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Abstract

The flow problem of hydrodynamiémpact during water entry of solid objects of various shapes and configurations is
simulated by a twdluid free surface code based on the solution of NeStekes equation@NSE) on a fixed Cartesian grid.

In the numerical model the free surface is cegatuby the level set function, and the partial cell method combined with a
local relative velocity approach is applied to the simulation of moving bodies. The code is firstly validated using
experimental datand other numerical results in terms of theactgforces and surface pressure distributfonshe vertical

entry of a semcircular cylinder and a symmetric wedge. Then configurations of oblique water entry of a wedge are
simulated and the predicted free surface profiles during impact are compighedxperimental results showing good
agreement. Finally, a series of tests involving vertical and oblique water entry of wedges with different heel angles are
simulated and the results compared with published numerical results. It is found that the edaare distributions and

forces predicted by the present model generally agree very well with other numerical results based on potential flow theory.
However, as the current model is based on the solution of the NSE, it is more robust and can pinedégréor example,

the formation and separation of the thin flow jets (spray) from surface of the wedge and associated ventilation phenomena
for the cases of oblique water entry when the horizontal velocity is dominant. It is also noted that filoterttiglory can

result in overestimated negative pressures at thetifhe wedgedue to its inherent restriction to neeparated flows.

KEY WORDS: Water impactvertical and oblique water entriwyo-phase flow; level set; fregurface; partial celliocal
relatively stationary methoanoving body

1. INTRODUCTION

Water impact (entry) problems are still receiving extensive attention, especially in ship building,
ocean and coastal engineering, and the marine renewable energy sector, althougiasthwarércan
be traced back to nearly a century ago. When a blunt body (such as a sea plane, high speed vessel hull,
section of petroleum pipeline) drops into water, water impact and slamming occurs. This is a complex
flow problem which involves large dée surface deformation, the formation of thin jets (spray), air
entrainment as well as flow separation and ventilation. In fact, the shape of solid bodies can be
symmetric or asymmetric and may be dropped into water vertically or at an Moglanvestigtions
of water impacproblemshave beemestrictedto the case opurely verticalentry. On the other hand,
despite their importance in engineering applications, research into oblique water entry and even free
fall of wedgelike objects onto free surfas have just started to emerge in recent years.

Von Karman (1929proposed the firsanalytical solution to deal witkhe hydrodynamic®f a
landing seaplandn his method the added mass concept was introduced, which was adopted later by
many reseafters in the analytical and asymptotic solution of related flow problems. Based on
analytical andexperimentaresults foraxially symmetric bodies landing on watéfirano and Miura
(1970) improved ¥n Karma® t heory by der i vi n ¢he artuaf massnoid a f or
circular plate. Wagner(1932) described an asymptotic solution and proposed a formula to calculate
the instantaneous pressure distribution on a-tivnensionalwedgeby consideing the water entry
process a® sequence of impact impukseBy disregarihg the negative pressurarea of Wagner
theory Toyama(1996)e x pand e d Wa donwatebentry bfh lodzonyalcylinder. Mackie



(1962) was theyrst to proposea fully linearized solutiorfor the rigid wedgewater entry problem.
Armand & Cointe(1987 andCointe(1991)generalizedWa g n e r 0 ® théchase afvertcal entry
of a horizontal circular cylinder and sevesal mp | i y ®forthewedie dntry problem hawso
beenproposed by Howison, Ockendon & Wilson (1991), Frak&kklcleod (1997), and Mei, Liu &
Yue (1999).

Dobr ovol 6s lpaposed A ex&ct rbnlinear seffimilar solution of thewater entry
problemfor a symmetric wedge enmteg the free surface vertically with constant velociBelf
similarity in thesolutions can be assumed for the initial stage of the wafmct processvhenthe
entry velocityis large enough to makie influence ofgravity negligible but not high enough to
makethe acousticinfluencerelevant.Based orthis approachFraenkel &Keady (2004)proved the
existence and uniqueness afsimilarity solution for alldeadriseanglesof a wedge However
Do br ov o lnmethdd,avhierédsics the boundary value probleta a nonlinear singulantegral
equation can only be used to soltlee water entry problerfor the wedges witlleadrise angles larger
t h a n ow@ 10 a singularity at the jet tiGreenhow(1987) also encountered thidigculty in a
fully nonlinearnumerical approacto the flowproblem.In order to overcome thisroblem Zhao &
Faltinsen (1993jemovedthe thin jet layefrom their computation assuminghat pressure viations
within the tip region aremall. To avoidthe singularity athe jet tip,Wu, Sun & He (2004 proposed
an iteratve algorithm in whichthe free srface boundary conditions atensformed taan integral
form andthe developed jet is modal with the shallow water equatienThe method vas later
extended by Xu, Duan & Wu (2008)r the problem of oblige water entry of an asymmetriedge.

Strictly, water entry of a wedge is ngénerallyself-similar especidy for the free fall of wedges
and oblique water entry of symmetric and asymmetric wedges under certain flow corslitthes
temporal variable may be expected to remain prominent in the solutions. Thus, more general
solutions based on potential flow trg using the boundary element method have also been used for
this flow problem. Although it is difficult to disctiee thegeometry in the boundary element method,
many works in the area of water impact have concentrated on an improved implementation of
boundary conditions in the interaction region between the solid surface and water free surface (Zhao
& Faltinsen1993, Lu, He andVu 2000, Wu 2007Wu, Sun & He 2004, Xu, Duan & Wu 2008 ).
Korobkin (1996, 1997, 2006Korobkin and Peregrin€2000), Korobkinand Khabakhpasheva (2006)
have researched extensively matters relatingnfmactincluding the role of compressibility, energy
distribution aerated water etc

With the development of computational fluid dynamics (CFD), other alternative but morealgener
methods can also be adopted to simulate water impact and entry problems, especially methods based
on the solution of the NSE for free surface flows. The advantage of these methods is that they are
generic so that intricate details of the free surfaderg®tion, formation of jet like flows and flow
separation can be simulatethe main chllenge in solving the NSE for water impact and entry
problemsis how to locate thenterface between water, air and solid surfadeere areessentiallytwo
approachesgor solving the NSEhumerically mesh based methods and meshless methods. Meshless
methods include the smoothed particle hydrodyna(8PH) and moving particle sefimplicit (MPS)
methods and related methodsShao et al. (2006) presented an incompréss8iPH model to
investigate wave overtoppiraj coastal structures. Koshizuka et al. (1995) proposed the MPS method
to solve the NSEvhich can be used for free surface flow problefdgerat el. (2005) appliedhe
Smooth Particle Hydrodynansenethod(SPH to simulate the free fall of a wedge into water and the
results are encouraging.

Mesh based methodsr free surface flow problemiaclude thewell-knownvolume of fluid (VOF)
method (Hirt & Nichols 1981, Yings 1982, Ubbink 1997), the level set metOdher et al., 1988
and the marker and cell method (MAC) (Harlow & Welch 1965) to capture or track the free surface
together with a NSE solver such & fprojection method or well known SIMPLE methdahother



type of mesh based method is tfree surfae capturing method proposed initially by Kelecy &
Pletcher (1997) and Pan & Chang (2000), based on the artificial compressibility method with high
resolution Riemann solvers, in which the free surface is treated as a contact discontinuity in the
density feld. The moving interface is captured automatically as part of the numerical solution along
with other flow variables. Qian et.gR003, 2006) and Gaet al. (2007) used this method to study
wave run up on a beach, wave overtopping at a vertical wafl@ddnteraction with moving bodies.
More closely related to the topics discussed in this pdpawriraat el. (2010) applied the VOF
technique with a Naviebtokes solver to simulate rigid wedge entry into calm water.

In this study, a twdluid free surface flow solve(Gu et al. 2009, 2010)based on a numerical
solution of the NSE is applied to the water entry flow problem, empldji@dastmarching particle
level set methodo capture free surfaceembined with a partial cell treatment and tbeal relative
stationary method to simulathe geometric shape ahoving bodies (Lin 2007)The model has
previously been validated against experimental and numerical data for several free surface flow
problems involving wave generation in an empty waaaktand wave interactions with fixed and
moving bodieslin this paperyertical and oblique water entry of solid objects will be simulated using
the developed method to show its capability and accuracy in predictions relating to this specific flow
problem.A particular focus is to examine the detailed flow structure including free surface profiles
and interactions with the body during the process of entry. Features include the formation of the thin
jets, overturning and feonnection of free surfaces, floseparations and ventilations, for which, in
many instances, methods based on potential theory either fail to predict a solution or give erroneous
solutions.
In the following sectiors the numerical modelvill be first describe. Then,a number of test case
involving vertical and oblique water entry of various symmetric and asymmetric solid bodies are
presented and results compared with experimental data and other numerical results where available.
Finally some conclusions are drawn.

2.NUMERICAL METHOD

2.1 Basic governing equations

Here, we are solving the governing flow equations in both air and water separated by a free surface
with the partial cell techniqgue adopted to model the geometry. The whole computational domain is
divided into fluid cells, slid cells and partial cells. Wheai=1 the cell is a fluid cellgf =0 a solid cell;

and for 0<d <1 a patrtial cell, see figure 1. With the openness function so defined, the equations of
motion for incompressible twphase flow become
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Whend =1 the above equationsdceto the unmodified NSEHere i=1, 2 for 2D and=1, 2, 3 for
3D. u is the velocity component in direction, p is pressure} is density of air or waterand
G=2¢(f)G; , G is defined as the rate of deformation tenkoequation (2)f is the level set function
defined as asigneddistance functiornthat is positive in water and negative in ,a{Figure 1).
Accordingdy, the level set trasport equation can be derived as
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The zero level set is initialized as thesition of thefree surface between water and air. From the

level set function, the density 7 ) and the viscositg(f ) are written as
r(f)=ra@- H(F)+ ryH(r) 4



ntr)=m(1- H(r))+ mH(r) (5)
whereH(f) is a Heavisidetype function, }w and ey are density and viscosity of waterspectively
and}a. and e, are density and viscosity of aifhe Heaviside function isised to definea smooth
function whichensures thathe density or viscosityary smoothly fromja to Jw or from g, to ey
within a narrow bandroundthe interface. There are sevechbicesfor the Heaviside function. We
adopt the fdbwing formula,

€0, f <-15h
1 r,.1_.20f
H(f)—}0.5+E+%smE, |7| ¢ 1.5h (6)
i1 f >1.5h

in whichhis the local minimum size of the spatial step.
2.2 Numerical solution in fluid domain

In the spatial domain, a staggergd system is used within which scalars are defined at ceifese
and vectors are defined at the centres of cell fases figure 1The finite difference method is
adopted to discretize spatial derivatives on aungiform meshWhen a value is required at a location
where it is not defined linear interpolatiatsed to obtain the valu& two-step projection method is
used to solve equationg)(and @) with a combined upwind and central schefoe the convection
terms and a central difference schemediscretize the diffusion terms (Lin 1998After the
convection and diffusion termBave beercalculaed the tentative velocitigs are obtained from
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In general, the tentative velocities do not satisfy the continuity equatjorTtfus,these musbe
updated byaniterativepressureorred¢ion method using
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where thep™! is obtained by solving the Poisson pressure equation,
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Equation @) is obtained by enforcing equatio8) @t the time sgen+ 1 ,d I (k=D, ensures the
velocities calculated from equatiod) @re divergence free.
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Fig.1 Illustration of partial cell technique, level set definitiand the storage location of the dependent
variables

2.3 Local relative stationaryLRS)method for a movingoundary

There are two majassueshatrequirespecial attention in the numerical implementatibthe partial
cell methodfor a moving body.One is tracking the moving body aritle other is ensuimg
conservation ofmass ananomentum (Lin 2007)

In this studyonly rigid bodesareconsideredut the procedures are generalisalblee body surface
is expressed by the zero set of a combinadibguadratic functions e.d=m(X,y,t)=0. Theupdated
position of thebody surfacen the gridcan be determined tsimplegeometric principles at time step
n+1, e.gFm(x,y,t")=0. The openness functiafi"* can also be updated by a combination of qatacir
functions.

To ensurethat the conservation laws are satisfied during body movement from one time step to
another the following treatment i s adidheboeyd. We
moves with constant velocitiegs, andrecastthe moving body problem into an equivalent problem
where the bodyemainsstationary andthe fluid motion is superimposed through an additional
velocity with the same magnitude #sat ofthe moving body but in the opposite directidrhis is
refered to as the local relative stationary method. Details can be found in the paper by Lin (2007)
Thus, the continuity equatiod)(in the partial cell is revised to be,

H(Qui - QUiB) =0 = M:M (10)
X X HX;
Substituting the above modified continuity equatinto the twestep method, a modified Poisson
pressure equatias obtained,
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It can beseen that a moving body chasghe pressure field around the body, which consequently
affects the flowaround it Apart fromthe pressuréeld, the moving bodyaffectsthe viscous stresses.
This is considered in the first step of the projection methodeithe convection and diffusion terms
are evaluated. The local relative stationary method is still applied to calculate the relativiy veloc
gradiens near the bodyAdditional termsresult thatmodify the normal and shear stress around the
moving body.

The advantages of the local relative stationary method are that it is very easy to implement
numerically anceasyto deal withany numier of multiple bodies since a moving coordinate system is
established athe level ofan individual cell. No reneshing is required and theoft computation
remainsbased on a fixedrid system. Thenovement of the body isipdaedin a Lagrangian mnner
ard thus is free of numerical diffusioixtensiors to threedimensions and more complicatbddy
motion than shown here e.g. with rotatemealsostraightforwardLin 2007)

2.4 Level semethod

There are many methodShu at el. 1989, Enright 20080@®, Jiang 1999, 2000, Strain 1999, 2000,
Mulder 1992 to solve the level set equatioB),( amongt thesethe semiLagrangian method has
generally high computational efficiencwe modify theoriginal formula to be found in the cited
source references for@i®nnonuniform grids. The distance function in 2D ttetime stepn+1 can
be expressed as,

fit=a bifien+@- a)b foq+all- by +1- a)l- b (12)
wherer and S relate tothe left bottom corner index of the grid cedindthe new grid poinvalue
arises fromthat atthetime stepn accordingto thevelocitiesu; ; andV, ;. Parameters? and b are
the coefficients in the bilinear interpolation in the x and y directions respectiVialy formula can
eadly beextenadto 3D. This scheme is unconditionalgtable, so the time steprie longer limied

by the CFL condition.

In our implementationwe only calculag the distance functiowithin a narrow band around the
interface Thus,at each timestepthe zero level set must nbe allowed togpass oubf this narrow
band Thisplaces a modes&iut acceptable restriction on the maximattowable time stepJsing the
highly efficientfast marching metho(ethian1998) we implement a +iaitialization procesghat is
also perforred in a narrow band around the interface. The narrow band approach makes a worthwhile
saving in computationdgime. To improve the conservation of the level set methadjclesareused
to assist the level set methdaccuratelycapturetheflow characteristics innderresolved regions.
25 Level set boundary condition fan obstacle
Within thenumerical mdel, the level set functioat the boundary o& fixed or moving bodymustbe
carefuly treated. Several researchers have desctileadments fothis problemby considering the
angle between the obstadlecal surface normal direction anithe water surfae normal direction
(Yang & Stern 2009r by interpolation froma neaby cell (Guendelmarat el. 200%. In our model the
angle between the water surface and the obstacle surfaceroam arbitrary consistent withthe
arbitrary mannerin which the watersurface comesnto contact with the obstacle surfadgy



assuming a constant slope for the free surface near the solid surface, the level set function values at
the solid boundary can be approximatelding the formula for calculating the distance betwaen
point and linethe level set function of a poim with coordinate Xm, ym) which isthe closest poirto
a boundary point can be expressed as

J m =ax%,+by, +c (13)
seefigure 2 where poinn is a cell center point whetke level set functions defined, and the cell is
crossed by a body surface. Around the cell ahgcell with cell center point ns fully occupiedby
fluid andis closest to the free surfadé U is its level set value andis a constant,& b) is the
normal unit vectowhich can be calculated fromy /p/|, the boundary level set value of pointith
coordinate %n, yn) canthenbe obtained by

J o =ax, +by, +C (14
Equations (13) and (14) can be easily extended to a 3D Tasdoundary aadition forthelevel set
is also confineavithin the narrow band.

If the body is moving, the boundatgvel set valueoutside of the narrow band must also be

considered. Outside the narrow band we set the level set value%m-+géter area anel(® in air
area. If the moving body is initially located entirely in air, when it moves into the water region, the
movingbourdary condition for the level sat the narrow band calculated by (13) and (14); outside
the narrow bandve set the movingpourdary level setvalueto that of the cell adjacent to it in the
fluid area. This method retains the level set value within the body &twEh it moves into the
water region and allows the body to pass through the interface smoothly. If the moving body is
initially only located in the water region, when it moves into the air region, the same method is
employed.
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Fig.2 lllustration of body boundangvel set condition

3.NUMERICAL RESULTS

3.1 Water entry of a seraylinder

To evaluate the accacy of thedeveloped numerical model, firstly the vertical wagmtry of a
circular cylinderwith a radius ofR=5.5m and a constant verticatlocity of 10m/s is simulated.
Figure 3 shows the computational domain and the initial position of thecgeundar cylinder for the
test case. The size of the domain is so chesehthat the effects of reflected waves from the
domain boundariesan be omittethroughout the simulation.



In the calculatioa three levels ofefinement of theCartesian grids andifferent time steps have
been used sthat both spatial and temporal convergence of the solutions can be tgsiéarm
meshes are used for the area that coversnthéng semicylinder and noruniform meshes used in
the remaining area of the domaingave computational cost. The minimum spadtigrvalsof each
uniform mesh are 0.2m, 0.1m and 0.05m respectively. Figure 4 sholes¢hef mesh convergence.
Time convergence is tested on the finest meshvangd similar results were found, as showntbg
solidline in figure 4. In the figure, therce coefficient G is defined as

C.=F/(rR\?) (15)

where F is theslamming force onthe surface of the sendylinder, which is calculated by integrating
the pressure along its surfagas water density, and is the dropping velocity.

The results on the finest mesh are compared with various data from thepraetivarical and
experimental work (Seif et al. 20085 shown in figure 5. There are variations in the predicsd
valuesbet ween the theoretical and experiment al res
Cs=" at initial contactwhereasWa g n emodfiad theory givesCs=2" and the value f
experimental dataf Campbellet al.(1980)is at around.2 Theresults from CFD methods including
the present methothose ofSeif et al (2005) and Arai et a(1994)all predict larger impact forces
thanthe experimental data after initial contact. The data for the impact force during the initial contact
stage are not shown the Seif et al (2005) and Arai et al1994)results due to largaonphysical
oscillations in the predicted forcdsigure 6 sbws the pressure time history at the lowest pairthe
semicylinder predicted by the present model which is very similar to the resuésed bySeif et al.
(2005)including the peak pressure values. There is an aprapsure increase at the begngof the
impactphase after which the pressgmadually decreases from its peak value. An accurate prediction
of the peak pressure values is important to the design of strupanteslarly as these are difficult to
measure accurately in the laborgtdfFigure 7 shows the pressure contours at different tdudag
the simulation. At the beginninghen thecylinder contac the calm watera high pressurés present
at the contact poinbut as the cylinder immerses intbe water the peak pressure vadudecrease
gradually. The denser contoursrrespond tdnigherpressure gradient armadicate thatigh pressures
appear at the spray root. As Seif et(aD05)conjecturein their paper gravitynay havea significant
effect on the predicted impact forfer this test case. For the present model, with the inclusion of
gravity in the calculations the predictestamming force coefficients are approximately 20% higher
than those without gravity. Howevéhe peak value of the slamming formgpears to bkess affected
by gravity.
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Fig.3 Size of the computational domain for the water entry of asgimder
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Fig.4 Grid convergence test: slamming force coefficient results
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Fig.7 Pressure contours showing peak pressure values during water entry
3.2 Vertical water entry ofygnmetic wedges

To further validate our numerical model theess conductedby Zhao et al. (1997) ka been
reprodued, in which a symmetric wedge with®3feadrise angle was dropped from air alorfixed

rig onto the water surface. During the test the velocity and the peeakng the wetted surface of the
wedge were measured. The test case hasbalso used as a validation benchmark for many other
CFD codesMarcer et al. 2010).

In this study, three uniform meshes are used to simulate the test case. Thengsétiztkervalsare
0.02m, 0.01m and 0.005m respectivelhe pessure distribution along the lower surface of the
wedgeis plotted att=0.00435s ant=0.0158s and compared with the experimental measurenrahts a
other CFD results in figures 8 and & the figues, the pressure coefficient is defined as

c, = p/%% rV(t)zg- in whichp is pressurey, is density of water and is velocity of the moving wedge

and] is defined ass= z/@‘v(t)dt, wherez is water depth based on the initial still water level. From



these results, it can be seen that the maximum pressure occurs at the roottpvtiejes formed

when the surface of the wedge comes in contact with water surface on either side. There are some
discrepancies in pressure values among the different models. However, the results from the current
model on three meshes show good spatiesh convergence and agree reasonably well with the
experimental data. A temporal convergence test for the intermediate mesh has also been carried out
and the resulthot shown heredre indistinguishable
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Fig.9 Surface pessure distribution &0.015%

3.3 Oblique water entry of a wedge

Obliquewater entry and impact problems are important to the design of high speed planning boats but ar
important for any vessel articulating in several degrees of freedom in steep waves. These cases have



attracted far less attention than vertical impact problems (Xu et al. 1998, Xu 1998; Judge 2004). Xu (1998)
and Xu et al. (1998) categorized the flow lgeon of asymmetric water entry of a wedge into two types,
see figure 10 for a definition sketch in whiehis the secalled angle of heel defining the geometric
asymmetry of the wedge entry. Type A is defined as the flow that moves outward from thelergethe
contour of the wedge on each side of the vertex when there is small asymmetry in the water entry. Type B
flow occurs in cases of large asymmetric water entry where the flow detaches from one side of the wedge
contour. Judge et al (2004) conduckexdh numerical and experimental tests to study initial water entry of
rigid wedges for both types of flows. In this section firstly the two drop tests from Judge et al. (2004) are
reproduced numerically and the results in terms of the water free surbditespat various stages of water
entry are compared with the measured experimental ones.

The first test case, which is a Type A case, is a symmetric wedge withlisieatgle of 37(b = 53°,
E=0° entering initially calm water with equal horiztal velocity Wand vertical velocity W The wedge
height is 0.08m and the width is 0.2m. In the numerical simulation, a uniform mesh with spatial step
0.002m is used and the computational domain is set large enough to eliminate the influence of any
bourdaries on the simulation results. Figure 11 compares the calculated free surface profiles with a
photograph obtained from the experimental investigation (Judge et al 2004) at similar instants in time
during water entry. The main characteristics of the $teéace pattern are captured well by the numerical
model including the shape of the two jets formed on either side of the wedge. However, small air bubbles
and foamy spray observed in the experiments are not reproduced in the simulation results diaetto the
that surface tension effects have presently been ignored in the numerical model.
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Fig. 10 Definition sketch for Type And B flows for water entry problems

(left: present numerical results; right: cited from Judge et al. 2004)
Fig. 11 Type A flamdwWomp@ct wunder »=0

The second case test is for the same wedge but with an angle of-h&eaind a velocity ratio Wy
=-2.0. This is an example of Type B flow. The difference from a Type A flow is that during entry the water
free surface on the left side of the wedge separates from the wedge surface and flow ventilation occurs.
Figure 12shows the present numerical results compared with experimental photographs at various times



during water entry. Initially the flow appears to be attached to the wedge surface and as time advances the
water free surface on the left side gradually sepafatesthe body surface and a pocket of air ventilation
forms. The predicted free surface profiles resemble the experimelitd=igure 13 shows a snapshot of

the pressure and velocity distribution for this type of flow.

Judge et al. (2004) examindte transition from Type A to Type B flow by increasing the angle of heel
p at a fixed velocity ratio. In this study the pr
shows the results %toB4 atthe welecitymad MsdMy =1-6.85, from whinh itlcan
be seen that the flow is att &chbeudt tPathaupbehefiduwdr f ac e
remains attached a separation cavity is starting to form at the vertex. The flow for these two instances is
sl Type A, however, f o%hefowwenaHe lefband side detadhes fromttHe aedge2 0
surface, and the flow pattern now belongs to Type
moreprominent The numerical results agree welttwthe experiments.

(left: present numerical results; right: cited from Judge et al. 2004)
Fig. 12 Type B fdnoWwWi=Ract with =5



pressure

(left: Velocity field; right: Pressure distribution)
FFg. 13 Type B flamwWo=mplct with »=5

(left: present numerical results; right: cited from Judge et al. 2004)

Fig. 14 Transition from Type A to Type B impact through increasing heel angi&§y(8 -0.75)



Next, tests of asymmetric wedges of different deadrise angles (or symmetric wedges with non
zero heel angles) with vertical and oblique water entry are simulated and the results are compared
with those from a potential flow solver (Xu et al. 83)@h which gravity was omitted for all test cases.

For the convenience of description, wedge angles are defined the same as that in figure 10. A

i s:x/qje(tjdti, is euskd ia the flgures for the relative pressure

parameterU ,

distributions along the bottom surface of the wedge.

wh i

ch

Table 1 Test cases for water entry of wedges

Case No. b (°) B (9 Uo (M/s) Wo (m/s)
1 60 -10 0.0 -1.0
2 60 -10 0.5 -1.0
3 60 -10 -0.5 -1.0
4 30 -10 0.0 -1.0
5 30 -10 0.3 -1.0
6 30 -10 -0.3 -1.0

A total of 6 test cases for two sets of wedge and a combination of three impact velocities are
simulated which are listed in table 1. Figures 15 d&dshow the nowimensional pressure
distributions at various times of the initial water entry predicted by the current solver along with the
results from the potential flow solver. Generally the present results agree well with those from
potential flow, specially when the deadrise angles are small i.e. the caseshfer
As the deadrise angles become large as in the case for the wed@e=v@tithe vertex of the wedge
will form a sharp edge which can result in the occurrence of megattessure locally when there is a
horizontal impact velocityFrom figure 16, it can be seen that tiegative pressure values predicted by
the potential flow theory are usually larger than those from the present model. One possible
explanation for thelifference is that the tips of the wedge are singular points for the potential flow and
spurious flow separation can be predicted resulting in-esttmated negative pressure values for certain
cases. To show this the velocity vectors and pressure cera@ialso plotted in figure 17 for the test cases
4,5, and 6 att = 0.12 seconds after water entry, from which it can be seen that no flow separation occurs
for the test 4 and 5 and therefore no negative pressures are predicted by the current adproacér,
when flow separation does occur as in test case 6, good agreement can be achieved between the two
methods for the surface pressure distribution.
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Fig.16 Pressure distribution along the lower surtade we=xd3@e-b0 ¢



Uo= 0.0m/s Wo=1.0m/s

Uo=0.3m/s Wo=1.0m/s

Uo=-0.3m/s, Wo=1.0m/s

Fig.17 Velocityv e ct or s and pressure contolides-l@g) t =0.

4. Conclusions

In this paper a newly developed free surface solver has been applied to study the flow problem of vertical
and oblique water entry of solid objects of vari@mapes and configurations. The numerical model is
based on a twéluid incompressible NS formulation using the level set method to capture water free
surface and partial cell combined with local relative stationary method to describe moving body.
Numerica simulations of water entry of a sewircular cylinder, symmetric and asymmetric wedges are
presented and the results compare well with other experimental data or numerical results. For oblique
water entry of wedges, both flow types with water surfataelaed to both sides of the wedge or detached
from one side have been reproduced showing the generic and versatile nature of the method. The
simulation results also highlight the fact that the solutions from the potential theory can sometimes give
erroneais pressure values at the vertex of asymmetric wedges for certain cases with large deadrise angles
due to the inherent limitations in the model.



