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Abstract.  

Process modelling has always been an important part the research in gener-
alisation. While in the early days, this would take the form of a static se-
quence of generalisation actions, today the focus is on modelling much 
more complex processes, capable of generalising geographic data in to vari-
ous maps according to specific user requirements. This chapter discusses 
several aspects of the problem of building such systems. As the system get 
more complex, it becomes important to be able to reuse components which 
already exist. Web services have been used to encapsulate generalisation 
processes in a way that maximises their interoperability and therefore reus-
ability. However, for a system to discover and trigger such service, it needs 
to be described in machine understandable way, and the system needs to 
have the knowledge about where and when to use such tool. This chapter 
therefore explores the requirements and potential approaches to design and 
build such systems.  
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1. Introduction 

1.1. State of the art  

 

Early research on automated generalisation focused on developing algo-
rithms to automate single generalisation operations (Jenks 1989, Douglas & 
Peuker 1973,  Jäger 1991). After a few of these emerged, the next logical 
question was how to combine them to generalise an entire map? This is why 
the research community started to focus on process modelling. The first 
studies proposed static sequences of algorithms to derive a specific map, 
this is often referred as batch processing. (Weibel et al 2007) explain how 
this domain has evolved into more advanced types of modelling, which the 
authors have classified into three main categories: condition-action model-
ling (rule based system), human interaction modelling, and constraint-
based modelling. The rule based system, which has sometimes been imple-
mented as an expert system, was very popular at first, but proved difficult 
to extend beyond a certain point, due to the difficulty of formalising and 
capturing all the rules required, and to avoid inconsistencies when the 
number of rules grows. While inconsistencies in a rule set can be tracked 
down (Brenner and Sester 2005), resolving them can be very difficult. The 
human interaction model was letting the human make most decision of 
what tool to apply where, but such system offer a limited increase in 
productivity. In order to overcome the limitations of these two models, the 
constraint-based model was developed. The principle is to express the re-
quirements for the target map in terms of constraints (see Chap. 2), and to 
use a mechanism to trigger a combination of algorithms to maximise the 
satisfaction of this set of constraints. Different models have been studied to 
reach the optimum:  

 Multi agent model 

 Combinatorial optimisation model 

 Continuous optimisation model. 

 

Since the review of (Weibel et al 2007), no ground breaking advances have 
been made in this domain. Instead, the existing techniques have been re-
fined, and applied to real world use cases with very positive results. The 
most interesting advance on the methodology front has been to add another 
layer to the decision process, and apply different subsystems to different 
tasks, or different geographic configurations (see Sect 7.2).  



Chap. 11 provides an overview of the most recent success in applying auto-
mated generalisation to real production systems, all of them implemented 
in National Mapping Agencies, using different technologies, and achieving 
different level of automation on different types of products. Systems de-
scribed in Chap. 11.3, Chap. 11.4 and Chap. 11.8 produce paper maps at 
scales between 1:25k and 1:100k from topographic data, respectively at IGN 
France, at SwissTopo and in a group of German federal states (Bundeslän-
der). In these three cases a first pass applies automatic generalisation to the 
data, before manual editing takes place to finish the maps. IGN uses Radius 
Clarity (1Spatial) for the automated generalisation followed by GeoConcept 
Publisher for the manual editing. SwissTopo uses Axpand (Axis Systems) in 
combination with ArcGIS (ESRI). The German solution is also based on 
Radius Clarity for the automated generalisation part. Chap. 11.5 describes 
another system using automated generalisation, but this time the generali-
sation system is fully automated, and manual finishing is not required. The 
product obtained is not the usual high quality topographic map, but a light-
er backdrop map, designed to be used at scales around 1:25k for overlaying 
other data onto it. The generalisation system is based on 1Spatial software 
(Radius Clarity and Radius Studio). Chap. 6 and Chap.7 present automated 
generalisation processes developed respectively at USGS and Kadaster NL 
using ArcGIS (ESRI).  All these systems have been built by heavily custom-
ising the original platform. In some cases the customisation and extensions 
have been made by the software company itself (1Spatial for the German 
federal states, Axis Systems with SwissTopo), sometimes by the customer 
(IGN and OS). So platforms exist for developing complex automated gener-
alisation processes that bring real benefits to production systems. What we 
have not seen yet is a platform that can be used out of the box by simple 
configuration (importing the input data into the system and expressing the 
requirements). This is one of the main objectives of the current research on 
on-demand mapping. The general idea is to build a system that can easily 
integrate data from different sources, and generalise them together to ob-
tain a map as specified by the user. The general idea has been described in 
(Regnauld 2007), and refined since (Foerster et al 2012). (Balley and Reg-
nauld 2012) proposes an architecture for such a system which decouples its 
main components. These are summarised in Figure 1. They include  

 The product specifications, to formalise the requirements 

 The data access manager, to link the data with the system internal 
schema 

 Web services, to provide algorithms (generalisation algorithms, spa-
tial analysis tools, etc.), which should be formally described 



 The knowledge base, which contains all the knowledge required by 
the system (procedural knowledge, cartographic knowledge, geo-
graphic knowledge) (Armstrong 1991). 

 The engine, which is capable of using the knowledge to interpret the 
specifications and build and apply the workflow that will derive the 
required map from the given data, using the tools available.    

 

Such a system, in order to deliver true on demand mapping, would be very 

big and complex, including large libraries of well described tools and rich 
knowledge of all kinds. Building such a system should be done incremental-
ly, focusing on one of few types of requirement at a time, and enriching the 
system with the components required. This brings us to discuss the compo-
nentisation of the generalisation process.   

 

Figure 1: High-level architecture deriving on-demand products 



1.2. Componentisation of the generalisation process 

Componentisation is the process of decomposing a complex system into 
simpler component. In our context we look into decomposing a 
generalisation system into components that can be developed 
independently and shared. These components can be simple algorithms, or 
much more complex tasks. The benefit of having complex tasks is that they 
can encapsulate the knowledge specific to the task. This can reduce the 
amount of knowledge required in the top level system. This is a way of 
organising the knowledge to avoid having a huge flat set of rules and 
constraints which would quickly become unmanageable and impossible to 
extend. Figure 2 shows an example of complex task from (Balley et al 2012). 

This task was instantiated for pruning a road network (network to filter) 
while making sure that roads supporting (spatial relation alignment) cycle 
routes (mapped concept) were kept. This task is made of three subtasks. 
The first one is a complex task in charge of marking the sections of the road 
network which are aligned with a cycle route. The second task is atomic and 
identifies the main roads in the road network. The final atomic subtask per-
forms the filtering based on the attributes set during the two previous sub-
tasks.  

   

Figure 2: Example of a complex task  



This is also a good way of reusing existing processes to incorporate them 
into bigger, more complete systems. For example Touya & Duchêne (2011) 
combines existing processes to make a generalisation system capable of 
handling different complex situations. Balley and Regnauld (2012) have 
proposed a model using tasks and subtasks for organising the knowledge in 
their on-demand mapping system. Goals are chosen depending on the user 
requirements, and then each goal is associated with a task designed to 
achieve it. Each task encapsulates its own procedural knowledge, used to 
trigger the appropriate actions.  

To ensure interoperability between these tasks, there is a need for them to 
conform to some standard. The requirements for a shared development 
platform for generalisation has been identifies by Edwardes et al (2003). It 
had proposed a number of possible approaches, and led to the development 
of WebGen, a client-server platform for sharing processes using Web ser-
vices (Neun and Burghart 2005). Here we review the different ways of shar-
ing processes:   

 

 Open source. There are a number of open source projects (Open JUMP, 
GeoTools, QGIS, GeOxygene, 52°North WPS, GRASS, sextante) that 
propose a platform for developing geospatial processes. Users can either 
develop on the platform, or import some libraries into their own plat-
form to use existing tools. This approach has limitations though, as the 
integration can be cumbersome (incompatible open source license mod-
els, linking libraries and writing translators to cope with different data 
models), and needs to be done every time a new library is required. 
There are also potential compatibility issues. Users are often already us-
ing their own development platform, integrated with their own systems. 
Switching to a new one is not often possible. However, using libraries of 
generic tools is a common way of reusing existing open source software 
(JTS, JCS, CGAL, etc.).       

 Web Services. The Web service approach is a way to package processes 
in a standard way. Web services are hosted on servers and can be ac-
cessed by remote clients through the web. The main advantage of the 
web service is that the client does not need to run on the same platform 
as the service it is calling. This provides true platform interoperability. It 
is also very versatile, as there is no limit to what can be encapsulated in a 
service. It could be a simple generalisation operator, or even a simple 
measure, or it could be a full generalisation system. Web services for 
generalisation have been studied. An initial platform called WebGen was 
developed at the University of Zurich (Burghardt et al 2005, Neun and 
Burghardt 2005). It was later adapted to the OGC standard WPS, at the 



request of several members of the ICA Commission on Generalisation 
and Multiple Representation (Foerster et al 2008). Tests have been done 
at Ordnance Survey to demonstrate the cross platform interoperability 
benefits of the approach. A server capable of hosting services that rely on 
the platform Radius Clarity has been setup. These services have been 
successfully called by an OpenJump (http://openjump.org/) client. A 
client for ArcGIS is currently under development at 52°North, funded by 
the Ordnance Survey (GB). More information and updates on WebGen-
WPS can be found on the commission website 
(http://generalisation.icaci.org/index.php/web-services). 

 Code moving. A disadvantage of the web service approach is that it in-
volves moving the data from the client to the server, doing the processing 
remotely and downloading the results; this can involve transferring large 
amounts of data. An alternative approach would be to send the executa-
ble code to the client, where it can execute the process locally. This code 
moving concept and its application to geoprocessing is described by Mül-
ler et al (2010,  2012). It has the advantage over the web services to re-
quire less data transfer, as the size of the code is often much smaller that 
the size of the geographic data being processed. This could therefore re-
sult in much faster overall execution time. It also reduces the risks relat-
ed to data security, as the data does not leave the client. The main prob-
lem with the method is that it requires the client to provide a compatible 
runtime environment, compatible hardware, and there may also be li-
cencing issues if the code includes third party libraries. This approach al-
so allows organisations to publish their tools without having to maintain 
a powerful server capable of running the process locally. This technology 
is currently less mature, less readily available than the web service ap-
proach, but the concept is interesting. 

Both the web service and the code moving approaches require a formal de-
scription of the process proposed. This includes a high level description of 
what the service does, and also the type of all the parameters required. This 
is often referred as the service contract, which formalises the requirement 
of the service to ensure its successful execution. This should be enough for a 
human to choose what service to use. In a context of automatic discovery of 
services, it becomes essential that these descriptions are formalised and use 
a standard vocabulary. This has been discussed in (Balley and Regnauld 
2011) and led to the definition of the semantic referential, which defines all 
the concepts that need to be shared by all the components of their on de-
mand mapping system. (Touya et al 2010) also identified similar require-
ments, and propose a generalisation domain ontology to define these con-
cepts. Geographic concepts relate to real world objects and can be easily 
defined (see for example those defined by INSPIRE), even if reaching a con-

http://openjump.org/
http://generalisation.icaci.org/index.php/web-services


sensus is often difficult. Many classifications of generalisation operators 
have also already been proposed (McMaster & Shea 1992, Regnauld & 
McMaster 2007, Foerster et al 2007), so again, the challenge is to adopt a 
common one. It becomes more difficult when it comes to formalising the 
description of the parameters, as these are sometimes very specific to a par-
ticular process (cf. figure 2 in 2.1.2). The best way to overcome this seems to 
be to rely on translators that derive the values of the parameters required 
by a service from formalised user requirements.   

 

1.3. Formalising the procedural knowledge 

Procedural knowledge is used to guide the selection and application of gen-
eralisation operators (Armstrong 1991). These can take various forms like 
rules, constraints or ontologies. Technically this is declarative knowledge, 
but we often associate this to the domain savoir-faire, which we include in 
the procedural knowledge. This selection mechanism depends on the input 
data, the output required and of course the operators available. Formalising 
this knowledge therefore requires an existing formalism to describe the 
types of geographic features handled, the types of operators required, and 
the requirements, often referred as map specifications (chapter 2).  

The procedural knowledge can take many forms. In its “unformalised 
form”, it can be found in the implementation of batch processes, as a static 
sequence of operations, possibly enhanced by the use of conditional state-
ments to adapt the sequence to the conditions. In more advances system, 
like those based on optimisation techniques, the procedural knowledge 
provides the heuristics used by the system to explore the space of solutions. 
This is rarely well formalised. Taillandier (2011, 2012) formalises part of the 
procedural knowledge in the AGENT system in order to revise this 
knowledge automatically, to improve its performance.  

Formalising the procedural knowledge is part of formalising all the 
knowledge required by the system. Concepts used to describe the procedur-
al knowledge must match those used to describe the map specifications 
(chapter 2).  

The key components of the system that needs to be formally described are 
the basic tools (generalisation operators, measures, spatial structures, etc.). 
Some elements of the description are purely functional, while others are 
dependant on how that are made available (web service, moving code, li-
brary).   

Items required for describing tools include: 

 Type of operation performed (see chapter 7.3) 



 Type of data processed. Many data models for MRDB have been devel-
oped in the past, for example MADS(Parent et al 1998) proposes a hier-
archy of spatial abstract types that can be used to categorise the geo-
graphic classes. Ontologies have also been used to organise and describe 
geographic data and their interactions see chapter 2.3) 

 Geographic context (scale, type of geographic area, etc.)  

 Parameters 

 Software dependencies (for code moving) 

 Hardware dependencies (for code moving) 

 

Knowledge is also required to link the tools to the conditions in which they 
can be used. These conditions are influenced by various factors, some com-
ing from the requirements (target map specifications), others from local 
context. Several models have been defined to try to automatically choose 
the tools based on the requirements and context:  

 Model developed by Balley (2012) (goals and tasks) 

 Model developed by Touya (see chapter 7.2) 

 

1.4. Orchestration 

Once a library of tools to analyse the data and transform them is available, 
that the specifications of the products are available, the next challenge is 
design and build the workflow that will trigger the appropriate actions in 
the right order.  

This part will discuss the different ways processes (available as services or 
otherwise) can get chained together. 

 Workflows. Using workflows to link processes is the usual way of chain-
ing existing processes. These are in general very static, built on top of the 
existing tools (Burghardt et al 2010).  

 Service chaining is the process of building a sequence of individual ser-
vices to perform a more complex task. Depending on how the services 
are described, this chaining can be done in different ways. When the ser-
vices are not or poorly described, the chaining has to be done by an ex-
pert who knows exactly what task the service is performing. For services 
well described using natural language, the service can be used by some-
one who needs not know how the service works, but understands what it 
delivers. When the service description is formalised, it opens the door for 



chaining being automatically done. A chain of services can be encapsu-
lated as a new service. Services can therefore be made available for all 
sorts of tasks, from the atomic operations to the full generalisation pro-
cess. 

Standards like BPEL (Business Process Execution Language) to assem-
ble services have been developed.  (Schaeffer & Foerster 2007) present 
an approach that uses it for chaining OGC services.  

Service chaining is to some extent similar to creating a workflow 
using services. However it adds the interoperability aspect, and as 
service get described with more formal languages, the chaining 
should soon include aspects of automatic service discovery which 
provides a much more dynamic way of chaining services.   

 AGENT System: In the AGENT system (Ruas and Duchene 2007), con-
straints are used to guide the choice of actions. Each constraint  propos-
es a list of actions that could be triggered to attempt to increase the satis-
faction. The agent system has an optimisation engine that looks for an 
optimum global satisfaction of all the constraints. While the current im-
plementations of AGENT use actions available on the same platform, 
they could easily be replaced by service calls. The interesting aspect of 
the system is that the chaining of actions is built dynamically. 

 Hybrids. A hybrid system combines different approaches to chain pro-
cesses or services. These systems are usually designed using a very 
pragmatic approach, trying to reuse what is already available and com-
bine them. For example, CollaGen (chap 7.2) uses a workflow to control 
different generalisation subsystem in charge of generalising a specific 
type of geographic context. These subsystems are already complex sys-
tems, some based on the AGENT paradigm described above.  The model 
proposed by (Balley and Regnauld 2012) uses goals and tasks to dynami-
cally build the sequence of high level tasks to derive the map specified by 
the user. Each task contains its own knowledge base that allows it to 
build its own chain of subprocesses (in this case implemented as ser-
vices).   

 

1.5. Opportunities opening up 

 

 Cloud computing 

With the current trend to componentise the process of generalisation, and 
allow interoperability between different platforms, exploiting the power 



offered by parallel processing is becoming a very realistic prospect. Frame-
works like MapReduce (Dean and Ghemawat 2004) or Hadoop 

(http://hadoop.apache.org/) have been designed for processing large datasets 

efficiently. They rely on mechanisms to split the task and distribute the processing 

over a cluster of processing nodes. While this is already widely used in other 
application domains, we still haven’t seen it used for generalisation. How-
ever, we can easily imagine that once the tasks of a workflow have been 
identified as independent, they could be computed simultaneously in the 
cloud. Computing in the cloud also offers the benefit to user of getting the 
processing power they need when they need it, without having to maintain 
expensive hardware and software in house. 

 The other benefit that componentisation can offer will require these 
components to be described in a standard machine readable way. Once 
this happen, there will be no need to put into workflows in into the pro-
cedural knowledge any direct reference to specific algorithm implemen-
tation (or services). The procedural knowledge will only mention the ab-
stract operations required. Then depending on circumstances (input da-
ta, geographic context, requirements), the right service could be dynami-
cally chosen. Of course, unless everything is perfect, there will be a high 
degree of failure (algorithm not stable, description misleading, lack of 
requirements). This is where optimisation systems such as AGENT can 
be used. They would be able to select several potential candidates, try 
them and keep the best one. This of course will add a considerable over-
head, but this can be mitigated in two ways. First trying alternative solu-
tions can be done in parallel. In addition, we can use automatic learning 
to record past experiences and use it to refine the knowledge used by the 
optimisation engine, so that it gradually stops trying options that tend to 
never deliver good results, and try those which are likely to provide satis-
fying results first. These self-optimising techniques have already been 
studied for an agent system performing generalisation, and proved very 
successful (Taillandier et al 2011)( Taillandier and Gaffuri 2012). With 
more distributed systems on the horizon, more optimization of this type 
will be required to efficiently harvest the power of Web based processing.  

 

 

 

 

http://research.google.com/people/jeff/
http://research.google.com/people/sanjay/
http://hadoop.apache.org/


2. Case Study I: Collaborative Generalisation (by Guil-
laume Touya) 

2.1. Principles of Collaborative Generalisation 

Past and current research shows that existing automatic generalisation pro-
cesses are not able to correctly generalise a complete topographic map, de-
spite some very good results on some specific parts (i.e. landscape like ur-
ban or rural, or theme like roads or land use) of the map (Touya 2008). As a 
consequence, generalising a complete map requires the optimal use of the 
available (on a software platform or via web services) processes. 

1.1.1. Collaboration of Automatic Generalisation Processes 

According to McMaster and Shea (1988), an automatic generalisation pro-
cess has to be able to know how, where and when to apply a generalisation 
operation. Collaborative Generalisation (Touya et al. 2010) aims at answer-
ing the same questions but at the upper level of processes: processes collab-
orate to apply on the part of space they are best suited for. Fig. 1 shows a 
schematic view of collaborative generalisation principles. The map is parti-
tioned into spaces representing a landscape (e.g. urban, rural areas) or a 
data theme (e.g. the road network) (Touya 2010). Each of the spaces that 
needs generalisation is matched to the best suited available process, then 
the potential side effects at the space boundary are corrected. 

 

Fig. 1 The collaboration principle between generalisation processes: process 1 is carried out 

on the town area, process 2 on the rural area, then process 3 on the mountain area and 

finally process 4 on the road network. Side effects are corrected at spaces boundaries 

1.1.2. Interoperability Problems with Collaborative Generalisation 

The collaborative generalisation mechanism intends to make processes col-
laborate whereas they were not designed for and some interoperability is-
sues are raised. Interoperability issues derive from different kind of hetero-
geneities in the collaborative generalisations (see sections 1.2): 



 Process capabilities description: the capabilities of generalisation pro-
cesses have to be specifically formalised to be able to choose the best 
suited one for a given part of space. 

 Parameter heterogeneity: each process is monitored by its own set of 
parameters while the overall generalisation should have a single way of 
parameterisation (Fig. 2). 

 Evaluation heterogeneity: collaborative generalisation is an iterative 
process that requires a generic self-evaluation model, independent from 
the processes. 

 Global syntactic and semantic heterogeneity: process capabilities, pa-
rameters or evaluation rely on shared generalisation knowledge to avoid 
syntactic and semantic heterogeneity. 

 

Fig. 2 Parameter heterogeneity requires a standard kind of parameter and a translator 

2.2. Knowledge Formalisation for Collaborative Generalisation 

The CollaGen model (Touya & Duchêne 2011) allows carrying out collabora-
tive generalisation. Thus, some CollaGen components were developed to 
overcome the interoperability problems raised in the previous section. This 
section briefly describes each of these components with some experimental 
results. 

1.1.3. Generalisation Knowledge Ontology 

In order to solve syntactic and semantic heterogeneity, CollaGen is fitted 
with a generalisation knowledge ontology (see section 1.2). It contains 
shared vocabulary on geographic entities (e.g. building), and generalisation 
concepts (e.g. meso object) and operations (e.g. typification), or spatial re-
lations (e.g. rivers flow into talwegs) (Touya et al. 2010). CollaGen formal-
ised knowledge presented in the next section shares vocabulary by always 
referring to this ontology. 



1.1.4. Specifications Formalisation by Constraints and Rules 

The chosen standard format for specifications in CollaGen is a formal mod-
el for generalisation constraints (see Chapter 2). The formal model is de-
scribed in Fig. 8 of Chapter 3: a generalisation is on a geographic entity (e.g. 
building), about a character (e.g. area) with a type of expression (e.g. char-
acter value < threshold). 

Stoter et al. (2009) noticed that, sometimes, specifying the operation to do 
or not do was useful (e.g. small buildings shouldn’t be aggregated), so we 
added a formal model for such rules (Touya et al. 2010). 80 formal con-
straints or rules have been defined in CollaGen prototype. 

Then, a translator function is associated to each available process to trans-
form the formal constraints and rules into the specific parameters of the 
process (Touya et al. 2010). 

1.1.5. Constraint Monitors for Interoperable Evaluation 

The CollaGen model needs to check the satisfaction of the formal con-
straints in the map during its iterative process, in a process-independent 
way, so constraints monitors are created in the data to monitor each formal 
constraint for each object concerned by the constraint (Touya & Duchêne 
2011). Constraints monitors allow knowing where the map is badly general-
ised (Fig. 3). Generalising a complete map implies the handling of a huge 
number of monitors and evaluate their global satisfaction is a challenge 
(Touya 2012). 

 

Fig. 3 (a) Constraints monitors for generic evaluation of generalisation (b) a group of 

unsatisfied monitors identified by CollaGen prototype  

1.1.6. Generalisation Process Capabilities Description 

Formalising the description of capabilities is a key issue in the quest for web 
services interoperability. Following the ideas of Lutz (2007) for geo-
services, CollaGen describes generalisation processes with pre-conditions 
(i.e. the conditions the input data have to meet to be properly processed) 
and post-conditions (i.e. the expected data modifications caused by the pro-
cess). For generalisation processes, pre-conditions are the type of spaces 



the process is able to treat (e.g. CartACom process (Ruas & Duchêne 2007) 
is able to treat rural spaces) and post-conditions are the constraints that are 
expected to be satisfied after generalisation (Touya et al. 2010). In addition 
to the conditions, the formal description contains an optimal scale range 
and a list of required enrichments (Mackaness & Edwards 2002) (e.g. 
AGENT (Ruas & Duchêne 2007) requires blocks). In Fig. 4, AGENT gives 
results worse than CartACom on a rural area which can be specified in the 
formal description: AGENT’s pre-conditions contain ‘rural space’ with a 
medium confidence ratio (3/5) and its post-conditions do not contain the 
‘building/road parallelism preservation’ constraint, as opposed to CartA-
Com. 

1.1.7. Formalising Orchestration Knowledge 

Finally, in order to orchestrate the generalisation order of the different part 
of spaces, CollaGen allows the definition of orchestrating rules that play 
Ruas & Plazanet’s (1996) Global Master Plan role. It is able to express that 
‘the road network should be generalised before the rural areas’, in a rule 
format (Touya et al. 2010). In Fig. 4, result (4), where the road network has 
been generalised before the rural area, is better than result (3), showing the 
value in specifying such rules.  

 

Fig. 4 (1) before generalisation. (2) generalisation with AGENT then Least Squares process 

(Harrie & Sarjakoski 2002) (3) CartACom then the Beams (Bader et al 2005) (4) the Beams 

then CartACom 

2.3. CollaGen results 

The CollaGen model is based on the formalised knowledge to carry out au-
tomatic collaborative generalisations (Touya & Duchêne 2011). A prototype 
was developed with access to nine automatic processes, all dedicated to 
topographic maps. Fig. 5 shows results for a 1:50k map that contains urban 
and rural landscapes. These results have been evaluated as much better 
than any automatic process used alone. Fig. 6 shows that CollaGen per-
forms even better than the best (non automatic) benchmark tests with 
commercial software from the EuroSDR tests (Stoter et al. 2009), thanks to 
the collaborative generalisation principles.  



 

Fig. 5 Extract of a CollaGen generalisation on a large area at the 1:50k scale, where nine 

processes collaborated 

 



Fig. 6 A mountainous French dataset from EuroSDR tests (Stoter et al. 2009) generalised 

with CollaGen compared to the best results from the tests 



 

3. Gould – An Ontological approach to On-
demand Mapping – Generalisation 

 

3.1. The case for ontology-driven generalisation 

This study relates to on-demand mapping and in particular focusses on 

knowledge formalisation and how it can be used to aid the automatic selec-

tion of generalisation operators and algorithms. If we wish to automate any 

process then we must formalise the knowledge for that particular domain. 

The knowledge needs to be machine understandable not merely machine 

readable. In that way the system can make decisions based on the 

knowledge it has of the process. The acquisition and formalisation of carto-

graphic generalisation knowledge has not proved easy (Rieger and Coulson, 

1993; Kilpeläinen, 2000). Consider, for example, the naming and classifica-

tion of generalisation operators. 

As discussed (section 1.2), there have been numerous attempts to classify 

and describe generalisation operators  but the problems highlighted by 

Rieger and Coulson (1993) remain. As well as differences between the pro-

posed categories of operators there are also problems when different terms 

are used for the same concept (Aggregation or Combine?) and in granulari-

ty; McMaster and Shea (1992) define Smoothing, Enhancement and Exag-

geration where Foerster et al. (2007) simply define Enhancement. There is 

also disagreement as to what functions can be regarded as generalisation 

operators. For example, is Symbolisation a generalisation operator (McMas-

ter and Shea, 1992) or a pre-processing step (Foerster et al., 2007)? 

The use of different operator taxonomies in closed systems does not matter, 

but, if we are to develop an interoperable on-demand system, an agreed tax-

onomy as well as the semantic description of the operators is required. This 

is because we cannot simply ask for a web service that performs Smoothing, 

say, since that operation can be performed by a number of different algo-

rithms (Gaussian, Cubic Spline, Fourier transform etc.), often with different 



results.  Similarly, some operators apply to different geometry types and 

will need to be implemented by different algorithms.  Likewise some algo-

rithms specialise in different feature types such as buildings (Guercke and 

Sester, 2011). Thus these details need to be formally defined so that auto-

matic selection and execution is possible by the on-demand system. 

Formalisation of knowledge can lead to the discovery of new knowledge as 

long as appropriate formalisation tools are available (Kilpeläinen, 2000). 

One such tool is the ontology: the explicit specification of the objects, con-

cepts and the relationships in a body of knowledge concerning a particular 

subject or domain (Gruber, 1993).  Ontologies have the advantage of allow-

ing the sharing and reuse of formalised knowledge (Gruber, 1993). Rule-

based systems hold procedural knowledge that describes explicitly how a 

process is to be performed. As described earlier (section 1.1), rule-based 

systems are likely to suffer from rule explosion.  Ontologies can hold de-

clarative knowledge. One advantage of declarative knowledge is that it can 

be extended by means of reasoning which can be used to derive additional 

knowledge (Genesereth and Nilsson, 1998). 

The application of ontologies to generalisation is not new. However, to date, 

their use has been restricted to aiding the process of generalisation, for ex-

ample by pattern identification (Lüscher et al., 2007); by describing geo-

graphical relationships (Dutton and Edwardes, 2006); and by semantically 

enhancing a line simplification algorithm (Kulik et al., 2005). However, 

what is proposed is using ontologies to describe the complete process of 

generalisation. The intention is to formalise the why, when and how of gen-

eralisation (McMaster and Shea, 1992).  

3.2. Designing the ontology 

The first stage in designing an ontology is to determine its scope by defining 

a set of competency questions that the ontology is expected to answer (Noy 

and McGuinness 2001). In the domain of on-demand mapping the compe-

tency questions include: Under what conditions is generalisation required? 

Which generalisation operators should be applied? What algorithms should 

be applied to implement the selected operators? The next step is to enumer-

ate the important terms in the domain. 



There are a number of reasons why a set of geographic features should be 

generalised but, if we consider legibility in the first instance, we can define a 

number of geometric conditions, such as congestion and imperceptibility, 

which are the result of a change from large (detailed) scale to a small scale, 

and govern legibility. These conditions can be evaluated by applying a 

number of measures (Stigmar and Harrie, 2011). For example, the existence 

of congestion can be determined by applying a feature density measure and 

will determine when generalisation is necessary. 

 

The how of generalisation is answered by generalisation operators. But how 

are they to be defined and classified given the disparate taxonomies de-

scribed earlier?  A (loose) analogy with medicine can be applied. Consider 

the congestion of features. Congestion can be regarded as a condition and a 

symptom of that condition is a high feature density. To check whether the 

data has that condition a measure algorithm can be applied (where a meas-

ure algorithm is analogous to a thermometer, say). If the condition is present 

then a remedy such as a reduction in feature size or in feature count is ap-

propriate. Generalisation operators are defined by the remedies they imple-

ment. For example, if a set of buildings features is determined to be con-

gested then a reduction in feature count can be applied by the Selection-

ByAttribute of the more important buildings only or by the Amalgamation of 

buildings into single features. The mechanism by which an algorithm can be 

used to resolve a condition is shown in Figure 3. That mechanism applied to 

the particular case of congestion in point data, is shown in Figure 4. In this 

case the ontology identified two operations, Amalgamation and Selection, as 

candidates for resolving the congestion. The ontology uses the term trans-

formation algorithm instead of generalisation algorithm since the only dis-

tinction is made between algorithms that measure and those that transform 

be it by generalisation or other means. 

 

Operators may also have specific requirements. For example, Selection-

ByAttribute requires the source dataset to have an attribute that is used to 

rank the importance of features (such as the severity of road accidents). If 

this attribute is not present then the operator can be ruled out.   All of this 



knowledge, in combination, will aid the automatic selection of appropriate 

operators.  

 

 
Figure 3 Selecting generalisation algorithms - general case 

 

 



 
Figure 4 Selecting generalisation algorithms - particular case 

However, the domain of the ontology does not stop at the level of the opera-

tor. As discussed earlier there is no one-to-one mapping between an opera-

tor and the algorithm it implements. Quite different algorithms are required 

to Simplify line features, such as roads, and area features, such as buildings. 

The ontology is required to have a sufficiently detailed description of gener-

alisation algorithms to allow the relevant algorithm to be selected automati-

cally. 

 

An ontology consists of assertions. We assert that HighFeatureDensity is a 

Condition of Congestion and that Congestion is a barrier to Legibility. We 

can also assert that HighFeatureDensity can be remedied by Amalgamation. 

The advantage of using ontologies is that we can use reasoning to infer fur-

ther knowledge.  This is the additional knowledge described earlier. For 

example, we do not have to explicitly state that Amalgamation can resolve 

congestion. If we sufficiently describe the operators we can infer how they 

can be utilised.  



3.3. Applying the ontology 

The ontology can be created in a tool such Protégé which creates and edits 

OWL (Web Ontology Language) files. Protégé also employs reasoners such 

as HermiT that can be used to derive inferences. But once developed, how 

can the ontology be applied in a distributed web service-based system? The 

application of semantically described geoprocessing services in Spatial Data 

Infrastructures (Brauner, 2011) provides a parallel. 

 

The standard for implementing geospatial web services is the OGC’s Web 

Processing Service (WPS) protocol and, as described earlier, generalisation 

algorithms have been implemented with this protocol. The protocol defines 

a GetCapabilities interface that will return a list of each individual spatial 

operation that the service provides and a free text description of each opera-

tion.  Also defined in the protocol is a DescribeProcess interface that merely 

describes the input parameters the specified operation requires and its out-

puts. However, the protocol does not provide for semantic interoperability 

(Janowicz et al., 2010); that is, there is no method of providing machine 

readable descriptions of the operations that allow the operation to be select-

ed automatically.  What is required is a technique, semantic annotation, that 

provides these descriptions (Lemmens et al., 2007; Maue et al., 2009; 

Mladenic et al., 2011).  

One solution is the Semantic Enablement Layer (Janowicz et al., 2010) 

where a Web Ontology Service injects semantics into both data and pro-

cessing service descriptions.  A Web Reasoning Service can then be used to 

match a geoprocessing service to a dataset.  Their architecture is aimed at 

geoprocessing in general rather than generalisation but can be expanded to 

firstly finding an appropriate measure algorithm for the source data and 

then, if required, finding an appropriate generalisation algorithm for the ex-

isting condition. The selection of the appropriate generalisation operator 

would be bypassed by inference. That is, if a particular operator remedies a 

particular condition and a particular algorithm implements that operator then 

we can infer that the algorithm will remedy the condition. 

The ontology can be regarded as component of the semantic referential de-

scribed earlier (section 1.2) and it extends the Generalisation Knowledge 



Ontology of Collagen (section 2.1.3) by expanding the description of the 

operations. In summary, the use of ontologies to aid the selection of geopro-

cessing services that implement a specified operation (e.g. buffer) is a well 

researched area; our contention is that the use of ontologies can be extended 

to the selection of the (generalisation) operation itself. 

 

 

4. Foerster – Live Geoinformation with Standardized Geopro-
cessing Services. 

 

Live geoinformation is considered to be crucial for applications in which 
decisions a) are based on massive volume of data and b) need to be carried 
out near real-time (as soon as the data is available). For instance in risk 
management scenarios, live geoinformation can directly support time criti-
cal decision making for saving human lives and infrastructure. Other exam-
ples are near real-time analysis of crowd-sourced geodata. All these applica-
tions are framed by the idea of the Digital Earth (Gore, 1998) which pro-
vides an integrated platform for accessing different kinds of distributed 
data in near-real time.  

Providing such information and transforming raw data into value-added 
information is supported by geoprocessing. Generalization is involved in 
any task, in which the scale of the information is affected and is thereby 
chosen as a representative example. Currently, generalization processes as 
well as their output (maps, raw data) become available through web service 
interfaces. These web service interfaces are currently designed along a se-
quential request-response mechanism, in which the data is sent to the ser-
vice, processed and then sent back. These different phases are handled se-
quentially, which means, that the service and the client remain idle in the 
meantime and wait for the other party to complete. This is not sufficient for 
live geoinformation and its emerging requirements: 

 Performance – Using the idle time of the service, while transfer-

ring data. 

 Handling, processing, creating of geodata streams – Streams of 

geodata such as provided by sensors become a valuable source of in-

formation for GIS and Digital Earth. 



 Loss-less reliable encoding and transfer of data (in contrast to 

existing lossy unreliable multi media encodings) – The data need to 

be transferred in a reliable manner, guaranteeing data complete-

ness. 

 Interoperability & portability – The data needs to be transferred 

in an interoperable way by reusing exsting standards and agnostic of 

the technical setup.  

To meet these requirements and realize live geoinformation, HTTP Live 
Streaming as a loss-less format for real-time data streaming has been com-
bined with the OGC Web Processing Service, which is an established web 
service interface and de-facto standard for processing geodata on the web. 
The presented approach is applied to automated generalization of Open-
StreetMap data.  

Related work 

Live geoinformation is about providing information as soon as it is available 
to the user. This is extremely important for Digital Earth, in which several 
resources are accessible through a common interoperability layer (Gross-
ner, Goodchild, & Clarke, 2008). To draw appropriate conclusions in time-
critical scenarios (e.g. crisis management) from the available data, most up-
to-date geoinformation needs to be available. Consequently, one of the 
backbones of live geoinformation is the extensive use of web technologies to 
provide the user instantly with information (anywhere, anytime). There-
fore, live geoinformation needs to be developed based on current web tech-
nologies.  

Overall, live geoinformation imposes requirements to data collection, data 
communication and data integration. These key requirements are high re-
source utilization rates, simplicity, interoperability and usability. For this 
article, data integration and data communication are considered from a 
computational perspective.  

Building blocks of live geoinformation are efficiently creating and handling 
live geodata streams, as applied in this paper. In the context of geopro-
cessing services, the real-time processing of live geodata streams and pub-
lishing such streams is required. Moreover, detecting and extracting events 
from such geodata streams is highly interesting in the context of Complex 
Event Processing (Everding, Echterhoff, & Jirka, 2009). Finally, live geoin-
formation requires a scalable event- and streaming-based architecture for 
supporting Digital Earth in the future. Regarding the communication with-
in the architecture, we envision a fully push-based architecture, in which 



the processes are triggered from the sources (e.g. sensors or created by 
events). This will limit the communication overhead to a minimum. Techni-
cally, this is realized through notification and call-back methods. 

Several approaches for improving the scalability and performance of geo-
processing services have been described (e.g. applying Cloud and Grid 
Computing infrastructures (Baranski, Foerster, Schäffer, & Lange, 2011; 
Baranski, 2008; Di, Chen, Yang, & Zhao, 2003; Lanig, Schilling, Stollberg, 
& Zipf, 2008) or the mobile code paradigm (Müller, Bernard, & Brauner, 
2010)). Scholten, Klamma, & Kiehle (2006) identify caching, network adap-
tation, data granularity and communication modes (synchronous vs. asyn-
chronous) as performance criteria. 

From a generalization perspective, the work of (Bertolotto & Egenhofer, 
2001; van Oosterom, 2005; Buttenfield 2002) about progressive transfer 
addressed a related problem from a users´ perspective. Users want to re-
ceive the data, which is more important first. This is handled by extracting 
the most important aspects of the data by automated generalization and 
providing it successivly. Enabling this user experience on the web, a stream-
ing-based processing approach may be suitable. 

Approach for Streaming-based Processing 

When the WPS receives an asynchronous Execute request, an Execute re-
sponse is instantly returned to the client and the process execution is 
scheduled in the background. The Execute response includes a ‘Status’ ele-
ment that contains information about the overall status of the process (‘ac-
cepted’, ‘started’, ‘paused’, ‘succeeded’ or ‘failed’) and an (optional) progress 
indicator showing the percentage rate of process completion. Furthermore, 
the Execute response includes a ‘statusLocation’ element that links another 
Execute response, which always contains the latest status information 
about a process. As soon as a process has completed, this Execute response 
contains the process result(s). The client can constantly pull this Execute 
response until the final result is available.  

In the proposed approach, the body of the ‘Status’ element includes an URL 
to a playlist file as specified by the HTTP Live Streaming draft specification 
instead of indicating detailed information about the progress of the process 
as in current WPS implementations (e.g. the amount of features that have 
been processed). Listing 1 demonstrates an example of an Execute response 
containing a reference to a playlist file. The format of the playlist file is de-
scribed further in Section 3.4. 



 

The playlist file contains a sorted list of URLs that represents previous and 
current intermediate results. When an intermediate result is created and 
stored by the service, the service also updates the playlist file (an URL re-
turning the latest intermediate result is attached). Therefore, by frequently 
calling the playlist file URL the client receives the latest intermediate re-
sults. As soon as a process is completed, the service adds a special tag to the 
playlist file accordingly. By not adding such a tag, the client knows that the 
process might run continuously. Further details such as the playlist format 
encoding, the implementation are described in (Foerster et al 2012). 

Streaming-based Processing for Automated Generalization 

  
t1     t3 

<ExecuteResponse service="WPS" version="1.0.0" 

statusLocation="..."> 

 <Process ns:processVersion="1.0.0"> 

  <Identifier>StreamDouglasPeuckerAlgorithm</Identifier> 

 </Process> 

 <Status creationTime="..."> 

  <ProcessStarted> 

    http://host:port/wps/playlist?id=123&pollingRate=1 

  </ProcessStarted> 

 

Listing 1. Exemplary Execute response with an URL of a playlist that contains 

real-time intermediate results. 



  
t2     t4 

 

 

Discussion & Related Challenges for Generalization 

As described, Web Services face a challenge of providing the most-current 
data as soon as it is available. Mostly, this data needs to be adopted regard-
ing scale through processing, so generalization is a challenge. To tackle  this 
challenge, a loss-less, asynchronous stream-based and interoperable ap-
proach towards web service interfaces is required. The presented approach 
is based on HTTP Live Streaming and is applied to generalization of Open 
Street Map data. From the research it becomes evident, that not all general-
ization processes are suitable for this approach. If the context of the objects 
and their topology play a significant role in the specific process, it cannot be 
applied to streaming-based processing. The size of the data partition must 
not exceed the size of the transferred data chunks. However, tasks of sim-
plification as for instance Douglas Peucker, which are still heavily used in 
generalization batch jobs appear to be suitable candidates.   

Future research needs to address these issues in more detail and find intel-
ligent ways to enable streaming-based processing for a broader range of 
generalization functionality. This can be done by automatically detecting 
the partition requirement and adjust the size of transferred data chunks 
accordingly. As soon as this is achieved, the chaining and orchestration of 
these streaming-enabled generalization processes becomes an interesting 
application, to deliver highly customized datasets in a timely fashion. 

 

 

5. Conclusion 

We have seen in this chapter that modelling the process of generalisation is 
still a very open question, and continues to generate interest in the research 



community. While a lot of generalisation tools have been studied and im-
plemented, the challenge of creating systems capable of using them auto-
matically is still alive. We have seen that different models have been studied 
and automated solutions have been successfully implemented, but these 
successes have been limited to building systems that provide a static solu-
tion to derive a specific product from a specific set of data.  

In order to overcome this limitation, it has long been recognised that stud-
ies needed to concentrate on the process modelling side. But in order to do 
this successfully, and to be able to test the concepts, we had to have the 
basic tools (generalisation operators, measures) readily available. Web ser-
vices have been proposed as a way to encapsulate and publish these tools, 
so that they can be easily reused. 

Several studies now focus on “on demand mapping”, which looks into de-
signing systems capable of interpreting user requirements (in the form of 
formal machine readable specifications, see chap.2), and deriving the ap-
propriate map. This requires a significant effort in formalising the descrip-
tion of all the components of the system: specifications, data, tools, 
knowledge. The Collaborative Generalisation approach described in the 
case study 1 of this chapter, shows how to different apply existing models in 
different situations occurring on the same map. The second case study pre-
sented an ontology based approach to resolve cartographic conflicts as they 
occur during the automatic creation of a map. Both these approach rely on 
formalising aspects of the generalisation knowledge. Both also rely on exist-
ing software components providing the lower functionalities of the system 
(operations, measures, or a particular subsystem to perform a specific gen-
eralisation task). As it is often suggested that such decoupled system should 
use Web Services to access the lower functionalities, we have include a third 
case study focusing on improving the performance of web processing ser-
vices, using the concept of streaming based processing.  

The next challenges in the area of process modelling related to generalisa-
tion are related to the design of systems able to perform on demand map-
ping, which includes generalisation, but also the collection of user require-
ments, data integration and automatic cartographic design (to style the re-
sulting map). As prototypes of these systems emerge, we know that they will 
be hindered by performance issues. This is due to the fact that the lack of 
predefined sequence of action will be overcome by complex strategies to 
build the sequence, possibly including expensive trial and error strategies. 
More research in optimisation techniques will therefore be required (ma-
chine learning, parallel computing, streaming based processing, etc.)  
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