
Comprehensive Performance Analysis and
Comparison of Vehicles Routing Algorithms in

Smart Cities

∓Shen Wang, ±Soufiene Djahel, ∓Jennifer McManis, ‡Cormac McKenna and ‡Liam Murphy
∓Lero, RINCE, School of Electronic Engineering, Dublin City University, Ireland

±Lero, School of Computer Science and Informatics, University College Dublin, Ireland
‡IBM Software Group, Industry Solutions Development, Ireland

shen.wang4@mail.dcu.ie, soufiene.djahel@ucd.ie, mcmanisj@eeng.dcu.ie, {CORMCKEN, Liam J Murphy}@ie.ibm.com

Abstract—Due to the severe impact of road traffic congestion
on both economy and environment, several vehicles routing
algorithms have been proposed to optimize travelers itinerary
based on real-time traffic feeds or historical data. However,
their evaluation methodologies are not as compelling as their
key design idea because none of them had been tested under
both real transportation map and real traffic data. In this paper,
we conduct a deep performance analysis and comparison of four
typical vehicles routing algorithms under various scalability levels
(i.e. trip length and traffic load) based on realistic transportation
simulation. The ultimate goal of this work is to suggest the
most suitable routing algorithm to use in different transportation
scenarios, so that it can provide a valuable reference for both
traffic managers and researchers when they deploy or optimize a
large scale centralized Traffic Management System (TMS). The
obtained simulation results reveal that dynamic A* is the best
routing algorithm if the TMS has sufficient memory or storage
capacities, otherwise static A* is also a great alternative.

Keywords – ITS, Smart Transportation, Vehicles Routing
Algorithms, Comparative Study, Shortest Path, Performance
Evaluation, Smart Cities.

I. INTRODUCTION

With the trend of worldwide urbanization, an increasing number
of vehicles are swarming into city road networks of limited capacity,
leading to excessive increase of traffic congestion, road accidents and
air pollution. According to the new released report [1] from Texas
Transportation Institute, the economic loss due to traffic congestion,
in terms of extra travel delay and fuel consumption, is estimated
to $121 billion in the United States in 2011. Therefore, scientists
and researchers from both industry and academia have proposed the
so called ”Intelligent Transportation Systems (ITS)” [3], which have
already been successfully deployed in many regions in United States,
Japan and Europe to ease the traffic management task.

Smart routing of vehicles is one of the most essential services
offered by ITS. This service aims to achieve an optimal load balance
of the traffic on the roads by leveraging the collected real time
road conditions in an efficient and accurate way that helps the
driver to find a shortest or fastest route to a given destination.
According to the traffic incidents report released by the U.S. Federal
Highway Administration, urban traffic accidents lead to about 50% -
60% of overall congestion delays [4]. Therefore, in order to bypass
the blocked roads, due to accidents, a real-time vehicles re-routing
algorithm should be efficient enough to provide alternative routes to
the drivers in a very short time to reduce the accidents impact on
their journey.

In general, vehicles routing algorithms are equivalent to the
application of shortest path problem (SPP), which is a classic problem
in graph theory, to the transportation domain. When we apply SPP
in a transportation scenario, the weight value of each edge (i.e. road
segment) can refer to several routing metrics according to the drivers
demand such as, travel time and fuel consumption, rather than travel
distance only. A vehicle route planning problem is usually classified
into two main categories; static (shortest) and dynamic (fastest). The
former problem consists in finding a shortest path from origin node
to destination node using a map with invariable weight values. The
most representative solution in this category is Dijkstras Algorithm
(DA) [5]. Based on the static algorithms, if we want to take the
future change of road conditions (e.g. average travel time on each
road segment) into account, then dynamic vehicle route planning
algorithms should be applied. The typical dynamic routing algorithm
is an improved version of A* for deterministic discrete-time dynamic
networks [6].

Obviously, dynamic vehicles routing algorithms are more useful
and practical than static ones because the drivers prefer to keep
their planned route optimal throughout the whole journey. Hence,
enhancing their efficiency is of vital importance for centralized (i.e.
centralized decision-making process) Traffic Management Systems
(TMS), which are widely deployed and used across the world (e.g.
SCATS [7] and SCOOTS [8]). However, for the best of our knowl-
edge, no work in the literature has conducted a deep performance
evaluation and analysis of the different vehicles routing algorithms
under varying road scenarios, in order to highlight the advantages
and drawbacks of each of them. Indeed, this evaluation is necessary
as it will enable better understanding of the missing features in the
existing algorithms and thus improved algorithms can be designed to
deal with the increasing traffic loads in future smart cities.

In the rest of the paper, we first present an overview of vehicles
routing algorithms as well as the related works in section II. After-
wards, we describe the simulation environment, the dataset and the
comparison methodology we used in our experiments along with the
main performance evaluation metrics applied to the four algorithms,
in section III. In section IV, we present and analyze in details the
obtained simulation results. Finally, the conclusion and future work
are outlined in Section V.

II. RELATED WORKS

A general classification of the existing vehicles routing algorithms
is shown in Figure 1 from which we distinguish two main classes
of algorithms, static and dynamic. The static algorithms include,
amongst others, Dijkstras Algorithm (DA) [5], and its improved
version A* [11] in which the Euclidean Distance is introduced as

Figure 1: Classification of vehicles routing algorithms

the lower bound to ensure it would never overestimate the real
travel distance between the origin and the destination nodes. Other
algorithms in this class include Label-Correcting (LC) algorithms
and some heuristics. The routing algorithms of the second class
(i.e. dynamic) consists of Dynamic A*, improved LPA*, etc. These
algorithms are more practical in real transportation scenario as the
weight of each link in the graph representing the road network is
changing over time due to traffic congestion levels variation and
random incidents. In what follows, we will briefly present the most
significant dynamic vehicles routing algorithms.

In 2002, I. Chabini and S. Lan have proposed a new algorithm [6]
called Dynamic Adaptation A* with mixed lower bounds (DAA* M).
DAA* M is commonly recognized as the cornerstone of dynamic
vehicular routing algorithms as it is the first theoretical and exper-
imental contribution to this research field. For the well-known A*
algorithm [11], its performance is highly depended on the design of
the lower bound, which reflects the quality of the cost estimation
function. If this bound is too small, for example approaching to 0,
A* will degrade to LS which presents the worst efficiency level.
Otherwise, the search scope can be reduced significantly but will not
guarantee to find the best solution. The key idea of DAA* M is to
improve the lower bound in the current time interval, according to
the shortest path choice in the previous time interval.

In 2007, H. Bo et al. [12] have proposed another dynamic vehicular
routing algorithm based on Lifelong planning A* (LPA*) [13]. This
algorithm represents a significant progress on shifting the application
area of LPA* from the robot grid map to the transportation field.
Moreover, the authors have improved it to be applicable to the moving
object scenario, and used the minimum bounded rectangle (MBR) to
speed up its execution.

The latest noteworthy contribution on dynamic vehicles routing
research field, dubbed Hyperstar, has been proposed by M.G.H. Bell
et al. in [14], which is an improvement of the authors previous
algorithm [15]. Hyperstar is proposed for solving risk adverse vehicle
navigation problem based on a well-known transit planning algorithm
proposed by Spiess and Florian in [16]. This enhanced algorithm
can be considered as a combination of [6] and [16]. The problem it
attempts to solve is how to find a fast and reliable route, connecting
one pair of origin-destination nodes, that can avoid the road segments
in which traffic congestion is too frequent. Instead of finding one path
only from origin to destination, this algorithm computes a hyper-path
(more than one path from point to point) as the ultimate solution.
Therefore, it gives the driver multiple reliable alternative routes when
some roads become highly congested or blocked due to random
unpredicted on-trip events. Figure 2 illustrates an example of on-
trip re-routing based on centralized TMS, equipped with multiple
dynamic routing algorithms like Hyperstar, where the TMC updates

Figure 2: Re-routing scenario in a centralised ITS

the drivers initial route upon detection of high congestion level in
one of the roads segments belonging to the initial route.

To date, the performance of the above dynamic algorithms has
been evaluated under randomly generated road networks only, in
which the links are weighted with arbitrary travel time values. This
is mainly due to either the limitation of simulation technology in
the last decade or real traffic data access issues. Last year, V. T.
Ngoc Nha et al. [20] have proposed a general classification of
vehicles routing algorithms and described a set of route selection and
algorithms evaluation metrics in smart cities, but they didn’t provide
any testing results. Prior to this work, in 2006, L. Fu et al. [10] have
presented a quite comprehensive summary of the heuristic vehicles
routing algorithms and their key performance evaluation results,
however these results have not been measured using the same testing
environment and settings as the authors have collected them from
different research papers. Additionally, although the performance of
several static vehicles routing algorithms with various data structure
implementations had been evaluated in [9] based on different real
transportation maps in USA, they measure one metric only, which
is the computation time under varying road network sizes and
topologies. To conclude, no performance evaluation work has been
done so far on both static and dynamic routing algorithms under both
various real road transportation maps and traffic flow. Hence, in order
to provide valuable reference for engineers and researchers working
in the routing field of ITS, we will conduct in the rest of this paper
an extensive simulation to assess and compare the performance of
four typical algorithms under real city map and various urban roads
scenarios.

III. SIMULATION SETTING AND EVALUATION
METHODOLOGY

For our comparative study, we have chosen static DA, static A*,
dynamic DA and dynamic A* as the four algorithms to be evaluated
in the experiments. This choice is justified by the fact that these
algorithms have been widely used in several commercial navigation
systems as well as some in extensions of ITS. In the sequel, we will
present the simulation environment and dataset, explain the different
road scenarios to be evaluated as well as our comparison method-
ology, and finally we present the chosen performance evaluation
metrics.

A. Simulation environment setup

We use Simulation of Urban MObility (SUMO) version 0.17.1 [17]
to conduct our experiments because it is the most widely used open-

(a) Travel time calculation in SUMO: scenario 1 (b) Travel time calculation in SUMO: scenario 2

Figure 3: Illustration of travel time calculation inaccuracy in SUMO

source microscopic urban transportation simulator. All the algorithms
are implemented in Python and then dynamically called to generate
routes to be applied to the relevant cars in SUMO via TRACI
[18]. Moreover, to ensure a higher probability of realistic testing
background, a highly realistic traffic dataset (TAPACologne version
0.17.0), for SUMO, which is made available by the project TAPAS-
Cologne 1[19] is used in our experiments. This dataset contains two
hours traffic data starts from 6:00am to 8:00am on the weekdays.
Besides, all our simulation tests have been conducted using the
following configuration: Windows 8 Pro 64-bit, Intel(R) Core(TM)
i7-3520M CPU@ 2.9GHz, 8.00GB memory and SSD hard drive.

a) Travel time API improvement: to test the dynamic algo-
rithms, we have set the update interval of the travel time in each road
segment to 30 seconds in order to create a discrete time-dependent
network. We have also prohibited the overtaking in order to meet the
requirements of first-in-first-out (FIFO) network. Besides, before run-
ning our experiments in SUMO, we have checked the correctness and
accuracy of travel time calculation API provided by the simulator, as
it is mentioned in SUMO website that this API has not been verified
yet (see http://sumo.sourceforge.net/doc/current/docs/userdoc/TraCI/
Edge Value Retrieval.html). To this end, we have measured the travel
time using SUMO API 2, and found that it is not accurate as the
returned value doesn’t reflect the real waiting time of a vehicle
in different scenarios, thus it may lead to unrealistic travel time
estimation. To illustrate this inaccuracy of SUMO API, consider the
scenario shown in Figure 3(a) where the road segment is almost
empty with few cars only waiting in front of the junction. In this case,
a vehicle going straight needs a few minutes of waiting time, however
according to SUMO API its travel time would be infinity as its current
average speed is zero, which is equivalent to the scenario shown in
Figure 3(b). Nevertheless, these two scenarios are totally different,
which proves the inaccuracy of SUMO travel time calculation API.

Although, according to the literature, there is a common way
defined by the Bureau of Public Roads (BPR) [2] to calculate
the travel time for freeways, it cannot, unfortunately, be applied
in our simulation because our main focus is on urban roads and
not freeways. To overcome this problem, we have proposed and
implemented a solution that ensures accurate calculation of travel
time in urban scenarios, as described below.

• We divide a road segment according to its occupancy by cars, so
for the unoccupied part we use the maximum speed to calculate
the travel time while we use average vehicle speed for the

1TAPASCologne is an initiative by the Institute of Transportation Systems
at the German Aerospace Center (ITS-DLR), aimed at reproducing, with the
highest level of realism possible, car traffic in the greater urban area of the
city of Cologne, in Germany.” From http://kolntrace.project.citi-lab.fr/

2SUMO API calculates the travel time as the ratio of the road segment
length and the average speed of all the vehicles running on this segment.

Figure 4: The three sub maps as shown in Cologne city map

occupied part.
• We set minimum vehicle speed equals to 0.1 m/s (inspired from

http://sumo.sourceforge.net/doc/current/docs/userdoc/Simulation/
Output/TripInfo.html, as it defines the ”waitSteps” as The
number of steps in which the vehicle speed was below 0.1m/s)
for the case where all the vehicles on the road are standing
still. This is because those vehicles will not stop forever,
they are just waiting for the chance (i.e. green traffic light or
congestion mitigation in the road ahead) to go.

• Given each simulation step in SUMO lasts 1000ms, we calculate
the average travel time every 30 seconds to reduce the statistical
error in the further step.

The test results of this solution have shown the accuracy over the
SUMO API.

B. Simulation scenarios

In our experiments, the principle is to evaluate and compare the
algorithms efficiency under varying road networks size and traffic
loads, while planning trips of various lengths. Furthermore, from
practitioners point of view, if we consider the most widely used
ITS, named SCATS, characterized by its 3-tier control architecture,

Figure 5: Traffic load in the three sub maps

Figure 6: Illustrative example of Origin-Destination (OD) pairs
selection

where in the middle tier there are several sub-mainframes in charge
of the road monitoring equipment deployed in one specific region.
Consequently, if the existing ITSs need to add a routing feature, as
IBM Intelligent Operations for Transport for example, the compara-
tive study we are conducting in this paper would be highly valuable,
as road network characteristics and topology vary from one region
to another.

As shown in Figure 4, we extract three sub-maps from three
different areas in the original large Cologne road network, which
are city center, suburban and remote area. Thus, we have 3 different
simulation scenarios named center, suburban and remote, where each
of them represents a different scalability level. Although these 3
sub-maps have the same size: 5.350(width)*9.350(length) = 50.0225
km2, they can still ensure varying scalability levels in terms of the
number of nodes and links in the graph representing the road map
as well as the traffic load (i.e. the number of cars in a certain time
period), as depicted in Table I and Figure 5 respectively.

Table I: Number of nodes and links in the three different road
maps

Number of nodes Number of links
(Junctions) (Road segments)

Center area 4025 8496
Suburban area 2597 5711
Remote area 1810 4170

C. Comparison methodology

As we have already set the test scenarios with different scalability
levels, for routing algorithms searching a path for each Origin-
Destination (OD) pair, we still want to find out how the performance
of these algorithms evolves when the trip length gets longer. In
fact, we wouldn’t know the exact trip length till the car reaches its
destination. In order to use trip length as another scalability parameter
in our experiments, we apply the Euclidean Distance between the
origin and the destination nodes to measure the trip length. Usually,
the longest trip distance in an urban area is around 10km, so if a driver
plans a trip longer than 10km, the hierarchical routing algorithm [10]
is more suitable in this case. Consequently, in our experiments, the
testing groups of OD pair are organized into 5 trip length scales,
2km, 4km, 6km, 8km, 10km as depicted in Figure 6. It is worth
noting also that two OD pairs with similar Euclidean trip length may
have quite different real trip distance due to the difference in the
topology of the area between the origin and destination nodes. To
mitigate the potential negative impact caused by this fact, we pick
out four different OD pairs for one trip length group in one specific
simulation and calculate the average of their results. Hence, we have
60 sets of testing results for each routing algorithm.

D. Evaluation metrics

The main metrics that we choose to measure the performance
of the implemented routing algorithms are the number of selected
nodes, the computation time, the required data storage space (i.e.
the size of data to be loaded into memory during the algorithm
execution), travel distance, travel time and travel time reliability. The
number of selected nodes is a common metric, widely used in the
literature, to show the quality of the theoretical design of a standard
shortest path algorithm, the less is the better. The computation time
is a different metric from the previous one because sometimes the
algorithm can decrease the number of selected nodes, but the way to
do so may bring too many time-costly computations such as power
and evolution functions. Hence, the computation time is an indicator
to assess the practical performance of the algorithm rather than the
theoretical one. The third metric we consider in our evaluation is the
used memory space. This metric is difficult to be monitored during
the algorithm’s execution, therefore we just measure the data storage
space requirements as it is proportional to the memory cost. Some
algorithms show the best performance in terms of computation time
but this advantage may cost large memory space usage. Even though
memory usage is not a big issue any more due to the recent advances
in data storage technology, it is still one of the key indicators from
engineering perspective, especially when deploying or optimizing the
operations of the existing large scale ITSs.

The following two metrics are travel distance and travel time,
which represent the real distance travelled by the vehicle and the
time spent during the trip. These two metrics are very important to
drivers as the cost of a route, in terms of fuel consumption, is highly
dependent on them. The last metric is travel time reliability which
can be defined as the degree of how likely encountering an abnormal
delay when the vehicle travels on a specific road segment during a
given time period. In our simulation, we calculate the travel time
reliability based on Poluss study [21], as follows:

TT Reliability =
StandardDeviation

AV G TT
(1)

Notice that the higher value of TT Reliability (i.e. Travel Time
Reliability) we get from the Equation 1, the lower travel time
reliability we have. This equation represents a simple method to
compute the reliability because we just need to know which algorithm
can provide the most reliable route and which one performs worst
with regard to this metric. In our simulation, we have collected 240
samples of average travel time for the period from 6:00am to 8:00am
with sampling interval equals to 30 seconds for every link. Subse-
quently, we used these samples to calculate the standard deviation
and AV G TT (i.e. Average Travel Time), and then calculate the
TT Reliability for each link in the road network for the three sub-
maps. Finally, we compute the TT Reliability of each route as a
sum of the TT Reliability of all the links it consists of.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we provide detailed discussion and analysis of
the obtained simulation results according to the aforementioned
evaluation metrics.

A. Number of selected nodes

The results shown in Figure 7 highlight the theoretical performance
for the different algorithms. Usually, for all algorithms, the number
of selected nodes [6] decreases gradually with the decrease of
scalability level (i.e. the size of the road network that varies from
center, suburban and remote areas) as well as the trip length. These
results lead to some interesting conclusions. First, the dynamic and
static versions of DA exhibit similar performance and are much
less effective in this aspect compared to A*, which means that DA
confirms its lack of advantage from design point of view. However,
due to the ease of its implementation, as shown in the following test,
DA is still useful under certain circumstances. Second, due to the
advanced design of its lower bound, dynamic A* always performs the
best and left the other three algorithms far behind even compared with
static A*. The only exception is when the trip is planned in the center
area with a length of 2KM, where both dynamic A* and static A*
show the same theoretical performance. In this case, we recommend
static A* for the sake of implementation simplicity. Third, we find
that in the remote area scenario, the theoretical performance of static
A* shows clear degradation when the trip length gets longer (i.e. ≥
6KM), especially for 10KM trips.

B. Computation time

The computation time reflects the practical performance of an
algorithm based on its execution time and is calculated after the map
and lower bounds have been loaded into memory. As depicted in
Figure 8, the computation time for all the algorithms is proportional
to the scenario scalability level as well as the trip length. In remote
area scenario, the performance of static A* decreases sharply when
the trip length is equal to or greater than 6 km. These results are
mainly in line with the theoretical performance results discussed
above. Besides that, there are three observations worth noting. First,
dynamic A* outperforms the other algorithms under almost all the
tested scenarios. It performs even better than static A* as this latter
needs to calculate the lower bound (including involution and evolution
operations) during its execution while dynamic A* just loads the
lower bound it needs into the memory. Second, dynamic DA show
always the worst performance and is much less effective compared
with the other three algorithms because it has to check the travel
time whenever a new node is selected and it lacks an enhanced
design as A*. Last but not least, static A* achieves the best practical
performance when the trip length is less than 6km in center area,
4km and 2km in suburban area, and 2km in remote area.

C. Travel time and travel distance

It is acknowledged that A* and DA always give the same best
route solution if A* doesn’t overestimate the minimum cost from
source node to destination node. Therefore, here, we consider both
algorithms as a whole and just compare their static and dynamic
versions. As shown in the histogram of travel time in Figure 9, the
results are clear for the trip lengths 10km, 8km and 6km, from which
we can conclude that for the same trip length the static algorithms
ensure a faster route in remote scenario compared to suburban and
center areas. Notice that in center area scenario the calculated route is
the slowest. On the contrary, for shorter trips length (i.e. 2 and 4 KM)
the results are unclear for static algorithms, as in this case the quality
of the route, in terms of travel time, would be highly dependent on
the road topology between the OD pairs. Although the results for
dynamic algorithms are more or less in a same pattern for the trip
lengths greater than or equal to 4 km, the order is not as normal as
we expected because they provide better routes in suburban scenario
compared to the center area scenario. Moreover, the calculated route
in the remote scenario is faster than that calculated in center scenario
for trip lengths of 10km and 4km only, while very similar routes, in
terms of travel time, are calculated for trip lengths of 8km and 6km.
From these results we can conclude that the dynamic algorithms can
provide more stable routes, in terms of travel time, compared to the
static counterpart. Finally, we notice that for short trips of 2km and
4 km all the algorithms provide very similar quality of route. Hence,
in this case we suggest using the simplest algorithm.

Looking at the graph of travel distance depicted in Figure 10,
we see that the static algorithms can always give the shortest route
compared with the dynamic ones. However, this advantage is limited
to trips of the same lengths in one specific scenario. Consequently, if
the travel distance is the only metric considered for vehicles routing
then any of the four algorithms can satisfy the drivers requirements.
The only exception for this metric is the case of trip length of 2
km where the travel distance planned in remote area is almost 3
times much longer than the other two scenarios. This is mainly due
to the characteristics of the road network topology in the remote
area. To overcome this issue, we suggest that the vehicle’s navigation
system might recommend alternative metrics when the computed
travel distance exceeds some thresholds.

D. Travel Time Reliability

The results plotted in Figure 11 divulge, as expected, that the
TT Reliability differs significantly in the three scenarios. For the
suburban scenario, the travel time reliability of the routes provided
by both static and dynamic algorithms is higher (i.e. the lower value
in the graph) that of the routes calculated in the center area. However,
this supremacy decreases gradually when the trip length gets shorter.
When the trip length drops to 2km the four algorithms show roughly
the same performance. On the other hand, for the remote scenario, the
travel time reliability of the routes calculated by the four algorithms is
much higher (lower value, around 2500 times lower) than the previous
case. This is due to the fact that during the period from 6:00am to
8:00am there is almost no change for the traffic flow in the remote
area, as depicted in Figure 5. Last, for algorithm comparison, in center
scenario, static algorithms perform slightly better than the dynamic
ones, in suburban case they show roughly the same performance,
while in remote area, dynamic algorithms are better. We remark from
these results that one abnormal point exists in the remote scenario
trip length of 4km. We assume that the reason behind this is the very
low change of traffic flow in the remote scenario, so the result of
travel time reliability would be very sensitive to the various topologies
in the area between the different OD pairs. To conclude, we didn’t
find any obvious difference between the four algorithms, in terms of
travel time reliability, therefore an improvement would require a new
algorithm to be devised.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 8 6 4 2

N
um

be
r

of
 S

el
ec

te
d

N
od

es

Trip Length (KM)

CENTER

Dynamic A*
Static A*

Dynamic Dijkstra’s Algorithm
Static Dijkstra’s Algorithm

(a) Case of center area

 0

 500

 1000

 1500

 2000

 2500

 3000

10 8 6 4 2

N
um

be
r

of
 S

el
ec

te
d

N
od

es

Trip Length (KM)

SUBURBAN

Dynamic A*
Static A*

Dynamic Dijkstra’s Algorithm
Static Dijkstra’s Algorithm

(b) Case of suburban area

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

10 8 6 4 2

N
um

be
r

of
 S

el
ec

te
d

N
od

es

Trip Length (KM)

REMOTE

Dynamic A*
Static A*

Dynamic Dijkstra’s Algorithm
Static Dijkstra’s Algorithm

(c) Case of remote area

Figure 7: Number of selected nodes vs. trip length

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10 8 6 4 2

C
om

pu
ta

tio
n

T
im

e
(S

ec
on

d)

Trip Length (KM)

CENTER

Dynamic A*
Static A*

Dynamic Dijkstra’s Algorithm
Static Dijkstra’s Algorithm

(a) Case of center area

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 8 6 4 2

C
om

pu
ta

tio
n

T
im

e
(S

ec
on

d)

Trip Length (KM)

SUBURBAN

Dynamic A*
Static A*

Dynamic Dijkstra’s Algorithm
Static Dijkstra’s Algorithm

(b) Case of suburban area

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 8 6 4 2

C
om

pu
ta

tio
n

T
im

e
(S

ec
on

d)

Trip Length (KM)

REMOTE

Dynamic A*
Static A*

Dynamic Dijkstra’s Algorithm
Static Dijkstra’s Algorithm

(c) Case of remote area

Figure 8: Computation time vs. trip length

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

10 8 6 4 2

T
ra

ve
l T

im
e

(S
ec

on
d)

Trip Length (KM)

Static(Center)
Static(Suburban)

Static(Remote)
Dynamic(Center)

Dynamic(Suburban)
Dynamic(Remote)

Figure 9: Impact of trip length and road network topology on
the efficiency of vehicles routing algorithm in terms of travel
time

E. Data storage space usage

In the Table II, we present the memory space needed by each
algorithm to perform the route calculation under different scalability
levels. Basically, static algorithms need only to load the map data
into the memory, and in our implementation this data consists of a
static map ”Static Map” data in SUMO format. In contrast, for the
dynamic algorithms more data need to be loaded such as link status
data ”Link Status”, node data ”Nodes” and lower bound data
”Lower Bounds”. The link data shows the different travel times on
different time intervals for every link, in addition to the transportation
topology data which includes node data and basic link information.
The link status in the dynamic context is thus a huge volume of data
with its size is the number of time intervals times larger than the
corresponding size in the static context. In our simulation, we set
the travel time update frequency to 30 seconds, and the simulation

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

10 8 6 4 2

T
ra

ve
l D

is
ta

nc
e

(M
)

Trip Length (KM)

Static(Center)
Static(Suburban)

Static(Remote)
Dynamic(Center)

Dynamic(Suburban)
Dynamic(Remote)

Figure 10: Impact of trip length and road network topology on
the efficiency of vehicles routing algorithm in terms of travel
distance

duration to 2 hours, which means that the dynamic link status data
is 240 times larger than the static links data. For dynamic A*, its
advanced lower bounds needs to be pre-calculated by static all-to-all
DA and the results should be stored for each scenario. Afterwards,
these results will be loaded to the memory to enable the execution
of A* algorithm. We notice from the Table II that dynamic A* needs
55.56 times more memory space than its static counterpart when the
execution being performed in center area, and even for the remote
area, it still needs 126,713,008 bytes, which is 31.47 times more that
static A*. This is the only one obvious disadvantage of dynamic A*.

F. Implementation cost

Besides the five metrics that we have discussed above, the algo-
rithm implementation cost is another important aspect that should
be taken into account to ensure more informed decision about what

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10

T
ra

ve
l T

im
e

R
el

ia
bi

lit
y

Trip Length (KM)

CENTER & SUBURBAN

Static(Center)
Static(Suburban)
Dynamic(Center)

Dynamic(Suburban)

(a) Case of Center and suburban areas

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 2 4 6 8 10

T
ra

ve
l T

im
e

R
el

ia
bi

lit
y

Trip Length (KM)

REMOTE

Static(Remote)
Dynamic(Remote)

(b) Case of Remote area

Figure 11: Travel Time Reliability vs. trip length

Table II: Data storage space usage by each algorithm (in Bytes)

Center area Suburban area Remote area
Static DDA DA* Static DDA DA* Static DDA DA*

Static Map 7,884,103 null null 5,455,490 null null 4,039,884 null null
Nodes null 217,250 217,250 null 144,669 144,669 null 101,628 101,628

Link Status null 144,139,906 144,139,906 null 96,389,386 96,389,386 null 69,029,812 69,029,812
Lower Bounds null null 293,667,771 null null 120,703,021 null null 57,581,568

Total 7,884,103 144,357,156 438,024,927 5,455,490 96,534,055 217,237,076 4,039,884 69,131,440 126,713,008

algorithm to use in a centralized ITS. Since sometimes the algorithms
are implemented at the hardware level which is highly dependent on
the number and type of statements for the algorithm execution, a
simple implementation can not only reduce the computation time
but also decrease the energy consumption. Since A* has similar
implementation to DA with one more estimation function, we can
define the order of the implementation cost of the four algorithms
studied in this work as follows:

DynamicA∗ > DynamicDA > StaticA∗ > StaticDA

Finally, our suggestions on the best algorithm to apply in different
scenarios are presented in Table III. These suggestions are based on
the centralized ITS architecture, in which the ITS server receives
large number of drivers requests of fastest and shortest routes.

V. CONCLUSION

Throughout this paper we have provided a thorough performance
evaluation of four vehicles’ routing algorithms followed by deep
analysis and comparison of the obtained results. This evaluation work
for both static and dynamic routing algorithms is carried out based
on real transportation network and highly realistic traffic load. Such
valuable performance assessment under different scalability levels
and trip lengths has never been done in the literature, for the best
of our knowledge. Moreover, we have discussed the implementation
cost of these algorithms and suggested the most suitable algorithm
to apply in several scenarios. Dynamic DA has never been suggested
for any scenario of practical use due to its exaggerated computation
time. If the driver needs the shortest route, static DA is recommended
for centralized ITS use in remote area due to its low complexity
and good performance in terms of computation time. In the center
and suburban scenarios, static A* is a good choice for long trips
(i.e. ≥ 6km) whereas static DA is a better alternative for short trips
(i.e. ≤ 4km). For fastest route queries, dynamic A* would be highly
recommended due to its low computation time and high quality of
the calculated route, especially for long trips. For shorter trips, static
A* is preferred as it can also provide routes with good travel time
and its memory usage cost is low. In the future, we plan to vary
the departure time for the same simulation background in the center

area scenario to explore the impact of traffic load variation on the
aforementioned evaluation metrics. Besides, by using tools provided
by IBM Industry Solutions and Research Labs, we can generate the
more complete simulated data for a whole week (24 hours traffic
data) to investigate more features of the four studied algorithms.

VI. ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation Ireland
grant 10/CE/I1855 to Lero - the Irish Software Engineering Research
Centre (www.lero.ie).

REFERENCES

[1] Schrank, David, Bill Eisele, and Tim Lomax. ”2012 Urban Mobility
Report.” Texas Transportation Institute, Texas A & M University, 2012.

[2] Bureau of Public Roads (1964). Traffic Assignment Manual. U.S. Dept.
of Commerce, Urban Planning Division, Washington D.C.

[3] K. Chen and J.C. Miles, ITS Handbook 2000 Recommendations from
the World Road Association (PIARC), Artech House, 1999.

[4] Freeway Incident Management Handbook, Federal Highway Ad- min-
istration, 2000. [Online]. Available: http://ntl.bts.gov/lib/jpodocs/ rept-
mis/7243.pdf

[5] Dijkstra, Edsger W. ”A note on two problems in connexion with graphs.”
Numerische mathematik 1.1 (1959): 269-271.

[6] Chabini, Ismail, and Shan Lan. ”Adaptations of the A* algorithm for
the computation of fastest paths in deterministic discrete-time dynamic
networks.” Intelligent Transportation Systems, IEEE Transactions on 3.1
(2002): 60-74.

[7] Lowrie, P. R. ”The Sydney coordinated adaptive traffic system-
principles, methodology, algorithms.” International Conference on Road
Traffic Signalling, 1982, London, United Kingdom. No. 207. 1982.

[8] Hunt, P. B., et al. SCOOT-a traffic responsive method of coordinating
signals. No. LR 1014 Monograph. 1981.

[9] Zhan, F. Benjamin, and Charles E. Noon. ”Shortest path algorithms:
an evaluation using real road networks.” Transportation Science 32.1
(1998): 65-73.

[10] Fu, Liping, D. Sun, and Laurence R. Rilett. ”Heuristic shortest path
algorithms for transportation applications: state of the art.” Computers
& Operations Research 33.11 (2006): 3324-3343.

[11] Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. ”A formal basis
for the heuristic determination of minimum cost paths.” Systems Science
and Cybernetics, IEEE Transactions on 4.2 (1968): 100-107.

Table III: Summary of our suggestion on the most efficient vehicles routing algorithm in different road scenarios

Trip length
Fastest / Shortest 10 km 8 km 6 km 4 km 2 km

Center area Dynamic A* / Dynamic A*/ Dynamic A*/ Static A*/ Static A*/
Static A* Static A* Static A* Static DA Static DA

Suburban area Dynamic A*/ Dynamic A*/ Dynamic A*/ Static A*/ Static A*/
Static A* Static A* Static A* Static DA Static DA

Remote area Dynamic A*/ Dynamic A*/ Static A*/ Static A*/ Static A*/
Static DA Static DA Static DA Static DA Change the route criterion

[12] Huang, Bo, Q. Wu, and F. B. Zhan. ”A shortest path algorithm with novel
heuristics for dynamic transportation networks.” International Journal of
Geographical Information Science 21.6 (2007): 625-644.

[13] Koenig, Sven, Maxim Likhachev, and David Furcy. ”Lifelong planning
A*.”Artificial Intelligence 155.1 (2004): 93-146.

[14] Bell, Michael GH, et al. ”Time-dependent Hyperstar algorithm for robust
vehicle navigation.” Transportation Research Part A: Policy and Practice
(2012).

[15] Bell, Michael GH. ”Hyperstar: A multi-path Astar algorithm for risk
averse vehicle navigation.” Transportation Research Part B: Method-
ological 43.1 (2009): 97-107.

[16] Spiess, Heinz, and Michael Florian. ”Optimal strategies: A new as-
signment model for transit networks.” Transportation Research Part B:
Methodological 23.2 (1989): 83-102.

[17] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, SUMO - Sim-
ulation of Urban MObility - an Overview, in SIMUL 2011, The Third
International Conference on Advances in System Simulation,(Barcelona,
Spain), 2011.

[18] Wegener, Axel, et al. ”TraCI: an interface for coupling road traffic
and network simulators.” Proceedings of the 11th communications and
networking simulation symposium. ACM, 2008.

[19] Uppoor, Sandesh, and Fiore Marco. A large-scale vehicular mobility
dataset of the Cologne urban area.14mes Rencontres Francophones sur
les Aspects Algorithmiques des Tlcommunications (AlgoTel) (2012): 1-
4.

[20] V. T. Ngoc Nha, S. Djahel and J. Murphy. ”A Comparative Study of
Vehicles’ Routing Algorithms for Route Planning in Smart Cities”. VTM
2012, Satellite Workshop of IFIP Wireless Days 2012, Dublin, Ireland,
November 20, 2012.

[21] A. Polus, ”A study of travel time and reliability on arterial routes”,
Transportation, Vol. 8, No. 2, pp.141-151, 1979.

