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Existing experimental and theoretical studies are discussed which lead to the clear hy-
pothesis of a hitherto unidentified convective instability mode that dominates within
the boundary-layer flow over slender rotating cones. The mode manifests as Görtler-
type counter-rotating spiral vortices, indicative of a centrifugal mechanism. Although
a formulation consistent with the classic rotating-disk problem has been successful in
predicting the stability characteristics over broad cones, it is unable to identify such a
centrifugal mode as the half-angle is reduced. An alternative formulation is developed and
the governing equations solved using both short-wavelength asymptotic and numerical
approaches to independently identify the centrifugal mode.

1. Introduction
This paper describes recent advances in the study of boundary-layer transition over

rotating cones. In particular, we are concerned with the distinct convective instability
mechanisms that dominate within the boundary layers over slender and broad rotating
cones.

Our general interest in rotating cones is motivated by the flow around nose cones in
aeroengine and spinning projectile applications. Here laminar–turbulent transition within
the boundary layer can lead to significant increases in drag which has negative implica-
tions for fuel efficiency and control. Alternatively, turbulent flow can be encouraged as
a means of heat transfer in situations where unwanted heat is generated, for example
in re-entry. In any event, a complete understanding of the transition of such flows could
lead to modifications in design and significant cost savings in aerospace technologies.
It is clear that the linear-stability analyses presented here for cones rotating within in-
compressible and otherwise still fluids are of limited direct relevance in terms of these
motivating applications. However, previous studies including Garrett et al. (2010), Hus-
sain (2010), Hussain et al. (2011) have shown that there is a close link between the
rotating disk and cone problems in still fluid and axial flow. Hence, the current still fluid
study forms an important stepping stone to analysing the more complex problem where
axial flow is introduced. More generally, this work should be considered as a further step
towards fully classifying the instability mechanics within the global class of boundary
layer flows over rotating bodies. Indeed, studies of the effects of enforced axial flow over
broad cones and disks have already been published, Garrett & Peake (2007), Garrett et
al. (2010), Hussain (2010), Hussain et al. (2011), Towers & Garrett (2013a,b).

The paper is structured as follows: we begin by summarizing the motivation for the
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hypothesis of an alternative instability mode in §2. In §3 the problem is formulated from
the perspective of the asymptotic analysis of §4 and any variations in the formulation
required by the numerical analysis are described in §5. The results of the two analyses
are compared in §6 and conclusions drawn in §7.

2. Motivating the hypothesis of an alternative mode
The hypothesis of an alternative instability mode that is dominant on slender cones is

justified by the consideration of three distinct sets of results in the literature. We take
each set in turn.

Motivation 1 - experimental observations
The visualization studies by Kobayashi et al. (1983) and Kobayashi & Izumi (1983)

of rotating cones with slender half-angles show the existence of pairs of counter-rotating
Görtler-type vortices prior to the appearance of turbulence. However, as the half-angle
ψ is increased beyond 40◦, their visualizations clearly show that these vortices change
to co-rotating vortices, as reported on rotating disks by Gregory et al. (1955), Kohama
(1985), Reed & Saric (1989), Kobayashi (1994), Corke & Knasiak (1998), Saric et al.
(2003), for example. Counter-rotating vortices are expected to arise from a dynamic
instability induced by the centrifugal force of the flow field, and co-rotating vortices are
attributed to an underlying crossflow instability. The experimental observations therefore
strongly hint at alternative mechanisms over slender and broad cones.

Motivation 2 - experimental measurements of the onset of turbulence
Further evidence of distinct mechanisms is obtained by considering experimental mea-

surements for the onset of turbulence by Kobayashi & Izumi (1983) and Nickels &
Bertényi, University of Cambridge (personal communication, 2007) as compared to the
onset of local absolute instability predicted by Garrett & Peake (2007). Although the
exact role of local absolute instability in transition over the rotating disk is less clear
than originally proposed by Lingwood (1995,1996) [see Davies & Carpenter (2003), Pier
(2003), Healey (2010), Imayama, Alfredsson & Lingwood (2013)], the theoretical onset
of local absolute instability is extremely close to numerous consistent measurements of
the onset of turbulence over the rotating disk and this provides a useful of means of com-
parison. In particular, Garrett & Peake demonstrated that the critical local Reynolds
number for local absolute instability is independent of half-angle with RX ≈ 2.5 × 105;
this can be compared to the two sets of experimental results:

i) Figure 1 shows the comparison with experimental measurements for the onset of
turbulence reported by Kobayashi & Izumi. For cones with ψ ≥ 60◦, we see that transition
occurs at a local Reynolds number independent of the half-angle and reasonably close to
the predicted onset of local absolute instability. Note here that the precise definition of
turbulent flow is somewhat subjective in experimental terms and Kobayashi & Izumi’s
measurements are subject to some flexibility. This is clearly demonstrated by comparing
their measurements for half-angles close to 90◦ with Lingwood (1996)’s measurement on
a rotating disk (the horizontal line at 90◦ in Figure 1). This close agreement suggests
that local absolute instability may well be involved in the transition over broad rotating
cones, consistent with the rotating-disk flow. For more slender cones, the measured critical
Reynolds numbers decrease sharply with decreased half-angle and occur in advance of
the predicted onset of local absolute instability.

ii) Figure 2 shows Nickels & Bertényi’s measurements for the onset of turbulence over
three cones (each with distinct half-angle) at different rotation rates. We see that the
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Figure 1. Critical RX for the onset of local absolute instability and the transitional values
measured by Kobayashi & Izumi (1983).

Figure 2. Experimental data due to Nickels & Bertényi for the onset of turbulence,
uppermost plot is ψ = 60◦. (Cone angle = 2×ψ).

measured critical Reynolds number over the broadest cone (ψ = 60◦) is in good agreement
with the predicted onset of local absolute instability and is independent of rotation rate
(which suggests that the dashed line in figure 1 can be extended to at least this half-
angle). However, the onset of turbulence over the slender cones with ψ = 30◦ and 15◦ is
again well in advance of the predicted onset of local absolute instability and dependent
on the rotation rate. Furthermore, they reported greater variation in the flow behaviour
through turbulent transition in the case of the most slender cone. This is thought to
be linked to the greater prevalence of a secondary instability, which has been visualised
in the form of horseshoe-like vortices that persist into the turbulent region of flow (see
Kohama (1985)).
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Figure 3. A comparison between the experimental observations of the vortex orientation angle
and the predicted value at the onset of type I instability and the asymptotic limit for large
Reynolds number. Garrett et al. (2009)

Motivation 3 - predictions of convective instability
Garrett et al. (2009) present mathematical studies of the rotating-cone boundary layers

using a formulation consistent with other rotating-disk studies (Malik 1986 and Lingwood
1995, for example). They demonstrate that convective modes of type I and II (also known
as crossflow and streamline-curvature modes, respectively) exist at all 10◦ ≤ ψ ≤ 90◦.
The onset of convective instability is associated with the onset of the spiral vortices
and the critical Reynolds numbers and other measurable quantities of the spiral vortices
(number, angle of orientation) compare well with experimental observations by Kreith
et al. (1962), Kappesser et al. (1973) and Kobayashi & Izumi (1983) when ψ ≥ 40◦.
However, increasing discrepancy is found for ψ < 40◦. This is clearly seen in Figure 3,
for example, where the theoretical predictions of the orientation angle for vortices arising
from the type I mode are compared to Kobayashi & Izumi’s experimental observations
at each half-angle. Such comparisons suggest that the vortices found on slender cones
cannot be attributed to the type I and II modes.

The behaviour of the type I and II modes was further elaborated by Garrett (2010)
who extended the numerical results of Garrett et al. (2009) to consider the amplification
rates of the modes through the convectively-unstable region as a function of half-angle.
He found that the amplification rates of both mode types reduce with decreased half-
angle. This finding is consistent with the hypothesis of a centrifugal mode that dominates
at slender half-angles.

These three motivations give clear evidence for an instability mode arising from cen-
trifugal effects that exists in addition to the well-known type I and II modes. We envisage
all three modes existing within the flow over rotating cones of any half-angle, but with a
relative dominance that depends on half-angle. It is therefore likely that a critical half-
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angle exists for the switch from a predominantly centrifugal instability (manifested in the
appearance of counter-rotating vortices) to the crossflow instability (manifested in the
appearance of co-rotating vortices) as the half-angle is increased. Although experiments
have only been conducted at a small number of distinct half-angles, the evidence suggests
this critical half-angle to be around 40◦.

It is interesting to also note that for very slender cones (ψ ≤ 15◦), Kobayashi et al.
(1983) and Kobayashi & Izumi (1983) have observed both spiral and circular vortices.
These are distinguished by non-zero and zero waveangles respectively, and have been
observed for cones rotating in both otherwise still fluid and enforced axial flow. The
theoretical study of these two cases is slightly different and we consider only spiral vortices
in this paper. Our study of circular waves for ψ ≤ 15◦ is presented as Hussain et al. (2012).

3. Formulation
We use coordinate axes aligned with the spiral vortices and with origin O′ placed at

the local position of the analysis. As shown in figure 4, the x̂∗-axis coincides with the
direction of propagation of the spiral vortices aligned with the effective velocity direction.
Alternatively, the y∗- and z∗-axes are mutually orthogonal and run in the tangential and
surface-normal directions, respectively (where a ∗ denotes a dimensional quantity in all
that follows). The resulting coordinate system (x̂∗, y∗, z∗) rotates with the cone surface
at constant angular frequency Ω?. Importantly, the logarithmic spirals are directed such
that the y∗-axis has a positive projection with respect to the direction of rotation of
the cone. This requires that the x̂∗-axis has positive projection onto the axis of rotation
and the y∗-axis to have negative projection, as seen in Figure 4. The spiral vortices are
orientated at an angle φ relative to the circle formed from the planar cross-sectional
normal to the axis of rotation of the cone. The governing dimensional Navier–Stokes
equations are then derived in this co-ordinate system with appropriate scale factors.

This formulation is similar to that used in Kobayashi (1981) but differs by the sign of
the Coriolis terms in the momentum equations, because we have used an anti-clockwise
rotating cone, as opposed to a clockwise setup, for consistency when comparing results
with our previous study for rotating cones with large ψ (see Garrett et al. (2009)).
Importantly, the a priori assumption that the spiral vortices exist and have orientation
angle φ is a significant difference to our previous formulation in Garrett et al. (2009),
where the existence and properties of vortices were an output of the analysis.

We non-dimensionalise lengths on a characteristic distance along the cone l∗, so that
x̂∗ = l∗x̂ and y∗ = l∗y. Furthermore, we scale both logarithmic coordinates x̂ and y, as
well as the normal coordinate z∗, on the boundary-layer thickness, leading to the scaled
coordinate system (x̌, ȳ, η) = R1/2(x̂, y, z) where R is the Reynolds number given by

R =
Ω∗l∗2 sin ψ

ν∗
.

This scaling enables the vortex structure in both logarithmic directions to be analyzed at
the same order as the length scale in the surface-normal direction. Usually a Görtler-mode
analysis requires only lengths normal to the surface and spanwise to the vortices to be
scaled on the boundary-layer thickness, see Hall (1982), Denier et al. (1991), however here
the counter-rotating vortices are characterised by both logarithmic coordinates which
require this scaling. This spatial scaling is another important difference to our previous
formulation.

We assume that the spiral waves are periodic in the effective velocity direction and
introduce periodicity into the perturbation quantities of vortex x̌-wavenumber a and ȳ-



6 Z. Hussain, S. J. Garrett and S. O. Stephen

 

 

y 

z 

 

x 

x 

*  

 

r =xsin  

 

 

U 

Figure 4. Diagram of spiral vortex instability of a rotating cone, showing conventional stream-
wise, aziumthal and surface-normal coordinates (x, θ, z) defined in Garrett et al. (2009), as well
as the shifted logarithmic spiral coordinates (x̂, θ) (left). Also included is a detailed physical

interpretation (right) showing the streamwise, azimuthal and effective velocity directions U .
Note that α0 and β0/r refer to wavenumbers in the streamwise and azimuthal directions of the
previous formulation Garrett et al. (2009), whereas the logarithmic spiral coordinate x̂ coincides

with the effective velocity direction U .

wavenumber b. Scaling our perturbing quantities on the boundary-layer thickness, we
introduce a perturbed flow of the form

ũ∗ = Ω∗l∗ sin ψ[{xŨ(η;φ), xṼ (η; φ),R−
1
2 W}+ R−

1
2 {ũ(η), ṽ(η), w̃(η)}exp(iax̌ + ibȳ)].

where x is streamwise direction over the cone, scaled on l∗ (see Garrett et al. (2009), for
example). We note that these scalings remove ψ from the governing equations. Similarly
the pressure perturbation term scales as

p∗ = (ρ∗Ω∗2l∗2 sin2 ψ)R−1p̃(η)exp(iax̌ + ibȳ), (3.1)

where there is an associated corresponding base pressure, which is not stated here, as it
is not required for the purposes of analysing the perturbation equations. The steady-flow
components in the x̌- and ȳ-directions are denoted Ũ(η; φ) and Ṽ (η; φ) and can be found
from the solution of the governing equations at leading order. Figure 5 gives these profiles
for φ = 0◦, 5◦ and 10◦ where we see a very slight increase in the velocity in the ȳ-direction
as the waveangle is increased. However, we observe much more sensitivity for the velocity
in x̌-direction, with a significant decrease in the far-field limit as the waveangle increases.

Importantly, Ũ and Ṽ can be expressed as projections of the von Kármán profiles used
in our previous formulation, for example in Garrett et al. (2009), as:

Ũ(η;φ) = U(η) cos φ + V (η) sin φ,

Ṽ (η;φ) = U(η) sin φ + V (η) cos φ.

This demonstrates consistency between this formulation and that used in previous
studies. It is therefore clear that the velocity profiles for φ = 0◦ limit to those used
previously, and in this formulation this corresponds to the circular waves observed for
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cones with ψ ≤ 15◦. As discussed above, these are not considered here and the interested
reader is referred to Hussain (2010), Hussain et al. (2012) for the associated stability
analyses.

In order to derive the governing perturbation equations for spiral vortices (φ 6= 0),
it is necessary to make a number of mathematical approximations to the scale factors
which are based on the assumption of large Reynolds number and small waveangle. These
can be justified from the experimental observations of Kobayashi & Izumi which report
φ ≈ 0◦ − 2.7◦. In §4 we investigate the short-wavelength asymptotic structure of the
centrifugal instability and hence identify the spiral vortex wavenumber in the x̌-direction
as a = ε−1, where ε is a small parameter. Here, b = O(1) is the wavenumber in the
ȳ-direction. Full details of the mathematical manipulations are given in Hussain (2010)
and we arrive at the governing stability equations stated in Appendix A. We note that
the governing equations are considerably more complicated than those considered under
the previous formulation and this is a consequence of the different spatial scalings used
here.

4. Asymptotic analysis
Analytical progress is made for large vortex wavenumbers, which form the basis of

our asymptotic structure. This is in contrast to Garrett et al. (2009), for example, who
present asymptotic analyses of type I and II modes by introducing a small parameter
given by inverse powers of the Reynolds number as the basis of the asymptotic structure.
Their analysis leads to explicit expressions for the wavenumbers of neutrally-stable modes
that enable simple comparisons with the upper and lower branches of the numerically-
computed neutral curves in the large Reynolds-number limit, as can be seen in Figures 10
& 11 of Garrett et al. (2009). In this study, however, the governing equations are solved
to determine leading- and next-order estimates of a scaled Taylor number for neutrally-
stable modes. Comparisons with other results expressed in terms of Reynolds numbers
are therefore less immediate and this is further discussed in §6. The asymptotic approach
presented here is clearly distinct to that used previously and follows Hall (1982) for the
Taylor problem of flow between concentric rotating cylinders. Indeed, for slender rotating
cones, ψ is sufficiently small that the formulation resembles that for flow moving axially
over a rotating cylinder.

The Taylor number in this formulation is given by

T =
2 cotψ cosφ

sin5 ψ
. (4.1)

We consider it to be a function of ψ and parameterised by the particular φ under consid-
eration. The expression is such that T increases with decreased ψ and can be considered
as a measure of cone slenderness for particular φ. The Taylor number can be thought
of as characterizing the importance of centrifugal forces relative to viscous forces, and
is closely related to the Görtler number, which has been used to describe centrifugal
instabilities, for example in fully developed and boundary layer flows by Hall (1982).

Leading-order solution

The perturbation quantities are expanded and we consider a WKB solution for small
values of ε. Recall that a = ε−1 with a the wavenumber in the x̌-direction. The dominant
terms in the governing equations (A 1)–(A 4) balance if we scale T ∼ ε−4 and W/V ∼
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O(ε−2), resulting in

ũ =E(u0(η) + εu1(η) + ε2u2(η) + . . .),

ṽ =ε2E(v0(η) + εv1(η) + ε2v2(η) + . . .),

w̃ =E(w0(η) + εw1(η) + ε2w2(η) + . . .),

T =ε−4(λ0 + λ1ε + λ2ε
2 + . . .),

where λ = λ0 + λ1ε + λ2ε
2 + . . ., E = exp i

ε

∫ ϕ
K(τ)dτ and ϕ = sin ψ

h̄1
η. Importantly, we

note that the definition of the Taylor number (4.1) arises following differentiation with
respect to η and consequent manipulation of the governing disturbance equations (A 1)–
(A 4), following the method of Hall (1982) to identify the correct scaling for the Görtler
number, and consequently the Taylor number. After substitution of these expansions
into the governing equations and some simplification owing to the assumption of small
waveangle, we arrive at an eigenrelation at leading order which can be solved to give the
scaled leading-order eigenvalue estimate

λ̄0 = − 1[
(Ṽ cos φ + 1)∂Ṽ

∂η

]
min

,

where the scaled eigenvalue is λ̄ = λh̄4
1(1 + x̌ cos φ − ȳ sinφ) and h̄1 is a scale factor

defined as h̄1 = 1 + x̌ cos φ − ȳ sin φ + η cosψ sin2 φ. In the range of small waveangles
that have been experimentally observed for slender cones, the minimum value of the
denominator occurs at the wall (η = 0). In order to evaluate the denominator, we note
that Ṽ (0) = 0 and evaluate only |Ṽ ′(0)| for varying φ. Although not shown here, this
quantity is found to decrease as φ is increased and our leading-order eigenvalue estimate
increases in magnitude as the waveangle is increases. Numerical values for λ̄0 are given
in Table 1 for various ψ and φ relevant to experimental observations.

First-order solution
Following Hall’s method, we seek to analyze vortex activity, which from the leading order
solution is found to be located at the wall near η = 0, through obtaining the location of
the minimum of the function (Ṽ cos φ+1)∂Ṽ

∂η . Hence, we consider a thin layer about this

location, which is of thickness O(ε
2
3 ), and expand the Taylor number in the form

T = ε−4(λ0 + λ1ε
2
3 + . . .).

Furthermore, we re-scale the normal variable on an appropriate thickness ξ = ϕ

3
1
3 ε

2
3
. The

normal perturbation velocity is then expanded as

w̃ = w0(ξ) + ε
2
3 w1(ξ) + . . . ,

with ũ = O(1) and ṽ = O(ε2) as in the leading-order analysis. After substituting these
expressions into the governing equations and equating terms of O(ε

2
3 ) we obtain an

eigenvalue relation at first order. This can be solved to give a first-order estimate of our
scaled Taylor-number eigenvalue as

λ̄1 =
2.3381× 3

1
3

|Ṽ ′(0)|
[ Ṽ ′′(0)

Ṽ ′(0)
+ Ṽ ′(0) cos φ

]2

.

The mathematics is very involved and full details are given by Hussain (2010). In fact we
obtain an infinite sequence of eigenvalues {λ1n}, corresponding to the zeros of an Airy
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ψ φ λ̄0 λ̄1

15◦ 0◦ 1.6236 2.0769

30◦ 1◦ 1.6477 1.8567
2◦ 1.6731 1.6389

2.7◦ 1.6915 1.4887
4◦ 1.7277 1.2162
5◦ 1.7572 1.0146
6◦ 1.7883 0.8221
8◦ 1.8556 0.4747

45◦ 8.5◦ 1.8735 0.3979
10◦ 1.9305 0.1991

Table 1. Leading- and first-order eigenvalue estimates of the scaled Taylor number for
orientation angles as observed by Kobayashi & Izumi on cones with the stated half-angle.

function on the negative real axis. Numerical values for the most dangerous λ̄1 are given
in Table 1 for various ψ and φ relevant to experimental observations.

Asymptotic estimate of Taylor number

Combining the leading- and next-order solutions, the most dangerous instability mode
has a scaled Taylor-number expansion given by

T̄ =T h̄4
1(1 + x̌ cosφ− ȳ sin φ)

=ε−4

(
1

|Ṽ ′(0)| +
2.3381× 3

1
3 ε

2
3

|Ṽ ′(0)|
[ Ṽ ′′(0)

Ṽ ′(0)
+ Ṽ ′(0) cos φ

]2

+ . . .

)
. (4.2)

Numerical estimates of the leading- and first-order eigenvalues corresponding to the
scaled Taylor number are shown in Table 1 for parameter values in the range of those
experimentally observed by Kobayashi & Izumi (1983).

Plots of the scaled Taylor number against wavenumber, ε−1 = a, for φ = 0◦–10◦ in
increments of 2.5◦ are shown in Figure 6. The unstable region is above the curves and
the stable region below. We see that there is slight variation with waveangle that reduces
with increased wavenumber. At this stage it is sufficient to take that Equation (4.2)
demonstrates the existence of the centrifugal mode; the results will be interpreted in §6.

5. Numerical analysis
We now discuss the numerical solution of the system described in §3. The formula-

tion is reasonably consistent with that presented above, however rather than solving
(A 1)–(A 4) using expansions in ε, we make further approximations and manipulations to
convert these equations into the governing fourth-order Orr–Sommerfeld (OS) equation
for stationary disturbances within the system. To this end, we begin by neglecting terms
arising from Coriolis and streamline-curvature effects and collate the resulting equations
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Figure 6. Asymptotic scaled Taylor number T̄ as a function of non-dimensional vortex
wavenumber ε−1 for φ = 0◦ − 10◦ in increments of 2.5◦. The unstable region is above the
neutral curves.

in terms of the normal perturbation velocity to form
[
i
(

∂2

∂η2
− k2

)2

+ Re
(
α1Ũ + β1Ṽ

) (
∂2

∂η2
− k2

)
−Re

(
α1

∂2Ũ

∂η2
+ β1

∂2Ṽ

∂η2

)]
w̃ = 0

(5.1)
where

α1 =
a sin ψ

Re
, β1 = b sin ψ, k =

√
α2

1 + β2
1 ,

and Re = x sinψ is the local Reynolds number, interpreted as the local non-dimensional
radius of the cone surface from the axis of rotation. We can relate this rotational Reynolds
number, Re, to the conventional Reynolds number, R, defined in §3 using equation (8)
of Kobayashi & Izumi (1983) to re-write the surface-curvature term, which leads to the
relation

Re = R
1
2
√

1.616.

We note here that the dependence of the system on the vortex waveangle, φ, is purely
in the form of the projected basic flow velocities Ũ(η; φ), Ṽ (η; φ). Essentially, the vortex
waveangle forms an input to the problem, which allows the OS equation above to be solved
whilst using various projected basic flows as input functions. We proceed to investigate
the solutions for ψ = 15◦, 30◦ and 45◦, noting that φ = 0◦, 2.7◦ and 8.5◦, respectively,
thereby yielding results in a suitable parameter regime, which can be compared with the
findings of Kobayashi & Izumi (1983).

In order to solve the governing fourth-order perturbation equation (5.1), we employ an
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ψ φ Rec α1,c

15◦ 0◦ 50 1.01
30◦ 2.7◦ 135 0.72
45◦ 8.5◦ 270 0.59

Table 2. Numerical calculations of the critical Reynolds numbers, Rec, and critical vortex
wavenumbers, α1,c, in the effective velocity direction for a range of small half-angle cones and
corresponding vortex waveangles.

existing OS solver routine for the rotating cone, which has been modified to allow existing
solutions for the OS neutral curve at specific values of ψ to be used in order to enable
fast convergence when searching for neutral curves for the required values of ψ for slender
cones. Specifically, this routine has been coded to enable the upper branch neutral curve
solutions for larger half-angles (eg. ψ = 50 − 70◦) to be used as input solutions when
solving the OS equation (5.1) for smaller half-angles (such as ψ = 45◦). Provided the
corresponding base flows for each specific half-angle are input into the OS solver, neutral
curve solutions at the larger half-angle are used to obtain the OS solution for the smaller
half-angle. Hence, we are able to arrive at convergent neutral curves, gradually merging
from previously obtained larger half-angles (such as ψ = 45◦), and moving towards much
slender cones of half-angle (ψ = 15◦). We aim to obtain neutral stability curves for the
required values of ψ = 15◦, 30◦ and 45◦, using the corresponding vortex waveangle values
φ = 0◦, 2.7◦ and 8.5◦, respectively.

Numerical predictions of the critical Reynolds numbers and critical vortex wavenum-
bers for ψ = 15◦, 30◦ and 45◦ are shown in table 2. The results illustrate a decrease
in the half-angle leads to a reduction in the critical Reynolds number, implying slender
rotating cones represent the most unstable flow cases and cones of ψ ≤ 15◦ harbour the
most dangerous modes. This is corroborated by the critical vortex wavenumbers in the
effective velocity direction, which increase for smaller values of ψ. In the case of steady
flow, this would lead to greater amplification rates. Furthermore, while the results recover
the findings of Kobayashi & Izumi (1983), more importantly, at large Reynolds numbers
and large vortex wavenumbers, we observe reasonably good qualitative agreement with
our asymptotic results, as discussed below in §6.

It is useful to note at this stage, to enable suitable comparison with the asymptotic
analysis of §4, we are interested in the vortex wavenumber in the effective velocity x̌-
direction, namely α1. We recall that the wavenumber in the ȳ-direction, b = O(1), as
outlined in Hussain (2010).

6. Comparison between asymptotic and numerical analysis
In this section, we present comparisons between the large vortex wavenumber asymp-

totics in §4 and numerical OS neutral curve predictions in §5. In the case of the latter,
previous studies for the rotating disk (for example Lingwood (1995) and Malik (1986))
have shown that the relative importance of the type II stability mode is unable to be pre-
dicted. However, analysis of the OS equation does yield qualitatively correct predictions
of the neutral stability curves, which increase in numerical accuracy as Re → ∞ (see,
for example, Garrett et al. (2010) for broad rotating cones). Hence, the results of the
OS analysis presented should compare well in theory with the large vortex wavenumber
asymptotics at high Reynolds number.
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Figure 7. A comparison between the scaled effective asymptotic Taylor number T̄ (above) and
the Reynolds number Re predicted by the OS analysis (below), against vortex wavenumbers ε−1

and σ respectively, for ψ = 15◦, φ = 0◦.

Appropriate scalings are used, following Hussain (2010) so that the Taylor number
defined in equation (4.1) is linearly related to the rotational Reynolds number (see also
Kobayashi & Izumi (1983)), which leads to a relationship of the form

Re = T̄
√

1.616

for larger Reynolds number, Re, and large Taylor number, T . The definition of the Taylor
number is such that increased T̄ corresponds to reduced half-angle (for any fixed wavean-
gle). The results may therefore suggest that the most unstable case (in the asymptotic
sense of a broader range of unstable wavenumbers) for the centrifugal-instability mode
is for small ψ and φ = 0◦; this, however, assumes a particular behaviour for any up-
per neutrally-stable branch in that it is at worst parallel to the computed lower branch.
Care also should be taken in the interpretation of these results owing to the scale factors
introduced.

In the case of cones with half-angles ψ ≤ 15◦, Kobayashi & Izumi’s results for ψ = 15◦

are recovered for large Reynolds number and large vortex wavenumber ε−1 in Figure 9.2
of Hussain (2010). Furthermore, discussion of the formulation, analysis and results in this
parameter regime where circular vortices are observed is given in Hussain et al. (2012).

Comparisons are sought for large vortex wavenumber, ε−1, between the scaled effective
asymptotic Taylor number, T̄ , and the numerical OS neutral curves depicting Reynolds
number, Re, in terms of the vortex wavenumber σ in the effective velocity direction.
We note from equation (3) in Kobayashi & Izumi (1983) that this vortex wavenumber is
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Figure 8. A comparison between the scaled effective asymptotic Taylor number T̄ (above) and
the Reynolds number Re predicted by the OS analysis (below), against vortex wavenumbers ε−1

and σ respectively, for ψ = 30◦, φ = 2.7◦.

expressed as σ = αδ1 sin θ, where θ represents the cone half-angle, ψ, in the current study.
Furthermore, α is linearly related to a by a factor of sinψ, such that a = α sin ψ. After
some manipulations of the definitions used in Kobayashi & Izumi (1983) and comparing
the OS equation (5.1) to that presented in equation (4) of Kobayashi & Izumi (1983),
we note that σ used in Kobayashi & Izumi (1983) is analogous to α1 in the current
numerical analysis, representing the vortex wavenumber in the effective velocity direction.
Importantly, we note due to the fact that b = O(1), the stability characteristics of the
problem depend mainly on the vortex wavenumber in the effective velocity direction, a.
Physically, this is consistent with figure 4, as there is a large number of vortex spirals,
which are periodic along the effective velocity direction, indicating boundary layer growth
along this axis, but not normal to this in the ȳ-direction. This is also observed in a number
of experimental studies, including Kobayashi & Izumi (1983), and is the reason why a
short-wavelength asymptotic analysis is applicable in §4.

Using the appropriate form for the scaled effective asymptotic Taylor number, T̄ ,
expanded in terms of vortex wavenumber ε−1, we present comparisons with the Reynolds
number Re predicted by the OS analysis against σ in figures 7, 8 and 9 for ψ = 15◦, 30◦

and 45◦, respectively. In each figure, we have computed asymptotic curves for φ = 0◦, 2.7◦

and 8.5◦, respectively, in order to identify and compare with the most suitable basic flow
used within the OS analysis. These values correspond to the theoretical values of φ
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Figure 9. A comparison between the scaled effective asymptotic Taylor number T̄ (below) and
the Reynolds number Re predicted by the OS analysis (above), against vortex wavenumbers ε−1

and σ respectively, for ψ = 45◦, φ = 8.5◦.

presented in Kobayashi & Izumi (1983) and hence facilitate a useful comparison with
their results, as shown in Hussain et al. (2012) for ψ = 15◦ specifically.

We observe relatively good qualitative agreement between the OS neutral curve mea-
surements and the asymptotic branches of the scaled effective Taylor number for all three
cases ψ = 15◦, 30◦ and 45◦. However, in particular, we notice that as ψ increases, the
agreement between the asymptotics and numerics becomes more favourable for larger
values of T̄ , further along the asymptotic branch, which can be seen as we move from
figures 7 to 9.

One explanation is clearly, as the asymptotic analysis is developed for large vortex
wavenumbers and large Reynolds numbers, its comparison with the numerical OS curves
should be closer as we move further along the upper branch, for large Re and large σ.

However, another explanation for the stronger agreement for lower values of ψ may arise
from the fact the numerical analysis is built on the appropriate length scalings governing
a centrifugal instability based on ψ < 45◦. These numerical OS measurements should
increase in accuracy as ψ is reduced. Hence, the comparisons for increased values of ψ
close to 45◦ should become more favourable at larger Reynolds numbers and larger vortex
wavenumbers. This is also a property of the numerical OS analysis in that predictions
increase in numerical accuracy for larger Reynolds numbers, as Re →∞.

More importantly, as mentioned in Kobayashi & Izumi (1983), there appears to be a
continuous change from counter-rotating vortices to unidirectional (co-rotating), as the
cone half-angle increases from ψ = 15◦. This was predicted in Garrett et al. (2009) to
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Figure 10. A comparison between experimental observations and theoretical predictions of the
vortex orientation angle at the onset of instability, updated from Garrett et al. (2009). The
diagram illustrates the competing nature of the type I (crossflow) instability versus the new
(centrifugal) instability modes, which dominate for slender half-angles and compare well with
the experimental measurements in this regime.

be caused by a gradual change in the dominant underlying instability mechanism from
one of crossflow instability (for large ψ) to a centrifugal instability (for small ψ). There-
fore, the numerical OS analysis, which is based on scalings consistent with a centrifugal
instability, should attain more accurate predictions for smaller half-angles. However, the
measurements would require larger Reynolds numbers and larger vortex wavenumbers to
yield similarly favourable comparisons for increased cone half-angles, which is the case
observed in figures 8 and 9, when compared with figure 7.

7. Conclusion
In this paper we have highlighted the motivation for the hypothesis of a centrifugal-

instability mode within the general class of rotating-cone boundary-layer flows. An alter-
native formulation that focuses on centrifugal effects has been developed and independent
asymptotic and numerical analyses conducted to verify the existence of such a mode.

Although the asymptotic analysis was used initially to identify the centrifugal mode,
it yields an indication of the range of unstable wavenumbers against half-angle only for
large Reynolds numbers and large vortex wavenumbers. In this regime, the range of
stable wavenumbers increases with reduced half-angle (which is, in the context of the
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centrifugal instability, stabilizing). Nevertheless, the asymptotic approach is unable to
calculate critical Reynolds numbers and amplification rates.

However, the OS numerical analysis presented confirms existence of the centrifugal
mode and reveals a reduction in the critical Reynolds number as well as an increase
in the amplification rate with reduced half-angle, suggesting smaller values of ψ are
actually destabilizing. Hence, for flow over a spinning cone surface with a relatively small
half-angle, the centrifugal-instability mode may be interpreted physically as the most
dangerous.

We conclude that three instability modes exist within the boundary-layer flow over
rotating cones: crossflow (type I) and streamline curvature (type II), which have been
observed previously in Garrett et al. (2009) to dominate for larger values of ψ > 40◦; and
a distinct centrifugal mode presented in this study, which appears to dominate for small
ψ < 40◦. Importantly, this mode differs from the streamline curvature (type II) mode for
larger half-angles, which arises due to viscous effects close to the cone surface. Meanwhile,
the centrifugal mode for small half-angles arises from the centrifugal forces present in the
mean flow for small ψ, due to the effects of curvature of the cone surface. Consequently,
this mode is visualised as helical spiral vortices of a counter-rotating nature, which wrap
around the cone surface.

To this end, figure 10 shows an updated view of the results initially presented in Gar-
rett et al. (2009) for the crossflow instability. In particular, we now appreciate a more
complete view of the dependence of the vortex waveangle on ψ from that outlined in fig-
ure 3. In our previous study, theoretical results (both numerical and asymptotic) based
on a crossflow instability showed significant departure from the experimental measure-
ments of Kobayashi & Izumi (1983) for small values of ψ, thereby motivating the present
investigation. Formulating the appropriate centrifugal instability analyses has not only
confirmed the existence of the centrifugal modes, but also identified the parameter regime
in which such modes play a dominant role in the instability characteristics of the flow,
for ψ ≤ 45◦ and 0◦ ≤ φ ≤ 10◦. A major finding of both the numerical and asymptotic
studies in this parameter regime is that the centrifugal modes compare well with the
experiments of Kobayashi & Izumi (1983), filling the missing region where up to now the
crossflow instability theory presented in Garrett et al. (2009) was insufficient.

Furthermore, in Garrett et al. (2009), we hypothesised the existence of a potential ‘crit-
ical’ cone half-angle, either side of which the various instability modes dominated. Indeed,
from figure 10, we see that combining results from the crossflow instability analysis of
Garrett et al. (2009) (at critical Reynolds numbers), the current centrifugal instability
analysis and the experimental measurements of Kobayashi & Izumi (1983), the mea-
surements appear to converge in a triangular region of parameter space centered around
ψ = 40◦. Hence, the region around this value appears to be where the change of dominant
instability occurs.

However, importantly, it must be noted that in some cases both co-rotating and
counter-rotating vortices have been observed on rotating cones with small ψ, for exam-
ple, as discussed in Kohama (2000). This suggests that both instabilities may be present
for certain set-ups and the change of instability is in fact a gradual process, rather than
being fixed at one particular ψ. Nevertheless, further investigation, in particular exper-
imental measurements around this sensitive region of parameter space would be highly
recommended to shed further light on the flow characteristics; for example pertaining to
how the instability mechanisms might interact and lead to transition to turbulent flow.
In addition, a complete numerical solution to equations (A 1)–(A 4), may reveal more
information about the relative importance of the stability modes, which would help to
determine which are the most dangerous modes in various parameter regimes.
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Secondly, it is worth noting that the scope of the current study is limited to a linear
analysis, concerned only with convective instability. More importantly, the study consid-
ers perturbations that are stationary with respect to the rotating cone. While it is known
that non-stationary travelling disturbances are the most unstable modes for rotating-disk
flows (see for example Corke & Knasiak (1998) and Hussain et al. (2011)), stationary
disturbances are the most easily observed in experiments, as they are excited by surface
roughness elements. Combined with the current analysis, such studies warrant further
investigation into whether travelling modes play as important a role for rotating cones
with much slender half-angles.

Finally, while both the current study and Garrett et al. (2009) consider rotating cones
in still fluid, the question of how introducing external parameters, such as an enforced
axial flow, affects the interplay between the dominant instability modes remains. The
crossflow instability for broader rotating cones in axial flow has been considered and
discussed in Garrett et al. (2010). Meanwhile, an investigation into the centrifugal insta-
bility for more slender rotating cones within an imposed axial flow is currently underway
and we hope to report on this in the near future.
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Appendix A. The governing perturbation equations
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sin ψ

∂Ṽ
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∂ȳ

∂h̄1

∂η

)
ṽ
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where ∇̄2 = R−1∇2 is now the non-dimensional re-scaled Laplacian operator in the
logarithmic spiral wave coordinate setup, which may be expressed as
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The scale factors are given by

h1 =
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1
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2 ),

where

h̄1 = 1 + x̌ cos φ− ȳ sinφ + η cos ψ sin2 φ,

h̄2 = 1 + x̌ cosφ− ȳ sin φ + η cosψ cos2 φ.
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