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Abstract

For our purposes, two functors Λ and Γ are said to be adjoint if for any digraphs
G and H, there exists a homomorphism of Λ(G) to H if and only if there exists a
homomorphism of G to Γ(H). We investigate the right adjoints characterised by Pultr
in [A. Pultr, The right adjoints into the categories of relational systems, In Reports of
the Midwest Category Seminar, IV, volume 137 of Lecture Notes in Mathematics, pages
100–113, Berlin, 1970]. We find necessary conditions for these functors to admit right
adjoints themselves. We give many examples where these necessary conditions are
satisfied, and the right adjoint indeed exists. Finally, we discuss a connection between
these right adjoints and homomorphism dualities.

AMS subject classification: 05C20, 18A40, 05C60

1 Introduction

A digraph functor is a construction Γ which makes a digraph Γ(G) out of a digraph G, such
that if there exists a homomorphism of G to H, then there exists a homomorphism of Γ(G)
to Γ(H). Consider two functors Λ and Γ. We say that Λ is a left adjoint of Γ and Γ is a
right adjoint of Λ if the existence of a homomorphism of Λ(G) to H is equivalent to the
existence of a homomorphism of G to Γ(H). Note that the precise categorial definition
requires a natural correspondence between the morphisms of Λ(G) to H and those of G
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to Γ(H), but for our applications it is usually enough to distinguish between the existence
and non-existence of a homomorphism between two digraphs. Hence we work in the
“thin” category of digraphs, in which there is at most one generic morphism from one
digraph to another.

Some significant constructions in graph theory turn out to be functors, and sometimes
some of their fundamental properties are related to the fact that they have a left adjoint,
a right adjoint, and sometimes both. Thus it is worth the while to characterise the pairs
of adjoint functors. However, that objective may be out of reach for the moment. Our
purpose is to lay groundwork in that direction.

In a sense, Pultr [6] has already characterised the pairs of adjoint functors. Nevertheless,
his characterisation holds in the category of multidigraphs, where morphisms must specify
images of vertices and of arcs. Right-left adjunction is preserved in the thin category of
digraphs; however, more pairs of adjoint functors exist. In particular, some of the right
adjoint functors of Pultr themselves admit right adjoints, while no such adjoints exist in
the category of multidigraphs.

Some of the adjoints characterised by Pultr are in fact well-known constructions in graph
theory. The left adjoints of Pultr encompass arc subdivisions and standard products, and
his right adjoints encompass the shift graph construction and exponentiation.

We will call the left and right functors characterised by Pultr respectively left Pultr
functors and central Pultr functors. One feasible objective seems to be the characterisation
of the central Pultr functors which admit right adjoints. In Theorem 2.5, we prove necessary
conditions. In Sections 3 to 7, we show that some of the functors satisfying these conditions
do indeed admit right adjoints, which leads us to wonder whether these conditions are
also sufficient.

The existence of central Pultr functors with right adjoints allows us to define new pairs
of adjoint functors by composition. It is not at all clear whether compositions of Pultr
functors suffices to define all pairs of digraph adjoint functors.

2 Pultr templates and functors

A homomorphism is an arc-preserving map between digraphs. If G,H are digraphs, we write
G → H if there exists a homomorphism of G to H. G and H are called homomorphically
equivalent if G→ H and H→ G.

Definition 2.1. A Pultr template is a quadruple T = (P,Q, ε1, ε2) where P, Q are digraphs
and ε1, ε2 homomorphisms of P to Q.

Definition 2.2. Given a Pultr template T = (P,Q, ε1, ε2) the central Pultr functor ΓT is the
following construction: For a digraph H, the vertices of ΓT (H) are the homomorphisms g :
P→ H, and the arcs of ΓT (H) are the couples (g1, g2) such that there exists a homomorphism
h : Q→ H with g1 = h ◦ ε1, g2 = h ◦ ε2.
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Where P is a set or a digraph and ε is a mapping, by ε[P] we mean the image of this set
or digraph (where the mapping is applied elemet-wise).

Definition 2.3. Given a Pultr template, T = (P,Q, ε1, ε2) the left Pultr functor ΛT is the
following construction: For a digraph G, ΛT (G) contains one copy Pu of P for every vertex
u of G, and for every arc (u, v) of G, ΛT (G) contains a copy Qu,v of Q with ε1[P] identified
with Pu and ε2[P] identified with Pv.

Formally, the identification of P and P′ is described by defining an equivalence relation
in which the corresponding vertices of P and P′ are equivalent, and then quotienting the
digraph by this relation; see [1] for details.

Theorem 2.4 (Pultr [6]). For any Pultr template T , ΛT and ΓT are left and right adjoints.

For some templates T , the central Pultr functor ΓT not only admits the left adjoint ΛT ,
but also a right adjoint ΩT . Not all templates have this property. The following result
provides necessary conditions.

Theorem 2.5. Let T = (P,Q, ε1, ε2) be a Pultr template such that ΓT admits a right adjoint
ΩT . Then P and Q are homomorphically equivalent to trees. Moreover, for any tree T, ΛT (T) is
homomorphically equivalent to a tree.

Proof. Suppose that ΓT admits a right adjoint ΩT . Let H = ~P0, the one-vertex digraph
with no arcs. Then a graph G satisfies ΓT (G)→ H if and only if ΓT (G) has no arcs, that is,
Q 9 G. On the other hand, ΓT (G)→ H if and only if G→ ΩT (H), thus we have

Q 9 G if and only if G→ ΩT (H).

Therefore (Q,ΩT (H)) is a homomorphism duality pair in the sense of [5]. It is known
(by [4], see also [5]) that a digraph Q is the left-hand member of such a duality pair if and
only if it is homomorphically equivalent to a tree.

A similar argument (with H = ∅) shows that P is also homomorphically equivalent to a
tree. More generally, let T be a tree with dual D(T). Then for any digraph G,

T 9 ΓT (G) ⇔ ΓT (G)→ D(T),

that is,
ΛT (T) 9 G ⇔ G→ ΩT (D(T))

Therefore (ΛT (T),ΩT (D(T))) is a duality pair, whence ΛT (T) is homomorphically equiva-
lent to a tree. �

It is not clear how to characterise the templates T with the property that for any tree T,
the left adjoint ΛT (T) is homomorphically equivalent to a tree. Small examples seem
to suggest that templates with this property have a Q that is itself a tree, unless it is
disconnected. Also, it remains open whether the converse to Theorem 2.5 holds. In the
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rest of this paper we establish partial results in this respect. Our main result is Theorem 7.1
in Section 7, which proves that for templates T where P is a vertex or an arc, and Q is
a tree, ΓT has a right adjoint ΩT . To facilitate the understanding of this main theorem
without resorting to extremely formal definitions, we begin by several examples.

3 Example: The arc graph construction

We write V(G) for the vertex set and A(G) for the arc set of a digraph G. If x, y are vertices
of G, we sometimes write x → y for (x, y) ∈ A(G) (when there is no confusion about G).
Note that we also write G → H for “there exists a homomorphism of G to H”, but this
notation is consistent, since the thin category of digraphs is itself a digraph. If X,Y are sets
of vertices, we write X V Y if x→ y for any x ∈ X and any y ∈ Y. We abbreviate X V {y}
to X V y and {x}V Y to x V Y. Note that for any set X, we have ∅V X V ∅.

The arc graph of a digraph G is the digraph δ(G) constructed as follows: For every arc
x→ y of G, δ(G) contains the vertex (x, y), and for every pair of consecutive arcs x→ y→ z
of G, δ(G) contains the arc (x, y) → (y, z). The arc graph construction is a well-known
method for constructing graphs with large odd girth and large chromatic number (see [3]).

It turns out that the arc graph construction is a central Pultr functor. We have δ(G) =

ΓT (G) whereT = (P,Q, ε1, ε2) with P = ~P1 = ({0, 1}, {(0, 1)}), Q = ~P2 = ({0, 1, 2}, {(0, 1), (1, 2)}),
and ε1, ε2 mapping P to the first and second arc of Q. The right adjoint ΩT of ΓT = δ
exists; we call it δR.

Definition 3.1. For a digraph H, the vertices of δR(H) are all the pairs (R−,R+) such that
R−,R+

⊆ V(H) and R− V R+. (Note that (∅,V(H)) and (V(H), ∅) are vertices of δR(H).)
(R−,R+)→ (S−,S+) is an arc of δR(H) if and only if R+

∩ S− , ∅.

Proposition 3.2. For any digraphs G, H, δ(G)→ H if and only if G→ δR(H).

Proof. Let g : G → δR(H) be a homomorphism, with g(u) = (g−(u), g+(u)). For any arc
u → v of G, we have g(u) → g(v), hence g+(u) ∩ g−(v) , ∅. Define f : δ(G) → H by
taking f (u, v) to be any element of g+(u) ∩ g−(v). Whenever (x, y) → (y, z) in δ(G), we
have f (x, y) ∈ g−(y) V g+(y) 3 f (y, z); hence f (x, y) → f (y, z) in H. Therefore f is a
homomorphism.

Conversely, let f : δ(G)→ H be a homomorphism. For u ∈ V(G), put

g−(u) = { f (x,u) : (x,u) ∈ A(G)},
g+(u) = { f (u, y) : (u, y) ∈ A(G)}.

Whenever x → u → y in G, we have (x,u) → (u, y) in δ(G), so f (x,u) → f (u, y) in H
because f is a homomorphism. Thus g−(u) V g+(u) for any vertex u of G. Hence g(u) :=
(g−(u), g+(u)) is a vertex of δR(H). Furthermore, if u→ v in G, then f (u, v) ∈ g+(u) ∩ g−(v),
and so g+(u) ∩ g−(v) , ∅. This shows that g(u)→ g(v) in δR(H). Therefore, g : G→ δR(H)
defined by g(u) = (g−(u), g+(u)) is a homomorphism. �
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Now, consider the template T = (P,Q, ε1, ε2) with P = ~P1 =
(
{0, 1}, {(0, 1)}

)
, Q =(

{0, 1, 2, 3}, {(0, 1), (2, 3), (0, 2), (1, 3)}
)
, and ε1(0) = 0, ε1(1) = 1, ε2(0) = 2, ε2(1) = 3. For

any graph G, δ(G) is a subgraph of ΓT (G), and ΓT (G) = δ(G) whenever G does not contain
a 4-cycle x → y → z ← w ← x. However, ΓT does not have a right adjoint. Indeed,
even though Q is homomorphically equivalent to a tree, it is easy to see that for the tree
T =

(
{0, . . . , 5}, {(0, 1), (1, 2), (3, 2), (3, 4), (4, 5)}

)
, ΛT (T) is not homomorphically equivalent

to a tree. Thus by Theorem 2.5, ΓT does not have a right adjoint.

4 Example: A path template

In [2, 7], (undirected) graph constructions are studied, which turn out to be right adjoints
of central Pultr functors for templates (P,Q, ε1, ε2) where P is a point, Q is a path of odd
length and ε1, ε2 map P to the endpoints of Q. Similar constructions work for directed
graphs, we outline one example.

Let Q be the oriented path 0← 1→ 2→ 3. Let P = ~P0 = ({0}, ∅), and ε1(0) = 0, ε2(0) = 3.
For T = (P,Q, ε1, ε2), a right adjoint ΩT of ΓT is constructed as follows.

Definition 4.1. For a digraph H, the vertices of ΩT (H) are all the pairs (a,A) such that
a ∈ V(H) and A ⊆ V(H). (Note that each (a, ∅) with a ∈ V(H) is a vertex of ΩT (H).)
(a,A)→ (b,B) is an arc of ΩT (H) if and only if b ∈ A V B.

Note that for all a, b ∈ V(H), (a, ∅) is a sink, and (b,B) is a source unless b V B.

Proposition 4.2. For any digraphs G, H, ΓT (G)→ H if and only if G→ ΩT (H).

Proof. Let g : G → ΩT (H) be a homomorphism, with g(u) = (g0(u), g+(u)). Define f :
ΓT (G) → H by f (u) = g0(u). Whenever u → v in ΓT (G), there exist vertices x, y such that
u← x→ y→ v in G. Since g is a homomorphism, we then have g(u)← g(x)→ g(y)→ g(v)
in ΩT (H). By definition of adjacency in ΩT (H), this implies

f (u) = g0(u) ∈ g+(x) V g+(y) 3 g0(v) = f (v).

Therefore f (u)→ f (v), so f is a homomorphism.
Conversely, let f : ΓT (G)→ H be a homomorphism. For u ∈ V(G), put

g+(u) = { f (y) : (u, y) ∈ A(G)}.

We define g : G→ ΩT (H) by g(u) = ( f (u), g+(u)). If (u, v) is an arc of G, then f (v) ∈ g+(u),
and for every (u, x), (v, y) ∈ A(G), we have x ← u → v → y in G, hence x → y in ΓT (G)
and f (x) → f (y) in H. Thus g+(u) V g+(v). Therefore (g(u), g(v)) is an arc of ΩT (H). This
shows that g is a homomorphism. �
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There are often many constructions of a right adjoint of a central Pultr functor, even
though they are all homomorphically equivalent. The above construction of ΩT (H) is
more compact than the construction derived later from the proof of Theorem 7.1, using
one less coordinate. For future reference, we provide a second construction in the spirit of
the proof of Theorem 7.1.

Definition 4.3. For a digraph H, the vertices of Ω′
T

(H) are all the triples (a,A1,A2) such
that a ∈ V(H), A1,A2 ⊆ V(H) and A1 V A2. (a,A1,A2) → (b,B1,B2) is an arc of Ω′

T
(H) if

and only if b ∈ A1 and B1 ⊆ A2.

The following can be proved in a similar fashion to Proposition 4.2.

Proposition 4.4. For any digraphs G, H, ΓT (G)→ H if and only if G→ Ω′
T

(H).

We finish this section with a construction that gives the right adjoint ΩT for a fairly
general family of templates T , in which the respective Q’s are oriented paths.

Definition 4.5. Suppose that Q is an oriented path with m arcs and vertex set {0, 1, . . . ,m}.
Let T = (~P0,Q, ε1, ε2), where ε1, ε2 map the one-vertex graph ~P0 to the end-points of Q.
For a digraph H, let the vertex set of ΩT (H) be V = {(x,X1, . . . ,Xm) : x ∈ V(H), Xi ⊆

V(H) for each i, Xm V x}. There is an arc in ΩT (H) from (x,X1, . . . ,Xm) to (y,Y1, . . . ,Ym) if

(1a) x ∈ Y1 if 0→ 1 in Q,

(1b) y ∈ X1 if 1→ 0 in Q; and

(2) for each i = 1, . . . ,m − 1:

(a) Xi ⊆ Yi+1 if i→ i + 1 in Q,

(b) Yi ⊆ Xi+1 if i + 1→ i in Q.

The correctness of this construction, asserted in the following proposition, follows from
the proof of Theorem 7.1.

Proposition 4.6. Let T and ΩT be as in Definition 4.5. Then for any digraphs G, H, we have
ΓT (G)→ H if and only if G→ ΩT (H).

5 Examples: Compositions of adjoint functors and multiply
exponential constructions

The k-th iterated arc graph construction δk can be defined recursively by δk+1 = δ ◦ δk. It
can also be defined directly as δk = ΓT , where T = (~Pk, ~Pk+1, ε1, ε2), with

~Pk =
(
{0, 1, . . . , k}, {(0, 1), (1, 2), . . . , (k − 1, k)}

)
,

~Pk+1 =
(
{0, 1, . . . , k + 1}, {(0, 1), (1, 2), . . . , (k, k + 1)}

)
,

ε1(i) = i and ε2(i) = i + 1.
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All iterated arc graph constructions admit right adjoints, defined recursively by δk+1
R =

δR ◦ δk
R. In particular this shows the existence of a right Pultr adjoint for templates with

arbitrarily large P.
Note that the construction δk

R is an exponential construction iterated k times. In this case
it turns out that multiply exponential size is necessary: For arbitrarily large integers n,
there are graphs G such that χ(G) = n and χ(δk(G)) = Θ(log(k)(n)). For m = Θ(log(k)(n)), we
then have G→ Ω(Km), for any right adjoint Ω of δk. This means that Ω(Km) needs at least
n vertices.

For any two central Pultr functors Γ1, Γ2, the composition Γ1◦Γ2 is a central Pultr functor
for a suitably defined template. If Ω1, Ω2 are right adjoints of Γ1 and Γ2 respectively, then
Γ1◦Γ2 admits a right adjoint, namely Ω2◦Ω1. For Γ1 = δ and Γ2 = ΓT , withT = (P,Q, ε1, ε2)
being the template of Section 4, we get Γ1 ◦ Γ2 = ΓU , with U = (ΛT (~P1),ΛT (~P2), ε1, ε2),
where ε1, ε2 map ΛT (~P1) respectively to the first and second copy of ΛT (~P1) in ΛT (~P2).
It is not clear whether the doubly exponential construction of a right adjoint ΩT ◦ δR of
δ ◦ ΓT is necessary in this case. Composing in the reverse order, we get ΓT ◦ δ = ΓV,
whereV = (~P1,T, ε1, ε2) with T = ({0, 1, 2, 3, 4}, {(0, 1), (1, 2), (1, 3), (3, 4)}) and ε1, ε2 map ~P1
to the arcs (1, 2) and (3, 4) respectively. The proof of Theorem 7.1 gives an exponential
construction of a right adjoint of ΓV, while the composition δR ◦ΩT is doubly exponential.

Finally we note that with multiply exponential constructions, the conditions defining
adjacency may become increasingly intricate. Consider the path P = ~P2 = 0 → 1 → 2
and let Q be the path 0 → 1 → 2 ← 0′ → 1′ → 2′. Put ε1[P] = 0 → 1 → 2 and
ε2[P] = 0′ → 1′ → 2′. For the Pultr template T = (P,Q, ε1, ε2), ΓT does admit a right
adjoint. We give the following doubly exponential construction for ΩT .
• The vertices of ΩT(H) are quadruples R = (R−−,R−+,R+−,R++) such that each of the

four sets is a set of sets of vertices of H (that is, each R∗∗ ⊆ 2V(H)) and for any M ∈ R−+

and any N ∈ R+− we have M ∩N , ∅.
• There is an arc R → S in ΩT (H) if and only if

⋃
R++ V

⋃
S−−, R+−

∩ S−− , ∅, and
R++
∩ S−+ , ∅.

It can be shown that ΓT (G)→ H if and only if G→ ΩT (H). Both conditions “A intersects B”
and “every element of A intersects every element of B” are used in the construction
of ΩT (H). If the converse of Theorem 2.5 holds, increasingly complex relations may be
needed to describe right adjoints corresponding to each suitable Pultr template.

6 Example: A tree template

Our final example models the proof of Theorem 7.1.

Definition 6.1. Let P = ~P1 =
(
{0, 1}, {(0, 1)}

)
; let Q have vertex set {0, 1, . . . , 10} and arcs

0→ 1→ 2→ 3→ 4, 6→ 7→ 8→ 9→ 10, 7→ 5→ 3. Let ε1 : P→ Q, ε1(0) = 0, ε1(1) = 1,
and ε2 : P → Q, ε2(0) = 9, ε2(1) = 10. Consider the Pultr template T = (P,Q, ε1, ε2), see
figure.
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For a digraph H, define ΩT (H) by:

V(ΩT (H)) =
{
(S−,S+,S−−,S++,S−−−,S+++,S−∗+++,S−−∗+++) ∈ (2V(H))8 :

if S+ , ∅, then S−−− V S−−∗+++
}

and S→ T in ΩT (H) if
• S+

∩ T− , ∅,
• S− ⊆ T−−,
• S−− ⊆ T−−−,
• T+

⊆ S++,
• T++

⊆ S+++,
• S−∗+++

⊆ T−−∗+++, and
• S− = ∅ or S+++

⊆ T−∗+++.
P = Q =

ε1

ε2

Proposition 6.2. Let T and ΩT be as in Definition 6.1. Then for any digraphs G, H we have
ΓT (G)→ H if and only if G→ ΩT (H).

Proof. Let g : G→ ΩT (H). Define f : V(ΓT (G))→ V(H) by setting f (u, v) to be any element
of the (nonempty) set g(u)+

∩ g(v)−. If (u, v)→ (x, y) in ΓT (G), then there exists h : Q→ G
such that h(0, 1) = (u, v), h(9, 10) = (x, y). By definition, f (u, v) ∈ g(v)−. Because h and g are
homomorphisms, g(v) = g(h(1))→ g(h(2)) in ΩT (H), thus g(v)− ⊆ g(h(2))−−. Similarly,

f (u, v) ∈ g(v)− ⊆ g(h(2))−− ⊆ g(h(3))−−−,

and
f (x, y) ∈ g(x)+

⊆ g(h(8))++
⊆ g(h(7))+++

⊆ g(h(5))−∗+++
⊆ g(h(3))−−∗+++;

here, for the third inclusion we need to observe that g(h(7))− , ∅, which follows from the
existence of the arc g(h(6)) → g(h(7)). Moreover, g(h(3)) → g(h(4)), so g(h(3))+ , ∅, and
hence g(h(3))−−− V g(h(3))−−∗+++. Therefore f (u, v) → f (x, y) in ΩT (H) and consequently
f is a homomorphism.

For any u ∈ V(G), let u+ be the set of all arcs outgoing from u in G, let u++ be the set of all
arcs outgoing from outneighbours of u, etc. In this way, for instance, u+++ will be the set
of images of the arc (9, 10) of Q, under any homomorphism h of Q[7, 8, 9, 10], the subtree
of Q on {7, 8, 9, 10}, to G, with the property that h(7) = u. Analogously, let

u−∗+++ = {h(9, 10) : h : Q[5, 6, . . . , 10]→ G, h(5) = u},
u−−∗+++ = {h(9, 10) : h : Q[4, 5, . . . , 10]→ G, h(4) = u}.
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Now let f : ΓT (G)→ H. Define g : V(G)→ V(ΩT (H)) by

g(u) = ( f [u−], f [u+], f [u−−], . . . , f [u−−∗+++]).

If u+ , ∅, a1 ∈ u−−−, a2 ∈ u−−∗+++, then we observe that there is a homomorphism h : Q→ G
such that h(3) = u, h(0, 1) = a1, h(3, 4) ∈ u+, and h(9, 10) = a2. Thus a1 → a2 in ΓT (G), and
hence f (a1) → f (a2) in H. Therefore whenever g(u)+ , ∅, we have g(u)−−− V g(u)−−∗+++,
so each g(u) is indeed a vertex of ΩT (H).

If u→ v in G, then f (u, v) ∈ g(u)+
∩ g(v)− , ∅. Checking the inclusions in the definition

of an arc of ΩT (H) is then relatively easy. We can conclude that g(u)→ g(v) in ΩT (H), so
g is a homomorphism. �

7 Right Pultr adjoints for tree templates

In this section we consider templates T = (P,Q, ε1, ε2), where P = ~P0 (a single vertex) or
P = ~P1 (a single arc), and Q is a tree. We prove the following:

Theorem 7.1. Let T = (P,Q, ε1, ε2) be a Pultr template such that P = ~P0 or P = ~P1 and Q is a
tree. Then there exists a functor ΩT such that for any digraphs G,H we have ΓT (G) → H if and
only if G→ ΩT (H).

As a matter of fact, many different non-isomorphic constructions are possible (and we
shall hint at some variations here as well), but they are all homomorphically equivalent.

Proof of Theorem 7.1. There is a pathologically trivial case where ε1 = ε2, which we do not
consider in the following exposition.

The subtrees of Q. Every vertex of ΩT (H) will be a vector of subsets of V(H), indexed
by some rooted subtrees of Q. Namely, the rooted subtrees are determined as follows:

The images ε1[P] and ε2[P] in Q are connected by a path; call this path Q̃. The path Q̃
contains one vertex from each of ε1[P] and ε2[P]. Thus in the template of Definition 4.1,
Q̃ = Q; in the arc graph construction, Q̃ is just the vertex 1; whereas for the T of Section 6,
Q̃ is the path 1 → 2 → 3 ← 5 ← 7 → 8 → 9. We choose any vertex m on the path Q̃ and
call it the middle vertex. (The discretion in our choice of the middle vertex is one of the
causes for the existence of many different right adjoints.)

If P = ~P0 and ε1[P] and ε2[P] are joined by an arc, either ε1[P] or ε2[P] can be taken to be
the middle vertex. If P = ~P1 and the images ε1[P] and ε2[P] intersect (like in the arc graph
template), the middle vertex is the vertex they intersect in.

Now, every non-leaf u of Q is a cut vertex. Consider each subtree induced by the
vertex u and all the vertices of some component of Q − u (obtained from Q by removing
the vertex u); take only those components that do not contain the middle vertex. Let Su be
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the set of all such subtrees, each rooted in u. Finally, let S′ =
⋃
{Su : u is a non-leaf of Q}.

Notice that the root of each T ∈ S′ has degree 1 in T.
Some of the trees in S′ contain either ε1[P] or ε2[P]; call this image the P-arc or P-vertex

of that tree (depending on whether P = ~P1 or P = ~P0). Trees from S′ with no P-arc or
P-vertex are called pendent subtrees because they appear to hang from the path Q̃. Each Su
contains at most one non-pendent tree Tu unless u is the middle vertex m; then Sm may
contain two non-pendent subtrees: Tm,1 containing ε1[P] and Tm,2 containing ε2[P].

Finally, let S consist of the trees in S′, taken up to isomorphism. An isomorphism is
meant to preserve not only the vertices and arcs, but the root and the P-vertex or P-arc as
well.1

The vertices of ΩT (H). A vertex of ΩT (H) is
• any vector (R•, RT : T ∈ S) if P = ~P0,
• any vector (RT : T ∈ S) if P = ~P1,

where R• ∈ V(H), RT
∈ {0, 1} if T is a pendent subtree, and RT

⊆ V(H) otherwise, if it
satisfies the following condition (remember that m is the middle vertex of Q):

If RT = 1 for every pendent T ∈ Sm, then RTm,1 V RTm,2 . (1)

Recall that A V B means that a→ b for any vertex a ∈ A and any vertex b ∈ B; here the arc
is meant to exist in H.

The arcs of ΩT (H). Let R,S be vertices of ΩT (H). Thus R = (R•,RT : T ∈ S), S =
(S•,ST : T ∈ S), or R = (RT : T ∈ S), S = (ST : T ∈ S). Then R → S in ΩT (H) if and
only if all of the following conditions are satisfied:

• If P = ~P0: For an arc e of the path Q̃ with vertices a, b such that a = εi[P] for some
i ∈ {1, 2}, let Tb be the non-pendent tree rooted in b that contains a. If e = (a, b), then
we have the condition

if RT = 1 for every pendent T ∈ Sa, then R• ∈ STb ; (2)

if e = (b, a), then we have the condition

if ST = 1 for every pendent T ∈ Sa, then S• ∈ RTb . (3)

• If P = ~P1: Let ε1[P] consist of vertices a, b, and let ε2[P] consist of vertices c, d, so
that b and c would be “closer” to the middle vertex m; that is, b, c are vertices of the
path Q̃. (If the images ε1[P] and ε2[P] intersect, then b = c = m.) The sets Sa and Sd
contain only pendent trees. Let Tb be the non-pendent tree in Sb that contains a, b,

1In fact, we may take these trees up to homomorphic equivalence, with homomorphisms preserving arcs,
the root and the P-vertex or P-arc.
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and let Tc be the non-pendent tree in Sc that contains c, d. If a → b in Q, put A = R
and B = S; if on the other hand b → a in Q, put A = S and B = R. Analogously, if
c→ d in Q, put C = R and D = S; if d→ c in Q, put C = S and D = R. Then we have
the following three conditions:

If AT = 1 for every T ∈ Sa, then BTb , ∅. (4)

If DT = 1 for every T ∈ Sd, then CTc , ∅. (5)

If AT = 1 for every T ∈ Sa and DT = 1 for every T ∈ Sd, then BTb ∩ CTc , ∅. (6)

• For any arc e of the path Q̃ not covered by conditions (2)–(3), let a, b be the vertices
of e so that every tree in Sa is a subtree of Tb, a non-pendent tree in Sb. If e = (a, b),
then we have the condition

if RT = 1 for every pendent T ∈ Sa, then RTa ⊆ STb ; (7)

if e = (b, a), then we have the condition

if ST = 1 for every pendent T ∈ Sa, then STa ⊆ RTb . (8)

• For any other arc e of Q, let a, b be the vertices of e and let T′ ∈ Sb so that every tree
in Sa is a subtree of T′. If e = (a, b), then we have the condition

if RT = 1 for every T ∈ Sa, then ST′ = 1; (9)

if e = (b, a), then we have the condition

if ST = 1 for every T ∈ Sa, then RT′ = 1. (10)

Thus we might say that it is really tough to be an arc.
Please take another look at the example in Section 6. Which vertex of Q did we choose

to be the middle vertex? You should be warned that in the example, we combined the
roles of the non-pendent tree and the pendent tree ~P1 rooted in the tail, as well as the
roles of the non-pendent tree and the pendent tree ~P1 rooted in the head. This has led to a
construction not isomorphic but homomorphically equivalent to the recipe given here.

The homomorphisms. Let f : ΓT (G) → H be a homomorphism. We will define a
mapping g : V(G)→ V(ΩT (H)). For a vertex u of G and a subtree T ∈ S rooted in t, define
g(u)T in the following way:
If T is pendent, let

g(u)T =

1 if there exists a homomorphism h : T→ G such that h(t) = u,
0 otherwise.

(11)
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If T is non-pendent, let p be the P-vertex or the P-arc of T and let

g(u)T =
{

f (h(p)) : h : T→ G is a homomorphism such that h(t) = u
}
. (12)

Moreover, if P = ~P0, set
g(u)• = f (u). (13)

First we need to verify that g(u) is indeed a vertex of ΩT (H). Thus we need to verify the
condition (1). Suppose that u ∈ V(G) and that g(u)T = 1 for every pendent T ∈ Sm. Hence
by definition there exist homomorphisms hT : T → G with hT(m) = u. Let x1 ∈ g(u)Tm,1

and x2 ∈ g(u)Tm,2 . Then by (12) there are homomorphisms hi : Tm,i → G with hi(m) = u
and xi = f (h(εi[P])) for i = 1, 2. Since all the trees in Sm share only the vertex m, we
can define a homomorphism h : Q → G by putting h(m) = u, h(a) = hi(a) if a is a vertex
of a non-pendent Tm,i, and h(a) = hT(a) if a is a vertex of a pendent T ∈ Sm. Thus by
definition h(ε1[P])→ h(ε2[P]) in ΓT (G). Because f is a homomorphism, x1 = f (h(ε1[P]))→
f (h(ε2[P])) = x2. Therefore g(u)Tm,1 V g(u)Tm,2 as we were supposed to prove.

We aim to show that g is a homomorphism, that is, that whenever u → v in G, then
g(u) → g(v) in ΩT (H). Thus we need to check all the conditions (2)–(10). The conditions
are all similar in nature and they are all proved by stitching together homomorphisms in
a fashion similar to that of the previous paragraph.

Let us start with condition (2). Suppose that P = ~P0, e = (a, b) is an arc of Q̃, a = εi[P]. Let
Tb be the non-pendent tree rooted in b that contains a. If g(u)T = 1 for every pendent T ∈ Sa,
then by (11) there exist homomorphisms hT : T → G with hT(a) = u. Since Tb consists
of the union of the trees T ∈ Sa and the arc (a, b), we may define h : Tb → G by putting
h(a) = u, h(b) = v, and h(x) = hT(x) for any other vertex x of Tb, where T is the unique tree
T ∈ Sa that contains x. By our assumption u → v in G, so h is a homomorphism. Then
by (12) we have g(u)• = f (u) = f (h(a)) ∈ g(v)Tb , which verifies (2).

Condition (3) is analogous to (2).
Suppose now that P = ~P1, ε1[P] = (a, b), ε2[P] = (c, d), b, c are vertices of the path Q̃.

Let Tb be the non-pendent tree rooted in b that contains a and let Tc be the non-pendent
tree rooted in c that contains d. If g(u)T = 1 for every T ∈ Sa, then by (11) there exist
homomorphisms hT : T → G with hT(a) = u. As above, we can define a homomorphism
h : Tb → G by putting h(a) = u, h(b) = v, and h(x) = hT(x) with T being the corresponding
tree in Sa. Since (a, b) is the P-arc of Tb, by (12) we have f (u, v) ∈ g(v)Tb ; hence g(v)Tb , ∅,
which verifies (4). By an analogous argument we can show that if g(v)T = 1 for every
T ∈ Sd, then f (u, v) ∈ g(u)Tc , ∅, which verifies (5). Therefore if both g(u)T = 1 for every
T ∈ Sa and g(v)T = 1 for every T ∈ Sd, then f (u, v) ∈ g(v)Tb ∩ g(u)Tc , ∅, which verifies
condition (6). If ε1[P] = (b, a) and/or ε2[P] = (d, c), the proof is analogous.

For condition (7), let e = (a, b) be an arc of Q, let Tb be the non-pendent tree rooted in b
that contains a, let Ta be the non-pendent tree rooted in a, and suppose that g(u)T = 1
for every pendent T ∈ Sa; thus by (11) for every such T there exists a homomorphism
hT : T→ G such that hT(a) = u. Whenever x ∈ g(u)Ta , by (12) there exists a homomorphism

12



hTa : Ta → G such that h(a) = u and x = f (hTa(p)), where p is the P-vertex or the P-arc of Ta
(thus also the P-vertex or the P-arc of Tb). Note that Tb is the union of the arc (a, b) and of
all the trees in Sa; so there is a homomorphism h : Tb → G such that h(b) = v that coincides
with hT on each subtree T ∈ Sa, in particular, h(p) = x. Hence, by (12), x ∈ g(v)Tb . Therefore
g(u)Ta ⊆ g(v)Tb as we are supposed to show.

Condition (8) is analogous to condition (7), and the remaining two conditions are very
similar as well. Thus we have shown that if ΓT (G)→ H, then G→ ΩT (H).

To show the opposite implication, suppose that g : G → ΩT (H) is a homomorphism.
First, if P = ~P0, then vertices of ΓT (G) are essentially the same as vertices of G. For u ∈ V(G),
put

f (u) = g(u)•. (14)

If on the other hand P = ~P1, then vertices of ΓT (G) are essentially the same as arcs
of G. If (u, v) is an arc of G, then g(u) → g(v) in ΩT (H). Let a, b, c, d, Tb,Tc and A,B,C,D
be as in conditions (4)–(5) with R = g(u), S = g(v). If the hypothesis of condition (6)
is satisfied, define f (u, v) to be an arbitrary vertex in BTb ∩ CTc . If only the hypothesis of
condition (4) is satisfied, define f (u, v) to be an arbitrary vertex in BTb ; if only the hypothesis
of condition (5) is satisfied, define f (u, v) to be an arbitrary vertex in CTc . Otherwise let
f (u, v) be an arbitrary vertex of H. (Note that if H has no vertices, then ΩT (H) has no arcs;
thus if G→ ΩT (H), then ~P1 9 G, and so ΓT (G) has no vertices.)

Claim 1. For any pendent T′ ∈ S rooted in some b and any homomorphism h : T′ → G we have
g(h(b))T′ = 1.

Proof. By induction on the number of arcs of T′. If T′ has one arc, without loss of generality
we may assume it is a → b. Then Sa = ∅ and we have g(h(a)) → g(h(b)) in ΩT (H); hence
by (9), g(h(b))T′ = 1. (If a← b, then condition (10) applies.)

If T′ has more than one arc, then still the root b has degree 1 in T′, so there is a
unique arc (w.l.o.g.) a → b. By induction, for every T ∈ Sa we have g(h(a))T = 1.
Since g(h(a)) → g(h(b)) in ΩT (H), by (9) we have g(h(b))T′ = 1. (Again, if a ← b, then
condition (10) applies.) �

Claim 2. Let b be any vertex of the path Q̃ in Q. Let Tb be a non-pendent tree rooted in b and
let i ∈ {1, 2} be such that Tb contains pi = εi[P]. Let h : Tb → G be a homomorphism. Then
f (h(pi)) ∈ g(h(b))Tb .

Proof. The proof is by induction on the distance of b from the P-arc or P-vertex of Q.
First, if P = ~P0 and there is an arc pi → b or pi ← b, then by Claim 1 applied to all the
pendent trees in Spi and the corresponding restrictions of h we get g(h(pi))T = 1 for every
T ∈ Spi . If pi → b in Tb, then h(pi) → h(b) in G and g(h(pi)) → g(h(b)) in ΩT (H). Hence
f (h(pi)) = g(h(pi))• ∈ g(h(b))Tb by (2). If, on the other hand, pi ← b in Tb, then condition (3)
applies analogously.
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Next, let P = ~P1 and let pi = (a, b). The non-pendent tree Tb consists of the arc (a, b) and
all the pendent trees in Sa. Again, by Claim 1 we have g(h(a))T = 1 for every pendent
T ∈ Sa. Thus by the definition of f we have f (h(pi)) = f (h(a, b)) ∈ g(h(b))Tb . The case
pi = (b, a) is analogous.

Finally, let Tb contain the arc (a, b) and suppose that a is not the P-vertex of Tb and
(a, b) is not the P-arc of Tb. Let Ta be the non-pendent subtree of Tb rooted in a. By
induction, f (h(pi)) ∈ g(h(a))Ta . For every pendent T ∈ Sa, an application of Claim 1 to the
restriction of h to T shows that g(h(a))T = 1. As a→ b in Tb, we have h(a)→ h(b) in G and
g(h(a))→ g(h(b)) in ΩT (H). Hence g(h(a))Ta ⊆ g(h(b))Tb by (7). Therefore f (h(pi)) ∈ g(h(b))Tb .
Just like before, the case b→ a is analogous; condition (8) applies. �

We aim to show that f is a homomorphism. Let y→ z in ΓT (G); y and z may be vertices
or arcs of G, depending on whether P = ~P0 or P = ~P1. Then there exists a homomorphism
h : Q→ G such that y = (h ◦ ε1)[P] and z = (h ◦ ε2)[P]. Put p1 = ε1[P] and p2 = ε2[P], so that
y = h(p1) and z = h(p2).

For i = 1, 2, let hi be the restriction of h to the non-pendent tree Tm,i rooted in the
middle vertex m of Q. By Claim 2, f (y) = f (h1(p1)) ∈ g(h1(m))Tm,1 = g(h(m))Tm,1 and
f (z) = f (h2(p2)) ∈ g(h2(m))Tm,2 = g(h(m))Tm,2 . By (1), g(h(m))Tm,1 V g(h(m))Tm,1 . Therefore
f (y) → f (z) in H. Indeed, f is a homomorphism of ΓT (G) to H. This concludes the proof
of Theorem 7.1. �

8 Pultr functors and homomorphism dualities

In our final section, we return to the connection between Pultr functors and homomor-
phism dualities, which enabled us to prove Theorem 2.5.

Definition 8.1. Let F be a set of digraphs and H a digraph. We say that F is a complete set
of obstructions for H or that (F ,H) is a homomorphism duality if for any digraph G,

G→ H ⇔ ∀F ∈ F : F 9 G.

We also say that H has tree duality if it admits a complete set of obstructions all of whose
elements are trees, and H has finite duality if it admits a finite complete set of obstructions.

Connections between left and central Pultr functors and homomorphism dualities were
the topic of our paper [1]. Here we consider their relationship to the right adjoints.

Theorem 8.2. Let T be a Pultr template. Suppose that (F ,H) is a homomorphism duality.

(1) If there exists a digraph K such that

for any digraph G, ΓT (G)→ H ⇔ G→ K, (15)

then {ΛT (F) : F ∈ F } is a complete set of obstructions for K.
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Assume, moreover, that the template T satisfies the necessary conditions for the existence of ΩT
given by Theorem 2.5.

(2) If H has tree duality and K satisfies (15), then K also has tree duality.

(3) If H has finite duality, then there does exist a digraph K that satisfies (15). Moreover, K also
has finite duality.

Proof. (1) For any digraph G,

G→ K⇔ ΓT (G)→ H
⇔ ∀F ∈ F : F 9 ΓT (G)
⇔ ∀F ∈ F : ΛT (F) 9 G.

(2) LetF be a complete set of obstructions for H consisting entirely of trees. Then ΛT (F) is
homomorphically equivalent to a tree Λ′(F) for each F ∈ F . Since for any digraph G we
have ΛT (F) → G iff Λ′(F) → G, the set F ′ = {Λ′(F) : F ∈ F } is a complete set of tree
obstructions for K.

(3) Let F ′ = {Λ′(F) : F ∈ F } as above. By [5], there exists a digraph K such that (F ′,K) is
a homomorphism duality. By the above equivalence, K satisfies (15). �

Thus for all the templates T satisfying the necessary hypotheses in Theorem 2.5, the
central Pultr functor ΓT admits a partial right adjoint ΩT , defined at least on some sub-
classD of the class of all digraphs: namely, we can take the class of all digraphs with finite
duality.

Furthermore, combining Theorem 7.1, compositions and sporadic examples as in Sec-
tion 5, we get a wide class of templates satisfying the necessary hypotheses in Theorem 2.5
for which the central Pultr functor admits a right adjoint. This gives reason to think that
the converse of Theorem 2.5 might hold. While known constructions of finite duals of
trees are rather complex, a right adjoint of a central Pultr functor is even more general.
This fact justifies the complexity of the construction given in Section 7.
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