
 

Numerical simulation of water impact of solid bodies 

with vertical and oblique entries 

 
H.B. Gu, L. Qian, D.M. Causon, C.G. Mingham 

 
Centre for Mathematical Modelling and Flow Analysis 

School of Computing, Mathematics and Digital Technology 

The Manchester Metropolitan University, 

Manchester M1 5GD, UK 

 

P. Lin 

 
State Key Laboratory of Hydraulics and Mountain River Engineering 

 Sichuan University, Chengdu, China 

 
Abstract 

 

The flow problem of hydrodynamic impact during water entry of solid objects of various shapes and configurations is 

simulated by a two-fluid free surface code based on the solution of Navier-Stokes equations (NSE) on a fixed Cartesian grid. 

In the numerical model the free surface is captured by the level set function, and the partial cell method combined with a 

local relative velocity approach is applied to the simulation of moving bodies. The code is firstly validated using 

experimental data and other numerical results in terms of the impact forces and surface pressure distributions for the vertical 

entry of a semi-circular cylinder and a symmetric wedge. Then configurations of oblique water entry of a wedge are 

simulated and the predicted free surface profiles during impact are compared with experimental results showing good 

agreement. Finally, a series of tests involving vertical and oblique water entry of wedges with different heel angles are 

simulated and the results compared with published numerical results. It is found that the surface pressure distributions and 

forces predicted by the present model generally agree very well with other numerical results based on potential flow theory. 

However, as the current model is based on the solution of the NSE, it is more robust and can therefore predict, for example, 

the formation and separation of the thin flow jets (spray) from surface of the wedge and associated ventilation phenomena 

for the cases of oblique water entry when the horizontal velocity is dominant. It is also noted that potential flow theory can 

result in over-estimated negative pressures at the tip of the wedge due to its inherent restriction to non-separated flows.  

 

KEY WORDS:  Water impact; vertical and oblique water entry; two-phase flow; level set; free-surface; partial cell; local 

relatively stationary method; moving body.  

 

1. INTRODUCTION 
 

Water impact (entry) problems are still receiving extensive attention, especially in ship building, 

ocean and coastal engineering, and the marine renewable energy sector, although the earliest work can 

be traced back to nearly a century ago. When a blunt body (such as a sea plane, high speed vessel hull, 

section of petroleum pipeline) drops into water, water impact and slamming occurs. This is a complex 

flow problem which involves large free surface deformation, the formation of thin jets (spray), air 

entrainment as well as flow separation and ventilation. In fact, the shape of solid bodies can be 

symmetric or asymmetric and may be dropped into water vertically or at an angle. Most investigations 

of water impact problems have been restricted to the case of purely vertical entry.  On the other hand, 

despite their importance in engineering applications, research into oblique water entry and even free 

fall of wedge-like objects onto free surfaces have just started to emerge in recent years.  

    Von Karman (1929) proposed the first analytical solution to deal with the hydrodynamics of a 

landing seaplane. In his method the added mass concept was introduced, which was adopted later by 

many researchers in the analytical and asymptotic solution of related flow problems. Based on 

analytical and experimental results for axially symmetric bodies landing on water Hirano and Miura 

(1970) improved Von Karman’ theory by deriving a formula for calculating the virtual mass of a 

circular plate. Wagner (1932) described an asymptotic solution and proposed a formula to calculate 

the instantaneous pressure distribution on a two-dimensional wedge by considering the water entry 

process as a sequence of impact impulses. By disregarding the negative pressure area of Wagner 

theory, Toyama (1996) expanded Wagner’s theory for water entry of a horizontal cylinder. Mackie 



(1962) was the first to propose a fully linearized solution for the rigid wedge water entry problem. 

Armand & Cointe (1987) and Cointe (1991) generalized  Wagner’s theory to the case of vertical entry 

of a horizontal circular cylinder and several simplified models for the wedge entry problem have also 

been proposed by Howison, Ockendon & Wilson (1991), Fraenkel & Mcleod (1997), and Mei, Liu & 

Yue (1999).  

    Dobrovol’skaya (1969) proposed an exact nonlinear self-similar solution of the water entry 

problem for a symmetric wedge entering the free surface vertically with constant velocity. Self-

similarity in the solutions can be assumed for the initial stage of the water impact process when the 

entry velocity is large enough to make the influence of gravity negligible, but not high enough to 

make the acoustic influence relevant. Based on this approach, Fraenkel & Keady (2004) proved the 

existence and uniqueness of a similarity solution for all deadrise angles of a wedge.  However 

Dobrovol’skaya’s method, which reduces the boundary value problem to a nonlinear singular integral 

equation, can only be used to solve the water entry problem for the wedges with deadrise angles larger 

than 30◦, owing to a singularity at the jet tip. Greenhow (1987) also encountered this difficulty in a 

fully nonlinear numerical approach to the flow problem. In order to overcome this problem, Zhao & 

Faltinsen (1993) removed the thin jet layer from their computation, assuming that pressure variations 

within the tip region are small. To avoid the singularity at the jet tip, Wu, Sun & He (2004) proposed 

an iterative algorithm in which the free surface boundary conditions are transformed to an integral 

form and the developed jet is modeled with the shallow water equations. The method was later 

extended by Xu, Duan & Wu (2008) for the problem of oblique water entry of an asymmetric wedge. 

    Strictly, water entry of a wedge is not generally self-similar especially for the free fall of wedges 

and oblique water entry of symmetric and asymmetric wedges under certain flow conditions so the 

temporal variable may be expected to remain prominent in the solutions.  Thus, more general 

solutions based on potential flow theory using the boundary element method have also been used for 

this flow problem. Although it is difficult to discretize the geometry in the boundary element method, 

many works in the area of water impact have concentrated on an improved implementation of 

boundary conditions in the interaction region between the solid surface and water free surface (Zhao 

& Faltinsen 1993, Lu, He and Wu 2000, Wu 2007, Wu, Sun & He 2004, Xu, Duan & Wu 2008 ). 

Korobkin (1996, 1997, 2006), Korobkin and Peregrine (2000), Korobkin and Khabakhpasheva (2006) 

have researched extensively matters relating to impact including the role of compressibility, energy 

distribution aerated water etc. 

    With the development of computational fluid dynamics (CFD), other alternative but more general 

methods can also be adopted to simulate water impact and entry problems, especially methods based 

on the solution of the NSE for free surface flows. The advantage of these methods is that they are 

generic so that intricate details of the free surface deformation, formation of jet like flows and flow 

separation can be simulated. The main challenge in solving the NSE for water impact and entry 

problems is how to locate the interface between water, air and solid surface. There are essentially two 

approaches for solving the NSE numerically: mesh based methods and meshless methods. Meshless 

methods include the smoothed particle hydrodynamics (SPH) and moving particle semi-implicit (MPS) 

methods, and related methods. Shao et al. (2006) presented an incompressible SPH model to 

investigate wave overtopping at coastal structures. Koshizuka et al. (1995) proposed the MPS method 

to solve the NSE which can be used for free surface flow problems. Oger at el. (2005) applied the 

Smooth Particle Hydrodynamics method (SPH) to simulate the free fall of a wedge into water and the 

results are encouraging. 

   Mesh based methods for free surface flow problems include the well-known volume of fluid (VOF) 

method (Hirt & Nichols 1981, Youngs 1982, Ubbink 1997), the level set method (Osher et al., 1988) 

and the marker and cell method (MAC) (Harlow & Welch 1965) to capture or track the free surface 

together with a NSE solver such as the projection method or well known SIMPLE method. Another 



type of mesh based method is the free surface capturing method proposed initially by Kelecy & 

Pletcher (1997) and Pan & Chang (2000), based on the artificial compressibility method with high 

resolution Riemann solvers, in which the free surface is treated as a contact discontinuity in the 

density field. The moving interface is captured automatically as part of the numerical solution along 

with other flow variables. Qian et al. (2003, 2006) and Gao et al. (2007) used this method to study 

wave run up on a beach, wave overtopping at a vertical wall and fluid interaction with moving bodies. 

More closely related to the topics discussed in this paper, Pereira at el. (2010) applied the VOF 

technique with a Navier-Stokes solver to simulate rigid wedge entry into calm water. 

    In this study, a two-fluid free surface flow solver (Gu et al. 2009, 2010) based on a numerical 

solution of the NSE is applied to the water entry flow problem, employing the fast-marching particle 

level set method to capture free surfaces combined with a partial cell treatment and the local relative 

stationary method to simulate the geometric shape of moving bodies (Lin 2007). The model has 

previously been validated against experimental and numerical data for several free surface flow 

problems involving wave generation in an empty wave tank and wave interactions with fixed and 

moving bodies. In this paper, vertical and oblique water entry of solid objects will be simulated using 

the developed method to show its capability and accuracy in predictions relating to this specific flow 

problem. A particular focus is to examine the detailed flow structure including free surface profiles 

and interactions with the body during the process of entry.  Features include the formation of the thin 

jets, overturning and re-connection of free surfaces, flow separations and ventilations, for which, in 

many instances, methods based on potential theory either fail to predict a solution or give erroneous 

solutions. 

In the following sections the numerical model will be first described. Then, a number of test cases 

involving vertical and oblique water entry of various symmetric and asymmetric solid bodies are 

presented and results compared with experimental data and other numerical results where available. 

Finally some conclusions are drawn. 

 
2. NUMERICAL METHOD 

 

2.1 Basic governing equations  

 

Here, we are solving the governing flow equations in both air and water separated by a free surface 

with the partial cell technique adopted to model the geometry. The whole computational domain is 

divided into fluid cells, solid cells and partial cells. When θ =1 the cell is a fluid cell; θ =0 a solid cell; 

and for 0< θ <1 a partial cell, see figure 1. With the openness function so defined, the equations of 

motion for incompressible two-phase flow become  
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When θ =1 the above equations reduce to the unmodified NSE. Here, i=1, 2 for 2D and i=1, 2, 3 for 

3D. ui is the velocity component in i direction, p is pressure, ρ is density of air or water, and 

τij=2μ( )σij , σij is defined as the rate of deformation tensor. In equation (2)   is the level set function 

defined as a signed distance function that is positive in water and negative in air, (Figure 1). 

Accordingly, the level set transport equation can be derived as 
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The zero level set is initialized as the position of the free surface between water and air. From the 

level set function, the density ρ( ) and the viscosity μ( ) are written as 
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where H( ) is a Heaviside-type function, ρw and μw are density and viscosity of water respectively 

and ρa and μa are density and viscosity of air. The Heaviside function is used to define a smooth 

function which ensures that the density or viscosity vary smoothly from ρa to ρw or from μa to μw 

within a narrow band around the interface. There are several choices for the Heaviside function. We 

adopt the following formula,  
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in which h is the local minimum size of the spatial step. 

 

2.2 Numerical solution in fluid domain  
 

In the spatial domain, a staggered-grid system is used within which scalars are defined at cell centres 

and vectors are defined at the centres of cell faces, see figure 1. The finite difference method is 

adopted to discretize spatial derivatives on a non-uniform mesh. When a value is required at a location 

where it is not defined linear interpolation is used to obtain the value. A two-step projection method is 

used to solve equations (1) and (2) with a combined upwind and central scheme for the convection 

terms and a central difference scheme to discretize the diffusion terms (Lin 1998). After the 

convection and diffusion terms have been calculated the tentative velocities 
iu

~

 are obtained from 
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In general, the tentative velocities do not satisfy the continuity equation (1). Thus, these must be 

updated by an iterative pressure correction method using, 
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where the 1np  is obtained by solving the Poisson pressure equation, 
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Equation (9) is obtained by enforcing equation (8) at the time step n+1, ∂(θui
n+1)/∂xi=0, ensures the 

velocities calculated from equation (8) are divergence free. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Velocity stored at arrows and pressure stored at central dots) 

 

Fig.1 Illustration of partial cell technique, level set definition and the storage location of the dependent 

variables 

 

2.3 Local relative stationary (LRS) method for a moving boundary  

 

There are two major issues that require special attention in the numerical implementation of the partial 

cell method for a moving body. One is tracking the moving body and the other is ensuring 

conservation of mass and momentum (Lin 2007). 

   In this study only rigid bodies are considered but the procedures are generalisable. The body surface 

is expressed by the zero set of a combination of quadratic functions e.g. Fm(x,y,tn)=0.  The updated 

position of the body surface on the grid can be determined by simple geometric principles at time step 

n+1, e.g. Fm(x,y,tn+1)=0. The openness function θn+1 can also be updated by a combination of quadratic 

functions.   

   To ensure that the conservation laws are satisfied during body movement from one time step to 

another the following treatment is adopted. We assume that during the small time interval Δt the body 

moves with constant velocities uiB, and recast the moving body problem into an equivalent problem 

where the body remains stationary and the fluid motion is superimposed through an additional 

velocity with the same magnitude as that of the moving body but in the opposite direction. This is 

referred to as the local relative stationary method.  Details can be found in the paper by Lin (2007). 

Thus, the continuity equation (1) in the partial cell is revised to be,      
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Substituting the above modified continuity equation into the two-step method, a modified Poisson 

pressure equation is obtained, 
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It can be seen that a moving body changes the pressure field around the body, which consequently 

affects the flow around it. Apart from the pressure field, the moving body affects the viscous stresses. 

This is considered in the first step of the projection method where the convection and diffusion terms 

are evaluated. The local relative stationary method is still applied to calculate the relative velocity 

gradients near the body. Additional terms result that modify the normal and shear stress around the 

moving body.  

   The advantages of the local relative stationary method are that it is very easy to implement 

numerically and easy to deal with any number of multiple bodies since a moving coordinate system is 

established at the level of an individual cell. No re-meshing is required and the flow computation 

remains based on a fixed-grid system. The movement of the body is updated in a Lagrangian manner 

and thus is free of numerical diffusion. Extensions to three-dimensions and more complicated body 

motion than shown here e.g. with rotation are also straightforward (Lin 2007). 
 

2.4 Level set method 

 

There are many methods (Shu at el. 1989, Enright 2005, 2002, Jiang 1999, 2000, Strain 1999, 2000, 

Mulder 1992) to solve the level set equation (3), amongst these the semi-Lagrangian method has 

generally high computational efficiency. We modify the original formula to be found in the cited 

source references for use on non-uniform grids. The distance function in 2D at the time step 1n  can 

be expressed as, 
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where r and s  relate to the left bottom corner index of the grid cell and the new grid point value 

arises from that at the time step n  according to the velocities jiu ,  and jiv , . Parameters   and   are 

the coefficients in the bilinear interpolation in the x and y directions respectively. The formula can 

easily be extended to 3D. This scheme is unconditionally stable, so the time step is no longer limited 

by the CFL condition. 

   In our implementation, we only calculate the distance function within a narrow band around the 

interface. Thus, at each time step the zero level set must not be allowed to pass out of this narrow 

band. This places a modest but acceptable restriction on the maximum allowable time step. Using the 

highly efficient fast marching method (Sethian 1998) we implement a re-initialization process that is 

also performed in a narrow band around the interface. The narrow band approach makes a worthwhile 

saving in computational time. To improve the conservation of the level set method, particles are used 

to assist the level set method to accurately capture the flow characteristics in under-resolved regions.  

2.5 Level set boundary condition for an obstacle 

Within the numerical model, the level set function at the boundary of a fixed or moving body must be 

carefully treated. Several researchers have described treatments for this problem by considering the 

angle between the obstacle local surface normal direction and the water surface normal direction 

(Yang & Stern 2009) or by interpolation from a nearby cell (Guendelman at el. 2005). In our model the 

angle between the water surface and the obstacle surface can remain arbitrary consistent with the 

arbitrary manner in which the water surface comes into contact with the obstacle surface. By 



assuming a constant slope for the free surface near the solid surface, the level set function values at 

the solid boundary can be approximated. Using the formula for calculating the distance between a 

point and line, the level set function of a point m with coordinate (xm, ym) which is the closest point to 

a boundary point n can be expressed as 
 cbyax mmm   (13) 

see figure 2 where point n is a cell center point where the level set function is defined, and the cell is 

crossed by a body surface. Around the cell only the cell with cell center point m is fully occupied by 

fluid and is closest to the free surface. If φm is its level set value and c is a constant, (a, b) is the 

normal unit vector which can be calculated from   , the boundary level set value of point n with 

coordinate (xn, yn) can then be obtained by 
 cbyax nnn 

     
   (14) 

Equations (13) and (14) can be easily extended to a 3D case. The boundary condition for the level set 

is also confined within the narrow band. 

   If the body is moving, the boundary level set value outside of the narrow band must also be 

considered. Outside the narrow band we set the level set value to +106 in water area and -106 in air 

area. If the moving body is initially located entirely in air, when it moves into the water region, the 

moving boundary condition for the level set in the narrow band is calculated by (13) and (14); outside 

the narrow band we set the moving boundary level set value to that of the cell adjacent to it in the 

fluid area. This method retains the level set value within the body at +106 when it moves into the 

water region and allows the body to pass through the interface smoothly. If the moving body is 

initially only located in the water region, when it moves into the air region, the same method is 

employed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Illustration of body boundary level set condition 

 

3. NUMERICAL RESULTS 

 

3.1 Water entry of a semi-cylinder 

 

To evaluate the accuracy of the developed numerical model, firstly the vertical water entry of a 

circular cylinder with a radius of R=5.5m and a constant vertical velocity of 10m/s is simulated. 

Figure 3 shows the computational domain and the initial position of the semi-circular cylinder for the 

test case.  The size of the domain is so chosen such that the effects of reflected waves from the 

domain boundaries can be omitted throughout the simulation. 



    In the calculations three levels of refinement of the Cartesian grids and different time steps have 

been used so that both spatial and temporal convergence of the solutions can be tested. Uniform 

meshes are used for the area that covers the moving semi-cylinder and non-uniform meshes used in 

the remaining area of the domain to save computational cost. The minimum spatial intervals of each 

uniform mesh are 0.2m, 0.1m and 0.05m respectively. Figure 4 shows the level of mesh convergence. 

Time convergence is tested on the finest mesh and very similar results were found, as shown by the 

solid line in figure 4.  In the figure, the force coefficient Cs is defined as 

                                               )/( 2RVFCs 
                                                                                     (15)

 

where F is the slamming force on the surface of the semi-cylinder, which is calculated by integrating 

the pressure  along its surface, ρ is water density, and V is the dropping velocity.  

    The results on the finest mesh are compared with various data from theoretical, numerical and 

experimental work (Seif et al. 2005) as shown in figure 5. There are variations in the predicted Cs 

values between the theoretical and experimental results. For example, Von Karman’s theory gives 

Cs=π at initial contact whereas Wagner’s modified theory gives Cs=2π and the value from the 

experimental data of Campbell et al. (1980) is at around 5.2. The results from CFD methods including 

the present method, those of Seif et al. (2005) and Arai et al. (1994) all predict larger impact forces  

than the experimental data after initial contact. The data for the impact force during the initial contact 

stage are not shown in the Seif et al. (2005) and Arai et al. (1994) results due to large nonphysical 

oscillations in the predicted forces. Figure 6 shows the pressure time history at the lowest point on the 

semi-cylinder predicted by the present model which is very similar to the results obtained by Seif et al. 

(2005) including the peak pressure values. There is an abrupt pressure increase at the beginning of the 

impact phase after which the pressure gradually decreases from its peak value. An accurate prediction 

of the peak pressure values is important to the design of structures particularly as these are difficult to 

measure accurately in the laboratory. Figure 7 shows the pressure contours at different times during 

the simulation. At the beginning when the cylinder contacts the calm water a high pressure is present 

at the contact point but as the cylinder immerses into the water the peak pressure values decrease 

gradually. The denser contours correspond to higher pressure gradient and indicate that high pressures 

appear at the spray root. As Seif et al. (2005) conjecture in their paper gravity may have a significant 

effect on the predicted impact force for this test case. For the present model, with the inclusion of 

gravity in the calculations the predicted slamming force coefficients are approximately 20% higher 

than those without gravity.  However, the peak value of the slamming force appears to be less affected 

by gravity.     

 
 

  Fig.3 Size of the computational domain for the water entry of a semi-cylinder 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Grid convergence test:  slamming force coefficient results 

 

 
Fig.5 Comparison of slamming force coefficient over h/R with other data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 Pressure history at the lowest point of the cylinder 
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(a) t=0.10s 

 
 

 

(b) t=0.15s 

 
 

 

(c)  t=0.20s 

 
 

 

Fig.7 Pressure contours showing peak pressure values during water entry 

 

 3.2 Vertical water entry of symmetric wedges   

 

To further validate our numerical model the tests conducted by Zhao et al. (1997) have been 

reproduced, in which a symmetric wedge with 300 deadrise angle was dropped from air along a fixed 

rig onto the water surface. During the test the velocity and the pressure along the wetted surface of the 

wedge were measured. The test case has also been used as a validation benchmark for many other 

CFD codes (Marcer et al. 2010). 

  

   In this study, three uniform meshes are used to simulate the test case. The spatial mesh intervals are 

0.02m, 0.01m and 0.005m respectively. The pressure distribution along the lower surface of the 

wedge is plotted at t=0.00435s and t=0.0158s and compared with the experimental measurements and 

other CFD results in figures 8 and 9. In the figures, the pressure coefficient is defined as 
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these results, it can be seen that the maximum pressure occurs at the root of the jet, which is formed 

when the surface of the wedge comes in contact with water surface on either side. There are some 

discrepancies in pressure values among the different models. However, the results from the current 

model on three meshes show good spatial mesh convergence and agree reasonably well with the 

experimental data.  A temporal convergence test for the intermediate mesh has also been carried out 

and the results (not shown here) are indistinguishable. 

    
Fig.8 Surface pressure distribution at t=0.00435s 

    
Fig.9 Surface pressure distribution at t=0.0158s 

 

3.3 Oblique water entry of a wedge   

 

Oblique water entry and impact problems are important to the design of high speed planning boats but are 

important for any vessel articulating in several degrees of freedom in steep waves. These cases have 



attracted far less attention than vertical impact problems (Xu et al. 1998, Xu 1998; Judge 2004). Xu (1998) 

and Xu et al. (1998) categorized the flow problem of asymmetric water entry of a wedge into two types, 

see figure 10 for a definition sketch in which ө is the so-called angle of heel defining the geometric 

asymmetry of the wedge entry. Type A is defined as the flow that moves outward from the vertex along the 

contour of the wedge on each side of the vertex when there is small asymmetry in the water entry. Type B 

flow occurs in cases of large asymmetric water entry where the flow detaches from one side of the wedge 

contour. Judge et al (2004) conducted both numerical and experimental tests to study initial water entry of 

rigid wedges for both types of flows. In this section firstly the two drop tests from Judge et al. (2004) are 

reproduced numerically and the results in terms of the water free surface profiles at various stages of water 

entry are compared with the measured experimental ones. 

      The first test case, which is a Type A case, is a symmetric wedge with dead-rise angle of 37o (β = 53 o, 

ө= 0o) entering initially calm water with equal horizontal velocity U0 and vertical velocity W0. The wedge 

height is 0.08m and the width is 0.2m. In the numerical simulation, a uniform mesh with spatial step 

0.002m is used and the computational domain is set large enough to eliminate the influence of any 

boundaries on the simulation results. Figure 11 compares the calculated free surface profiles with a 

photograph obtained from the experimental investigation (Judge et al 2004) at similar instants in time 

during water entry. The main characteristics of the free surface pattern are captured well by the numerical 

model including the shape of the two jets formed on either side of the wedge. However, small air bubbles 

and foamy spray observed in the experiments are not reproduced in the simulation results due to the fact 

that surface tension effects have presently been ignored in the numerical model.  
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Fig. 10 Definition sketch for Type A and B flows for water entry problems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(left: present numerical results; right: cited from Judge et al. 2004) 

Fig. 11 Type A flow impact under Ө=00 and U0/W0 = -1.0 

 

       The second case test is for the same wedge but with an angle of heel Ө=50 and a velocity ratio U0/W0 

= -2.0. This is an example of Type B flow. The difference from a Type A flow is that during entry the water 

free surface on the left side of the wedge separates from the wedge surface and flow ventilation occurs. 

Figure 12 shows the present numerical results compared with experimental photographs at various times 
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during water entry. Initially the flow appears to be attached to the wedge surface and as time advances the 

water free surface on the left side gradually separates from the body surface and a pocket of air ventilation 

forms. The predicted free surface profiles resemble the experiments well. Figure 13 shows a snapshot of 

the pressure and velocity distribution for this type of flow.    

 

    Judge et al. (2004) examined the transition from Type A to Type B flow by increasing the angle of heel 

Ө at a fixed velocity ratio. In this study the present model is also used to simulate this process. Figure 14 

shows the results for five Ө values from 150 to 340 at the velocity ratio U0/W0 = -0.75, from which it can 

be seen that the flow is attached to the surface of the wedge at Ө =150, but for Ө =200 although the flow 

remains attached a separation cavity is starting to form at the vertex. The flow for these two instances is 

still Type A, however, for Ө values greater than 200 the flow on the left-hand side detaches from the wedge 

surface, and the flow pattern now belongs to Type B. With the increased Ө values the flow detachment is 

more prominent. The numerical results agree well with the experiments. 

 
(left: present numerical results; right: cited from Judge et al. 2004) 

Fig. 12 Type B flow impact with Ө=50 and U0/W0 = -2.0 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 
(left: Velocity field; right: Pressure distribution) 

Fig. 13 Type B flow impact with Ө=50 and U0/W0 = -2.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(left: present numerical results; right: cited from Judge et al. 2004) 

 

Fig. 14 Transition from Type A to Type B impact through increasing heel angles (U0/W0 = -0.75) 

 



      Next, tests of asymmetric wedges of different deadrise angles (or symmetric wedges with non-

zero heel angles) with vertical and oblique water entry are simulated and the results are compared 

with those from a potential flow solver (Xu et al. 2008) in which gravity was omitted for all test cases.  

For the convenience of description, wedge angles are defined the same as that in figure 10. A 

parameter α, which is defined as α = 
t

dttVx
0

)(/ , is used in the figures for the relative pressure 

distributions along the bottom surface of the wedge.    

 

Table 1 Test cases for water entry of wedges 

Case No.  β (o) Ө (o) U0 (m/s) W0 (m/s) 

1 60 -10 0.0 -1.0 

2 60 -10 0.5 -1.0 

3 60 -10 -0.5 -1.0 

4 30 -10 0.0 -1.0 

5 30 -10 0.3 -1.0 

6 30 -10 -0.3 -1.0 

 

    A total of 6 test cases for two sets of wedge and a combination of three impact velocities are 

simulated which are listed in table 1. Figures 15 and 16 show the non-dimensional pressure 

distributions at various times of the initial water entry predicted by the current solver along with the 

results from the potential flow solver. Generally the present results agree well with those from 

potential flow, especially when the deadrise angles are small i.e. the cases for the wedge with β =60˚. 

As the deadrise angles become large as in the case for the wedge with β =30˚, the vertex of the wedge 

will form a sharp edge which can result in the occurrence of negative pressure locally when there is a 

horizontal impact velocity.  From figure 16, it can be seen that the negative pressure values predicted by 

the potential flow theory are usually larger than those from the present model. One possible 

explanation for the difference is that the tips of the wedge are singular points for the potential flow and 

spurious flow separation can be predicted resulting in over-estimated negative pressure values for certain 

cases. To show this the velocity vectors and pressure contours are also plotted in figure 17 for the test cases 

4, 5, and 6 at t = 0.12 seconds after water entry, from which it can be seen that no flow separation occurs 

for the test 4 and 5 and therefore no negative pressures are predicted by the current approach.  However, 

when flow separation does occur as in test case 6, good agreement can be achieved between the two 

methods for the surface pressure distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(a) U0=0.0m/s, W0=1.0m/s                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) U0=0.5m/s, W0=1.0m/s         

 

 

 

                                    

 

 

 

 

 

 

 

 

 

 

 

 

(c) U0= -0.5m/s, W0=1.0m/s      

 

 

                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15 Pressure distribution along the lower surface of the wedge β =60˚, Ө =-10˚ 



(a)  U0=0.0m/s, W0=1.0m/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) U0=0.3m/s, W0=1.0m/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               (c)  U0= -0.3m/s, W0=1.0m/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16 Pressure distribution along the lower surface of wedge β =30˚, Ө =-10˚ 

 

 

 



 

 

 

 

 

 
 

            Fig.17 Velocity vectors and pressure contours at t =0.12 s after water entry (β =30˚, Ө =-10˚) 

 

 

 

4. Conclusions 

In this paper a newly developed free surface solver has been applied to study the flow problem of vertical 

and oblique water entry of solid objects of various shapes and configurations. The numerical model is 

based on a two-fluid incompressible NS formulation using the level set method to capture water free 

surface and partial cell combined with local relative stationary method to describe moving body. 

Numerical simulations of water entry of a semi-circular cylinder, symmetric and asymmetric wedges are 

presented and the results compare well with other experimental data or numerical results. For oblique 

water entry of wedges, both flow types with water surface attached to both sides of the wedge or detached 

from one side  have been reproduced showing the generic and versatile nature of the method. The 

simulation results also highlight the fact that the solutions from the potential theory can sometimes give 

erroneous pressure values at the vertex of asymmetric wedges for certain cases with large deadrise angles 

due to the inherent limitations in the model.    

U0= 0.0m/s, W0=1.0m/s 

U0= 0.3m/s, W0=1.0m/s 

U0=-0.3m/s, W0=1.0m/s 
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