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Abstract

Doping of titania with metal and non-metal elements provides a simple and efficient pathway 

to significant enhancement of photocatalytic properties. In this work titania thin films co-

doped  with  molybdenum  and  nitrogen  were  prepared  by  reactive  magnetron  sputtering. 

Additionally,  coatings doped only with nitrogen were prepared under identical deposition 

conditions for comparison purposes. Coatings were annealed at 873 K in air and analysed by 

Raman spectroscopy, XRD and XPS. Photocatalytic properties of the coatings were evaluated 

on the basis of the photodegradation rate of methylene blue dye under UV, fluorescent and 

visible  light.  It  was  found  that  the  photocatalytic  activity  of  co-doped  samples  was 

significantly higher than that of N-doped coatings. Unlike N-doped titania films, co-doped 

coatings  exhibited  high  photocatalytic  activity  under  the  fluorescent  light  source  and 

noticeable activity under visible light. The possible mechanism for the enhancement of the 

photocatalytic activity of Mo-N co-doped titania coatings is discussed.

1. Introduction

Titanium  dioxide  (or  titania)  is  widely  used  as  a  photocatalyst,  with  its  photocatalytic 

properties being discovered more than 60 years ago [1]. It finds applications in various areas, 

such as building materials, antibacterial coatings, self-cleaning surfaces, etc. However, the 

application  of  titanium dioxide  is  restricted  due  to  its  high  band  gap value  (3.2  eV for 
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anatase), which means that UV irradiation is required for its excitation. As UV constitutes 

just 1-2% of the solar spectrum, for many practical applications it is necessary to shift the 

photocatalytic  activity  of  titanium  dioxide  into  the  visible  range.  Several  methods  of 

achieving this  are described in the literature,  with doping of titanium dioxide with either 

metallic or non-metallic elements as one of the most promising and well-studied.

Doping titanium dioxide with non-metal atoms, such as carbon, nitrogen, phosphorus, etc. 

narrows the band gap due to a mixing of the dopant p-states with the p-states of oxygen 

forming the valence band of titanium dioxide [2]. Of the range of possible non-metal dopants, 

nitrogen is one of the most described in literature to improve the photocatalytic activity of 

titanium dioxide [3-5] and extend activity into the visible range. The nitrogen atom has a size 

comparable with the size of an oxygen atom, thus it can be easily introduced into the titania 

structure in either substitutional or interstitial positions [6]. 

Doping with transition metal ions is reported to create impurity levels near the conduction 

band,  that  may perform as trapping centres, which extend the lifetime of photogenerated 

electrons and holes [7]. At present, there is no uniform theory explaining the choice of the 

doping element to maximise the photocatalytic properties in the visible range. However, there 

are some reports, which enable a reasoned choice for the doping elements. It is reported that 

the best  results  for transition metal doping can be achieved when the ionic radius of the 

doping metal is close to that of titanium [8], to enable incorporation into the titania lattice. Of 

the variety of candidate metals described in literature, transition metals such as tungsten [9], 

chromium [10], vanadium [11] and molybdenum [12] are mentioned as efficient dopants for 

shifting the activity to the visible range. 

However,  both metal  and non-metal  doping have  limits  to  their  application due to  some 

restricting factors. Excessive metal doping may lead to the formation of recombination sites 
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for photogenerated electrons and holes, thus reducing the photocatalytic activity. Excessive 

nitrogen doping leads to the formation of extra nucleation sites, that may lead to anatase-to-

rutile transformation at lower temperatures [13], which results in a significant decrease of 

photocatalytic activity. 

The idea of simultaneously co-doping titania with metallic and non-metallic elements has 

been rapidly explored by many researches in the past few years. Nitrogen is typically used as 

the non-metallic element, while the metals chosen may vary. Several works have recently 

been published on the co-doping of titanium dioxide with both molybdenum and nitrogen, 

using  a  variety  of  methods  to  produce  the  coatings,  such  as  sol-gel  [7],  hydrolysis-

precipitation  [14],  etc.  However,  in  this  work,  titanium  dioxide  coatings  co-doped  with 

molybdenum and nitrogen were deposited by reactive magnetron sputtering. Co-sputtering 

from a host target and a dopant target in the presence of a reactive gas is proven to be a 

convenient and scalable technique, which provides straightforward control over the dopant 

levels in the host material. The doped coatings were compared to pure titania coatings, as 

well as coatings singly-doped with nitrogen and molybdenum only. 

2. Experimental

2.1. Coatings deposition

The coatings were deposited by reactive magnetron sputtering in a Teer Coatings Ltd. UDP 

450 system (Figure 1). Three 300 mm × 100 mm type II unbalanced planar magnetrons were 

installed  vertically opposed through the  chamber  walls;  two magnetrons  were fitted  with 

titanium  targets  (99.5%  purity)  and  one  with  a  99.95%  pure  molybdenum  target.  The 

magnetrons with the titanium targets were in the closed field configuration and driven in mid-

frequency (100-350kHz) pulsed DC mode using a dual channel Advanced Energy Pinnacle 

Plus supply at a frequency of 100 kHz and a duty of 50% (in synchronous mode) at a constant 
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time-averaged  power  of  1  kW each.  In  order  to  achieve  the  desired  doping  level,  the 

magnetron with the molybdenum target was driven at 100W in continuous DC mode using an 

Advanced Energy MDX power supply. Previous work by the authors has shown that the best 

results  obtained for  molybdenum-doped  coatings  were  for  those  containing  2.4  at.  % of 

molybdenum  [13].  The  reactive  sputtering  process  was  carried  out  in  an  argon:oxygen 

atmosphere at 0.3 Pa, and was controlled by optical emissions monitoring using an operating 

set  point  (15% of  the full  metal  signal)  previously found to produce stoichiometric  TiO2 

coatings [15]. The glass substrates were ultrasonically pre-cleaned in propanol and placed 

onto the substrate holder, which was rotated continuously during the deposition process at 4 

rpm at a distance of 100 mm from the magnetrons. The nitrogen flow was controlled using a 

mass flow controller in the range from 0 to 10 sccm to vary dopant levels. Two arrays of 

coatings  were deposited  during this  work:  titania  doped with  nitrogen at  different  levels 

(sample IDs N1-N10), and titania with a fixed molybdenum content and varying nitrogen 

levels (sample IDs MoN1-MoN10). Undoped titania coatings were additionally deposited for 

the purpose of photocatalytic and structural  property comparisons.  Coatings  singly doped 

with molybdenum (deposited under identical conditions) were described earlier  elsewhere 

[13].

2.2. Coatings characterization

The  crystallinity  of  the  annealed  coatings  was  analysed  by  grazing  incidence  X-ray 

diffraction (GIXRD) (Panalytical Xpert, angle of incidence = 3O) and Raman spectroscopy 

(Renishaw Invia, 514 nm laser). XPS analysis was also carried out using a VG Multilab 2000 

system employing  an  AlKα source  with  the  pass  energy of  25  eV.  Transmittance  of  the 

coatings used for calculation of the band gaps was measured with Ocean Optics USB 2000+ 

UV-visible spectrometer.
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2.3. Evaluation of photocatalytic activity

The determination of photocatalytic activity was carried out using the methylene blue (MB) 

degradation test. MB is an organic dye with molecular formula C16H18ClN3S, and is often 

used  as  an  indicating  organic  compound  to  measure  the  activity  of  photocatalysts.  An 

aqueous  solution  of  MB  shows  strong  optical  absorption  at  approximately  665  nm 

wavelength. Changes in the absorption peak height are used for monitoring the concentration 

of MB, and hence its degradation in contact with a photocatalytic surface. 

Prior to the photocatalytic measurements, coating samples of equal size (1.5 X 2.5 cm2) were 

immersed  for  30  min  in  a  conditioning  solution  of  methylene  blue  in  the  dark  for  pre-

absorption  of  MB  on  the  test  surfaces  to  exclude  the  effect  of  absorption  during  the 

photocatalytic experiment. The photocatalytic measurements were carried out for 1 hour in 

continuous  mode.  Samples  were  immersed  into  40  ml  of  MB  aqueous  solution;  the 

concentration  of  methylene  blue  solution  used  in  the  work  was  1.5  μmol/l  –  this 

concentration was defined experimentally to be able to detect photocatalytic response of each 

tested coatings in 1 hour experiment. The absorption peak height of methylene blue solution 

was measured with an Ocean Optics USB 2000+ spectrometer  with continuous magnetic 

stirring. Each coating was tested both under UV and fluorescent light sources; 2×15W 352 

nm  Sankyo  Denki  BLB  lamps  were  used  as  the  UV  light  source  and  2×15W  Ushio 

fluorescent lamps as the fluorescent light source. Selected coatings were additionally tested 

under  a  visible  light  source.  The  visible  light  source  was  simulated  by  combining  a 

fluorescent light source with a Knight Optical 395 nm long pass UV filter. The natural decay 

rate of methylene blue (without the photocatalyst present) under each type of light source was 

measured for reference purpose, as well as the degradation rate of methylene blue in contact 

with photocatalytic surface but without light irradiation (i.e. in the dark). In both cases the 

decay rate of methylene blue was of zero order and, thus was neglected in the following 
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calculations, meaning any changes in the absorption peak height could be attributed to the 

photocatalytic activity [12]. 

According  to  the  Lambert-Beer  law,  the  concentration  of  the  dye  is  proportional  to  the 

absorbance value: 

A = εcl       (1)

where: A is absorbance, ε is the molar absorbance coefficient; l is the optical length of the cell in which 

the photocatalyst is immersed into the MB. A heterogeneous catalysis process can be described with 

the simplified form of the Langmuir-Hinshelwood equation [16]:

lnC0C= kat lnC0C= kat

(2)

where C0 and C are the concentrations of MB solution at time 0 and time t of the experiment, 

respectively. A plot of C0/C versus time is linear, where the gradient gives a value of the first order rate 

constant, ka. The concentration of methylene blue was found using the following equation [17]:

CC0= AtAt=o (3)

where At=o and At is the absorption of methylene blue at 665 nm at time 0, and the time of the 

experiment,  respectively.  Thus,  substituting  (At=0/At)  into  Equation  2  yields  a  linear 

relationship, where the gradient gives a value of the first order rate constant, ka. 

3. Results

3.1. Coatings overview

The  overview of  the  coatings  produced,  including  their  thicknesses  (measured  by stylus 

profilometry)  and compositional  properties,  measured by EDX and verified with XPS,  is 

presented in Table 1. Information on molybdenum-doped titania coatings deposited earlier 
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under identical conditions (2.4 at.% of Mo) studied in one of our earlier works [18] is given 

for reference purposes. The content of molybdenum in the co-doped coatings is not included 

in this table, as this parameter was not varied. The coatings produced in the present work 

contained 2.8 – 2.9 at. % of Mo.

Despite using the same range of flow rates,  it  can be seen that the nitrogen content was 

significantly lower in the N-doped coatings, compared to co-doped coatings. Due to the low 

values of nitrogen content in coatings N1 – N5 it could not be quantified with the techniques 

used here. 

According to the results of XRD and Raman spectroscopy, all the as-deposited coatings were 

amorphous.  In  order  to  develop  the  crystal  structure  the  samples  of  each  coating  were 

annealed in air at 873 K for 30 min. After annealing the coatings were cooled gradually (4-5 

hours)  to  avoid  introducing  stresses  to  the  structure,  and  then  re-analysed  by  Raman 

spectroscopy and XRD. 

3.2. Raman spectroscopy results

The  Raman  spectra  of  the  annealed  N-doped  and  Mo-N  co-doped  titania  coatings  are 

presented  in  Figures  2  and  3,  respectively.  The  Raman  spectra  of  the  N-doped coatings 

(Figure 2) showed that all the coatings were in the anatase phase with typical anatase Raman 

bands observed at 144, 397, 516 and 638 cm-1. 

The results of Raman spectroscopy of the Mo-N co-doped coatings showed a similar trend to 

the  N-doped  coatings  (Figure  3).  Thus,  after  annealing  at  873  K  all  the  coatings  were 

crystalline  with  anatase  peaks  identical  to  those  described  above.  A broad,  weak  peak 

observed at 971 cm-1 can be attributed to Mo=O bond stretching [19].  

3.3. XRD results
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In a similar manner to the Raman spectroscopy results, the XRD results showed the presence 

of anatase peaks for all the coatings annealed at 873 K, as shown in Figures 4 and 5 (JCPDS: 

21-1272). 

It can be seen that the N-doped coatings retained the strong anatase (1 0 1) peak at 25.3º 

through the entire set of coatings (Figure 4), while the Mo-N co-doped coatings showed a 

shift  in  texture  towards  the  anatase  (0 0 4)  peak (at  37.8º)  for  the  coatings  with  higher  

nitrogen content (starting from MoN5) (Figure 5) and anatase (0 0 1) for coatings MoN1 and 

MoN3.

No additional phases could be detected in the XRD patterns of the N-doped titania coatings, 

while for the Mo-N co-doped coatings several small peaks attributed to rutile and brookite 

titania can be seen. Additionally,  coatings MoN7 and MoN10 exhibited the presence of a 

peak that can be attributed to molybdenum oxide; MoO3 (JCPDS: 35-0609). 

3.4. XPS results

XPS analysis was conducted on selected coatings for the determination of the chemical states 

of molybdenum and nitrogen. Coatings MoN3, N3, MoN7 and N7 were selected as examples 

of  doped  /  co-doped  coatings  deposited  with  low and  high  nitrogen  flows,  respectively. 

Figure 6 shows curve fitting for the Mo3d spectra of coatings MoN3 and MoN7, respectively. 

As a result of the peak fitting, two peaks at the binding energies of 231.8 and 234.9 eV can be 

observed  for  both  of  the  samples,  which  can  be  assigned  to  Mo3d5/2  and  Mo3d3/2 

photoelectrons, respectively. 

The results of fitting for the XPS peak observed at a binding energy of 399 eV for coatings 

MoN3 and MoN7 (Figure 7) assign it to the N1s peak at 398.0 eV and the Mo3p3/2 peak at 

399.5 eV. 
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Therefore it can be concluded that in the co-doped samples, molybdenum co-exists in the 

form of Mo6+, as well as Mo-N-Ti (judging from its 3d and 3p binding energies). The N1s 

peak at a binding energy of 399 eV is usually assigned to substitutional nitrogen incorporated 

into the titanium dioxide lattice via O-Ti-N linkage [20]. 

Comparing the XPS patterns of the co-doped coatings with the patterns of the nitrogen-doped 

coatings  (Figures  7  and  8,  respectively),  it  can  be  concluded  that  co-doping  resulted  in 

changes of the chemical state of the N species. The peaks seen in the XPS spectra of samples 

N3 and N7 can be deconvoluted into three peaks at binding energies of 397.5, 399.1 and 

402.8 eV (403.5 eV for N7). As in the case of the co-doped samples, the peak at 399 eV can 

be interpreted as N1s substitutional nitrogen; while the other two peaks can be assigned to Ti-

N and Ti-O-N (interstitial nitrogen), respectively.

3.5. Band gap calculation

Optical band gap values of the coatings were calculated using the Tauc plot method [21] by 

plotting (αhν)1/2 versus hν and extrapolating the linear region to the abscissa (where α is the 

absorbance coefficient, h is Plank constant, ν is the frequency of vibration). 

Examples  of  the band gap calculation for the N-doped and Mo-N co-doped coatings  are 

presented in Figure 9. The calculated values of the optical band gaps are given in Table 2. 

It can be seen that neither N-doping, nor co-doping with N and Mo has a significant effect on 

the  value  of  the  band  gap.  The  lowest  band  gap  value  obtained  through  the  entire 

experimental  array  was  3.04eV (for  sample  MoN7),  which  corresponds  to  light  with  a 

wavelength of 408nm. Generally, the co-doped coatings exhibited a higher band gap shift 

towards the visible range than the N-doped coatings. 

3.6 Photocatalytic activity
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Some examples of MB 665 nm absorbance peak decay plots are given in Figure 10. The 

values of first order rate constant of the MB decomposition under UV, fluorescent and visible 

light are given in Table 2. Values of photocatalytic activity of undoped titania and Mo-doped 

titania are given for reference purposes. 

For the N-doped only coatings,  samples N1 and N3 show some increase in  UV activity, 

compared to the undoped titania coating, but apart from these two results, the effect of N-

doping  alone  is  not  significant.  However,  the  results  for  the  co-doped  coatings  show  a 

progressive  increase in  UV and fluorescent  activity  up to  sample  MoN10,  with  coatings 

MoN5 and MoN7 demonstrating the highest activity under both light sources. Visible light 

testing showed that these coatings also exhibited some activity under the visible light source, 

while for undoped / N-doped titania coatings this value was equal to zero. 

4. Discussion

Incorporation  of  nitrogen atoms into  the  titania  lattice  is  reported  to  extend  the  spectral 

response into the visible range. [5, 22]. Co-doping with metals and non-metals is described as 

having a  synergistic  effect  on the  photocatalytic  activity  of  titania,  as  in  addition  to  the 

extended spectral response of the photocatalyst, the metal facilitates the transfer of excited 

electrons  and  suppresses  charge  carrier  recombination.  In  this  case,  enhanced 

photodecomposition  can  be  attributed  to  the  increased  number  of  photogenerated  •OH 

radicals [23]. 

The results of photocatalytic tests showed that doping with nitrogen has a moderately positive 

effect on photocatalytic activity, while co-doping with nitrogen and molybdenum resulted in 

significant improvements in photocatalytic activity. The efficiency of N-doped coatings under 
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UV light, compared to that of undoped titania, was higher by a factor of 2. However, despite 

widely  published  information  about  N-doping  as  an  efficient  method  of  improving  the 

photocatalytic properties under fluorescent / visible light, N-doped titania coatings studied in 

this work had a low efficiency of MB degradation under the fluorescent light source. As no 

noticeable  band  gap  shift  towards  the  visible  range  was  observed,  the  increased 

photocatalytic activity under the fluorescent light source could only be attributed to improved 

electron-hole separation and the extended lifetime of charge carriers, as a result of nitrogen 

incorporation. 

The results of the XPS showed that the presence of molybdenum has a significant influence 

on the content of nitrogen in the coatings and its position. As shown by Liu et. al, co-doping 

with N and Mo increases the solubility limits of both N and Mo in TiO2  [7]. This effect is 

described as being more pronounced in the case of nitrogen, as the solubility of N in titania is 

usually very low.  The data  obtained on the content  of  dopants  in  this  work are in  good 

agreement  with  this  theory –  the  co-doped coatings  have  much higher  nitrogen contents 

compared to N-doped titania. The content of molybdenum is also slightly higher than for Mo-

doped  titania  prepared  and  annealed  under  identical  conditions  [18]  (2.9  and  2.4  at.  %, 

respectively). Based on the XPS results, it can be assumed that the substitutional position of 

the nitrogen in the titania lattice has a positive effect on the photocatalytic activity. Thus, the 

activity of co-doped coatings was much higher compared to N-doped coatings, where N co-

existed  in  several  forms.  The photocatalytic  activity  of  Mo-doped titania  also  was much 

lower than that seen for the co-doped coatings. 

Summarising all the above, increased activity of co-doped coatings can be assumed to be a 

result of more efficient electron-hole separation, compared to undoped or singly Mo- or N-
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doped titania coatings, due to the synergistic effect of Mo-N co-doping. A mechanism of 

explaining  more  efficient  charge  carrier  separation  was  proposed  by  Cheng  et.  al,  who 

observed similar results for Mo-N co-doped coatings prepared by a hydrolysis-precipitation 

method [14]. The proposed mechanism is schematically shown in Figure 10. Nitrogen and 

molybdenum create local energy levels within the titania band gap, and therefore several 

ways of charge carrier excitation are available, and consequently more photoinduced charge 

carriers can be efficiently separated to participate in the photocatalytic process. Co-doped 

coatings with optimum content of nitrogen and molybdenum demonstrate significantly higher 

photocatalytic  activity,  due to  more efficient  charge carrier  separation and their  extended 

lifetimes. A shift of the band gap towards the visible range, compared to undoped titania, 

enables the presence of photocatalytic activity under fluorescent and visible light. 

It can be concluded that co-doping of titania coatings with metallic and non-metallic elements 

provides a very promising route for the deposition of photocatalytic titania coatings with 

significant activity both under UV and fluorescent light sources. However, a synergistic effect 

of co-doping can be achieved when the concentration of both metal and non-metal are within 

some  optimum  range,  therefore  an  optimisation  study  is  required  to  maximise  the 

photocatalytic properties of the coatings. 

5. Conclusions

Co-doping of titanium dioxide with both a metal and a non-metal was investigated as a way 

of depositing coatings with high photocatalytic activity.  Co-doped coatings were analysed 

and compared to coatings doped with either N or Mo alone, as well as to undoped titania.
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It  was found that co-doping improves the solubility of the doping elements in the titania 

lattice, as well as significantly improving photocatalytic activity. Co-doped coatings exhibited 

higher band gap shifts towards the visible range, which was reflected in the existence of a 

low level of visible light activity and high photocatalytic activity under fluorescent light. 

Doping with metals and non-metallic elements simultaneously results in the creation of more 

impurity  bands  within  the  titania  band  gap  and  thus  improves  visible  light  absorption. 

Additionally, improved electron-hole separation for the co-doped coatings greatly improved 

the photocatalytic properties under UV light, compared to undoped or mono-doped titania.

Overall,  Mo-N  co-doped  coatings  look  very  promising  as  photocatalysts.  Further 

enhancement  of  photocatalytic  properties  may  be  achieved  by  optimising  deposition 

conditions and the concentrations of the doping elements.
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Table 1

Dopan
t

Sample 
ID

Flow of nitrogen, 
sccm

Content of nitrogen, 
at. %

Coating thickness, 
nm

Mo TiO2+Mo - - 685

N N1 1 <1% 654

N3 3 <1% 657

N5 5 <1% 654

N7 7 1.09 658

N10 10 3.67 661

Mo+N MoN1 1 1.22 760

MoN3 3 3.08 764

MoN5 5 4.95 758

MoN7 7 7.13 761

MoN10 10 9.12 766
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Table 2

Sample ID Band gap, eV 

Band gap 
shift 

(compared 
to TiO2)

ka× 10-5,s-1

UV light

ka× 10-5,s-1

Fluor. light

ka× 10-5,s-1

Vis. light

TiO2 3.15 - 1.7 0.6 0

TiO2 + Mo 3.00 -0.15 2.8 1.8 0.6

N1 3.22 +0.07 3.6 0.9 0

N3 3.22 +0.07 2.9 1.6 0

N5 3.20 +0.05 1.7 1.1 0

N7 3.14 -0.01 1.7 1.0 0

N10 3.08 -0.07 1.4 0.9 0

MoN1 3.09 -0.06 1.0 0.6 0

MoN3 3.09 -0.06 4.9 1.7 0.4

MoN5 3.05 -0.10 6.9 2.1 0.7

MoN7 3.04 -0.11 7.5 5.6 1.2

MoN10 3.07 -0.08 5.6 3.7 1.0
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