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Abstract 

Due to revisions in certain drugs laws and tightening in regulations, there has been a rise 

in the amount of new psychoactive substances entering the market. In order to combat 

this increase, investigations have begun into creating new and effective portable devices 

that are capable of producing rapid positive or negative responses for the presence of 

these types of drugs.  

 

The main aim of this project was to convert a basic enzyme linked immunoassay onto a 

microfluidic device in order to create a system for detecting mephedrone and it 

metabolites. Small detection zones, capable of containing micro volumes of reagent, were 

created using liquid wax on analytical grade filter paper before being optimised using a 

glutaraldehyde activated chitosan surface. Using these wax printed microfluidic paper 

analytical devices (µPADs) and an enzyme-linked immunoassay it has been possible to 

detect a horseradish peroxidase (HRP) labelled cathinone sample within aqueous and 

biological media.  

 

The same method was then applied to the detection of mephedrone and was successfully 

able to detect mephedrone in urine at clinically relevant concentrations, giving an LOD 

4.078 µg/mL of and an LOQ of 1.597 µg/mL.  This method has also shown positive results 

in detecting and distinguishing between mephedrone, methcathinone, cathinone, 

ephedrine and 4-methylephedrine. As well as being robust enough to be able to 

differentiate between the cathinones it also proved highly selective, producing negative 

responses for other illegal drugs, such as cocaine and ketamine, as well as legal drug and 

potential cutting agents, such as paracetamol and caffeine.  
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Chapter 1– Introduction 
 

1.1.Misuse of Drugs Act (1971) 

In 1971 the UK Parliament passed the Misuse of Drugs Act in order to control the 

possession and supply of dangerous and harmful drugs, both those with a medicinal use, 

which are to some extent controlled under the Medicines Act (1968) but also those 

without a current medical use. The drugs that are classified under the Misuse of Drugs Act 

are known as controlled drugs and are grouped into three different classes based on their 

social harm, physical harm and the degree of dependence associated with long-term use 

of the drug. Each class carries a series of penalties that match the level of harm 

associated with that type of drug and potential offence attributed to it (Table 1.1).1 

 

Table 1.1: Penalties for the supply, possession and trafficking of illegal substances.1 

Class Drugs Included Possession Supply and 
Possession with 
intent to supply 

Class A heroin, cocaine, MDMA, LSD, 
psilocybin mushrooms, 
methadone, any Class B drug 
that has been prepared to be 
injected 

7 years 
imprisonment and 
an unlimited fine 

Life 
imprisonment 
and an unlimited 
fine 

Class B cannabis, ketamine, 
amphetamine, codeine, 
barbiturates 

5 years 
imprisonment and 
an unlimited fine 

14 years 
imprisonment 
and an unlimited 
fine 

Class C GHB, anabolic steroids, minor 
tranquillisers, benzodiazepines, 
khat. 

2 years 
imprisonment and 
an unlimited fine 

14 years 
imprisonment 
and an unlimited 
fine 

 

Due to the vast array of drugs classified under the Misuse of Drugs Act (1971) and their 

varying uses and abilities, the Misuse of Drugs Act was revised in 2001 in order to better 

regulate the possession and supply of drugs that carry useful medicinal abilities (Table 

1.2). 
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Table 1.2: Classification of illegal substances by schedule.1 

 Drugs Included Controls Associated 

Schedule 1 cannabis, raw opium, coca leaf, 
psilocin, LSD, ecstasy 

Can only be supplied, possessed or 
administered in exceptional 
circumstance with a Home Office 
license. 

Schedule 2 amphetamines, methadone, 
heroin, morphine, medicinal 
opium, cocaine, dihydrocodeine. 

Possession is illegal unless 
prescribed by a doctor. Subject to 
strict record keeping and storage. 

Schedule 3 barbiturates, rohypnol, 
temazepam 

Subject to restrictions on 
prescription writing 

Schedule 4 Part 1- minor tranquillisers 
 
Part 2- anabolic steroids 

Part 1- Possession is illegal without a 
prescription 
Part 2- Possession is legal without a 
prescription 

Schedule 5 mild painkillers, cough medicines Sold over the counter without a 
prescription 

 

1.2.Legal Highs-New Psychoactive Substances 

Due to the revisions in the Misuse of Drugs Act (1971) access to certain precursor drugs 

became a lot more tightly regulated resulting in a decline in the quality of several 

substances. In order for drug users to induce the same effects they were either required 

to take a higher dose of the street form or find new or alternative ways of reaching the 

same high; both options could result in potentially fatal outcomes. In order for suppliers 

to meet these demands a range of new psychoactive substances began to appear on the 

market (Table 1.3).  
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Table 1.3: Drug structure, synthesis  and pharmacology of  the ‘new psychoactive 
substances’ as outlined by the United Nations Office on Drugs and Crime (UNODC).2 

New Psychoactive 
Substances 

Structure Examples References; 
Synthesis and 
Pharmacology 
 

Plant Based 
Substances 

1 

2 

Khat (cathine) 3 
 
 
 
 
 
Salvia divinorum  
(salvinorin A) 4 

Botany (khat) 5 
Pharmacology 
(khat) 6 
Botany 
(salvinorin A) 7 
Pharmacology 
(salvinorin A) 8 

Piperazines  

 
3 

Benzylpiperazine (BZP)9 
1,4-Dibenzylpiperazine 
(DBZP) 
3-Chlorophenylpiperazine 
(mCPP) 

Synthesis 
(piperazines)10 
Pharmacology 
(piperazines)11 

Phenethylamines12 

   
4 

 Synthesis 13 
Pharmacology 
14 

Ketamine 15 

         
5 

 

 Synthesis 16 
Pharmacology 
17 

Synthetic 
Cannabinoids 18 

 
6 

Tetrahydrocannabinol (THC)  
Cannabinol (CBN) 
Cannabidiol (CBD) 
Cannabigerol (CBG) 
Cannabichromene (CBC) 

Synthesis 
(cannabinol) 19 
Pharmacology 
(cannabinol) 20 

Synthetic 
cathinones 21 

7 

4-Methylmethcathinone 
(Mephedrone)  
4-Fluoromethcathinone 
(Flephedrone) 
Ethcathinone 
Benzedrone 

Synthesis 
(mephedrone)
22, 23  
Pharmacology 
(mephedrone)
24 
 

Stimulants  

  
8 

Aminoindanes 25 Synthesis 26 
Pharmacology 
26 
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Hallucinogens 

   
9 

                                       

 
10 

                                                         

Phencyclidine (PCP) 27 
 
 
 
 
 
 
Tryptamines 28 

Synthesis 29 
Pharmacology 
30 
 
 
 
Synthesis 31 
Pharmacology 
32  

 

1.3.Cathinones 

The nature of drugs laws mean that the rules and regulations around a specific compound 

are often very specific and are based around the banning of a specific chemical structure. 

In order to get around these drugs laws, derivatives of already banned substances began 

to appear. In replacing one functional group for another, an already illegal substance 

would once again be classified as ‘legal’ without drastically changing the overall effect of 

the drug.22 Cathinones are chemical derivatives of methcathinone, which is a 

psychoactive stimulant already classified under the Misuse of Drugs Act (1971) as a class 

B substance, and very closely related to methamphetamines.1 In 2009 there was a 

significant rise in the popularity of new psychoactive substances (NPS) (formally known as 

“legal highs”) as they were cheap and easily accessible however the results were often 

fatal.33 In order to control the situation, methods were taken to identify, classify and ban 

these substances however this often lead to variations and adaptations being introduced 

(Figure 1.1).34 With the advances in analytical techniques over the years it meant that the 

majority of the new substances on the market were quickly identified enabling the known 

substances to new substance ratio to change.34  
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Figure 1.1: Representation of the data for the Global emergence of New Psychoactive 
substances according to the United Nations Office on Drugs and Crimes questionnaire on 
New Psychoactive Substances 2012 highlighting the increase in synthetic cathinones over 
recent years reproduced with permission.34 
 

1.4. Mephedrone 

Mephedrone (4-methylmethcathinone) is a powerful stimulant and is most commonly 

found as a white tablet or powder. Mephedrone (Figure 1.2) was first synthesised in 1929 

but remained a product of academia until its rediscovery and appearance on the drug 

market in early 2003.35 Though mephedrone was available on the market from 2003, 

there is limited data around its popularity and predominance prior to 2008 when it was 

first reported to the European Early Warning System (EEWS) due to increasing concerns 

over its effects.35 As mephedrone was new on the market it was unregulated and 

therefore did not appear in any drug reports prior to 2012. The use of new psychoactive 

substances more than doubled between the period of 2009-2012 triggering investigations 

into substances such as mephedrone.36 With mephedrone being categorised under the 

umbrella term New Psychoactive Substances (NPS) (formally known as “legal highs”)  it 

quickly became one of the four most popular street drugs in the UK, due to it being 

relatively cheap and easily accessible, mephedrone was widely available online and in 

head shops being sold as ‘plant food’ and ‘bath salts’.37    
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11 

Figure 1.2: Mephedrone (4-methylmethcathinone, 4-MMC, 4-methylephedrone).38 

 

1.4.1 Synthesis of mephedrone 

Mephedrone (11) is synthesised (Figure 1.3) via an alpha-bromination of 4-

methylpropiophenone (12) followed by a methamination of 4-methyl-2-

bromopropriophenone producing 4-methylmethcathinone (11). The final product is 

isolated as it’s corresponding hydrochloride salt, 4-methylmethcathinone hydrochloride 

(14).39  

 

 

          12                                      13                                             11                                         14 

Figure 1.3: The synthesis scheme for 4-methylmethcathione as reported by Santali et al.39 
 

1.4.2 Pharmacology of mephedrone 

Mephedrone is considered a psychostimulatory drug similar to that of MDMA and 

cocaine, inducing effects such as increased energy and awareness, a sense of euphoria, 

heightened sensory experiences, improved mood and sociability.40 Due to the relatively 

new nature of mephedrone, the short time between its appearance on the drugs market 

and its outlaw in 2010, few, if any, full clinical trials have been carried out into its 

pharmacology.21 However, as it has a close structural similarity to amphetamines, MDMA 

and other cathinone derivatives, it is also believed to induce its effect through disruption 

of the central monoamine systems. It both stimulates and inhibits the monoamine 

neurotransmitters causing it to produce excessive amounts of serotonin, norepinephrine 

and dopamine but preventing the reuptake of these hormones resulting in increased 

synaptic concentrations.41 As mephedrone has a chiral α-carbon it exists as both the S- 

and R-enantiomers but is generally found as a racemic mixture of the two. Recent studies 

have shown that the R-enantiomer of mephedrone, like amphetamine and cathinone, is 

more potent and results in a greater dopamine release. It has also been shown, that while 

Et2O 
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the R-enantiomer is largely responsible for the dopamine transmission the S-enantiomer 

is able to reduce this rewarding effect and decrease the withdrawal response. 

 

1.5. Analytical Techniques 

There are several different methods by which biological samples can be analysed for the 

presence of illicit substances. Routinely, presumptive drugs test are carried out on urine 

and saliva samples as they can be easily collected via a non-invasive process. The 

preferred method for initially testing a biological sample is to run an immunoassay,42 this 

is due to the high selectivity and extremely low limits of detection allowing for even low 

concentrations of compounds to present a positive response. Another advantage of 

immunoassays is that the samples require little to no preparation prior to running the test 

allowing for a more precise determination of whether a specific compound is present.43  

 

When carrying out tests involving illicit substance such as ‘legal highs’ there are  two main 

categories of sample that can require analysis, dry samples such as powders or tablets 

and wet samples such as blood or urine samples. With either category it is possible to 

have either known, synthesised or spiked samples and unknown, seized samples. The 

sample must first be made aqueous in order to be able to undergo an immunoassay test. 

When screening unknown samples it is important to include a positive control in which to 

compare the result against, this will indicate that the test is working correctly allowing 

more confidence in the result achieved and a negative control to rule out contamination. 

 

Generally immunoassays are considered presumptive tests and are the first step in testing 

seized samples. Due to the nature of these types of samples it is likely that there will be a 

number of other substances and impurities, such as other drugs and cutting agents, 

present within the sample.24 Depending on the types of other compounds present it could 

be possible for them to react with in the immunoassay producing an inaccurate result.44 

Biological samples may also contain natural inhibitors that result in nonspecific protein 

binding leading to a false positive; they may also contain metabolites of both the drug in 

question and other possible substances present that due to structural similarities could 

also affect the result. 

 



18 
 

Previous studies into the pharmacokinetics of mephedrone using both plasma and urine 

samples in human and animals studies have shown that 4-methylmethcathinone 

(Mephedrone), 4-methcathinone (nor-mephedrone), 3-hydroxy-4-methylmethcathinone, 

4-carboxylmethylmethcathinone, 4-hydroxymethylmethcathinone (Figure 1.4) and their 

isomers are the key compounds present after the metabolism of mephedrone.45 Studies 

have shown that mephedrone has a relatively low bioavailability compared with other 

drugs of a similar nature, it is also subject to first pass metabolism.46 When taken orally 

the drug is absorbed by the gastrointestinal tract and metabolised in the liver preventing 

it from being distributed throughout the body, further reducing its bioavailability and 

explaining why mephedrone is traditionally snorted as opposed to swallowed.47 It is 

believed that mephedrone (11) undergoes phase I metabolism, proceeding via an N-

demethylation to produce 4-methcathinone also known as nor-mephedrone (15). It also 

undergoes various oxidation reactions including aliphatic, aromatic and allylic 

hydroxylation to produce 3-hydroxy-4-methylmethcathinone (16), hydroxyl-

4methylmethcathinone (17) and 4-hydroxymethylmethcathinone (18) respectively. 

Secondary metabolites have also been detected such as 4-carboxylmethylmethcathinone 

(19) which is produced from the oxidation of 4-hydroxymethylmethcathinone (18). Due to 

the minimal changes in the structures of the various compounds and the similarities in 

their chemical nature it is possible that the metabolites could cross-react with the 

mephedrone-antibody within the immunoassay presenting a stronger positive reaction 

and indicating a higher concentration of mephedrone than is truly present within the 

sample.   
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Figure 1.4: Metabolites and metabolic pathways of mephedrone.46 

 

In order to establish the accuracy of the presumptive result and enable the determination 

of the exact compounds and concentrations present within the sample. Confirmatory 

tests such as GC-MS or HPLC would normally need to be performed.  

 

1.5.1 Immunoassays 

Immunoassays are a bioanalytical technique that measures the concentration of an 

analyte or antigen present within a sample through the use of specific antibodies. The 

antigen/antibody reaction is a mechanism that has been adapted from nature and works 

on a ‘lock and key’ principle (Figure 1.5).47 Antibodies are produced by plasma cells within 

the body and recruited by the immune system in order to fight off any foreign objects 

present.47 All antibodies have a similar Y shaped structure however each different type of 

antibody has a very unique binding site which is specific to its target.42 Only the analyte or 

antigen specific to that antibody is able to bind to the active site (Fab antigen binding 

region).  
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Figure 1.5: Antigen to antibody binding, ‘lock and key’ mechanism. 
 

As antibodies are a biological response for when the body is under attack from foreign 

objects in order to create a useable supply of them the analyte must first be injected into 

a host triggering an immune system response and allowing a target specific antibody to 

be extracted.48 Though antibodies are considered target specific it is often possible for 

them to cross-react, resulting in the binding site being able to accommodate the binding 

of similar types of analytes or metabolites, for instance the mephedrone specific antibody 

would be able to cross-react with other cathinone derivatives as well as binding to the 

mephedrone.47 Though other cathinone derivatives would not be a perfect fit into the 

active site of the mephedrone antibody due to the similarity in size, structure and activity 

it will still successfully bind should it be present in the sample.44 As the antibody is specific 

to the functional groups on the cathinone derivatives it allows for selectivity within this 

class enabling distinguishability between other drug classes. 

 

1.5.1.1 Enzyme-Linked Immunosorbent Assay (ELISA) 

Though immunoassay is the preferred biological method of analysis there are several 

different types of immunoassays that can be adopted in order to detect specific analytes, 

the type of assay chosen is dependent on the type of analyte in question and the 

requirements of the analysis as certain methods will allow for a higher level of 

sensitivity.47 Enzyme-Linked Immunoassays tend to be favoured over other types of 

assays such as those labelled with radioactive isotopes. Enzyme-Linked labels carry a 

longer shelf life and are more widely available than other variations; they also pose no 

risk to health and produce an almost instantaneous positive or negative response.43 

Though further testing is required in order to get a quantitative or qualitative result the 

instrumentation is relatively cheap and widely accessible compared to those required to 

detect radioactive isotopes or electrochemical tags. 

 

 

Antigen Fab Region 
‘Lock and Key’ 

Fc Region Antibody 
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1.5.1.2 Sandwich Immunoassay 

Depending on the analyte and sample in question there are different methods that can be 

adopted, sandwich immunoassays are the most frequently used as they tend to be more 

sensitive and robust. Initially a highly selective primary antibody, specific to the antigen in 

question is adhered to the solid surface.42 Often the second step involves blocking in 

order to prevent any unwanted analytes adhering to the solid surface.  The sample 

containing the antigen or analyte is added followed by a second antibody, known as the 

detection antibody due to the presence of a chemically attached label (Figure 1.6).49 Most 

commonly used labels are compounds such as horse radish peroxidase (HRP) which in the 

presence of 3,3’,5,5’-tetramethylbenzidine (TMB) results in a colourimetric detection. The 

stronger the positive response the higher the concentration of antigen present.42 Over 

recent years and with technological advances in certain types of plate readers 

chemiluminescent substrates and fluorophores are becoming more popular due to their 

increased sensitivity and ability to further amplify the signal.  

                         

 

 

Figure 1.6: Schematic representation of a ‘sandwich’ immunoassay.49  

 

1.5.1.3 Competitive Immunoassay 

As a lot of the ‘legal highs’ on the market at the moment are relatively new and often 

subject to small structural changes, therefore they require specially manufacture 

antibodies, specific to that class. In cases where this occurs, a competitive immunoassay 

is often adopted as it only requires one form of the antibody and uses a sample that 

contains a known amount of labelled and a variable amount of unlabelled antigens 

(Figure 1.7). As the concentration of unlabelled antigens increases due to there being a 

limited number of binding sites the concentration of labelled antigens decreases resulting 

in a lower detection response.49 
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Figure 1.7: Schematic representation of a competitive immunoassay.49 

 

Immunoassay tests are used as a means of screening samples for possible substances and 

are not relied upon to draw conclusions. In order to better understand the immunoassay 

result and develop a conclusion further confirmatory testing is required.47 

 

1.5.2 Gas Chromatography Mass Spectrometry (GC-MS) 

The most commonly used and highly reliable confirmation test is that of gas 

chromatography mass spectrometry (GC-MS). This technique has been applied to 

detection and quantification of various synthetic cathinones and new psychoactive 

substances both in street samples and biological matrices.50-54 This is a combination of 

analytical methods, the GC is used to separate the compounds within the sample based 

on their chemical properties whereas the MS is used to determine the physical properties 

of the ion based on a specific molecular weight and will produce a fragmentation pattern 

for the molecule present. The sample is injected via a split/splitless injection port where it 

is vaporised by an inert carrier gas, the gas then carries the sample along the column. The 

type of the analyte will determine the choice of medium used to pack the stationary 

phase contained within the column. For a polar molecule such as mephedrone, a polar 

stationary phase would be employed, the more polar the compound the longer the 

retention time. The stationary phase of a GC is contained within an oven, the 

temperature of the oven is directly proportional to the rate at which the sample passes 

through, by varying the temperature of the oven or using a specific temperature 

programme this allows for elution of the compounds within an optimal range. Once all 

the compounds within the sample have been separated the sample is injected directly 

into the MS. The compounds are bombarded with ions in order to displace an electron 

and create positive ions, these ions are then accelerated towards a magnetic field.55 The 

magnetic field will be set to select a specific mass to charge ratio depending on the 

analyte in question. Only the ions with this specific mass to charge ratio will pass through 

Antibody is binds to the 

solid surface 
Labelled and unlabelled 

species compete for the 

limited binding sites 
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the magnetic field all others will be deflected. The ions that successfully pass through the 

magnetic field will go on to the detector which records the charge induced or the current 

produced as the ions pass by it.55  

 

Though GC is a widely used technique and a good method for the separation and analysis 

of certain compounds it is limited to those that are volatile or can be made volatile. 

Compounds such as mephedrone (and other cathinones) must first be derivatised prior to 

being injected. The derivatised forms of these substances are unstable and the high 

temperatures with in the GC oven can result in these compounds undergoing thermal 

degradation causing significant deformation of the peaks.56 

 

In order to eliminate the problems associated with GC-MS other techniques such as high 

performance liquid chromatography mass spectrometry have been applied as the 

analytes do not require derivatisation prior to being injected. 

 

1.5.3 High Performance Liquid Chromatography Mass Spectrometry (HPLC-MS) 

Another common and highly reliable technique in the separation of compounds within a 

sample is High Performance Liquid Chromatography (HPLC). This technique has been 

successfully applied, by several research groups, to the detection and quantification of a 

range of new psychoactive substances including several synthetic cathinones, with some 

particularly focusing on mephedrone.50-53 There are a variety of different types of HPLC in 

which the stationary phase and mobile phase change depending on the chemical 

properties of the analyte in question (Table 1.4).57 A high pressure pump is used to 

continuously pump the mobile phase through the system and a small amount of the 

sample is injected into the steam of mobile phase. The continuous flow of mobile phase 

allows the sample to be carried onto the column, the strength of the interactions 

between the column and analytes will determine the elution pattern and retention times 

of the analytes. In a similar way to a GC being coupled with an MS so can a HPLC, however 

in order for the separated sample to pass from the HPLC to the MS it must pass through a 

specialised interface in order eliminate the liquid medium. The solution is flowed through 

an electrospray needle that has a high potential difference applied across it, forcing a 

spray of charged droplets away from the needle and towards a counter electrode. As the 

solution passes from the needle to the electrode the solution is evaporated leaving only 
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the charged analytes.58 The charged analytes are then bombarded with ions in order to 

create positive ions that can be accelerated through the magnetic field and onto the 

detector. 

 
Table 1.4: Different separation modes available for high performance liquid 
chromatography.57 

Separation 
Modes 

Elution  System Analytes 

Normal 
Phase (NP) 

The more polar the 
stationary phase the 
stronger the attraction to 
polar compounds. The 
least polar compound 
elutes first. 

Polar Stationary Phase; 
Silica 
 
Non-polar Mobile 
Phase; 
Hexane 

Non-polar; 
Hydrocarbons 
Aromatics 
Fluorinated  

Reverse 
Phase (RP) 

The less polar the 
stationary phase the 
stronger the attraction to 
non-polar compounds. 
The most polar elutes 
first. 

Non-polar Stationary 
Phase; 
C18 ODS 
 
Polar Mobile Phase; 
Water 

Polar; 
Alcohols 
Acids 

Size Exclusion Small molecules penetrate 
multiple pores as they 
pass through the column. 
The larger molecules elute 
first. 

Polymeric gel Compounds 
with varying 
molecular 
weights. 

Ion Exchange The greater the charge 
the stronger the 
attraction. The ions with 
the smallest charges will 
elute first. 

Cationic; 
Sulphonic/Carboxylic 
acid  
Anionic; 
Quaternary 
ammonium/ secondary 
amine 

Positive ions; 
Na+   Cu2+   NH4

+  
 
Negative ions; 
F-    Cl-   NO3

-   

HILIC The more polar the 
stationary phase the 
stronger the attraction to 
polar compounds. The 
least polar compound 
elutes first. 

Polar Stationary Phase; 
Silica 
 
Mobile  Phase; 
Acetonitrile and water 

Non-polar; 
Hydrocarbons 
Aromatics 
Fluorinated 

 

Though GC-MS is currently a more commonly used technique, with the changing face of 

the drugs market and the substances arising HPLC-MS has its advantages, as it is able to 

analyse a much wider range of compounds.58  
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1.6. Microfluidic Devices 

Due to the effective nature of enzyme-linked immunoassays and the range of different 

industries that are able to apply it as an analytical technique there has been a great deal 

of research over recent years into ways that it can be further improved.59 Microfluidics is 

a multidisciplinary application that generally involves taking well established techniques 

and scaling them down by applying them to microsized devices. Microfluidics has proven 

to be a powerful technological tool in improving the performance of immunoassays as 

they vastly reduce the volume of reagents required as everything is done on a 

microscale.60 The reduction in the size of the device means that even though the volume 

of reagents being used is a lot smaller, the surface to volume ratio is greatly increased, 

resulting in much shorter incubation times and a reduction in the overall reaction time. 

This reduction in size provides a great deal of advantages over several already established 

techniques as well as some disadvantages (Table 1.5). 

 

Table 1.5: Advantages and disadvantages of microfluidic devices. 61-63  

Advantages Disadvantages 

-Low fluid volumes consumption and 
fabrication costs. 
-Faster analysis and response times due to 
short diffusion distances, fast heating, 
high surface to volume ratios, small heat 
capacities. 
-Compactness of the systems due to 
integration of much functionality and 
small volumes. 
-Better process control (e.g. thermal 
control for exothermic chemical 
reactions). 
-Safer platform for chemical, radioactive 
or biological studies because of 
integration of functionality, smaller fluid 
volumes and stored energies. 

-Novel technology, not yet fully 
developed. 
-Physical and chemical effects i.e. capillary 
forces, surface roughness, chemical 
interactions, become more dominant on 
small-scale. 
-Detection principles may not always scale 
down in a positive way i.e. low signal-to-
noise ratios. 

 

An example device is shown in Figure 1.8 (described in more detail in section 2.2.1), 

serpentine channels are adopted for efficient mixing, wider channels are used for 

detection and controls incorporated to ensure reliability. By utilising the flow of the 

device and pumping solutions through at low velocities the antigens are able to diffuse 

out of the solution and into the active sites of the antibodies with a lot more ease 

http://en.wikipedia.org/wiki/Signal-to-noise_ratio
http://en.wikipedia.org/wiki/Signal-to-noise_ratio
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achieved due to the reduction in space in which they have to interact. This allows for easy 

automation as solutions can be flowed through continuously.  

 

Figure 1.8: Graphical representation of the glass microfluidic device to be utilised in this 
study provided by the University of Hull. 

 

Due to the advantages associated with microfluidic devices research into their analytical 

applications is becoming more widespread and in recent years investigations have begun 

to be more focused towards their possible uses as point-of-care tests. Biological tests, 

such as immunoassays, have successfully been applied to microfluidic devices and utilised 

as sensors for a range of applications. Sandwich immunoassays with fluorescent tags have 

been applied to PDMS microfluidic devices allowing for the detection of the C-reactive 

protein and other cardiac biomarkers in blood samples,63 they have also been applied to 

protein analysis allowing for quantitative single cell measurements to be carried out.64 

Both sandwich and competitive immunoassays have been applied to microfluidic devices 

in the detection of natural and man-made pollutants such as algal toxins like saxitoxin65 

and herbicides like 2,4-dichlorophenoxyacetic acid.66 Microfluidic devices have been used 

in drug based studies, the main focus of these studies have been around drug delivery 

systems and metabolic effects, however there has been several studies carried out into 

cancer drugs but they focus more on the effect of the drug. For example, Kim et al. 

created a way of generating uniform cancer cell spheroids for in situ cytotoxity studies of 

anticancer drugs.67 Currently there has been very little research carried out into the use 

of microfluidic devices as point-of-care test for the detection of illicit drugs. 

 

Overall microfluidic devices have shown high conversion rates in transferring from a 

standard ELISA format. Several examples of microfluidic devices have shown higher 

sensitivity when compared with conventional 96-well plate methods, such as in the 

immobilisation of prostate cancer biomarkers on polyethylene glycol (PEG) optimised 
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PDMS devices giving a sensitivity of 1.0 nM,68 increased activation of enzymes displayed 

in the detection of anti-interferon-gamma (anti-IFN-ƴ) on a tyrosine catalysed protein A 

surface68, 69 and enhanced limit of detection demonstrated using a glutaraldehyde 

activated 3-aminopropyltriethoxysilane (APTES) surface.70,71 Though investigations have 

recently begun into the application of microelectrodes for the detection of illegal drugs 

no work has previously been carried out into the use of an immunoassay based 

microfluidic techniques for the detection of NPS’s.72  

 

When transferring methods such as a sandwich immunoassay onto a microfluidic device, 

processes such as surface immobilisation need to be considered in order to ensure the 

selectivity and reproducibility are maintained.71 There are a range of different materials 

from which a microfluidic device can be made: the most common of which are silicon, 

glass, polydimethylsiloxane (PDMS) and plastic. Based on the need for low cost, simple 

and fast acting point-of-care screening devices, a lot of research has recently been 

conducted into the use of paper as a medium for microfluidic devices. The highly 

absorbent nature of paper allows for sensitive and rapid multi-step immunoassays to be 

applied giving reproducible and reliable results. Paper itself is macroscopic however the 

absorption of the analytes on the surface is done via microscopic pores allowing for much 

easier immobilisation protocols.71 The type of material used often depends on the 

required application. As each material contains different functional groups on the surface 

of the microfluidic channels, different immobilisation techniques have been tested in 

order to establish the most effective method in achieving an evenly coated surface.71  The 

sensitivity of an immunoassay is dependent on the total activity of antibodies bound to 

the surface, by creating an optimal immobilisation surface it is possible to increase the 

number of binding site leading to a higher capture affinity. The more antibodies present 

on the surface the greater the chance of a reaction taking place allowing a lower limit of 

detection.68, 69  

 

1.6.1 Physisorption 

The simplest approach to carrying out immunoassays on microfluidic devices is via 

physisorption. The proteins adsorb to the surface of the device via intramolecular forces 

such as electrostatic, van der Waals or hydrogen bonding.71 Depending on the type of 

device being used the functional groups present on the antibodies in question will affect 



28 
 

the type of bonding that occurs. Adsorbing antibodies to the surface of the device 

happens almost instantaneously and requires no external contributors in order for the 

process to occur, allowing for immunoassays that contain multiple steps to be carried out. 

However, although the process is relatively easy, the intramolecular forces between the 

surface of the device and the analyte are highly sensitive and are greatly dependent on 

their environmental conditions. Changes in temperature, pH or ionic strength can result 

in weakening of the bonds and loss of immobilisation of the analytes making 

reproducibility of results difficult.71 Also as the analytes are adsorbing directly to the 

surface of the device immobilisation occurs randomly which can result in blocking of 

some active sites, uneven distribution of the analytes and incorrect orientation limiting 

the detection of the antibody. 

 

In order to improve the reproducibility of the immunoassay results and increase the 

amount of analytes detectable, techniques have used pre-immobilisation in order to 

enhance the natural qualities of the devices surface. Already well-established techniques 

such as bioaffinity, covalent bonding and electrochemistry have been scaled down and 

applied to microfluidic devices across a range of applications.71 

 

1.6.2 Bioaffinity Immobilisation 

Bioaffinity interactions exploit specific types of binding that already exist in nature. These 

types of interactions tend to be stronger and more specific than physisorption and result 

in more accessible binding sites to allow for a more even distribution and better 

orientation of the immobilised analytes.71 Avidin-biotin, protein A/G antibody, affinity 

capture ligands and aptamers have all been employed with microfluidic devices in order 

to enhance the immobilisation properties of the surface and each exhibited a range of 

strengths and weaknesses. Steptavidin-biotin is probably the most widely used bioaffinity 

immobilisation technique due to it’s exceptional binding strength and highly specific 

nature, the addition of a streptavidin coating to the surface increases the number of 

binding sites allowing for a greater number of analyte-biotin conjugates to be 

immobilised on the surface resulting in better detectability due to lower nonspecific 

protein adsorption.71 However, in order to link the functional groups of the analytes to 

the biotin, a costly binding reagent is required which is not ideal when attempting to 

create widely available reproducible devices. Aptamers have begun to draw attention 
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over the years, and are often used in conjunction with steptavidin-biotin for surface 

optimisation. They are acid biomolecules, that are like antibodies as they are able to bind 

specific molecules however, they are much smaller than antibodies and are able to 

provide greater surface coverage producing a larger binding capacity. Due to the highly 

specific nature of antibody binding it is still the more favoured capture reagent.71  The use 

of streptavidin-biotin has been applied to the surface of magnetic beads to conjugate 

DNA specific aptamers in order to detect the C reactive protein in biosamples in a 

pneumatically driven microfluidic device.63 The microfluidic system provided an 

enhancement of detection limit by one order of magnitude from 0.125 to 0.0125 mg/mL 

when compared to a standard ELISA as well as a 20% reduction in overall immunoassay 

time.63 Protein A/G antibody is also a popular technique because of its affinity to bind to 

the Fc (constant) region leaving the Fab (antigen binding) region accessible for binding 

(Figure 1.5). By creating an easily accessible surface it ensures that when the analytes 

bind they do so with the correct orientation making them easily detectable, also as 

protein A has multiple binding sites it has been shown to improve protein binding by 3 

fold.71 Protein A has been used in conjunction with tyrosinase in order to improve the 

immobilisation of anti-IFN-ƴ on a poly (methyl methacrylate) (PMMA) surface.69 The 

optimisation of the PMMA surface saw a seven fold increase in antibody immobilisation, 

this indicated that the binding capacity of the surface had been enhanced due to the 

increase in active sites available on the surface. This increase in binding sites also lead to a 

decrease in the overall enzymatic reaction time as there were more antibodies available 

for the final immunoreaction. The optimisation of the surface using protein A also lead to 

a decrease in non-specific binding, wider dynamic range of 20 to 1,200 pg/mL and lower 

detection limit of 20 pg/mL when compared to a standard 96 well plate.69 Though 

bioaffinity immobilisation creates a stronger bond between the surface and the antibody, 

they are often used in conjunction with other techniques such as covalent bonding in 

order to further enhance the strength of the bond, this often results in a far lengthier 

immobilisation process than is desired, leading to covalent bonding being a better initial 

choice. 

 

1.6.3 Surface Covalent Bonds  

In order for the characteristics of an immunoassay to be maintained, highly stable 

immobilisation bonds are required allowing for reproducible results. The surface of the 
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microfluidic device is activated using a reactive reagent allowing irreversible bonds to 

form between the reagent and the analyte.71 Cross-linker molecules such as 

glutaraldehyde, N-hydroxysuccinimide, sulfhydryl-epoxide or isothiocyanate are 

covalently bonded to the surface of the microfluidic device via one end and covalently 

bonded to the analyte via the other.71 Due to the nature of covalent bonding it is often 

possible for the cross-linkers to form bonds to the active sites reducing the proteins 

activity. In order to reduce this effect, spacer molecules such as poly(ethyleneimine) (PEI), 

3-(aminopropyl)-triethoxysilane (APTES) and 3-(aminoproplyl)-trimethylsilane (APTMS) 

are used to minimise the steric hindrance and prevent conformational changes.71 PEI has 

been used to not only provide an available amine group for protein binding but to serve 

as a spacer ensuring the protein is kept away from the hydrophobic surface thus 

preserving its activity and preventing denaturing.68 Studies have shown that PEI has also 

been used to control the orientation of the antibodies binding, as it contains a positive 

NH2 group it provides a more favourable binding site for IgG antibodies thus improving 

binding efficiency.68 Similarly, APTES has been activated using glutaraldehyde on a 

silanised poly(dimethylsiloxane) (PDMS) surfaces in order to convert the surface amino 

groups into aldehyde group thus allowing for the covalent bonding of poly(vinyl alcohol) 

(PVA), a successful sandwich immunoassay was conducted on the optimised surface using 

anti-rabbit IgG.70 The formation of the hydrophilic PVA layer reduced non-specific protein 

binding enhancing the amount of capture antibody able to bind to the surface leading to 

an increase in detection sensitivity and a reduced false positive response. The 

modification of the surface also led to a lower limit of detection of 15 ng/mL and wider 

dynamic range of 1.12 pg/mL to 11.2 pg/mL.70 Though this type of bonding allows for a 

more stable and active immobilisation surface, in order for the covalent bond to form the 

incubation times required are often longer than that of other optimisation techniques.  

 

1.6.4. Smart Immobilisation 

With research into microfluidic devices becoming more advanced over recent years 

various smart immobilisation techniques have been applied in order to create stand-alone 

platforms.71 Techniques such as light-activated immobilisation, thermally-activated 

immobilisation and electrochemically activated immobilisation have become more 

prominent. Light-activated immobilisation and thermally-activated immobilisation have 

advantages over electrochemically-activated immobilisation as they can be performed 
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after the device has been assembled, during the assay stage.71 As most microfluidic 

devices are transparent, UV light or infrared radiation can penetrate the surface and 

initiate the immobilisation of the proteins on the surface.71 Light-activation has been 

applied to acrylamide-based photoactive hydrophilic gel (LAVAgel) functionalised with 

benzophenone methacrylamide monomer in order to convert the molecular sieve into an 

immobilisation surface allowing for the formation of stable covalent linkages.71 This 

method of immobilisation reduced non-specific protein adsorption and limited the need 

for multiple often time-consuming blocking and washing steps. This technique led to an 

increase in reactive sites and greater capture efficiency of two/three orders of magnitude 

than standard immunoassay formats, as well as a substantial reduction in precious 

biospecimens and costly antibodies.73 Though light-activated immobilisation eliminates 

the need for long incubation times when compared to covalent bonding the strength of 

the bond achieved is weaker. Thermal-activation allows for quick and easy transitions 

between hydrophilic and hydrophobic surfaces making the immobilisation and release of 

proteins relatively rapid.71 While, electrochemically-activated immobilisation allows for 

specific immobilisation of proteins on the surface, one major disadvantage is that it 

requires electrodes to be integrated onto the surface of the devices during assembly, 

resulting in complex device fabrication.71 The use of electrodes in microfluidic devices 

have also been investigated. Platinum microelectrodes fabricated by photolithography 

based techniques, have been integrated onto the inner surface of a glass top layer.74The 

device consisted of three layers, the top layer containing the microelectrode, a silicon 

middle layer which forms the surface of the microfluidic channels and a poly(ethyl 

glycol)dimethacrylate coated bottom glass layer that would remain unaffected by the 

electrochemical activation and allow for site-specific immobilisation of the antibodies. 74 

 

Though research into smart immobilisation as a way of optimising the surfaces of 

microfluidic devices have yielded positive results they often require expensive specialised 

equipment, such as clean rooms, scanners for photolithography75 and CD injection 

moulding, or complex processes, like photografting,76, 77 to be applied before the device is 

ready to use.  

 

1.7. Aims 
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Due to the prevalence and rise in ‘legal highs’ and new psychoactive substances over 

recent years this project aims to apply a microfluidic detection system in order to create 

an effective portable device capable of producing a rapid positive or negative response 

for the presence of mephedrone and/or its metabolites in both aqueous and biological 

media. The main aim of this study is to convert a basic enzyme linked immunoassay on to 

a microfluidic device in order to create an optimal and effective detection system. The 

study was broken down into sections, first focusing on deciding the most appropriate 

medium for the device itself as well as determining the most optimal surface conditions. 

Secondly looking specifically at the optimal concentrations for the anti-methcathinone 

antibody and the cathinone HRP as well as the method for the immunoassay before 

finally moving onto testing the developed method and device for the presence of 

mephedrone and/or its metabolites in both aqueous, urine and saliva samples. 
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Chapter 2- Experimental Section 

 

2.1 Presumptive Colour Testing 

In order to investigate the applicability of already established techniques to the detection 

of NPS’s and to give a visual indication as to the similarity between the compounds 

several widely accepted reagents were tested (Section 3.1). 

 
2.1.1 Marquis Reagent 

A 10 mL solution of concentrated sulphuric acid (Fisher Scientific, UK) was dissolved in 1% 

formaldehyde solution (Sigma-Aldrich, UK).78 For the test 1-2 drops of the test sample (10 

mg/mL) was added to 2 drops of the test reagent on a white spotting tile and the reaction 

observed after 5 minutes.  

 

2.1.2 Mandelin Reagent 

A 1% ammonium metavanadate (Sigma-Aldrich, UK) solution was dissolved in 10 mL of 

concentrated sulphuric acid.78 For the test 1-2 drops of the sample (10 mg/mL) was added 

to 2 drops of the test reagent on a white spotting tile and the reaction observed after 5 

minutes. 

 

2.1.3 Simon’s Reagent 

Reagent 1: 2% aqueous sodium carbonate (Sigma-Aldrich, UK) solution. 

Reagent 2: 1% aqueous sodium nitroprusside (Sigma-Aldrich, UK) solution. 

Reagent 3: 50:50 ethanol:acetaldehyde (Sigma-Aldrich, UK) solution.78 

For the test 2 drops of reagents 1-3 were mixed sequentially before 1-2 drops of the test 

sample (10 mg/mL) was added to a white spotting tile and the reaction observed after 5 

minutes. 

 

2.1.4 Robadope Reagent 

Reagent 1: 2% aqueous sodium carbonate solution. 

Reagent 2: 1% aqueous sodium nitroprusside solution. 

Reagent 3: 50:50 ethanol:acetone (VWR Chemicals, UK) solution.78 

2 drops of reagents 1-3 were mixed sequentially before 1-2 drops of the test sample 

(10mg/mL) were added to a white spotting tile and the reaction observed after 5 minutes. 
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2.1.5 Scott Reagent 

A 0.1002g sample of cobalt (II) thiocyanate (Sigma-Aldrich, UK) was dissolved in a 10 mL 

solution of glycerol (Fisher Scientific) in distilled water (1:1).78 1-2 drops of the test 

sample (10 mg/mL) was added to 2 drops of the test reagent on a white spotting tile and 

the reaction observed after 5 minutes. 

 

2.1.6 Zimmerman Reagent 

Reagent 1: 1% 1,3-dinitrobenzene (Alfa Aesar, UK) was dissolved in methanol (Fisher 

Scientific). 

Reagent 2:  15% potassium hydroxide (Fisher Scientific, UK) in distilled water.78 

For the test 2 drops of reagents 1 and 2 were mixed sequentially before 1-2 drops of the 

test sample (10 mg/mL) were added to a white spotting tile and the reaction observed 

after 5 minutes. 

 

Table 2.1:Expected results for the Marquis, Mandelin, Simon’s, Robadope, Scott and 
Zimmerman reagents with several common drug of abuse.79 

Reagent Opiates Amphetamine MDMA Cannabis Cathinones 

Marquis Purple Red/Brown Dark Red No Reaction No Reaction 

Mandelin Black Green Purple No Reaction No Reaction 

Simon’s No Reaction No Reaction Blue No Reaction Dark Blue 

Robadope No Reaction Brown No Reaction No Reaction No Reaction 

Scott Blue-Pink-
Blue 

No Reaction No Reaction No Reaction No Reaction 

Zimmerman No Reaction No Reaction No Reaction No Reaction Purple 

 

 

2.2 Microfluidic Device Preparation 

Both glass and paper microfluidic devices were initially investigated in order to establish 

which method would provide the best results and be most applicable for a point-of care-

test. 

 
2.2.1 Glass Microfluidic Devices 

The bottom plate was etched using photolithography and wet etching in order to create 

both the serpentine and detection channels, holes were drilled in the top plate to provide 

access before the two sections were thermally bonded together (Figure 2.2.1).80, 81 The 

completed devices (Figure 1.8) were provided by the University of Hull.  
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Figure 2.2.1: Grey Scale image of the top (Left Image) and bottom plate (Right Image) of 
the glass microfluidic device designed using SolidWorks 2014. 
 

2.2.2 Paper-based Microfluidic Devices 

Traditional Wax Printing 

The initial design for the paper-based microfluidic device was based on a 96 well ELISA 

plate and a negative image was created using SolidWorks 2014 (Figure 2.2.2). Initial 

testing was carried out on plates printed using a traditional wax printing method. The 

SolidWorks design was applied to a 40 threads per cm polyester fabric screen that had 

been stretched over a 297 mm x 420 mm aluminium frame. A thin coat of light sensitive 

emulsion was applied in a dark room and left to dry for 6 hours. Once the emulsion has 

completely dried the negative image is placed on the back of the screen and placed within 

an exposure unit for 60 seconds. The dark areas of the image prevent light from passing 

through whereas the light areas allow the light to reach the screen causing the emulsion 

to harden. The screen was then washed thoroughly with water in order to remove the 

emulsion that was not exposed to light. Once the screen had dried, several different 

methods were applied to ensure the greatest degree of surface covering as well as the 

largest depth of wax absorption was achieved. 82 

 

 
 

Figure 2.2.2.: Negative image of a 96 well ELISA plate designed using SolidWorks 2014. 
 

100 mm 

20 mm 
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From the various methods attempted the most successful design was achieved when a 

piece of filter paper was placed directly below the screen and a line of liquid wax was 

poured just above the design and squeegeed across the pattern. The paper was removed 

from the screen and placed on a hot plate at approximately 200 ºC for several minutes to 

allow the wax to melt into the paper. The filter paper was then placed in an oven at 130 

˚C for 15 minutes.82 

 

Wax Printer 

Later tests were carried using the same SolidWorks design printed via a Xerox Phaser 

8500 solid ink printer. Solid wax is loaded into the printer and melted within the device in 

order to create the image. Once the designs were printed onto the filter paper they were 

melted at 130ºC for 180 seconds.  

 

2.3 Surface Preparation 

 
2.3.1 Glass Microfluidic Device 

In order to prepare the surface of the glass chip for covalent bonding of the 

glutaraldehyde (Sigma-Aldrich, UK) solution, the surface must first undergo silanisation. 

This process coats the hydroxyl groups on the surface with a silicone substance in order to 

make it chemically inert and increasing its functionality enabling the glutaraldehyde to 

bond. The microfluidic device was cleaned by sequentially washing with 1 mL each of 1M 

sodium hydroxide (Sigma-Aldrich, UK), deionised water and ethanol (Fisher Scientific, UK) 

at 20 µL/min before being dried over night at 110 ˚C. The channels were then immersed 

in a solution 1% APTES (100 µL 3-(aminopropyl)-triethoxysilane (Sigma-Aldrich, UK) in 10 

mL of anhydrous acetone (Fisher Scientific, UK)) and pumped through at 5 µL/min for 1 

hour. The microfluidic device was then washed sequentially with 1 mL each of deionised 

water and ethanol at 20 µL/min before being placed in an oven at 90 ºC overnight. 

Following the silanisation process, the microfluidic channels were immersed in 1 mL of 

the 2.5% glutaraldehyde solution (100 µL of 50% glutaraldehyde solution in 1900 µL of 

analytical grade water) at 5 µL/min for 2 hours. The channels were then rinsed with 

deionised water and left in an over overnight at 110 ˚C to ensure the device was 

completely dry. 
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2.3.2 Paper-based Microfluidic Device 

A 5 µL solution of 0.25 mg/mL chitosan (2.5 mg of chitosan (Sigma-Aldrich, UK) dissolved 

in 10 mL analytical grade water) was pipetted into each paper well and allowed to dry at 

room temperature before 5 µL of 0.01 mol/L solution of 2.5% glutaraldehyde (500 µL of 

50% glutaraldehyde diluted with 9.5 mL of analytical grade water) was left for 2 hours in 

order to activate the wells. The paper based microfluidic device was placed on a piece of 

blotting paper in order to absorb the waste water from the bottom of the wells. Each 

individual well was then washed twice with 10 µL of analytical grade water.82 

 

2.4 Immunoassay 

 
2.4.1 Glass Microfluidic Device 

Prior to any test being run, the microfluidic device was flushed sequentially with 1 mL 

each of ethanol (Sigma-Aldrich, UK) and analytical grade water before being left in an 

oven overnight at 90 ˚C to ensure that all of the antibodies from the previous 

immunoassay were removed from the surface and the device was completely dry. 

 

Method Development  

Prior to the application of ‘legal highs’ and new psychoactive substances preliminary 

studies were carried out using a well-established enzyme-linked immunoassay that was 

adapted and applied to a glass microfluidic device.  

 

2.4.1.Method A 

The glass chip was coated with 0.5% rat serum (Sigma-Aldrich, UK) solution (50 µL of anti-

rat antibodies (Abcam,UK) in 10 mL of 0.05 M carbonate (Timstar Laboratories, 

UK)/bicarbonate (BDH Laboratory Supplies, UK) buffer solution) at 5 µL/min for 

approximately 6 hours in order to allow enough time for the primary antibodies to adsorb 

to the surface of the device, the microfluidic device was then stored for 3 days in a fridge 

at 4 ºC. The microfluidic device was allowed to reach room temperature before being 

washed with PBS (Phosphate Buffered Saline) Tween (0.05%, BDH Laboratory Supplies, 

UK) at 5 µL/min for 10 minutes to remove any unbound antibodies from the surface of 

the device, the vacant sites on the surface were blocked with 1% semi-skimmed milk 

powder (Marvel, Supermarket, UK) solution at 1 µL/min for 10 minutes. In order to clean 

the surface and ensure only properly bonded antibodies remained on the device the 
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microfluidic chip was washed with PBS Tween (0.05%) at 5 µL/min for 10 minutes. The 

channels were then flushed with a 1:2000 dilution of anti-rat immunoglobulin horseradish 

peroxidase conjugate (Sigma-Aldrich, UK) at 1 µL/min for 40 minutes before being 

washed with PBS Tween (0.05%) at 5 µL/min for 10 minutes.  

 

2.4.1.Method B 

As for method A except the channels were flushed with a 1:1000 dilution of anti-rat 

immunoglobulin horseradish peroxidase conjugate was flushed through at 1 µL/min for 

40 minutes. The microfluidic device was washed with PBS Tween (0.05%) at 5 µL/min for 

10 minutes to remove any non-bound antibodies and excess horseradish peroxidase from 

the channels.  

 

2.4.1.Method C 

As for method A except the channels were flushed with a 1:1000 dilution of anti-rat 

immunoglobulin horseradish peroxidase conjugate at 20 µL/min for 20 minutes and left 

to incubate for 10 minutes to ensure the antibodies had time to properly adhere to the 

surface. A solution of PBS Tween (0.05%) was then run through the device at 5 µL/min for 

10 minutes to remove any unbound antibodies from the channels.  

 

2.4.1.Method D 

A 1 µL solution of both the neat and 1:1000 dilutions of anti-rat immunoglobulin 

horseradish peroxidase conjugate was smeared onto two separate microscope slides and 

allowed to dry before the addition of the luminol (Fisher Scientific, UK) -hydrogen 

peroxide (Sigma-Aldrich, UK) solution (60 µM luminol, 2 mM H2O2, 0.1 M tris buffer 

(Fisher Scientific, UK)) 

. 

2.4.1.Method E 

A 1 µL solution of both the neat and 1:1000 dilutions of anti-rat immunoglobulin 

horseradish peroxidase conjugate was smeared onto two separate microscope slides and 

allowed to dry before the addition of the luminol-hydrogen peroxide (Figure 10-left 

image) and enhanced luminol-hydrogen peroxide solution (1.25 mM luminol, 0.41 mM p-

iodophenol (Sigma-Aldrich, UK), 2.7 mM H2O2, 0.1 M tris buffer)83 
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2.4.1.Method F 

A neat solution of anti-rat immunoglobulin horseradish peroxidase was pumped through 

one device and 1:1000 dilution of anti-rat immunoglobulin horseradish peroxidase was 

pumped through another, both were run at 1 µL/min for 30 minutes. The flow rate was 

then increased to 5 µL/min for 15 minutes in order to ensure that the antibodies had 

sufficient time to adhere to the surface. The surface of the microfluidic devices were then 

washed with PBS Tween (0.05%) at 1 µL/min for 5 minutes before being increased to 5 

µL/min for 10 minutes. 0.5 µL of enhanced luminol solution was flushed manually through 

the microfluidic device. 

 

2.4.2 Paper-based Microfluidic Device 

Method Development  

2.4.2.Method A 

A 4 µL 0.5% rat serum solution (50 µL in 10 mL of 0.05M carbonate/bicarbonate buffer 

solution) was added to each well and allowed to incubate for 30 minutes at room 

temperature and then washed twice with 10 µL of analytical grade water in order to 

remove any excess antibodies from the wells. 10 µL of blocking buffer solution (1% semi-

skimmed milk powder solution) was then pipetted into each well and incubated at room 

temperature for 15 minutes. They were then washed twice with 10 µL of PBS Tween 

(0.05%).84 A 4 µL solution of 1:1000 dilution of anti-rat immunoglobulin conjugate 

horseradish peroxidase was added to the wells and allowed to incubate for 210 seconds. 

They were then washed twice with 10 µL of analytical grade water. 4 µL of 3,3’,5,5’-

tetramethylbenzidine (TMB, Thermo Scientific, UK) was added to each well and left to 

dry.84  

 

2.4.2.Method B 

A 4 µL solution of 1:1000 dilution of anti-rat immunoglobulin conjugate horseradish 

peroxidase was added directly to the wells and allowed to incubate for 210 seconds 

before being washed twice with 10 µL of analytical grade water. 4 µL of 3,3’,5,5’-

tetramethylbenzidine (TMB) was added to each well and left to dry.84  
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2.4.2.Method C 

As for method A except a 4 µL 0.5% rat serum solution (50 µL in 10 mL of 0.05M 

carbonate/bicarbonate buffer solution) was added to each well and allowed to incubate 

for 30 minutes at room temperature and then washed twice with 10 µL of analytical 

grade water in order to remove any excess antibodies from the wells. 10 µL of blocking 

buffer solution (1% semi-skimmed milk powder solution) was then pipetted into each well 

and incubated at room temperature for 15 minutes. They were then washed twice with 

10 µL of PBS Tween (0.05%).84 A serial dilution of 1:2000 dilution anti-rat immunoglobulin 

conjugate horseradish peroxidase were prepared. A 4 µL solution of each dilution was 

added in triplicate in chronological order down the wells and allowed to incubate for 210 

seconds. They were then washed twice with 10 µL of analytical grade water. A 4 µL 

solution of 3,3’,5,5’-tetramethylbenzidine (TMB) was added to each well and left to dry.84 

 

2.4.2.Method D 

As for method A except a 3 µL solution covering a dilution range of 1:2000-1:1048576000 

of the anti-methcathinone antibody was added to each well and allowed to incubate for 

30 minutes at room temperature and then washed twice with 10 µL of analytical grade 

water in order to remove any excess antibodies from the wells. 10 µL of blocking buffer 

solution (1% semi-skimmed milk powder solution) was then pipetted into each well and 

incubated at room temperature for 15 minutes. They were then washed twice with 10 µL 

of PBS Tween (0.05%).84 A series of dilutions, ranging from 1:10,000-1:100,000,  of 

cathinone-HRP were prepared. A 3 µL solution of each was added in triplicate down the 

wells and allowed to incubate for 210 seconds. They were then washed twice with 10 µL 

of analytical grade water. 4 µL of 3,3’,5,5’-tetramethylbenzidine (TMB) was added to each 

well and left to dry.84 

 

2.4.2.Method E 

As for method A except a 3 µL solution of the 1:16384000 dilution of the anti-

methcathinone antibody was added to each well and allowed to incubate for 30 minutes 

at room temperature and then washed twice with 10 µL of analytical grade water in order 

to remove any excess antibodies from the wells. 10 µL of blocking buffer solution (1% 

semi-skimmed milk powder solution) was then pipetted into each well and incubated at 

room temperature for 15 minutes. They were then washed twice with 10 µL of PBS 
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Tween (0.05%).84 A series of dilutions, ranging from 70ng/mL-0.1367ng/mL, for each 

specific drug were prepared with the addition of an equivalent amount of cathinone-HRP 

(100% v/v). A 3 µL solution of each was added in triplicate down the wells and allowed to 

incubate for 210 seconds. They were then washed twice with 10 µL of analytical grade 

water. 4 µL of 3,3’,5,5’-tetramethylbenzidine (TMB) was added to each well and left to 

dry.84 

 

N.B. Each serial dilution was run in triplicate across three separate plates. 

 

2.4.3. Stability Study 

Week 0;  

All four plates were treated with 4 µL of 0.5% rat serum solution (50 µL in 10 mL of 0.05M 

carbonate/bicarbonate buffer solution) which was added to each well and allowed to 

incubate for 30 minutes at room temperature. They were then washed twice with 20 µL 

of analytical grade water in order to remove any excess antibodies from the wells. 20 µL 

of blocking buffer solution (1% semi-skimmed milk powder solution) was then pipetted 

into each well and incubated at room temperature for 15 minutes before being washed 

twice with 20 µL of PBS Tween (0.05%).84 Strips 2, 3 and 4 from all four plates were stored 

in the fridge at 4 ˚C.  

 

A serial dilution of 1:2000 dilution anti-rat immunoglobulin conjugate horseradish 

peroxidase were prepared and applied to strip 1 from each of the plates; 4 µL of each 

solution was added in triplicate in chronological order down the wells and allowed to 

incubate for 210 seconds. They were then washed twice with 20 µL of analytical grade 

water. 4 µL of 3,3’,5,5’-tetramethylbenzidine (TMB) was added to each well and left to 

dry.84 

 

2.5 Detection 

 
2.5.1. Colourimetric 

A solution of 3,3’,5,5’-tetramethylbenzidine (TMB) was added at 1 µL/min for 10 minutes 

to methods A, B and C for both glass and paper devices.  
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2.5.2 Chemiluminescense  

Initial testing was carried out using an unenhanced luminol-hydrogen peroxide solution 

(60 µM luminol, 2 mM H2O2, 0.1 M tris buffer). This was later adapted and an enhanced 

luminol-hydrogen peroxide solution (1.25 mM luminol, 0.41 mM p-iodophenol, 2.7 mM 

H2O2, 0.1 M tris buffer) was used. 

 

N.B. Due to the light sensitivity and instability of the luminol-hydrogen peroxide solution, 

both solutions were made fresh on the day and stored in the fridge at 4˚C when not in use. 

 

2.6 Analysis 

 
2.6.1 Microscopy 

A Zeiss Primovert Microscope with monitor and integrated HD IP camera for transmitted-

light brightfield and universal phase contrast with objectives 4x Ph0, 10x Ph1, LD 20x Ph1, 

LD 40X Ph2 was used to visualise and record the immunoassay immobilised on the glass 

microfluidic device. 

 

2.6.2 ImageJ 

Photographs of the paper microfluidic devices were taken using an Iphone 4S and 

uploaded on to a computer. Using imageJ, a circle was drawn around the smallest, most 

intense reaction well on a colour JPEG image. The area was analysed and a measurement 

of the average light intensity across the selected area was taken. ImageJ measures the 

degree of white light present within an image, the lower the values the more intense the 

reaction colour indicating a greater presence of HRP and therefore less competitor. The 

data was then transferred into Microsoft Excel and Minitab allowing calibration curves to 

be created and the significance of the data to be determined. 

 

2.6.3 GeneSnap 

A series of 10 images were taken of the chemiluminescense reactions at intervals of 5 

seconds, 10 seconds, 20 seconds, 30 seconds, 45 seconds, 1 minute, 5 minutes, 10 

minutes, using a Syngene G.BOX F3 and analysed using Genesnap software. The 

information from the previous image was added to the new image taken and the image 

was then loaded into imageJ in order to measure the intensity of the chemiluminescent 

reaction. 
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2.7 New Psychoactive Substances 

In order to set up a competitive immunoassay for the detection of cathinones a labelled 

species was required (Figure 2.7.1). Due to the functional groups of the 4-

methylmethcathinone it is not possible to attach a HRP label as a primary amine is 

required in order for the two to conjugate. However, due to the structural similarity 

between the cathinones and the large degree of cross-reactivity associated with the anti-

methcathinone antibody it was possible to label the cathinone with HRP. 

 

 

Figure 2.7.1; Schematic representation of the competitive immunoassay immobilised on 
the surface of the paper device using cathinone labelled HRP 
 

Cathinone hydrochloride was purchased from (Fluorochem Ltd, UK), while the 4-

methylmethcathinone (mephedrone) and methcathinone were synthesised at the 

University of Strathclyde, as their hydrochloride salts, using the method reported by 

Santali et al. prior to the legislation change.39  

 

2.7.1 Freebasing the cathinone hydrochloride 

In order to conjugate the HRP, the cathinone first needed to be returned to its freebase 

form, exposing the amine and inducing a nucleophilic attack in the presence of the HRP. A 

0.0102 g sample of cathinone hydrochloride was dissolved in 500 µL of analytical grade 

water before being added to a 10 mg/mL solution of sodium hydrogen carbonate (0.0100 

g in 1000 µL, Fisher Scientific, UK). Once mixed the solution began to effervesce. After the 

reaction has ceased the pH of the mixture was taken, a litmous paper test indicated a pH 

of 8 and confirmed that the cathinone was in its freebase form. The aqueous layer was 

washed with diethyl ether (6 x 500 µL, Fisher Scientific) and the organic fractions were 

combined before the diethyl ether was blown off with nitrogen to leave a pale residue in 

the bottom. The residue was reconstituted in 100 µL of dimethyl sulphoxide (DMSO, 

Fisher Scientific, UK) before 10 µL was removed and diluted using 990 µL of PBS (100x 

dilution, Oxoid LTD. UK) to give a 1% DMSO/PBS solution. 

 

 

Anti-methcathinone Antibody 

Mephedrone 

Cathinone labelled HRP 

Labelled and unlabelled species compete for the limited binding sites 
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2.7.2 Labelling cathinone with HRP 

A 10 µL solution of modifier reagent (Abcam, UK) was added to 100 µL of the cathinone 

freebase solution and mixed. The cathinone freebase-modifier mixture was pipetted 

directly onto the LYNX lyophilized mix (Abcam, UK) and gently pipetted up and down 

twice to re-suspend. The cap was replaced onto the vial and left to incubate over night at 

room temperature. After incubation 10 µL of quencher reagent (Abcam, UK) was added 

to a vial and left to stand for 30 minutes. 
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Chapter 3- Results and Discussion  
 
Qualitative Testing 

Several qualitative tests were carried out in order to determine the precise nature of the 

compounds being used. 

 

3.1 Presumptive Colour Testing 

Several common colour tests were applied to mephedrone, methcathinone and 

cathinone in order to establish whether presumptive tests already in use for long standing 

illegal substances could also be applied to the detection of New (or novel) Psychoactive 

Substances (Figure 3.1.1). Carrying out the same colour tests across the three cathinone 

derivatives simultaneously allowed for direct comparison between them and gave a visual 

indication as to the structural similarity between the compounds.  

 

 
Figure 3.1.1: Spotting tile visualised under white light displaying the presumptive colour 
test results for pure samples of the compounds.  
 
 
 
 
 
 
 
 
 
 



46 
 

Table 3.1.1: Table representing the observations made during the presumptive colour tests 
for the pure samples of the compounds (+ = positive result; - = negative result). 
 

The colour changes observed for the neat compounds (Table 3.1.1) were consistent with 

the results expected. Strong positive results were observed using the Zimmerman reagent 

for all compounds as it is commonly used to test for cathinones. A strong positive result 

was seen between the mephedrone and the Simon’s reagent, a weak positive result was 

seen between methcathinone and the Simon’s reagent and a negative result was seen 

with the cathinone. This is as expected as the Simon’s reagent is usually used to test for 

secondary amines, which is present on both the mephedrone and methcathinone 

structures but not on the cathinone. Negative results were obtain using the Marquis, 

Mandelin, Ropadope and Scott reagents as they are used to detect ring substituted 

amphetamines, tertiary amines, opiates and primary amines respectively, none of which 

are present within either the  mephedrone, methcathinone or cathinone compounds. 

 

Street samples often contain more than one novel psychoactive substance along with 

several other compounds, running the same presumptive tests on varying mixtures, 

25:75, 50:50, 75:25, of the compounds as well as the pure samples gave an indication as 

to the likeliness of cross-reactivity within the group (Table 3.1.2, 3.1.3, 3.1.4). 

  

Table 3.1.2: Table representing the observations made during the presumptive colour tests 
for the different ratios of mephedrone and cathinone. 

 Marquis Mandelin Simon’s Robadope Scott Zimmerman 

Control Colourless Yellow Orange Orange Pink Clear 

Mephedrone 
 

- 
(Colourless) 

- 
(Yellow) 

+ 
(Dark 
Blue) 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 

Methcathinone 
 

- 
(Colourless) 

- 
(Yellow) 

+ 
(Dark 

Orange) 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 

Cathinone 
 

- 
(Colourless) 

- 
(Yellow) 

- 
(Orange) 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 

 Marquis Mandelin Simon’s Robadope Scott Zimmerman 

Control Colourless Yellow Orange Orange Pink Clear 

25:75 
 

- 
(Colourless) 

- 
(Yellow) 

+ 
(Dark Orange) 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 

50:50 
 

- 
(Colourless) 

- 
(Yellow) 

+ 
(Grey/Blue) 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 

75:25 
 

- 
(Colourless) 

- 
(Yellow) 

+ 
(Grey/Blue) 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 
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The biggest effect of the mephedrone and cathinone combination (Table 3.1.2) was 

observed for the Simon’s reagent. When carried out with the pure samples the 

mephedrone produced a positive reaction whereas the cathinone produced a negative 

reaction. This result became more obvious when altering the ratios, as the colour change 

gradually became more predominant with larger amounts of mephedrone. The 

Zimmerman observations for the pure samples were consistent across all three 

compounds and though the mixtures produced a positive result it was not altered by the 

varying ratios. 

 

Table 3.1.3: Table representing the observations made during the presumptive colour tests 
for the different ratios of methcathinone and cathinone. 
 

The results observed for the methcathinone and cathinone combination (Table 3.1.3) for 

the Simon reagent were consistent with those seen with the neat samples, the weak 

positive result observed for the methcathinone became weaker the more cathinone that 

was present, due to the negative result of the cathinone compound. Due to the structural 

similarity between methcathinone and cathinone, and the weakness of the positive 

methcathinone result, the difference in the colour variations is somewhat harder to spot. 

The Zimmerman observations for the pure samples were consistent across all three 

compounds and though the mixtures produced a positive result it was not altered by the 

varying ratios. 

 

Table 3.1.4: Table representing the observations made during the presumptive colour tests 
for the different ratios of mephedrone and methcathinone. 

 Marquis Mandelin Simon’s Robadope Scott Zimmerman 

Control Colourless Yellow Orange Orange Pink Clear 

25:75 - 
(Colourless) 

- 
(Yellow) 

- 
(Orange) 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 

50:50 
 

- 
(Colourless) 

- 
(Yellow) 

- 
(Orange 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 

75:25 
 

- 
(Colourless) 

- 
(Yellow) 

+ 
(Dark Orange) 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 

 Marquis Mandelin Simon’s Robadope Scott Zimmerman 

Control Colourless Yellow Orange Orange Pink Clear 

25:75 - 
(Colourless) 

- 
(Yellow) 

+  
(Grey Blue) 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 

50:50 
 

- 
(Colourless) 

- 
(Yellow) 

+ 
(Grey Blue) 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 

75:25 
 

- 
(Colourless) 

- 
(Yellow) 

+ 
(Dark Blue) 

- 
(Orange) 

- 
(Pink) 

+ 
(Purple) 
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For the mephedrone and methcathinone combination (Table 3.1.4), the observations 

made for the Simon’s reagent were consistent with those previously observed, however, 

as both pure mephedrone and methcathinone gave a positive result with the Simon’s 

reagent the reaction is more pronounced.  A positive result, for the Simon’s reagent, was 

seen across all three ratios, however the greater the amount of mephedrone present the 

stronger the colour change. The Zimmerman observations for the pure samples were 

consistent across all three compounds and though the mixtures produced a positive result 

it was not altered by the varying ratios. 

 

In comparing the colour tests from the three different combinations, the Simon’s reagent 

gave the biggest variations in results. The strongest positive result was always achieved 

with the highest concentrations of mephedrone is present and the weakest positive result 

is achieved with the highest concentration of cathinone is present. This demonstrates 

that the secondary amine group is more reactive towards the Simon’s reagent than the 

primary amine group, this could be due to a greater number of electron donating groups 

surrounding the nitrogen. The two methyl groups present are able to push electron 

density onto the nitrogen making it more electron rich, resulting in a more nucleophilic 

amine with a greater ability to attack the reagent.78  

 

All of the colour tests applied to the pure samples were also applied to the combinations 

in order to establish whether cross reactivity between the compounds would affect the 

negative results as well as the positive results. However this was not the case and the 

negative results remained so across all ratio’s and combinations. 

 

Quantitative Testing 

3.2.Glass Microfluidic Device 

A standard enzyme-linked immunoassay (Figure 3.2.1) was used in the early stages of 

method development and was the basis of the simplified protocol applied to the glass 

microfluidic device. Variations of the standard assay were tried (see Section 2.4.1 Method 

A) both pre and post optimisation, before an immunoassay was successfully established 

on the surface. 
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Figure 3.2.1: Standard enzyme-linked immunoassay using anti-rat immunoglobulin 
conjugate horseradish peroxidase carried out in a standard 96 well ELISA plate. Label 
concentrations/replicates in figure. 
 

A simplified version of the immunoassay method (see Section 2.4.1.Method B) was 

applied to the microfluidic device (Figure 1.8). The device was left to incubate for a 

further 20 minutes to ensure the reaction had taken place, however no obvious colour 

change was observed within the channels. Upon closer inspection of the device, a distinct 

blue colour was observed around the connections between the syringe and the injector 

ports, indicating that the reaction was taking place and the substrate was successfully 

being converted by the horseradish peroxidase attached to the antibody. Though no 

distinct blue colour was observed, a faint blue tinge did appear to be present. The 

microfluidic device was observed under an inverted microscope with integrated camera 

and manual focus in order to gain a clear view of the channels (Figure 3.2.2).  

 

 
Figure 3.2.2: X 40 magnification of the injection point on a glass microfluidic device 
containing the 1:2000 solution of anti-rat immunoglobulin horseradish peroxidase (see 
Section 2.4.1.Method B). 
 

Due to the ‘sticky’ nature of the hydrophilic surface of the glass chip, the majority of the 

antibodies within the  1:2000 dilution of the anti-rat immunoglobulin horseradish 

conjugate adhered to the surface of the device as soon as they came into contact with it, 

resulting in a large proportion of the antibodies bonding directly below the injection point 

(Figure 3.2.2). A very small number of antibodies were visually observed to be present 

further along the proceeding channels, however, due to the small number of antibodies 

3.6µm 
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present in these sections they were below the limit of detection and unable to be 

visualised. Based on the observation both visually and from under the microscope it was 

hypothesised that the concentration of anti-rat immunoglobulin horseradish peroxidase 

was too low, limiting the reaction between the horseradish peroxidase and the TMB. Also 

it was thought that by the time the solution reached the later channels that all the 

antibodies present had already adhered to the surface upon initial contact leaving none 

left to be distributed throughout the remaining channels. Furthermore it was believed 

that as the antibodies were adhering as soon as they came into contact with the surface 

of the device, that they may not be adhering in the correct orientation and are therefore 

not able to react with the TMB substrate.  

 

In order to improve the surface coverage of antibodies, a higher concentration of anti-rat 

immunoglobulin horseradish peroxidase was proposed (see Section 2.4.1.Method C). 

Increasing the concentration of antibodies present also increases the amount of 

horseradish peroxidase present resulting in a stronger reaction. As the surface remains 

unchanged the antibodies will still adhere to the surface at their first point of contact. By 

increasing the number of antibodies present once all of the active sites around the 

injection point are filled, the remaining antibodies will have to move further along the 

channels in order to find available binding sites.  

 

Again the device was left to incubate and on this occasion the edges of the channels were 

more defined and faint areas of blue were visible. Upon microscopic inspection, a more 

even distribution of antibodies was inferred. Though the majority of the antibodies 

adhered to the surface were still focused in the beginning of the first channel (Figure 

3.2.3 A), there was an increase in the number of the antibodies that made it to the 

proceeding channels (Figure 3.2.3 B). Increasing the concentration showed a slight 

improvement in the surface coverage however, antibodies are not only able to bind to 

the active sites on the surface but they are also able to form linkages with one another 

resulting in bunching and clusters of antibodies forming.  
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  A                   B  

Figure 3.2.3: X 40 magnification of a glass microfluidic device containing the 1:1000 
solution of anti-rat immunoglobulin horseradish peroxidase.  
 

In order to enhance the immobilisation properties on the glass surface and improve 

antibody binding, pre-treatment of the device was carried out. Due to the hydrophilic 

nature of the surface of the glass microfluidic device it made eliminating water from the 

channels difficult resulting in pockets of water presenting within the channels, 

glutaraldehyde is a hydrophobic compound and creates a less favourable surface for the 

water and allowing for a more even coverage (see Surface Preparation 2.3.1). The success 

of the glutaraldehyde covering was observed due to a change in direction of the contact 

angle of the water, changing from concave in an uncoated channel to convex in a coated 

channel.  

 

After optimisation (see Surface Preparation 2.3.1) the same higher concentration 

immunoassay method (see Section 2.4.1.Method C) was applied. As with the previous 

runs, the visual observations were limited and only became apparent under high 

magnification. Microscopic analysis of the microfluidic channels showed that, similarly to 

the results reported by L.Yu et. al., the use of glutaraldehyde prior to the addition of the 

antibodies had increased the surface coverage in all three channels as well as generating 

a much more even distribution.  

 

In order for the microfluidic device to function as a portable on site point-of-care kit the 

indication of a positive result needs to be easily observable. When a traditional enzyme-

linked immunoassay is performed, the concentration of antibodies present within each 

sample is usually determined using a plate reader that measure the amount of light 

absorbed by each well. These values can then be compared to a calibration graph of 

known concentrations. However, research has recently begun into smart phone 

applications that use specially designed software in order to convert the colour intensity 

1mm 
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of an image into a statistical R value that can then be compared against a calibration 

graph of known concentrations.85 Though both applications measure the intensity of the 

colour of the sample in different ways, they are both dependent on a distinct blue colour 

being present. If the colour is too faint neither application will be able to detect it and will 

present an inaccurate limit of detection. Increasing the concentration of the HRP did not 

prove to increase the intensity of the blue colour that presents when it reacts with the 

TMB substrate and would be undetectable given its current intensity.  

 

Several studies have been carried out into the use of chemiluminescence as a way of 

enhancing the signal of the horseradish peroxidase within enzyme-linked 

immunoassays.83 Instead of using TMB as the substrate, a solution of luminol and 

hydrogen peroxide was used. Once the two compounds are mixed, the hydrogen 

peroxide deprotonates the nitrogen group on the luminol allowing a cyclic addition of 

dioxygen to take place and the subsequent removal of the dinitrogen. This reaction 

results in the creation of a radical which then reacts with the horseradish peroxidase to 

produce a photon of light.86  

 

The test (see Section 2.4.1.Method D) clearly showed that the reaction between the 

horseradish peroxidase and luminol was working (Figure 3.2.4) as when applied to the 

neat solution it gave off a very prominent reaction, giving an average light intensity value 

of 15964. However when applied to the 1:1000 dilution the reaction was considerably 

weaker, giving an average light intensity value of 537. 

 

 
 

Figure 3.2.4: GeneSnap Image made up of a series of 5 images taken at set interval of over 
a period of 51 minutes of the neat anti-rat immunoglobulin horseradish peroxidase (left) 
and the 1:1000 dilution (right) using a luminol solution.  
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Initial observations of the image make it appear as though the concentration of 

horseradish peroxidase present in the 1:1000 dilution is too weak in order for the 

reaction to be monitored (Figure 3.2.4) and several studies have been carried out into the 

effect of phenols as enhancers for luminol. Research carried out into the use of enhanced 

luminol solution for similar applications implied that p-iodophenol was the most effective. 

A similar test (see Section 2.4.1.Method E) was run to allow a comparison to be carried 

out between luminol-hydrogen peroxide (Figure 3.2.5 left image) and enhanced luminol-

hydrogen peroxide solutions83 (Figure 3.2.5 right image). Visual observations showed a 

considerable enhancement of the reaction between the horseradish peroxidase and the 

enhanced luminol-hydrogen peroxide for the neat solution. However the reaction for the 

1:1000 dilution appears unchanged, this is confirmed by ImageJ analysis of the images 

(Appendix 2, Figure A2.1). 

 

                                
 

Figure 3.2.5: GeneSnap Image made up of a series of 5 images taken over a period of 51 
minutes of the neat anti-rat immunoglobulin horseradish peroxidase and the 1:1000 
dilution using a luminol-hydrogen peroxide solution (left image) and an enhanced luminol- 
hydrogen peroxide solution (right image).  
 

Though the enhanced luminol-hydrogen peroxide solution doesn’t visually appear to have 

had an effect on the 1:1000 dilution (Figure 3.2.5) from the data collected an increase in 

the light intensity of both the neat and 1:1000 solutions was achieved (Figure 3.2.6). 

However, as the intensity of the neat solution is so strong it is possible that it is 

contributing to the value detected for the 1:1000 solution.   
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Figure 3.2.6: Graph comparing the data collected using ImageJ software from the 
GeneSnap images taken after 51 minutes of the luminol-hydrogen peroxide solution and 
the enhance luminol-hydrogen peroxide solution. 
 

In order to better analyse the reaction between the enhanced luminol solution and the 

horseradish peroxidase present in the 1:1000 solution, the same protocol was run using a 

1:500 dilution alongside the 1:1000. By comparing the two images it became apparent 

that the reaction occurring on the neat slide was affecting the results of the 1:1000 

dilution as the light intensity values dropped when in the presence of the 1:500 dilution 

(Figure 3.2.7).  

 

 
Figure 3.2.7: Graph comparing the data collected using ImageJ software of a 1.45mm area 
from the 1:1000 dilution in the presence of different accompanying slide. 
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In order to establish whether the same degree of luminescence could be observed when 

the reaction was carried out on a microfluidic scale, both the neat anti-rat 

immunoglobulin solution and the 1:1000 dilution were applied to the channels of the 

microfluidic device (see Section 2.4.1.Method F). 

 

The enhanced luminol solution was added to each microfluidic device separately and the 

reaction monitored immediately after. The solution was manually pushed through the 

device until the appearance of waste solution from the outlet to ensure that the 

enhanced luminol-hydrogen peroxide solution had covered the entire length of the 

microfluidic channels. 

 

                                       
 

Figure 3.2.8: GeneSnap Image made up of a series of five images taken at set interval of 
over a period of 51 minutes of the neat anti-rat immunoglobulin horseradish peroxidase 
(left) and the 1:1000 dilution (right) applied to a microfluidic device using an enhance 
luminol solution. 
 

In applying the solutions to the microfluidic devices, the volume of solution present was 

considerably decreased. Hence, carrying out the reactions on a micro scale proved to 

considerably decrease the luminescence of both solutions (Appendix 2). It reduced the 

light intensity value of the neat solution from 64523, when detected on the slide, to 2802 

when detected on the microfluidic device. The 1:1000 dilution was reduced from 1090, on 

the slide, to 619 on the microfluidic device which was comparable to data collected when 

no device was present (Appendix 2 Figure A2.7).  

 

When applied to the microfluidic device, the reaction between the enhanced luminol-

hydrogen peroxide solution and neat anti-rat immunoglobulin was still visually observable 

at both the injection point and the waste outlet (Figure 3.2.8 left image), however the 

reaction was not observed within the channels. When the 1:1000 reaction was applied to 

the device no reaction was observed (Figure 3.2.8 right image) and in carrying out ImageJ 
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analysis on the corresponding image no light intensity was detected (Appendix 2, Figure 

A2.7).  

 

Due to the micro volumes contained within the channels, even at the highest 

concentrations, the reaction occurring was too weak to be detectable. It was for this 

reason, and due to the time limitations of the project, that it was decided this type of 

microfluidic device coupled with an ELISA based competitive immunoassay would not be 

viable for drug detection. In order for a point-of-care test to be desirable it needs to be 

able to detect substances even at their lowest concentrations and this would not be 

possible with this method. 

 

3.3 Paper Based Microfluidic Device 

In order to test which of the methods previously applied to the glass microfluidic device 

provided the greatest degree of capture efficiency, revised methods (see Section 

2.4.1.Method A and Section 2.4.1.Method B) were applied to the optimised paper-based 

device (see Surface Preparation 2.3.1).  

 

Both a sandwich immunoassay, (Section 2.4.1 Method A (Appendix 3 Figure A3.1.1)) and 

direct immobilisation of the antibody, (Section 2.4.1 Method B (Appendix 3 Figure 

A3.1.2)) were carried out alongside each other. This was done in order to establish if the 

same difficulties in adhering the primary antibodies to the surface, as already established 

with the glass device, were also present using a paper medium. Visual observation of the 

result seemed to indicate that the opposite was in fact true for the paper medium. The 

sandwich immunoassay (see Section 2.4.1 Method A) provided a more reproducible result 

with a stronger positive reaction than when only the secondary antibodies were added to 

the surface indicating that more of the horseradish peroxidase is present and hence more 

of the secondary antibodies have adhered to the primary antibodies than to the surface 

itself. In order to test the applicability the paper based device a standard sandwich 

immunoassay practical (see Section 2.4.1 Method C) was scaled down in order to suit the 

parameters of the microfluidic device (Figure 3.3.1). 
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Figure 3.3.1: Sandwich immunoassay of the serial dilutions of the 1:2000 dilution of the 
anti-rat immunoglobulin conjugate horseradish peroxidase reacted with TMB. N.B. 
Truncated for simplicity. Specify S1-S7. 
 

Based on the results collected from the glass microfluidic device, chemiluminescence had 

proved the most effective form of detection. However, when the sandwich immunoassay 

was carried out on the paper based device this was not the case. From the results 

collected, it was apparent colourimetric detection was going to be the most effective 

method for the paper based device and, though several other methods of detection have 

been reported for paper based microfluidic device,87 it was believed that colourimetric 

would deliver the most instantaneous response and provided the quickest and easiest 

method of detection. 

 

3.3.1 Intra/Inter Variation Study 

In order to test the reliability and reproducibility of the results collected utilising the 

sandwich immunoassay (see Section 2.4.1.Method C) an intra/inter variation study was 

carried out (see Section 2.3.1.Method D) using four plates across four weeks. 

 

The light intensity values from the different concentrations of anti-rat IgG-HRP were 

collected using ImageJ and analysed using both Microsoft Excel and Minitab, a general 

linear model using the Tukey method with a 95% confidence level was run in order to 

establish the significance of the values (Appendix 4.2). The general trend across the plates 

showed that there was no significant difference in the light intensity results collected, 

indicating that the inter-plate variability is low, and that the method of device production 

leads to consistent results between the plates. However, analysis of the results across the 

weeks showed there was a significant difference in the light intensity results collected. 

Though the results varied slightly for the different concentrations, the general trend 
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showed that week’s 0, 1 and 2 produced significantly better result than those collected in 

week 4, with week 2 consistently producing good results across all concentrations (Figure 

3.3.2). 

 

 
Figure 3.3.2: A calibration graph displaying all the average results from all four plates of 
week 2 against concentration. 
 

This was supported by plotting the average light intensities against concentration, the 

calibration graph produced for week 2 (Figure 3.3.2) displayed the trendlines with the 

highest R2 values as well as containing the smallest standard deviation error bars with the 

least overlap. The significant difference from week 2 to week 4 suggests that the stability 

of the plate drops considerably between week 2 and 4, indicating that in order to achieve 

optimal results testing should be carried out  no later than week 2.  

 

By plotting an inter variation graph of the average light intensities from the individual 

weeks against concentration (Figure 3.3.3) the drop from week 2 to week 4 can be seen 

more clearly. Though the linearity is maintained within each week there is an obvious 

drop in the light intensity values obtained from week 2 to week 4. From the literature it 

had been reported that similar devices kept under the equivalent storage condition have 

shown responses after 40 days that are comparable to those seen at day 1.82 Though 

good results were still achieved in week 4 the drop in the response seen over the weeks 
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would led us to conclude that prolong storage of the device could affect the accuracy of 

the result being achieved. 

 

 
Figure 3.3.3: A calibration graph displaying the inter plate results from all four weeks 
against concentration. 
 
3.3.2. Printing Method 

Investigations into paper based microfluidics has grown in popularity over recent years 

and with wax printing being the most widely used method of printing, wax printers have 

become more and more widely available. Though a traditional printing technique was 

used to create the majority of the devices utilised within this study, access to a wax 

printer became available. Several studies, initially carried out on the traditionally printed 

plates were applied to the computer printed plates in order to compare the data. The 

results observed using the new method followed the same trend as previously 

established giving good indication that the techniques are comparable. The key difference 

noticed between the plates was the reproducibility of the wells themselves and in order 

to establish the consistency of the well area created for each method analysis was carried 

out (Figure 3.3.4).  
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Figure 3.3.4: A comparison between the consistency of the well area created using the 
traditional printing method and the wax printer. 
 
As this method is intended for use as a portable point-of-care test, it is vital that the 

process used to manufacture the devices is consistent and therefore allowing 

reproducible reliable results to be generated. The uniformity achieved using the wax 

printer was obvious during testing as adsorption of the microvolumes was consistent 

across all the individual test zones. A random selection of both types of plates were 

analysed. By applying standard deviation error bars to the data sets it shows the variation 

in the size of the well created using the traditional method is considerably greater than 

that of the wax printer. As well as providing more consistent and reproducible plates the 

acquisition of the wax printer also reduced the time, cost and labour required in order to 

produce the plates. Taking into account all of these variables it is clear that the wax 

printer was a more suitable technique and was carried forward and applied to any further 

testing. 

 

3.3.3.Optimisation 

A similar method (see Section 2.4.1.Method D) to the one developed for the intra/inter 

variation study was applied in order to determine the optimum dilution for both the anti-

methcathinone antibody and the cathinone-HRP (Figure 2.7.1). Initially, a variety of 

dilutions of the cathinone-HRP were tried, ranging from 1:10,000 to 1:100,000. It was 
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established that 1:10,000 was too concentrated; preventing subtle changes in the amount 

of drug present from affecting the amount of cathinone-HRP, but anything above 

1:20,000 was too dilute and therefore undetectable. This allowed a narrower dilution 

range of between 1:12,000 to 1:20,000 to be established. From the dilution range 

established, it was observed that the 1:12,000 1:14,000 and 1:16,000 dilutions of 

cathinone-HRP provided the best calibration curves and R2 values (Appendix A5.2) as well 

as producing values within a similar range to those seen in the previous immunoassays.  

 

The manufacturers recommended anti-methcathinone antibody concentration was 0.625 

µg/mL. Due to the increase in surface area to volume ratio associated with microfluidic 

devices a much larger volume of antibodies were adhering to the surface and thus a much 

lower dilution was required. The dilutions of cathinone-HRP were then applied to a series 

of antibody concentrations, ranging from 5.79 µg/mL to 1.104x10-5 µg/mL (Appendix 5, 

Figure A5.1.1/2/3). 

 

 
Figure 3.3.5: Comparison calibration graph of the 1:16,000 1:14,000 and 1:12,000 
dilutions of cathinone-HRP for the concentration range of 0.00141-1.104x10-5 µg/mL anti-
methcathinone antibody plotted on a Log10 scale. 
 

From the graphs plotted of the anti-methcathinone antibody, the concentration range of 

0.00141 µg/mL to 1.104x10-5 µg/mL (Figure 3.3.5) appeared to display a cut-off point as 

the average light intensity values appeared to plateau at 8.835x10-5 µg/mL and the light 

intensity values were within the range achieved when no sample was present within the 

well. This was later confirmed by regression analysis (Appendix 5 Figure A5.2.3), as the 



62 
 

concentration range of 0.00141 µg/mL to 1.104x10-5 µg/mL provided the best R2 values 

across all three dilutions. Analysing the three dilutions separately showed that the 

1:12,000 dilution of cathinone-HRP (Figure 3.3.6) maintained the best calibration curve up 

to the cut-off point and was therefore the most suitable dilution for setting up the 

immunoassay (Figure 2.7.1). 

 

 
Figure 3.3.6: Calibration graph displaying the six lowest concentrations of the 1:12,000 
dilution of cathinone-HRP for a concentration range of 0.00141-1.104x10-5 µg/mL anti-
methcathinone antibody. 
 

As a final anti-methcathinone antibody dilution had yet to be established a competitive 

immunoassay using a mephedrone and  cathinone-HRP serial dilution was applied (see 

Section 2.4.3.Method E). The mephedrone concentration ranged from 70 ng/mL to 0.137 

ng/mL, and was run in triplicate on the four lowest antibody concentrations of the 

0.00141 µg/mL to 1.104x10-5 µg/mL range. The results gathered (Appendix 5, Figure 

A5.2.8) demonstrated that the 7.068x10-4 µg/mL anti-methcathinone antibody 

concentration presented the most consistent results across the dilution range and led to 

the most ideal calibration curve (Figure 3.3.7). 
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Figure 3.3.7: Calibration graph of the six lowest concentrations of mephedrone run on the 
7.068x10-4 µg/mL concentration of the anti-methcathinone antibody. 
 
3.3.4. Biological Samples 

In order for this test to be viable as an on-site, point-of-care device the method needed to 

be compatible with biological samples. Urine and saliva were considered the most 

applicable to this study as they required no prior preparation and were least likely to 

interfere with the chose method of detection. Samples were donated by healthy 

volunteers and anonymised upon receipt. Initial observations indicated the results 

collected from the mephedrone spiked urine sample were comparable to those collected 

when mephedrone was carried out in aqueous media. In the presence of high 

concentrations of mephedrone the response generated by the TMB was less indicating 

that the mephedrone was successfully competing with the cathinone-HRP for the active 

sites of the antibody. However, this was not the case for the saliva sample as even at high 

concentrations of mephedrone a colour change presented indicating the presence of 

cathinone-HRP (Figure 3.3.8). 

 

As the biological samples were tested without prior purification, it was hypothesised that 

there was potentially a naturally occurring enzyme present that could be affecting the 

results. Controls of both the neat samples and the samples with only cathinone-HRP were 

tested. The results for urine were as expected, no reaction was observed for the neat 

sample and the blue colour change reaction was observed for the sample with cathinone-
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HRP. This was not the case for the saliva sample as both the neat and the sample with 

cathinone-HRP produced a blue colour change reaction. A simple test of equal parts of 

neat saliva to TMB produced a strong colour change, confirming that there was a 

naturally occurring enzyme present affecting the colourimetric test. It is believed that the 

presence of hydrogen peroxidase in the antibacterial enzymes and salivary 

lactoperoxidase in the antimicrobial enzymes are responsible for this reaction. 88 

 

 
Figure 3.3.8: Comparison between the average light intensity results of a serial dilution of 
a 70ng/mL solution of mephedrone carried out in aqueous, urine and saliva samples. 
 
The ImageJ data collected from the mephedrone spiked biological samples was compared 

to an aqueous dilution of mephedrone (Figure 3.2.8). As expected, based on initial 

observations, the calibration curve for the spiked saliva sample showed no trend. 

However, the calibration curve obtained for the spiked urine sample was comparable to 

that of the aqueous mephedrone and showed good distinguishability even at the lowest 

concentrations of mephedrone. As ImageJ analyses the degree of white light its make 

differentiating between the higher concentrations hard than that of the lower 

concentrations. Analysis of the three data sets showed that the linearity of both the urine 

and aqueous mephedrone solution became poor above 4.375 ng/mL (Appendix 6.2). As 

expected, the spiked saliva sample showed little to no correlation. This reason, along with 

the results collected from the controls, indicated that using saliva as a medium in which 

to detect mephedrone is not a viable option for this method. 
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In order to determine the limit of detection (LOD) and the limit of quantification (LOQ), 

regression analysis of the 4.375 µg/mL concentration of the aqueous mephedrone and 

the biological samples was carried out (Appendix 6.2). An LOD of 4.078 µg/mL and 1.597 

µg/mL was calculated for the aqueous mephedrone and spiked urine sample, 

respectively. In comparing these values with the clinically relevant concentrations for 

mephedrone in urine (LOD= 2 µg/mL and LOQ= 4 µg/mL) it shows that this method has 

good sensitivity.89 As well as being highly sensitivity for this specific application it also 

showed improved sensitivity to already reported methods such as streptavidin-biotin on 

magnetic beads which was only able to detect down to a mg/mL level. 63  

 

3.3.5.Cross-Reactivity 

Due to the high degree of cross-reactivity associated with the anti-methcathinone 

antibody and the positive results obtained with both mephedrone and cathinone-HRP 

conjugate, the same concentration range was applied to samples of methcathinone, 

cathinone, 4-methylephedrine and ephedrine. Establishing whether this test is selective 

as well as sensitive is important, as it will allow for differentiation between powdered 

samples as well as providing a more robust method for detecting these substances within 

biological matrices. Analysis of the data collected (Figure 3.3.9) confirmed that the anti-

methcathinone antibody did in fact cross-react, to varying degrees, with all of the 

members of the cathinone family tested. 
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Figure 3.3.9: Comparison of the competitive immunoassays set up using a serial dilution of 
a 70ng/mL solution of mephedrone, methcathinone, cathinone and the corresponding 
metabolites 4-methylephedrine and ephedrine (yellow line = blank, red line = neat urine, 
green line = urine + HRP). 
 

Mephedrone is metabolised by the body via two different processes, the main type of 

metabolism it undergoes is via a primary route of demethylation in order to form a 

cathinone product, it can also metabolise by a secondary route via the reduction of the 

ketone to form a 4-methylephedrine product. From Figure 3.3.9 it can be seen that both 

the cathinone and 4-methylephedrine produced positive light intensity results as well as 

good calibration curves. Thus demonstrating that both the 4-methylephedrine and the 

cathinone are successfully competing with the cathinone-HRP for the active sites on the 

antibodies and that even small changes in the drug concentration affect the amount of 

cathinone-HRP present. Positive results were also observed for another common 

cathinone derivative, methcathinone and its primary metabolite, ephedrine. However, 

both the light intensity values and the calibration curves were weaker than those 

previously seen indicating that even though they both successfully compete for the active 

sites on the antibodies their binding affinity is not as strong as the mephedrone 

metabolites, making them harder to detect. 

 

Due to the concentration range over which the cathinones were tested, it was not 

possible to calculate the percentage cross-reactivity as the cathinones did not reach 50% 



67 
 

of their original concentration (B0), which is required in order to calculate it. Instead a T-

test was carried out on the data sets. From the statistical analysis (Appendix 7.2.1) it can 

be seen that there is significant difference between mephedrone and 4-

methylmethcathinone and between mephedrone and cathinone. As both values are 

higher than zero it indicates that both 4-methylephidrine and cathinone have a greater 

degree of cross-reactivity to the antibody than mephedrone. On the other hand, the 

significant difference between mephedrone and ephedrine was observed to be lower 

than zero, implying that ephedrine has less cross-reactivity to the antibody. The analysis 

also showed that there was a significant difference between mephedrone and 

methcathinone, however this difference is minimal, suggesting that there was no 

difference in the affinity. Though it was not possible to calculate the cross-reactivity of 

this study, reported data showed that the methcathinone had a percentage cross-

reactivity of around 50% supporting the findings of this study.90 Data for the other 

cathinones used in this study could not be found. 

 

In order to test the cross-reactivity of the anti-methcathinone antibody with other 

adulterants the same method (see Section 2.3.2 Method E) and concentration range was 

applied to samples of cocaine and ketamine. The data collected (Figure 3.3.10) showed 

that the level of cathinone-HRP binding to the antibody is consistent across the dilution 

range of both the cocaine and ketamine, suggesting that the cathinone-HRP is unaffected 

by the changing concentration of the drugs and that there is little cross-reactivity 

between neither cocaine nor the ketamine.  
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Figure 3.3.10: Comparison between the average light intensity results of a serial dilution 
of a 70ng/mL solution of mephedrone, cocaine and ketamine carried out in urine. 
 
It is often found that street samples of illegal drugs are ‘cut’ with cheaper, legal drugs that 

are easily accessible, such as paracetamol or caffeine, in order increase the batch size and 

profit.91 As these are everyday substances, even if they are not present in the drug 

sample, it is likely they could occur in a urine sample. From the literature it has been 

demonstrated that 1-4% of a 500 mg paracetamol tablet is present unmetabolised in 

urine.92 Based on this assumption, a concentration range of 50 mg/mL – 0.048 mg/mL 

was established for paracetamol. The paracetamol concentration range was compared to 

that of mephedrone.  

 

A general trend of linearity was observed across the concentration range of paracetamol, 

however some deviation was observed at the lower concentrations. From regression 

analysis (Appendix 7.2.2) it can be seen that the trend of linearity is constant across the 

entire range. Statistical analysis of the data (Appendix 7.2.2) gave a t-test value of 0.96 

indicating that the values are not significant and that the paracetamol does not have an 

effect on the level of HRP being detected. The light intensity values detected and the 

trend observed suggests that paracetamol does not cross-react with the anti-

methcathinone antibody and that the cathinone-HRP is unaffected by the change in its 

concentration and is able to bind to the active sites on the antibody regardless of the 
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amount of paracetamol present in the urine sample. The data collected gives a good 

indication that, whether it be as a cutting agent or self-administered, the presence of 

paracetamol in a urine sample would have little to no effect on the ability to detect the 

presence of mephedrone or other cathinone derivatives. 
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Chapter 4- Conclusion  

 

Several different variations of microfluidic devices were trialled during this study. Though 

positive results were initially observed with the glass microfluidic device it was believed 

that due to the large amount of equipment required in order to analyse the device and 

the limits of detection being achieved that applying an assay to this medium was not a 

viable method for this type of test as adapting it into a portable, easy to use, point-of-care 

test would be challenging and not within the time frame allowed for this study. This 

conclusion allowed investigation into paper based devices to begin.  

 

A variety of different methods were tested in order to find the optimal way in which to 

wax print the devices. The majority of the microfluidic plates were printed by a traditional 

screen printing technique and yielded a great deal of positive results.  The application of 

an intra-inter stability study showed that there was no significant difference between 

different plates, this gave good indication that tests carried out across a range of different 

plates would in fact yield reproducible data. By carrying out the study over several weeks 

it allowed us to establish the stability of the surface antibodies and estimate how long the 

plates could be kept in cold storage, the study indicated that the plates were optimal up 

to two weeks. This would allow for more widespread use of the point-of-care test and 

enable optimisation and pre-coating with the primary antibody to occur prior to 

distribution.  

 

 A late stage acquisition of a wax printer provided a much simpler, quicker and more 

uniform method of printing plates, comparison between the two methods yielded similar 

results and provided good confirmatory evidence for the results previously established. 

The plates produced using the printer showed a lot less variation between individual 

plates and gave a more reproducible test area. In order to make a point-of-care test 

applicable in the field each one produced needs to be identical to ensure the most 

accurate and reproducible results possible. The combination all the positive factors 

associated with the wax printer led to the decision that it was the most appropriate 

method for producing the paper based devices. 
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Though development of the paper based device itself is still required in order for it to be 

utilised as a point-of-care test, this study has yielded positive results. A competitive 

immunoassay has successfully been immobilised on the surface of the device and has not 

only been able to detect mephedrone, but has been able to detect and distinguish 

between several different cathinones and their metabolites. The devised method has 

successfully encompassed many of the advantages associated with microfluidic devices; it 

is  both cheap and easy to produce,  the incubation and overall reaction time has been 

reduced from days on a standard 96 well plate to hours on the paper based device, both 

the reagent and sample volumes require have been reduced to microlitre quantities and 

the sensitivity has been increased, taking the LOD from 4 µg/L using a combined 

targeted/untargeted LC-HR-QTOFMS to 2 ng/mL using the paper based device.89 As well 

as being able to distinguish between different cathinone derivatives, it has also proved 

successful in being able to differentiate between cathinones and other illegal and legal 

drugs, producing negative results in the presence of cocaine, ketamine and paracetamol.  
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Chapter 5- Future Work 

 

In order to develop this method further, additional investigations would need to be 

carried out. Studies into a wider range of other illegal drugs such as amphetamines, NRG 

substances and cannabis, as well as cutting agents and everyday compounds such as 

caffeine, ascorbic acid and sugars, would need to be considered to ensure that the 

immunoassay was selective for cathinone derivatives.91 Also, in order to fully understand 

the extent of cross-reactivity between the cathinones, a wider concentration range would 

need to be applied. The concentration range would need to be expanded to ensure that a 

value 50% of the original concentration (B0) was reached in order for the data to be 

applied to the cross-reactivity calculation. 

 

This method could also be applied to the already established presumptive test. As several 

of the colour tests require a mixture of reagents, they are applied to the well before the 

sample is added. This could allow for a microfluidic paper analytical device (µPAD) to be 

utilised as a cheaper alternative to current point-of-care presumptive colour tests. The 

reagents could be pre-applied to specific zones on the µPAD ready for activation and the 

application of the sample on-site. 

 

In addition to method development, further consideration could be applied to device 

design. Factors such as well size and shape, as well as the overall schematic of the plate 

could  be considered to increase the sensitivity as well as prevent un-necessary wax being 

applied creating the most cost-effective, optimal, user friendly design for infield testing. 

Studies have been carried out into the use of ‘origami’ style designs (Figure 5.1).82  The 

use of different test sites would allow for the incorporation of both a positive and a 

negative control, and by utilising multiple tabs it could allow the devices to be expanded 

to detected a wider range of drugs. Also, as the plates are stable for around two weeks, 

pre-application of the primary antibodies would ensure minimal steps were required 

within the field, making it both a rapid and easy-to-use test.  
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Figure 5.1: SolidWorks 2014 design of an ‘origami’ style paper microfluidic device.82 
 

Once a fully optimised device was established the method would need to be fully 

validated. Factors such as robustness, selectivity and precision would need to be 

considered before this method could be used for forensic detection. As well as the device 

itself, consideration would need to be given to the method of detection. With the 

continuous improvement in technology, investigations have begun into the use of smart 

phone detectors.93  Developing an ‘app’ that could analyse the colour change, measure 

the level of HRP and calculate the amount of drug present would allow for a more precise 

understanding of the result achieved and make this test both quantitative and qualitative.  
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