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SUMMARY

This paper focuses on the numerical modelling of wave impact events under air entrapment and aeration
effects. The underlying flow model treats the dispersed water wave as a compressible mixture of air and
water with homogeneous material properties. The corresponding mathematical equations are based on a
multiphase flow model which builds on the conservation laws of mass, momentum and energy as well as
the gas-phase volume fraction advection equation. A high-order finite volume scheme based on MUSCL
reconstruction is used to discretise the integral form of the governing equations. The numerical flux across
a mesh cell face is estimated by means of the HLLC approximate Riemann solver. A third-order TVD
Runge-Kutta scheme is adopted to obtain a time-accurate solution. The present model provides an effective
way to deal with the compressibility of air and water-air mixtures. Several test cases have been calculated
using the present approach including a gravity induced liquid piston, free drop of a water column in a
closed tank, water-air shock tubes, slamming of a flat plate into still pure and aerated water and a plunging
wave impact at a vertical wall. The obtained results agree well with experiments, exact solutions and other
numerical computations. This demonstrates the potential of the current method to tackle more general wave-
air-structure interaction problems.

1. INTRODUCTION

Prediction of wave loading is a key aspect of offshore and coastal engineering. Violent water waves
may cause severe damage to offshore platforms, breakwaters and sea walls etc. Such hazards have
been observed frequently in the past in many countries. Recent examples are the winter storms
that occurred in the United Kingdom from December 2013 to February 2014, during which huge
waves destroyed railway lines and coastal sea defences[1].These disasters worldwide have resulted
in billions of pounds of losses and threatened thousands of lives. Scientific investigations from
engineering, environmental and other perspectives are a necessity to understand and mitigate these
naturally occurring events.

To gain a deeper insight into these problems from the viewpoint of the hydrodynamics, great
efforts have been made to study wave impacts on breakwaters, sea walls and liquid storage
tanks etc. through carefully controlled experiments (e.g. Bullock et al. [2], Lugni et al. [3]), field
measurements (Crawford [4]) and theoretical analysis (Peregrine [5], Korobkin [6]) in the past
several decades. The extreme impulsive pressures recorded in violent wave impact events can be tens
or even hundreds of times those of impacts induced by ordinary non-breaking waves [3]. Intentions
to classify the impact events into different types can be found in the work of Schmidt et al. [7],
Oumeraci and Partenscky [8] and Kirkgoz [9]. Here, we follow the ideas of Lugni et al. [3] to divide
these into three modes including (a) impact of an incipient breaking wave, (b) impact of a broken
wave with an air pocket and (c) impact of a broken wave with water-air mixing (see pages 8 and 9
of [3] for more details). The second impact mode of an overturning wave with an air cavity (also
named a plunging wave or plunging breaker) is of particular interest in the present study.
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Although air pockets and bubbles form in plunging breakers, the influence of air on waves was
traditionally ignored due to its small density (e.g. 1.225kg/m3 at 15oC and atmospheric pressure)
compared to water (around 1000kg/m3 for fresh water and 1025kg/m3 for seawater). However,
laboratory and field observations [2, 10, 11, 3, 5] disclose that air may play an important role in
the impact process. During the transition of a plunging wave, an air pocket (or pockets) may be
trapped in the body of the wave and compressed by the water mass; thus a portion of the wave
energy will be transferred to the pocket. Once the wave front impacts the surface of the structure,
the air pocket starts expanding to release the stored energy. The strongest pressure peak in the
form of a “cathedral-roof” shape and subsequent pressure oscillations will be experienced by the
structure. This distinct phenomenon has been discovered in experiments [2, 10, 11]. In addition
to the entrapped air pocket, pure water might also be aerated with many small bubbles through
biological production, capillary entrapment, white capping and wave breaking [4]. These bubbles
generally persist for many wave periods especially in seawater. The peak pressure and impact
duration are strongly influenced by trapped air pockets and entrained air bubbles. This might be
expected to be closely related to the compressibility of the air and water-air mixture [12, 13, 14].
Furthermore, negative pressures essentially gauge values below the atmospheric pressure have been
recorded in field measurements [4] and laboratory experiments [3, 2, 8]. Bullock et al. stated that
negative pressures have the potential to induce large seaward forces resulting in the removal of
blocks from masonry structures [2]. Crawford pointed out that such large forces could produce a
sufficient overturning moment to cause overall failure of important structures like breakwaters [4].
Additionally, Lugni et al. indicated that even small pressure fluctuations might induce local flow
cavitation for conditions close to the cavitation threshold [3]. Therefore, it is necessary to be aware
of these issues and the need to include all relevant physics when theoretical analysis, experiments or
numerical computations are used to investigate wave impact problems. However, we note that very
little attention has been paid to the possibility of wave impact induced flow cavitation following
Lugni et al.’s work.

Compared to experimental investigations of plunging wave impacts, which have made significant
progress regarding measurement of peak pressures and forces [2, 10, 11, 3], numerical simulations
are not yet adequate to fulfil industrial and academic requirements due to the extreme complexity of
these problems. Not to mention the challenge of resolving the free surface, which might overturn,
break and experience further strong deformations, the compressibility of air and the water-air
mixture and possible flow cavitation make the problem much more difficult. Traditional numerical
wave tanks (NWTs) developed in hydrodynamics are mostly based on single-fluid incompressible
potential flow theory [15, 16, 17, 18, 19]. Since air is not explicitly considered in the mathematical
model, computation of entrapped air pockets and/or entrained air bubbles in waves cannot directly
be achieved with these single-fluid NWTs. Two-fluid NWTs based on the incompressible Navier-
Stokes equations have been proposed to simulate both the liquid and gas phases for violent
wave breaking problems [20, 21, 22, 23, 24, 25]. However, these treat both the water and air
as incompressible fluids, which means the density of each fluid remains constant throughout the
process. Unfortunately, compressibility effects in the air pocket and water-air mixture cannot be
handled properly by these models, nor, importantly, cavitation (change of phase) effects.

More recently, researchers have started to explore the importance of the compressibility of air
and the water-air mixture for wave impact problems. Peregrine et al. [13] and Bredmose et al. [12]
proposed a weakly compressible flow model combined with a single-phase potential flow solver
to compute wave impact events. A fully conservative flow model based on the compressible Euler
equations was adopted in the impact zone to describe the water wave with entrapped air pocket or
wave with entrained air bubbles. In the energy equation, only the compressibility of the gas phase
was included without considering compressibility in the liquid phase. Systematic numerical analysis
of wave impacts on vertical walls were conducted and promising results were presented. However,
model tests of a one-dimensional shock wave passing through a water-air interface exhibited strong
nonphysical pressure oscillations at the material interface. These oscillations are a well known
numerical artifact when using a conservative variable scheme and measures should be taken to
preclude them. Plumerault et al. [26] also carried out studies of aerated-water wave problems. They
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described the flow with a three-fluid model for gas, liquid and gas-liquid components in the flow.
Energy conservation was not enforced explicitly with the corresponding equation removed from the
equation set in their mathematical model. Instead, a pressure relaxation method [27] was employed
to solve the three-fluid model. Strong nonphysical oscillations also arose at the material interface in
their water-air shock tube results [26]. They did not present results for wave impacts at structures
like vertical walls but gave solutions for a deep water breaking Stokes wave in the incompressible
limit. We observe that these works still have deficiencies in treating the material interface between
water and air.

The objective of the present work is to develop an appropriate numerical model for violent
water wave impact problems. A fundamental requirement is that the model be able to deal with
compressibility effects of air pockets and a water-air mixture and to produce physical solutions with
no or very low order spurious oscillations. To achieve the stated objective, a quasi-conservative
volume-fraction-based compressible two-phase flow model, which includes the advection of a
volume-fraction function and conservation laws for mass, momentum and energy, is presented in
this paper. This model can deal with dispersed-phase flows so that it is more capable for water-air
mixtures than other two-fluid models that can only simulate separated-phase flows [28, 29].

The remainder of the paper is organised as follows. The compressible flow model for water waves
with air cavity and aeration is presented in Section 2. The numerical method, which utilises a finite
volume approach, third-order MUSCL reconstruction and the HLLC approximate Riemann solver
to compute the convective fluxes in the governing equations, is presented in Section 3. Numerical
results for a gravity induced liquid piston, free drop of a water column in a closed tank, water-air
shock tubes, slamming of a flat plate into still pure and aerated water and a plunging wave impact
at a vertical wall are presented in Section 4. Final conclusions are drawn in Section 5.

2. FLOW MODEL FOR DISPERSED WATER WAVES
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water

free surface

air pocket

water droplet

air bubble
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Figure 1. Non-breaking and breaking water waves.

In hydrodynamics, ordinary (non-breaking) water waves are conventionally considered as
separated-phase flows, in which the free-surface separates the gas- and liquid-components
completely as shown in figure 1(a). However for breaking waves as mentioned in the above section,
the water may be entrapped with air pockets or entrained air bubbles when the crest starts to curl. At
the same time, water droplets may also be ejected into the air as spray as illustrated in figure 1(b).
In this case, the flow is of dispersed gas- and liquid- phases. In order to construct the mathematical
model for wave impact problems, we adopt the homogeneous equilibrium approach to make the
following assumptions

1. The bubbly fluid is assumed to be a homogeneous mixture of air and water.
2. Each component obeys the conservation laws of mass, momentum and energy.
3. The mixture obeys the conservation laws of mass, momentum and energy.
4. The temperature T , pressure p and velocity ~V of all the phases and components are identical.
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These assumptions are based on the belief that differences in the thermodynamic and mechanical
variables will promote momentum, energy and mass transfer between the phases rapidly enough so
that equilibrium is reached [30, 31]. The equilibrium model is usually considered an appropriate
approach to treat free-surface flows [32].

2.1. Mathematical model

For each individual fluid component i (i = 1 for air, i = 2 for water), its basic material properties
can be described as follows

1. Density ρi = mi/Ωi, where mi is mass and Ωi volume.
2. Pressure p = p1 = p2, both components have the same pressure.
3. Velocity ~V = ~V1 = ~V2, both components have the same velocity.
4. Internal energy ρieI

i.
5. Kinetic energy ρieK

i = 1
2ρi

~V 2.
6. Total energy ρeT

i = ρie
I
i + ρie

K
i .

To determine the internal energy of fluid component i, an appropriate equation of state should be
adopted. Since the ideal gas equation of state is not suitable for liquid, the stiffened-gas equation
of state is utilised for both fluid components in the present study. Therefore, the internal energy of
component i can be described as

ρie
I
i =

p+ γipc,i

γi − 1
= Γip+ Πi (1)

and the total energy is

ρie
T
i =

p+ γipc,i

γi − 1
+

1

2
ρi~V

2 = Γip+ Πi +
1

2
ρi~V

2 (2)

where γi is a polytropic constant and pc,i is a pressure constant. The parameters Γi and Πi are
defined as

Γi =
1

γi − 1
, Πi =

γipc,i

γi − 1
(3)

Additionally, the speed of sound for each component can be calculated as

ci =

√
γi
ρi

(p+ pc,i) (4)

In order to describe the material properties of the homogeneous mixture, we introduce the volume
fraction function α1 for air, defined as

α1 =
Ω1

Ω1 + Ω2
(5)

Accordingly, we have α2 = 1− α1 for water. Based on these values, the material properties of the
water-air mixture can be expressed by the following

1. Density ρ =
∑N

i=1 αiρi

2. Momentum ρ~V =
∑N

i=1 αi(ρi~V )

3. Kinematic energy ρeK =
∑N

i=1 αi(ρie
K
i )

4. Internal energy ρeI =
∑N

i=1 αi(ρie
I
i)

5. Total energy ρeT = ρeI + ρeK =
∑N

i=1 αi(ρie
T
i )
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in which N = 2. Substituting equation (2) into the formulation of mixture total energy, the pressure
can be computed as

p =
ρeT − 1

2ρ
~V 2 −∑N

i=1 αiΠi∑N
i=1 αiΓi

(6)

The speed of sound for the bubbly water-air mixture can be estimated by Wood’s formula [33]

1

ρc2
=

N∑
i=1

αi

ρic2i
(7)

The mathematical model used here for the flow of the water-air mixture consists of the mass,
momentum and energy conservation laws for the mixture. A conservation law of mass for each
component is also included. In particular, gravitational effects should be considered and included
for water wave problems. Consequently, the underlying conservative part of the flow model can be
expressed in the following form

∂Ũ

∂t
+
∂F̃1

∂x
+
∂F̃2

∂y
+
∂F̃3

∂z
= G̃ (8)

in which Ũ is the vector of conservative variables, F̃ is the flux function, G̃ are the source terms
and these are defined as

Ũ =


α1ρ1

α2ρ2

ρu
ρv
ρw
ρeT

 , F̃1 =


α1ρ1u
α2ρ2u
ρu2 + p
ρvu
ρwu
ρhu

 , F̃2 =


α1ρ1v
α2ρ2v
ρuv

ρv2 + p
ρwv
ρhv

 , F̃3 =


α1ρ1w
α2ρ2w
ρuw
ρvw

ρw2 + p
ρhw

 , G̃ =


0
0
0
−ρg

0
−ρgv

 (9)

where u, v and w are the velocity components along x, y and z axes; g is the gravitational
acceleration; h is the enthalpy given by

h = (ρeT + p)/ρ (10)

In addition to the conservative part, the advection of volume fraction function Dα1/Dt also needs
to be considered. Here, we adopt Kapila et al.’s one-dimensional advection equation [34]

∂α1

∂t
+ u

∂α1

∂x
= K

∂u

∂x
(11)

extended to three dimensions

∂α1

∂t
+ u

∂α1

∂x
+ v

∂α1

∂y
+ w

∂α1

∂z
= K

(
∂u

∂x
+
∂v

∂x
+
∂w

∂z

)
(12)

where K is a function of the volume fraction and sound speed given by

K = α1α2

(
1

ρ1c21
− 1

ρ2c22

)
ρc2 (13)

Equation (11) is derived from the pressure equilibrium assumption, and its right hand side term
assures that the material derivatives of the phase entropy are zero in the absence of shock waves. If
we neglect the right hand side of equation (11), then this is a standard transport equation for α1 as
pointed out by Murrone and Guillard [35].

The overall flow model includes equation (8) and (13) and we write it in the following form

∂α1

∂t
+ ~V · ∇α1 = K∇ · ~V (14a)

∂Ũ

∂t
+
∂F̃1

∂x
+
∂F̃2

∂y
+
∂F̃3

∂z
= G̃ (14b)
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The underlying reason we do not choose a fully conservative or primitive model but a quasi-
conservative model is due to the following factors. Fully conservative flow models have the pre-
mentioned difficulties at material interfaces where nonphysical oscillations inevitably occur even
for first order schemes [36] due to a nonphysical pressure update [37, 29] or negative volume
fraction [38] during numerical computations. Although a primitive variable flow model can avoid
these oscillations, difficulties arise when resolving strong shock waves to maintain the correct shock
speed [37]. For complicated problems consisting of both material interfaces and shock waves,
combining the fully conservative and primitive variable model formulations has previously been
found to be an effective strategy. However this method is quite intricate as switching is required
between the two models for the different regions [37]. Quasi-conservative flow models, which
combine the conservation laws with a non-conservative scalar (volume fraction or other material
property) advection equation, have proved proficient and much simpler in the past [36, 29].

If gravitational effects are excluded and only the x direction is considered, equation (14) will
reduce to a five-equation system which can be named the five-equation reduced model [35] or Kapila
model [39]. For the one-dimensional five-equation reduced model, Murrone and Guillard proved
that it can be derived from the two-pressure and two-velocity Baer–Nunziato equations in the limit
of zero relaxation time [35]. They also proved that the reduced system has five real eigenvalues
(three eigenvalues are equal) and is strictly hyperbolic with five linearly independent eigenvectors.
Important information about other mathematical properties of the one-dimensional system, which
include the structure of the waves, expressions for the Riemann invariants and the existence of a
mathematical entropy, can also be found in their work.

The three-dimensional two-pressure two-velocity Baer–Nunziato model has eleven equations in
total [40]. The model (14) is computationally less expensive as it deals with only seven equations.

3. NUMERICAL METHOD

3.1. Treatment of the advection equation

System (14) has a volume fraction transport equation which is not conservative. As indicated by
Johnsen and Colonius [29], directly using the non-conservative formula will present difficulties
when dealing with the material interface due to an inconsistency between the wave speeds (shock
wave, rarefaction and contact discontinuity) and the velocity vector ~V . They advise transforming the
advection equation into a conservative formulation to overcome this obstacle for one-dimensional
multi-fluid problems. Based on their work, here, we move forward to re-construct the volume
fraction equation appropriately for three-dimensional multiphase flow problems.

Introducing a vector ~f defined as

~f = α1
~V = [α1u, α1v, α1w]T (15)

then the divergence of ~f is given by

∇ · ~f =
∂

∂x
(α1u) +

∂

∂y
(α1v) +

∂

∂z
(α1w) (16a)

=α1

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+

(
u
∂α1

∂x
+ v

∂α1

∂y
+ w

∂α1

∂z

)
(16b)

=α1∇ · ~V + ~V · ∇α1 (16c)

Consequently, we can obtain
~V · ∇α1 = ∇ · ~f − α1∇ · ~V (17)

Substituting equation (17) into equation (12) to obtain the quasi-conservative form

∂α1

∂t
+∇ · ~f = (α1 +K)∇ · ~V (18)
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then replacing the non-conservative equation in system (14) by equation (18), the integral
formulation of the overall system can now be expressed as

∂

∂t

∫
Ω

U d Ω +

∮
∂Ω

F(U) dS =

∫
Ω

G d Ω (19)

in which Ω represents the flow domain, ∂Ω is its boundary; the vectors U, F and G are given by

U =



α1

α1ρ1

α2ρ2

ρu
ρv
ρw
ρeT


, F =



α1q
α1ρ1q
α2ρ2q

ρuq + pnx
ρvq + pny
ρwq + pnz
ρeTq + pq


= qU +pNq, G =



(α1 +K)∇ · ~V
0
0
0
−ρg

0
−ρgv


(20)

where (nx, ny, nz) is a unit normal vector across the boundary ∂Ω , q = unx + vny + wnz and
Nq = [0, 0, 0, nx, ny, nz, q]

T.

3.2. Spatial discretisation

North

South

West East
Back

Front

(a) Mesh cell

(i, j, k)

(i+ 1, j, k)(i− 1, j, k)

(i, j + 1, k)

(i, j − 1, k)

(i, j, k − 1)

(i, j, k + 1)

Back

Front

South

North

West East

Centre

(b) Stencil

Figure 2. A mesh cell and its computational stencil

For three-dimensional problems, hexahedrons are used to fill the domain Ω. Without loss of
generality, if Ω is a cuboid, we may simply partition it using a Cartesian mesh with I × J ×K
cells. Within the mesh, any cell can be indicated by the subscripts i, j and k. As shown in Figure
2, a hexahedral volume cell is closed by six quadrilateral faces. For this cell, six neighbouring cells
are selected to form a computational stencil.

Supposing the mesh does not vary with time, the discrete form of equation (19) for a mesh cell
mi,j,k can be written as

Ωm
Un+1

m −Un
m

∆t
+

6∑
f=1

Ff Sf = Ωm Gm (21)

where the subscript m stands for the mesh cell itself and the subscript f represents a mesh cell face.
Introducing the residual defined as

Rm = −Ωm Gm +

6∑
f=1

Ff Sf (22)
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equation (21) can be written as

Ωm
Un+1

m −Un
m

∆t
+ Rm = 0 (23)

As flow discontinuities (shock waves and material interfaces etc.) may be expected to occur in
multi-phase multi-component compressible flows, attention should be paid to the computation of
surface flux terms. In the present work, the surface flux term F across any mesh cell face f is
evaluated by an approximate Riemann solution based on the numerical flux function

Ff = F(U+
f ,U

−
f ) (24)

where the symbols + and − indicate the left and right sides of the face considering a normal vector
nf . The conservative variables at neighbouring cell centres may be assumed piecewise constant and
assigned directly to U+

f and U−
f respectively, and this very simple but diffusive treatment is first

order accurate in space. To improve the accuracy, the solution data is formally reconstructed using
a third order MUSCL scheme (monotone upstream-centred schemes for conservation laws [41])
based on the primitive variables W = (α1, ρ1, ρ2, u, v, w, p)

T, written as

W+
f = WL +

1

4
[(1− κ) ∆L +(1 + κ) ∆] (25a)

W−
f = WR +

1

4
[(1− κ) ∆R +(1 + κ) ∆] (25b)

where the subscripts L and R represent the left and right neighbouring mesh cells respectively, ∆L = WL−WLL

∆R = WRR−WR

∆ = WR−WL

(26)

in which the subscript LL indicates the left neighbour of the left cell, and RR represents the right
neighbour of the right cell. The parameter κ provides different options of upwind or centred schemes

κ =

 −1 second order upwind
0 second order centred
1/3 third order semi-upwind

(27)

In the present work, κ = 1/3 is adopted. To prohibit spurious oscillations introduced by the high
order interpolation, a slope limiter function φ is utilised to modify the reconstruction procedure as
follows

W+
f = WL +

φL

4
[(1− κφL) ∆L +(1 + κφL) ∆] (28a)

W−
f = WR +

φR

4
[(1− κφR) ∆R +(1 + κφR) ∆] (28b)

In this study, we apply van Albada’s limiter defined as

φL,R = max(0,
2rL,R

r2
L,R + 1

) (29)

where
rL =

∆L

∆
, rR =

∆

∆R
(30)

The reconstructed conservative variables at the left and right sides of a mesh cell face can be easily
obtained as

U+
f = U(W+

f ), U−
f = U(W−

f ) (31)

The numerical flux term represented by equation (24) is calculated by employing the HLLC
approximate Riemann solver (ARS) for the homogeneous mixture.
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3.3. The HLLC Riemann solver

The HLLC ARS originates from the work of Harten et al. [42] and Toro et al. [43]. Its applications
for separated multiphase multicomponent compressible flows can be found in the work of Hu et
al. [28] and Johnsen and Colonius [29] etc. However, to the authors’ knowledge, no work has been
reported thus far that solves dispersed multi-phase multi-component compressible flows governed
by the one-dimensional Kapila model or three-dimensional system (14) with the HLLC ARS. The
numerical flux term represented by equation (24) is calculated by the HLLC ARS defined as

Ff =


FL 0 ≤ SL

FL + S∗
L(U∗

L −UL) SL < 0 ≤ SM

FR + S∗
R(U∗

R −UR) SM < 0 ≤ SR

FR 0 ≥ SR

(32)

in which the middle left and right states are evaluated by

U∗
L,R =

(qL,R − SL,R)UL,R + (pL,RNqL,R
− p∗L,RNq∗L,R

)

q∗L,R − SL,R
(33)

the intermediate wave speed can be calculated by

SM = q∗L = q∗R =
ρRqR(SR − qR)− ρLqL(SL − qL) + pL − pR

ρr(SR − qR)− ρL(SL − qL)
(34)

and the intermediate pressure may be estimated as

pM = ρL(qL − SL)(qL − SM) + pL = ρR(qR − SR)(qR − SM) + pR (35)

The left and right state wave speeds are computed by

SL = min(qL − cL, q̃ − c̃) (36a)
SR = max(qR + cR, q̃ + c̃) (36b)

where q̃ is an averaged velocity component evaluated by the component Roe-averages [44]. The
averaged speed of sound c̃ is calculated by the formulation proposed by Hu et al. [28]

c̃2 = Ψ̃ + Γ̃

(̃
p

ρ

)
(37)

More detail of equation (37) can be found in reference [28].

3.4. Temporal discretisation

In the present work, a third order TVD (total variation diminishing) Runge-Kutta scheme is applied
to update the numerical solution from time level n to n+ 1

U(1) = Un +∆tL(Un) (38a)

U(2) =
3

4
Un +

1

4
U(1) +

1

4
∆tL(U(1)) (38b)

Un+1 =
1

3
Un +

2

3
U(1) +

2

3
∆tL(U(2)) (38c)

For a mesh cell m, the partial differential operator L is defined as

L(Um) = −R(Um)

Ωm
(39)
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4. RESULTS AND DISCUSSION

4.1. Gravity induced liquid piston

This problem provides a fundamental test of the capability of a numerical method to deal with the
compressibility of fluids. Figure 3(a) shows the setup of a liquid piston. A closed tube of 15 m
length is filled with two air pockets separated by a section of water in the middle. The density of air
is ρ1 = 1 kg/m3 and the density of water is ρ2 = 1000 kg/m3. Initially, the velocity field is still and
the pressure is p = 1 bar. Under gravity, the water in the tube will firstly drop, the lower air pocket
will be compressed and the upper air cavity will expand. As the pressure in the lower air pocket
increases, the water will decelerate but continue compressing the lower air pocket until its velocity
reduces to zero. Then, the lower air pocket will expand and push the water upward. If friction effects
are ignored and the tube is adiabatic, the water body will keep oscillating like a piston. This problem
is very close to the classical Bagnold piston problem [45]. It has been used to benchmark numerical
methods for fluid sloshing in a tank by the liquid sloshing community at the ISOPE 2010 conference
[46].

To solve this problem numerically, we equally distribute 150 mesh cells along y direction in the
tube. The volume fraction level of the gas phase is set to 1− 10−5 in the two air pockets and it is
set to 10−5 in the water section. During the computations, density and pressure etc. are recorded.
In particular, we place a numerical pressure gauge at the bottom of the tube to facilitate a direct
comparison with Guilcher et al.’s calculated results obtained independently [47] and shown with the
present results in Figure 3(b), where good agreement is noted. A relatively long time computation
of five oscillation cycles is then carried out. Time series of pressure and density at the two ends of
the tube are shown in Figure 4. There is no obvious decay of the oscillation amplitudes for these
parameters. This implies that the conservation laws are well satisfied by the present method.
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Figure 3. Liquid piston. Left: initial setup. Right: comparison of the pressure at the bottom boundary:
the blue circles represent Guilcher et al.’s results computed independently with a smoothed-particle

hydrodynamics (SPH) code [47]; the red curve is the authors’ work.

4.2. Free drop of a water column in a closed 2D tank

Figure 5 shows the configuration for this problem, which is a benchmark test proposed by the liquid
sloshing community at the ISOPE 2010 conference [46]. A rectangular water column (ρ2 = 1000
kg/m3) with width 10 m and height 8 m is initially at rest in the closed tank and air (ρ1 = 1 kg/m3)
fills the remainder of the tank. The initial pressure is p = 1 bar in the tank. Under gravity, the water
column will drop and impact upon the bottom of the tank at around t = 0.64 ∼ 0.65 s. The impact
pressure at this moment is of particular interest to ship structural engineers for this type of problem,
since it is fundamentally a key issue for the safety of liquefied natural gas (LNG) carriers.
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Figure 5. Initial setup for free drop of a water column in a closed 2D tank.

To obtain an accurate prediction of the pressure peak, use of a fine mesh is recommended by
other researchers [48, 47]. Therefore, we equally distribute 1500 mesh cells in the vertical direction
and 200 mesh cells in the horizontal direction. Figure 6 gives two snapshots of the pressure field
in the tank just before impact and at the impact time t = 0.65 s. It is clearly shown that the highest
pressure occurs at the bottom centre of the tank and the distribution of pressure is symmetric about
the central section (y axis). In Figure 7, we present several snapshots of the volume fraction contours
in the liquid tank. An interesting finding is that a small amount of air is trapped between the water
body and the bottom surface of the tank. This body of air undergoes not only compression due
to the liquid impact (at t = 0.65 s) but also expansion when the gas phase pressure exceeds the
environmental liquid phase pressure. At t = 0.75 s, the portion of trapped air pocket appears to be a
very thin layer, then has a cylindrical shape at t = 1 s and a half-cylindrical shape at t = 1.2 s.

The time history of the absolute pressure at the bottom centre of the tank is plotted in Figure 8.
Guilcher et al.’s results computed independently using an SPH code [47] are represented by the red
curve with “+” symbol. Braeunig et al.’s computation [48] is represented by the blue dashed line. We
use a black curve to illustrate the results obtained by the present compressible method. The green
curve indicates the result obtained on a coarse mesh (200× 700 cells) with the present method. We
have also used the interFoam module from the open-source software OpenFOAM®2.1.1, which
is based on an incompressible two-fluid finite volume method, to compute this problem on the
same mesh and present these results with a green line. Comparing the impact time, the present
compressible results agree well with Guilcher et al.’s solution and Braeunig et al.’s work (t = 0.65 s),
while OpenFOAM gives a slightly early prediction at t = 0.64 s. The incompressible OpenFOAM
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solver also gives the lowest pressure peak at 8.7 bar. The others produce much higher predictions at
over 20 bar. After the peak, the pressure begins to fall. The minimum pressure following the peak
obtained by OpenFOAM is about 2 bar; Braeunig et al. produced a non-physical negative pressure
with some oscillations [48]; Guilcher et al. gave a value of 1 bar [48]; the present compressible
method obtains much lower but positive values for the minimum pressure after the pressure peak.
Only the present method permits the fluid to expand sufficiently far to be in tension.

(a) t = 0.6 s, 1bar ≤ p < 1.5bar (b) t = 0.65 s, 1bar ≤ p < 35bar

Figure 6. Snapshots of the pressure contours in the closed tank. The black curve is the free surface
(α1 = 0.5).

alpha: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
t=0.65

alpha: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
t=0.75

alpha: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
t=1.00

alpha: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
t=1.20

Figure 7. Snapshots of the volume fraction for the gas phase in the closed tank. The water column starts to
deform upon impacting the bottom of the tank. A small amount of air is trapped between the free surface

and the bottom of the tank, and the air undergoes compression and expansion.

4.3. Water-air shock tube

As pointed out by Peregrine et al., compression waves may form in the aerated water region
after waves impact on a structure [13] as the water-air mixture is a highly compressible fluid
[33].Therefore, it is necessary to assess the capability of a numerical method to handle the
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Figure 8. Time history of the absolute pressure at the bottom centre of the tank. There is good agreement
with the impact time t = 0.65 predicted by Guilcher et al. [47], Braeunig et al. [48] and the present work,

while incompressible OpenFOAM gives an earlier estimate at t = 0.64 and a lower pressure peak.

propagation of shock waves through pure and aerated water in addition to resolving free surfaces. In
computational gas dynamics, shock tubes are frequently utilised to test different types of numerical
methods. Here, we consider a group of shock tube problems involving water-air mixtures. The shock
tube initially has an imaginary membrane in the middle, which separates it into left and right parts
filled with fluids at different states. In total, we report here on two of these shock tube tests, for
which the initial conditions, stopping times and number of mesh cells used are listed in Table I.
Gravitational effects are not included for these problems.

Computed results for the two cases are shown in Figure 9 and 10. A close examination of these
results shows reasonable agreement with exact solutions and independent numerical predictions.
This verifies that the present method resolves wave speeds correctly and does not produce spurious
nonphysical oscillations near shocks or material interfaces.

In particular in Figure 10, it can be seen, in contrast, that Plumerault et al.’s solution exhibits
strong numerical oscillations around the shock and material interface and the present method has
superior performance. A material interface, which is a small step in the volume fraction α and
density ρ, appears near the middle of the tube (x = 0.5). Apart from the material interface, both
the numerical results underpredict the volume fraction and overpredict the density in the region
0.5 ≤ x ≤ 0.6.

4.4. Flat plate impact on pure and aerated water

The numerical method is used here to solve a water-entry problem of a rigid flat plate. The water
can be pure or entrained with air bubbles, and pure water is firstly considered. Figure 11(a) shows
the computational setup corresponding to Verhagen’s experiments for pure water impact problems
[50]. The width of the plate is 0.4 m and it drops with a fixed constant velocity of v = 2.8 m/s. The
impact pressure is of particular interest, since it is an important parameter for the safety of structures
slamming into water.

As suggested by Yang and Qiu [51], we also use a uniform mesh with 800× 700 cells to discretise
the computational domain. Yang and Qiu did not state the initial distance from the bottom surface of
the plate to the free surface in their work, we set it to 0.1 m in the present work. The present method
is constructed under the Eulerian frame with a fixed finite volume mesh. To solve this problem,
we fix the flat plate in the mesh and cause the water to move upward with the constant velocity
v = 2.8m/s. This strategy is appropriate for a short-period impact process [52].
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Table I. Initial conditions, stopping times and number of mesh cells for water-air shock tubes

Case 1 2
Stop time (µs) 237.44 551.37
Tube length (m) 1 1
Mesh cells 1000 800

Left

α1 10−8 0.00195
ρ1 50 6.908
γ1 1.4 1.4
Pc1(MPa) 0 0
ρ2 1000 1027
γ2 4.4 4.4
Pc2(MPa) 600 600
u 0 0
p(MPa) 1000 1

Right

α1 1− 10−8 0.01
ρ1 50 1.33
γ1 1.4 1.4
Pc1(MPa) 0 0
ρ2 1000 1027
γ2 4.4 4.4
Pc2(MPa) 600 600
u 0 0
p (bar) 1 1
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Figure 9. Comparison of the exact solution (Chinnayya et al. [49]) and the present results (red dots) for
water-air shock tube Case 1. The domain is uniformly partitioned with 1000 mesh cells.
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Figure 10. Comparison of the present computation (red curve), exact solution and Plumerault et al.’s results
[26] (blue dots) for water-air shock tube Case 2. The domain is uniformly partitioned with 800 mesh cells

according to Plumerault et al.’s setup [26].

A quantitative comparison of the gauge pressure at the bottom centre of the flat plate is made
and shown in Figure 11(b). The present result agrees well with Yang and Qiu’s independent
computations with the cubic interpolated pseudo-particle (CIP) method [51] and Verhagen’s
experiments [50]. After the peak, the absolute pressure also drops below atmospheric pressure.
Verhagen’s measurement seems to be not very convincing at around t = 0.0075 ∼ 0.009 s, when
absolute negative values appear in the graph. But generally, the numerical computations and
laboratory experiments give almost the same pressure evolution history and peak value before
t = 0.007 s.

We move forward to utilise the numerical method to investigate the effects of entrained air bubbles
on slamming pressures. The setup for the aerated water slamming problem is similar to the pure
water case as shown in figure 11(a). We choose a flat plate of width L = 0.25 m and an impact
velocity of 4 m/s. The initial distance from the bottom surface of the plate to the free surface is 0.1
m. The aeration levels in the water are 0% (pure water), 1%, 2% and 5% respectively. We use the
same mesh as before and record the pressures on the bottom surface of the plate at three positions:
(a) edge of the plate x = 0L, (b) quarter of the plate x = 0.25L and (c) centre of the plate x = 0.5L.

Figure 12 shows the computed slamming pressures at these locations. It can easily be seen that
the impact pressures are not equally distributed on the bottom surface of the plate. The pressures
rise from the edge of the plate towards the centre. The entrained air bubbles in the water reduce the
impact pressures at all three gauge positions. At the plate centre, 1% aeration reduces the pressure
peak from 12 bar to 9 bar, and 5% aeration produces a two thirds reduction of the peak value to 4
bar. Entrained air bubbles also extend the rise time in the impact pressure time history compared
to pure water. The overall duration of the impact loading is seen to be extended by aeration, too.
Similar phenomena can be seen at the edge and quarter locations on the plate.
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Figure 13 shows the pressure wave propagation within the fluid for 2% and 5% aeration levels
(only half of the domain is presented due to the symmetry). Before the impact pressures have
reached their peak values, the air and water beneath the plate have already been compressed (see the
first and second columns of the figure). A compression wave is observed to propagate downwards
and outwards. At the edge of the plate, a rarefaction wave is observed as expected. The speed of
sound in the 2% aerated water case is higher than the 5% aerated water case. As a consequence,
the compression wave propagates faster in 2% aerated water than in the 5% case. At t = 0.026 s,
the compression wave established in the 2% aerated water has reached the tank floor and has been
reflected through a single Mach reflection. In the 5% aerated water case, the compression wave has
not yet reached the tank floor.

water
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Figure 11. Slamming problem of a flat plate into pure water. Left: initial setup, the width of the plate is 0.4
m and the impact velocity is 2.8 m/s; Right: time histories of the gauged pressures at the bottom centre of

the plate, comparison with Yang and Qiu’s computations [51] and Verhagen’s experiments [50].
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Figure 12. Pressure time series for a flat plate impact on pure and aerated water. The width of the plate is
L = 0.25 m and the impact velocity is 4 m/s.

4.5. Plunging wave impact at a vertical wall

Here we perform an exploratory calculation to establish the viability and promise of the method for
violent wave impact simulations involving air pockets and aeration. Figure 14 shows the setup for a
plunging wave impact event. The length of the wave tank is 3 m and the height is 0.8 m. A step of 0.2
m height is placed in the bottom right part of the wave tank starting at x = 1.75 m with a 45o slope to
cause the wave to steepen and break. A piston type wave maker is placed at the left boundary of the
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(a) 2 percent aeration level

(b) 5 percent aeration level

Figure 13. Pressure contours at t = 0.024, 0.025, 0.026 s (from left to right)

domain to generate waves. The still water depth is d = 0.3 m. The whole NWT is divided into two
sub-domains. A two-fluid NWT based on the incompressible Navier-Stokes equations developed
in our previous work [24] is used to deal with the left sub-domain. This incompressible solver,
which is named AMAZON-SC, adopts an interface-capturing method to treat the free surface as a
discontinuity in density. We utilise the present compressible flow model (14) to handle the right-
sub domain, where an air pocket will be trapped or enclosed by the water body. The dashed line in
Figure 14 indicates the interface between the incompressible and compressible flow solvers. Buffer
zones are used near the interface to exchange flow information between the two solvers. Within the
buffer zones, one or two layers of mesh cells for each component solver as required are placed on
the opposite side of the interface. The flow information including density, velocity and pressure at
these mesh cells is obtained from the companion solver domain through interpolation. More details
of the coupling of component flow solvers will be reported separately in future work. A background
uniform Cartesian mesh is used to overlay the flow domain, and the basic mesh cell is a square with
size of h = 0.01 m. Solid boundaries not aligned with the Cartesian mesh in the left sub-domain are
treated using the cut-cell method [24, 53].

3 m

0
.8
m

0.3 m
0.2 m

CompressibleIncompressible solver
solver

paddle

Figure 14. Setup of the plunging wave impact problem. The numerical wave tank is divided into two sub-
domains occupied by the incompressible flow solver [24] and the present two-phase compressible flow

solver.

Before computing the plunging breaker impact problem, we first conduct a simple test to generate
a solitary wave using the incompressible solver. The solid step is removed from the NWT and the
right boundary of the domain is treated as an open boundary. The amplitude of the solitary wave



18

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5

W
at
er

su
rf
ac
e
el
ev
at
io
n
(m

)
t (s)

x=1 m
x=2 m

Figure 15. Water surface elevations in the numerical wave tank (without structure) at x=1 m and x= 2 m.

is a = 0.09 m. The wave is generated by prescribing the paddle movement according to Rayleigh’s
solitary wave theory (see Katell and Eric [54]). Figure 15 shows the water surface elevations at x = 1
m and x = 2 m. The wave crest takes 0.52 s to travel between these two locations. Obviously, the
phase speed of the solitary wave is equal to c∗ = 1.92 m/s. The theoretical phase speed for solitary
waves can be calculated as c =

√
g(d+ a). We obtain c = 1.95 m/s for this test case so the relative

error between the computed and theoretical wave phase speeds is less than 1.5%.
The integrated numerical wave tank is now used to solve the plunging wave impact problem. The

paddle is used again to generate a solitary wave with height a = 0.2 m. In addition to the integrated
NWT, we also use the established standalone in-house incompressible two-fluid NWT AMAZON-
SC to solve this problem for the purposes of comparison. According to field measurements and
laboratory experiments, the first pressure spike in the form of a “church-roof” shape is a key to
the safety to structures. Therefore, we focus on this phase of the impact in the current discussion.
Computation of the subsequent wave evolution will be considered in future work.

Figure 16 shows the profiles of the free surface at different times. The red solid line represents
the results with AMAZON-SC, the stand-alone incompressible solver, and the blue dashed line
indicates the solution obtained with the compressible solver (i.e. the integrated NWT). At t = 2.13
s, the two solvers give almost the same profiles. We notice that an obvious discrepancy of the free
surface profiles appears at t = 2.15 s. Although the wave crests are almost the same distance away
from the vertical wall in the horizontal direction, the wave crest obtained by the incompressible
solver is higher than the compressible solver. The wave trough obtained by the compressible solver
moves upward along the wall faster than the incompressible solver. The free surface beneath the
wave crest obtained by the compressible solver is closer to the vertical wall than the incompressible
solver. At t = 2.16 s, we notice that the wave crest obtained by the incompressible solver moves
upward significantly higher than the compressible solver, and this trend continues to t = 2.17 s
when the waves almost impact the wall. The water continuously moves upward after the wave
impacts the wall. From the figures, it is not difficult to observe that the trapped air pocket predicted
by the compressible solver is much smaller than the incompressible solver. It would seem that
compressibility effects play an important role in changing the shape of the air pocket and the free
surface. The incompressible assumption appears to lead an overestimate of the volume of the air
pocket for this type of problem.

In Figure 17, we present several snapshots of the pressure distribution in the wave field at different
times. The first row illustrates the results with the stand-alone incompressible solver AMAZON-SC
and the second row corresponds to computations with the compressible solver. For the compressible
solver, we can clearly see that the pressure in the air pocket increases dramatically, and the pressure
rise travels downstream along the vertical wall and tank bottom. At t = 1.95 s, a second compression
(pressure increase) in the air pocket is captured by the compressible solver. These phenomena are
much less apparent in the predictions with the incompressible solver.

Quantitative comparison of pressures is made and presented in Figure 18. We gauge the pressures
in the air pocket. For this problem, the size of the air pocket is relatively large as its diameter is
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around 10 cm. A significant amount of the wave energy is stored in the pocket through compression.
Consequently, the air pressure rises significantly to about 114000 Pa as shown in the left part
of the figure. Under the constant density assumption, the incompressible solver cannot deal with
compressibility effects and only predicts a peak pressure of 104000 Pa. The rise time of the pressure
spike for the incompressible solver is almost ten times that of the compressible solver. After the first
peak, the air expands to a low pressure. The compressible solver predicts a fall to around 9500 Pa,
whilst the incompressible solver predicts about 101000 Pa.

We show the pressure distribution along the vertical wall at different times computed by the
compressible solver in Figure 19. The pressure in the region (0.3 ≤ y ≤ 0.4) is strongly influenced
by the trapped air pocket. The air pocket is continuously compressed from t =2.156 to 2.167 s. It
is noted that at t =2.184 s the air pocket undergoes expansion and the pressure reduces accordingly
to sub-atmospheric values. Thus, this local region is experiencing seaward (suction) force. These
numerical findings confirm Bullock et al.’s work [2] that negative gauge pressures indeed occur in
violent wave impact events and the resultant seaward force has the potential to cause the removal of
blocks from masonry structures.

In their laboratory experiments of overturning wave breaking on structures, Lugni et al. observed
that after the strongest first impact pressure peak, the pressure decreases to a value lower than
atmospheric pressure and a subsequent second pressure peak is observed much lower than the first
one (see figures 4 and 5 of [3]). The numerical findings produced by the present compressible
solver of a steep pressure spike followed by a negative gauge pressure and subsequent lower second
pressure peak etc. agree qualitatively well with Lugni et al.’s experiments [3], although the wave
conditions are not exactly the same.

Incompressible

Compressible

(a) t = 2.13 s

Incompressible

Compressible

(b) t = 2.15 s

Incompressible

Compressible

(c) t = 2.16 s

Incompressible

Compressible

(d) t = 2.17 s

Incompressible

Compressible

(e) t = 2.18 s

Incompressible

Compressible

(f) t = 2.19 s

Figure 16. Snapshots of the free surface profiles. Mesh step size is h = 0.01 m. Incompressible and
compressible solvers produce almost the same wave crest velocities in the x-direction. Comparison of
the time and spatial evolution of the air pockets between the two solvers show discrepancies due to
compressibility effects. The volume of the air pocket predicted by the compressible solver is much smaller

than the incompressible solver.
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(a) Incompressible solver

(b) Compressible solver

Figure 17. Snapshots of the pressure distributions in the numerical wave tank. From left to right, t = 2.155,
2.16, 2.165 and 2.195 s. The black curve represents the free surface. Top: incompressible solver; Bottom:

compressible solver. Pressure contour range: pmin = 100000 Pa, pmax = 112000 Pa, ∆p = 400 Pa.
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Figure 18. Time evolution of the pressure in the air pocket. Sub-atmospheric pressures are captured by
the compressible solver (solid line) but not the incompressible solver (dashed line). There is a significant
decrease from the first pressure peak to the second peak with the compressible solver. Rise times and
pressures obtained by the compressible solver are markedly different to those of the incompressible solver.

5. CONCLUSIONS

A compressible multiphase flow model that improves the representation of the flow physics for
violent wave impact problems involving an air cavity and aeration is presented. The model is
based on the conservation laws of mass, momentum and energy in addition to a non-conservative
advection equation for volume fraction. Detailed derivation of the model is provided. A high-order
finite volume scheme based on MUSCL reconstruction and an HLLC approximate Riemann solver
for compressible water-air mixtures is used to discretise the integral form of the mathematical
equations.
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Figure 19. Pressure distribution on the vertical wall at t = 2.156, 2.162, 2.167 and 2.184 s (computed by the
compressible solver). P0 is the atmospheric pressure, h = 0.1 is the initial water depth before the vertical

wall.

The numerical method is assessed through a series of test cases including gravity induced liquid
piston motion and the free drop of a 2D water column; water-air mixture shock tubes; the slamming
of a flat plate into still pure water and aerated water and an exploratory calculation of a plunging
wave impact at a vertical wall. The obtained results agree well with experiments, exact solutions
and other numerical computations. These results verify the present method and clearly show its
advantages over other numerical methods based on single-fluid or two-fluid incompressible flow
models for complex violent wave impact problems.

The present method treats the material interface as a fluid flow discontinuity, which is captured by
the HLLC Riemann solver. In large flow gradient regions, the slope limiter automatically reduces the
accuracy of numerical method to lower orders to stabilise computations. The resulting dissipation
will diffuse the interface across several mesh cells. Front-tracking, anti-diffusion or other techniques
are planned to be implemented to sharpen the interface.

Our future work will concentrate on a detailed wave impact analysis under a range of wave
conditions. We will also consider the computation of wave evolution after the impact. Further work
on the coupling of flow solvers and a massively parallel implementation of the current method
with extensions to floating-body and fluid structure interaction problems are planned in subsequent
phases of work to be reported in future publications.
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