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Abstract 

 

This paper presents a methodology for the treatment of uncertainty in nonlinear, 

interference-fit, stress analysis problems arising from manufacturing tolerances. 

Image decomposition is applied to the uncertain stress field to produce a small 

number of shape descriptors that allow for variability in the location of high stress 

points when geometric parameters (dimensions) are changed within tolerance 

ranges. A meta-model, in this case based on the polynomial chaos expansion (PCE), 

is trained using a full finite element model to provide a mapping from input 

geometric parameters to output shape descriptors. Global sensitivity analysis using 

Sobol’ indices provides a design tool that enables the influence of each input 

parameter on the observed variances of the outputs to be quantified. The 

methodology is illustrated by a simplified practical design problem in the 

manufacture of automotive wheels.    
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1. Introduction 

The design process is expected to deliver continuing reductions in manufacturing 

and material costs without compromising the performance of assemblies of 

engineering components. Modern light-weight parts, achieved by the use to thinner 

gauge raw materials, are generally more flexible than the heavier components that 

they replaced. Manufacturing tolerances can then become critical to the 

understanding of stress distributions, requiring a stochastic approach to ensure 

satisfactory performance. Commercial systems, such as eMTolMate (TecnoMatix) 

or CATIA 3D FTA and CETOL 6  (Sigmetrix), are available for the setting and 

assessment of tolerances, but do not take account of the flexibility of components 

affected by deformation during the assembly/manufacturing process. These systems 

are restricted to nominal rigid-body component assemblies. 

This paper proposes a stochastic design methodology for the assessment of stress 

distributions in press-fitted (interference fit) components. Finite element (FE) stress 

fields are represented in the form shape descriptors obtained by image 

decomposition in known high-stress regions. Image decomposition was developed 

for the representation of full-field measurements, displacements or strains, obtained 

typically by Digital Image Correlation (DIC), where it has been demonstrated to 

reproduce the information contained in 104–105 measurement points by a few tens of 

shape descriptors without any significant loss of accuracy. The shape descriptors are 

properties of the full-field data, rather than a collection of point-wise discrete values. 

This is an important aspect of the methodology because it means that high-stress 

points are always captured by the shape descriptors, even if the location of the high 

stress points should change as a result of dimensional variability (within 

manufacturing tolerances).  

The high computational cost of multiple FE stress calculations is reduced to 

acceptable levels on modern workstations by the application of meta-models, the 

purpose of which is to represent the complicated relationship between variable FE 

parameters (the input) and the shape descriptors (the output) using a much simpler 

‘surrogate’ input-output relationship. Efficient training and subsequent use of a 



3 

 

meta-model requires sampling of the input. Random sampling is known to be 

inefficient and inferior to Latin Hypercube Sampling (LHS) which from sample to 

sample exhibits less variability in estimating the sample mean and the cumulative 

distribution function (CDF).  Many different meta-models are available including, 

polynomial regression, neural networks, the polynomial chaos expansion (PCE) and 

Gaussian process emulation (Kriging). The trained emulator may also be used to 

provide global sensitivity estimates from the fractional contribution of each input to 

the variance of the output. Global Sensitivity Analysis (GSA) may be carried out 

very efficiently when the output is expressed as a truncated PCE and provides a 

basis for ranking the importance of the various inputs. 

The paper uses the simplified example of an automotive wheel, consisting of two 

components, an outer rim with a press fitted (interference fit) internal disc, to 

explain the working of the design methodology, including the use of image analysis, 

a PCE meta-model and GSA to assess the effect of manufacturing tolerances on the 

FE stress field expressed in terms of shape descriptors. The particular wheel 

considered is manufactured by the Italian company MW S.p.A. FE models of the 

rim and disc are shown in Figure 1 and the dimensions of the two parts are of course 

variable with manufacturing tolerances. It can be appreciated that the tolerance on 

the rim diameter will be considerably greater than the disc because of the high 

expense of tight tolerances on such a complicated pressed, rolled and welded 

component. 

 

Figure 1: FE Models of the Rim and Disc 
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2. Methodology 

 

The design methodology is explained graphically in Figure 2. Manufacturing 

tolerances form part of the design specification, which in turn affects the stress 

distribution in the assembled system of components. The meta-model, determined 

by training, becomes a surrogate for the full FE model, enabling the effect of 

manufacturing tolerances on the stress field to be determined efficiently using image 

decomposition. Global sensitivity analysis enables an assessment to be made on the 

contribution of each input to the variability of each output. We assume the inputs to 

be uniformly distributed within manufacturing tolerance bounds and determine the 

contribution of each to the highest bound on each of the outputs. 

 

Figure 2: Design Methodology 

 

3. Illustrative Example: Automotive Wheel 

 

The wheel assembly is composed of a rim and a disc, both of which are steel 

pressings. The disc is made of a material equivalent to DP600 (dual phase steel), 
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whereas the rim is FEP11. The assembly is press fitted (interference fit) and welded 

along the boundary between the disc and the rim. Regions of high stress are known 

to exist in five specific locations shown in Figure 3. These are: 1) close to the rim 

well where the material thickness is reduced due to press forming of the rim profile; 

2) in the weld zone; 3) close to the vent holes where cracks can nucleate and 

propagate and where the maximum circumferential stresses are found; 4) at the hat 

radius where there are high bending stresses; and 5) in the bolt contact area where 

disc failure is caused by fretting. For purposes of illustration, we consider only the 

stress field in the region of the vent hole though the methodology may be readily 

extended to include the other four critical regions simultaneously. Wang and Zhang1 

show stress plots with high von Mises stresses in the region of the vent hole, albeit 

under different loading, and although the vent holes are remote from the 

interference-fit region, stresses around them are known to be affected by the degree 

of interference1.  

 

Figure 3: Automotive wheel comprising disc and rim marked with regions of high 

stress 

                                                 

 
1 An example of the distribution of stresses in different critic areas of a passenger car wheel can be 

found in Grubisic and Fischer2. 
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Grubisic and Fisher pointed out that considerable improvements in wheel design 

could be achieved by an improved understanding of the process of the interference-

fit and its effect on the stress fields in the mating parts2. 

The following material properties were used in the construction of a FE model: 

Young’s modulus E = 210 GPa, Poisson ratio   = 0.3, density    = 7900 kg/m3. In 

FE analysis all the degrees of freedom of the outer flange rim were constrained, and  

symmetry boundary conditions were applied to a ¼ segment. This is a simplification 

of the industrial problem which includes uncertainly due to eccentricity and 

deviation from circularity, both of which are neglected here - as is the weld between 

the disc and rim - for the purpose of illustrating the methodology.  The FE 

simulation was carried out using the Abaqus Standard/Explicit code with shell 

elements (CQUAD4 and CTRIA3) of 2 mm nominal dimension.  Elasto-plastic 

material with isotropic hardening was used in the analysis of the fitting process and 

spring-back phases shown in Figure 4. The contact analysis was carried out using a 

penalty function to prevent the mutual penetration of the disc and rim meshes during 

the press-fitted assembly. The surface-to-surface constraint allows finite mutual 

sliding over ‘hard’ surfaces with pressure overclosure and a Coulomb friction 

coefficient of 0.4.  

 
 

Figure 4: FE application of interference fit 

 

4. Image Decomposition 
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Modern image analysis techniques have been applied to full-field measurement of 

displacement and strain by Wang et al. 3,4. These methods are designed for use with 

full-field data such as those obtained by Digital Image Correlation (DIC) but can 

equally be used with finite element predictions. They have the advantage that a 

displacement, strain or stress field can be condensed to a small number of image 

descriptors (sometimes called shape features or moment descriptors).  

Two-dimensional moment invariants were initially introduced to recognise plane 

patterns, to process visual information and to efficiently recapture all the image 

features in a reduced and compact sequence of real numbers5,6. The full field  data 

 w x  may be expressed as a linear combination of orthonormal kernel functions as 

   
1

r r

r

w g




x x       (1) 

where  
1r





 are the shape descriptors,  

1r
g




 are the kernels, and x  denotes the 

spatial domain. For regular domains, either rectangular or circular, the kernels 

generally take the form of orthogonal polynomials, Legendre or Tchebyshev 

(continuous or discrete polynomials respectively on rectangular domains), or 

Zernike (continuous on circular domains). In the case of irregular domains, typical 

of the surfaces of engineering components, special procedures are required to adapt 

the classical basis functions. The Adaptive Geometric Moment Descriptor7 (AGMD) 

was described by Wang and Mottershead. In that case two-dimensional monomials 

are used to construct a set of orthonormal kernel functions, which may be expressed 

as, 

         , , y , y p q
r p q rg g x g x GSO x y


  x    (2) 

where  , 0,1,p q  are monomial orders, GSO denotes Gram-Schmidt ortho-

normalisation8 and ,x y  are coordinates defined on the continuous spatial domain 

. The shape features (or AGMDs) are given by the projection of the image onto each 

kernel function using the unweighted inner product as    r rw g d


  x x x .   FE 

surface stress patterns or full-field measurements are usually defined on discrete 
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meshes e.g. on a triangularised mesh. The shape features, 𝛼𝑟, may then be evaluated 

by the discrete inner product as  

   
nodes

1

, , ; 1,2, ,r k k r k k k

k

w x y g x y r m


      (3) 

where 𝑥𝑘 , 𝑦𝑘 are the coordinates of the 𝑘th node,  Δ𝑘 is an area associated with each 

node that arises from the numerical integration and m  denotes the number of shape 

descriptors (outputs). The Voronoi cell9 may be applied to approximate the 

integration area surrounding each node and is adopted in this paper. Wang and 

Mottershead7 describe a process of surface parameterisation (conformal mapping) 

that allows curved surfaces, such as the surfaces of the disc and hub, to be mapped 

to 2D planar surfaces, thereby permitting the procedure described above to be 

applied. 

It is unnecessary to carry out a complete full-field reconstruction of the stress field 

in the wheel, because high stresses occur in known regions. Also reconstruction over 

a partial stress field can be achieved using much fewer shape descriptors, as in 

Figure 5. The reconstruction of the stress field around the vent hole was achieved 

using 20 AGMDs and it is seen that its features are captured to very good accuracy - 

the error is shown in Figure 5(c). The eight most significant AGMDs are seen in 

Figure 6 to be (AGMD1, AGMD2, AGMD3, AGMD5, AGMD4, AGMD8, AGMD16, 

AGMD9) and the Pearson correlation coefficient10 (PCC) in Figure 7 shows a 95% 

correlation when using 8 AGMDs.  
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(a) 

(b) 

(c) 

Figure 5: von Mises stress around a disc vent hole: (a) FE result, (b) reconstructed 

image using 20 AGMDs, (c) error 
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Figure 6: Spectrum of AGMDs showing most significant contributions to the 

reconstructed stress field. 

 

Figure 7: Pearson correlation coefficient between reconstructed full field and 

original full field 
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tested to provide guidelines for the design and manufacture of engineering 

components, such as interference-fitted wheels. 

 

5. Inputs and sampling plans 

The inputs to the stochastic analysis are the design parameters, variable within 

manufacturing tolerances, that contribute to the interference between the rim and 

disc. These are the diameters of the rim and disc, r  and d , and the thicknesses of 

the plate materials from which the two parts are manufactured, rt  and dt , shown in 

Figure 8. 

 

 

 

 

 

Figure 8: Design parameters (inputs) 

 

Efficient maximin11 Latin Hypercube sampling (LHS) was adopted to explore the 

input space while satisfying the uniformity criterion of LHS and yielding 

randomized plans which maximise the minimum distance between samples. This 

approach is designed to minimise the size of the sample to the least possible without 

loss of reliability of solutions. 

Firstly, five different sampling plans  
5

1
LHSk k

each of n points uniformly 

distributed on the four inputs   4

1
, , ,i d r d ri

t t  

  were built and analysed.  The 

effect of their variation, in a defined range between upper and lower bounds, on the 

output response was studied. In the first plan (LHS1) all four inputs were sampled 

and in subsequent plans (LHS2, LHS3, LHS4, LHS5) only one input was sampled 

tr
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while each of the remaining ones remained fixed at a reference value (Rv) as 

indicated in Table 1.   

6. Press fitting of the rim and disc 

Numerical results were compared to measurements taken during experimental fitting 

of a disc and rim pair taken from a production batch. The components satisfied the 

European Tyres and Rim Technical Organization (ETRTO) profile requirements and 

the applied force was measured and recorded during the press-fit by means of a load 

cell and data acquisition system. The resulting measurement, taken under conditions 

of constant (low) press speed, is seen to be highly nonlinear as shown in Figure 9. 

The oscillations after the first ramp-up phase are due to axial adjustment of the disk 

with respect to the rim. The experimental results are compared with 200 numerical 

analyses using the full FE model and sampling plan LHS1. The numerical median is 

seen to be close to experimental curve, which lies consistently within the band 

delimited by the 25th and 75th percentiles. One possible reason for the observed 

discrepancy is the assumption of a friction coefficient of 0.4 in the numerical 

simulation, whereas in reality there is a process of alignment between the rim and 

disc that takes place within the press and involves a process of stick-slip not 

represented in the model.  However, the general form of the two curves is 

considered to be sufficiently similar for the purposes of the uncertainty 

quantification (UQ) carried out in what follows. The randomised inputs (diameters 

and shell thicknesses) are of course readily adjusted in FE simulation, but are 

extremely difficult to control in the manufactured product because of practical 

difficulties such as unavoidable variation in rolled plate thicknesses and wear on 

press tools. 

Table 1 – Sampling plans 

  LHS1 (n=200)   

Input Lower 

bound 

 Upper 

bound 

Range 

Disc diameter d  [mm] 359.8  360 0.2 

Rim diameter r  [mm] 366  367 1 

Disc thickness td [mm] 4.56  4.80 0.24 

Rim thickness tr [mm] 3.04  3.20 0.16 
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 LHS2 (n=40)  LHS3 (n=40) 

Input Lb  Ub Rv  Lb  Ub Rv 

 d  [mm] 359.8  360 359.8  359.8  360 - 

 r  [mm] 366  367 -  366    367 366.6 

 dt   [mm] 4.56  4.8 4.8  4.56  4.8 4.8 

 rt  [mm] 3.04  3.2 3.2  3.04  3.2 3.2 

 

 LHS4 (n=40)  LHS5 (n=40) 

Input Lb  Ub Rv  Lb  Ub Rv 

d  [mm] 359.8  360 359.8  359.8  360 359.8 

r  [mm] 366    367 366.6  366    367 366.6 

 dt  [mm] 4.56  4.80 4.8  4.56  4.8 - 

 rt  [mm] 3.04  3.20 -  3.04  3.2 3.2 

 

 

Figure 9: Fitting force trend: experimental data vs. stochastic numerical simulation  
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

  

     

     

   



 

            (4) 

where  
1
, ,

jj i i  are multivariate orthogonal Legendre polynomials in the case 

of a uniform distribution of inputs 
ji . The process of constructing the polynomials 

 j   is described by Ghanem and Spanos12 so that every polynomial of every 

order is orthogonal to every other polynomial. The zeroth order polynomial is a 

constant and may be set to unity. The coefficients 0a , 
1i

a , , 
1 2, , , ji i ia  are assembled 

in a vector  0 1 1

T

pa a a a  and equation (4) may then be recast in the 

form, 

 
1 1

!
;

! !
n p p n

j j
n p

j r j
  

  
    

 
Ψ a h        (5) 

where 
         1 2

j j j

T
n

r r ri i i     h , and n  and m  denote the number 

of samples and number of outputs respectively2. The coefficients may then be 

determined using the usual least-squares approximation, 

 

      
1

T T


a Ψ Ψ Ψ h            (6) 

 

                                                 

 
2 For clarity, the two-dimensional (two inputs) expansion of equation (4) truncated at the third order 

may be written as,  

         

       

0 0 1 1 1 2 1 2 11 2 1 1 12 2 2 1 22 2 2 2

111 3 1 1 1 211 3 2 1 1 221 3 2 2 1 222 3 2 2 2

, , ,

, , , , , , , ,

r a a a a a a

a a a a

        

           

           

       
  

to be re-cast in the form of equation (5) as, 

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9r a a a a a a a a a a                     
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The predictivity of the pth order PC approximation of the model response, the 

AGMDs, obtained from equations (4) and (6) may be compared to the original FE 

prediction. The training error training  and the determination coefficient R2 are 

defined for each output as13, 

 
      

2

1

1
; 1,2, ,

n
k kPCE

r rr training
k

r m
n

    


     (7) 

 

 

    
  

2

2 1

2 2

1

1
( ) ( )

1 ; 1,2, ,
1

( )
1

n
k kPCE

r r
r training k

r n
kPCEr

r r

k

n
R r m

n

   

 
  







   







   (8) 

where  

  
1

1 n
k

r r

kn
  



    (9) 

Taking into consideration the othogonality of the basis functions (discussed 

previously), the means and variances may be approximated by the truncated PCE as, 

0r a      (10) 

and 

           
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  

  

   

 

 

 
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    (11) 

The training  and R2 indices, computed for the wheel test case are shown in Figure 10. 

In all cases 2R  values greater than 95.5% are achieved and the values of training  are 

seen not to exceed 1.8%. 
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Figure 10: PCE Meta-model accuracy: coefficient R2 and 
 training
   for  

PCE meta-model (r=4, j=4, p=70, n=200,). 

 

An evaluation of the variability of the first 20 AGMD was carried out with the 

inputs sampled according the plan LHS1 previously described.  The effect on the 

AGMD is observed clearly in Figure 11. Certain shape descriptors (AGMD1, 
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greatly influenced by a change of the input parameters. Only those with both 
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virtually identical to the sensitivity of the other three, except for changes in sign. 

Thus, the variability of AGMD with fitI  shown in Figure 11 is sufficient for a 

complete understanding of the incremental variation in the stress field with any one 

of the four inputs.  

The inputs may be combined in the form of a single input, the interference fit, 

defined as,  
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Deviations from circularity were not considered, since this would complicate the 

analysis unnecessarily, without adding to the understanding of the methodology. 

 

Figure 11: AGMD variability 

 

It is seen from Figure 12 that the input-output relationship is highly nonlinear. The 

individual input parameters, sampled according to LHS2, LHS3, LHS4 and LHS5, 

contribute to the interference fit in certain ranges. For example the pink sample 

points, denoting the rim thickness, appear in the central region of the interference fit 

between approximately 1 and 1.2 mm of interference. On the other hand the dark 

blue points that denote rim diameter variability seem to be spread over almost the 

complete range of interference. This is because of the manufacturing tolerances 

placed on the different inputs as indicated by the ‘range’ in Table 1. The open-circle 

sample points correspond to sample plan LHS1 where all the inputs are sampled 

together.  Sampling plans LHS2, LHS3, LHS4, LHS5 neglect any interaction effects 

between the inputs.  In general it is possible to establish a direct link between the 

input uncertainty and the variability of the output response, to be quantified in the 

following section.  
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a) b) 

c) d) 

e) f) 

g) h) 

Figure 12: Adaptive geometric moment descriptors (region 1): a) AGMD1, b) 

AGMD2 , c) AGMD3 , d) AGMD4, e) AGMD5, f) AGMD8 ,g) AGMD9,h) AGMD17. 
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8.  Global sensitivity analysis 

Unlike local sensitivity, the global sensitivity (GS) indices include the whole range 

of input uncertainty and provide an estimate of the fractional contribution of each 

input to the variance of the output.  As well as the direct effect of a particular 

uncertain input, the GS includes the sum of all the contributions arising from 

combination with other inputs and may be used to assess the potential for tolerance 

reduction within an existing design. By controlling the most dominant inputs it 

should be possible to reduce the output variability. 

The global sensitivities, expressed using the Sobol’ indices14, are the contribution of 

the tth input to the total variance of the output. This partial variance may be written 

as, 
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where  
1

1

j

ti i 




 . It is seen that those inputs that do not combine with t in equations 

(4) and (11) are excluded from (13). The first-order global sensitivities of each 

output with respect to each input are then given by bringing together all the terms in 

equation (13) that are polynomial functions of 
ti

  alone, 

         
        

2 2
1

, 1 , 2

22

, , 3

1

var var ,

1
var , , ... ( )

1

1,2, , ; 1,2, ,

t t t t t t

t t t t t t

r t i i i i i i

n
k

i i i i i i r r

k

S a a

a
n

r m t j

  

     


   

   


 

       (14) 

The second order sensitivities are given by the combined contributions of all the 

terms in equation (13) that are multivariate polynomial functions in 
ti

  and one 

other input 
1i

 ,  
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The third and higher order sensitivities follow logically from equations (14) and 

(15). 

The first-order results, in Figure 13(a), show strong sensitivity of each of the 

significant AGMDs to uncertainty in the rim diameter. This is to be expected since 

the tolerance range on rim  is much greater than the tolerances on the other inputs.  

The combination effects are seen from Figure 13(b) to be small, so that polynomial 

terms involving the products of inputs i  contribute only slightly to the second order 

sensitivity. The total sensitivity is given in Figure 13(c) as the sum of the 

contributions in Figure 13(a) and 13(b) together with higher order terms.    The eight 

AGMDs are found to be quite uniform in their sensitivity to the inputs.  

The global sensitivity analysis generally provides a more thorough assessment than 

the screening method15,16 which offers a simple and rapid approach to perform a first 

sensitivity analysis. The latter does not allow investigation of input interactions, but 

gives a rough idea on how each input factor can affect the quantity of interest. It 

does however agree well with the global sensitivity values in the present case 

because of the small second-order terms17. 
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a) 

b) 

c) 

Figure 13: Global sensitivity indices: a) 1st order sensitivity (LHS1), b) 2nd order 

sensitivity (LHS1), c) Total sensitivity (LHS1) 
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9. Tolerances reduction for stochastic model design 

In this section a revised sample plan, shown in Table 2, will be considered. It is seen 

by comparison with Table 1 that r  is now much more tightly constrained and that a 

new input, the Young modulus E1 of the material, has been added. Its variability is 

chosen to be bounded between 204 GPa and 216 GPa, i.e. ±3% uncertainty. 

Table 2. Sampling plans (LHS6) considering tolerance reduction on r  and material 

factor E1 in addition 

 LHS6 (n=200)   Total Sensitivity 

Input Lower  

bound 

 Upper  

bound 
Range 

 AGMD-based 

ranking 

Disc diameter d   [mm] 359.8  360.0 0.2  2 

Rim diameter r   [mm] 366.4  366.6 0.2  3 

Disc thickness td [mm] 4.56  4.80 0.24  1 

Rim thickness tr [mm] 3.04  3.20 0.16  4 

Young’s modulus E1 [GPa] 204  216 12  5 

 

The sensitivity of each shape descriptor shown in Figure 14 reveals a new ranking-

based parameter classification with the result that the variability of the first 20 

AGMDs is very clearly tightened, as demonstrated in Figure 15. 

The variability of the first three AGMD with tolerance on r  are shown in Figure 

16. As seen in Figure 17(a) the 75th percentile of AGMD1, the most significant shape 

descriptor, shows a reduction of around 100 MPa when the tolerance is reduced 

from 1mm to 0.2 mm. Significant reductions are also seen in AGMD2 and AGMD3. 

By analysing the work done by the force acting on the disc during the fitting process, 

rather than the AGMD of the full field data at the end of the fitting process, similar 

conclusions can be obtained. Again the input r  is seen to be mainly responsible for 

the variability of the output (LHS1). When the tolerance range is changed (as in 

LHS6), then the disc thickness becomes more relevant as shown in Figure 14, and 

the other three inputs ( d d rt t ) contribute in a similar way to the total output 

variance. The added input E1 has very little effect on the variability of the AGMDs. 

The result is a robust design methodology, testable during the production, for 
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investigation the effect of manufacturing tolerances on the performance of 

engineering components.   

 

a) 

b) 

c) 

Figure 14: Global sensitivity indices: a) 1st order sensitivity (LHS6), 

b) 2nd order sensitivity (LHS6), c) Total sensitivity (LHS6) 
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Figure 15: AGMD variability 

 

 

10. Conclusions 

A methodology is developed for the design of engineering components that are 

assembled by means of an interference fit. Manufacturing tolerances lead to variability 

in the stress field of the mating parts and it is important be able to understand the 

influence of each of several tolerances individually. This is achieved using a 

combination of image decomposition of the stress field to provide a small number of 

output shape descriptors, the polynomial chaos expansion to provide a probabilistic 

mapping from the input tolerances and the output shape descriptors, and global 

sensitivity analysis which shows the extent to which each input affects the observed 

variance of every output. This provides a design tool for the setting of manufacturing 

tolerances in order to achieve a benign stress field and desirable performance of the 

assembled structure. The methodology is illustrated using the practical example of a 

press-fitted car wheel.  
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(a) 

 

(b) 

 

(c) 

Figure 16: Variability in the first 3 AGMD with loosening of tolerance 
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Figure 17: Total sensitivity indices of Work W for two sampling plan: LHS1 and 

LHS6 (PCE meta-model: R2
LHS1=0.998, R2

LHS1=0.999) 
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