

Abstract—This paper outlines the development of UMAIR an

Urdu conversational agent developed as a customer service

representative. UMAIRs architecture includes a novel engine,

scripting language and WOW (Word Order Wizard) string

similarity algorithm which are combined to tackle the language

unique challenges of Urdu. Initial testing of the new

architecture has yielded positive results towards UMAIR being

able to cope with the inherent differences in the Urdu language

such as word order.

Index Terms—Conversational Agents, Dialog Systems,

Sentence Similarity, Urdu

I. INTRODUCTION

onversational Agents (CAs) essentially allow people to

interact with computer systems intuitively using natural

language dialogue [1]. In today's increasingly complex

business environment, organisations face pressures regarding

cost reduction, engagement scope, and attention to quality

[2]. With this in mind, one of the most important emerging

applications of CAs is online customer self-

service/assistance, providing the user with the kind of

services that would come from a knowledgeable or

experienced human [3]. Following several years of research

and development activities CAs in English, European and

East Asian languages CAs have become a popular area.

However, South Asian Languages especially Urdu have

received less attention [4]. Urdu is the national language of

Pakistan, one of the state languages of India, has more than

60 million first language speakers and more than 100 million

total speakers in more than 20 countries [5]. Urdu script is

written from right to left like the Semitic languages having a

morphology similar to Arabic, Persian and Pashto language

letters [6].

In 2008 Pakistan was hit by the worst floods in its history,

in light of this natural disaster a relief website was set up in

English to disseminate vital information about help, rescue

efforts and shelter to those affected and displaced by the

floods. However, the website proved to be quite ineffective

until it was translated into Urdu. Hussain, [7] states that

traditionally ICT solutions have been deployed in the

English language, but it is evident that in order to reach the

masses, the language medium needs to be one that is

understood by the masses. Inevitably the web is playing a

pivotal role in bringing information to the populations

around the world [8]. Information available in localized

contexts is more relevant to speakers of different languages;

this is one of the drivers of this research. It is made apparent

that there is a genuine necessity for CA research in Urdu to

facilitate better access to information to the mass population

while taking advantage of the unique features CAs can

provide. This motivated the research and development of a

prototype CA named UMAIR (Urdu Machine for Artificial

Intelligent Recourse) which was developed initially to

answer customer/user queries on the domain of ID card

application in Pakistan. One of the main challenges that

came with the Urdu language was that Urdu does not have

the computational lexical resources that are readily available

to western languages such as WordNet [9]. There have been

several factors causing slow growth of Urdu software. One

factor has been the lack of standards for Urdu computing

[10]. Ahmed and Butt [11] argue that one of the major

bottlenecks for Urdu software development is the lack of

lexical resources available for the Urdu language, for

example the Urdu language doesn’t have the established

electronic infrastructures that are taken for granted in

English and other European languages.

Consequently the research and development of an Urdu

Conversational Agent is not simply a matter of re-

engineering existing methods and algorithms. Novel CA

engine components need to be researched and developed

capable of handling the inherent differences in the Urdu

language. Traditionally Conversational agents use a Pattern

Matching (PM) technique to match user utterances to a

repository of scripted pre-anticipated utterances and their

appropriate responses. Over the years this method although

reliable, has proven to be a laborious and time consuming

task.

This paper is organized as follows: Section II provides a

overview of conversational agents and their areas of

application. Section III and IV presents a summary of the

Urdu language and outlines the challenges Urdu poses to the

implementation of a novel Urdu conversational agent.

Section V details the process of knowledge engineering the

domain. Section VI and VII introduces UMAIR and the

components that make up the architecture. Sections VIII, IX

and X detail the evaluation methodology, the results and

conclusions that derived from them.

II. CONVERSATIONAL AGENTS

A. CA Background

The term “Conversational Agent” is interpreted in various

ways by different researchers; Chen [12], defines them as a

natural language interaction interface designed to simulate

conversation with a real person. Cohen [13] describe CAs as

an agent which uses natural language dialogue to

communicate with users. Nevertheless the essence of CAs

which is agreed upon is that natural language dialogue is

utilized between the human and an application running on a

computer [1]. There are two main types of CAs Goal

Orientated CAs (GO-CA) and General CAs. GO-CAs direct

the user’s discussion towards a goal e.g. getting some

information or help. Whereas a general CAs goal is to just

continue the conversation. Conversational agents are

representative intelligent agents that are able to respond to

user requests and queries in an intelligent way (with natural

Development of UMAIR the Urdu

Conversational Agent for Customer Service

Mohammed Kaleem, Dr James O’Shea, Dr Keeley Crockett

Manchester Metropolitan University

C

language dialogue). They can understand the intention of

users through conversation, normally through a text based

interface. A CA also has the ability to reason and pursue a

course of action based on its interactions with humans and

other agents [14].

One of the earliest CAs developed was ELIZA [15].

ELIZA was a Chabot capable of creating the illusion that the

agent was actually listening and understanding the user’s

utterances and providing intelligent response, however it was

just using simple pattern matching techniques that worked

by simply parsing and recomposing key words based on the

user input to formulate responses. As the field of CA’s

advanced, ALICE (Artificial Linguistic Intelligent Computer

Entity) was produced. The knowledge base for ALICE is

stored in AIML (Artificial Intelligent Markup Language)

files. Fundamentally AMIL is in essence a PM scripting

language derived from Extensible Markup Language (XML)

and used symbolic reduction to parse user utterances and

generate responses. In ALICE, the AIML technology was

responsible for pattern matching and to relate a user input

with a response in the chatterbot’s Knowledge Base (KB)

[16]. In essence the ALICE engine was a more refined

version of the simpler engine used in ELIZA [17] but still

lacked the sophistication of more recent engines. An

example of a more recent CA is InfoChat [18]. InfoChat

implements a pattern matching approach using a

sophisticated scripting language known as Pattern Script.

InfoChat scripting language is a rule-based language, which

depends on a rule based structure to handle the expected

conversation, the InfoChat engine allows the promotion and

demotion of patterns depending on the similarity strength

with the user utterance. The similarity is calculated through

several parameters such as activation level and pattern

strength.

B. How do CAs work?

CAs have been developed using many different

techniques. The three main techniques are Natural Language

Processing (NLP) and Short Text Semantic Similarity

(STSS) and Pattern Matching (PM). NLP is an area of

research that explores how computers can be used to

understand and manipulate natural language text or speech

to do useful things [19]. NLP assumes certain aspects for it

to work effectively. The utterance is expected to be

grammatically correct which usually it is not. Another point

is that languages are very rich in form and structure, and

contain ambiguities. A word might have more than one

meaning (lexical ambiguity) or a sentence might have more

than one structure (syntactic ambiguity/free word order), in

light of this the NLP approach is not suitable to develop a

CA in the Urdu language. Another approach that is adopted

in the development of CAs is the utilization of STSS

measures to gauge the similarity between short sentences (10

– 25 words longs) [3]. Through employing sentence

similarity measures, scripting can be reduced to a few

prototype sentences [20]. The similarity between short texts

is computed through the use of knowledge base such as the

English WordNet. However due to the lack of resources in

Urdu such as an appropriate WordNet, lexicons, annotated

electronic dictionaries, corpora and well-developed

ontologies that describe relationships among words and

entities in written text [21] NLP and STSS are not

appropriate methods to develop a Urdu CA. It should be

noted that work has begun on the development of an Urdu

WordNet [22], the work is still in very early stages and not

developed enough to be deployed in a CA. the remaining

technique PM is one of the most ubiquitous and popular

methods for building systems that appear to be able to

conduct coherent, intelligent dialogs with users [23]. The

user utterance is matched to a database of pre-scripted

patterns, rather than trying to understand the utterance. Once

a pattern is matched a response is delivered back to the user.

Creating scripts is a highly skilled craft and labour intensive

task [1], requiring the anticipation of user utterances,

generation of permutations of the utterances and

generalization of patterns through the replacement of

selected terms by wild cards. Modifications to rules

containing the patterns can impact on the performance of

other rules. The main disadvantage of pattern matching

systems is the labour-intensive (and therefore costly) nature

of their development. PM is a suitable method for

developing an Urdu CA as it does not require extensive

lexical resources to work.

C. Where have CAs been applied?

There is a variety of applications in which conversational

agents can be used, one of the most widespread of which is

information retrieval [24]. CAs have been deployed on

websites, as helpdesk/customer service agents that respond

to customers’ inquiries about products and services [12].

Conversational agents associated with financial services’

websites answer questions about account balances and

provide portfolio information. Pedagogical conversational

agents (also known as Intelligent Tutoring Systems) assist

students by providing problem- solving advice as they learn

[25] [26].

III. URDU LANGUAGE

There are fifty seven languages spoken in Pakistan.

English is only understood by about 5% of this population.

Therefore, for a Pakistani to benefit from the IT revolution

(e.g. to give them access to services including e-government

and e-commerce), solutions must be provided to this

population in local languages [27]. Urdu is officially the

national language of Pakistan, which houses about 180

million people. It is used in all official communication and

government departments. Globally, Urdu is spoken by over

60 million people in more than 20. Urdu, an Indo- European

language of the Indo Aryan family, is spoken in India and

Pakistan. Among all the languages in the world it is most

closely similar to Hindi language. Urdu and Hindi both have

originated from the dialect of Delhi region and other than

minute details these languages share their morphology. Like

Hindi has adopted many words from Sansikrit, Urdu has

borrowed a large number of vocabulary items from Persian

(Farsi) and Arabic [6]. Arabic and Farsi languages have

close resemblance with Urdu, but Urdu is more complex as

compare to Arabic and Farsi due to additional characters

[28]. Urdu lies in the category of morphologically rich

languages (MRLs) like Arabic, Persian, Chinese, Turkish,

Finnish, and Korean. The MRLs pose considerable

challenges for natural language processing, machine

translation and speech processing [29].

IV. THE CHALLENGES FACED IN DEVELOPING A URDU CA

A. Word order

One of the noteworthy aspects of Urdu grammar which

has significant implications on the development of an Urdu

CA is its word order. The basic word order of the Urdu

Subject Object Verb (SOV) is an extremely common word

order in the world’s languages [30]. Although Urdu does

conform to this rule it should be noted, that Butt [31] among

others has highlighted that Urdu is non-configurational, that

is, the ordering of elements of the sentence is not restricted.

Bögel and Butt [32], provide further substance to this

notion, they state that Urdu is a Free Word Order (FWO)

language, meaning major constituents of a sentence can

reorder freely [33] [34]. An example of this is illustrated in

Figure 1 where all variations are grammatically legitimate.

 * Mujhe

neya

shankthi card

chahiye

* Mujhe

shankthi card

neya

chahiye

* Mujhe

shankthi card

chahiye

neya

*Neya

shankthi card

chahiye

mujhe

* Shankthi card

neya

chahiye

mujhe

* Mujhe

chahiye

neya

shankthi card

Figure 1 - Example of FWO (translation: I need a new ID card)

This varied word order is a significant issue in a pattern

matching conversational agent. This is because the user

utterance is pattern matched to a database of previously

compiled responses. Pattern matching works by parsing a

sequential string from beginning to end. In a language

where there is no strict word order, it means that the domain

will have to be scripted to compensate for all the different

possible responses and variation in word order. This will

result in extensive script writing which makes an already

lengthy and time consuming task even more laborious.

B. Ambiguity

Like Arabic, Urdu vowels are indicated by marks

(Diacritics) above and below the consonants [35]. In Urdu

script, the consonantal context is clearly represented, but the

vocalic sounds are represented (mostly) by marks or

diacritics, which are optional and normally not written.

Readers can guess the diacritics and thus can pronounce

words correctly, based on their knowledge of the language.

But un-diacritized Urdu text creates ambiguity for novice

learners and computational systems [36]. An example of

how diacritical marks inflect vocalic sounds on Urdu

consonants in illustrated in Figure 2.

(a) Bey + Zer = Be (b) Bey + Zabar = Ba (c) Bey + Pesh = Bo

Figure 2 - Urdu Diacritical Marks

C. Morphology

Urdu style of writing does not have the concept of space to

separate words. Similar to South-East Asian scripts like Lao,

Thai and Khmer, Urdu readers are expected to segment the

ligatures into words as they read along the text. In typing,

space is used to get the right character shapes. Space is

sometimes used within a word to break the word into

constituent ligatures. However, if the ligature form is

achieved without the use of space, it is sometimes not even

used in between two words. Resulting in a visually correct

sequence of two words for the readers but has no space

between them. The notion of word spacing in Urdu is

explained by Durrani [37] who states; the notion of space

between words is completely alien in Urdu hand-writing.

Children are never taught to leave space when starting a new

word. They just tacitly use the rules and the human lexicon

to know when to join and when to separate. This has

implications on CA development and thus proper word

segmentation must be done before strings are processed.

Additionally, further challenges are posed due to the fact

that there are no special rules syntax rules in Urdu, such as

the use of capital letters in English, to indicate proper nouns

names or the beginning of a sentence.

V. KNOWLEDGE ENGINEERING THE DOMAIN

UMAIR was deployed a customer service representative

for Pakistan’s National Database and Registration Authority

(NADRA) to answer customer queries on ID card

applications and other related queries. The knowledge base

for UMAIR was developed based on existing business logic

used within this organisation. An interview was conducted

an industry contact to gain some firsthand insight into the

domain and the frequently arising issues they face. The

interviewee was able to give firsthand insight into how

queries are dealt with by their own customer service agents.

The findings from the interviews were used to construct

knowledge trees in order for them to be implemented in

UMAIRs knowledge base. The knowledge base is made up

of four layers: (1) domain specific contexts (2) Frequently

asked questions (3) general chat (4) Urdu grammar data

base. Layers 1-3 represent a state of the discussion UMAIR

can be in; from this UMAIR is able to determine what the

user wants from the discussion. Within each layer all the sub

contexts related to that state are mapped together. The

knowledge tree nodes are mapped to the contexts and all

their related sub contexts through specialized conversational

scripts. Operationally, UMAIR utilizes the scripts, along

with the new PM engine to guide the user through the

conversation to a predefined goal/leaf node, defined through

the knowledge trees. Layer 4 contains Urdu grammar rules

and words to help UMAIR classify and better understand the

user utterance (e.g. questions, negative and positive

statements, inappropriate words, valid words). UMAIR is

able to utilize the knowledge base in order to deliver a

coherent conversation to the user.

VI. UMAIR

UMAIR is a PM, goal orientated CA which combines

string similarity measures in order to converse in Urdu with

the user to solve their queries related to the domain.

UMAIRs architecture consists of novel components which

come together to handle the unique language specific

difficulties in the Urdu language. Key features of the new

architecture include the new PM engine which incorporates

the WOW (Word Order Wizard) similarity algorithm and a

Urdu scripting language. An overview of UMAIRs

architecture is illustrated in Figure 3.

VII. UMAIR ARCHITECTURE

A. The Controller

The controller is responsible for directing and managing

the entire conversation. The controller is the core of the CA

and works with several other components to ensure the

conversation goal is achieved. The controller is also

responsible for delivering an intelligent, cohesive and goal

led conversation.

The controller works together with the conversation and

path manager to ensure the conversation is following the

correct path, or switch context where necessary. The

controller also checks the utterance for unacceptable and

inappropriate words, if found it is able to warn the user

accordingly. Once the utterance is processed the controller is

responsible for delivering responses back to the user as well

as any accompanying supporting material such as pictures or

documents that may help the user and their query.

B. Conversation and Path Manger

The role of the Conversation Manager (CM) is to control

the flow of the conversation. Depending on the context the

CM loads a predefined path stored in the database that

ensures the goal of each context within the domain is met

during the conversation. The conversation manager ensures

that the user stays on topic, and manages the switching of the

contexts during the discussion by working together with the

Path Manager (PM) component. The path manager loads a

path that utilizes the decision trees within UMAIRs

architecture and it directs the conversation toward the

desired leaf node where the goal of the particular context is

achieved.

Another aspect handled by the PM is the ability to handle

utterances that are not related to the current context of

conversation. Goal-oriented CAs must employ mechanisms

to manage unexpected utterances in a way that appears

intelligent [38]. If the path manager receives an utterance

that is not in the path of the current context, the path

manager checks the user utterance with the FAQ knowledge

layer then checks to see if the utterance matches other

contexts within the database. Once a match is found the

utterance is responded to, and then the user is brought back

to the point where the conversation digressed and directed

towards the goal again in order for the conversation to reach

its conclusion.

C. Utterance Cleanser

The utterance cleanser is responsible for normalizing the

user utterance by removing special characters from the user

input such as diacritics (i.e. ً ً ً ً) and punctuation (i.e. $,

&, *, !, ?, “”, £). Moreover, the cleanser also ensures that the

words are segmented correctly, by checking each individual

word of the utterance with the Urdu grammar database. The

cleansing ensures that only clean and consistent input is sent

forward for pattern matching. This also makes scripting the

domain easier as the scripter does not have to anticipate

punctuation and or other diacritical marks which can be

entered by the user.

D. Log File

UMAIR will utilize a long term memory/log file feature,

which will allow it to store several variables and

conversation related information in a database table. The

information captured and stored in the database can be

utilized to evaluate the system and track end user

conversations.

E. Scripting Language

The foundations of UMAIR’s scripting language are

based on the Info Chat scripting language. The scripting

language includes a novel feature that allows it to provide

supporting material to the user. Depending on the context

and needs of the user the scripting language allows

supporting material to be conveyed to the user in the form of

images, application forms, maps etc. This adds another

dimension of support and makes UMAIR seem more helpful

and intelligent to the user, as opposed to just providing

responses strictly in text form. This material is stored in the

scripting database and once a rule is fired, if that rule has

material to support the user’s query it is delivered to them

through the interface.

Another feature is the AllowYesNo rule in the scripting

language. Certain questions can be answered with a simple

yes or no answer within the system, however in some

instances a yes/no answer is not sufficient enough for the

system to be able to make a firm tree traversal decision.

UMAIR is able to ask a linking question related to the

context in order to extract further information.

Figure 5 outlines an example of 1 of the patterns scripted.
Context General – Application Form

Rule – App_Form

Pattern: * form do I need for new ID card

Pattern: which form * for ID card

Pattern: I need a form * ID card

Pattern: * form for new ID card

Response: The form to apply for an ID card is the POC form. You

can either download a form, or visit your local NADRA office

where you can pick one up.

Switch Context: null

Switch to: null

Support material: poc_form.pdf

Requires Vars: No

Allow Yes/No

Figure 4 - Translated Example of Scripted Rule

Figure 3 - UMAIR Architecture

F. WOW Algorithm

UMAIR introduces a novel method to determining the

similarity between two sets of strings within CA’s, while

traditional CA’s utilizes a PM based. UMAIR combines

string similarity metrics and PM to overcome some of the

intrinsic challenges in the Urdu language. Research found

that one of the most prominent challenges that came with

implementing the Urdu language in a CA was the issue of

FWO. The biggest challenge of scripting CAs is the

coverage of all possible user utterances [38]. This challenge

grows considerably when a CA is implemented in the Urdu

language as the FWO means one utterance can be said many

different ways. The WOW algorithm is developed to tackle

the issue of the FWO and reduce the need for scripting all

possible word order variations of the same sentence. The

WOW algorithm follows this procedure to calculate the

similarity of the user utterance: (1) the user utterance and

scripted pattern are split in to two separate token lists (U and

S); (2) the first similarity check uses the Levenshtein edit-

distance algorithm [39]. The edit distance is the total cost of

transforming one string into another using a set of edit rules,

each of which has an associated cost.

The calculation returns a score which is between 0 and 1.

The closer the score is to 1 the higher the similarity. If the

score gets a maximum value of 1 then the two tokens are

identical. All the tokens in List U (utterance) and compared

to the tokens in list S (scripted pattern). The highest

matching score is then utilized as the edge weight (E) of that

token. These token/node lists and edge weights make up a

Bipartite Graph which is then utilized in the next step to

compute the maximum similarity score. (3) The next step is

to find a subset of node-disjoint edges that has the maximum

total weight, the higher the total weight the closer the

similarity of the two strings being compared.

A maximal weighted bipartite match is found for the

bipartite graph constructed, using the Kuhn-Munkres

Algorithm [40] – the intuition behind this being that every

word in a sentence/utterance matches injectively to a unique

word in the other sentence/pattern, if it does not then the

highest match weight is utilized as that token/nodes edge

weight (illustrated in Figure 4).

Eq. 1

Figure 5 – Bipartite Graph and Edge Weight Matrix

 The final similarity score (sim) between the sentences user

utterance (U) and scripted pattern (S) is calculated through

equation 1.
The WOW algorithm solves the complex word order issue

that comes with the Urdu language by matching all possible

word order variation on a single scripted pattern.

Consequently it also significantly reduces the number of

scripts that have to be scripted to deal with the issue of

variation of word order in the Urdu language. It is duly

noted that word order variance can change the meaning of

the intended utterance, however to control such ambiguity

features have been implemented to control the conversation

through contexts. UMAIR is aware of the current context of

the discussion, which helps overcome misunderstandings in

word order as well as ambiguity through synonyms.

VIII. EXPERIMENTAL METHODOLOGY

Initial experiments have been conducted to evaluate the

effectiveness and robustness of UMAIR and its components

from an objective point of view. To formulate evaluation

metrics, the Goal Question Metric (GQM) methodology was

utilized [41]. The GQM methodology was implemented in

order to highlight which metrics needed to be evaluated in

order to gauge the effectiveness and robustness of UMAIR.

A total of 24 participants were recruited all were residents of

the Greater Manchester area, native Urdu speakers. The

Participants were given scenarios that related to queries of

ID card application. The participants spanned varying age

groups and education levels and both genders were

represented in the sample and all volunteered to participate

for altruistic reasons. The participants were instructed to

interact with UMAIR to resolve their particular query. The

temporal memory/log file was then analyzed subsequent to

the user’s interaction. The log file provided backend insight

into objective metrics related to the workings and success of

the system and its associated algorithms.

IX. RESULTS & DISCUSSION

Table 1 shows the results of the log file analysis. CONVERSATION ANALYSIS

METRIC UMAIR

Total number of utterances in all conversations 212

Average number of words per user utterance 5.0

Average number of utterances per conversation 8.8

Average conversation duration (mins) 3.2

Number of unrecognised utterances 12%

Percentage of conversations leading to acceptable goal 83.3%

Percentage of utterances containing word order variations of scripted

patterns
33.6%

Percentage of conversations which reached goal without deviating the

context
87%

Table 1 - Results of End User Evaluation

The results demonstrated that the developed architecture and

algorithms produced positive results. Table 1 reveals that

83% of conversations with UMAIR led to an acceptable

goal. The conversations that didn’t lead to a goal were

mainly due to the users making spelling mistakes in their

utterances, which meant the engine couldn’t recognize them.

Through the implementation of the novel WOW similarity

algorithm UMAIR is able to deal with challenges of Urdu

and PM all the word order variations on a single scripted

pattern in the database, hence saving the scripter major time

and effort. The results highlighted that 33% of all the user

utterances contained valid word order variation of scripted

patterns which were recognized and fired the appropriate

rule associated with that script.

X. CONCLUSION & FUTURE WORK

The Urdu language posed many challenges when applied

into development of an Urdu CA. This paper has outline

research to produce a new Urdu CA called UMAIR. It’s the

first Urdu CA, which contains novel features such as the

WOW algorithm and scripting language in its architecture to

deal with the language unique challenges of Urdu. The

initial evaluation revealed positive results. Future work will

concentrate on further enhancing the algorithms and

knowledge base in order to strengthen UMAIRs

conversation ability and utterance recognition. This will be

followed by a within groups study with participants

interacting with UMAIR and a human in a Wizard of Oz

style experiment.

XI. REFERENCES

1. O’Shea, J., Z. Bandar, and K. Crockett, Systems Engineering

and Conversational Agents, in Intelligence-Based Systems

Engineering, A. Tolk and L. Jain, Editors. 2011, Springer

Berlin Heidelberg. p. 201-232.

2. Pickard, M.D., M.B. Burns, and K.C. Moffitt, A theoretical

justification for using embodied conversational agents to

augment accounting-related interviews. Journal of Information

Systems, 2013.

3. O’Shea, J., et al., A comparative study of two short text

semantic similarity measures, in Agent and Multi-Agent

Systems: Technologies and Applications. 2008, Springer. p.

172-181.

4. Anwar, W., X. Wang, and X.-L. Wang. A Survey of Automatic

Urdu language processing. in Machine Learning and

Cybernetics, 2006 International Conference on. 2006. IEEE.

5. Gordon, R.G., Jr., Ethnologue: Languages of the World,

Fifteenth edition. 2005, SIL International. : Dallas, Tex.

6. Hardie, A. Developing a tagset for automated part-of-speech

tagging in Urdu. in Corpus Linguistics 2003. 2003.

7. Sarfraz, H., et al., Technology preparedness for disseminating

flood relief and rehabilitation information to local stakeholders

online: Lessons learnt while developing Punjab flood relief

website in Urdu. 2010.

8. Sarfraz, H., A. Dilawari, and S. Hussain, Assessing Urdu

Language Support on the Multilingual Web. 2011.

9. Miller, G.A., WordNet: a lexical database for English.

Communications of the ACM, 1995. 38(11): p. 39-41.

10. Hussain, S. and M. Afzal. Urdu computing standards: Urdu

zabta takhti (uzt) 1.01. in Multi Topic Conference, 2001. IEEE

INMIC 2001. Technology for the 21st Century. Proceedings.

IEEE International. 2001. IEEE.

11. Ahmed, T. and M. Butt. Discovering semantic classes for Urdu

NV complex predicates. in Proceedings of the Ninth

International Conference on Computational Semantics. 2011.

Association for Computational Linguistics.

12. Rubin, V.L., Y. Chen, and L.M. Thorimbert, Artificially

intelligent conversational agents in libraries. Library Hi Tech,

2010. 28(4): p. 496-522.

13. Massaro, D.W., et al., Developing and evaluating

conversational agents, Embodied conversational agents. 2001,

MIT Press, Cambridge, MA.

14. Crockett, K., O.S. James, and Z. Bandar, Goal orientated

conversational agents: applications to benefit society, in Agent

and Multi-Agent Systems: Technologies and Applications.

2011, Springer. p. 16-25.

15. Weizenbaum, J., ELIZA—a computer program for the study of

natural language communication between man and machine.

Communications of the ACM, 1966. 9(1): p. 36-45.

16. Marietto, M.d.G.B., et al., Artificial Intelligence MArkup

Language: A Brief Tutorial. arXiv:1307.3091, 2013.

17. Shawar, B.A. and E. Atwell, A comparison between ALICE and

Elizabeth chatbot systems. 2002, Technical report, School of

Computing, University of Leeds.

18. Michie, D. and C. Sammut, Infochat Scripter's Manual.

ConvAgent Ltd., Manchester, 2001.

19. Chowdhury, G.G., Natural language processing. Annual review

of information science and technology, 2003. 37(1): p. 51-89.

20. O'Shea, K., Z. Bandar, and K. Crockett. A semantic-based

conversational agent framework. in Internet Technology and

Secured Transactions, 2009. ICITST 2009. International

Conference for. 2009. IEEE.

21. Naseem, T. and S. Hussain, A novel approach for ranking

spelling error corrections for Urdu. Language Resources and

Evaluation, 2007. 41(2): p. 117-128.

22. Zafar, A., et al. Developing urdu wordnet using the merge

approach. in Proceedings of the Conference on Language and

Technology. 2012.

23. Bickmore, T. and T. Giorgino, Health dialog systems for

patients and consumers. Journal of Biomedical Informatics,

2006. 39(5): p. 556-571.

24. Griol, D., J. Carbo, and J.M. Molina, A statistical simulation

technique to develop and evaluate conversational agents. AI

Communications, 2013. 26(4): p. 355-371.

25. Alobaidi, O.G., et al. Abdullah: An Intelligent Arabic

Conversational Tutoring System for Modern Islamic

Education. in Proceedings of the World Congress on

Engineering. 2013.

26. Latham, A., K. Crockett, and D. McLean, An adaptation

algorithm for an intelligent natural language tutoring system.

Computers & Education, 2014. 71: p. 97-110.

27. Hussain, S. Computational Linguistics (CL) in Pakistan: Issues

and Proposals. in EACL 2003. 2003.

28. Khan, K., et al., An Efficient Method for Urdu Language Text

Search in Image Based Urdu Text. International Journal of

Computer Science Issues(IJCSI), 2012. 9(2).

29. Abdul-Mageed, M. and M. Korayem. Automatic identification

of subjectivity in morphologically rich languages: the case of

Arabic. in Proceedings of the 1st workshop on computational

approaches to subjectivity and sentiment analysis (WASSA),

Lisbon. 2010.

30. Whaley, L.J., Introduction to typology: The unity and diversity

of language. 1997: Sage.

31. Butt, M., The structure of complex predicates in Urdu. 1995:

Center for the Study of Language (CSLI).

32. Bögel, T. and M. Butt, Possessive Clitics and Ezafe in Urdu.

Morphosyntactic Categories and the Expression of Possession,

2013. 199: p. 291.

33. Butt, M.J., T.H. King, and G.C. Ramchand, Theoretical

perspectives on word order in South Asian languages. Vol. 50.

1994: Center for the Study of Language and Inf.

34. Raza, G., Subcategorization Acquisition and Classes of

Predication in Urdu. 2011.

35. Alqrainy, S. and A. Ayesh, Developing a tagset for automated

POS tagging in Arabic. WSEAS Transactions on Computers,

2006. 5(11): p. 2787-2792.

36. Raza, A. and S. Hussain. Automatic diacritization for urdu. in

Proceedings of the Conference on Language and Technology.

2010.

37. Durrani, N., Typology of word and automatic word

Segmentation in Urdu text corpus. 2007, Citeseer.

38. Latham, A.M., Personalising Learning with Dynamic

Prediction and Adaptation to Learning Styles in a

Conversational Intelligent Tutoring System. 2011, Manchester

Metropolitan University.

39. Ristad, E.S. and P.N. Yianilos, Learning string-edit distance.

Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 1998. 20(5): p. 522-532.

40. Burkard, R.E. and E. Cela, Linear assignment problems and

extensions. 1999: Springer.

41. Fenton, N.E. and S.L. Pfleeger, Software metrics: a rigorous

and practical approach. 1998: PWS Publishing Co.

