEmphistory and extensive
overview on the development of Kriging can be foumthe work of Cressie [11, 12].
As opposed to a piecewise-polynomial spline thaintpes smoothness of the fitted
data, Kriging is a method that gives the best ling@iased prediction (BLUP) [12]
of intermediate values. Also Kriging can be intetpd from a Bayesian framework
[12, 13] i.e. the interpolated values are modebigda Gaussian process governed by
prior covariance. The idea of introducing a regakdron factor for the treatment of
biased estimates in multiple regression can beedrdack to the work of Hoerl and
Kennard [6] in 1970, who termed the technique ‘eidggression’. Forrester et al. [7]
applied the same approach to the design and asaliy$ioisy’ computer experiments
in the field of computer simulations in order tdtef out numerical noise. The
introduction of a single regularization factor iglabal approach for the treatment of
uniform uncertainty across the domain of interest.

Jouke et al. [8] extended the error estimate frbenglobal to the local domain and
proposed a local error estimate technique in pariimage velocimetry (PIV) by
using an uncertainty model based on peak ratiokifii4dhe cross-correlation map.
This technique is not transferrable to DIC becanissignificant differences in the
cross-correlation map of DIC data compared with .PAso DIC algorithms are
usually based on the Sum of Squared Difference J®8@rion and Newton iteration.
Sutton et al. [1, 15] derived an estimate of disptaent error due to the presence of
Gaussian image noise, which is a function of taaddrd deviation of Gaussian noise
and the sum of squared intensity gradients [16].cBgsidering the various error
sources existing in the experiments, a more geif@mal of error estimate was derived
to approximate DIC error bounds as a function ef$8D residual and the inverse of
Hessian matrix [17, 18]. It is advantageous thatétror estimate can be determined
in the DIC process simultaneously with the disptaert data without increasing the
computational cost.

A Kriging full-field DIC algorithm was developed Ithe present authors [19] who
considered the measurement uncertainty to be imdiepé and identically distributed
across the entire Region of Interest (Rol). Whits$ approach offers excellent error
reduction properties, the resulting Gaussian-pcestimate is limited by the
assumption of measurement error that, within the RRoains the same from location
to location. This limitation is addressed in thegant article whereby a local error
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estimate based on the inverse Hessian matrix andetiidual of the SSD criterion is
incorporated in Kriging regression. Whereas in [tt# Kriging model was used as a
shape function in the full-field DIC Newton iterati, in the present study Kriging
regression is used as a post-processing techrogueptove the accuracy of classical
subset-based DIC measurement by including a looat estimate determined subset-
by-subset. Numerical and experimental examplesised to test the performance of
the proposed approach. One of the advantages ginigris that it provides not only a
best linear unbiased prediction of the measuremuault,also a Gaussian random
process that delivers uncertainty quantificatio®jn the prediction itself. Results
show that Kriging regression with local error estian is able to reduce the effect of
measurement errors and improve the accuracy okstienated displacement field
rather than just smoothing it. In an experimentaeple, the RMSE on the estimated
displacement field and the standard deviations acally estimated strains are
presented. Post-processing with the Kriging moelati$ to a significant improvement
in strain results obtained using an extensivelyluseal linear fitting algorithm with a
strain calculation window of various sizes [4]. T$teain results determined directly
from the gradients of the Kriging displacementdiate also presented for comparison.

2. Uncertainty in Subset-based DIC

In order to obtain a mathematical expression far kbcal error estimate to be
incorporated in the Kriging regression, a genenmalgsis for the measurement
uncertainty of subset-based DIC is introduced.fWgé begin with the assumption of
deformation continuity of a solid object and foasens of simplicity a 2-dimensional

case is considered. A point at coordinate(X.,y,) defines the central node of a
reference grey-level imagé(x, y), which for convenience takes the form of a square

subset consisting oN XN pixels. The central-node coordinate of the smgothl
deformed grey-level imagg (%, ¥) is given byX, : (X, ¥.).

The grey-level images (x,y) andg (%, ¥) consist of the true images,(x,y) and
g(% ¥). plus the grey-intensity error defined By(xy) and{, (%, ¥) respectively,

F(xy)=f(xy)+ (xy) 1)
g(%9)=9(%9)+,(%9) (2)

where 7, (x,y), {,(% ¥) , to be estimated experimentally, are assumed s&aus

/\/(O,a?), independent and identically distributed acrogssiibset.

In addition, there is measurement error in theedéfiice between the deformed- and
reference-image coordinates denotedebyThen the arbitrarily measured coordinate

%, (X, ;) may be written as,



X;=71,+¢g, 3)
and t_ denotes the true coordinate of the deformed image.

The true coordinate, and therefore the displacement is unknown. However, it is
assumed that the error across each subset can te&ledousing a shape function.
This leads to the formulation of weighting termatthccount for different error levels
in different regions of the full image. Full detadl derivation of the weighting terms is
given in Section 3.2 and Appendix 1.

The Kriging regression with local error estimatesctibed in the following section, is
applied in the form of a non-parametric regressioodel and by including certain

weighting terms, uncertainty in different partstbé full image may be represented
probabilistically to develop an estimate of theetdisplacement field. Numerical and
experimental examples show that the proposed agprea able to improve the

measurement results of the classical subset-bas#dtbchand outperforms the global
Kriging DIC method [19].

3. Kriging Regression with Local Error Estimate

Typically, DIC data are not measured with perfectumacy, but are subject to
measurement noise and imprecision [6, 7, 20-22]¢clvimight be reduced by pre-
filtering [5, 23, 24]. However, in this study theiging regression approach accounts
for measurement error in an overall way by regmiag the diagonal elements of the
Kriging correlation matrixR. This means that the training points (or sampletpd
are not reproduced exactly but allow for error ie measured DIC image, thereby
enabling the determination of an optimised displaeet field represented by the
Kriging model that represents the true displacementhe sense of a best linear
unbiased prediction.

The method applied in this study is Kriging regress also known as ‘Universal
Kriging’ or ‘Kriging with External Drift’ [25]. Speifically in this study, the true
displacement field/v(x, y) iIs modelled using Kriging as a realisation in them of a

random function¥(x,y), which combines a deterministic regression modéh &

zero-mean stochastic field used to fit the ressl{26, 27] as,
WX, y) =) ¢ (% Y)3, +Z(x,y) 4)
(=1

wherec,(x,y),/=1...,m, are regression functiongj, denotes the/" regression

parameter and(x,y) is a Gaussian stochastic field with zero mean @ndriance
between two arbitrary sample poin@ndk, assumed to take the form,

cov(Z () Z ()= (X, % 8, 8, €)% =(x ) 1 % =(x %) 6)



wherer;, (xl. ,xk,ﬂx,ﬂy) = corr(Z &; ).Z & )) is determined by the proximity of points

j andk. The correlation parametet},d,,¢ and field variancer® are determined by
an optimisation procedure described in the sequel.

The regression parametef$ may be estimated from the sample by using the

generalized least squares (GLS) method [12, 28hobxeg w, :[wl,---,wn]T as the
vector of displacements calculated by the subsetd®IC for a set of sample points
(xj,yj), j=1,2,.. nh,the estimated regression parameférare then expressed as

[28],
b=(c"(R(2.9,6) 'c] & (R(%.,¢)) w ®

Then, by minimising the mean-square prediction remoder an unbiasedness
constraint [28], the Kriging model at an arbitrarthosen point :(xp,yp) IS

obtained as,
W(x,) ~ N (W(x,.8,.8,.8), 0°S(, 8, 8, £) 7)
where,
— T aaT 1 o
WX,) =T OB+ (¢,.8,.8,)(R (8.8,.€)) (wo ~CB) (®)
is the Best Linear Unbiased Prediction (BLUP) with variance given by,

5’28(xp) =0%(1-rT(x )R (xp)+(cT(xp)—r T(xp)R‘]C)

) T 9)
x(CTR™C) (c"(x,) ~r"(x,)R™C) )
Covariance terms may be expressed as,
&ZS(xp,xq) :&z(rpq (xp,xq)—rT(xp)R‘lr (xq)+(cT(xp)—r T(xp)R‘1C)
(10)

x(CTR™C) ™ (c"(x,) —rT(xq)R‘lc)T)
wherex ;,x, may be either sampled or unsampled points(él)lcdenotes an estimate.

In the above expressionR, is the matrix of sample-point displacement cotreta
functions with terms, (X;,%,,7,,9,,¢) described abover;(xp(q),ﬁx,ﬁy) is the vector

of displacement correlation functions between aitrarily chosen Iocatioréxp(q))

and each of the sample poirﬂbsj), j=12...n; and rpq(xp,xq,ﬂx,ﬂy)denotes the

5



correlation between two arbitrarily chosen pOi(‘bt%,Xq). C is a matrix consisting of
regression functions evaluated at the sample paBjts-c, (xj); and (X ) is the

vector of regression functions for an arbitraryaltban X oa) l.e.c, =¢, (xp(q)) :

The correlation functions are generally assumedbdo exponential, also called
Gaussian [9], and expressed in the form,

rpq(Xp’Xq’ﬁxlﬂy): expwx Q(p_)gq i_ﬂy @p_yq f} (11)

The choice of this correlation function relies dre tassumption that the response
surface inferred by Kriging regression is smoothisiseen from equation (11) that
points close to each other have a higher correlahan those that are far away. The

termsd, and?, determine how far apart both, and x, andy, andy, need to be
before differences in the estimate given by equafid) become significant.

When measurement error is considered the diagdeatemts of the correlation

matrix R in the Kriging formula should be adjusted by th&oduction of an error

term (multiplicatively in the present work). Thikcavs for regression instead of exact
interpolation of the data samples. According to ¢berelation function (11), all the

diagonal elements of matriR are unity for Kriging interpolation which meansath

the Kriging model passes through all the samplesthk In contrast, measurement
error is taken into account by regularizing thegdizal elements of the correlation
matrix R, which allows regression of the Kriging model dw tdata samples. This
modified formulation is known as Kriging regressi¢2l] and introduces the

additional parametef .

3.1 Global error estimate

If the error is assumed independent and identichfiiributed across the entire region
of interest then an unknown constant facfomay be applied [7, 8, 19] to modify the

diagonal elements of the correlation matRx which then differ from equation (11)
and are given by,

wheren denotes the number of sample points.

3.2Local error estimate

In many cases, the error is not constant over tiieeedomain but may separately be
considered independent and identically distribubsgr a subset of the reference
image. An estimate of displacement error for eaghsst due to the presence of
Gaussian image noise was derived [1, 15] as aitumcf the standard deviation of
Gaussian noise and the sum of squared intensitjeys [16]. In this study, a more
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general form of error estimate is derived to appnate the DIC error bound for each
subset as a function of the SSD residual and therse of Hessian matrix [17, 18].
The multiple error sources in DIC measurement lagesby included in a general way.
It is shown in Appendix 1 that this general formeofor estimate for each subset may
be expressed as,

Cen
rnxj = I\SISZDJ EGH_l)n
(13)

wherem, andm; are approximations to the error variances assetiaithx- andy-

direction displacements for thg" subset ofN x N pixels, having a single sample
point at its centreCy, denotes the SSD residual for th& subset.H is the

calculated Hessian matrix while subscripisand 77 indicate the diagonal elements

of H™ that corresponds to the andy-direction displacements of the subset centre
point.

If the different error for each subset is takem iatcount, equation (12) may then be
expressed in modified form,

_ﬁxmq' _ﬁymyi

r.=exp ¢
I}
Y + g,
where the term/nf, +nT, is a normalising constant.

The derivation ofm; andm,, given in Appendix 1, is achieved under the follogv

(14)

conditions on the measurement error:

i. Assumed to be Gaussian with zero mean, independent identically
distributed over a subset &f x N pixels.

ii. Approximated using shape functions based on a secaier Taylor series
expansion (may be first- or higher-order) abouamle point at a subset centre.

iii. Linearised atNxN pixels to relate field uncertainties to shape fiomc
variables.

iv. Pixel grey-intensity variances approximated usimg tSSD between the
deformed and reference images.

3.3 Solution of unknown parameters{ﬂx,ﬂy,f,é'z} :



The parameter{sﬂx,ﬂy,f} determined by maximising the concentrated loglilik®d
function [7, 9] given by,

In L(ﬁx,ﬂy,g):g|n(&2)+%|n4R(ﬂx,ﬁy,g){) (15)

subject to a constraint on the field variance est#d as [7],
R 1 AT ~
5 :E(WO -Cp) R™(8,.9,.¢)(w,~CB) (16)

where L () denotes the likelihood.

Equation (15) is complex and generally multimod#ius, the computation of optimal
values ford,,J, and & usually requires specialised optimisation algonghand
heuristics such as genetic algorithms or gradierg-imethods, e.g. the Hooke and

Jeeve's algorithm, and the Nelder-Mead simplexralgn. The latter was employed
in this work with a first-order regression functionosen forc(x, y) [28]. In the case

of a large number of sample poir@s, the computational cost of a conventional

maximum likelihood estimate (MLE) could become gigant. Fast algorithms are
described in [29].

It is necessary in equation (16) to invert the elatron matrix,R , which may be ill-
conditioned and in need of regularisation. Ranjaal.e[30] considered the classical

Tikhonov regularisation of the forn{R+d1) where J is the regularisation

parameter or nugget. The optimised paramétar equations (16), (12) and (14) has

the same effect, though in a slightly differentniorRegularisation introduces the
smoothing required in DIC post-processing and tesola regressing, rather than an
interpolating random function represented by thegidg model. It is however
necessary to test the condition of matkk, which can be done by simply
determining the condition number. Ranjan et al.] [86veloped a formula for the
lower bound ond, given by

J, = max{w ,0} a7)

Where/((-) denotes the condition numbet, is the highest eigenvalue & and

a=25 (an empirical term obtained by a large numberwherical simulations). In

o A (K(R)—ea) _
the examples presented in this work the terrA————* | was found in every
«(R)(e*-1)
case to be negative, so that the optimiéedas able to reduce the measurement error
without encountering problems in inverting the etation matrix,R .



3.4 Strain Calculation

Two different methods were used to determine thaing. Firstly, a local fitting
technique [4] based on the point-wise least squalggsithm (PLS), within a chosen
strain calculation window, was utilized to estimtte strain result from the measured
displacement data. Linear coefficients are fittecapproximate the gradients at the
centre point of each local strain window. It is wmo[4] that there might be an
insufficient number of valid data points within t&ain calculation window at the
boundaries or where there are discontinuities. rgeio to solve this problem, a
displacement continuity assumption may be usedtene the displacement field [31]
or alternatively the invalid points may be idemdiand excluded from the local PLS
fitting [4]. The latter was applied in this studit. will be demonstrated in the
following sections that this sort of boundary effetay be significantly reduced by
applying the proposed Kriging regression approaith tlie local error estimate.

Secondly, the strain results were calculated dirdatm the gradients of the Kriging
displacement model. This second approach is appli@h experimental case study,
where estimated strains are compared to those geddhby the PLS method. The
Kriging gradients are calculated from the Jacobadnthe vector of regression
functionsc(x ;) and the vector of correlation functionéx )) as discussed in [28].

Although the displacement field is Gaussian, tnaistield is generally non-Gaussian.
A sampling method based on Cholesky decompositias @mployed to sample the
displacement field from the multivariate Gaussidstribution [32, 33] with the
purpose of quantifying the uncertainty on the esated strain field. Given the
Cholesky decomposition of the correlation ma®ix AA™ (equations (9) and (10))
where A is a lower triangular matrix, samples of the dasgiment field, across the
region of interest, were generated from,

W=An+w (18)

by sampling fromn ~ A (0, 1). Classical finite differences may then be applied

calculate the gradients and generate the straitsed his requires dense sampling of
displacement field (local sampling) to determine tmcertainty on the estimated
strains.

4. Case studies

Numerical and experimental case studies are pregeatillustrate the application of
Kriging regression with local error estimation. Tweets of numerical simulation
examples were carried out first so that possiblererintroduced by the image
acquisition system were excluded. In the first nuca example the effectiveness of
the proposed Kriging method in displacement estonats investigated using
numerically generated Gaussian speckles with umifotranslations, affine
deformation and Gaussian image noise. The secomegncal example has the same



numerically generated Gaussian speckles but a iahitensile deformation with a
constant strain. Gaussian image noise is emplogedetify the performance of
proposed Kriging method in strain measurement.hia éxperimental example, a
cantilever beam test is chosen to investigate énpnance of the Kriging method in
a practical DIC application, since it has a simghalytical solution for comparison
with DIC results.

4.1 Numerical case study 1: verification of the Kriging method for displacement
measurement

A 2-dimensional numerical example is illustratedsing numerically-produced
Gaussian speckles [34, 35] (not related directlyh® Gaussian process that forms
part of the Kriging model) with means uniformly wiisuted over the Rol. Gaussian
speckles are formulated as,

|(X,Y):ZA(GXD(—(X_XK) ;Z(y_yk) )

(X_Xk _uo_uxx_uyy)2 +(y_yk _VO _VXX_Vyy)2

y2

where | and | represent the reference- and deformed-image spegétterns

(19)

()= A expt )

respectively.M denotes the total number of speckle granules the size andy,

the peak intensity of each speckle granule ('mdyk) represents the position of each

speckle uniformly distributed over the Rol. In {hresent case, 8000 independent and
identically distributed speckles are superimpose@o image consisting of 500x500
pixels, each Gaussian speckle having a size okéand a peak intensity of 60. In
order to test the proposed method, several defoimedes were produced with a
combination of (a) rigid-body translation xmandy directions, (b) affine deformation,
and (c) Gaussian image noise. The reference armndedi images were digitised
using an 8-bit processor. As the grey values ofinteger locations are required in
the DIC process, a grey-value interpolation schésnaeeded and for reasons of
simplicity a bi-cubic spline interpolation schemasachosen.

The Rol was divided into 100 uniformly distributedmple points, each of which was
defined as the centre node of a subset of 41 xx&lspas shown in Figure 1. Subset-
based DIC, based on a Newton-Raphson scheme, waleedapgo assess the

measurement uncertainty at all the sample pointeeSonly a linear deformation

(affine transformation) was applied, a first-ordaylor-expansion shape function was
chosen in order to avoid possible over-fitting. ¥da basis of this measurement, both
Kriging regression with global and local error estion were employed to regularize
the measured data and achieve an estimate of sh&aceément at each centre node.
As the true displacements of the sample pointeasdy derivable, the residual errors
of subset-based DIC, Kriging global and Krigingdbmethods are shown and may be
compared in Figure 2-5. The results shown for Kiggare the mean values of the
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Gaussian Process that represents the Kriging médsl.observed that the residual
errors are significantly reduced after the appicabf Kriging regression with local
error estimation. There is very little differenae the residual errors of Figure 2
between the Kriging global and local methods, whishto be expected because
uniform translation was applied to the whole RoheTKriging global method
performs less well in the case of an affine defdiomaas shown in Figure 3 because
the local deformations differ from subset to subBeth the Kriging global and local
methods demonstrate effective reduction of measemérerrors due to Gaussian
iImage noise as shown in Figure 4. In Figure 5 unbdereffect of combined error

sources, the Kriging local method considerably merforms the Kriging global
method.

Ly PP

b .;'-t:;'é“ g

{kﬁ

Figure 1 Numerically generated speckles and the distribubfosample points (red
crosses) - 3 subsets are shown in green squares

~——°— Subsetbased DIC | |
——=—— Kiriging Global
Kriging Local

Measurement Error (pixel)
Measurement Error (pixel)
w
w

—=— Subset based DIC | |
——=—— Kriging Global
Kriging Local

0 2‘0 4‘0 . 6‘0 80 100 0 2‘0 4l0 6I0 8‘0 100
Sample Points Sample Points
(a) x-direction (b) y-direction

Figure 2 Numerical case study 1: residual error comparisom frigid-body
translationu, = 0.2, v, = 0.3 pixels - equation (19).
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Figure 3 Numerical case study 1: residual error comparisoaf affine deformation
0.00pixels - equation (19).
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Figure 4 Numerical case study 1: residual error comparisorGlaussian image noise,
zero meang =5.

0.15 T T 0.15 T T
—=—— Subset based DIC ? —=— Subset based DIC
—=— Kiriging Global ||| Kriging Global
Kriging Local | 0.1/ —— Kriging Local

0.1}

Measurement Error (pixel)
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-0.05 : : : : -0.1 v : v v
0 20 40 60 80 100 0 20 40 60 80
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100

(a) x-direction (b) y-direction

Figure 5 Numerical case study 1: residual error comparisotihfe combination of
translationu, = 0.2, v, = 0.3 pixels, affine deformation

u, =0.005u, = 0.005y, = 0.00%, = 0.00pixels and Gaussian image noise, zero
mean,o =5.

4.2 Numerical case study 2: verification of the Kriging method for strain
measur ement.
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A uniaxial tensile deformation was applied to inmigate the performance of proposed
Kriging method in strain measurement. The pre-asgsighomogenous strain was
5000 e in the x direction i.e.u, =0.005u, = Oy, = Oy, = 0. The same

numerically generated Gaussian speckles as in Sasty 1 were used. Gaussian
image noise with zero mean amd=3 was added to the numerical images to
simulate a practical noise condition. A centraleavaiform grid 33 x 33 with a grid
spacing of 13 pixels was superimposed upon thelatediimage of 500 x 500 pixels.
The displacement at the 1089 grid points was coetplty the subset-based DIC
using a Newton-Raphson scheme and a first-ordelofFaxpansion shape function
using subsets of 41 x 41 pixels.

Figure 6 (a) shows the displacement field calcdldte the subset-based DIC where
small fluctuations due to the Gaussian image ncésebe observed. The regularized
displacement field obtained by the Kriging localthwel is demonstrated in Figure 6
(b) where the error in the displacement field, daeGaussian noise, has been
significantly reduced. The strain results calcudaby the PLS algorithm for different
methods are illustrated in Figure 7. For this semgtample, it is shown that based on
the same size of strain calculation window, thegkug local method is able to
achieve superior strain results especially in fle@ity of the boundaries. The Kriging
global and local methods were not significantlyeaféd by the deficiency of valid
data points at the boundaries of the strain windgnge the displacement noise had
already been substantially removed by the Krigireghad. The boundary effect could
also be reduced by extending of displacement fmltside the calculation area
boundaries [31], but might not be reliable in tlase of complex deformations when
additional errors might be introduced inadvertently

N
N 3
)

-
wn
1

Calculated Displacement (pixel)
Calculated Displacement (pixel)

00 S —""200
Y (pixel) 400 100 X (pixel) Y (pixel) 400 100 X (pixel)

(@) (b)

Figure 6 Numerical case study 2: calculated displacemeludjga) by subset-based
DIC using Newton-Raphson scheme, (b) by Krigingeesgion with local error
estimate
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Figure 7 Numerical case study 2: calculated strain field}pfy subset-based DIC
using 7x7 strain window, (b) by subset-based DIi@gi$5x15 strain window (c) by
Kriging global method using 15x15 strain window Kkg)Kriging local method using

15%15 strain window.

4.3 Experimental case study: cantilever beam test with UQ

The proposed Kriging regression technique was atdidl by using experimental data
from an aluminium cantilever beam of dimensions &6 x 40mm x 4 mm thick. A
thin coat of quick-drying white paint (Matt Superhiéé 1107, Plasti-kote, UK) was
sprayed onto the surfaces of the cantilever beang as aerosol can, on top of which
speckles were sprayed using black paint (Matt S@deck 1102, Plastikote, UK).
The beam was securely clamped to an optical tab#hawn in Figure 8 and, in order
to avoid errors caused by relative movements, tle €ystem was also clamped to
the table with the camera perpendicular to the -fdaee of the cantilever.
Perpendicularity was checked in the present casesing a protractor, though more
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sophisticated techniques are available [36]. Aievarrtload, generated by a dead-
weight of 51 kg was applied at the tip, also shawRigure 8. Two experiments (Test
1 and Test 2) were carried out using two differ@nttilever beams. The illumination
intensity was slightly higher in Test 2 than in Tésas shown in Figure 9 while the
speckles used in two tests were applied at difteieres and by different operatives.
The CCD camera (Allied, Model F-125B/C) has a rnesoh of 1292 pixels x 964

pixels with a Schneider Xenoplan lens of f-numbdrdnd 12 mm focal length. This
combination provides resultant magnifications d298 pixels/mm for Test 1 and
7.326 pixels/mm for Test 2. The average speckléusaoh both Test 1 and 2 was
estimated to be 5 pixels. The experimental setasis described in detail in [37].

Illumination

L
Camera?fﬁ 3
S .

Figure 8 Experimental setup

A uniform grid of sample points (16x64) was seldcts indicated by the red '+’
signs shown in the reference images of Figure 8.sibset-based DIC method based
on a Newton-Raphson scheme and a shape functitimeeiform of a second-order
Taylor expansion (subset size: 41 x 41 pixels, gpadcing: 15 pixels) was then
employed to calculate the displacements of the etubsntre nodes while the PLS
algorithm was applied to calculate the strain rssulnalytical displacement and
strain results were calculated according to [3&] simown in Figure 10rhe diagonal
elements of the optimised correlation matRxmay be used to indicate the relative
magnitude of quantified DIC measurement error, Whiiffers from subset to subset.
The fractional part of the diagonal element repmesdhe extent to which the
regularized sample point deviates from the origsahple point. It is seen in Figure
11 that the measurement error generally increasesdls to free end of the cantilever.
The diagonal element of correlation matRx (same for each subsdiy using the
Kriging global method is presented in Table 1.
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Figure 9 Distribution of sample points (16x64) in the refeze image of the
cantilever beam for Test 1 (a) and Test 2 (b)
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Figure 10 Analytical displacement fields (mm): (&) and (b)y-directions
and strain distributions: (&}x and (d)y-y strains.

Table 1 Optimized diagonal elements with global error eatin

Test 1 Test 2
1.0035 1.0092

Figure 12 shows the RMSE on tixgirection mean Kriging estimate. Similar results
were found for the x-direction, thought the displ@ents are of course greatest in the
y-direction. The tiny error is an indicator of vesignificant confidence in the estimate.
The increase in the RMSE at the boundaries is amteo the Kriging method. The
Gaussian process deals well with interpolation tfia sense of predicting values
within the convex hull of the training runs), bas with most other meta models, it
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suffers with extrapolation. The reason is becahseetis no information outside the
bounds so the covariance function does not haveayatw interpret the relationship
between the outermost point and the nearest neigbbo

For reasons of simplicity and to avoid an excessiumber of figures, only the-x
strain results for different methods applied tohbthie specimens are shown for
comparison in Figure 13 and 14, i.e. (1) subseedh&HC using 21x21 strain window,
(2) Kriging global method using 21x21 strain windd®) Kriging local method using
21x21 strain window and (4) Kriging local methodngsthe gradients from Kriging
model, calculated from the Jacobian of the vectoregression functiongx ) and

the vector of correlation functiongx ;) [28]. It is worth noting that the strain fields

shown in Figure 13 and 14 are linearly interpoldtetn the original discrete strain

data (16x64) only for the purpose of visualisatibmorder to quantify the similarity

between post-processing results and analyticalltsgsan image decomposition

techniqgue based on Tchebichef polynomials [39, w@$ used to represent each
dataset and the concordance correlation coeffiqehf employed to compare the
resultant moments. Specifically, 400 Tchebichef reota were used and the
corresponding concordance correlation coefficiemts listed in Table 2 where it is

seen that Kriging regression with error estimasbows superior correlation with the
analytical solution than does the subset-based DEIhod. From the results in

Figures 13 and 14 and Table 2, it can be seersthgrior results are achieved using
Kriging regression with local error estimation, wethg the difference between the
estimated strain field and the analytical solutidime DIC measurement error is
reduced by post-processing with local Kriging regren.

Table 2 Concordance correlation coefficient based on Tdtefiimage
decomposition for the strain fields xrx

Test 1 Test 2

Subset-based DIC
PLS 21x21 strain window 0.9131 0.9327
Kriging global method 0.9579 0.6520

PLS 21x21 strain window

Kriging local method
PLS 21x21 strain window 0.9733 0.9783

Kriging local method

. . ) 0.9703 0.9795
using Kriging gradients

In order to quantify the uncertainty on strain ftesswa multivariate Gaussian sampling
technique [42] described in Section 3.4 can beiepdbased on the Kriging mean
values and covariance matrix [28] to generate &seaf random samples of the
displacement field. For reasons of reducing the mdational cost, 3 local regions
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were selected on the cantilever beam labelled an& C in Figure 15. Each region
contains 6x6 sample point and a further 1030 umfprdistributed new untried
points. 10000 displacement fields were generateldtlae corresponding strain fields
calculated by the finite difference method whichswalso used to compute the
gradients of the densely sampled displacement .fi€ldhally the strain field
uncertainty in the local region was determineceimis of the standard deviation.

Figure 16 illustrates the standard deviation ofgtrain results of the 3 chosen local
regions. In Figure 17 the estimated probabilitysiies and the corresponding 95%
confidence intervals of the strains are illustraae® chosen points (labelled a, b and c,
one each in the 3 local regions as shown in Fige It is found that the greatest
uncertainty appears at point c, close to the lgagimint. The strain at point b at mid-
span and on the neutral axis is the most configgméddicted.

2
o

o
3

1.005

Diagonal elements of R matrix
N

157 * 40 50 60

1.015
1.01

1.0056

Diagonal elements of R matrix

(b) Test 2

Figure 11 Diagonal elements of the optimized R matrix (16&x64Atre nodes) in (a)
Test 1, (b) Test 2
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5. Discussion

As shown in Figure 13 and 14, applying the propdsedl Kriging regression method
to the displacement data obtained by classical eftiimsed DIC significantly

improves the accuracy of the estimated displaceraent strain fields. Also, the

Gaussian process, which forms part of the Krigiraglet, allows for UQ on estimated
displacement and strain fields. There is, howegepenalty to be paid for such
improvements, in terms of computational cost. Tright be reduced by using the
two fast algorithms, FMLE and FSV proposed in [28]accelerate the optimisation
process in the Kriging local method without lossofuracy.

For the second numerical case study (constantnstad Gaussian noise), the
calculated strain results based on the Kriging igrad were found to be better than
the strain results based on local-fitting gradiewtsen a small strain calculation
window, smaller than 9x9, was chosen, but sligityse for large strain calculation
windows greater than 9x9. There was found to bellstmat not very significant,
differences observed in the strain results caledldtty Kriging gradients and locally
fitted gradients for the experimental cantileveaimecase study (Figures 13(c) and (d)
and 14(c) and (d)). With the regularized Krigingdb method the displacement and
strain results were shown to be improved in alldhge studies.

RMSE (mm)

(@) Test 1

x10

RMSE (mm)

(b) Test 2
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Figure 12 RMSE on the mean Kriging estimate of the displagdrfield (y-direction):
(a) Test 1; (b) Test 2.
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Figure 13 Test 1x-x strain field: (a) subset-based DIC using 21x21lirstrandow; (b)
Kriging global method using 21x21 strain window); Kgiging local method using
21x21 strain window. (d) Kriging local method usiigging gradients
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Figure 14 Test 2x-x strain field: (a) subset-based DIC using 21x21lirstrandow; (b)
Kriging global method using 21x21 strain window); Kgiging local method using

21x21 strain window. (d) Kriging local method usiigging gradients

Figure 15 3 local regions (A, B and C) are chosen on the bieahest 2; each region

contains 6x6 sample points shown as red ‘0’ markedsother 1030 uniformly
distributed new predicted points shown as bluenarkers; a, b and ¢ are the points

chosen from the same location of the 3 regions

(ww) vonenaq piepuels
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Figure 16 Displacement STDx(direction) shown in (a), (c) and (e) and StraifbST
(x-x direction) shown in (b), (d) and (f) based on IM@@ndom samples of the local
displacement fields, from top to bottom: RegionBAand C
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Point a |-
Point b
Point ¢

45

Probability Density

1 1

Strain x10"

Figure 17 The probability density for the strains and 95%fwemnce interval of the 3
chosen points in the 3 regions respectively (agvaho Figure 15)

6. Conclusion

A subset-by-subset approximation of DIC measuremembr is derived and
introduced into the leading-diagonal terms of thegidg correlation matrix. This
leads to a Kriging regression with local error mstiion based on diagonal elements
of the inverse Hessian matrix and the SSD residioal,the post-processing of
measured data produced by subset-based Ditlike spline or other interpolation
methods, the proposed approach not only allowsegrression of the model upon the
measured data, but also incorporates a Gaussiaegxdhat enables RMSEs and
standard deviations to be determined on the estohdisplacement and strain fields.
The methodology is supported by both numerical exygkrimental case studies. All
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the case studies show that the proposed Krigingl lotethod out-performs the
Kriging global method and is able to improve theuracy of measured subset-based
DIC data and achieve more accurate strain results.

Appendix 1

In this study the displacements uncertaiaet{/xs) at an arbitrarily chosen pixel with

coordinateg(x,, y,) is derived using a second-order shape functionemod
2o(x)=n" (%) pe (20)

wheren(x,) denotes the shape function coefficients,

n(x)=[L A by, H(Ax) 3(Ay)" Ayl (21)

and p is the matrix of the uncertainty of variablese two directionsx, y,

.
po=lp, p]=| e WY (22)
S T R A VR

where Ax, and Ay, are the distances between the pixel painand the centre node
of the subset ax . .

The form of local error estimate is developed agdicwy to the most commonly used
DIC criterion [3, 43] i.e. the SSD,

Can = 2[00~ F(x)] (23

or, by equations (1), (2), (3) and (23),

NxN

2
Con = 2 (0(Ta +07 (x) pe) + ¢y (T +07 () po) =(F (%) +4 (%)) (24
s=1
Alternatives to the SSD criterion include the nolimead sum of squared differences
(NSSD), zero-normalized sum of squared differen€8dSSD) etc. The Cross
Correlation (CC), which is related to and can ddeadeduced from the SSD criterion
[3, 43], may also be used.

The Hessian matrix and determination of p,.

In equation (24) the coordinate uncertaimfy(xs) p, may be considered to be small,
in which case the first-order Taylor expansion ety
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Can )= 3. (0(7.)+Dg(z,) @' (x.)p, +4, (v,)
s=1 (25)

+0, (7,) 0 (%) pe = (%)=, (x,))

whereOg(t,) represents the grey gradient. It is known thét,) = f (x,) and

0g(7.)+0¢, (v.) =0(g(x.) +, (v.) =Ta(x.).
so that equation (25) may be simplified as,

NxN

Con ()= 2, (09 (x) @ (x,)pe + ¢, (1) - ¢4 (%)) (26)

If the gradient terms ir andy directions are separated out, then

NxN

Ce ()= 2 (09, () " (x.)p, + 05, (x.) @ (x.),
= (27)

+Zg (TS) _Zf (XS))2

Minimisation of the SSD requires thflCqy, /dp, = dCqp, /dp, =0 which leads to

the following expression for the determination(pgf pI)

H(p“J:b (28)
P,
where,
Y(og,m) - X(08) s X(08,®)(0em) - X(09,®.)(C5,@,) |
. Z(D@;)anns Z(Déﬂzﬁ)z Z(D@yw;)(mgxmze) Z(D@ng)(maxwe)
(05, @) (09, m) - Y(08.@.)(0s,®)  Y(0e,m) - X(09,)
,Z(Dgxmh)(mgymﬁ) Z(Dﬁxﬂie)(D@yWe) Z(Dgy)zﬂﬂe Z(Dgymk)2 ¥(29)

is an approximation to the Hessian matrix whengieond-order partial derivatives
are considered to be negligible [1, 44]. The tefigs(t,), 07, (t,) andz (x,) are

abbreviated td1g,, (0§, ands; . The vectorb in equation (28) may be written as,
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Z
Z

(g, (= E@Z (x.))

i
i

z
z

(Og, (v EGZ (x.)) (30)

(Dgy s)’]l(xs)) [ng (Ts) g (XS))

ERngE

[
11,
=

Pz
X
z

(Dgy (TS)”G (XS)) [@Zg (Ts) -{ (Xs))

The vector of uncertainties is then given by,

[p J =H7 (31)
P,

'u‘

S

Estimation of variance

The grey-level uncertainty was defined as indepehdad identically distributed,
N(O,U?), in Section 2, at each pixel. Therefore, by lingsion,

Cov(p ] No2 0" (32)
P

whereJ is the Jacobian matrix, which from equation (31given by

J=H™ (33)
where,
db ob ob ob
b' = ee 7= 34
l:OZg (Tl) aZg (TNXN) 0¢ (Tl) ¢ (TNXN) .
and,

b'(b')" =2H (35)

Finally, from equations (32), (33) and (35) itauhd that,

Cov (pj 0207 H™ (36)
p,

The uncertainty at the centre node of the subsiieidirst term in each row gi, as

defined in equation (22). The displacement variaaicthe centre node in one subset
may then be approximated [1, 15] as,
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Var (u,) 02072 [fH™)
Var (v,) 0207 [@H‘l)

11

(37)

7

The derivations above is limited by the assumptidnGaussian uncertainty and
therefore provides only a lower-bound error estan@t more general case may be
derived from the residual of the SSD criterion [18] such that thes? in equation

(37) is replaced by,

NxN

o 2e®)-fx)]
|\S|'§23:S:l N xN (38)

Then the local uncertainty terms,; and m; associated withx- and y-direction

displacements for thg"™ subset in equation (14) are given by,

Ceoi _
my _%EQH l)11 (39)
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