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Abstract— Wireless mesh Networks (WMNs) are a prominent
paradigm of wireless communication that have been widely used
in many applications. The growing popularity of such networks
opened the door to a profusion of attacks that may target
their core functioning leading to a harmful impact on their
performance. Hence, the need of robust and fast detection of
those attacks became a major prerequisite in order to guarantee
an efficient and fair share of network resources among nodes. One
of the well known devastating attacks is MAC layer misbehavior
which may lead to severe collapse of network performance. In
this study, we focus on such misbehavior and in particular on
the adaptive greedy behavior of a node in wireless mesh network
environment. In such environment, wireless nodes compete to
gain access to the medium in order to communicate with a
mesh router (MR). In this case, a greedy node may violate
the MAC protocol rules to earn extra bandwidth share upon
its neighbors. To evade from detection, the cheater node may
use more than one technique and switch dynamically between
each of them. To counter such misuse, we propose to extend our
previous solution, dubbed FLSAC, through the use of a Bayesian
statistical model. This new scheme is implemented in conjunction
with FLSAC at the mesh router/gateway to monitor the behavior
of the attached wireless nodes and detect any deviation from the
proper protocol rules. The simulation results reveal that this new
solution outperforms both of DOMINO and FLSAC in terms of
detection rate and accuracy.
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I. INTRODUCTION

In recent years, Wireless Mesh Networks (WMNs) have emerged
as a novel and prominent paradigm of wireless communication. A
mesh network is made of both wireless and wired nodes forming a
mesh topology, as shown in Figure 1. WMNs can be seen as a three
levels network where the nodes belonging to each level have a specific
role to accomplish which is generally different from the task of other
levels’ nodes. At the highest level, we find the gateways which are
usually equipped with multiple interfaces (wired and wireless) and
serve as internet access points for the mesh nodes (mesh clients).
These gateways can be either stationary (e.g. rooftop) or mobile (e.g,
airplane, buses/subway). At the middle level, a large number of mesh
routers (MRs) is needed in order to provide reliable service. Each
router has at least one wireless interface and acts as a repeater to
transmit data from nearby routers/clients to peers that are too far
away to reach. Finally, the mesh clients are situated at the lowest
level; these clients are the only sources/destinations for data traffic
flows in the network. The connection to the mesh network is provided
through wireless routers (or directly through the gateways).

Since IEEE 802.11 MAC protocol, as described in [3], is com-
monly used by wireless nodes to access the medium, any misbe-

havior at this level may jeopardize the network performance. The
serious damage caused by MAC layer misbehavior has received a
considerable research attention leading to an in depth investigation
and analysis of its root causes [4], [5]. As a result of this investigation,
a bunch of solutions have been proposed in the literature to cope with
this problem such as the works done in [6], [7] and [8]. These works
have identified several types of MAC layer misbehavior, and proposed
countermeasures to detect and prevent such misuses. However, their
solutions are based on the assumption that the misbehaving node has
no knowledge about the way the detection scheme works. Therefore
these solutions are unable to face a smart cheater which might be
aware of the functioning of the deployed detection scheme. Such
cheater exploits its knowledge to escape from being detected.

In this paper, we conduct an in depth analysis of the adaptive
cheater [9] misbehavior in IEEE 802.11 MAC protocol. In such
misbehavior, the cheater node prefers to frequently switch between
several cheating strategies rather than applying one technique; thereby
it avoids detection and makes the task of the observer/monitor node
harder. To tackle this problem, we first explain how easy this can
be performed in IEEE 802.11 MAC protocol. Then, we present our
Bayesian statistical model that aims to detect these misbehaving
nodes through a probabilistic computation and ensure a lower false
accusation and misdetection rate. To this end, we have opted for
Bayes theorem to develop our cheating probability. This probability
is calculated based on an estimation of a set of MAC parameters
that might be modified by the cheater node to gain fast access to
the wireless medium. Later on, we have integrated this model with
FLSAC scheme in order to enhance its detection rate and accuracy.

The rest of the paper is organized as follows. In section ??,
we present the literature, followed by a detailed description of the
proposed solution in section II. Then, the simulation results are
reported and discussed in section III. Finally, section IV concludes
the paper.

II. THE PROPOSED SOLUTION

In what follows, we present our solution and provide detailed proof
of its correctness.

A. Motivations
The main reason that incites us to investigate the adaptive cheater

behavior in WMNs is the devastating consequences that may be
induced from this misbehavior due to the architecture and particular
characteristics of these networks. Since the mesh routers are con-
nected to each other through wireless links then any mischief of any
client attached to them will affect both of packets delivery towards
clients, and the forwarding of their packets towards far away clients
or internet.

Let us now suppose that the carrier sensing range (Rcs) of a
mesh client is slightly larger than its transmission range, which is
considered as the best case regarding the propagation of the greedy



Figure 1: Wireless Mesh Networks model

behavior impact in the network. As shown in Figure. 1, when a
misbehaving client (the red mesh client) violates the MAC protocol
rules, all the wireless links whose at least one of their vertices (either
client or mesh router) is within the Rcs of this misbehaving client
are paralyzed. Consequently, no communication is allowed over them,
as long as the misbehaving client is still gaining the competition to
access the medium using illegitimate ways.

As compared to MANETs, the impact of MAC layer misbehavior
is more damaging in WMNs. This is due to the fact that the lower
mobility of mesh routers extends the duration of their incapability
(i.e. the sharp decrease of their acquired throughput) of delivering
(forwarding) the frames to clients (neighboring routers), respectively,
because the medium is being monopolized by the cheater node.
However, in MANETs the high mobility of nodes may be useful
to escape from the cheater range and thus minimizing the induced
impairment.

B. key idea
The main idea of this work can be described as follows. At the

end of each monitoring window W , we test the hypothesis that
a given mesh client (M-client) is an adaptive cheater even though
DOMINO has classified it as well behaved, as depicted in Figure.
2. To do so, we compute the likelihood that a M-client is cheating
given the evidence E. This evidence is consisted of the collected
statistics by the MR regarding the different parameters, cited below,
that characterize the MAC protocol. The resulted probability is then
compared to a threshold value α, dynamically updated by the MR,
in order to classify this M-client as cheater or honest. Notice that α
is updated according to the variation of mesh clients’ density around
the MR and the collision rate.

C. Model description
This model is based on a fundamental Bayesian principle that

allows us to make the correct decision regarding the M-clients’
behavior. The behavior of each M-client is observed by the MR
through the estimation of the following parameters that determine
the winner of the medium access contention between neighboring
M-clients.
• the observed idle slots between consecutive transmissions from

the same M-client.
• the observed idle slots between two transmissions from the same

M-client interspersed by other transmissions.
• the observed retransmissions rate of each M-client: this metric

is calculated through the comparison of the number of failed
transmissions of a given M-client with the average of that of

Figure 2: The operations of our scheme

the other M-clients attached to the same MR. In practice this
information can be extracted from the Retry field of the MAC
frame.

• the observed deviation of a M-client from the required DIFS
duration, i.e. the difference between the DIFS value and the
real period (S-DIFS: short DIFS in case of cheater M-client)
that the cheater M-client has waited before decrementing its
backoff.

In the rest of the paper, we refer to these parameters as p1, p2,
p3 and p4, respectively. Notice also that the parameters p1 and p2

allow us to estimate the backoff of a given mesh client (E-Backoff),
whereas p3 defines the retransmission rate (RTR) of the M-client.

Another parameter may also be considered since it represents a
way to disobey the MAC protocol. This parameter is the difference
between the advertised value of the duration filed of RTS or DATA
frames and the effective transmission time of the ongoing transmis-
sion. The cheating method that exploits this field is the NAV oversize
technique. In this technique, the sender of RTS frame amplifies the
value of the duration field in order to increase the deferment delay
of the receivers M-clients; thereby a DoS attack or bandwidth under
utilization may be resulted. Notice that this technique is rarely applied
by the cheaters since it can be easily detected by their neighbors,
compared to the previous techniques. Therefore, we neglect this
parameter in our work.

1) Computation of the cheating probability: Based on the
values of the previous parameters we use Bayes theorem to calculate
the cheating probability as described below.

If A and B are two events, the Bayes’formula :

P(A/B) =
P(B/A).P(A)

P(B)
(1)

gives the conditional probability of A knowing B. This formula
can be applied to our problem as follows:
If a certain M-client is represented by the vector (p1, . . . , pm), then
the probability that this M-client is an adaptive cheater is expressed
as

P(che/p1, . . . , pm) =
P(che/p1) · . . . · P(che/pm)

P(che/p1) · . . . · P(che/pm) + R1 ·R2
(2)

where



R1 = (
P(che)
P(hon)

)(m−1)

and

R2 = (1− P(che/p1)) · . . . · (1−P(che/pm))

Notice that pi indicates that the M-client has been observed
cheating by manipulating the MAC parameter of index i.

We did an earlier classification of the acquired observations
of the parameter p1 and p2, as described below. For each
observed value of these two parameters of a given M-client,
the MR checks if it is obeying the Backoff rules or not through
a simple comparison with the previous collected values of
pi within the same monitoring window, as described in the
following.

If obsj(pi) -
∑J−1

k=1
obsk(pi

(J−1) > δ then the counter of the
suspected observations (cpt1 (pi) is incremented, otherwise the
counter of legitimate ones (cpt2(pi) is increased. We assume
that at the end of a given monitoring window, the MR has
collected N observations of all the parameters of a M-client.
Thus, we calculate a prior probability that this M-client is
misbehaving (P (susp)) and a prior probability that it is
obeying the rules (P (leg)) as follows.

P(susp) =

∑3

i=1
cpt1(pi)

3

N
(3)

P(leg) =
cpt2
N

(4)

Notice that we didn’t take into account p3 and p4 for
calculating those prior probability because

Proof of correctness of Eq. 2: We now prove the
correctness of our formula, given in Eq. 2, for any integer
m although in our solution we use that only for m = 4.
According to the basic Bayes formula, we have

P(che/p1, . . . , pm) =
P(p1, . . . , pm/che) · P(che)

P(p1, . . . , pm/che)(P(che) + C)
(5)

where

C = P(p1, . . . , pm/hon)P(hon)

Assuming that the set of DCF parameters is an independent
set, then we get the following formula

P(che/p1, . . . , pm) =
P(p1/che) · . . . · P(pm/che) · P(che)

C1 + C2
(6)

such that

C1 = P(p1/che) · . . . · P(pm/che) · P(che)
C2 = P(p1/hon) · . . . · P(pm/hon) · P(hon)

Let us now consider the following rules issued from Bayes
theorem

P(pi/che) =
P(che/pi) · P(pi)

P(che)

P(pi/hon) =
P(hon/pi) · P(pi)

P(hon)

By applying those rules on the Eq. 6, we obtain

P(che/p1, . . . , pm) =

P(che/p1)·P(p1)
P(che) · . . . · P(che/pm)·P(pm)

P(che)

d1 · . . . · dm · P(che) + d1 · . . . · dm · P(hon)
(7)

with

di =
P(che/pi) · P(pi)

P(che)
and di =

P(hon/pi) · P(pi)
P(hon)

As a result, we obtain the following formula

P(che/p1, . . . , pm) =

i=m∏
i=1

P(pi)[P(che/p1) · . . .P(che/pm)]

[P(che)](m−1) ·
i=n∏
i=1

P(pi)[E + E]

(8)
where

E = P(che/p1)·P(che/pm)
P(che)(m−1)

and

E = P(hon/p1)·P(hon/pm)
P(hon)(m−1)

So, after applying a set of simplifications we obtain the
following result

P(che/p1, . . . , pm) =
P(che/p1) · . . . · P(che/pm)

P(che/p1) · . . . · P(che/pm) + F
(9)

such that

F = [R1 · P(hon/p1) · . . . · P(hon/pm)]

Since che and hon are two complementary events, and

P(A/B) = 1−P(A/B)

for any two events A and B, thus by applying this rule on the
Eq. 9 we obtain the same formula of the Eq. 2. Therefore,
the correctness of our solution is proven.

2) Classification criteria: A M-client represented by the
set of parameters: p1, p2, . . . , pm is classified as a cheater
when:

P(che/p1 · . . . · pm)
1− P(che/p1, . . . , pm)

> λ (10)

therefore the selection criteria is equivalent to
P(che/p1, . . . , pm) > α with α = λ

1+λ



3) Filter evaluation methodology: A filter performance is
based on two parameters which are its accuracy (Acc), as
defined in [2], and the error (Err = 1 - Acc), respectively
defined as

Acc =
Nche→che + Nhon→hon

N
(11)

Err =
Nche→hon + Nhon→che

N
(12)

where Nx→y denotes the number of M-clients of class
x which are erroneously classified in class y, and Nx→x

represents the number of M-clients of class x which are
correctly classified.

Referring to the above notation, we define below the
weighted accuracy and error that take into consideration the
weight assigned to classification failures.

Wacc =
λNche→che + Nhon→hon

λNche + Nhon
(13)

Werr =
λNche→hon + Nhon→che

λNche + Nhon
(14)

where Nche and Nhon refer to the number of cheaters and
honest M-clients, respectively.

To assess the performance of this filter we compare it to
a non filtered network where every M-client is considered
as honest, thus granting network access to every cheater M-
client. According to the definition of Wacc and Werr, the
referential weighted error and weighted accuracy (respectively
noted Waccb and Werrb) are calculated as follows:

Waccb =
λNche

λNche + Nhon
(15)

Werrb =
Nhon

λNche + Nhon
(16)

These values allow the performance of the filter to be
compared to that of the baseline, hence the Total Cost Ratio
(TCR) is defined as:

TCR =
Werrb

Werr
=

Nhon

λNche→hon + Nhon→che
(17)

Notice that high TCR values reflect a good filter while
values being smaller than 1 indicate that the reference filter
outperforms the evaluated one. Finally, we calculate the ratio
of the honest M-clients correctly classified by the filter (i.e,
Node Recall (NR)), and the precision of this filter when it
classifies the M-clients as honest (i.e. Node Precision (NP)).
These two metrics are defined as

NR =
Nhon→hon

Nhon
(18)

NP =
Nhon→hon

Nhon→hon + Nche→hon
(19)

The impact of NR and NP on the network performances
is highly dependent on the filter context. Similarly to the

Algorithm 1 Interaction between FLSAC and our bayesian
model

1: At the end of the monitoring window Wi;
2: if (FLSAC decision == (Normal ∨ L-susp)) then
3: status(M-client id)= honest;
4: else
5: if (FLSAC decision == H-susp) then

6: β =
∑k

j=1
FLSACoutput(Normal∨L−susp)

2·l ;
7: α= FLSACoutput (current window Wi) + β;
8: if (Bayes prob(cheater)>= α) then
9: status(M-client id) = cheater; //confirmed cheater

10: else
11: Defer the decision till the end of the subsequent

monitoring window (Wi+1);
12: end if
13: else
14: if (FLSAC decision == cheater) then
15: α= FLSACoutput;
16: if (Bayes prob(cheater)≥ α) then
17: status(M-client id) = cheater;
18: else
19: Defer the decision till the end of the subsequent

monitoring window (Wi+1);
20: end if
21: end if
22: end if
23: end if

parameter λ, the weights of NR and NP are influenced by the
action taken based on filter decisions. Therefore, NR and NP
values are not relevant in a context independent comparison
of filters. A better solution to compare the efficiency of two
filters is to rely on the TCR.

4) Integration of the bayesian model with FLSAC: When
we integrate our model with FLSAC, the output of this latter
will define the classification criteria α used for identifying
the cheater M-clients. Hence, for better understanding of the
interaction between these two schemes we distinguish three
different cases as follows:

• FLSAC’s output reveals that the M-client is classified as
either normally behaving or lowly suspected (L-susp). In
this case the bayesian cheating probability is ignored.

• if FLSAC’s decision is highly suspected (H-susp) then
the value of α is calculated as the addition of the current
FLSAC’s output and the half of the average of the last k
outputs, where the decision was either normal or lowly
suspected.

• if FLSAC judges that the M-client is cheater then α is
assigned the value of FLSAC’s output.

Algorithm 1 provide a pseudo code that explains how a MR
combines both of FLSAC and the Bayesian model to make the
final decision regarding the M-client’s behavior.



Parameters Values
Area 2000m · 2000m
Physical layer Direct sequence
No. of cheaters 4..8
Transmission range of clients 250m
Transmission range of MRs 400 m
Topology Random

20 MRs
20 clients per MR

Traffic type CBR
Data rate 5.5 mbps
CBR packets size 500 bytes
Simulation time 300 seconds
No. of simulation epochs 10
Network simulator OPNET 14.0 [1]

Table I: Simulation settings

III. SIMULATION SETTINGS AND RESULTS

In this section, we present and interpret the obtained results
that quantify the performance of our proposed solution as
compared to DOMINO and FLSAC, in terms of detection rate
and accuracy. Simulations are performed using the network
simulator OPNET 14.0 which we have extended by adding
new functions, required for our solution, to the MAC layer
(wlan-mac process model). The simulation settings and config-
uration parameters of each M-client and MR are summarized
in table I.

We have conducted experiments using CBR traffic where
a source M-client sends a CBR stream to a distant M-client
that is attached to a different MR. In our configuration we
vary the percentage of the cheater M-clients attached to the
same MR from 20% to 40%. Notice that the switching scheme
used by the cheater M-clients to alternate between the cheating
techniques is similar to that used in [9]. We also vary the
classification criteria α of our Bayesian model (B Model) from
0.55 to 0.85. A summary of the different scenarios used in our
simulation is presented in table II.

Figure 3 plots and compares the detection rates of
DOMINO, FLSAC, B Model and FLSAC+B Model
1(FB Model). Except DOMINO which, as expected, fails
totally to detect the adaptive cheaters in all scenarios and
with varying misbehavior coefficient (MC), the other schemes
achieve an acceptable detection rate. This failure of DOMINO
is justified by the fact that it assesses the observed deviation
of each MAC layer parameter independently from the other
parameters. Thus, since the adaptive cheaters, implemented
in our simulation, don’t deviate so much by manipulating
one MAC parameter but they get benefits from the combined
deviation of several cheating techniques, they succeed to
escape from DOMINO.

In general, we observe that the detection rate increases as
the MC increases till it reaches its highest values when the
MC value gets closer to 1. In this latter case, the cheater’s
deviation is high and therefore easy to be distinguished from
the normal behavior by both the fuzzy controller of FLSAC

1The notation FLSAC+B Model refers to the scheme resulted from the
integration of B Model with FLSAC as described in section II-C.4.

Scenario Percentage of cheater M-clients per MR α
1 20 % 0.55
2 30 % 0.65
3 35 % 0.75
4 40 % 0.85

Table II: Scenarios setting

and the Bayesian probability of B Model, especially when the
number of cheaters is quite low. We also remark that the raise
of the cheater’s percentage negatively affects all the schemes,
in particular FLSAC, since the multiple collisions provoked
by the cheaters prevent the MR from either collecting enough
samples of observations or correctly estimating the values of
certain parameters.

From the curves plotted in Figure 3(a), we observe that the
B Model outperforms the other schemes as the value of α is
small enough to let the MR easily recognize the cheater M-
clients. So, it ensures that most of the cheater M-clients are
detected even if they are slightly deviating from the standard,
at the expense of some wrong accusation of well behaved M-
clients.

The Figures 3(b), 3(c) and 3(d) divulge that the increase of
α leads to a sharp decrease of B Model’s detection rate since
the large value of α allows only detection of a small portion of
the deviating M-clients, whereas the rest of the deviating ones
are wrongly classified as well behaved. Additionally, these
figures show that the FB Model significantly outperforms the
two other schemes. This is due to the following reasons: (i)
the use of FLSAC’s output, which is dynamically updated, as
a classification criteria of B Model allows it to detect more
cheaters as compared to the case where we use a fixed value
of α, (ii) the new defined classification criteria for the M-
clients that have been classified as H-susp by FLSAC ensures
their detection if they are misbehaving, hence those M-clients
cannot escape from FB Model as they have done with FLSAC
(see Algorithm 1).

The histogram plotted in Figure 4 highlights the accuracy
of the decisions taken by the three schemes. Notice that
the graphed values have been calculated based on the filter
presented in section II-C.3. As we can see from this histogram,
the higher the value of α is the lower accuracy of B Model
because when α rises the interval [0.5, α] gets larger. Thus,
the cheater M-clients whose the cheating probability belongs
to this interval will be wrongly classified as legitimate and
consequently the detection accuracy drops sharply to less than
60% in scenario 4. Compared to FLSAC and B Model, the
FB Model shows the highest accuracy in all scenarios, whereas
FLSAC outperforms B Model, particularly in scenarios 3 and
4 where the gap between them is important. This supremacy
of BF Model over the other schemes is due to the same
reasons explained in the previous paragraph. Notice that we
neglect the detection accuracy of DOMINO since this latter
presents detection rate of around 2% in the best case, thus it
is insignificant to calculate its accuracy.

To conclude, the results presented above confirm that our



(a) scenario 1 (b) scenario 2

(c) scenario 3 (d) scenario 4

Figure 3: Detection rate in different scenarios with varying MC values

Figure 4: Detection accuracy in different scenarios

choice of combining FLSAC and B Model was a right deci-
sion, since this hybrid solution shows a high detection rate
and accuracy in a mesh network dominated by a large number
of cheaters (till 40% of the M-clients are cheaters in our
simulations).

IV. CONCLUSION

In this work, we have presented a new scheme based on
a Bayesian statistical model in order to detect the cheater
M-clients that apply a bunch of misbehavior techniques and
switch intelligently among them to evade detection. This
scheme is implemented at the mesh router which is the respon-
sible for collecting information regarding certain parameters

used by the M-clients to transmit their packets. Based on these
information our scheme calculates the cheating probability
and then combines it with FLSAC’s output to make the final
decision regarding a given mesh client’s behavior. According
to the simulation results, our scheme can significantly reduce
the negative impact of the cheater clients even in a network
dominated by cheaters. Therefore this proves that Bayes theory
stills an efficient model that can be exploited to defend
against other misbehavior in WMNs. As a future work, we
are interested to tackle the jamming attack and develop robust
solution to cope with it.
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