
Constraint Based Reactive Rescheduling in a Stochastic 
Environment.  

 

J.E. Spragg 

Mitthögskolan, Sweden. 

 

G. Fozzard 

De Montfort University, Leicester UK. 

 

and 

 

D. Tyler 

Manchester Metropolitan University, Manchester, UK. 

 

April 1997 

 

Keywords 

 

Schedule repair, flow lines, garment manufacture, partial order  

backtracking,  reassignment heuristics, and dynamic CSP. 

 

Abstract 

 

The problem of scheduling manufacturing systems where the performance, or indeed, 

capacity of a production resource is subject to stochastic change, is the subject of this 

paper.  Typical of such resources are those which are dependent upon labour intensive 

processes.    

 

In the United Kingdom the manufacture of clothing garments is still dominated by the 

progressive bundle system (PBS).1  Garments are produced on a  continuous-flow 

production line in which garment pieces are passed in succession through a network of 

workstations  where skilled manual workers complete operations on garments using 

sewing machines.  The workstations  which comprise the flow line can be  connected 

in either a serial or a parallel fashion  depending upon the sequencing constraints 

which govern the order in which  the garment are to be assembled.    The rate of flow 

of work through each workstation is  determined by the performance of the 

machinists.   

 

The dominance of the PBS relates to the difficulties  of automating the  assembly of 

garment pieces.  The automation of handling a flimsy material like cloth alone  has 

proved a major bottleneck in the adoption of flexible  manufacturing practices. 

Despite advances in automation in other sectors of manufacturing industry, it  is clear 

that the requirement to successfully manage skilled manual labor will continue to be 

employed until appropriate technologies can be found.  The PBS represents a serious 

scheduling problem for factory managers and line supervisors.  This problem is not 

alleviated  by the trend towards smaller contract sizes which reflect a fluid fashion 

market.   



 

The determination of the optimum order in which  sewing operations should be 

arranged is not a serious scheduling problem.  In fact, it is the classic  sequencing 

problem,  n/m/P/Cmax,  discussed in French (1982)2.  The real scheduling problem 

associated with a PBS arises from the constant need for  reactive rescheduling to 

maintain line balance.  The frequency of operator absenteeism, or machine 

breakdown, or unstable operator performance,  requires constant  reassignment of 

operators and operations. In such systems,  reactive rescheduling becomes so frequent 

that it takes on the character  of supervisory control.    In the approach described here, 

line balance is maintained  via periodic  schedule repair, based upon  reassignment 

heuristics, supported by partial order backtracking. 

 

Line Balance 

 

Schedule repair activity is triggered by monitoring the flow line.    At the start of a 

new line, operators are  allocated to operations by line supervisors and production  

managers.  The operators required for each operation is  calculated using the 

principles of load and capacity  planning.  In practice, the operators' skills and 

performance  rarely fit the work content of the operations and potential   bottlenecks  

become inherent in the line's design.   Moreover,  even if it were possible to achieve a 

perfect line  balance,  it would be impossible to maintain it over time due  to line 

perturbations caused by machine breakdowns,  operator absenteeism and fluctuations 

in operator  performance.  The schedule must be repaired to maintain  ‘balance  

control’.  Balance control is necessary  because of the  sectionalization of the line that 

leads to different  operations being performed at different rates.   To provide  

protection against variations in output over discrete periods  of time, an agreed 

amount of work-in-progress is allowed  to act as a buffer between individual 

operations.  A  requirement for supervisory control is to set the flow of  work through 

each operation to be as similar as possible.   The success of this behavior is reflected 

in the operational  measures of line efficiency and productive performance.   

Therefore, the primary indicators of unbalanced work flow are idle workstations and 

declining or overloading work-in-progress buffers.   

 

The monitoring task is necessarily accompanied by analysis.    The cause of problems 

must be identified.  Calculations are required to identify  which operations require 

additional resources and which operations can be alleviated of resources.   

 

Formally, a PBS flow line can be viewed as a set of operations, O, where each operation, 

o, is a 2-tuple which consists of a set of operators, Op, and a set of machines, M ,  

which have been assigned to the operation: 
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The scheduling problem consists of  assigning operators, op, and machines, m, to an 

operation, o1, until the calculated output from the operation is equal, or greater than, the 

next operation, o2, in the sequence. 

 

                     

 Op and M have the same cardinality. 



o1({op1,op2, .., opn}, {m1,m2, ..., mn}) 2 o2({op1,op2, .., opn}, {m1,m2, ..., mn}).   

 

The sequence constraint, o1 3 o2, is determined by the technical necessity of having to 

perform operation o1 before operation o2.   

 

Other constraints prohibit the operators and machines that can be assigned  to an 

operation.  An operation requires a particular skill from an operator, and a particular 

type of machine.  For simplicity we can say that the assigned operators’ skill must equal 

the type of the machine assigned: 
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A typical  operator has a set of skills, S, operations that she or he can perform, and a 

particular performance level, p. 

 

The process time required for each operation  is determined by the work content of the 

operation, measured by a standard minute value which is empirically determined by a 

time and motion study, and the performance of the operators.  The process time is 

calculated by dividing the standard minute value of the operation by the performance 

of the operators and multiplying the result by 100.   Operator performance is, again, 

determined by time and motion study.  The industry  recognizes that an 100 performer 

can perform a sewing operation with a 3 minute work value in 3 minutes.  Whereas a 

50 performer would take 6 minutes.   

 

The maintenance of line balance requires that the process time of each sequential 

operation is kept as identical as possible.  So that  process_time1 and process_time2 of 

 op1(process_time1) 5  op2(process_time2) are either equal or within an acceptable 

range which can be absorbed by the work-in-progress buffers between operations. 

 

Initial Line Balance 

 

The initial line balance is achieved by employing a greedy algorithm which assigns 

operators to machines and operations. 

 

The greedy algorithm, that assigns the operators and machines to the operations, takes 

two sets as arguments.  The unordered set of operations, O.  The second argument is an 

ordered set of skills, S ,where skills are constraint satisfaction problem variables, which 

identify a skill and a domain which consists of the set of operators, Op, with that skill.  

Both the variables, S, and the domain values, Op, are ordered.   The variables are 

ordered according to the cardinality of the domains.  The variables with small domains 

are considered the most highly constrained and should be processed first.   Also,  the 

domains of s 6 S are ordered according to the cardinality of the skill set of the 

operators.  Those operators with less skills are more constrained and should be 

processed first.  The algorithm also takes a variable, t, which denotes the target output of 

the line.   The operations, PUSH, POP, and REMOVE,  are primitive procedures with 

obvious interpretations.  

 

The greedy algorithm makes a number of assumptions about hard and soft constraints: 



 

 There are sufficient operators to cover the tasks. 

 There are sufficient machines to cover the task. 

 . Operator skills represent hard constraints, and 

 . Operator performance represents soft constraints. 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

If there are insufficient operators or machines to cover the tasks, it means that the 

daily output parameter, t, must be relaxed.  It can be considered to be a soft constraint. 

 The greedy algorithm ignores  operator performance, p.  Operator performance is 

considered to be a soft constraint which can be relaxed.  (The buffers between 

operations can absorb the additional output of a ‘100’ performer doing a ‘75’ job.)  

The algorithm only attempts to assign correctly skilled operators to the various tasks.  

  The added complexity of satisfying performance constraints  would require an 

alternative search procedure, for example, a beam search.    This is considered 

unnecessary because the impact that performance has on output is averaged out over 

an entire shift.  It is a constraint which can be satisfied over time.     Satisfying 

operator performance constraints is actually an optimization problem.  At any one 

point in time,  the partial satisfaction of the performance constraint is acceptable 

because the buffers between operations can absorb excess and feed down stream 

operations.  The satisfaction of the operator performance constraint is achieved over 

 Procedure 1 
  

 PROCEDURE greedy-algorithm  (O,S,t)  

 BEGIN 

  WHILE O NOT EMPTY 

              DO 

    s    7POP (S) 

    op  8POP(Ds) 

    o    9 REMOVE(s,O) 

    PUSH(op,oop) 

    forward_check(op,S) 

                                                PUSH(machine(s),om) 

   UNTIL enough-p (o,t) 

              END 

 END  



the  entire work shift and measured as a constraint which satisfys an objective 

function.   

 

It is the function of schedule repair to maintain line balance by keeping the process 

times of operations as equal as possible.  This is achieved  by transferring, and 

exchanging, operators between operations.   The identification of which operator or 

operators to transfer or exchange is determined by reassignment heuristics. 
 

 

Schedule Repair 

 

Schedule repair attempts to solve a dynamic constraint satisfaction problem,  and is 

achieved by reassigning operators to other operations.  This activity is supported by 

partial order backtracking which identifies the appropriate set of candidates.    

 

Schedule repair is triggered by monitoring the flow line.  The primary indicators of 

line unbalance is work-in-progress buffers.  An empty (or rapidly emptying) work-in-

progress buffer suggests that process times between operations has become unequal.  

This might be because of human factors.   An operator’s performance could have 

dropped because of boredom, or an operator could be absent, or a machine could have 

broken down.  Whatever the reason,  the analysis task must generate two sets,  the set 

of  those operators, C, whose performance pfrom can be transferred from it current 

operation, and the set of operations, T, which must have additional performance, pin.  

The members of set T  are prioritized to identify the most desperate imbalance.   Any 

operator from C whose performance,  pfrom , equals  some pin would be an ideal 

candidate for transfer. 

 

Unfortunately,  it is rare that such an ideal candidate can be identified.  It is usual that 

a sequence of exchanges is necessary before a candidate can be freed to add additional 

performance to an operation.   

 

For example,  assume that analysis has identified an operation which requires an 

additional ‘75’ performance from an overlock operator.   The set C of possible 

candidates does not contain such an operator.   However,  there is an operator in C 

with cross stitch skills that can be transferred to a cross stitch operation and allow a 

‘75’ performer  with both cross stitch and overlock skills to be transferred to the 

priority operation in T.† 

 

The application of reassignment heuristics to rostering problems, and constraint 

satisfaction problems in general,  has been described by Smith (1992)3. 

 

Partial Order Backtracking:  A Discipline for Reactive Rescheduling 

 

The mechanism which supports the selection of exchange candidates is partial order 
                     
† There is a  limit on how recursive these exchanges can be:  each time an operator is moved, 

her or his performance declines and it takes some time before it returns to normal.   A flow 

line which has been seriously perturbed by operator transfers will loose production efficiency.  

 In practice it is better to nominate a small set of operators as floater candidates, and use 

these exclusively for exchanges. 



backtracking.    Spragg and Kelleher (1996)4 have described how partial order 

backtracking offers the  rescheduler  a framework for schedule repair, based upon a 

set of nogoods, which impose a systematic partial order on the set of activities to be 

repaired but allows non systematic techniques to be used within that framework. 

 

In a recent paper Ginsberg and McAllester (1994)5 suggested using a hybrid search 

algorithm that combined the advantages of both systematic and non systematic 

methods of solving constraint satisfaction problems.  The systematic search method 

described by these authors, dynamic backtracking, employs a polynomial amount of 

justification information to guide problem solving.   The non systematic  methods, 

GSAT (1992)6 and min conflict (1990)7,offer the search algorithm freedom to explore 

the search space by abandoning the notion of extending a partial solution to a CSP and 

instead modelling the search space as a total, if inconsistent, assignment of values to 

variables.    A hill climbing procedure is employed on this total set of assignments to 

try and minimize the number of constraints violated by the overall solution.  Ginsberg 

and McAllester have called their hybrid algorithm partial-order backtracking. 

 

Partial order backtracking brings a systematic search discipline to non systematic 

schedule repair search procedures, such  as GSAT, min conflict and reassignment 

heuristics, by applying the dynamic backtracking procedure developed by Ginsberg 

(1993)8 to the search space. 

 

Dynamic backtracking maintains search information by accumulating a set of 

nogoods.  A nogood is an expression of the form: 
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Here, a nogood is used to represent a constraint as an implication which is logically 

equivalent to the expression: 
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A special nogood is the empty nogood,  which is tautologically false.  If an empty 

nogood can be derived from a given set of constraints,  it follows that no solution 

exists for the problem being attempted. 

 

New nogoods are derived by resolving old ones.  As an example, suppose we have 

derived the following: 

 

  13 

 

where v1, v2, and v3 are the only values in the domain of u.  Nogoods are combined to 

conclude that there are no solution with: 

 

  14 

 



moving z to the conclusion of the above gives: 
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The usual problem with maintaining a set of nogoods is that the set grows 

monotonically,  at each step in the search a new nogood is added to the list of 

nogoods.  Dynamic backtracking deals with this by discarding those nogoods whose 

antecedents no longer match the partial solution being extended by the search.    

 

Dynamic backtracking uses a set of nogoods to both record information about the 

portion of the search space that has been eliminated and to record the current partial 

assignment being considered by the procedure.  The current partial assignment is 

encoded in the antecedents of the current set of nogoods.  The  antecedents of any set 

of nogoods, 16, represent a consistent, if partial, solution to a constraint based 

scheduling problem.  The next assignment must be an extension of this partial 

assignment.  Assignments which have caused dead ends in the search can be detected 

by analyzing the conclusion parts of the nogood set.   The dynamic backtracking, like 

most systematic search, assumes a static variable ordering.  Whenever a nogood is 

added to the set of nogoods, the static variable ordering determines the variable that 

appears in the conclusion of the nogood.  The most recently tried variable is always 

selected to appear in the conclusion of the new nogood. 

 

Partial order backtracking replaces the fixed variable ordering which constrains 

dynamic backtracking with a partial order that is dynamically sorted during the 

search.   When a new nogood is added to the nogood set,  this partial ordering does 

not fix a static sequence on the choice of variable to appear in the nogoods conclusion. 

 As it turns out, there is considerable freedom as to the choice of the variable whose 

value is to be changed during backtracking, thereby allowing greater control in the 

directions that the procedures takes in exploring the search space.   

 

However,  there is not total freedom:  safety conditions need to be maintained that 

model the partial orderings of the variables.  It is necessary for variables in the 

antecedents of nogoods to precede the variables in their conclusion.  This is because 

the antecedent variables are responsible for determining the current domains of such 

variables. 

 

Partial order backtracking supplies a framework for reactive rescheduling.   The 

management of a progressive bundle flow line system approaches scheduling as a 

problem of repair over time.   From a constraint based scheduling perspective, 

rescheduling introduces an extra set of constraints which need to be addressed.  These 

new constraints  are related to the need to preserve the old assignments of operators to 

operations as far as possible.  The old schedule represents an investment in planned 

resources,  allocation of machines and people, which should not be disturbed any 

more than necessary. 

 

Example 

 

An example will demonstrate our approach to reactive rescheduling in a stochastic 



environment .    We can imagine a progressive bundle flow line with 4 operations: 
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Where o1 is an overlock (ol) operation with a standard minute value of 2; o2 is a cross 

stitch (xs) operation with a standard minute value of 2;  o3 is a overlock operation with 

a standard minute value of 2; and o4 is a lock stitch (ls) operation with a standard 

minute value of 0.5. 

 

We also have a pool of skilled manual workers (operators) who can be assigned to 

these operations: 

 

  op1(S = { ol, xs, ls },  p = 100) 

  op2(S = { ol, xs, ls },  p = 50) 

             op3(S = { ls },  p = 75) 

  op4(S = { xs, ls },  p = 100) 

  op5(S = {xs, ls, ol, bt, bh }, p = 100) 

 

We assume for simplicity that sewing machines are an unconstrained resource (i.e. 

when a sewing machine of a particular type is requested, it is always available). 

  

Therefore,  formulating  this as a constraint satisfaction problem  would give the 

variables, o1, o2, o3, and o4, the following domains (note:  ordering heuristics have 

been applied to both variables and their domains):  

 

  o4 = { op3, op4, op2, op1, op5 } 

  o1 = { op1, op2, op5 } 

  o3 = { op1, op2, op5 } 

  o2 = { op4, op1,op2, op5 } 

   

The initial solution to this CSP (using the greedy algorithm described in Procedure 1), 

o1.1 =  op1, o1.2 =  op2, o2 =  op4,  o3  =  op5,  and o4 =  op3,  is supported by the 

following nogoods: 
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The operation o1 is covered by  two operators to increase output by reducing the 

process time. 

 

This initial configuration of the flow line gives the following line performance, 

measured in the process times (pt)‡ of each operation: 

 

                     

‡ Error! Main Document Only.     



  o1(1.33)  19   o2(2) 20  o3(2) 21 o4(0.6) 

 

Such a configuration would result in an estimated output of at least 252 garments a 

day (8 hour work shift)§.   With this current configuration,  it is clear that o4 can 

process garments about three times faster than o3 can supply them, and o1 can supply 

garments about one and half times faster than  o2 can process them.   

 

An intuitive solution would be to allow either op1 or op2 to ‘float’  between o1 and o3 

when necessary to maintain line balance.    Such an intuitive, deterministic, solution 

disregards the problems of environmental uncertainty,  machine breakdown, operator 

absenteeism, declining operator performance because of illness or boredom, etc. etc.  

The line needs to be monitored, and if there are no perturbations to the work flow we 

can employ the default strategy of using op1 or op2 as ‘floaters’.     

 

The identification of either op1 or op2 as appropriate candidates for reassignment to o3 

is determined by examining the nogoods for o1 (i.e. those nogoods which have o1 as 

their antecedent): 
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o3 appears in the conclusion of the nogood identifying both op1 and op2  as suitable 

candidates for o3.  Which operator is chosen depends upon the analysis of the 

performance-analyzer,  a knowledge source which calculates the amount of additional 

performance required by an operation, or the amount of performance that can be 

alleviated from a operation.   

 

Let us assume that our analysis suggests that we reschedule the line by reassigning op1 

to o3, what is the significance of this for the existing schedule? and what are the 

procedures necessary to discover this significance? 

 

First,  we must remove o1 = op1  from the set of nogoods.  We also need to post 

safety-conditions with the set of nogoods to identify those existing assignments that 

are now suspect because o1’s assignment of op1 determined their ‘live’ domains at the 

time of their instantiation.  These variables are recorded by the nogoods.  In our 

example, o3 appears in the conclusion of that nogood in which o1 is the antecedent. 

The safety-condition, o1 23 o3, triggers consistency checks on the reordered variable 

o3. We need to determine what affect the  reassigning of o1  will have on its ‘future’ 

variables,  those variables whose instantiations were determined after o1 was assigned. 

Consistency checks show that o3 = op5 is consistent with op1 being assigned to o3.  

Which is to be expected with a simple ‘floater’ transfer.  Under such circumstances 

we simply need to reorder and adjust the set of nogoods to reflect the reassignment of 

op1: 
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§ This is assuming that o4 can be maintained with work. 



   

A more interesting situation arises when op3 is absent.  First, we must remove o4 = op3 

from the set of assignments.  Here, it is unnecessary to post safety-conditions.  The 

ordering heuristics which forced the assignment ensured that no nogoods were posted. 

 An analysis of o4‘s domain identifies the ordered set {op3, op4, op2 ,op1, op5} as 

possible candidates for the now unassigned operation.   If op4 is chosen then a 

substitute for o2 is also required.  Likewise with op2,  a substitute would be required 

for o1.   Actually,  the selection of a candidate operator would be decided, in part, by 

the performance-analyzer.  With the current configuration of the line it seems likely 

this would be either  op1, or op5.   Alternatively, given the performance characteristics, 

of the operators a sequence of transfers might be recommended by the system 

implementing the rescheduling framework: 

 

  op2 25 o4   and  op5 26 o1 

   

However, before suggesting such a perturbation to the line, with possible 

consequences on production efficiency, a judgment would need to be made based on 

the costs and benefits of such an action.   Operational matters concerning due dates 

and job priorities would need to be weighed.   This is essentially a managerial 

judgment.   Anyhow,  given that the system, and the human user, accepts that op5 is 

the ideal candidate, what is the significance of this to the existing schedule,  and what 

procedures are necessary to discover this significance?  After removing o4 = op3 from 

the set of assignments we reassign op5 to o4: 

 

  27 

 

  

The growth in nogood information suggests that perturbations to the line, caused  for 

example  by operator absenteeism, is mirrored in perturbations to the ordering of CSP 

variables and domains.   Partial order backtracking allows intelligent reordering of 

‘past’ (previously assigned) variables to allow reassignment heuristics  to identify, via 

nogood sets,  suitable candidates for reassignment.  
 

Software Architecture 

 

The software architecture which implements the ideas discussed in this paper is 

described in  Spragg, J., Tyler, D. and Fozzard, G. (forthcoming).9   The architecture 

is modeled on the OPIS mixed initiative scheduler developed by Smith(1995)10 and 

his team at the Center for Integrated Manufacturing Decision Systems, Carnegie 

Mellon University. 

 

The implementation of the framework described here has been tested in a simulated 

environment described in Fozzard, Spragg, and Tyler (1996) 11 and Fozzard, Spragg 

and Tyler (1996)12. 

 



Conclusion and Future Work 

 

[to be supplied]. 
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