
Constraint Based Reactive Rescheduling in a Stochastic
Environment.

J.E. Spragg

Mitthögskolan, Sweden.

G. Fozzard

De Montfort University, Leicester UK.

and

D. Tyler

Manchester Metropolitan University, Manchester, UK.

April 1997

Keywords

Schedule repair, flow lines, garment manufacture, partial order

backtracking, reassignment heuristics, and dynamic CSP.

Abstract

The problem of scheduling manufacturing systems where the performance, or indeed,

capacity of a production resource is subject to stochastic change, is the subject of this

paper. Typical of such resources are those which are dependent upon labour intensive

processes.

In the United Kingdom the manufacture of clothing garments is still dominated by the

progressive bundle system (PBS).1 Garments are produced on a continuous-flow

production line in which garment pieces are passed in succession through a network of

workstations where skilled manual workers complete operations on garments using

sewing machines. The workstations which comprise the flow line can be connected

in either a serial or a parallel fashion depending upon the sequencing constraints

which govern the order in which the garment are to be assembled. The rate of flow

of work through each workstation is determined by the performance of the

machinists.

The dominance of the PBS relates to the difficulties of automating the assembly of

garment pieces. The automation of handling a flimsy material like cloth alone has

proved a major bottleneck in the adoption of flexible manufacturing practices.

Despite advances in automation in other sectors of manufacturing industry, it is clear

that the requirement to successfully manage skilled manual labor will continue to be

employed until appropriate technologies can be found. The PBS represents a serious

scheduling problem for factory managers and line supervisors. This problem is not

alleviated by the trend towards smaller contract sizes which reflect a fluid fashion

market.

The determination of the optimum order in which sewing operations should be

arranged is not a serious scheduling problem. In fact, it is the classic sequencing

problem, n/m/P/Cmax, discussed in French (1982)2. The real scheduling problem

associated with a PBS arises from the constant need for reactive rescheduling to

maintain line balance. The frequency of operator absenteeism, or machine

breakdown, or unstable operator performance, requires constant reassignment of

operators and operations. In such systems, reactive rescheduling becomes so frequent

that it takes on the character of supervisory control. In the approach described here,

line balance is maintained via periodic schedule repair, based upon reassignment

heuristics, supported by partial order backtracking.

Line Balance

Schedule repair activity is triggered by monitoring the flow line. At the start of a

new line, operators are allocated to operations by line supervisors and production

managers. The operators required for each operation is calculated using the

principles of load and capacity planning. In practice, the operators' skills and

performance rarely fit the work content of the operations and potential bottlenecks

become inherent in the line's design. Moreover, even if it were possible to achieve a

perfect line balance, it would be impossible to maintain it over time due to line

perturbations caused by machine breakdowns, operator absenteeism and fluctuations

in operator performance. The schedule must be repaired to maintain ‘balance

control’. Balance control is necessary because of the sectionalization of the line that

leads to different operations being performed at different rates. To provide

protection against variations in output over discrete periods of time, an agreed

amount of work-in-progress is allowed to act as a buffer between individual

operations. A requirement for supervisory control is to set the flow of work through

each operation to be as similar as possible. The success of this behavior is reflected

in the operational measures of line efficiency and productive performance.

Therefore, the primary indicators of unbalanced work flow are idle workstations and

declining or overloading work-in-progress buffers.

The monitoring task is necessarily accompanied by analysis. The cause of problems

must be identified. Calculations are required to identify which operations require

additional resources and which operations can be alleviated of resources.

Formally, a PBS flow line can be viewed as a set of operations, O, where each operation,

o, is a 2-tuple which consists of a set of operators, Op, and a set of machines, M ,

which have been assigned to the operation:

 1

The scheduling problem consists of assigning operators, op, and machines, m, to an

operation, o1, until the calculated output from the operation is equal, or greater than, the

next operation, o2, in the sequence.

 Op and M have the same cardinality.

o1({op1,op2, .., opn}, {m1,m2, ..., mn}) 2 o2({op1,op2, .., opn}, {m1,m2, ..., mn}).

The sequence constraint, o1 3 o2, is determined by the technical necessity of having to

perform operation o1 before operation o2.

Other constraints prohibit the operators and machines that can be assigned to an

operation. An operation requires a particular skill from an operator, and a particular

type of machine. For simplicity we can say that the assigned operators’ skill must equal

the type of the machine assigned:

 4

A typical operator has a set of skills, S, operations that she or he can perform, and a

particular performance level, p.

The process time required for each operation is determined by the work content of the

operation, measured by a standard minute value which is empirically determined by a

time and motion study, and the performance of the operators. The process time is

calculated by dividing the standard minute value of the operation by the performance

of the operators and multiplying the result by 100. Operator performance is, again,

determined by time and motion study. The industry recognizes that an 100 performer

can perform a sewing operation with a 3 minute work value in 3 minutes. Whereas a

50 performer would take 6 minutes.

The maintenance of line balance requires that the process time of each sequential

operation is kept as identical as possible. So that process_time1 and process_time2 of

 op1(process_time1) 5 op2(process_time2) are either equal or within an acceptable

range which can be absorbed by the work-in-progress buffers between operations.

Initial Line Balance

The initial line balance is achieved by employing a greedy algorithm which assigns

operators to machines and operations.

The greedy algorithm, that assigns the operators and machines to the operations, takes

two sets as arguments. The unordered set of operations, O. The second argument is an

ordered set of skills, S ,where skills are constraint satisfaction problem variables, which

identify a skill and a domain which consists of the set of operators, Op, with that skill.

Both the variables, S, and the domain values, Op, are ordered. The variables are

ordered according to the cardinality of the domains. The variables with small domains

are considered the most highly constrained and should be processed first. Also, the

domains of s 6 S are ordered according to the cardinality of the skill set of the

operators. Those operators with less skills are more constrained and should be

processed first. The algorithm also takes a variable, t, which denotes the target output of

the line. The operations, PUSH, POP, and REMOVE, are primitive procedures with

obvious interpretations.

The greedy algorithm makes a number of assumptions about hard and soft constraints:

 There are sufficient operators to cover the tasks.

 There are sufficient machines to cover the task.

 . Operator skills represent hard constraints, and

 . Operator performance represents soft constraints.

If there are insufficient operators or machines to cover the tasks, it means that the

daily output parameter, t, must be relaxed. It can be considered to be a soft constraint.

 The greedy algorithm ignores operator performance, p. Operator performance is

considered to be a soft constraint which can be relaxed. (The buffers between

operations can absorb the additional output of a ‘100’ performer doing a ‘75’ job.)

The algorithm only attempts to assign correctly skilled operators to the various tasks.

 The added complexity of satisfying performance constraints would require an

alternative search procedure, for example, a beam search. This is considered

unnecessary because the impact that performance has on output is averaged out over

an entire shift. It is a constraint which can be satisfied over time. Satisfying

operator performance constraints is actually an optimization problem. At any one

point in time, the partial satisfaction of the performance constraint is acceptable

because the buffers between operations can absorb excess and feed down stream

operations. The satisfaction of the operator performance constraint is achieved over

 Procedure 1

 PROCEDURE greedy-algorithm (O,S,t)

 BEGIN

 WHILE O NOT EMPTY

 DO

 s 7POP (S)

 op 8POP(Ds)

 o 9 REMOVE(s,O)

 PUSH(op,oop)

 forward_check(op,S)

 PUSH(machine(s),om)

 UNTIL enough-p (o,t)

 END

 END

the entire work shift and measured as a constraint which satisfys an objective

function.

It is the function of schedule repair to maintain line balance by keeping the process

times of operations as equal as possible. This is achieved by transferring, and

exchanging, operators between operations. The identification of which operator or

operators to transfer or exchange is determined by reassignment heuristics.

Schedule Repair

Schedule repair attempts to solve a dynamic constraint satisfaction problem, and is

achieved by reassigning operators to other operations. This activity is supported by

partial order backtracking which identifies the appropriate set of candidates.

Schedule repair is triggered by monitoring the flow line. The primary indicators of

line unbalance is work-in-progress buffers. An empty (or rapidly emptying) work-in-

progress buffer suggests that process times between operations has become unequal.

This might be because of human factors. An operator’s performance could have

dropped because of boredom, or an operator could be absent, or a machine could have

broken down. Whatever the reason, the analysis task must generate two sets, the set

of those operators, C, whose performance pfrom can be transferred from it current

operation, and the set of operations, T, which must have additional performance, pin.

The members of set T are prioritized to identify the most desperate imbalance. Any

operator from C whose performance, pfrom , equals some pin would be an ideal

candidate for transfer.

Unfortunately, it is rare that such an ideal candidate can be identified. It is usual that

a sequence of exchanges is necessary before a candidate can be freed to add additional

performance to an operation.

For example, assume that analysis has identified an operation which requires an

additional ‘75’ performance from an overlock operator. The set C of possible

candidates does not contain such an operator. However, there is an operator in C

with cross stitch skills that can be transferred to a cross stitch operation and allow a

‘75’ performer with both cross stitch and overlock skills to be transferred to the

priority operation in T.†

The application of reassignment heuristics to rostering problems, and constraint

satisfaction problems in general, has been described by Smith (1992)3.

Partial Order Backtracking: A Discipline for Reactive Rescheduling

The mechanism which supports the selection of exchange candidates is partial order

† There is a limit on how recursive these exchanges can be: each time an operator is moved,

her or his performance declines and it takes some time before it returns to normal. A flow

line which has been seriously perturbed by operator transfers will loose production efficiency.

 In practice it is better to nominate a small set of operators as floater candidates, and use

these exclusively for exchanges.

backtracking. Spragg and Kelleher (1996)4 have described how partial order

backtracking offers the rescheduler a framework for schedule repair, based upon a

set of nogoods, which impose a systematic partial order on the set of activities to be

repaired but allows non systematic techniques to be used within that framework.

In a recent paper Ginsberg and McAllester (1994)5 suggested using a hybrid search

algorithm that combined the advantages of both systematic and non systematic

methods of solving constraint satisfaction problems. The systematic search method

described by these authors, dynamic backtracking, employs a polynomial amount of

justification information to guide problem solving. The non systematic methods,

GSAT (1992)6 and min conflict (1990)7,offer the search algorithm freedom to explore

the search space by abandoning the notion of extending a partial solution to a CSP and

instead modelling the search space as a total, if inconsistent, assignment of values to

variables. A hill climbing procedure is employed on this total set of assignments to

try and minimize the number of constraints violated by the overall solution. Ginsberg

and McAllester have called their hybrid algorithm partial-order backtracking.

Partial order backtracking brings a systematic search discipline to non systematic

schedule repair search procedures, such as GSAT, min conflict and reassignment

heuristics, by applying the dynamic backtracking procedure developed by Ginsberg

(1993)8 to the search space.

Dynamic backtracking maintains search information by accumulating a set of

nogoods. A nogood is an expression of the form:

 10 11

Here, a nogood is used to represent a constraint as an implication which is logically

equivalent to the expression:

 12

A special nogood is the empty nogood, which is tautologically false. If an empty

nogood can be derived from a given set of constraints, it follows that no solution

exists for the problem being attempted.

New nogoods are derived by resolving old ones. As an example, suppose we have

derived the following:

 13

where v1, v2, and v3 are the only values in the domain of u. Nogoods are combined to

conclude that there are no solution with:

 14

moving z to the conclusion of the above gives:

 15

The usual problem with maintaining a set of nogoods is that the set grows

monotonically, at each step in the search a new nogood is added to the list of

nogoods. Dynamic backtracking deals with this by discarding those nogoods whose

antecedents no longer match the partial solution being extended by the search.

Dynamic backtracking uses a set of nogoods to both record information about the

portion of the search space that has been eliminated and to record the current partial

assignment being considered by the procedure. The current partial assignment is

encoded in the antecedents of the current set of nogoods. The antecedents of any set

of nogoods, 16, represent a consistent, if partial, solution to a constraint based

scheduling problem. The next assignment must be an extension of this partial

assignment. Assignments which have caused dead ends in the search can be detected

by analyzing the conclusion parts of the nogood set. The dynamic backtracking, like

most systematic search, assumes a static variable ordering. Whenever a nogood is

added to the set of nogoods, the static variable ordering determines the variable that

appears in the conclusion of the nogood. The most recently tried variable is always

selected to appear in the conclusion of the new nogood.

Partial order backtracking replaces the fixed variable ordering which constrains

dynamic backtracking with a partial order that is dynamically sorted during the

search. When a new nogood is added to the nogood set, this partial ordering does

not fix a static sequence on the choice of variable to appear in the nogoods conclusion.

 As it turns out, there is considerable freedom as to the choice of the variable whose

value is to be changed during backtracking, thereby allowing greater control in the

directions that the procedures takes in exploring the search space.

However, there is not total freedom: safety conditions need to be maintained that

model the partial orderings of the variables. It is necessary for variables in the

antecedents of nogoods to precede the variables in their conclusion. This is because

the antecedent variables are responsible for determining the current domains of such

variables.

Partial order backtracking supplies a framework for reactive rescheduling. The

management of a progressive bundle flow line system approaches scheduling as a

problem of repair over time. From a constraint based scheduling perspective,

rescheduling introduces an extra set of constraints which need to be addressed. These

new constraints are related to the need to preserve the old assignments of operators to

operations as far as possible. The old schedule represents an investment in planned

resources, allocation of machines and people, which should not be disturbed any

more than necessary.

Example

An example will demonstrate our approach to reactive rescheduling in a stochastic

environment . We can imagine a progressive bundle flow line with 4 operations:

 17

Where o1 is an overlock (ol) operation with a standard minute value of 2; o2 is a cross

stitch (xs) operation with a standard minute value of 2; o3 is a overlock operation with

a standard minute value of 2; and o4 is a lock stitch (ls) operation with a standard

minute value of 0.5.

We also have a pool of skilled manual workers (operators) who can be assigned to

these operations:

 op1(S = { ol, xs, ls }, p = 100)

 op2(S = { ol, xs, ls }, p = 50)

 op3(S = { ls }, p = 75)

 op4(S = { xs, ls }, p = 100)

 op5(S = {xs, ls, ol, bt, bh }, p = 100)

We assume for simplicity that sewing machines are an unconstrained resource (i.e.

when a sewing machine of a particular type is requested, it is always available).

Therefore, formulating this as a constraint satisfaction problem would give the

variables, o1, o2, o3, and o4, the following domains (note: ordering heuristics have

been applied to both variables and their domains):

 o4 = { op3, op4, op2, op1, op5 }

 o1 = { op1, op2, op5 }

 o3 = { op1, op2, op5 }

 o2 = { op4, op1,op2, op5 }

The initial solution to this CSP (using the greedy algorithm described in Procedure 1),

o1.1 = op1, o1.2 = op2, o2 = op4, o3 = op5, and o4 = op3, is supported by the

following nogoods:

 18

The operation o1 is covered by two operators to increase output by reducing the

process time.

This initial configuration of the flow line gives the following line performance,

measured in the process times (pt)‡ of each operation:

‡ Error! Main Document Only.

 o1(1.33) 19 o2(2) 20 o3(2) 21 o4(0.6)

Such a configuration would result in an estimated output of at least 252 garments a

day (8 hour work shift)§. With this current configuration, it is clear that o4 can

process garments about three times faster than o3 can supply them, and o1 can supply

garments about one and half times faster than o2 can process them.

An intuitive solution would be to allow either op1 or op2 to ‘float’ between o1 and o3

when necessary to maintain line balance. Such an intuitive, deterministic, solution

disregards the problems of environmental uncertainty, machine breakdown, operator

absenteeism, declining operator performance because of illness or boredom, etc. etc.

The line needs to be monitored, and if there are no perturbations to the work flow we

can employ the default strategy of using op1 or op2 as ‘floaters’.

The identification of either op1 or op2 as appropriate candidates for reassignment to o3

is determined by examining the nogoods for o1 (i.e. those nogoods which have o1 as

their antecedent):

 22

o3 appears in the conclusion of the nogood identifying both op1 and op2 as suitable

candidates for o3. Which operator is chosen depends upon the analysis of the

performance-analyzer, a knowledge source which calculates the amount of additional

performance required by an operation, or the amount of performance that can be

alleviated from a operation.

Let us assume that our analysis suggests that we reschedule the line by reassigning op1

to o3, what is the significance of this for the existing schedule? and what are the

procedures necessary to discover this significance?

First, we must remove o1 = op1 from the set of nogoods. We also need to post

safety-conditions with the set of nogoods to identify those existing assignments that

are now suspect because o1’s assignment of op1 determined their ‘live’ domains at the

time of their instantiation. These variables are recorded by the nogoods. In our

example, o3 appears in the conclusion of that nogood in which o1 is the antecedent.

The safety-condition, o1 23 o3, triggers consistency checks on the reordered variable

o3. We need to determine what affect the reassigning of o1 will have on its ‘future’

variables, those variables whose instantiations were determined after o1 was assigned.

Consistency checks show that o3 = op5 is consistent with op1 being assigned to o3.

Which is to be expected with a simple ‘floater’ transfer. Under such circumstances

we simply need to reorder and adjust the set of nogoods to reflect the reassignment of

op1:

 24

§ This is assuming that o4 can be maintained with work.

A more interesting situation arises when op3 is absent. First, we must remove o4 = op3

from the set of assignments. Here, it is unnecessary to post safety-conditions. The

ordering heuristics which forced the assignment ensured that no nogoods were posted.

 An analysis of o4‘s domain identifies the ordered set {op3, op4, op2 ,op1, op5} as

possible candidates for the now unassigned operation. If op4 is chosen then a

substitute for o2 is also required. Likewise with op2, a substitute would be required

for o1. Actually, the selection of a candidate operator would be decided, in part, by

the performance-analyzer. With the current configuration of the line it seems likely

this would be either op1, or op5. Alternatively, given the performance characteristics,

of the operators a sequence of transfers might be recommended by the system

implementing the rescheduling framework:

 op2 25 o4 and op5 26 o1

However, before suggesting such a perturbation to the line, with possible

consequences on production efficiency, a judgment would need to be made based on

the costs and benefits of such an action. Operational matters concerning due dates

and job priorities would need to be weighed. This is essentially a managerial

judgment. Anyhow, given that the system, and the human user, accepts that op5 is

the ideal candidate, what is the significance of this to the existing schedule, and what

procedures are necessary to discover this significance? After removing o4 = op3 from

the set of assignments we reassign op5 to o4:

 27

The growth in nogood information suggests that perturbations to the line, caused for

example by operator absenteeism, is mirrored in perturbations to the ordering of CSP

variables and domains. Partial order backtracking allows intelligent reordering of

‘past’ (previously assigned) variables to allow reassignment heuristics to identify, via

nogood sets, suitable candidates for reassignment.

Software Architecture

The software architecture which implements the ideas discussed in this paper is

described in Spragg, J., Tyler, D. and Fozzard, G. (forthcoming).9 The architecture

is modeled on the OPIS mixed initiative scheduler developed by Smith(1995)10 and

his team at the Center for Integrated Manufacturing Decision Systems, Carnegie

Mellon University.

The implementation of the framework described here has been tested in a simulated

environment described in Fozzard, Spragg, and Tyler (1996) 11 and Fozzard, Spragg

and Tyler (1996)12.

Conclusion and Future Work

[to be supplied].

Acknowledgments

This paper relates to research undertaken as part of a SERC funded project: The

Simulation of Clothing Manufacture. We gratefully acknowledge the contribution of

ideas from Matthew Ginsberg, Gerry Kelleher, Steven Smith, and Barbara Smith.

References

1.
 Chuter, A.J., An Introduction to Clothing Production Management, BSP Professional Books, Oxford, 1988.

2. French, S., Sequencing and Scheduling, An introduction to the mathematics of the Job-Shop, Ellis

Horwood Limited, 1990.
3. Smith, B.M., Filling the Gaps: Reassignment Heuristics for Constraint Satisfaction Problems,

Report 92.29, School of Computer Studies, University of Leeds, November 1992.
4. Spragg, J.E. and Kelleher, G., A Discipline for Reactive Rescheduling, Proceedings of the 3rd

International Conference on Artificial Intelligence Planning Systems, Edited Brian Drabble, The

AAAI Press, pages 199-204, 1996.
5. Ginsberg, M.L., and McAllester, D.A., GSAT and Dynamic Backtracking, Knowledge

Representation and Reasoning Conference, 1994.
6. Selman, B., Levesque, H., and Mitchell, D., A New Method for Solving Hard Satisfiability

Problems, In Proceedings of the Tenth National Conference on Artificial Intelligence, pages 440-

446, 1992.
7. Minton, S., and Johnston, M.D., Philips, A.B., and Laird, P., Solving Large-Scale Constraint

Satisfaction and Scheduling Problems Using a Heuristic Repair Method, In Proceedings of the

Eighth National Conference on Artificial Intelligence, pages 17-24, 1990.
8. Ginsberg, M.L. Dynamic Backtracking, Journal of Artificial Intelligence Research 1, pages 25-46,

1993.
9. Spragg, J., Tyler, D. and Fozzard, G., FLEAS: flow line environment for automated supervision of

simulated clothing manufacture (forthcoming).
10. Smith, S. Reactive Scheduling Systems, in Intelligent Scheduling Systems, (eds. D.E. Brown

and W.T. Scherer), Kluwer Academic Publishers, Boston, Pages 155-192, 1995.
11. Fozzard, G., Spragg, J., and Tyler, D. Simulation of Flow Lines in Clothing Manufacture, Part 1:

model construction, International Journal of Clothing Science and Technology, Vol 8, No. 4, pages

17-27, 1996.
12. Fozzard, G., Spragg, J., and Tyler, D. Simulation of Flow Lines in Clothing Manufacture, Part 2:

credibility issues and experimentation, Vol 8, No. 5, pages 42-50, 1996.

