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Abstract: Muscle can be assessed by imaging techniques according to its size 
(as thickness, area, volume, or alternatively as a mass), architecture (fibre 
length and pennation angle), with values used as an anthropometric 
measure or a surrogate for force production.  Similarly, bone’s size (as area 
or volume) can be imaged using MRI or pQCT, although typically bone 
mineral mass is reported.  Bone imaging measures of mineral density, size 
and geometry can also be combined to calculate bone’s structural strength – 
measures being highly predictive of bone’s failure load ex vivo.  Imaging of 
muscle-bone relationships can hence be accomplished through a number of 
approaches by adoption and comparison of these different muscle and bone 
parameters, dependent on the research question under investigation.  These 
approaches have revealed evidence of direct, mechanical muscle-bone 
interactions independent of allometric associations.  They have led to 
important information on bone mechanoadaptation and the influence of 
muscular action on bone, in addition to influences of age, gender, exercise 
and disuse on muscle-bone relationships.  Such analyses have also produced 
promising diagnostic tools for clinical use, such as identification of primary, 
disuse-induced and secondary osteoporosis and estimation of bone safety 
factors.  Standardisation of muscle-bone imaging methods is required to 
permit more reliable comparisons between studies and differing imaging 
modes, and in particular to aid adoption of these methods into widespread 
clinical practice.
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A – IMAGING THE PROBLEM

       The dynamic muscle-bone relationships can be analyzed by imaging 
masses, structures, and their interactions [1]. Imaging masses requires 
analysis of anthropometric features related to non-directional magnitudes. 
Imaging structures involves analyses of direction-related properties. Imaging 
interactions requires the analysis of mathematical relationships between 
image-derived, directional and non-directional variables.  There are three 
particularly attractive approaches to those purposes, namely, 1. imaging 
muscle mass and structure as force generators, and imaging bone 
mass/structure concerning their ability to 2. transform forces into stress, and 
3. adapt to stress (force/area values).

1. Imaging muscles as force-generators 

The power-generating step in muscle contractions is the cross-bridge 
interaction between myosin and actin filaments [2]. Force, and velocity, of a 
given contraction are therefore determined by the number of active cross-
bridges. Within skeletal muscle fibres, actin and myosin filaments are 
parallel-aligned and neatly bundled into sarcomeres, thus endowing the 
many cross-bridges with a direction. Muscle force increases with the number 
of sarcomeres-in-parallel, whilst contraction velocity increases with the 
number of sarcomeres-in-series [3]. Therefore, as an anatomical 
approximation of a muscle’s, or a muscle group’s force generating capacity 
we can identify the cross-sectional area (CSA). The anatomical CSA (aCSA), 
i.e. the CSA perpendicular to the origin-insertion axis, is easily identifiable 
with conventional X-ray based or conventional T1 or T2 –weighted magnetic 
resonance (MR) images. The physiological CSA (pCSA) takes into account the 
pennation angle in those muscles (Figure 1), where the fibres’ direction 
deviates from the anatomical axis of the muscle, which is the case for most 
of our muscles. Mathematically speaking, pennation packs more sarcomeres-
in-parallel into a volume, albeit at the expense of reducing contraction 
speed. pCSA is a better predictor of a muscle’s force generating capacity 
than aCSA [4]. To assess it requires measurement of the pennation angle, 
which can be done by ultrasound for parts of a muscle, or with MR diffusion 
tensor imaging [5].
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Fig. 1 Diagram of a unipennate muscle indicting fibre orientation (solid 
diagonal lines), line BC indicates appropriate plane for measurement of 

physiological cross-sectional area (pCSA).  Anatomical cross-sectional area 
(aCSA) is that resulting from a section orthogonal to the upper aponeurosis 

line ACl.  Reproduced with permission from [4].

2. Imaging bone ability to receive forces

At the tissue level, bone has properties of material stiffness (the degree of 
deformation under a given stress), material strength (ability to resist 
fracture), and toughness (ability to dissipate energy). The stiffness of cortical 
and trabecular bone as a material is strongly associated with bone mineral 
density [6, 7], which can be measured by cross-sectional densitometric 
techniques such as peripheral quantitative computed tomography (pQCT). 

As an organ, a bone also has properties of structural stiffness and toughness, 
both of which together determine its strength (the maximal stress the bone 
can stand until fracture). There are three principle kinds of strains and 
stresses, namely compression, tension and shear. Bones as structures can 
experience many different kinds of deformations, of which loading in bending 
and torsion are common examples.  Strength/stiffness in compression is 
related to bone mass in the cross-section orthogonal to the applied stress. 
Assuming invariant density, a larger bone cross-section results in greater 
bone mineral content (BMC) - measures which are more strongly correlated 
with axial bone strength than BMD measures alone [8, 9].  Measurement of 
bone diameters, or periosteal and endocortical perimeters describe changes 
in bone shape or cortical thickness which can evaluate some relative or 
combined effects on the corresponding, periosteal and endocortical 
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surfaces. However, the distribution of bone mass relative to the centre of 
mass also affects its stiffness and strength in bending and torsion. Cross-
sectional moment of inertia (CSMI) of the cortical bone area in long bones 
indicates bone’s stiffness in bending (axial CSMI) or torsion (polar CSMI) and 
is calculated as the sum of the voxel areas multiplied by the square of the 
distance (either in a single plane in the case of axial CSMI, or absolute 
distance in the case of polar CSMI) of each voxel from the centre of bone 
mass (Figure 2).  Moment of resistance (alternatively known as section 
modulus) is calculated by dividing the moment of inertia by the outer radius 
and indicates bone’s strength in bending or torsion.  Therefore – for example 
– the same bone mass organized into a large diameter, thin-walled tube will 
be stiffer in torsion (and indeed in bending) than a small diameter, thick-
walled tube.

Fig. 2 Geometrical properties and strength in cylinders. CSA – Cross-
sectional area. Ip – Polar moment of inertia. Rp – Polar moment of resistance. 

Radiusout – outer cylinder radius.  Radiusin – inner cylinder radius

The relationships between CSMIs and bone strength tend to vanish when 
bone diameter is proportionally much larger than cortical thickness. In this 
situation, CSMIs can be very large, but the bone can fail in buckling. The 
tendency to do so is estimated by the buckling ratio = periosteal diameter / 
cortical thickness. Within these limitations, the CSMIs can be combined with 
tissue mineral density to create density-weighted moments of inertia (also 
known as Bone Strength Index BSI).  BSI has been shown to be a stronger 
predictor of bone breaking strength than its components CSMI or cortical 
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BMD , explaining 89% of variance in strength [10].  Similarly, density-
weighted section modulus (strength-strain index, or SSI) has been derived, 
and explained 98% of variance in fracture load in human tibia – this 
association being stronger than those between fracture load and other bone 
measures such as cortical area and section modulus without density 
weighting [11].

3. Imaging bone ability to adapt to the mechanical environment  

- Within-bone relationships. Bone modeling and remodeling can be both 
modulated and spatially-oriented as a function of mechanical usage by bone 
mechanostat. This can result in re-orientation of cortical shells and 
trabecular networks as structural adaptations of bone tissue distribution to 
the induced stresses. These bone properties can be assessed by correlating 
different image-derived indicators of geometric properties (y) as a function of 
indicators of bone tissue mass (x1), as “distribution/mass” (d/m) 
relationships, or stiffness (x2), as “distribution/quality” (d/q) relationships 
(Figure 3).
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Fig. 3 Typical “distribution/mass” (d/m, left) and “distribution/quality” (d/q, 
right) curves obtained from scans taken at 40% (d/m) and at 65% (d/q) of the 
tibia height in male and female individuals who were untrained (S) or trained 

in long-distance running (R) [12]

7



- Muscle-bone associations and interactions. These can be assessed by 
imaging four different kinds of general (ubiquitous) muscle/bone 
associations, namely, 1. mass/mass (anthropometric), 2. structure/force 
(mechanical, translational), 3. structure/structure (mechanical, static) and 4. 
force/stress (mechanical, dynamic) relationships, as well as 5. some site-
specific applications of the same, as follows.

B – OVERVIEW OF THE PARTICULAR MATTERS INVOLVED IN THE 
ANALYSIS OF MUSCLE-BONE
       ASSOCIATIONS AND INTERACTIONS 

       I – General approaches

            1. Imaging muscle/bone mass/mass (anthropometric) 
relationships.

The biomechanical influences of muscles on bones as assessed by 
mass/mass relationships are blunted by natural morphogenetic associations 
[13-18], yet there is some evidence of a direct, mechanical interaction [19-
23]. In fact, DXA studies of the whole-body and limbs (standard 
determinations of lumbar spine, femur and radius are unsuitable for this 
purpose) have shown that mineral (BMC, y) and lean (related to muscle, x) 
masses are linearly related in both sexes at any age with similar slopes [24-
29] (Figure 4). However, the intercepts of those relationships differed in the 
order: children<men=post-MP women<pre-MP women [30, 31]. While similar 
slopes are compatible with the identity of bone mechanostat in the species 
[32], different intercepts would indicate the agonistic interference of sex 
hormones in the mechanical control of bone features [33]. 
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Fig. 4 Relationships between the DXA-assessed, whole-bone BMC (y) and 
lean mass(x) of a representative sample of healthy children, men, and pre- 
and post-menopausal women [30]

We have standardized those relationships for whole-body and limb measures 
in 3,000+ normal men and women and provided Z-scored charts for 
comparative diagnoses of osteopenia [34] which are specific to the type of 
device employed (Figure 5). Importantly, these relationships do not capture 
any structural variable related to actual muscle and bone strength [35]. 
However, the charts allow proposal of a predominantly “mechanical” or 
“metabolic” nature of the studied osteopenia (not osteoporosis) when 
compared to the values of BMC/lean mass ratio and lean mass data of the 
studied individual, respectively [36]. 
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Fig. 5 Z-scored charts of the relationships between the DXA-assessed, 
whole-bone BMC (y) and lean mass (x) of a representative sample of healthy 

men and pre- and post-menopausal women [34]

This distinction may orient the therapeutic indications of physical or 
pharmacological treatments. Low bone/muscle proportionalities were 
observed in post-MP women with typically osteoporotic fractures [37]; in 
thyro-parathyroidectomized children [38]; in very lean, amenorrheic  female 
ballet dancers, and in chronically haemodialized patients [unpublished].      

2. Imaging muscle/muscle structure/structure (mechanical, 
translational) relationships (Combined cross-sectional (pQCT, etc) + 
dynamometric methodologies) -> Muscle analysis.   

As discussed in A1 , and ceteris parabus, a larger muscle will produce greater 
force.  Imaging of muscle size by MRI has revealed strong associations 
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between measures and maximal force.  However, muscle size can be 
assessed as a three- (volume), two- (CSA) or one-dimensional (thickness) 
scalar measure.   Due to time or equipment restrictions single site 
assessments of cross-sectional area or muscle thickness are commonly 
measured in lieu of muscle volume.  The three values are unsurprisingly 
highly correlated [39] and are each also strongly related to maximal force 
[40-42].  Comparisons of the predictive ability of their different measures 
have produced varying results, with MRI-assessed elbow extensor and flexor 
volume explaining over 90% of variance in the isometric joint torques 
produced by their respective actions, whereas associations between torque 
and muscle CSA, and muscle thickness assessed by ultrasound in the same 
participants were weaker [42].  Conversely, other studies have shown similar 
relationships between maximal force and muscle CSA or volume [43].

Imaging muscle bone relationships makes the inherent assumption that all 
muscles have identical intrinsic strength, i.e. generate the same peak 
tension. This is, of course, not generally true. Old age and immobilization-
induced atrophy, for example, entail reductions in the peak tension of 
isolated muscle fibres [44].  The latter effect seems to be caused by reduced 
concentration of contractile apparatus within the muscle cells. Moreover, 
muscle dystrophic disorders [45], multiple sclerosis [46] and possibly others. 
There is a long and undecided debate whether or not children have lower 
intrinsic strength than adults [47-49]. 

Boundaries such as age and clinical disorders must therefore be considered 
when using muscle CSA for clinical and scientific inferences.  Attempts have 
been made to obtain detail of differences in size-adjusted force or ‘muscle 
quality’ by imaging methods.  One such method is analysis of muscle X-ray 
attenuation (MXA) as obtained from computed tomography.  MXA decreases 
with age [50] and is associated with specific tension of a muscle [51]. 
However, a lack of understanding of the physiological properties of muscle 
underlying MXA values is likely responsible for the lack of widespread 
adoption of the technique. 

3. Imaging muscle/bone structure/structure (mechanical, static) 
relationships
(Cross-sectional methodologies only) -> bone mass, material quality, 
design and/or strength indicators vs muscle mass, cross-sectional 
properties, and/or force indicators ; muscle-bone strength indices) -> 
Classification of osteoporoses. 
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Beyond the meaningfulness of anthropometric muscle-bone mass/mass 
relationships (B-I.1), the biomechanical muscle-bone associations can be 
approached more specifically by comparing image analyses of bone features 
as described in A-2,3 and muscle characteristics as referred to in A-1. To this 
purpose, it is generally preferable to select cross-sectional imaging data, as 
provided by QCT, pQCT, or similar techniques, rather than “areal” DXA data. 
Many of the variables measured cross-sectionally can be regarded as 
indicators of bone mass (total, trabecular or cortical BMC, total or cortical 
bone area, total or trabecular vBMD), bone material stiffnes (cortical vBMD), 
bone cross-sectional design (diameters, perimeters, cortical thickness, 
CSMIs, buckling ratio) or bone strength (BSIs, SSI). Bone trabecular structure 
can be assessed quasi-histomorphometrically by HR-pQCT. However, in this 
case the biomechanical interpretation of the data may be limited because 
the methodology does not capture the directional disposition of the 
trabecular network in relation to the direction of the forces which would 
break the bone. Muscle force can be easily (though indirectly) evaluated as 
the muscle cross-sectional area, which can be deprived of its fat content by 
filtration. Of course, dynamometrical data of the real muscle force are more 
suitable for this kind of analysis.

Image-derived muscle strength indicators usually correlate positively with all 
the above bone mass or strength indicators or with the CSMIs. Typically, in 
normal individuals, bone mass (tibial + fibula BMC in pQCT scans) correlates 
linearly with the maximal muscle CSA of the calf, comprising the origin 
(Figure 6a). Figure 6b shows the relationship between the A-P bending CSMI 
of the tibia and calf muscle CSA in the same cohort.
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Fig. 6 a) Relationships between the maximal cross-sectional muscle area of 
the calf (x) and a) the cortical bone area of tibia+fibula (y) , b) polar CSMI of 

13



the tibia cross-sectional cortical bone area (y), both scanned by pQCT at 66% 
of the tibia height in a representative sample of healthy men and pre-

menopausal women. The Z-scores of the corresponding distributions are 
indicated as a reference.

In agreement with the mechanostat theory, these correlations can evaluate 
the efficiency of the servo-controlled adaptation of bone design as a function 
of mechanical usage, and also distinguish between “mechanical” and 
“systemic” osteopenias as previously described. These relationships tend to 
differ greatly between men and women, chiefly because of 1. the larger 
values of all “extensive” indicators usually observed in male individuals, as a 
result of androgen-influences on both muscles and bones, with their obvious 
mechanical consequences, and 2. the estrogen-induced accumulation of 
bone mass (mostly trabecular tissue) per unit of muscle mass observed in 
pre-menopausal females, which tend to disappear after menopause. On the 
other hand, correlations of muscle indicators with the bone stiffness 
indicator, cortical vBMD, or other geometric indicators as the endocortical 
perimeter, cortical thickness, or the buckling ratio (i.e., variables which are 
not supposed to be directly regulated by bone mechanostat) are rather 
weak. 

4. Imaging muscle/bone force/stress (mechanical, dynamic) 
relationships.
(Combined dynamometric + cross-sectional methodologies) -> safety 
factors estimation -> True diagnosis of bone fragility. 

Stress ( ) is defined as a force divided by the transversal area on which itσ  
actuates. The maximal effective compression force, usual Fmax induced by a 
contraction of the regional muscles on a long bone which can be assumed to 
resist mostly uniaxial compression can be measured dynamometrically. In 
normal conditions, usual σmax is about 30 N / mm2. It was estimated from 
experimental measurements that, also in normal conditions, the maximal 
stress a bone can resist in compression prior to fracture is Fx σmax = 180 
N /mm2. Thus, and according to the Utah Paradigm of Skeletal Physiology 
[52], this would give a “safety factor” SF = Fx σmax / usual σmax = about 6 to 
normal bones working in compression. This permits calculation of the 
theoretically necessary cortical bone CSAt required to support Fx σmax in 
practical terms as CSAt = 6 * usual Fmax  (kg) / 18 kg/mm2, expressed in mm2. 
As long as the real bone CSA of the individual studied (CSAr) can be directly 
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determined by pQCT or similar techniques in the same area units, the 
percent relationship, 100 * CSAr/CSAt should estimate in what proportion the 
bone satisfies the SF predicted by the paradigm at the studied region and 
concerning the applied mode of deformation. This procedure is schematized 
in Figure 7 for a situation in which the distal tibia was selected for study as a 
bone region known to resist mostly uniaxial stress during customary 
mechanical usage [53, 54].  Whilst such approaches are only applicable in 
this manner to cortical bone (which varies little in density in adulthood 
outside of pathological conditions and old age), there also exists a 
relationship between trabecular bone compressive strength and its apparent 
density [55]. More precisely, the relationship is well described by power 
functions with exponents that are somewhat depending on the anatomical 
site. However, assuming an exponent of 2 seems to be a reasonable general 
approach [56].  Hence this idea could likely be adapted for epiphyseal bone. 
This or similar approaches (after the necessary validation and 
standardization) could evaluate the degree of fragility for a given bone, in 
biophysically reliable (stress) units. Such evaluation, performed in an 
osteopenic individual, can estimate to what extent his/her osteopenia has 
impacted bone strength in the studied region, with the corresponding 
specificity concerning site and mode of deformation. Thus, this should be a 
more reliable method to diagnose osteoporosis than the mechanically-
irrelevant, -2.5 DMO T-score limit established for standard DXA 
determinations.
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Fig. 7 Calculation of bone safety factor (SF)

      II – Site-specific approaches

Imaging of the muscle-bone relationship has been used to provide 
information on both bone physiology in basic science, and pathophysiology 
within research and clinical settings. Muscle-bone strength indices (MBSIs) 
have been established previously [57].  Compressive MBSI is based on the 
relationship between muscle CSA (as a surrogate for maximal force) and 
bone CSA as a surrogate for bone mass – given the lack of significant 
variation in density of health cortical bone – which indicates bone’s 
compressive strength.  Similarly, bending MBSIs were calculated as the 
relationship between muscle bending moment (the product of muscle CSA 
and tibia length) and axial moment of resistance indicating bone strength in 
bending.  Compressive MBSIs in the tibia vary throughout the limb length 
[57], suggesting that the influence of body mass on bone geometry is not 
pronounced.  However, when considering bones adapted to the same 
compressive strength by controlling for bone mass, longer bones (i.e. those 
with a longer lever arm for bending moments) were stronger in antero-
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posterior bending than short bones. Similar results have subsequently been 
found in the upper limbs, with the addition of much stronger relationships 
between wider bones (i.e. where the moment arm for torsional moments is 
greater) and strength in torsion when compressive strength was controlled 
for [58].  This suggests that antero-posterior moments may be the 
dominating influence on lower limb bones, whereas in the upper limbs 
torsional moments are most important.

The influence of factors such as exercise participation or disuse conditions, 
age, gender and pubertal stage on muscle-bone relationships have been 
considered. Examining the relationship between muscle and bone in exercise 
or disuse intervention studies is problematic. Firstly, rates of adaptation in 
muscle strength, size and bone strength are dischordant, particularly in 
exercise - significant changes in muscle size can be seen within 3 weeks of 
resistance training [59], whereas mechanoadaptation of bone has time-
constants around 1 to 2 years [60].  Existing interventional exercise studies 
have reported only very meagre increases in bone strength [61], hence 
correlations between muscle and bone increases in these studies would likely 
be significantly weakened due to the compounding of large measurement 
errors relative to the absolute change in values.  This could also explain the 
weak muscle-bone size side difference relationships found in studies of youth 
tennis players [62] and footballers .  

In other studies of youth and elite tennis players [58, 63] whilst strong 
correlations between upper limb muscle and bone CSA were found (R2 = 
0.73-0.86) different muscle-bone relationships were found in the racquet and 
non-racquet arm, with bone:muscle ratio being greater in the racquet arm. 
The authors suggested that this may be a result of the influence of individual 
muscles on bone, or that the high-impact nature of tennis strokes requires 
the muscles to act in a very different way to habitual usage.  Similarly, a 
study of derived muscle-bone indices in female controls and elite volleyball 
players found lower muscle-bone relationships in the athletes [57]. 
Conversely, in disuse studies the time course of detecting early bone and 
muscle loss is similar [64, 65], but muscle size changes are more pronounced 
[66].  No long-term (>1 year) controlled disuse intervention studies have 
been performed – however, muscle-bone relationships in spinal cord injury 
patients and controls were similar [67]. 

Another area of investigation is the effects of age and gender on muscle-
bone relationships.  Muscle-bone size indices have been shown to vary 
between genders and pubertal status in adolescents in both pQCT [68, 69] 
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and DXA studies [70], with pubertal effects likely a result (at least in part) of 
the dischordant timing of height velocity and lean mass and bone mass 
velocity during the pubertal growth spurt [71].  Gender effects have been 
proposed to be a result of additional bone mass accrued in women during 
childbearing years (potentially as a reservoir for calcium during foetal 
growth).  Supporting this, effects of menopause on muscle-bone relationships 
have been found with women of child-bearing age having greater bone-
muscle mass ratios [72].  Similarly, analysis of a DXA-based large cohort 
study found that whilst premenopausal women had a greater bone-muscle 
size ratio than postmenopausal women and men, the curves of the 
logarithmic equations for the relationships ran parallel to each other for all 
groups [73].  This is supportive of a common mechanical muscular influence 
on bone, with additional bone mass accrued during the childbearing years 
independent of muscular influence. Further to this, it has been suggested 
that extra bone mass in women is not stored in  accordance with the 
mechanical ‘need’ of bone regions – this is supported by contrasting findings 
with regard to gender differences in pQCT-derived muscle-bone size indices 
at weight-bearing and non weight-bearing sites [57, 63] .  However, when 
individuals within the same age and gender groups are considered, 
relationships between muscle and bone structure appear to be very 
consistent.  For example, muscle-bone size ratios are similar within normal 
weight and overweight children [74], and even in the extreme disuse case of 
spinal cord injury patients [67].  Alongside the extreme exercise case of elite 
athletes, only in long-term anorexia nervosa patients are muscle-bone 
relationships found to differ from sedentary controls, with ratios decreasing 
with disease progression [75].  

Within the clinical setting, muscle-bone ratios obtained from imaging have 
been proposed as a method to distinguish between primary and secondary 
bone disorders (Figure 8).  Primary bone disorders or ‘systemic osteopenias’ 
can be attributed to dysfunction in bone metabolism/adaptation – hence, 
whilst muscle mass is normal bone mass is lower than expected. 
Conversely, secondary bone defects or ‘disuse osteopenias’ are where the 
bone’s adaptive processes appear to function correctly but the low bone 
mass is secondary to so-called sarcopenia or dynopenia .  Finally, mixed 
bone defects occur when muscle mass is low, and bone-muscle ratio is lower 
than expected – indicating dysfunction in bone adaptation in addition to a 
lower muscle stimulus to the bone.  Indeed, a similar schema was employed 
in analysis of pQCT-derived muscle-bone ratios.  The schema could 
discriminate between healthy children and primary bone defects in frequent 
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fracture patients and kidney transplant patients, and secondary bone defects 
in chronic renal failure patients [69]. DXA-derived indices of lean body mass 
and bone mass also showed children with osteogenesis imperfecta to have a 
primary bone defect, and frequent fracture patients and those with spinal 
muscular atrophy to have a secondary bone defect [76].  

Fig. 8 Didactic representation of the three different etiologies proposed for 
all bone-weakening diseases, as referred to in the text.

This categorization of bone disorders has implications for patient treatment – 
e.g. in secondary disorders, exercise may function as a treatment route, 
whereas primary disorders may necessitate a nutritional or pharmacological 
intervention.  Similarly study of muscle-bone relationships showed 
postmenopausal women with low muscle mass and high muscle-bone ratio 
having a very high risk of osteoporotic fracture [37].  A recent paper also 
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proposed MRI-derived muscle-bone volume ratios in the thigh as an index of 
sarcopenia [77].    However, in order for these assessment methods to 
transfer fully into a clinical setting (i.e. to be established as a typical tool in 
the clinician’s arsenal), some standard methodology is required.  Also, in the 
same way that osteopenia and osteoporosis have standardized definitions, a 
range of normative muscle-bone ratios can be established from large current 
datasets such in adults [78] and children [69, 76].   

Therefore, it appears that even ‘crude’ measurements of muscle and bone 
size can be utilised in classification of bone disorders, and that more complex 
MBSIs have provided useful information pertaining primarily to bone 
mechanoadaptation and the influence of muscular action on bone.  However, 
current imaging-based methods are likely limited in their ability to describe 
muscular influence – new methods such as 3D ultrasound of muscle may 
help future studies better approximate the muscle-bone relationship, both in 
research and clinical application.
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