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Abstract 

A full-field Digital Image Correlation (DIC) method with integrated Kriging 

regression is presented in this paper. The displacement field is formulated as a best 

linear unbiased model that includes the correlations between all the locations in the 

Region of Interest (RoI). A global error factor is employed to extend conventional 

Kriging interpolation to quantify displacement errors of the control points. An 

updating strategy for the self-adaptive control grid is developed on basis of the Mean 

Squared Error (MSE) determined from the Kriging model. Kriging DIC is shown to 

outperform several other full-field DIC methods when using open-access 

experimental data. Numerical examples are used to demonstrate the robustness of 

Kriging DIC to different choices of initial control points and to speckle pattern 

variability. Finally Kriging DIC is tested on an experimental example. 

Keywords: Full-field, Digital Image Correlation, Kriging Regression. 

 

1. Introduction  

Over the past three decades several different methods have been developed and 

successfully applied in Digital Image Correlation (DIC). These methods belong to two 

general classes, i.e. local (subset-based) methods and global (full-field) techniques, 

both of which have been used extensively in different applications. The local 

approach is perhaps the better established of the two because of its simplicity and 

suitability to parallel computation [1], but lacks inter-subset continuity and is more 

sensitive to measurement noise than the global approach. Consequently it is necessary 

to apply smoothing as a post-processing operation to measured displacements before 

computing strain results [2]. Alternatively, the global approach imposes certain 

constraints and treats the Region of Interest (RoI) as a whole, thereby enabling 
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smooth displacement fields to be achieved together with good sub-pixel accuracy. The 

same level of sub-pixel accuracy is achievable by the global approach, more 

efficiently than the local approach, which requires subset overlapping [3] with 

multiple processing of the same data and increased computational cost. 

 

Full-field DIC methods include: Finite Element (FE) based methods [4-9]; the 

Extended FE method, known as XFEM, [10-13]; B-Spline methods (NURBS) [14, 15] 

and Spectral methods based on spatial Fourier transforms [16-18]. DIC techniques 

aim to produce an accurate and reliable displacement field through the computed 

correlation of deformed speckle patterns with a reference image. This process requires 

the use of shape functions to describe the displacement field in terms of grey-scale 

values determined in terms of individual pixel intensities within a subset or RoI. Of 

course, it is generally not possible to design a shape function that perfectly matches 

the actual displacement field in a particular application. However, the Kriging 

prediction has the advantage that is based not only upon regressing certain parameters 

on discrete measurements, but also on the correlation of neighbouring samples. The 

fitting residual is represented by a Gaussian random process resulting in a best linear 

unbiased prediction. This represents lack of knowledge of the true displacement field 

and is not related to measurement error.  The choice of a Gaussian random process is 

analogous to the choice of a Gaussian random variable in statistics: it is analytically 

tractable, flexible and frequently correct. Unlike other full-field shape functions that 

normally require an artificial control grid, the Kriging formula can generate the 

control grid for a RoI automatically on the basis of its estimated Mean Square Error 

(MSE). In addition it is possible to adapt the Kriging formula to account for imperfect 

sample-point data due to measurement noise that would otherwise be reproduced 

exactly (by conventional Kriging interpolation) because of perfect correlation of the 

sample point with itself. This adaptation, known as Kriging regression, will be 

described in detail in Section 3.  

 

In this paper Kriging regression is integrated into the classical full-field DIC 

algorithm. The full-field displacement estimate is obtained by training the Kriging 

model using increasing numbers of sample (or control) points at each step until the 

MSE at untried sites (between the control points) is deemed to be acceptably small. At 

the end of this process the displacements at the untried sites are found in terms of the 

complete system of control-point displacements. Kriging regression generally 

outperforms the classical FE and B-spline methods where untried-site displacements 

are determined only in terms of several neighbouring control points. Figure 1(a) 

illustrates this point, where it is seen that the inner-point displacement is determined 

by only 4 nodal displacements when using the Q4-FE shape function [19], possibly 

resulting in abrupt ridges at the element boundaries. When using the B-spline method, 

the inner-point displacement, shown in Figure 1(b), is given in terms of a greater 

number of nodal displacements, but shape-function remains local to the inner point. 

The Kriging shape function is genuinely global, as shown in Figure 1(c) where the 

inner-point displacement is given in terms control points distributed over the entire 

RoI. 

 

In this study, three case studies are used to test the performance of the proposed 

Kriging DIC method. In the first example, a two-directional rigid body translation is 

applied and a fixed regular control grid is used. This example provides the basis for a 

comparison of Kriging DIC with Q4-FE DIC and Cubic Spline DIC. In the second 
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case study using irregular, adaptive control grids and FE-generated displacement 

fields, based on different numerical generation of speckle patterns, the robustness of 

Kriging DIC to initially chosen control points and speckle pattern variability is tested. 

Finally, in the third case study Kriging DIC is applied to a full-scale experimental 

structure and results are compared to those obtained from a commercial DIC system.  

   

(a)                                        (b)                                           (c) 

Figure 1 Dependency relationship of one inner point (green square): (a) Q4-FE, (b) 

Cubic Spline, (c) Kriging -  control points shown as blue circles. 

 

2. Review of the Full-field DIC Method  

Full-field DIC is considered for the case of a two-dimensional image where the 

unknown displacement field   ( , ), ,u x y v x y  is to be determined at spatial coordinate 

( , )x y . The displacement   ( , ), ,u x y v x y  may also be understood as the optical flow 

from a reference image ( , )f x y  of speckle-pattern intensity to its corresponding 

deformed image ( , )g x y . Then the displacement field may be estimated by 

minimising the objective function, 

     
2

, ( , ), ( , ) ( , ) d  u v g x u x y y v x y f x y


       (1) 

where  denotes the region of interest (RoI) in the reference image.  

In practice, the continuous displacement field   ( , ), ,u x y v x y  may be approximated 

by a linear combination of basis functions of finite dimension n , expressed as 
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where ( , ); 1,2, ,j x y j n  are the kernel functions and , ; 1,2, ,
j ju v j n  are the 

combination coefficients. Since  ( , ), ( , )g x u x y y v x y   is an implicit function of

  ( , ), ,u x y v x y , the Newton method may be applied to solve the minimisation 

problem. Therefore, an approximate solution of the full-field displacement, 

  ( , ), ,u x y v x y , may be obtained by iteration [5, 6, 15, 20] 

    1 ; ,i i i i

w w w w w u v   M ρ ρ b   (3) 

where ,i i

u vM M  are n n  matrices and ,i i

u vb b  are 1n  vectors, with components given 

by 

 

 
( , )

( , )

( , )
( , ) d

i i
i

jk jw

i i

k

g x u y v
m x y

z

g x u y v
x y

z







   
  

 

   
  

 


  (4) 

and  
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  (5) 

where    , when , respectively and , 1,2, ,z x y w u v j k n   . 

The gradients 
( , )i ig x u y v

z
and 

( , )i ig x u y v

z
 in equations (4) and (5) are in 

principle updated at each iteration. However, as proposed by Sutton [21, 22], the 

grey-level gradients may be calculated from the reference image rather than the 

deformed image without loss of accuracy i.e. 
( , ) ( , )i ig x u y v f x y

z z

   


 
.  

The interpolation functions in Equation (2) are generally local piecewise functions [14, 

23]. e.g. cubic spline or finite element shape functions. The combination coefficients 

then represent the displacements of a set of control points (or nodes). In this paper, a 

different linear modelling approach for the displacement field is investigated, known 

as Kriging regression. 

3. Kriging-DIC 

The obtained displacement from Equation (2) and (3) is an approximate solution on a 

linear subspace. In this Section, the approximation residual 
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     
1

, , ( , ) , , ,
j

n

w j w

j

e x y w x y x y w u v 


    in the DIC algorithm will be modelled 

as a Gaussian random field. 

The true displacement field ( , )w x y  may be modelled as a realisation of a random 

function ( , )W x y  which combines a deterministic regression model and a zero-mean 

stochastic field as [24], 

 
1

( , ) ( , ) ( , )
m

W x y c x y Z x y   (6) 

where ( , ), 1, , ,c x y m  are the regression functions and  denotes the th  

regression parameter and ( , )Z x y  is a Gaussian stochastic field with zero mean and 

covariance  cov ( , ), ( , )j j k kZ x y Z x y  between control points j and k, which is assumed 

to take the form 

        2cov , Z , , , ; ;
T T

j k w jk j k x y j j j k k kZ r x y x y    x x x x   (7) 

where    , , corr ,jk j k j kr Z Z x x  is determined by the proximity of points j and k 

and correlation parameters ,x y  , and    , , ,j j k kZ x y Z x y are abbreviated to ,j kZ Z . 

The term 2

w  is a field variance, one value for each component of the displacement 

response,  ,w u v . 

Denoting  
T

1, , nw wρ  as the displacements of a set of control points 

 , , 1,2, , ,j jx y j n , the Kriging method may be used to obtain a Best Linear 

Unbiased Prediction (BLUP) for the displacement field [25], expressed as 

 
1

ˆ ( , ) ( , )
n

T

j j

j

w x y x y κ ρ   (8) 

where  , , 1,2, , ,j x y j n   are the Kriging weights [23] obtained by the 

unbiasedness and minimisation of mean squared error (MSE), 

 
  
 

2
ˆarg min. E ( , ) ( , )

subjec ˆE ( , ) ( , ) 0t to

w x y w x y

w x y w x y



 
 

 

  (9) 

where  E  denotes the mathematical expectation. The Kriging weights may then be 

written as [25], 
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     1
1 1 1( , ) ( , ) ( , ) ( , )T Tx y x y x y x y


    κ R r C C R C C R r c  (10) 

where  1 2( , )
T

nx y   κ , R  is the matrix of control-point  displacement 

correlation functions, jkr  ; ( , )x yr  is the correlation vector of displacement between a 

dependent location  ,x y  (a non-control point) and all the control points 

 , , 1,2, ,j jx y j n ; C  is a ‘design’ matrix consisting of regression function values 

evaluated at control points,  ,j j jc x yc  ; and c  is the vector of regression 

functions,   ,c c x y .   

It can be easily verified that the sample-point displacements are exactly reproduced by 

the Kriging model (8), (10).  Let  , jw x y w , then :,( , ) jx yr R so that 

1 , jx yR r e . Also  , T

jx y c C e  which causes the term  1 ( , ) ( , )T x y x y C R r c  

to vanish. Then it is seen that ( , ) jx yκ e . 

However, in DIC the sample data are not measured with perfect accuracy, but are 

subject to measurement noise and imprecision [26-29], the effect of which might be 

reduced by pre-filtering [30, 31]. However, in this study it can be accounted for in a 

global sense by perturbing the correlation matrix which is replaced in Equation (10) 

(and in subsequent equations) by 
2

MeR I where 2

Me  predominantly represents 

measurement error (but also error induced by other sources such as numerical error), 

considered to be independent and identically distributed at each sample point, hence 

the identity matrix in the added term 2

Me I . This modified formulation is known as 

Kriging regression [29] (as opposed to Kriging interpolation, which is the 

conventional formulation that predicts the sample points exactly) and introduces an 

additional parameter 2

Me to be determined. 

The parameters of the Kriging regression model  2 2, , , , ,w x y Me  β  

 1 2 mβ    may be solved by maximizing the log likelihood of the 

observed data ρ . For an assumed Gaussian distribution [32, 33], and ignoring 

constant terms, this may be expressed as,  

    
   

T 2 1

2 2

2

( , )1
ln ln ( , , )

2 2 2

x y M

w x y M

w

en
e

 
  



 
  

ρ Cβ R ρ Cβ
R  (11) 

In practice the concentrated log likelihood function [32] is used, given by, 

 2 21
ˆln( ) ln( ( , , ) )

2 2
w x y M

n
eR  (12) 
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where  ̂  denotes an estimate. The log likelihood function (12) is complex and 

generally multimodal. Thus, the computation of optimal values for ,x y  and 2

Me  

usually requires specialised optimisation algorithms and heuristics like genetic 

algorithms [24, 34] or gradient-free methods such as the Hooke and Jeeve's algorithm 

[35], and the Nelder-Mead [36] simplex algorithm. The latter was employed in this 

work.  

The estimate 2ˆ
w  is given by, 

     2 1 21 ˆ ˆˆ , ,
T

w x y Me
n

    ρ Cβ R ρ Cβ  (13) 

with β̂  the least-squares solution of the weighted system of equations, 

 
1 1

2 2R Cβ R ρ   (14) 

The introduction of  2

Me  has the benefit of acting as a regularisation parameter [29] 

against ill-conditioning of the correlation matrix, which tends to prevail when large 

numbers of control points are introduced. 

In this paper a first-order regression function is chosen. Thus referring to Equation (6), 

 
1 2 1 1

2 1 2 1

( , ) 1,  ( , ) , ,  ( , ) ,  

( , ) , ,  ( , )

n n

n n n

c x y c x y x c x y x

c x y y c x y y
  (15) 

so that 2 1.m n  Consequently Equation (14) is under-determined, so that a 

minimum-norm solution is obtained for β̂ . 

Also the correlation function is assumed exponential (also called Gaussian), expressed 

in the form, 

 
2 2exp( ( ) ( ) )jk x j k y j kr x x y y   (16) 

The choice of this correlation function relies on the assumption of the response 

surface inferred by the Kriging regression to be smooth. This 

means that points close to each other have a higher correlation. The terms x  and y  

determine how far apart both xj and xk and yj and yk need to be before differences in 

the estimate given by equation (16) become significant. 

The implementation of Kriging-DIC in this paper is as follows: Firstly a Kriging 

model of the displacement field in the RoI is formulated using a certain number of 

artificially selected control points in the reference image. A fast DIC subset method 

[21] was adopted to obtain approximate displacements for the control points. This fast 
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DIC method employs square subsets of identical size in the reference and deformed 

images respectively to calculate the correlation coefficients between them. The 

selected control points are the centre points of the subsets in the reference image. 

When the matched subsets (having maximum correlation) are found, the initial 

displacements of control points are achieved as the differences between centre points 

of matched subsets. This method will generally obtain the integer-pixel displacements 

accurately to within 3 pixels, based on empirical evidence, which is close enough for 

initial values of Kriging-DIC method. Vendroux and Knauss [35] showed that the 

Newton iteration method has a convergence radius of 7 pixels for initial values. Zhao 

et al. [37] introduced a number of strategies to improve the robustness of DIC 

solutions to variability in initial estimates of displacements, especially for cases of 

large deformation. 

Secondly, an updating procedure can be applied to add more control points into the 

initial Kriging model to achieve a more suitable model. This updating procedure will 

be introduced in the following section. It should be noted that this updating procedure 

is not necessary if sufficient control points are artificially selected using a fixed 

control grid. 

Finally, on achieving a suitable Kriging model, Newton iteration is applied to obtain 

the final displacement field with the sub-pixel accuracy in the inversion of Equation 

(3). Moreover, as the grey values of non-integer pixels are required in this process, a 

grey-value interpolation scheme is needed and for reasons of simplicity a 6 6  bi-

cubic interpolation scheme was chosen work the examples presented in this study. 

4.  Self-adaptive Control Grid Updating 

For DIC problems, it is desirable to have an algorithm that determines an optimal 

control grid. Generally, a finer control grid does not guarantee a more accurate 

measurement.  However, a fine control grid is necessarily applied in the case of a 

complex deformation, when a coarse control grid would fail to capture the detail of 

local deformations.  

Kriging provides the error estimations over the whole RoI and therefore it is 

necessary to improve the control grid by adding new sample points.  The estimated 

Mean Squared Error (MSE) of the Kriging model provides a criterion for achieving 

such an improvement. The MSE at any location  ,x y  may be expressed as [38], 

   1
2 1 1ˆ( , ) 1 ( , ) ( , )T T Tx y x y x y 


   τ C R C τ r R r  (17) 

where T 1 ( ) ( )τ C R r x c x , and 2ˆ is given from Equation (13) with β̂ from (14). It 

should be noted that adding new points imposes a compromise between accuracy and 

numerical stability. Even if the estimation improves due to the presence of more 
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information carried by the data, having too many points may cause the columns of R 

to become numerically close and therefore linearly dependent for practical purposes. 

As has been already stated, Kriging regression allows for the effect of measurement 

error at the sample points, determined according to the optimised term 2

Me . Of course 

this error is fully justified and has nothing to do with the lack of knowledge 

represented by the Gaussian process present in the Kriging model, which we seek to 

reduce by adding new sample points at candidate locations where the MSE is greatest. 

The problem is that Equation (17) does not discriminate between the measurement 

error and lack of knowledge, and this inevitably leads to dense clusters of added 

points very close to the original control points and to stalling of progress towards the 

desired Kriging model [26, 29]. This can be overcome by reformulation of the 

Kriging model as an interpolator (rather than a regressor) with the control-point error 

added to the coordinates of each control point. 

Thus the infill criterion in the present study is the Maximum Mean Square Error 

(MMSE). An alternative infill criterion was proposed by Forrester et al. [26, 29, 39] in 

which the objective function is the Kriging output with a minimum at an unknown 

coordinate. This enables added control point to be chosen that have the greatest effect 

on reducing the objective function. In the present case a constrained global objective 

function is defined by equation (1) and Forrester’s criterion is therefore not applicable. 

This means that selecting a new control point based on the local MMSE does not 

necessarily lead to a reduction of the objective function. The Global Mean Square 

Error (GMSE), defined as the mean of the calculated MSE function over the region of 

interest, is used as the stopping criterion for control-grid updating.  

The updating process can be briefly summarised as follows.  

(i) Control points are selected on the edges of the RoI of the reference image, the 

threshold GMSE value, tolGSME , is set and the fast DIC algorithm (discussed 

previously) is used to obtain an approximate measurement of the control-point 

displacements (The choice of the points on the edges of the RoI is made due to 

a well-known property of Kriging: whilst it delivers reliable interpolation 

given observed data, and such interpolation improves as more observations 

become available, it can perform poorly when extrapolating for training runs 

which are not in the neighbourhood of the available data samples). 

(ii) The Kriging regression model (10) is constructed (including optimised 2

Me ) 

and displacements determined using Equation (8).  

(iii) Construct a new Kriging model with the measurement error 2

Me  from (ii) 

added to the control point coordinates. Then set 2 0Me  and the new model 

becomes a Kriging interpolator. Compute the MSE and GMSE.  

(iv) GMSE tol ?GMSE  If not, add new control points at coordinates of greatest 

MSE and return to step (ii). If so, the Kriging model is complete.   
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5.  Case Studies 

Three case studies are included to illustrate the performance of Kriging-DIC. In the 

first of these, experimental speckle-pattern images from the DIC Challenge 2D 

Dataset [40] are translated by 2.2 and 3.3 pixels in the x- and y-directions respectively. 

Kriging-DIC results are compared to those obtained by Q4-FE DIC and Cubic-Spline 

DIC methods. The second case study concerns a numerically-produced complex 

displacement field using grey-scale images generated by (a) interpolation from the FE 

model and (b) Gaussian speckles on the reference and deflected images. Finally, 

application of Kriging-DIC is demonstrated in an experimental example. 

Case Study 1: DIC Challenge Data – Rigid body displacement. 

Experimental speckle pattern images from DIC Challenge 2D Dataset [40] were 

translated by 2.2 and 3.3 pixels in the x- and y-directions respectively by Fourier 

transformation [21, 41], achieved by phase shifts without change of amplitude. The 

RoI, spanning 101×101 pixels, is uniformly meshed by 5×5 square elements, each of 

21×21 pixels. This grid provides 6×6 control points (nodes) so that the full-field 

displacement is determined by the displacement of 36 control points as shown in 

Figure 2. 

The displacement field is calculated by three different full-field DIC methods, 

Kriging-DIC, Q4-FE DIC [4, 5, 20] and Cubic Spline DIC [14, 15] using B-spline 

basis functions. To ensure comparability, the number and location of the control 

points are fixed so that control-grid updating is not applied in the Kriging-DIC 

approach. Kriging regression was applied, but in this particular example it was found 

that 2 0Me  , identical to the case of Kriging interpolation.  This is to be expected 

since the true displacements of all the control points are the same (2.2 in x-direction, 

3.3 in y-direction) and the initial displacements of all the control points calculated by 

the fast method are the same as well (2 in x-direction, 3 in y-direction). The number of 

degrees of freedom are the same for each of the three approaches. 

The initial displacements of the 36 control points were obtained by the fast DIC 

method based on integer pixels and 20 Newton iterations were subsequently carried 

out using 6x6 point bi-cubic interpolation [42] for sub-pixel grey values. Results are 

summarised in Table 1 and Figure 3 and 4 where it can be seen that the displacement 

field produced by Kriging DIC is smoother than that produced by Q4-FE DIC, which 

shows some significant ridges at the element boundaries. The Kriging results are also 

better than those produced Cubic Spline DIC, which shows some abrupt peaks and 

greater deviations than Kriging DIC. Kriging is seen to produce a full-field 

measurement with lower mean error and standard deviation (STD) than the other two 

methods.  The small biases shown in Figure 3 and 4 are due to the effect of bi-cubic 

grey-scale interpolation [21, 41, 43]. 
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Figure 2 Reference and deformed grids shown as red and blue squares respectively. 

 

Table 1 Errors Comparison (unit pixel) 

 Kriging Q4-FE Cubic Spline 

X 
Mean Error 5.44e-3 8.10e-3 5.72e-3 

STD 1.23e-3 1.57e-3 1.33e-3 

Y 
Mean Error 3.34e-3 4.98e-3 3.74e-3 

STD 1.04e-3 1.46e-3 1.50e-3 

*Mean Error here is the difference between actual Mean and the theoritical values i.e. 2.2 &3.3 pixels 

   

   

Figure 3 Calculated displacement fields in X direction (real displacement 2.2 pixels), 

from left to right: Kriging DIC, Q4-FE DIC and Cubic Spline DIC, and ‘--’ indicates 

the Mean while ‘-.’ indicates the Standard Deviation. 
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Figure 4 Calculated displacement fields in Y direction (real displacement 3.3 pixels, 

from left to right: Kriging DIC, Q4-FE DIC and Cubic Spline DIC, and ‘--’ indicates 

the Mean while ‘-.’ indicates the Standard Deviation 

Case study 2:  Non-uniform displacement field with numerically produced speckles. 

In this case study, two examples having same displacement field but using 

numerically-produced grey-scale images generated by different methods are presented. 

The displacement field is calculated from a FE model and used to test the 

performance of the Kriging-DIC method with control grid updating.   

In the first approach, displacements at integer pixel locations are determined by FE 

shape-function interpolation.  The deformed image is then generated by displacing the 

speckle pattern (DIC Challenge 2D Dataset [40]) of the reference image pixel-by-

pixel by the corresponding FE displacement. The second approach is based on 

numerically-produced Gaussian speckles [44, 45] (not directly related to the Gaussian 

process that forms part of the Kriging model) with means uniformly distributed over 

the RoI. In the present case 7000 independent and identically distributed speckles are 

superimposed on the raw image of 250×300 pixels, each Gaussian speckle having a 

standard deviation of 2.5 pixels. The speckles of the deformed image are obtained by 

shifting the means (of the reference-image speckles) by the displacements determined 

from the FE model. The reference and deformed images are digitised using an 8-bit 

processor. Finally, in both cases, bi-cubic interpolation is applied to determine the 

grey-scale images. 

The FE model of the square plate (100×100×10 mm) in steel, with a central hole of 

radius of 20 mm, is composed of a very fine mesh of CQUAD4 elements with a total 

of 10,400 nodes. The RoI consists of 250×250 pixels and for DIC the reference and 

deformed images are trimmed out along the outer edges and around the edge of the 
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hole to avoid edge effects. The FE displacement field in the x- and y-directions are 

shown in Figure 5 when the left hand side of the plate is encastre and a uniformly 

distributed tensile load on the right-hand edge produces an elastic extension of 

approximately 14 mm. Initial control points were selected close to the edges of the 

RoI denoted by the red ‘+’ signs in Figure 6. The control grid was updated adaptively 

as described in Section 3 using the fast DIC method (described previously). At each 

grid updating step two new control points were added having the greatest MSE in the 

x- and y-directions. Figure 6 shows the added control points as blue ‘×’ signs for the 

case of the first approach based on FE interpolation. Updating was continued until the 

GMSE was deemed sufficiently small according to a pre-set tolerance.  

 

Figure 5 The interpolated FE displacement fields in x-direction (left) and y-direction 

(right)  

  

Figure 6 The distribution of  78 chosen control points (28 initial points) on the 

reference image (left) and the deformed image (right). 

Results from the both approaches are shown in Figure 7-12. The evolution of GMSE 

is shown in Figure 7 and optimisation parameters x , y  and 2

Me  in Figure 8. Figure 7 

and 8 show results obtained from the first approach with the 28 initial control points 

in Figure 6 and also from a different initial condition of 16 control points arranged 

irregularly around the boundary. The fully converged Kriging model has 78 control 
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points (approach 1, both 28 and 16 initial points) and 88 control points (approach 2) 

after adaptive control-grid updating. The objective function in Figure 9 is normalised 

by the sum of all the grey intensities in the reference image and is therefore unit-less. 

The error in the x- and y-displacement fields is shown in Figure 10 and 11  for the two 

approaches and the evolution of the mean error and standard deviation is given in 

Figure 12.  

The optimisation parameters x  and y  from the two approaches were found to be 

similar, although there were differences in the values of 2

Me , presumably due to the 

different speckle patterns produced by the two methods. Convergence of the objective 

function was somewhat slower by the second approach, but the final estimated 

displacement fields were found to be almost identical from visual inspection of Figure 

10 and 11. The statistics of displacement fields are given in Table 2. The displacement 

fields from approach 1 were found to converge to almost identical statistics regardless 

of the number and location of the initial control points. 

 

Figure 7 Evolution of GMSE: Approach 1 with 28 & 16 initial control points; 

Approach 2 with 28 initial points. 
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Figure 8 Evolution of optimization parameters with increasing numbers of control 

points. 

 

Figure 9 Convergence of the objective function – Newton iteration. 

 

Figure 10 Displacement errors in pixels (first approach, 28 initial points) after 

Newton iteration in x-direction (left) and y-direction (right) 
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Figure 11 Displacement errors in pixels (second approach, 28 initial points)  after 

Newton iteration in x-direction (left) and y-direction (right) 

 

 

Figure 12 Evolution of Kriging-DIC measurement error statistics 
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Table 2 Measurement-error statistics in pixels. 

 

Approach 1 

(28 initial points & 78 

in total) 

Approach 1 

(16 initial points & 78 

in total) 

Approach 2 

(28 initial points & 88 

in total) 

X 

Mean 

Error 
0.00135 0.00134 2.60e-4 

STD 0.0244 0.0228 0.0209 

Y 

Mean 

Error 
-1.51e-5 -2.25e-4 -4.93e-4 

STD 0.0157 0.0166 0.0151 

 

Case Study 3: Experimental I-beam test 

Application of the Kriging-DIC method is demonstrated on an experimental I-section 

beam with circular holes arranged symmetrically along the beam about its centre as 

shown in Figure 13. The overall dimensions of the cross section are 42 mm × 65mm 

with 2.5 mm wall thickness. The distance between the supports is 450 mm. The test 

arrangement shown in the figure is designed to apply a mid-span transverse point load, 

in the present case 2kN. The experimental setup is described in detail by Labeas et al. 

[46]. 

The speckle-pattern reference image for a square RoI of 700×700 pixels is shown in 

Figure 14 with 12 initial control points denoted by red ‘+’ signs and 30 added control 

points shown by blue ‘×’ signs. The estimated displacement field determined by 

Newton iteration is shown in Figure 15 and for purpose of comparison results from a 

commercial system using a local, subset-based DIC approach (41×41 pixel subsets 

and 30 pixel grid spacing) is provided in Figure 16. Figure 17 shows the absolute 

difference between the Kriging-DIC result and that produced by the commercial 

system with the statistics of the difference summarised in Table 3. Results from the 

two systems appear to be similar although the displacement field produced by Kriging 

DIC seems smoother than that produced by the commercial system, which shows 

unexpected oscillations in the y-direction displacement field (Figure 16).  

 

Figure 13 The experimental setup. 
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Figure 14 The distribution of initial control points (red ‘+’ signs) and added control 

points (blue ‘×’ signs) superimposed on the reference image. 

  

Figure 15 Displacement fields (mm) calculated by Kriging DIC method in x-direction 

(left) and y-direction (right). 

  

Figure 16 Displacement fields (mm) calculated by the commercial system in the x-

direction (left) and y-direction (right) 
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Figure 17 The absolute difference between the displacement fields (mm) calculated 

by Kriging DIC and the commercial system in the x-direction (left) and y-direction 

(right). 

Table 3 Mean values and standard deviations of the absolute difference 

Residual Disp Unit: mm Unit: pixel* 

x 
Mean  1.3472e-3 0.0182 

STD 9.1654e-4 0.0124 

y 
Mean 6.0095e-4 0.0081 

STD 7.3189e-4 0.0099 
*1 pixel length   0.074 mm 

 

6. Conclusions 

A DIC method based on Kriging regression with self-adaptive control grid updating is 

developed. The Kriging approach consists of two parts based on a regression model 

and the correlation between displacements at control points. The result is a minimum 

variance estimator with the error represented by a Gaussian process. The control grid 

may be updated self-adaptively using the mean square error determined at locations 

away from the control points. Unlike Q4-FE DIC and Cubic-Spline DIC, Kriging DIC 

is based on control points that are distributed fully throughout the region of interest.  

The methodology is supported by three case studies, the first of which uses 

experimental data from the DIC Challenge 2D database. Using this data Kriging-DIC 

is shown to outperform Q4-FE DIC and Cubic Spline DIC. In the second case study 

Kriging DIC is shown to be robust to the number and location of initially-chosen 

control points and to speckle-pattern variation. The third case study is an experimental 

example where Kriging DIC is shown to perform favourably against a commercial 

subset-based DIC system. 
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Table 1 Errors Comparison (unit pixel) 

 Kriging Q4-FE Cubic Spline 

X 
Mean Error 5.44e-3 8.10e-3 5.72e-3 

STD 1.23e-3 1.57e-3 1.33e-3 

Y 
Mean Error 3.34e-3 4.98e-3 3.74e-3 

STD 1.04e-3 1.46e-3 1.50e-3 

*Mean Error here is the difference between actual Mean and the theoritical values i.e. 2.2 &3.3 pixels 

Table One



 

Table 2 Measurement-error statistics in pixels. 

 

Approach 1 

(28 initial points & 78 

in total) 

Approach 1 

(16 initial points & 78 

in total) 

Approach 2 

(28 initial points & 88 

in total) 

X 

Mean 

Error 
0.00135 0.00134 2.60e-4 

STD 0.0244 0.0228 0.0209 

Y 

Mean 

Error 
-1.51e-5 -2.25e-4 -4.93e-4 

STD 0.0157 0.0166 0.0151 

 

Table TWO



 

Table 3 Mean values and standard deviations of the absolute difference 

Residual Disp Unit: mm Unit: pixel* 

x 
Mean  1.3472e-3 0.0182 

STD 9.1654e-4 0.0124 

y 
Mean 6.0095e-4 0.0081 

STD 7.3189e-4 0.0099 
*1 pixel length   0.074 mm 

Table Three




