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Abstract: The response to hemispherical and regional aircraft NOx emissions is explored by 11 

using two climate metrics: radiative forcing (RF) and Global Warming Potential (GWP). The 12 

global chemistry transport model, MOZART-3 CTM, is applied in this study for a series of 13 

incremental aircraft NOx emission integrations to different regions. It was found that the 14 

sensitivity of chemical responses per unit emission rate from regional aircraft NOx emissions 15 

varies with size of aircraft NOx emission rate and that climate metric values decrease with 16 

increasing aircraft NOx emission rates, except for Southeast Asia. Previous work has 17 

recognized that aircraft NOx GWPs may vary regionally. However, the way in which these 18 

regional GWPs are calculated are critical. Previous studies have added a fixed amount of NOx 19 

to different regions. This approach can heavily bias the results of a regional GWP because of 20 

the well-established sensitivity of O3 production to background NOx whereby the Ozone 21 

Production Efficiency (OPE) is greater at small background NOx. Thus, even a small addition 22 

of NOx in a clean-air area can produce a large O3 response. Using this ‘fixed addition’ method 23 

of 0.035 Tg(N) yr-1, results in the greatest effect observed for North Atlantic and Brazil,  24 

~10.0 mW m-2/Tg(N)yr-1. An alternative ‘proportional approach’ is also taken that preserves 25 

the subtle balance of local NOx–O3–CH4 systems with the existing emission patterns of 26 

aircraft and background NOx, whereby a proportional amount of aircraft NOx, 5% (N) yr-1, is 27 

added to each region in order to determine the response. This results in the greatest effect 28 

observed for North Pacific that with its net NOx RF of 23.7 mW m-2/Tg(N)yr-1 is in contrast 29 

with the ‘fixed addition’ method. For determining regional NOx GWPs, it is argued that the 30 

‘proportional’ approach gives more representative results. However, a constraint of both 31 

approaches is that the regional GWP determined is dependent on the relative global emission 32 

pattern, so if that changes in the future, the regional NOx GWP will change. 33 

 34 

Keywords: Aviation, regional emissions, nitrogen oxides, GWP, non-linearities  35 
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1 Introduction  36 

 37 

 38 

 Aviation NOx emissions result in a short-term increase in tropospheric ozone (O3) and the 39 

long-term destruction of a fraction of the ambient methane (CH4), with positive and negative 40 

radiative forcing responses, respectively. In addition, the CH4 reduction results in a long-term 41 

reduction in tropospheric O3 and a long-term reduction in stratospheric water vapour from 42 

reduced oxidation of CH4, both negative radiative forcing effects. The aircraft net NOx 43 

response (the sum of all these components) is thought to result in a positive (warming) 44 

radiative forcing (RF) under constant emissions assumptions (e.g., Lee et al., 2010) 45 

 46 

The geographical imbalance of climate impact from NOx emissions is a result of both the 47 

short-term nature of the chemistry and the heterogeneous pattern of emissions; as well as, it 48 

arises from complexity of the response of NOx effect components. The short-lived O3 change 49 

(positive climate forcing, warming) is inhomogeneous, concentrated mainly where the NOx 50 

emissions occur. The CH4 response (negative climate forcing, cooling), due to its decadal 51 

lifetime, is homogenously spread over the globe. Thus, even if these two effects might cancel 52 

as a global mean, they do not on a regional scale (e.g., Prather et al., 1999).    53 

 54 

The same amount of NOx emissions might lead to different regional climate impacts. The O3 55 

production formed from NOx emissions strongly depends on the background conditions that 56 

are distinct for specific spatio-temporal locations. The O3 response is influenced by the 57 

background NOx concentrations (e.g., Isaksen et al.,1978, Berntsen and Isaksen, 1999), the 58 

abundance of HOx, VOCs (e.g., Lin et al.,1988, Jaeglé et al., 1998) or the intensity of solar 59 

flux. These different influences result in quite a specific behaviour, as different climate 60 

responses might result from equal global mean RFs arising from the same amount of emitted 61 

NOx at different locations (e.g., Berntsen et al., 2005, Shine et al., 2005). 62 

 63 

In this study we explore the global responses form regional emissions, by employing the 64 

‘popular’ metrics: radiative forcing (RF) and Global Warming Potential (GWP), that have 65 

been successfully exploited in other regional studies (e.g., Berntsen et al., 2005, Fry et al., 66 

2013). However, in order to explore the different aspects of regional and sub-global patterns 67 

of responses, the new concepts have been also developed, e.g., the non-linear damage function 68 
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(Shine et al., 2005, Lund et al., 2012) or Absolute Regional Temperature Potential (Shindell, 69 

2012, Collins et al., 2013). 70 

 71 

There are only few studies dealing with geographical effects from aircraft NOx emissions 72 

(Grewe and Stenke, 2008, Stevenson and Derwent, 2009, Köhler et al., 2013). Grewe and 73 

Stenke (2008) and Köhler et al. (2013) have shown that different latitudinal bands give 74 

different RFs per unit aircraft NOx emission; the RFs resultant from O3 and CH4 changes at 75 

low latitudes are significantly greater than RFs from those changes at higher latitudes. Köhler 76 

et al. (2013) also presented the aircraft NOx impact over four geographical regions, where 77 

tropical locations, China and India, with their net NOx RFs of 14.3 mW m-2 per Tg(N) yr-1 and 78 

12.6 mW m-2 per Tg(N) yr-1, substantially exceed the northern mid-latitudinal net NOx RFs, of 79 

~2 mW m-2 per Tg(N) yr-1, over Europe and USA. On the contrary, the study of Stevenson and 80 

Derwent (2009) results in strong compensations between O3 and CH4 responses for July’s 81 

pulse aircraft NOx emissions at 112 different cruise altitude locations, where, in most cases, 82 

the short-term O3 positive RFs was overwhelmed by the long-term CH4 negative RFs. In order 83 

to illustrate the dependence of the aviation NOx effect on the location of emission, the 84 

regionally fixed amount of aircraft NOx was applied in both, Stevenson and Derwent (2009) 85 

and Köhler et al. (2013), studies. 86 

 87 

Taking into account that the future growth of air traffic is predicted to be inhomogeneous, 88 

where Asia with its developing economies is leading the way (ACI, 2011), it is important to 89 

understand the spatial aviation climate responses. In this study, the atmospheric impact of a 90 

series of regional aircraft NOx emission rates is investigated using a global chemistry transport 91 

model, MOZART-3 CTM. The responses from Northern and Southern Hemisphere along with 92 

eight regions: Europe, North America, Southeast Asia, North Pacific, North Atlantic, Brazil, 93 

South Africa and Australia are explored. This study will show that the net NOx effect, and the 94 

associated ozone and methane responses, depend not only on the location of emission, but also 95 

that they vary under different experimental approaches. 96 

 97 

 98 

 99 

 100 

 101 

 102 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 
 

2 Methodology 103 

 104 

2.1 Chemistry transport model  105 

 106 

The Model for Ozone and Related Tracers, version 3 (MOZART-3) was applied for this study.  107 

This is a 3D Chemistry Transport Model (CTM) designed to simulate atmospheric ozone and 108 

its precursors. It was evaluated by Kinnison et al. (2007) and used for various application 109 

studies, e.g., Sassi et al. (2004), Liu et al. (2009), Wuebbles et al. (2011). Recently, 110 

MOZART-3 was exploited in studies dealing with an impact of aircraft NOx emissions on 111 

atmospheric composition, e.g., Skowron et al. (2013), Søvde et al. (2014). 112 

 113 

MOZART-3 accounts for advection based on the flux-form semi-Lagrangian scheme of Lin 114 

and Rood (1996), shallow and mid-level convection (Hack, 1994), deep convective routine of 115 

Zhang and MacFarlane (1995), boundary layer exchanges (Holstag and Boville 1993), or wet 116 

and dry deposition (Brausser et al. (1998) and Müller (1992), respectively). MOZART-3 117 

reproduces detailed chemical and physical processes from the troposphere through the 118 

stratosphere, including gas-phase, photolytic and heterogeneous reactions. The kinetic and 119 

photochemical data are based on the NASA/JPL evaluation (Sander et al., 2006).  120 

 121 

The anthropogenic and biomass burning emissions are taken from Lamarque et al. (2010) and 122 

represent year 2000, while the biogenic emissions are from POET (Granier et al., 2005). 123 

Aircraft emissions are represented by the REACT4C base case inventory (e.g., Søvde et al., 124 

2014) for the year 2006 (CAEP/8 movements). The horizontal resolution is T42 (~ 2.8° x 125 

2.8°) and the vertical domain spans 60 hybrid layers between the surface and 0.1 hPa. The 126 

meteorological fields are from European Centre for Medium Range Weather Forecast 127 

(ECMWF), reanalysis ERA-Interim data for the years 2004–2006 (Dee et al., 2011). 128 

 129 

2.2 Incremental regional aircraft NOx emissions 130 

 131 

In order to explore the impact of regional aircraft NOx emissions on climate, ten geographical 132 

domains were defined: Europe (EUR), North America (NA), Southeast Asia (SE ASIA), 133 

North Pacific (NPAC), North Atlantic (NATL), Brazil (BR), South Africa (SAFR), Australia 134 

(AU), Northern Hemisphere (NH) and Southern Hemisphere (SH) (Figures 1 and 2). The 135 

aircraft NOx emissions are characterized by a heterogeneous pattern, where more than 50% of 136 
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aircraft NOx emissions is present over North America, Europe and Southeast Asia. The 137 

selected geographical domains constitute 62% (based on REACT4C 2006 inventory) of global 138 

total aircraft NOx emissions. Each region represents different chemical and meteorological 139 

background conditions that will influence the aircraft NOx perturbation. 140 

 141 

Incremental aircraft NOx emissions constitute a series of aircraft NOx emission rates that were 142 

applied to one region per experiment (Table 1). The injections of aircraft NOx emissions are 143 

valid for all altitudes in the defined domains. Each incremental aircraft NOx case is based on 144 

either an equal mass or a relative mass of emissions. The equal mass of emissions constitutes 145 

different relative addition of emission to the total NOx in each region, e.g., the injection of 146 

0.035 Tg(N) yr-1 is equal to ~30% increase of aircraft NOx for northern continental regions 147 

and it rises to ~160% or ~400% for oceanic or southern continental domains, respectively  148 

(Table 1). The relative mass of emissions result in different amount of emitted NOx in each 149 

region. The 5% NOx increase per year is smaller than addition of 0.035 Tg(N) yr-1 by ~80–150 

95% for most of the regions. The 100% NOx increase per year is greater than addition of 0.035 151 

Tg(N) yr-1 by ~70% for continental regions, but it is still smaller by ~40% for oceanic regions. 152 

 153 

These two experimental designs address different natures of investigations. The question 154 

addressed with ‘fixed NOx’ experiments is the regional sensitivity to unit mass of emission. 155 

The employment of relative aircraft NOx emissions might be more realistic in terms of 156 

defining the actual aviation NOx effects or the assessment of the future air traffic growth. 157 

Anyway, both types of experiments give useful insight into regional NOx–O3–CH4 systems. 158 

 159 

Forty six experiments were performed, one reference (base aircraft emission) run and forty 160 

five perturbations (incremental aircraft emission) simulations, each starting in January 2006 161 

and finishing in December 2006; each simulation was preceded by a two-year spin-up, 2004–162 

2005. The aircraft perturbation is derived by extracting the difference between ‘aircraft’ and 163 

‘incremental aircraft’ experiments. Since our experiments are performed for 3 years, the 164 

magnitude of aircraft stratospheric O3 response is not fully represented. Thus, the O3 column 165 

change presented in this paper is overestimated by 1.1%; however, the resultant O3 RF is not 166 

affected.  167 

 168 

 169 

 170 
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2.3 Metrics calculations 171 

 172 

The monthly O3 MOZART-3 outputs are used for short-term O3 radiative forcing (RF) 173 

calculations, using an off-line Edwards – Slingo radiation code (Edwards and Slingo, 1996). 174 

The model calculates the radiative fluxes and heating rates based on the δ-Eddington form of the 175 

two-stream equations in both, the long-wave and short-wave spectral regions. Cloud treatment is 176 

set up based on averaged ISCCP D2 data (Rossow and Schiffer, 1999), which are used to 177 

determine the position and amount of ice clouds and water in the atmosphere. Climatological 178 

fields of temperature and specific humidity are determined by ERA-Interim data (Dee et al., 179 

2011). 180 

 181 

The CH4 concentrations change is assumed to be in equilibrium with the OH change due to 182 

the aircraft NOx perturbation from constant emissions (Fuglestvedt et al., 1999). These steady-183 

state CH4 aircraft responses are further used for long-term CH4 RF calculations, using the 184 

simplified expression defined in Myhre et al. (1998). The additional long-term effects, 185 

consequently also assumed as steady-state changes, CH4-induced O3 and CH4 impact on 186 

stratospheric water vapour (SWV) are also calculated and defined as 50% of CH4 RF (Myhre 187 

et al., 2013) and 15% of CH4 RF (Myhre et al., 2007), respectively.  188 

 189 

The calculations of Global Warming Potentials (GWP) are based on a methodology described 190 

by Fuglestvedt et al., (2010). Assuming, that the constant one-year emission is a step emission 191 

and the successive decay occurs of the resulting steady-state forcing (∆FSS) from the end of 192 

the year, the AGWP can be calculated through: AGWP (H) = ∆FSS (1 – α(exp (– (H – 1 )/α) – 193 

exp(– H/α))), where H is the time horizon and α is lifetime (primary-mode lifetime in case of 194 

CH4-induced O3 and CH4). The CO2 AGWPs are taken from Joos et al. (2013). 195 

 196 

 197 

3 Effects of hemispherical and regional aircraft NOx emissions   198 

 199 

3.1 Chemical perturbation  200 

 201 

The peak of O3 perturbation is concentrated at cruise altitudes in all regions (Figure 3); 202 

however, the same amount of additional aircraft NOx (0.035 Tg(N) yr-1) emitted from various 203 

locations leads to different magnitudes and extents of O3 perturbation. The NH’s O3 204 
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perturbation is concentrated mainly at cruise altitudes, where most of the emissions occur, 205 

whilst the SH’s O3 response is observed throughout the vertical domain. This might be 206 

explained by the fact by that SH’s aircraft NOx emissions are concentrated mostly in the low-207 

latitudes (there are hardly any SH’s emissions for latitudes greater than 52°S), where the 208 

convective transport is strong. This is the case also for BR and AU, where the chemical 209 

impact has a greater vertical extent than for other regions.  210 

 211 

The aircraft NOx perturbation in different regions shows disparities in their impact on global 212 

O3 burden and CH4 lifetime change (Table 2). The Southern Hemisphere produces 40% more 213 

O3 per emitted aircraft N, and is twice as efficient in CH4 lifetime reduction, than the Northern 214 

Hemisphere. A similar pattern in O3 change is observed if the North Pacific is compared with 215 

Europe. In general, the efficiency of ozone production for remote northern oceanic regions is 216 

greater than for northern continental regions by 34% and this results in the larger O3 burden 217 

change for NPAC and NATL compared with EUR and NA. Among continental regions, 218 

southern AU gives the greatest mass of perturbed O3. The largest O3 change did not always 219 

introduce the greatest CH4 reduction. The CH4 lifetime reduction over NPAC is almost as high 220 

as over SE ASIA, however NPAC’s CH4 follows the high O3 burden change, which is not 221 

observed for SE ASIA’s O3 burden change. The least efficient CH4 loss occurs over NATL, 222 

the greatest efficiency in CH4 lifetime reduction is observed over southern BR, SAFR and AU.  223 

 224 

3.2 Radiative forcings and global warming potentials  225 

 226 

 227 

The latitudinal distributions of short-term O3 RF for different geographical regions are shown 228 

in Figure 4. In general, these patterns of RFs are governed by latitudinal profiles of regional 229 

aircraft NOx emissions. However, the magnitudes of O3 RF responses differ: the SH’s O3 RF 230 

is much larger, by 52%, than NH’s short-term forcing and NPAC, NATL exceed, by 29%, the 231 

O3 responses from northern continental regions. The greatest magnitudes of short-term O3 RF 232 

responses are those from southern low-latitudes: BR, SAFR and AU, that is in contrast to their 233 

aircraft NOx emissions magnitudes.  234 

Figure 5 shows the normalized net global annual mean RF and the four component forcings, 235 

for different geographical regions. The inter-hemispheric differences in the resultant effects 236 

are significant: both short-term O3 RF and long-term negative RFs are twice as strong over SH 237 

than over NH. The greatest net NOx RF value is observed over North Atlantic and Brazil, 238 
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which is the result of strong positive short-term O3 RF and relatively weak long-term negative 239 

forcings for NATL and very strong positive short-term O3 RF for BR. The largest short-term 240 

O3 RF and long-term CH4 RF among northern regions is found for NPAC and SE ASIA, 241 

respectively, whilst among southern regions for AU. The negative forcings play a relatively 242 

large role at low-latitudes, where an efficient CH4 oxidation leads to substantial reduction of 243 

the net NOx RF for BR, SAFR and AU, but also SE ASIA. The smallest net value of positive 244 

and negative forcings is observed for North America and Europe.  245 

While RF indicates the climate effects between past and present point in time, GWP gives the 246 

perspective for future impact of current emissions. The aircraft NOx GWPs from regional 247 

emissions differ greatly; however, the net NOx GWP values are positive for all regions and 248 

each time horizon (Table 3). There are substantial differences in calculated GWPs; the 249 

greatest values are calculated for a 20-year time horizon for each region and the significant, by 250 

~80%, reduction of GWPs appears with larger time horizons. The largest GWP values are 251 

calculated for Brazil; however, for greater time horizons the North Atlantic’s GWPs are 252 

equally high, that is caused by less pronounced long-term negative RF effects. The smallest 253 

GWP values are found for Europe for each time horizon.  254 

 255 

3.3 Discussion 256 

The differences in magnitudes of O3 perturbation originate from various background 257 

conditions specific for each region. The spatial variation of O3 burden change has a strong 258 

correlation with NOx background concentration at flight level (Figure 6), which was also 259 

presented by Stevenson and Derwent (2009), but for O3 integrated RFs. Generally, the largest 260 

global and annual O3 burden change is observed for locations where NOx background is low 261 

and it is decreasing with greater NOx concentrations. The SE ASIA, with large NOx 262 

background, is an exception here, as the efficiency of O3 production charged by the intensity 263 

of solar flux results in relatively large O3 burden change.  264 

 265 

The large O3 response over remote oceanic regions might be unravelled by small background 266 

NOx concentrations (Figure 6). The large O3 response over SE ASIA might be additionally 267 

explained by the intensity of solar irradiance that drives the photochemistry: taking into 268 

account the high NOx background conditions in this region, the magnitude of O3 change is 269 
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substantial. The mean concentration of NOx at 227 hPa is 93 pptv, as modelled by MOZART-270 

3; however, mean local annual NOx concentrations reach ~400 pptv for SE ASIA, while these 271 

over mid-latitudinal regions are ~70 pptv. One of the factors that significantly modify SE 272 

ASIA’s NOx background at flight level is the NOx source from lightning. The SE ASIA region 273 

is a receptor of 30% of global total lightning NOx emissions at cruise altitudes; in comparison 274 

to 8% for BR and less than 1% for the rest of the regions, SE ASIA’s lightning NOx is 275 

significant. The southern BR, SAFR and AU O3 responses are driven by both relatively low 276 

NOx background and solar intensity. Not only NOx background alone, but also the relationship 277 

between abundances of NOx and photochemically generated hydrogen oxide radicals (HOx) 278 

influence the amount of O3 that can be formed. The shift in the HOx balance towards OH, 279 

having at the same time relatively higher NOx levels compared to HO2, that is the case for 280 

EUR (Figure 6), increases the importance of OH+NO2 termination reaction chain that in turn 281 

decreases the O3 production. 282 

 283 

The concentrations of CH4 differ between regions within 1% range, also CO is relatively 284 

uniformly distributed among investigated regions (Figure 6); both CO and CH4 are an 285 

important O3 precursors. The CH4 perturbations depend highly on the place and extent 286 

(latitude and altitude) of the O3 perturbation (Köhler et al., 2008), as both temperature and 287 

concentrations of OH and CH4 affect the efficiency of CH4 oxidation. The most efficient CH4 288 

lifetime reduction occurs over SE ASIA and southern regions, BR, SAFR, AU, where 289 

temperature and oxidizing conditions are the most favourable among the investigated 290 

domains; the least pronounced CH4 response is observed for NATL, that is not the case for 291 

another oceanic region, NPAC. The OH and CH4 backgrounds are of similar magnitudes over 292 

NPAC and NATL; however, the temperature pattern shows differences, being higher over 293 

North Pacific, by ~6°K (~3%) and the lower temperature slows down the CH4 oxidation. 294 

Moreover, the cruise altitudes for NATL are at 10.98 km that is one level higher than for 295 

NPAC (Figure 2); aircraft NOx emissions emitted at higher altitudes result in reduced potential 296 

in CH4 change (e.g., Skowron et al., 2013). These might be the one of the reasons of the less 297 

efficient CH4 lifetime reduction over North Atlantic. 298 

 299 

Recently Köhler et al. (2013) presented results for regional aircraft NOx impacts from four 300 

regions: USA, Europe, India and China. The 0.036 Tg(N) yr-1 of aircraft NOx was injected 301 

through all vertical layers into limited domains. In their study the greatest O3 mass change and 302 

O3 forcings, as well as net NOx forcings were found for low latitudinal regions compared with 303 
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northern continental regions and the net NOx RFs and GWPs are positive. This is in agreement 304 

with results from this study. However, some discrepancies appear when magnitudes of 305 

responses are compared. The “continental mid-latitudinal” O3 RFs are smaller in this study by 306 

15–26% than Köhler’s et al. (2013); however, the net NOx RFs are reported to be greater for 307 

this work, by 6% for EUR and 38% for NA. It is difficult to compare the results for “northern 308 

low-latitudinal” regions, as the geographical extents of investigated domains differ: in this 309 

study it reaches the 12°S circle of latitude, in Köhler’s et al. (2013) – 6°N. Moreover, SE 310 

ASIA region in this study is characterized by very high NOx background concentrations from 311 

lightning emissions, while Köhler’s India and China are relatively ‘free’ from those high NOx 312 

lightning emission, as modelled by MOZART-3. These might be one of the reasons of the 313 

substantial differences in O3 response and the resultant NOx RFs over Asia. 314 

 315 

Whilst there is a general qualitative agreement in general properties of regional responses 316 

between Köhler et al. (2013) and this study, the comparison with Stevenson and Derwent 317 

(2009) becomes more complicated. Their study presents integrated radiative forcings (IRF) 318 

over 100-year time horizon of positive and negative responses of chemical system due to 319 

aircraft NOx emissions. The aircraft NOx increase (4 kg(NO2) s-1 = 0.04 Tg(N) yr-1) was 320 

injected for a period of month (July) at cruise altitudes (~200–300 hPa) in a limited 321 

geographical domains. Unfortunately, a detailed comparison is not possible as Stevenson and 322 

Derwent (2009) did not provide an exact number for their AGWPs. However, some 323 

peculiarities are noticed, e.g., the net IRFs are negative for most of the locations. The inter-324 

model differences might play a role here; however, other aspects exist as well. Firstly, the 325 

aircraft NOx increase was performed only for a period of one month, July. The small Asian 326 

short-term O3 response may indicate that it can influence the results to some extent (the NOx 327 

background (due to lightning) is greater in this region during summer compared with winter 328 

months, when the lightning NOx ‘moves’ more south from the equator). The response of a 329 

NOx–O3–CH4 system is highly dependent on the state of the atmosphere into which aircraft 330 

NOx is injected (e.g., Stevenson et al., 2004) and a single month perturbation is not 331 

representative and comparable with annual integrations when the regional responses are 332 

investigated. Secondly, the amount of emitted NOx during one month is the same as the 333 

amount of NOx applied in this study and by Köhler et al. (2013), but for a period of year. As it 334 

is shown in the forthcoming Section 4, the size of NOx emission rates influence the response 335 

of the chemical system due to regional emissions. 336 

 337 
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4 Response of the NOx-O3-CH4 system for different rates of regional 338 

aircraft NOx emissions 339 

 340 

The responses of the chemical system from regional aircraft NOx perturbations vary with the 341 

size of the NOx emissions rate and in a non-linear way (Figure 7); the greater NOx emission 342 

rates lead to weaker O3 responses and less pronounced CH4 reductions. However, each region 343 

has its own distinctive sensitivity in the response of chemical system. The O3 response over 344 

Southeast Asia is much less sensitive to different aircraft NOx emission rates than over oceans, 345 

where the O3 change depends significantly on the amount of emitted NOx. For example, as a 346 

result of 6.39 Tg(N) yr-1 experiments, SE ASIA has the greatest global O3 burden change and 347 

NATL’s O3 is observed to be of similar magnitude as O3 for EUR, which is in contrast to what 348 

was presented in the section above. The CH4 lifetime reduction also changes with aircraft NOx 349 

emission rates. The non-linearity of CH4 lifetime reduction is stronger at low latitudes, where 350 

conditions for CH4 oxidation (high temperature and concentrations of OH) are advantageous, 351 

compared with mid-latitudes. Thus, CH4 over SH, SE ASIA, BR, SAFR and AU follows 352 

strictly the O3 sensitivity to additional NOx emissions: the rate of the compensation between 353 

O3 and CH4 remains almost the same for each incremental aircraft NOx case (Figure 8). The 354 

ratio of the CH4 lifetime change per unit of O3 change for SH, SE ASIA, BR, SAFR and AU 355 

changes by no more than 2%, with greater NOx emission rates. This is not observed for other 356 

regions, especially oceanic domains, where CH4/O3 ratio becomes significantly greater (44% 357 

for NATL) with larger NOx emission rates. These results show that the variation in 358 

experimental design strongly influences the magnitude of the contribution from individual 359 

regions to overall chemical perturbation, e.g., the greatest O3 burden change, can easily belong 360 

to either NPAC, or SE ASIA depending on the size of aircraft NOx emission rates. 361 

 362 

 363 

5 Variation of the effects of hemispherical and regional aircraft NOx 364 

emissions 365 

 366 

The varying regional chemical responses depend on the size of the aircraft NOx emissions 367 

(Figure 7), being especially pronounced for remote domains. The regional O3 and CH4 368 

responses saturate with greater aircraft NOx emission rates, where scale of this processes reach 369 

different limits for each region. Equal mass of aircraft NOx emissions leads to substantially 370 
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different, sometimes unrealistic, relative increases of aircraft NOx (Table 1), which means that 371 

each regional domain is pushed to different regimes of its local NOx–O3–CH4 system, when it 372 

‘deals’ with additional NOx. In order to try to preserve the subtle balance of regional NOx–O3–373 

CH4 systems with the existing emission patterns of aircraft and background NOx, the 374 

experiments with equal relative aircraft NOx emissions are employed (Table 1).  375 

 376 

The net NOx radiative forcing from regional perturbations are found to be greater for 377 

experiments with lower aircraft NOx emission rates, which is the 5% (N) yr-1 case and tend to 378 

decrease with greater aircraft NOx emissions (Table 4). The net NOx RFs of EUR, NA and 379 

NATL are larger by ~33% for 5% (N) yr-1 compared with 0.035 Tg(N) yr-1, the difference for 380 

NPAC’s net NOx RF increases to 157%. The short-term O3 RF variation ranges from 10% for 381 

NA to 44% for NPAC; CH4 RF variation ranges from up to 8% for continental regions and 382 

rises significantly for oceanic regions reaching 64% for NATL. In general, for smaller aircraft 383 

NOx emissions rates short-term O3 RF is calculated to be the greatest and CH4 RF, and 384 

consequently CH4-induced O3 RF and SWV RF are calculated to be the smallest (less 385 

negative) compared with greater aircraft NOx emissions rates. 386 

 387 

There is one exception, SE ASIA: the values of net NOx RFs for different incremental aircraft 388 

NOx emission cases stay within a ~2% range. The SE ASIA short-term O3 RF increases with 389 

increasing NOx emission rates and it is observed to be 7% lower for 5% (N) yr-1 compared 390 

with 0.035 Tg(N) yr-1, and 1% different for 100% (N) yr-1 compared with 0.035 Tg(N) yr-1. 391 

 392 

The background atmospheric conditions of SE ASIA domain might explain this distinct 393 

behaviour. The HOx background at flight level over SE ASIA is one of the highest, next to 394 

BR, among all investigated regions (Figure 6), having at the same time low NOx background 395 

(< 1 pbbv). Under this condition an important termination chain for HO2 would be HO2 + HO2 396 

(Seinfeld and Pandis, 2006). This finds further explanations in Lin et al. (1988) box model 397 

study, where it is shown that for low NOx background the radical combination reactions (RO2 398 

and HO2) supress the non-linearity of O3 production efficiency. Additionally, Wu et al. (2009) 399 

found that the non-linearity of O3 production, but in the continental boundary layer, is much 400 

weaker for NOx-limited conditions. 401 

 402 

It is worth to note that SE ASIA is much larger than other investigated geographical regions; 403 

thus, e.g., it represents a wider range of meteorological phenomena over the year. However, as 404 
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it is presented in Supplementary Information (SI), it is not likely that the size of the domain 405 

might influence the observed linearity of SE ASIA’s effects. 406 

 407 

The regional ratios of the CH4 lifetime change per O3 burden change vary with different sizes 408 

of emitted aircraft NOx and they decrease with increasing aircraft NOx emissions (Figure 9). 409 

The greatest differences are found to be over oceans, where the CH4 lifetime change per O3 410 

burden change varies by 54% for NATL and 47% for NPAC between aircraft emissions of 411 

0.71 and 1.42 Tg(N) yr-1; the continental (EUR and NA) differences constitute ~10% between 412 

0.71 and 1.8 Tg(N) yr-1. The CH4 lifetime change per O3 burden change for SE ASIA varies 413 

only by 3% for different aircraft NOx emissions rates, which results in relatively constant 414 

magnitudes of net NOx RFs (Table 4). The regional metric values are significantly correlated 415 

with ratio of CH4 lifetime change per O3 change (r=0.7, p<0.001). The remote oceanic 416 

regions, with small CH4 lifetime change per O3 burden change values, give larger net NOx 417 

GWPs than continental regions with greater CH4/O3 ratios. In general, regional aviation net 418 

NOx GWPs decrease with increasing aircraft NOx emissions; consequently, the SE ASIA is 419 

again an exception. 420 

 421 

The spread in the reported regional net NOx RFs and GWPs differs between different 422 

experimental designs (Figure 10). Experiments with 0.035 Tg(N) yr-1 have shown reduced 423 

variability of calculated metrics, mainly through supressed NPAC response. The aviation net 424 

NOx GWP varies from 25 (EUR) to 110 (NATL) for 0.035 Tg(N) yr-1 incremental aircraft 425 

NOx emissions experiments. The 5% (N) yr-1 incremental aircraft NOx emissions case results 426 

in new values ranging from 31 for EUR to 256 for NPAC. Regional application of an equal 427 

mass and a relative mass of aircraft NOx emission result in significant difference in the 428 

magnitudes of calculated metrics that constitutes ~49%, as an average among investigated 429 

regions.  430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 
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6 Conclusions 439 

 440 

Aircraft NOx emissions injected into different geographical locations, based on MOZART-3 441 

simulations, affect the sensitivities of global chemical responses and the compensating 442 

balance between O3 and CH4 is specific for each regional domain. The resultant O3 burden 443 

change varies by 54% between different regions, where Europe and Australia result in lowest 444 

and greatest O3 perturbation, respectively. The aviation net NOx GWP100 varied from 25 for 445 

Europe to 110 for the North Atlantic (based on 0.035 Tg(N) yr-1 incremental aircraft NOx 446 

emission experiments). Significant hemispherical disparity in the resultant effects from 447 

aircraft NOx perturbation was also found, where Southern Hemisphere’s short-term and long-448 

term responses were twice greater than those for Northern Hemisphere. The remote oceanic 449 

region of North Atlantic, along with tropical Brazil, turned out to result in the greatest 450 

magnitude of aircraft net NOx effect, ~10.0 mW m-2/Tg(N) yr-1. The low-latitudinal regions 451 

appeared also to have the greatest compensation between the short-term O3 effect and long-452 

term CH4 responses that efficiently reduced their net NOx climate impacts.  453 

 454 

The regional chemical perturbations varies with the size of aircraft NOx emission rate; 455 

therefore, experiments based on equal mass of aircraft NOx emissions might imply violation 456 

of the subtle balance of the regional NOx–O3–CH4 systems. This affects mainly geographical 457 

domains with low NOx concentration (e.g., remote oceanic regions), where injected NOx often 458 

constitutes a significant relative increase, which pushes the local NOx–O3–CH4 balance into a 459 

saturation regime and reduces its aircraft NOx effect. The experiments with small equal 460 

relative aircraft NOx emissions revealed the new potential of regional aircraft NOx effects. The 461 

greatest effect was observed for North Pacific with its net NOx RF of 23.7 mW m-2/Tg(N)yr-1. 462 

The 5% (N) yr-1 incremental aircraft NOx emission case resulted in a net aviation NOx GWP100 463 

ranging from 31 for Europe to 256 for North Pacific, representing much greater spread in the 464 

reported regional metric values. 465 

 466 

 The size of the aircraft NOx emission rate and consequently an experimental approach 467 

strongly influence both the magnitudes and the perception of regional dependencies, where 468 

e.g., the greatest net NOx effect interchangeably belongs to either North Pacific or North 469 

Atlantic and Brazil. Thus, it is important to apply an appropriate experimental design 470 

depending on the nature of investigations. 471 

 472 
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Table SI 1: Normalized aircraft net NOx radiative forcings for different Asian incremental aircraft NOx emissions. Net 
NOx accounts for short-term O3 RF, CH4-induced O3 RF and CH4 with SWV RF 

 
 

REGION 
Net NOx RF [mW m-2/Tg(N) yr-1] 

0.035 Tg(N) yr-1  5 %(N) yr-1 100 %(N) yr-1 

SE ASIA 5.33 5.26 5.25 

S ASIA 6.51 6.67 6.35 

E ASIA 4.65 4.59 4.46 
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Table 1: Description of regional domains along with changes in aircraft NOx emissions for a series of experimental cases and each regional domain. 
 

REGION Geographical extent Aircraft NOx [Tg(N) yr-1] 
Fixed mass incremental aircraft N  

[∆ N/base N] 
Relative incremental aircraft N*  

[Tg(N) yr-1] 
0.035 Tg(N) yr-1 0.71 Tg(N) yr-1 6.39 Tg(N) yr-1 5% (N) yr-1 100% (N) yr-1 

EUR 10°W-30°E; 40°N-60°N 0.112 0.32 6.3 57.2 0.006 0.112 

NA 120°W-75°W; 30°N-50°N 0.132 0.27 5.4 48.5 0.007 0.132 

SE ASIA 95°E-145°E; 12°S-45°N 0.128 0.28 5.5 50.0 0.006 0.128 

NPAC 
180°W-140°W;  

150°E-180°E; 20°N-60°N 
0.021 1.67 33.4 300.6 0.001 0.021 

NATL 50°W-15°W; 30°N-60°N 0.023 1.54 30.8 276.8 0.001 0.023 

BR 60°W-36°W; 36°S-6°S 0.010 4.43 69.7 – – – 

SAFR 16°E-32°E; 36°S-18°S 0.003 12.2 224.2 – – – 

AU 134°E-154°E; 38°S-22°S 0.009 4.84 78.0 – – – 

        

NH 180°W-180°E; 0°-90°N 0.653 0.05 1.1 9.8 0.033 0.653 

SH 180°W-180°E; 0°-90°S 0.057 0.62 12.4 111.9 0.003 0.057 

        

Global 180°W-180°E; 90°S-90°N 0.71 0.05 1 9 0.035 0.71 

*The regions BR, SAFR and AU were excluded from these experiments, as aircraft NOx emissions for these regions are marginal, their contribution to 
aircraft NOx global total constitute 1.5%, 0.5% and 1.3%, respectively. Thus, the signal from any small relative incremental aircraft NOx emissions 
experiments for these regions is barely visible in CTM results.     
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Table 2: The global and annual mean O3 burden change (in Tg) and the CH4 lifetime reduction (in yr) due to the 
aircraft NOx emissions in different geographical regions. Calculations are done for surface–1hPa domain and are 
based on 0.035 Tg(N) yr-1 incremental aircraft NOx emission. All values are on a per Tg N basis. The CH4 lifetime for 
the year 2006, as modelled by MOZART-3, is 8.5 years. 

 

REGION 
O3 burden change 

 (Tg) 
CH4 lifetime change  

(yr) 
Global 5.65 -0.081 

   
NH 5.33 -0.074 
SH 8.82 -0.160 

   
EUR 4.22 -0.057 
NA 4.73 -0.067 

SE ASIA 5.51 -0.093 
NPAC 7.28 -0.087 
NATL 6.32 -0.057 

BR 7.94 -0.158 
SAFR 7.77 -0.139 
AU 9.11 -0.173 

 

 

 

Table 3: Aviation net NOx Global Warming Potentials (GWP) for Northern and Southern Hemisphere and regions: 
Europe, North America, Southeast Asia, North Atlantic, North Pacific, Brazil, South Africa and Australia for 20-, 100- 
and 500-year time horizons. All values are on a per kg N basis relative to CO2 and are based on 0.035 Tg(N) yr-1 
incremental aircraft NOx emissions. 

 

REGION 
GWP  

H=20 H=100 H=500 

Global 322 59 17 

    

NH 305  57 16 

SH 458 70 20 

    

EUR 164  25 7 

NA 234 40 11 

SE ASIA 329 57 16 

NPAC 477 99 28 

NATL 478 110 31 

BR 542 109 31 

SAFR 416 70 20 

AU 480 87 25 
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Table 4: Normalized aircraft net NOx radiative forcings for different regional incremental aircraft NOx emissions.  
Net NOx accounts for short-term O3 RF, CH4-induced O3 RF and CH4 with SWV RF. 

 

REGION 
Net NOx RF [mW m-2/Tg(N) yr-1] 

0.035 Tg(N) yr-1  5 %(N) yr-1 100 %(N) yr-1 

Global 5.51 5.51 4.89 

    

NH 5.31 5.32 4.76 

SH 6.45 9.02 6.42 

    

EUR 2.32 2.90 1.97 

NA 3.73 5.07 3.52 

SE ASIA 5.33 5.26 5.25 

NPAC 9.22 23.73 9.53 

NATL 10.21 14.06 10.38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

Figure SI 1: SE ASIA domain partitioned to smaller domains: E ASIA and S ASIA. 

 
Figure SI 2: Scatter plot of CH4 lifetime change per O3 burden change for different Asian 
domains and a series of aircraft NOx emission (dots are individual experiments, lines are the 
linear best fit lines). 
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Figure 1: Regional domains selected for this study: Europe (EUR), North America (NA), 
Southeast Asia (SE ASIA), North Atlantic (NATL), North Pacific (NPAC), Brazil (BR), 
South Africa (SAFR), Australia (AU), Northern Hemisphere (NH) and Southern Hemisphere 
(SH), along with latitudinal (right panel) and longitudinal (bottom panel) profiles of regional 
aircraft NOx emissions. 
 
Figure 2: The vertical profiles of regional aircraft NOx emissions: Northern and Southern 
Hemisphere (left panel); Europe (EUR), North America (NA), Southeast Asia (SE ASIA), 
North Atlantic (NATL), North Pacific (NPAC), Brazil (BR), South Africa (SAFR) and 
Australia (AU) (right panel). 
 
Figure 3: The global and annual mean vertical distributions of O3 changes (in ppbv) for 
aircraft NOx emission increases by 0.035 Tg(N) yr-1 in different regional domains: Northern 
(NH) and Southern (SH) Hemispheres (left panel), Europe (EUR), North America (NA), 
Southeast Asia (SE ASIA), North Atlantic (NATL), North Pacific (NPAC), Brazil (BR), 
South Africa (SAFR) and Australia (AU) (right panel). The dashed black line represents the 
O3 change from global aircraft NOx emission. 
 

Figure 4: Zonal and annual mean net (long wave and shortwave) radiative forcing  
(mW m-2/Tg(N) yr-1) from short-term O3 for Northern (NH) and Southern (SH) Hemisphere 
(left panel) and regions: Europe (EUR), North America (NA), Southeast Asia (SE ASIA), 
North Atlantic (NATL), North Pacific (NPAC), Brazil (BR), South Africa (SAFR) and 
Australia (AU) (right panel). Based on 0.035 Tg(N) yr-1 incremental aircraft NOx 
experiments. The dashed black line represents the O3 RF from global aircraft NOx emission. 

Figure 5: Radiative forcings per unit emission of N (in mW m-2/Tg(N) yr-1) due to short-term 
O3 (O3), CH4-induced O3 (

CH4O3), CH4 (CH4), stratospheric water vapour (SWV) and NOx 
(net of all 4 components) for Northern and Southern Hemisphere and regions: Europe, North 
America, Southeast Asia, North Atlantic, North Pacific, Brazil, South Africa and Australia. 
The short-term forcing values are given in red, the long-term forcing values (sum of CH4, 
CH4O3 and SWV) are shown in blue and the net NOx RF magnitudes are presented in green. 
Based on 0.035 Tg(N) yr-1 incremental aircraft NOx experiments. 

Figure 6:  Relationship between background conditions and aircraft O3 burden change. A) 
Scatter plot of global and annual O3 burden change due to aircraft NOx emission increase by 
0.035 Tg(N) yr-1 in different regions against background NOx concentration at 227 hPa (dots 
are individual experiments, line is the best-fit curve). B) Heat map of background conditions 
(CO concentrations, HOx concentrations, NOx concentrations and OH/HO2 ratio) at 227 hPa 
and aircraft O3 burden change (aircraft O3) for different regional domains. All variables are 
presented as an annual mean. The percentage fraction presents how the specific combination 
of region and background condition contribute to the specific total regional background 
condition. 
 

Figure 7: The normalized O3 burden change (red bars) and CH4 lifetime reduction (blue bars) 
for a series of geographical regions and aircraft NOx emission rates. 
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Figure 8: The ratio of the CH4 lifetime change to the O3 change for a series of geographical 
regions and aircraft NOx emission rates. 
 

Figure 9: Scatter plot of CH4 lifetime change per O3 burden change for different regions and a 
series of aircraft NOx emission (dots are individual experiments, lines are the linear best fit 
lines). 
 

Figure 10: The spread in regional aviation net NOx RFs (left) and aviation net NOx GWPs 
(right) for different incremental aircraft NOx emission, 5% (N) yr-1(blue), 100% (N) yr-1 (red) 
and 0.035 Tg(N) yr-1 (green).   
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� The effects from hemispherical/regional aircraft NOx emissions are explored using 3D 

CTM, MOZART-3.  

� The climate metrics values decrease with increasing regional aircraft NOx emission 

rates, except for Southeast Asia. 

� Regional applications of an equal mass and a relative mass of aircraft NOx emission 

result in different regional dependencies. 

� The greatest net NOx radiative forcing is observed for remote northern oceanic regions. 
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SI 1 Additional experiments  13 

 14 

The supressed non-linearity of O3 production and net NOx effects is observed for SE ASIA 15 

region (Section 5). In order to investigate whether the size of the SE ASIA domain could 16 

influence this behaviour, an additional set of experiments was performed using MOZART-3 17 

CTM. 18 

 19 

The SE ASIA domain was partitioned to two smaller geographical regions, E ASIA (95°E-20 

145°E; 20°N-45°N) and S ASIA (95°E-145°E; 12°S-20°N) (Figure SI 1). The methodology of 21 

applied experiments is consistent with what is described in Section 2 and the size of injected 22 

aircraft NOx rates is the same as it is presented in Table 1. 23 

 24 

The magnitudes of ratio of the CH4 lifetime change per unit O3 change vary for different 25 

Asian domains (Figure SI 2). The magnitudes of S ASIA’s ratio is greater by 15% and E 26 

ASIA’s ratio is smaller by 6%, compared with SE ASIA CH4/O3 magnitude (based on 0.035 27 

Tg(N) yr-1). The CH4 lifetime change per O3 burden change for E ASIA and S ASIA varies 28 

only by 3% for different aircraft NOx emissions rates, which, similarly as for SE ASIA, results 29 

in relatively constant magnitudes of net NOx RFs.  30 

 31 

The values of net NOx RFs for E ASIA and S ASIA for different incremental aircraft NOx 32 

emission cases stay within a ~5% range, that is slightly larger than SE ASIA’s 2% (Table SI 33 

1). However, as well as for SE ASIA, the short-term O3 RFs for E ASIA and S ASIA 34 

increases with increasing NOx emission rates and they are observed to be ~3% lower for 5% 35 
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2 
 

(N) yr-1 compared with 0.035 Tg(N) yr-1, and 1% different for 100% (N) yr-1 compared with 36 

0.035 Tg(N) yr-1. 37 

 38 

 39 




