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Abstract

Objective: Short-term dietary glucose supplementation has been shown to accelerate gastric 

emptying rate of both glucose and fructose solutions. The aim of this study was to examine 

gastric  emptying  rate  responses  to  monosaccharide  ingestion  following  dietary  fructose 

supplementation.  

Methods:  Gastric emptying rate of a fructose solution containing 36 g of fructose and an 

equicaloric glucose solution containing 39.6 g glucose monohydrate were measured in 10 

healthy non-smoking men with and without prior fructose supplementation (water control) 

using a randomised crossover design. Gastric emptying rate was assessed for a period of 1 h 

using the [13C]breath test with sample collections at baseline and 10 min intervals following 

drink  ingestion.  In  addition,  appetite  ratings  of  hunger,  fullness  and  prospective  food 

consumption were recorded at baseline and every 10 min using visual analogue scales. 

Results:  Increased  dietary  fructose  ingestion  resulted  in  significantly  accelerated  half 

emptying time of a fructose solution (mean 48 (SD 6) vs. 58 (SD 14) min control, P=0.037) 

whilst the emptying of a glucose solution remained unchanged (mean 85 (SD 31) vs. 78 (SD 

27) min control; P=0.273). Time of maximal emptying rate of fructose was also significantly 

accelerated following increased dietary fructose intake (mean 33 (SD 6) vs. 38 (SD 9) min 

control, P=0.042) whilst it remained unchanged for glucose (mean 45 (SD 14) vs. 44 (SD 14) 

min control, P=0.757). No effects of supplementation were observed for appetite measures. 

Conclusion:  Three days of supplementation with 120 g/d of fructose resulted in an 

acceleration of gastric emptying rate of a fructose solution but not a glucose solution.  

Key Words 

Diet; fructose supplementation; monosaccharide solutions; gastrointestinal adaptation; 

appetite
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Introduction

A rate-limiting step in the delivery, and thus absorption, of nutrients and fluid in the small 

intestine  is  the  rate  of  gastric  emptying.  The regulation  of  gastric  emptying  is  therefore 

perceived as an important factor in appetite control [1]. Gastric distension induced by an 

intragastric balloon to simulate the mechanical presence of food in the stomach has been 

shown to  cause  both  satiation  and  satiety  [2].  Therefore,  a  prolonged  period  of  gastric 

distension  as  a  result  of  delayed emptying would lead  to  a  prolonged satiety period  [3]. 

Slower emptying will also delay the appearance in the circulation of nutrients that might 

contribute to satiety. 

Carbohydrates,  when  ingested  orally  or  directly  administered  into  the  stomach  or 

small intestine result in a reduction in subsequent food intake [4]. The magnitude of this 

effect is however suggested to vary between different types of carbohydrate or sugars. With 

the recent rise in levels of obesity and its associated morbidities worldwide, research interests 

in carbohydrates and satiety have centred on the possible role of fructose in the pathogenesis 

of obesity and the metabolic syndrome [5]. This has been motivated by the widespread use of 

fructose, either in the form of sucrose or high fructose corn syrup, as an added ingredient in 

soft  drinks  and  other  sweetened  beverages  or  foods,  greatly  increasing  its  dietary 

consumption [6,7]. Excessive intake of fructose and over-consumption of sugary beverages is 

suggested to contribute to the development of the metabolic syndrome and obesity through 

altering feeding patterns and the promotion of weight gain [7]. Gastric emptying rate may 

play an important modulatory role in these outcomes. 

A small compilation of research indicates that gastric emptying in humans may be 

influenced by patterns of previous dietary nutrient intake. Furthermore, there is evidence to 

suggest  that  these  adaptive  changes  are  macronutrient-specific  [8,9]  and  rapid,  with 

adaptations occurring in only a few days [3,9]. A high-fat diet for 14 days has been shown to 
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accelerate gastric emptying of a high-fat test meal [10] but not a high-carbohydrate meal [8]. 

More recently, this adaptive response of the gastrointestinal system to the ingestion of high-

fat meals has been reported to occur following only three days of high fat diet [3]. Similarly, 

short-term dietary supplementation with 400 g glucose per  day for three days  in healthy 

individuals  has  been  shown  to  accelerate  gastric  emptying  of  a  hyperosmotic  glucose 

solution, but not of a protein solution [9]. The specificity of these effects of a high-glucose 

diet  has  not  been  extended  to  different  monosaccharides,  however.  The  emptying  of  a 

hyperosmotic fructose solution was equally accelerated following short-term supplementation 

with glucose solutions [11]. Whether these effects are replicated in response to short-term 

dietary supplementation with fructose is unknown. The aim of this study was to investigate 

the  effect  of  3  d  of  dietary fructose  supplementation  on  the  rate  of  gastric  emptying of 

glucose and the rate of gastric emptying of fructose solutions as well as the accompanying 

subjective feelings of appetite.

Materials and methods

Participants

Ten healthy men completed this study (mean  age 27 (SD 6) years, height 179.9 (SD 9.2) cm, 

body mass 81 (SD 11) kg, BMI 25 (SD 3) kg.m-2, and estimated body fat 21 (SD 8)%). All 

volunteers were non-smokers, had no history of gastrointestinal symptoms or disease, were 

not consuming medication with any known effect on gastrointestinal function and had no 

other relevant medical conditions as assessed by a medical screening questionnaire. Verbal 

and written explanations of the experimental procedures were provided prior to participation. 

This  study  was  conducted  according  to  the  guidelines  laid  down  in  the  Declaration  of 

Helsinki and all procedures were approved by the Ethical Advisory Committee of Manchester 
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Metropolitan University’s Faculty of Science and Engineering. Written informed consent was 

obtained from all participants.

Preliminary trials

All  participants  reported  to  the  laboratory  for  a  preliminary  familiarisation  visit. 

Anthropometric  measurements  of  height  to  the  nearest  0.1  cm  using  a  wall  mounted 

stadiometer, body mass (BM) to the nearest 0.01 kg using electronic scales (GFK 150; Adam 

Equipment Co. Ltd.,  Milton Keynes, UK), and estimation of body fat percentage using a 

hand-held  bioelectrical  impedance  device  (Omron  BF306;  Kyoto,  Japan)  were  made. 

Furthermore, participants were familiarised with the gastric emptying assessment technique 

and the visual analogue scales (VAS) to be used during the experimental trials. The VAS was 

composed of questions asking “how hungry do you feel,” “how full do you feel,” “how much 

do you think you can eat,” [12] “how bloated do you feel,” and “how nauseous do you feel?” 

Respectively, horizontal lines 100 mm in length were anchored with “I am not hungry at all- I 

have never been more hungry”, “not at all full- totally full”, “nothing at all- a lot”, [12] “not 

at  all  bloated-  very  bloated”  and  “not  at  all  nauseous-  very  nauseous.”    In  addition, 

participants who had not previously participated in any studies in our laboratory involving 

fructose  consumption  completed  a  fructose  tolerance  test  before  further  participation  by 

consuming a 600 ml solution containing 36 g fructose. This procedure was used to ensure that 

no  adverse  effects  would  be  experienced  due  to  unknown  malabsorption  during 

supplementation and experimental trials.

 

Experimental protocol

Experimental  trials  were  conducted  in  a  single-blind,  randomised  crossover  fashion 

commencing between 08.30 and 10.00 hours following an overnight fast from 21.00 hours 

with the exception of drinking 500 ml of water approximately 90 min before arrival at the 
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laboratory.  Participants  reported  to  the  laboratory  on  four  occasions  to  complete  four 

experimental trials;  fructose with supplementation (FS),  fructose with water control (FC), 

glucose with supplementation (GS) and glucose with water control (GC). Experimental trials 

were separated by a minimum period of 7 d. Each experimental trial was preceded by a 3 d 

dietary and activity maintenance period where participants were asked to record their diet and 

activity in their first trial and then replicate them in the remaining three trials. The purpose of 

this  was to  ensure standardisation and consistency of macronutrient intake and metabolic 

status in the days leading up to each trial  within participants. In addition to their  normal 

dietary intake, participants were asked to consume either four 500 ml bottles of water or four 

500 ml  solutions  each containing  30 g  fructose  per  day over  the  3  d.  Participants  were 

instructed  to  consume  these  drinks  evenly  throughout  the  day  in  between  meals. 

Furthermore,  participants  were  asked to  refrain  from alcohol  consumption  and strenuous 

physical activity in the 24 h preceding each experimental trial. 

Upon arrival  at  the  laboratory,  participants  were  asked to  completely empty their 

bladder into a container from which a 5 ml urine sample was retained for later analysis of 

osmolality by freezing point  depression  (Gonotec  Osmomat  030 Cryoscopic  Osmometer; 

Gonotec,  Berlin,  Germany).  Body  mass  was  subsequently  recorded.  Participants  then 

ingested 595 ml of a fructose solution (36 g dissolved in 600 ml water) or an equicaloric 

glucose  monohydrate  solution  (39.6  g  dissolved  in  600  ml  water)  containing  100  mg 

[13C]sodium acetate (Cambridge Isotope Laboratories Inc., Andover MA, USA). Participants 

were  given  a  maximum of  two  minutes  to  consume  the  test  solution  and  instructed  to 

consume it as quickly as they were able to. Test drink solutions were freshly prepared on the 

morning of the test and were given at room temperature. A 5 ml sample of the drink was 

retained for later analysis  of osmolality.  Ratings of appetite (hunger, fullness, prospective 

food consumption) [12] as well as ratings of bloatedness and nausea were assessed using 100-
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mm VAS, as described above, at baseline and at 10 min intervals following drink ingestion 

for 60 min. Participants remained seated throughout the drink ingestion and 60 min sampling 

procedure. Following the last breath sample collection and completion of the VAS at 60 min, 

participants were asked again to completely empty their bladder into a container and a 5 ml 

urine sample was retained for osmolality analysis using the method aforementioned.

Measurement of gastric emptying

Gastric  emptying  was  assessed  using  the  [13C]acetate  breath  method.  This  method  of 

measurement  has  been  shown  to  correlate  closely  to  scintigraphy  [13,14]  and  gastric 

aspiration [15]. Prior to ingestion of the test drink containing 100 mg [13C]sodium acetate 

(Cambridge Isotope Laboratories Inc.,  Andover MA, USA), a basal end-expiratory breath 

sample  was  collected.  Further  end-expiratory  breath  samples  were  collected  at  10  min 

intervals over a period of 60 min following drink ingestion. Breath samples were collected 

into a 100 ml foil bag (Wagner Analyzen-Technik, Bremen, Germany) on each occasion by 

exhalation through a mouthpiece: bags were then sealed with a plastic stopper and stored for 

later analysis.

Breath  samples  were  analysed  by  non-dispersive  IR  spectroscopy  (IRIS,  Wagner 

Analyzen-Technik, Bremen, Germany) for the ratio of 13CO2:12CO2. The difference in the ratio 

of  13CO2:12CO2   from baseline  breath  to  post  breath  samples  are  expressed  as  delta  over 

baseline (DOB).  Half emptying time (T½) and time of maximum emptying rate (T lag) were 

calculated  using  the  manufacturer’s  integrated  software  evaluation  embedded  with  the 

equations of Ghoos et al. [13]. Each participant’s own physiologic CO2 production assumed 

as 300 mmol CO2 per m2 body surface per hour was set as default and body surface area was 

calculated by the integrated software according to the formula of Haycock et al. [16] .
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Statistical analysis

Differences in pre-ingestion body mass, pre-ingestion urine osmolality and drink osmolality 

were examined using one-way repeated ANOVA. Two-way repeated ANOVA were used to 

examine differences in gastric emptying DOB values, and subjective appetite VAS scores. 

Sphericity for repeated measures was assessed, and where appropriate, Greenhouse-Geisser 

corrections were applied for epsilon <0.75, and the Huynh-Feldt correction adopted for less 

severe  asphericity.  Significant  F-tests  were  followed  by  repeated  one-way  ANOVA and 

bonferroni adjusted pairwise comparisons as appropriate. Gastric emptying T½  and Tlag data 

were examined with paired Student’s  t-Tests to test the hypothesis of interest (i.e. effect of 

supplementation on gastric emptying rate of fructose and of glucose). All data were analysed 

using SPSS Statistics for Windows version 19 (IBM, New York, US). Statistical significance 

was accepted at the 5% level and results presented as means and standard deviations.

Results

Body mass, hydration status and drink osmolality

Body  mass  remained  stable  over  the  duration  of  the  study  (Table  1).  Furthermore,  the 

constancy of  pre-ingestion  urine  osmolality  indicated  that  hydration  status  prior  to  each 

experimental trial was also consistent (Table 1). Drink osmolalities were 368 (SD 3), 368 (SD 

3), 370 (SD 4) and 369 (SD 3) mOsmol.kg-1 (P=0.490) for FC, FS, GC and GS, respectively. 

  

Gastric emptying

Gastric emptying T½ for fructose was accelerated after the period of dietary supplementation 

with fructose than when the control drink was consumed (FC, 58 (SD 14) min vs. FS, 48 (SD 

6) min; P=0.037). In contrast, gastric emptying T½  for glucose did not change with fructose 

supplementation (GC, 78 (SD 27) min vs. GS, 85 (SD 31) min; P=0.273). The same pattern 
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was also observed for Tlag. Dietary fructose supplementation accelerated fructose Tlag (FC, 38 

(SD 9) min vs. FS, 33 (SD 6) min; P=0.042) whilst glucose Tlag remained unchanged (GC, 44 

(SD 14) min vs. GS, 45 (SD 14) min; P=0.757). Breath DOB values for fructose (Figure 1) 

revealed no main effect of trial (P=0.441), a significant main effect of time (P<0.001) and no 

interaction effect (P=0.088). Breath DOB for glucose (Figure 2) showed no main effect of 

trial  (P=0.868),  a  significant  main  effect  of  time  (P<0.001)  and  no  interaction  effect 

(P=0.680). 

Appetite ratings

Hunger ratings for fructose trials remained relatively constant from baseline and over the 60 

min  duration  after  drink ingestion.  No main  effect  of  trial  (P=0.820),  time (P=0.160)  or 

interaction (P=0.364) was present. Ingestion of a glucose solution, on the other hand, resulted 

in a slight suppression of hunger within 10 min before a steady rise back to baseline values 

within 60 min. No statistically significant main effect of trial (P=0.861), time (P=0.07) or 

interaction effect (P=0.562) were identified (Figure 3). 

Ingestion of a fructose solution did not affect ratings of fullness over the 60 min (FC, 

P=0.130; FS, P=0.137).  Prior fructose supplementation also did not affect ratings of fullness 

when compared with  its  control  as  no main  effect  of  supplementation  (P=0.135)  and no 

interaction effect (P=0.706) were found. Feeling of fullness following glucose ingestion was 

also  not  different  between  control  and  supplementation  trials.  No  main  effect  of 

supplementation (P=0.575) or interaction (P=0.285) was present, though a biphasic increase 

then  decrease  in  fullness  following  glucose  ingestion  with  prior  supplementation  was 

observed compared to the single increase then decrease seen with no supplementation.  A 

significant main effect of time was indicated (P=0.004), though post-hoc analysis did not 

identify the location.
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Prospective  food consumption  decreased  slightly within  10  min  of  ingestion  of  a 

fructose solution.  For the control trial,  this  steadily increased back to pre-ingestion value 

within 60 min. For the supplementation trial, an increase above pre-ingestion values was seen 

at  50  and  60  min.  A main  effect  of  time  (P=0.011),  but  no  significant  effects  of  trial 

(P=0.344) or interaction (P=0.205), was found. Significant differences between ratings over 

time  were  not  located  with  post-hoc  analysis.  A similar  decrease  followed  by a  gradual 

increase back to baseline scores was also seen for the ingestion of glucose for both control 

and supplementation conditions. Again, no effect of trial (P=0.898) nor interaction (P=0.142) 

was shown, but there was an effect of time (P=0.048). 

Discussion

The  results  of  this  study show that  a  3-d  period  of  dietary supplementation  with  120 g 

fructose consumed throughout the day results  in an acceleration of gastric emptying of a 

fructose solution but not of a glucose solution.  This study thus shows a monosaccharide-

specific adaptation to increased fructose in the diet in contrast to the glucose supplementation 

results of Horowitz et al. [11]. Furthermore, the results of this present study demonstrate an 

adaptation of gastric  emptying rate  to a  much smaller amount of additional carbohydrate 

consumption  than  that  utilised  in  previous  studies,  and  highlight  the  pertinent  potential 

negative effects of an increase in dietary fructose consumption. An amount of 30 g of fructose 

is  on average less  than the amount  that  would be found in a  typical  500 mL serving of 

commercially-available soft drinks which contain 11.0-12.5% high fructose corn syrup (55% 

fructose) in some countries such as the US. The fructose content in the majority of these soft 

drinks thus range from a little over 30 g to 34 g. Although the dose of fructose ingested in this 

study (120g/day) is four times the amount of this typical single serving, data shows that it is 

not an unrealistic amount.  Estimated daily mean, 90th and 95th percentile fructose intakes 
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from NHANES data are reported respectively as 63 g, 103 g and 118 g for males aged 23-50 

y and 75 g, 117 g and 134 g for males aged 19-22 y [17].

The increased rate of gastric emptying following fructose supplementation is highly 

indicative  of  a  short-term  reduction  in  gastric  emptying  inhibition  resulting  from  small 

intestinal feedback. This may have been due to several possible adaptations. One possible 

mechanism is a decreased sensitivity to fructose by specific receptors in the small intestine. 

However, the existence of fructose-selective receptors has not been reported and is perhaps 

rather unlikely. Another possible mechanism is an enhanced absorption capacity of the small 

intestine for fructose, resulting in decreased intestinal exposure time and length, may have 

occurred. The length of intestine exposed to nutrients has been shown to be an important 

determinant of the extent of feedback inhibition of gastric emptying [18,19]. Alternatively, 

and/or in combination with this, the adaptation of enhanced absorption leading to augmented 

transporter activation may be responsible. This latter explanation seems more plausible in the 

light  of  the  current  study’s  monosaccharide-specific  results  due  to  the  different  transport 

pathways of fructose and glucose. Glucose is actively transported across the brush border 

membrane of the intestine by sodium-dependent glucose transporters (SGLT1) and across the 

basolateral membrane by the GLUT2 hexose transporter [20]. Fructose, however, is absorbed 

through facilitated transport by a sodium-independent transport system, believed to primarily 

be the GLUT5 transporter, and across the basolateral membrane also by GLUT2 [20,21]. The 

different yet inter-related monosaccharide effects of the present study and that of Horowitz et  

al. [11] are consistent with an upregulation of GLUT5 activity in response to dietary fructose 

supplementation  and  an  upregulation  of  both  glucose  and  fructose  transport  pathways 

(possibly involving GLUT2) following increased dietary glucose exposure. In any case, as 

nutrient  transporters appear  to have a role in  nutrient sensing and gut  hormone secretion 

[22,23], this may have led to changes in either the secretion of or sensitivity to gut hormones 
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such as GLP-1 or ghrelin, both of which are known to affect the rate of gastric emptying. 

Previous  work  investigating  the  effect  of  acute  ingestion  of  fructose  on  gastrointestinal 

response is limited and with specific regards to GLP-1 and ghrelin is conflicting. Some have 

reported fructose to stimulate  GLP-1 [24],  insulin  [24-26],  and leptin  [25]  secretion,  and 

suppress  ghrelin  [25],  to  a  lesser  degree  than  comparable  amounts  of  glucose.  Others, 

including recent work from our own laboratory,  have reported similar GLP-1 and ghrelin 

responses [26,27]. No data is currently available on repeated ingestion or the effects of short-

term increases or habitually high intakes of fructose in humans. Further work investigating 

whether  any  changes  in  gut  hormone  responses  occur  with  fructose  supplementation  is 

required to elucidate the mechanism of gastrointestinal adaptation observed in this present 

study.

The ingestion of a single bolus of fructose results in markedly lower plasma glucose 

and insulin responses compared to the response following an isoenergetic amount of glucose 

or  sucrose  [11,24-26].  Whilst  this  may  be  beneficial  in  the  short-term  postprandial 

maintenance and control of blood glucose levels in diabetics, this also has negative appetite 

regulation  and  metabolic  consequences  irrespective  of  insulin  status.  Decreased  insulin 

production  and  secretion  results  in  decreased  circulating  levels  of  leptin,  the  long-term 

regulator of food intake, and reduced suppression of the orexigenic hormone ghrelin [27]. 

Glucagon  suppression  is  also  significantly  lower  following  fructose  ingestion  leading  to 

greater glycogenolysis and lipolysis and increased plasma triglyceride concentrations [25]. 

Furthermore, the complete metabolism of fructose in hepatocytes results in an unregulated 

source  of  substrates  for  augmented  de  novo lipogenesis  and  also  increased  uric  acid 

concentration [28-30]. Accelerated gastric emptying of fructose would therefore lead to more 

rapid rises  in  plasma fructose and may result  in  both larger  and earlier  peaks  of  plasma 
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triglycerides  and  uric  acid,  both  of  which  are  strong  independent  contributors  to  the 

development of diabetes, cardiovascular disease, and obesity [29,30].

Although no significant  changes  to  appetite  ratings  were  observed in  this  present 

study,  this  is  likely due to  the fact  that  ingestion of liquids  generally provides  a  smaller 

satiation effect  than does ingestion of isoenergetic  solids  [31,32].  The effect  of increased 

fructose ingestion on gastrointestinal adaptation and appetite should also be investigated in 

solid foods.

Conclusion

The results of this study reveal that three consecutive days of dietary supplementation 

with 120 g fructose per day accelerates gastric emptying of a fructose solution but not of a 

glucose  solution.  The  mechanisms  and  implications  of  this  observed  gastrointestinal 

adaptation to increased dietary fructose should be further investigated.
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Figure legends

Fig.1: Gastric emptying breath delta over baseline (DOB) for 60 min following 595 ml of a 

6% fructose solution ingestion. Treatments were control without fructose supplementation (-

○-) and with 3 days supplementation of 120g fructose per day (-●-). Values are means (n 10) 

with standard deviations represented as vertical bars.

Fig. 2: Gastric emptying breath delta over baseline (DOB) for 60 min following 595 ml of a 

6% glucose solution ingestion. Treatments were control without fructose supplementation (-

○-) and with 3 days supplementation of 120g of glucose per day (-●-).Values are means (n 

10) with standard deviations represented as vertical bars.

Fig. 3: Subjective feeling of hunger assessed by 100-mm visual analogue scale (VAS) for 60 

min following ingestion of 595 ml of a 6% glucose solution. Treatments were control without 

fructose supplementation (-○-) and with 3 days supplementation of 120g of glucose per day (-

●-).Values are means (n 10) with standard deviations represented as vertical bars.
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Tables

Table 1: Pre-ingestion body mass and hydration status

(Mean values with standard deviations, n 10)

Pre-ingestion 

measure

Fructose Glucose P-value 

(one-way 

ANOVA)
Control Supplementation Control Supplementation

Mean SD Mean SD Mean SD M

e

a

n

SD

Body mass (kg) 80.91 11.48 81.23 11.53 81.80 11.70 8

1

.

0

3 

11.38 0.589

Urine osmolality

(mOsmol.kg-1)

423 259 489 265 425 230 4

5

2

270 0.613

Figure 1.
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