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Abstract 

Hypertrophic scarring is common amongst burn injuries. Pressure therapy and the use 

of silicone sheeting is often prescribed to treat these scars, but there is weak evidence of 

the effect of silicone sheeting during treatment. At present, it is not known how the 

silicone dressings work. In this setting, it has been proposed that water transmission 

may play a role. The treatments provide favourable conditions for bacteria to colonize 

and multiply due to the sheeting being worn for at least 12 hours at a time and there are 

no studies investigating the microorganisms found on fully healed wounds before or 

after treatment with silicone. As it is unclear on how effective silicone sheeting may be 

in treating hypertrophic scars, there could be an efficiency factor due to microorganisms 

found under the dressings. This study aimed to investigate the microbiology of intact 

skin under silicone sheeting and to construct a model to study the in-vitro effects on 

extracellular protease production. In-vitro models were set up to determine bacterial 

numbers and protease activity. Various models were constructed using Petri dishes and 

universals with broth to allow organisms to permeate throughout the silicone dressings. 

An azocasein substrate was used to quantify total protease levels. Ten healthy 

volunteers were recruited into the study and one volunteer presented with considerable 

hypertrophic scarring and agreed to be a case study. Swabs were taken of the skin prior 

to application of silicone sheeting, and then the skin and sheeting were swabbed 

subsequently once a week over a one-month period. In-vitro results showed increases in 

bacterial growth for all organisms tested, but protease activity increase was only 

displayed by S.epidermidis, S.aureus, A.johnsonii and C.albicans. A.johnsonii showed a 

significant change in protease activity (P=0.020) as well as S.aureus (P=0.001). The 

volunteer study revealed variable results, which may have been due to interference with 

the azocasein assay. An ANOVA showed no statistical significance. The mechanism of 

action of silicone treatment remains inconclusive and requires further study.  
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Chapter 1 – Introduction 

Hypertrophic scars are formed by the excessive synthesis of collagen induced by a 

hyperbolic wound healing response. The aesthetics of these scars can leave patients 

physically impaired by hindering movements at joints and also present with 

hyperpigmentation and excessive growth. Patients suffer psychological distress and low 

self-esteem due to the appearance of the scars and they can also cause reduced 

independence (O’Brien and Pandit, 2008). In the UK, it is common for hypertrophic 

scars to be treated with silicone sheets in order to correct the aesthetic problems 

presented. 

 

Management of hypertrophic scars has advanced over the years, but still remain difficult 

to prevent and treat (Bloemen et al., 2009). It has been reported by many authors that 

both pressure and silicone in combination and separately are effective in treating 

hypertrophic scars. Within the current scientific literature, there are no definitive 

conclusions on the mechanisms of action on the effect of silicone sheeting on 

hypertrophic scarring. Some clinicians associated with the study have reported 

anecdotal findings that patients with poorer personal hygiene appeared to have 

improved scars compared to patients who had meticulous cleaning habits. It may be that 

increased microbial activity or numbers could be taking place under the dressings, 

which potentially could influence scar modulation.  
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1.1 Skin morphology 

The skin is the largest, dynamic organ of the body and accounts for 16% of total body 

weight (Wickett and Visscher, 2006). The three main purposes of the skin are 

protection, regulation and sensation, and wounding of the skin can affect all these 

functions.  

 

The primary and foremost function of the skin is its action as a physical barrier to the 

exterior environment, protecting against mechanical impacts, microorganisms, 

ultraviolet radiation and chemicals. A state of homeostasis is maintained by the skin 

through sweat and hair movement to regulate body temperature, peripheral circulation 

and fluid balance. The pH of skin is normally in the range of 4-6, creating an acid 

mantle, which influences barrier homeostasis and antimicrobial properties that repel 

pathogenic microorganisms (Ali and Yosipovitch, 2013). As an organ of sensation, the 

skin has an extensive network of autonomic and sympathetic nerve cells that are 

receptive to temperature, touch and pain. The skin is made up of multiple layers of cells, 

blood, lymphatic vessels and nerve endings that are linked to underlying structures by 

connective tissue. The three main layers of skin are: the epidermis, dermis and the 

subcutaneous layer (subcutis) (figure 1.). 
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Figure 1. Cross-section of skin. Taken from Shimizu (2007) 
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The epidermis consists of stratified squamous epithelium and acts as semi-permeable 

barrier. The four layers of the epidermis are: the stratum basale (basal cell layer), 

stratum spinosum (prickle cell layer), stratum granulosum (granular cell layer), stratum 

lucidum and the stratum corneum (horny layer). The cells in all of the layers are made 

up of keratinocytes, except for the stratum basale, which consists of other cell types, 

such as melanocytes, Merkel cells and Langerhans cells (figure 2) (OpenStax College, 

2013). Keratinocytes secrete keratin, which is a fibrous protein that provides skin its 

hardness and water resistance. The most superficial layer, the stratum corneum, is made 

up of a dead layer of keratinocytes that is regularly shed and replaced by rising cells 

from the stratum granulosum. This layer of dead cells protects against microorganisms 

entering the body and prevents dehydration of the underlying structures, as well as some 

mechanical protection.  

 

The dermis is composed of supportive connective tissue and contains sweat glands, 

neurons, fibres and blood and lymph vessels. It is the deepest layer of the skin and 

provides structural support (Koziel and Potempa, 2012). A thin papillary layer and 

thicker reticula layer comprise the dermis. The papillary layer connects to the epidermis 

and is made up of thin, loosely arranged collagen fibres whilst the reticular layer which 

runs from the base of the papillary layer to the subcutis is made of thicker bundles of 

collagen. Fibroblasts also make up the dermis and produce collagen, elastin and 

structural proteoglycans (Gawkrodger, 2002).  

 

The subcutis is made up of loose connective tissue and fat that serves to connect the 

skin to the underlying fibrous tissue of the bones and muscles. Its main function is for 

fat storage, insulation and cushioning (OpenStax College, 2013).  
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Figure 2. The layers of the epidermis. Taken from OpenStax College (2013) 
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Collagen is the main constituent of the extracellular matrix (ECM) that provides 

strength and elasticity in skin. It is a fibrous protein that consists of three polypeptide 

chains that are coiled in shape and linked by hydrogen bonds. With regards to wound 

healing, collagen is an important component that is formed during scar formation. 

 

Verhaegen et al. (2009) evaluated the collagen structure in three different scar types 

(normotrophic, hypertrophic and keloid) and normal skin and established that clear 

differences in collagen morphology were demonstrated (figure 3). The collagen fibres 

were found to be organized in a more parallel manner in scars when compared to the 

fibres in normal skin, and in particular, the collagen bundles in hypertrophic scars were 

thinner than normal skin  (Verhaegen et al., 2009). These findings possibly show that 

the deviation from the normal phases of wound healing in skin that ultimately affects 

the appearance and formation of hypertrophic scars. 
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Figure 3. Collagen structure in normal skin and scars viewed by confocal 
microscopy. The scale bar in (A) represents 100 mm and also applies to B-D. 
Taken from Verhaegen et al. (2009) 

Key: 

(A) Normal skin 

(B) Normotrophic scar 

(C) hypertrophic scar 

(D) keloidal scar.  
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1.2 Phases of normal wound healing 

After skin trauma, there is a regular initiation of repair response, summarized as normal 

wound healing resulting in scar formation (Bran et al., 2009). There are three phases of 

wound healing; the inflammation, proliferation and remodelling phases. 

 

After initial wounding, the inflammation phase is the body’s natural response to the 

injury. During this phase, vasoconstriction of the capillaries occurs until haemostasis 

has been achieved. Vasodilation and leakage of plasma from the capillaries then forms a 

fibrin clot. Tissue oedema, phagocytic activity and secretions of macrophages, T 

lymphocytes, lymphokines, collagenase and elastase also occurs (Guo and Dipietro, 

2010).  Figure 4 summarizes the cytokines and chemotactic agents present during the 

wound healing phases. 

 

In the proliferation phase, fibroplasia and angiogenesis occurs for re-epithelialization. 

Fibroblasts encourage tissue growth through the production of collagen and capillary 

growth and there is an increase of keratinocytes, endothelial cells and growth factors 

(Schultz and Mast, 1999). Other matrix constituents include fibronectin and hyaluronic 

acid (HA) (Gauglitz et al., 2011). 

 

Remodelling phase, the initial collagen is weak and randomly distributed, but as 

maturation occurs the fibres cross-link and orientate to the direction of stress. Healed 

tissue strength never reaches the same as original tissue. An equilibrium is reached 

between synthesis of new components and degradation by matrix metalloproteinases 

(MMP) such as collagenase and gelatinase (Schultz and Mast, 1999). The healing 

process can take up to a year to complete. 
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Figure 4. The difference between normal wound healing and excessive scarring. 
Taken from Gauglitz et al., (2011) 
 
Key: 
TGF-ß – Transforming growth factor ß 
PDGF – Platelet-derived growth factor 
IGF – Insulin-like growth factor 
IL – Interleukin 
TIMP – Tissue inhibitor of metallproteinases 
MMP – Matrix metalloproteinases 
INF- γ – Interferon- γ 
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1.3.1 Factors affecting wound healing 

There are local and systemic factors that can influence wound healing. Local factors 

include oxygenation and infection. Systemic factors include age, hormones, underlying 

problems, medication and nutrition (Guo and Dipietro, 2010). 

 

A disturbance in the phases of wound healing can impair the results of recovery. 

Chronic wounds or excess scar formation (hypertrophic scars and keloids) are usually 

presented where normal wound healing has been affected (Bran et al., 2009). Excess 

scar formation can form as a result of burn injuries, lacerations, abrasions, surgery, 

piercings and vaccinations (Gauglitz et al., 2011). 

	
  

Collagenase breaks down collagen fibres and is one of three major MMPs in wound 

healing (Toy, 2005). It is thought that in the proliferation phase, growth factors regulate 

MMP activity, however excessive MMP expression is detrimental to normal wound 

healing if it is not controlled (Toy, 2005). According to Amălinei et al. (2007), MMP-1 

(fibroblast collagenase) is the main collagenase that can break down collagen fibres. 

MMP-1 is produced by fibroblasts, keratinocytes, endothelial cells and macrophages. 

However, from figure 4, although there is an increase of collagenases in the remodelling 

phase of excessive scar formation, the graph shows a small optimum of activity 

compared to the excessive activity during the proliferation phase. 
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1.3 Hypertrophic scarring 

A hypertrophic scar is a type of excessive scar formation. According to Juckett and 

Hartman-Adams (2009), hypertrophic scarring is defined as a scar that is raised above 

the skin that stays within the limits of the original wound. The scars are often 

unaesthetic, impair movement, itchy and painful (Bombaro et al., 2003; Li-Tsang et al., 

2006). The redness is mainly due to increased blood flow and increased vascularity. A 

study by Fu et al. (2005) showed that in hypertrophic scars, the epidermal layer was 

thickened, collagen fibres were arranged as swirls and few secretory glands remained or 

were irregular. Histologically, there is an increase in collagen in hypertrophic scars 

compared to normal skin (Urioste et al., 1999). 

 1.3.1 Pathology of hypertrophic scars  

Hypertrophic scarring usually manifests within 4-8 weeks after the initial skin injury 

(Gauglitz et al., 2011). Hypertrophic scars are caused by prolonged wound healing 

which leads to the excessive growth of blood vessels and collagen. Excessive scarring 

arises due to a deviation to the process of normal wound healing as shown in figure 4. 

Gauglitz et al. (2011) suggests that the prolonged inflammatory phase initiates an 

increase of fibroblast activity, and therefore forming a hypertrophic scar. In figure 4, the 

ratio of proliferation and inflammation is grossly distorted to the size of the remodeling 

phase, which would suggest that the persistence of the former two phases initiate 

excessive collagen synthesis, and there may be a deficiency of MMPs for degradation. 

There is a rapid growth phase for up to six months, and then a regression over a few 

years (Alster and West, 1997).  
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A study by Baker et al. (2007) reported in a retrospective study that hypertrophic scar 

formation might be influenced by bacterial colonization whilst the wound is healing due 

to differences in microorganisms found, in particular, Staphylococcus aureus (S.aureus) 

and Escherichia coli (E.coli). They also assert that previous studies had not been 

established, but the results indicated that bacterial colonization of wounds may be more 

important than previously believed and that aseptic burn wound environments could 

reduce the incidence of hypertrophic scars. The lack of association with bacterial 

influence in literature concerning hypertrophic scars demonstrates that some 

explanations to hypertrophic scar formation and healing are being overlooked. 
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1.3.2 Difference between hypertrophic scars and keloids 

Keloids are more commonly seen in non-Caucasians and appear usually after three 

months (Juckett and Hartman-Adams, 2009). There may be a hereditary factor on the 

predisposition of keloids developing after skin injury, but it has also been linked with 

abnormal functioning of the hypothalamus and thyroid glands (Tsao et al., 2002). 

Overtime, keloids do not improve like hypertrophic scars (Wolfram et al., 2009). 

 

Hypertrophic scars can often be misdiagnosed as keloids (Bloemen et al., 2009) and 

incorrect diagnosis can result in inappropriate therapeutic treatment (Bran et al., 2009). 

A keloid is described as an over-growth of scar issue beyond the limits of the original 

wound and rarely regresses over time (Berman et al., 2007; Bran et al., 2009). 

Characteristically, hypertrophic scars have bundles of collagen arranged parallel to the 

epidermis surface whilst in keloids the collagen bundles are large, thick and 

disorganized (Köse and Waseem, 2008; Gauglitz et al., 2011). Hyaluronic acid  (HA) is 

a constituent of the ECM and a major component in the early granulation tissue seen in 

hypertrophic scars whilst in keloids, it is only a minor component (Köse and Waseem, 

2008). Keloid fibroblasts produce high levels of collagen and fibronectin and shows 

aberrant responses to metabolic modulators such as growth factors and cytokines. 

However, fibroblasts in hypertrophic scars display a moderate elevation in collagen 

production, but their responses to metabolic modulation are similar to those of normal 

fibroblasts (Erlich et al., 1994). Table 1 summarizes the differences in hypertrophic 

scars and keloids. 
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 Hypertrophic scars Keloids 
Collagen bundles Fine, well-organized, 

wavy parallel to epidermis 
Large, thick, closely packed 
random to epidermis 

Myofibroblast 
 

Present Absent 

PCNA expressing 
 

Low High 

ATP levels 
 

Low High 

Hyaluronic acid 
localization 

Major component 
papillary dermis 

Thickened, 
granular/spinous layer 
Diffuse pattern 

Apoptosis 
 

Decreased Increased/Decreased 

 
 

 

 

 

 

 
  

Table 1. The biochemical and molecular differences between hypertrophic scars and 
keloids. Modified from Köse and Waseem (2008) 
 
Proliferating cell nuclear antigen (PCNA) is a marker of cell proliferation. 
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1.4 Burn injuries 

Around 250,000 people suffer burn injuries each year in the UK (Benson et al., 2006) 

There are various ways that burns can be induced; explosion, steam, hot liquid, flames, 

electricity and radiation.  

 

Burn injuries (figure 5.) are classified as: First-degree burns (superficial), no significant 

tissue loss, only the top layer of the epidermis is affected. An example of a superficial 

burn is mild sunburn. Second-degree burns (partial thickness) results in significant 

tissue loss, involving all of the epidermis and part of the dermis, or all. The burn site is 

red and blistered. Third-degree burns (full thickness), often require debridement and 

skin graft as there is loss that is extended further than the dermis. Full thickness burns 

includes damage of the epidermis, dermis and possible damage to subcutis, muscle and 

bone. There is no sensation in the area as nerve endings are damaged. 

 

Scarring is a common problem post burn healing and hypertrophic scars are due to 

excessive growth of fibrous tissues and collagen (O’Brien and Pandit, 2008). Gauglitz 

et al. (2011) stated a 91% incidence rate of scarring following burn injury. Bloemen et 

al. (2009) indicates that there are many factors that could influence an individual’s 

susceptibility to hypertrophic scarring, such as race, age, genetics and hormones. 
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Figure 5. Classification of burn injuries cross-section. Taken from Nucleus 
Medical Art (2003)  
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1.5 Invasive treatment of burn scars 

The aesthetic quality of healed tissue post burn is very important for the individual and 

there are a number of treatments currently used to improve the quality of scar tissue. 

They are varied but can be classified as invasive and non-invasive. 

1.5.1 Skin grafts/surgery 

Following full healing the scar can be removed and the resulting lesion covered with a 

skin graft (usually an allograft). The results are improved, although function is greatly 

restored (UMHS, 2013). There are other various surgical techniques undertaken, such as 

the Z-Plasty and tissue expansion, which seem to be effective as discovered by Bloemen 

et al. (2009). Surgical excision of keloids tend to worsen the scarring (Tsao et al., 

2002). 

 1.5.2 Injections 

The use of intralesional corticosteroid injections is not used frequently (Bloemen et al., 

2009), but help to flatten and reduce the redness of hypertrophic scars by breaking down 

the skin’s collagen (UMHS, 2013). A course of injections is usually completed over a 

few months. The disadvantages of this treatment are burning sensations, skin atrophy 

and is not suitable for extensive burn scars (Bloemen et al., 2009). Collagen injections 

increase the volume of sunken scars, however is only a temporary solution (UMHS, 

2013). A pilot study using collagenase injections by Kang et al. (2006) found that there 

was no effect on hypertrophic scar. The study used a small sample size of seven 

patients, however after 6 months of follow-up, there was no change in scar volume and 

numerous side affects were experienced. 
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1.5.3 Dermabrasion 

The outer layers of the skin are abraded to smooth out surface irregularities. Normally, 

the procedure is performed with anesthetic and the skin is ‘sanded’ with rotary 

equipment (UMHS, 2013). 

 1.5.4 Radiotherapy 

This method of treatment can be used alone, or in conjunction with excision, however it 

is quite a controversial topic. As highlighted by Branski et al. (2012), some healthcare 

practitioners consider radiotherapy as a last resort option, although it has been indicated 

that the risk of irradiation is quite low and the success rate of scar improvement is high. 

Wittgruber et al. (2012) claims that the risk of carcinogenesis is exaggerated. 

 1.5.5 Cryotherapy 

In cryotherapy, liquid nitrogen is used to cause a defect within the cells of a scar at a 

cellular level by creating a freezing stimulation, initiating anoxia and tissue necrosis 

(Branski et al., 2012). Recent keloids and hypertrophic scars show a particularly good 

response to this method according to Branski et al. (2012), and seemed to show better 

clinical results compared to intralesional corticosteroid injections. Cryotherapy may 

affect the collagen remodeling phase (Bloemen et al., 2009). 

 1.5.6 Laser therapy 

There are many types of laser systems used. Ablative lasers make scars softer and 

flatter, but can cause further complications in wound healing (Branski et al., 2012). 

Treatment of scars with non-ablative lasers works well with other methods, such as the 

use of topical/intralesional corticosteroids. Both methods remove the outer layers of 

skin for smooth skin to form (UMHS, 2013). Bloemen et al. (2009) comments that the 

mechanism of laser therapy is unclear, but suggests it may influence the collagen 

remodeling phase and/ or angiogenesis.  



 19 

1.6 Non-invasive treatment of burn scars 

 1.6.1 Silicone 

Silicone is the main form of non-invasive treatment of hypertrophic scars (O’Brien and 

Pandit, 2008). Since the early 1980s, silicone has been used to treat hypertrophic scars. 

There are many different forms available, including silicone sheets, gel, sponges and 

sprays. Currently, there is no clear evidence that the silicone modifies scar tissue, but 

several theories for possible mechanisms include increased surface temperature, 

improved hydration or increased oxygen tension. A review by O’Brien and Pandit 

(2008) found that there was no significant difference in these stated mechanisms under 

silicone. However, Momeni et al. (2009) found that silicone sheeting was significantly 

more effective during treatment than a placebo from a study on 34 participants and 

scoring using a modified version of the Vancouver scale. A study by Li-Tsang et al. 

(2006) on Chinese patients concluded that pain, pliability, thickness and colouration 

were improved after using silicone sheets compared to a control group, although 

statistically significant differences were not demonstrated. 

  1.6.1.1 Silicone sheets 

Prescribed silicone sheeting is often a self-adhesive and semi-occlusive sheet that is 

made from medical grade silicone, which is a cross-linked polydimethylsiloxane 

polymer (Berman et al., 2007). It is suggested that the sheets should be worn for at least 

12 hours a day continuously (Branski et al., 2012; Bloemen et al., 2009). The postulated 

modes of action for silicone sheets are increased stratum corneum hydration, increased 

temperature and increased fibroblast apoptosis (Armour et al., 2007). 
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 1.6.2 Pressure therapy 

Pressure therapy was established in the 70’s, though the science behind the resulting 

reduced scar formation has still not been fully explored (Branski et al., 2012). 

According to Bloemen et al. (2009), pressure therapy is believed to have an effect on 

the collagen-remodeling phase of wound healing.  It is suggested that bespoke garments 

are worn for at least 12-18 hours a day for the first six months, however, the success 

rate is often impeded due to improper seating of pressure in the correct area or poor 

patient compliance (Branski et al., 2012). An investigation into poor patient compliance 

was conducted by Ripper et al. (2009), which interviewed patients. The main problems 

stated were reduced movement/functionality, additional care effort and perceived 

deficiencies. Engrav et al. (2010) found that the flattening of scars was only statistically 

significant in scars that were quite thick. Van den Kerckhove et al. (2005) stated that a 

higher pressure is more effective than a lower with regards to flattening scars after using 

a mean of 15 mmHg pressure instead of the 10 mmHg used in other previous studies. 

This finding was based on a study of 60 patients with hypertrophic scars who were 

given pressure garments to wear during the period 1999 and 2002 and assigned a 

“normal” or “lower” compression class. The modes of action for pressure therapy are 

postulated to involve increased MMP activity and decreased collagen synthesis 

(Armour et al., 2007). 

 1.6.3 Combination of silicone sheeting and pressure therapy 

A study by Harte et al. (2009) found that pressure and silicone improved hypertrophic 

scars after 24 weeks, but could not determine which factor had the greater influence 

because of the small sample size used. Steinstraesser et al. (2011) conversely found that 

the use of multimodal treatment (pressure and silicone) yielded equivalent results to 

pressure therapy alone. 
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 1.6.4 Topical application of natural ingredients 

Singh (2013) claims that some studies found that numerous herbal extracts and essential 

oils can be effective in reducing the appearance of keloids and preventing their 

formation. The natural remedies include: Aloe vera gel, apple cider vinegar, calendula 

oil, coconut oil, jojoba oil, lavender oil and vitamin E oil. Mustoe et al. (2002) however 

states that the reports are anecdotal and there is not adequate published information to 

evaluate the efficacy of these natural extracts, but more recently, Muangman et al. 

(2011) and Hosnuter et al. (2007) found that treatment using dressings with a 

combination of silicone and onion extract yielded indicative results that dressings 

incorporated with natural remedies may be effective. 

 1.6.5 Massage 

Massaging aims to reduce scar thickness by loosening the structure and is thought to be 

most ideal for smaller scars (Branski et al., 2012). A case study by Chen et al. (2012) 

using an allograft acellular dermal matrix as treatment of a hypertrophic scar included 

exercise motions and massage as part of the therapy. Branski et al. (2012) state that 

studies on scar massages are rare, and are only regarded as supportive therapy, although 

some patients did experience some improvement of aesthetics, movement and a 

reduction of itching and overall pain. 
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1.7 Skin microbiology 

Commensal bacteria and opportunistic pathogens inhabit the skin. Predominantly, 

Gram-positive organisms such as staphylococci, micrococci and diphtheroids are found 

and can be dense or sparse in population, depending on the area (Davis, 1996). The 

following genera, Propionibacterium, Corynebacterium, Brevibacterium, Acinetobacter 

and Pityrosporum are also considered part of the normal skin flora, as well as some 

transients and contaminants (Noble, 1984). According to Koziel and Potempa (2012), 

both commensals and pathogens express extracellular enzymes such as proteases, but 

proteases secreted by commensals contribute to bacterial coexistence whilst pathogens 

use proteases as virulence factors to colonize the skin and break the epithelial layer. 

Some common organisms such as Staphylococcus aureus (S.aureus) and Pseudomonas 

aeruginosa (P.aeruginosa) have been found on the skin and shown to express proteases 

that can cause connective tissue destruction by targeting elastin, fibrinogen and collagen 

(Koziel and Potempa, 2012). 

 1.7.1 Staphylococci 

Staphylococci are Gram-positive cocci that form in clusters (Foster, 1996). They are 

traditionally separated into two groups; those that are coagulase-positive and those that 

are coagulase-negative (Foster, 1996). Coagulase-negative staphylococci (CNS) are 

common commensals of the skin, such as Staphylococcus epidermidis (S.epidermidis), 

Staphylococcus warneri (S.warneri) and Staphylococcus hominis (S.hominis) (Foster, 

1996). Noble (1984) describes that some species have unexplained preferences for 

different habitats and further explains that S.epidermidis and S.hominis are mainly 

found on skin, with S.epidermidis more likely to be found on the upper body. According 

to Foster (1996) and Noble (1984), S.epidermidis is the most important of the species as 

it is the main cause of infection associated with medical devices and catheters (Otto, 

2009). 
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 1.7.2 Proteases 

Proteases can be categorized as mainly cysteine, serine or metalloproteases. The 

proteases can then be further classified as endoproteases or exoproteases (Monod et al., 

2002). Only a limited number of proteases can decompose collagen. Collagenolytic 

proteases secreted by bacteria are mainly MMPs and have been effectively used in 

wound healing (Watanabe, 2004). S.aureus is the most studied Gram-positive organism. 

Cysteine proteases referred to as Staphopains are secreted by S.aureus, and have been 

found to degrade collagen and fibrinogen (Ohbayashi et al., 2011). S.epidermidis 

largely secretes cysteine and serine proteases, which results in the degradation of 

fibrinogen and fibronectin (Dubin et al., 2001, cited in Koziel and Potempa, 2012). It 

has been shown that Candida albicans (C.albicans) secretes proteases that can degrade 

the stratum corneum and fibronectin (Monod et al., 2002). This implies that tissue 

modulation and or destruction may be taking place, although whether this has an effect 

under silicone dressings is unknown. 
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1.8 Mechanisms of action by silicone treatment 

Many authors have cited different mechanisms of action from the use of silicone 

treatment for hypertrophic scars. The main mechanisms that are suggested the most are 

temperature, hydration and oxygen transmission.  

1.8.1 Surface temperature 

Musgrave et al. (2002) indicates that higher temperatures encourage collagenase 

activity, therefore suggesting that the silicone raises the surface skin temperature to aid 

the breakdown of collagen. Berman et al. (2007) stated that the surface temperature of 

18 hypertrophic scars increased from 29°C to 30.7°C in 16 patients when treated with 

silicone sheeting. Enzymes in human cells normally have an optimal temperature for 

catalytic activity of 37.5°C (body temperature). A temperature below this means less 

kinetic energy, leading to slower functioning.  

 1.8.2 Skin hydration 

Sawada and Sone (1992) cited in a previous study by Sawada and Sone (1990) that 

hydration and occlusion are the likely mechanisms of action when treating scars with 

silicone cream, however, in the 1992 study with a non-silicone cream, all scars seemed 

to have improved, raising the question as to whether silicone has an essential role. It is 

suspected that hydration of the skin may cause eventual maceration of the scar (Sawada 

and Sone, 1992). Collagen production is thought to decrease through the inhibition of 

the fibroblasts as the stratum corneum is hydrated, thus aiding in remodelling collagen 

fibres on the surface of the skin (Chan et al., 2005; Li-Tsang et al., 2006). Suetak et al. 

(2000) conversely found that the hydration of the stratum corneum over 7 days 

decreased considerably with the application of a silicone sheet, but Borgognoni (2002) 

concluded that hydration is an important factor for the treatment of hypertrophic scars 

with or without silicone use.  
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 1.8.3 Oxygen tension 

Bermen et al. (2007) found that after treatment with silicone, the stratum corneum was 

more permeable to oxygen, therefore causing an increase in oxygen tension in the 

epidermis. The increased tension inhibits a hypoxia signal, which results in 

angiogenesis being prevented and stopping new tissue growth (Bermen et al., 2007). 

 

Borgognoni (2002) states that although silicone has been reported to improve 

hypertrophic scars faster than pressure therapy, the results obtained from these studies 

are not due to pressure, temperature or oxygen tension. As there is still inconclusive 

evidence of the mechanisms of action when silicone treatment is used for hypertrophic 

scars, it may be viable that there could be a microbial influence. Greenwood et al. 

(2012) extrapolated findings from research to explore the possible mechanisms of 

silicone in burn scars and open wounds, but established that further investigation is 

required. Baker et al. (2007) concluded that bacteria may have an influence on the 

formation of hypertrophic scars during wound healing after stating that there was an 

absence of bacterial studies on the potential likeliness to form these scars. This could 

possibly be the missing piece of information that needs to be investigated to determine 

the efficacy of silicone sheeting. 
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1.9 Aim 

The aim of this study was to investigate the microbiology of intact skin under silicone 

sheeting and to construct a model to study the in-vitro effects on extracellular protease 

production. 

 

1.10 Objectives 

The objectives were to develop an in-vitro model to estimate bacterial numbers and 

extracellular enzyme production, to evaluate the effect of silicone sheeting on the 

production of extracellular enzymes (protease) in-vitro and to isolate microorganisms 

found on intact skin during the application of silicone sheeting. 
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Chapter 2 – Materials and Methods 

2.1 Bacterial strains used 

o P.aeruginosa NCTC 6749 

o Methicillin Resistant Staphylococcus aureus (MRSA) clinical isolate 

o E.coli NCTC 9001 

o C.albicans ATCC 10231 

o CNS clinical isolate 

o S.epidermidis NCTC 11047 

o S.aureus NCTC 8532 

o S.warneri clinical isolate 

o Streptococcus mitis NCTC 12261 

o Acinetobacter johnsonii NCTC 12154 

 

2.2 Dressings examined 

  
Mepiform® (Mölnlycke Health Care, Gothenburg, Sweden) – Self-adherent 

scar dressing with Safetac technology. 
KerraPro™ 
 

(Crawford Healthcare Ltd., UK) – Silicone pressure reducing pad 

Oleeva® Fabric (Bio Med Sciences, Inc., Allentown, USA) – Self-adhesive sheet 
with fabric backing. 

Silon-SES® (Bio Med Sciences, Inc.) – Silicone elastomer sheeting 
polytetrafluoroethylene (PTFE). 

Dermatix® (Valeant Pharmaceuticals Ltd., Basingstoke) – Transparent 0.1mm 
thin sheet that can be used for up to five weeks. 

Oleeva® Clear 
 

(Bio Med Sciences, Inc.) – Transparent self-adhesive sheet. 

Silon-TEX® (Bio Med Sciences, Inc.) – Silicone bonded textile fabric that is 
washable. 

BAP SCAR 
CARE T 

BAP Medical BV, the Netherlands - Self-adhesive, thin and 
transparent silicone patch. 

 
Table 2. Scar dressings used in this study.  
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2.3 Preservation of bacterial cultures 

The bacterial cultures were subcultured for purity and then inoculated onto nutrient agar 

(NA) (Oxoid, Basingstoke, UK) slopes, which were stored at room temperature. Fresh 

streak plates of each organism were subcultured every week on NA plates and 

maintained at 4°C.             

 

2.4 Preparation of inoculum 

10 ml of tryptone soy broth (TSB) (Oxoid, Basingstoke, UK) was inoculated with 1-2 

colonies of bacteria from purity plates. This was then incubated at 37°C overnight to 

form an overnight broth culture (ONBC). The ONBC was diluted 1/100 from 

approximately 108-109 colony forming units per ml (CFU/ml) to 106-107 CFU/ml prior 

to testing. 

 

2.5 In-vitro models 

Different techniques were used to attempt to create a suitable in-vitro model to simulate 

the dressing being applied to a surface that bacteria can inhabit.  

 

At first, different sponges were tested with varying amounts of TSB in petri dishes to 

simulate a dressing lying on top of a structure like skin. It was found that the sponges 

used did not leave enough residues to perform any tests.  
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Subsequently, a large 150 ml petri dish of tryptone soy agar (TSA) with small holes 

bored into the set agar was used to accommodate the TSB and allow sufficient residual 

fluid to be obtained to determine a viable count and protease activity (figure 6.). The 

TSA was used as a stability medium to balance the dressing above TSB to allow contact 

between the TSB and dressing without submersion. Unfortunately, after 48 hours of 

incubation at 37°C, no liquid remained. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Dressing 

TSB 

TSA 

Figure 6. In-vitro model using TSA and TSB in a 150 ml 
petri dish. 
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Following a similar model to figure 6, semi-solid agar (SSA) (0.2% w/v TA in nutrient 

broth (NB)) was prepared and poured into wells made in 50 ml petri dishes of set TSA 

(figure 7.). The SSA was used in an attempt to allow organisms to move throughout the 

liquid whilst in contact with the dressing, and hopefully prevent too much residue from 

being lost. The TSA acted as the stability medium to hold the dressing on top of the 

SSA. The plates were then sealed with parafilm to prevent evaporation of any residue. 

After incubation at 37°C for seven days, the SSA was transferred to a sterile universal 

and centrifuged for 5 minutes to harvest the liquid residue from the agar. A sufficient 

amount of residue could not be obtained as the SSA still experienced some evaporation 

of liquid, despite using the parafilm. 

 

 

 

 

 

 

 

 

 

  

TSA 

SSA 

Dressing 

Figure 7. In-vitro model using SSA. 
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Due to the evaporation of residue, containers with screw top lids were tested filled with 

TSA and a central cavity left to hold TSB (figure 8.). The lids prevented evaporation of 

TSB and the TSA acted as the stability medium to hold the dressing above the TSB. 

This model seemed to hold the dressing in place and left sufficient residue for testing, 

so was used for preliminary testing of the different dressings in quadruplicate. 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
 

  

TSA 

TSB 

Container 

Dressing 

Figure 8. In-vitro model using a container with a central reservoir 
for TSB. 
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Although the model in figure 8 fulfilled some of the criteria to be successful, a lot of 

media and space was required. The dressings also had to be modified to 1 cm2 sizes 

which was difficult to achieve aseptically. After the initial testing of the various 

dressings, 10 ml of TSB in universals containing 3 cm2 dressings were used for 

subsequent tests (figure 9.). 

 

  

TSB 

Dressing 

Figure 9. In-vitro model using a universal with TSB. 
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2.6 Determination of viable numbers of microorganisms in a broth 

The viable count was determined using a method described by Miles and Misra (1938). 

The inoculum was diluted 10 fold until a dilution of 10-8 was reached. NA plates were 

divided into 8 segments and 50 µl drops of each dilution were dropped in duplicate and 

allowed to absorb into the medium in each section and then the plates were incubated at 

37°C for 48 hours. The section where counts of approximately 20-60 colonies per drop 

were observed was used to calculate the amount of colony forming units (CFU) 

determined by: 

CFU/ml=N/VD 

Where: 

N= mean number of colonies per drop 

V= volume plated (0.05 ml) 

D= dilution 

 

2.7 Supernatants 

Supernatant fluids were harvested by centrifugation of Eppendorfs containing the broth 

culture at 10,000 xg for 5 minutes and separated from the pellet. The supernatant fluids 

were stored at -20°C until used in further assays. 
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2.8 Protease determination 

Initial screening methods were undertaken to confirm protease activity was exhibited 

and could be measured. 

 2.8.1 Milk agar preparation (method 1) 

Milk agar plates were prepared following a modified method described by Sokol et al. 

(1979). Brain Heart Infusion agar (BHI) (Oxoid, Basingstoke, UK) and 3% (w/v) 

skimmed milk solution were prepared and autoclaved separately. Sterile solutions of 

each were mixed in equal volumes at 60°C. The milk agar was distributed into 15 ml 

volumes in Petri dishes and allowed to set. Wells of 1 cm diameter were bored into the 

plates and 100 µl of supernatant were pipetted into the wells. The supernatants were 

harvested after 3 days of incubation following the method of 10 ml TSB in universals 

with the dressings. The organisms tested were P.aeruginosa, MRSA, E.coli and 

C.albicans with Mepiform® and KerraPro™. The preliminary testing of the milk agar 

plates resulted in areas of hydrolysis of casein around the wells of 1 cm in diameter.  

The plates were incubated at 37°C for 48 hours. The extent of hydrolysis of casein was 

measured radially around the wells with a ruler. Experiments were carried out in 

quadruplicate. 

 2.8.2 Milk agar preparation (method 2) 

Another method was followed as described by The Microbial Ecology Group (no date). 

Skimmed milk agar was prepared with 1 g technical agar (TA) (Oxoid, Basingstoke, 

UK) mixed with 5 g skimmed milk powder in 100 ml distilled water at pH 7.2. Plates 

were poured in volumes of 15 ml and inoculated with one streak of inoculum. Plates 

were incubated at 37°C for 48 hours in quadruplicates. The method from 2.4 was also 

followed for inoculation. These methods showed that the organisms tested produced 

enough protease to be detected, albeit not quantifiable.  
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2.9 Azocasein assay 

Azocasein is a substrate consisting of casein conjugated with an azo dye. It is used to 

determine proteolytic enzyme activity as the release of colour is caused by the 

degradation of casein.  

 2.9.1 Azocasein method 

A modification to the method described by Lincoln and Leigh (1994) was used. In 

Eppendorf tubes, 100 µl supernatants were mixed with freshly made 1 ml azocasein 

(Sigma, 5 mg/ml in 0.1 M Tris-HCl, pH 7.2) and incubated at 37°C in the dark for 90 

minutes. Of the mixture, 250 µl was then mixed with 1 ml 5% (w/v) trichloroacetic acid 

(TCA) (Sigma) and allowed to precipitate for 30 minutes at 37°C in the dark. The 

samples were then centrifuged at 10,000 x g for 10 minutes to separate the precipitate 

from the sample. Absorbance was read using Model 6305 Spectrophotometer (Jenway, 

Essex, UK) at 328 nm. Samples with distilled water following the method outlined 

above were used to calibrate the spectrophotometer. P.aeruginosa was initially tested 

with the dressings to see if there was a change in protease production if different 

dressings were used that were also used for hypertrophic scar treatment. An incubation 

period of 7 days was used. The azocasein assay was repeated, incubating Mepiform® 

with MRSA, E.coli, C.albicans and a CNS isolate using the model with universals in 

section 2.5. This time, incubation periods of 1, 5 and 7 days were tested to observe if 

there was an optimum incubation length for total protease production. Common skin 

organisms S.epidermidis, S.aureus, S.warneri, S.mitis, A.johnsonii and C.albicans were 

tested with a 7 day incubation interval. An assay was set up to determine if the size of a 

dressing to the amount of broth affected the levels of total protease production. 

Mepiform® of 2 cm2 and 4 cm2 was incubated with an ONBC of an S.epidermidis 

clinical isolate in 10 ml TSB at 37°C for 7 days. A viable count was also undertaken. 
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2.9.2 Protease inhibitors 

To inhibit metalloproteases, 0.025 mol l-1 ethylenediaminetetraacetic acid (EDTA, 

Sigma) in distilled water was mixed in equal amounts with the samples and incubated at 

37°C for 10 minutes prior to the assay. Controls contained the solvent alone.  

 

To inhibit serine proteases, 0.025 mol l-1 phenyl methyl sulphonyl fluoride (PMSF, 

Sigma) in ethanol was mixed in equal amounts with the samples and incubated at 37°C 

for 10 minutes prior to the assay (Gudmundsdottir, 1996). Controls contained the 

solvent alone.  

 

To inhibit cysteine proteases, E-64 (Calbiochem, Germany) in distilled water was mixed 

in equal amounts with the samples and incubated at 37°C for 10 minutes prior to the 

assay. Controls contained the solvent alone. 

 

The inhibited results were subtracted from a set of results with no inhibiters added to 

show the final amount for each protease. 

 

2.10 Collagenase activity 

The method of preparation for gelatin agar to aid the detection of collagenase was 

followed as described by Vermelho et al. (1996). BHI agar was supplemented with 1% 

w/v gelatin (powdered collagen). 
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2.11 Hyaluronidase activity 

A turbidimetric assay of hyaluronidase as described by Sigma was followed where 750 

µl of supernatant was mixed with 250 µl enzyme diluent (20 mM Sodium Phosphate 

and 77 mM Sodium Chloride with 0.01% (w/v) Albumin, Bovine, pH 7.0, 37 °C) and 

equilibrated to 37°C for 10 minutes. Next, 1 ml of 0.03% (w/v) hyaluronic acid solution 

(0.3 mg/ml in phosphate buffer pH 5.35, 37°C) was added, mixed and incubated at 37°C 

for 45 minutes. After incubation, 500 µl of each test was mixed with 2.5 ml acidic 

albumin solution (24 mM Sodium Acetate, 79 mM Acetic Acid, 0.1% (w/v) Albumin, 

Bovine, pH 3.75, 25°C). The mixture was allowed to stand for 10 minutes before 

reading the % transmittance (%T) at 600 nm. The blank contained enzyme diluent 

alone. The uncorrected %T for each test needed to be between 130-170% to be valid. 

 2.11.1 Calculation for hyaluronidase activity 

Units/mg enzyme = (%T test - %T blank)(df)/(14.84)(0.75) 

Where:  df = dilution factor of enzyme  

14.84 = Sigma Determined Extinction Coefficient  

0.75 = Volume (in ml) of enzyme used in reaction 

 

2.12 Statistical analysis 

The independent t-test and ANOVA was calculated using IBM SPSS Statistics software 

version 21. Differences where P<0.05 were considered statistically significant.  
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Chapter 3 – In-vitro Investigation of Protease Production in the 

Presence of Silicone 

3.1 Introduction to In-vitro investigations 

Hypertrophic scars form due to abnormal volumes of deposition of collagen and other 

ECM constituents after injuries such as a burn or surgical incisions. A common non-

invasive treatment of these scars uses silicone sheets, which are worn for up to 24 hours 

to achieve aesthetic results. The reasons that this treatment proves successful are yet to 

be identified fully, however, in the current literature there are no publications on the 

influence of microbial flora and activity under the silicone dressings. Numerous 

methods are available in the scientific literature for protease determination and 

quantification.  

 

A common substrate used to determine protease activity is casein, derived from milk 

and forms an opaque suspension that causes the white colour of milk. Proteolytic 

proteases hydrolyse proteins into smaller peptide fractions and amino acids by the 

addition of water between carboxyl and amino groups (Microbial Ecology Group, no 

date). Casein reveals the bacteria capable of hydrolysing the substrate by secretion of 

caseinase (Leboffe and Pierce, 2011). Therefore, bacteria that produce casease appear to 

have clear halos around the colonies on agar plates. Agar plates are an easy form of 

detecting activity. Sokol et al. (1979) clarifies that the proteases expressed by 

P.aeruginosa are capable for hydrolysing casein, therefore skimmed milk agar was used 

to detect protease production. They further explained that currently established assays 

required a 48-hour incubation period and failed to identify weak protease-producing 

strains of P.aeruginosa, leading to the development of another milk medium that was 

more sensitive. However, for metagenomic proteases, Morris et al. (2012) claimed that 
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there is an issue with false positives whilst using skimmed milk for proteolytic activity. 

Azocasein is a substrate variation of casein that is a conjugate of casein and an azo dye 

that releases colour upon reaction with casein. This substrate has been used by several 

authors for protease determination and results are normally read using a 

spectrophotometer or a micro plate reader. Azocasein is used where a more sensitive 

assay is required for detecting smaller amounts of protease. A variation to this type of 

substrate by Sigma is casein labeled with fluorescein isothiocyanate (FITC), following 

similar principles where upon reaction, fluorescence of the resulting solution is 

measured. 

 

Other substrates have been determined to be able to detect protease activity. Vermelho 

et al. (1996) conducted a study that described a qualitative method for detection of 

extracellular proteases on agar plates using gelatin, bovine serum albumin and 

haemoglobin as substrates and yeast extract or BHI agar as the culture media. The study 

showed that the most preferential substrate to exhibit proteolytic hydrolysis was BHI 

supplemented with gelatin. 

 

More specific assays are available to identify certain proteases, such as collagenase and 

hyaluronidase. Enzymes known as hyaluronidase degrade HA. HA is a polysaccharide 

that contributes to wound healing, particularly in the proliferation phase (Voigt and 

Driver, 2012). Since HA is hydrophilic, it can absorb up to 3000 times its own weight in 

water, making it an important component in hydrating agents for injections (Voigt and 

Driver, 2012). The aim of this investigation was to determine the protease activity of 

microorganisms when in contact with silicone sheeting.  



 40 

3.2 In-vitro Results 

3.2.1 Determination of protease activity using milk agar plates 

In table 3, P.aeruginosa showed protease activity when grown with and without the 

silicone dressings Mepiform® and KerraPro™, but the area of hydrolysis could not be 

measured as the whole plate was cleared. Protease activity was detected in each 

condition for MRSA, but a slight increase in protease activity is shown with KerraPro™ 

present. No protease activity was detected for E.coli except when KerraPro™ was 

present. The control for C.albicans showed no activity, however, the presence of both 

silicones presented a larger amount of activity than any of the other organisms tested.  

 

Some results were found to be insufficiently discriminatory and were omitted from the 

values in table 3. Overall, four replicates for each organism were read.  
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 Average diameter of hydrolysis (mm) 

P.aeruginosa Control Unmeasurable 

P.aeruginosa Mepiform® Unmeasurable 

P.aeruginosa KerraPro™ Unmeasurable 

MRSA Control 11 (0.75) 

MRSA Mepiform® 12 (1.03) 

MRSA KerraPro™ 16 (2.78) 

E.coli Control 0 

E.coli Mepiform® 0 

E.coli KerraPro™ 9 (6.75) 

C.albicans Control 0 

C.albicans Mepiform® 20 (1.85) 

C.albicans KerraPro™ 21 (0.29) 

 

Table 3. Shows the average diameter of hydrolysis of casein. Results are the mean of 

four replicates. The P.aeruginosa plates were unmeasurable as the clearing around the 

wells was greater than the diameter of the petri dish. Values in ( ) represent SE. 
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3.2.2 Effect of various dressings on protease activity using the azocasein assay  

The in-vitro model as shown in figure 8 was used and tested as the most successful to 

obtain a residue without submerging the dressings to follow for the azocasein assay.  

 

Some results were omitted where P.aeruginosa expressed a pigment that affected the 

absorbance readings. The control, Mepiform® and Dermatix® results showed very 

similar values in protease expression of 65, 64 and 64 arbitrary units respectively 

(figure 10.), whilst with the other dressings it would appear there was a reduction of 

protease activity. The dressings Oleeva® fabric and Silon-TEX® showed statistically 

significant reductions in protease activity compared to the control sample, P=0.001 and 

P=0.004 respectively.   
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Figure 10. Shows the effect of various scar dressings on the level of total protease 

activity of P.aeruginosa after a 7 day incubation period. Levels are expressed in 

arbitrary units where 1 unit of activity refers to an absorbance of 1000 at 328 nm. 

Results are the mean of four replicates. Error bars represent the standard error (SE). 

Results with * show statistical significance to control test (P<0.05). 
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3.2.3 Determination of optimal incubation period for protease activity 

From incubation periods of 5 and 7 days, higher protease levels were seen (figure 11). 

The MRSA control and Mepiform® results showed an optimal protease expression at 5 

days of incubation, but both also exhibited large amounts of variance for each 

incubation period. E.coli control exhibited optimal protease expression at 5 days of 

incubation. Interestingly, when E.coli was incubated with Mepiform® it seems that the 

protease activity decreased as the length of incubation increased. After 1 day of 

incubation to 7 days, there was a five-fold reduction in protease activity. The optimal 

incubation period for C.albicans seemed to be after 1 day of incubation for both the 

control and when incubated with Mepiform®. Protease production peaked at day 5 of 

incubation for the CNS isolate. 
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Figure 11. Shows the effect of Mepiform® on the level of total protease activity after 1, 

5 and 7 day incubation periods. Levels are expressed in arbitrary units where 1 unit of 

activity refers to an absorbance of 1000 at 328 nm. Results are the mean of four 

replicates. Error bars represent the standard error (SE). Results with * show statistical 

significance to control test (P<0.05). 
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3.2.4 Azocasein assay of skin organisms with Mepiform® 

Viable counts were obtained and observed to determine if the higher protease levels 

were due to increased bacterial numbers, rather than an effect on actual protease 

production. For all of the organisms, when incubated with the dressing there were more 

CFU/ml than without the dressing present (table 4). S.epidermidis, A.johnsonii and 

C.albicans expressed noticeable protease activity. Only S.aureus (P=0.001) and 

A.johnsonii with Mepiform® (P=0.020) showed a difference in protease level compared 

to it’s control that was statistically significant. All organisms tested showed a 

significant difference in CFU/ml compared to the relative controls except for 

C.albicans. 
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 CFU/ml 
(x106) 

% change 
between 
control 

and 
dressing 

(P) values 
 
 
 
 

 

Total 
protease 

production 
(Arb.) 

% change 
between 
control 

and 
dressing 

 

(P) values 
 
 
 

 

S.epidermidis 
Control 

76(2.16) 12  
 

P=0.047 

6(6.70) 320  

S.epidermidis 
with Mepiform® 

86(0.85) 19(7.71)  P=0.303 

S.aureus Control 
 

257(1.73) 97  
 

P<0.001 

24(3.04) -100  

S.aureus with 
Mepiform® 

507(2.43) 0  P<0.001 

S.warneri 
Control 

66(3.04) 700  
 

P<0.001 

0 0  

S.warneri with 
Mepiform® 

462(4.50) 0  - 

S.mitis Control 58(1.86) 48  
 

P=0.001 
 

0 0  

S.mitis with 
Mepiform® 

86(1.56) 0  - 

A.johnsonii 
Control 

0.78(2.40) 9200  
 

P<0.001 

0 100  

A.johnsonii with 
Mepiform® 

72(0.75) 36(7.23)  P=0.020 

C.albicans 
Control 

0.88(1.94) 13  
 

P=0.944 

22(2.25) 114  

C.albicans with 
Mepiform® 

1(1.34) 25(6.30)  P=0.416 

 
Table 4. Shows the viable counts of skin organisms after a 7 day incubation period with 

and without (control) Mepiform® compared with total protease production. Mean 

CFU/ml was calculated from the mean of four replicates; two at 37°C and two at 25°C. 

Values in ( ) represent SE. 
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3.2.5 Protease inhibition of skin organisms with Mepiform® 

Metalloproteases, serine proteases and cysteine proteases were inhibited and compared 

to the total protease produced using the same organisms in 3.2.6. Variable amounts of 

each protease were seen in all organisms, which did not total the amount produced 

without any inhibitors (figure 12.). S.epidermidis with serine inhibition (P=0.01), 

S.aureus without inhibition (P=0.01) and A.johnsonii with metalloprotease inhibition 

(P=0.046) showed statistically significant differences.  
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Figure 12. Shows the inhibition of metalloprotease, serine and cysteine in skin 

organisms with and without incubation with Mepiform®. Levels are expressed in 

arbitrary units where 1 unit of activity refers to an absorbance of 1000 at 328 nm. 

Results are the mean of four replicates. Error bars represent the standard error (SE). 

Results with * show statistical significance to control test (P<0.05). 

  

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

140	
  

160	
  

180	
  

Pr
ot
ea
se
	
  le
ve
l	
  (
Ar
b.
)	
  

Without	
  
inhibitors	
  
Metalloprotease	
  
inhibition	
  
Serine	
  
inhibition	
  
Cysteine	
  
inhibition	
  

* 

* 

* 



 50 

3.2.6 Dressing to broth ratio 

The size of the dressings used in the TSB altered the levels of total protease production 

slightly (figure 13), but the difference was not significant. There was no significant 

difference in bacterial numbers or protease production. The 2 cm2 and 4 cm2 dressings 

resulted with 3.2x107 and 3.4x107 CFU/ml respectively, where mean CFU/ml was 

calculated from the mean of two replicates. Therefore, it was concluded that the size of 

the dressing for these experiments does not affect protease activity or bacterial growth.  
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Figure 13. Shows the effect of Mepiform® on the level of total protease activity with 

different sized sheets after a 7 day incubation period. Levels are expressed in arbitrary 

units where 1 unit of activity refers to an absorbance of 1000 at 328 nm. Results are the 

mean of 4 replicates. Error bars represent the standard error (SE). 
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3.2.7 Collagenase activity 

Unfortunately, no results were measurable using this method. 

 

3.2.8 Hyaluronidase activity 

The results were not valid as all were below 130%T. 
 
 
 

3.2.9 Summary of findings 

The model that used universals with 10 ml TSB produced results with the most protease 

production following the azocasein assay. The milk agar plates produced results, but 

levels of protease were not quantifiable. Different incubation periods were utilised, and 

it was determined that the most precise and optimal results were obtained after 7 days of 

incubation due to the smaller SE variation seen. The organisms that were tested were 

P.aeruginosa, MRSA, E.coli, C.albicans, CNS isolate, S.epidermidis, S.aureus, 

S.warneri, S.mitis, A.johnsonii and an S.epidermidis isolate. All organisms expressed 

protease detected by the azocasein assay apart from S.warneri and S.mitis, however, 

there were some mixed results with P,aeruginosa due to pigment release. A general 

trend seen was that incubation with Mepiform® present caused a higher level of 

protease production for all organisms that expressed protease. 
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3.3 In-Vitro Discussion 

3.3.1 Preliminary detection of protease activity 

Results for all the bacteria tested with Mepiform® and KerraPro™ were positive for 

protease activity when the two milk agar methods were conducted, but there was some 

difficulty measuring the levels of protease to a degree of accuracy. The inability to 

distinguish where the borders lay when measuring the rings of hydrolysis was the main 

drawback. This could be rectified by placing less testing zones on one plate, however, 

these methods using skimmed milk fulfilled the primary objective of detecting protease 

activity. 

 

A preliminary fluorometric method using a protease fluorescent detection kit by Sigma 

was attempted to compare the results with the azocasein assay. The technique was very 

similar to the azocasein methods, whereby fluorescein isothiocyanate (FITC) was used 

as the substrate to detect protease activity, instead of azocasein. FITC is orange in 

colour with an absorption maximum at 495 nm. Upon excitation it emits a yellow-green 

colour with an emission maximum at 525 nm. The results were read using FLUOStar 

Omega (BMG LABTECH Ltd., Aylesbury Bucks, UK) and expressed in ng of trypsin. 

This was a relatively easy method to perform, as it was quite similar to the azocasein 

assay and designed under the same principle, but some readings could not be 

determined as the assay was too sensitive and could not be used. Some slight alterations 

to the method could have been made to obtain readings, but unfortunately due to time 

restraints this was not possible and the equipment was not available at all times. 
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3.3.2 Testing of various dressings 

The addition of a variety of other dressings to test could have allowed some comparison 

between brands as all were promoted to be used for hypertrophic scar treatment. 

Unfortunately, the dressings received were not sterile, which potentially may have 

affected the accuracy of the results in figure 10. P.aeruginosa was used in this analysis, 

as it was well known to produce a significant amount of protease that can be detected 

using the azocasein assay described. However, two of the samples when grown in the 

presence of the organism caused release of a brown pigmentation, which affected the 

absorbance readings of the protease levels. The standard error (SE) for Silon-SES®, 

Dermatix®, Oleeva® and Mepiform® were small, but the other dressings showed a 

larger SE which may have been affected by a minimal amount of pigment expressed by 

P.aeruginosa that was not detected by eye. However, this variation could also be due to 

some interference from the assay or the way the model was constructed. Therefore, 

other organisms that did not produce interfering substances were further tested. 

 

However, for the purposes of testing the use of the In-vitro model (figure 8.), the model 

seems to work well as an in-vitro method, but it required a lot of medium to be prepared 

and took a considerable amount of room for incubation as the model was much larger 

than petri dishes, which led to the development of using figure 9 as a more suitable 

model. A study by Ip et al. (2006) utilized a similar bacterial broth method using 1 cm2 

squares of silver dressings in 3 ml of TSB measuring the inhibition of bacterial growth 

and stated that the method was consistent and reproducible  
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3.3.3 The azocasein assay 

During the initial assay optimisation, it was seen that the samples with silicone 

dressings present seemed to have an effect on total protease production. In order to 

optimize the assay, different incubation times were assessed for the co-incubation of 

supernatant and azocasein. The times tested were 1, 1.5 and 3 hours to observe any 

differences in protease production. After 1 hour there was some protease production, 

and at 3 hours there was a marked increase, but due to time limitations it was optimized 

at 1.5 hours. 

 

A study was also conducted to determine whether the incubation period of the 

organisms affected the level of protease production. 1, 5 and 7 day incubations were 

tested in figure 11. It was noted that after 1 day of incubation, the protease production 

was low and increased as the incubation time increased to 5 and 7 days, except for 

E.coli with Mepiform® and C.albicans with and without Mepiform®. The results 

obtained for E.coli with Mepiform® seem to indicate that longer exposure to the 

dressing caused the protease levels to decrease. When comparing the 1 day samples 

between E.coli with and without the dressing, there was a spike in protease activity with 

the dressing present, which may have been caused by a response from the bacteria due 

to a change in environment, but this can only be seen as a minor speculation. C.albicans 

displayed in decrease in protease activity after 1 day, perhaps affected by the choice of 

broth used in this assay as C.albicans grow optimally in Sabouraud Dextrose media. 

The largest difference in protease activity was seen with CNS, from 1 day to 5 days of 

incubation by more than double the absorbance, but this was not statistically significant. 

Overall, figure 11 showed that 5 days of incubation produced the most protease activity 

to be detected, but further tests were assayed using 7 days because smaller SE values 

were achieved more with this incubation period than 5 days for precision. 
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Very little protease was produced by the selection of skin organisms tested, however, 

there was production observed by the commonest skin colonizer, S.epidermidis. The 

viable counts for this assay were also noteworthy. From table 4, the bacterial growth did 

not increase as the protease levels did, which suggests that the dressings are feasibly 

affecting total protease production. Adams et al. (2012) conducted a study to analyze if 

there were antimicrobial properties of silicon oil in-vitro and studied the effect on 

similar bacteria used in this project. It was reported that the silicon oil did not show 

inhibitive properties, but argued that in-vivo the silicon oil may cause depravation of 

nutrition for bacteria in eye treatments, as the in-vitro results did not confirm the 

substance as antimicrobial. The results from table 4 would suggest that the silicone 

dressing might encourage bacterial growth, which was seen with statistically significant 

increases from the control sample for all the skin organisms tested, apart from 

C.albicans. However, these studies may not correlate with each other, with one material 

being a viscous liquid and the other a dressing, but both are derivatives of siloxane. 

 

A review by Willcox (2013) focused on the adhesion of bacteria to silicone hydrogel 

lenses, which reported that within the literature, the in-vitro studies generally showed 

that bacteria adhered to the silicone lens in higher numbers than a comparative soft lens 

as the silicone lens generally has a more hydrophobic surface. Biofilms were also 

covered in this review, but was not focused on the silicone lens alone. It is possible that 

a biofilm would have formed on the Mepiform® during incubation, and the viable 

counts may not reflect a true representation of the bacterial growth, even though the 

samples were agitated for at least 10 seconds. S.epidermidis is a notorious biofilm 

former and often problematic for medical devices (Mack et al., 2004). The change of 

12% in bacterial growth for S.epidermidis would suggest that there might not have been 

enough agitation to release the cells from the biofilm into the broth as a strong adhesion 
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was formed with the dressing. The other organisms tested also resulted with smaller 

percentage changes, but S.aureus showed a 527% increase in growth. Despite this 

growth, the protease levels decreased by 100% for S.aureus, but increased by 300% for 

S.epidermidis. The results do not fit any trends when comparing the organisms to each 

other, so it seems plausible that a biofilm formation could affect the absorbance 

readings as a biofilm would increase the turbidity of a sample. This should not be a 

possible problem, but it may be fortuitous that the centrifugation speed was insufficient 

and remnants of cell material were still present in some samples. 

 

S.epidermidis is more commonly found on the skin than S.aureus, and it was interesting 

to find that S.epidermidis seemed to respond more to the presence of silicone .The 

increases in protease levels, especially from S.epidermidis could conceivably cause 

some skin modulation as the homeostasis of the surface of skin could be affected by this 

increase in protease. The increased levels of protease may have an affect on collagen 

modulation, which is an important component in scar formation, however no evidence 

can be substantiated from this assay. 

 

Metalloproteases, serine proteases and cysteine proteases were inhibited and compared 

to the total proteases found. The results suggested that when serine or cysteine proteases 

are inhibited, the others flourish. In contrast, when metalloprotease was inhibited, there 

does not seem to be a difference or increase of the other two proteases. However, this 

may not be the case as the supernatants should not contain any cells, and therefore the 

levels of each protease should not show huge differences when individual proteases are 

inhibited. This could be due to interference between the inhibitor chemicals used and 

the azocasein, or as mentioned before that the speed of the centrifuge was lacking, but 

insufficient time meant that this could not be further investigated. 
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3.3.4 Testing the dressing size to broth ratio 

A question raised when conducting these assays was whether the protease production 

was only seen to be higher due to an increase in bacteria, thus per CFU the amount of 

protease was not increased, or were the dressings causing an actual increase per CFU. 

As seen in figure 12, there did not seem to be a significant difference in protease 

activity or bacterial growth when the size of dressing was added to 10 ml of TSB. This 

assay was investigated because although the dressings were cut to size as similarly as 

possible, there was a possibility that there were slight differences in size due to human 

error. Also, when the initial testing was conducted with KerraPro, the dressing for this 

brand was considerably thicker than Mepiform®. Testing just Mepiform® to look at the 

size ratio, there did not appear to be noticeable differences, so the results were possibly 

due to the presence of the dressings.  

 

3.3.5 Collagenase and hyaluronidase detection 

It was very unfortunate that the hyaluronidase assay did not yield any usable results as 

all the absorbance readings were below 130%T. This was a disappointment as it has 

been specified that at least S.aureus is known to express hyaluronidase. 

 

The collagen agar plate was only attempted once and did not yield any results., despite 

having been successfully reported by Vermelho et al. (1996), however, it may have 

been an anomaly as it was not repeated due to time restraints. 
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Chapter 4 – Volunteer Study 

4.1 Introduction to the volunteer study 

4.1.1 Mepiform® 

A common brand of self-adhesive silicone sheeting commonly prescribed is 

Mepiform®. It is specifically designed for the prevention and treatment of scars 

(Mölnlycke Health Care, no date). The benefits of using Mepiform®, as claimed by 

Mölnlycke Health Care (no date) are that it flattens, softens and fades red and raised 

hypertrophic scars, and is easy to use. The sheet should be worn 24 hours a day, but 

removed once a day for inspection and hygiene reasons and then reapplied for up to 7 

days as long as the sheet still adheres (Mölnlycke Health Care, no date). A series of case 

studies were performed by Saulsbery et al. (2007) to evaluate the efficacy on scar 

treatment and characteristic performance of the dressing. The study consisted of ten 

patients that were followed on a regular basis for six months. The major point that was 

emphasized by Saulsbery et al. (2007) was that after wearing Mepiform®, all of the 

patients reported the scar as feeling moist and more pliable, and overall satisfaction. 

However, Mölnlycke Health Care endorsed this study, so there could be a degree of bias 

in the results. From this study it may be logical to imply that the clinical success from 

the patients could be due to the mechanism of skin hydration, but this cannot be 

concluded as the study only reported clinical aspects. 

4.1.2 BAP SCAR CARE T 

Another similar self-adhesive product that is intended for use on fresh and old scars is 

BAP SCAR CARE T (BAP) by BAP Medical. It is claimed that it is convenient and 

easy to use, invisible, has excellent skin adherence and moulds to the skin (BAP 

Medical BV, no date). Similarly to Mepiform®, BAP should be worn 24 hours a day 

and does not need to be cleaned between applications. 
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 4.1.3 Case study 

An Asian male volunteer presented with keloid scars that were over 5 years old. The 

same procedure for swabbing as healthy skin volunteers was followed and the 

microbiology of his skin was monitored over a one month period. 

 

The aim of the sampling was to observe if there were any trends on bacterial numbers 

and protease levels when the dressings Mepiform® and BAP were applied and worn on 

healthy skin for a one month period. 

 

4.2 Volunteer study: materials and methods 

A random selection of 10 volunteers with healthy skin were recruited into the study. 

There were two males and eight females. Three were Asian and seven Caucasian. 

Participants were asked to read the participant information sheet and sign the consent 

form to proceed with the study. Ethical approval was sought and granted for this study 

(See appendix). 

 

At the first visit, a swab was taken from the participant’s upper arm in a 4 cm2 area prior 

to the application of a 4 cm2 piece of Mepiform®. The same procedure was followed 

for the application of the BAP dressing. Each week in a one-month period the skin 

under the dressings and the dressing itself were swabbed. Control swabs were also taken 

from an area adjacent to the dressings to correlate the normal flora with the skin under 

the dressings. 
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4.2.1 Preparation of media and culturing 

The swabs taken were used to inoculate two Columbia blood agar base (CBA) (Oxoid, 

Basingstoke, UK) supplemented with 5% (v/v) horse blood plates. One was incubated at 

37°C and the other at 25°C. Sabouraud Dextrose Agar (SDA) (Oxoid, Basingstoke, UK) 

plates were also inoculated to detect any potential yeasts. These were also incubated at 

25°C. Universals containing 10 ml TSB were inoculated with the swab, and an 

immediate viable count carried out along with an immediate supernatant harvested (T=0 

days).  

4.2.2 Bacterial numbers and diversity logging 

From the plates, bacterial counts were assessed manually where possible, after which 

the viable counting method described in section 2.5 was used. The viable counts were 

undertaken in duplicate on NA plates incubated at 37°C and 25°C and SDA plates at 

25°C. The microbial flora on each participant was determined throughout the study for 

each dressing worn. 

  4.2.2.1 Identification of bacterial species 

Colonies of each type were identified by Gram staining and testing for catalase. 

Bacteria identified as Staphylococcus sp. were then further tested for coagulase and an 

API Staph test (bioMérieux, France) following the manufacturer’s instructions set up to 

confirm the species. 

 

4.2.3 Total protease levels 

The azocasein assay described in section 2.8 was followed in triplicate to determine the 

total protease levels produced under the dressings. 
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4.3 Volunteer study results 

Volunteers 7 and 11 (V7 and V11) results were excluded from the figures due to poor 

adherence of both dressings. However, the results obtained can be found in the 

appendix. 

4.3.1 Skin under Mepiform®  

This dressing had poor adherence for four of the volunteers and three experienced a 

mild tingling sensation whilst wearing the dressing. For all volunteers, S.epidermidis 

and Micrococcus sp. were identified and seen as the most prevalent organisms for this 

study, therefore, table 5 only shows the changes for these organisms. Another notable 

organism found was S.homini, but was only seen present before application of the 

dressing in small numbers for some volunteers. Control swabs that were taken mainly 

showed negligible or no growth, with a maximum growth of 10x102 CFUs for 

S.epidermidis, which were observed when the weather was hotter. Control swab results 

were not analyzed and can be found in the appendix. 

 

Of the volunteers, 50% had Micrococcus sp. present during the one month period, but 

the change in numbers only changed 10-fold between weeks at most (table 5.). 

Conversely, for S.epidermidis, 40% of volunteers showed up to a 1000-fold increase in 

bacterial growth. In general for all the volunteers, S.epidermidis growth increased with 

wearing Mepiform®. After the first week of wearing Mepiform®, 80% of volunteers 

showed an increase in S.epidermidis growth, and 90% had a decrease in Micrococcus 

sp. or no growth at all. Of the 10 volunteers, 20% had some fungus or yeasts present 

throughout the study but were not included in the data as there were not significant 

numbers of growth. 
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 After 1 week After 2 weeks After 3 weeks After 4 weeks 
 S.epi Micro S.epi Micro S.epi Micro S.epi Micro 

V1 ^^ v - ^ - ^ - v 
V2 ^^^ 0 - 0 - 0 - 0 
V3 - v - - - v ^ v 
V4 ^ 0 ^^ 0 ^ 0 v 0 
V5 - - v ^ ^ v ^ 0 
V6 ^ v ^^^ 0 - 0 v ^ 
V8 ^^ v ^^ 0 v ^ - ^ 
V9 ^^^ 0 - ^ v - ^ ^ 

V10 ^^^ 0 - 0 - 0 - ^ 
V12 ^^ 0 v 0 ^ 0 ^ 0 

 

Table 5. Shows the change in microbial flora of the skin under Mepiform® over a one 

month period. Results are the mean of  two direct CBA plates, incubated at 37°C and 

25°C. 

 

S.epi = S.epidermidis 

Micro = Micrococcus sp. 

^ = 10-fold increase from the week before 

^^ = 100-fold increase from the week before 

^^^ = 1000-fold increase from the week before 

- = No change from previous week 

0 = None present 

v = 10-fold decrease from the week before 

hig = Changed/lost dressing  
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Prior to dressing application, all volunteers except for volunteer 3 did not show more 

than 0-9x102 CFUs, however after the first week of wearing Mepiform®, 60% of 

volunteers showed an increase in bacterial growth (table 6.). Protease levels were also 

increased in 60% of volunteers in the first week.  

 

In the second week 50% of the volunteers had no significant changes in the viable 

counts, and 40% had a further increase. Contrariwise, for protease production, there was 

a reduction of activity in 70% of volunteers. 80% changed or lost the dressing during 

this week.  

 

After 3 weeks of wearing the dressing, 60% did not have a change in bacterial counts, 

but 50% had an increase in protease production and 30% showed no activity. 

 

 In the final week, the bacterial counts did not vary, with 50% showing either an 

increase or decrease. 40% of the volunteers had an increase in protease production in 

this week and 30% showed no activity present. 

 

The dressing was only changed once after two weeks for 60% of volunteers whilst 

volunteer 5 needed a new dressing applied every week. 

 

An ANOVA was performed, showing no statistical significance in difference in 

protease activity (P=0.903) or viable counts (P=0.250) per week.  



 65 

  Skin prior 
dressing 

Skin under 
dressing after 

1 week 

Skin under 
dressing after 

2 weeks 

Skin under 
dressing after 

3 weeks 

Skin under 
dressing after 

4 weeks 
V1 CFUs 0 10x102 10x102 10x102 10x102 

Protease 
(Arb.) 

3(2.89) 12(6.93) 2(3.46) 0 0 

V2 CFUs 0 100x102 100x102 100x102 100x102 
Protease 

(Arb.) 
0 0 0 0 0 

V3 CFUs 10x102 10x102 10x102 10x102 100x102 
Protease 

(Arb.) 
0 10(6.35) 0 0 0 

V4 CFUs 0 0 10x102 100x102 1x102 
Protease 

(Arb.) 
13(6.35) 0 1(1.15) 22(14.43) 42(16.17) 

V5 CFUs 0 0 1x102 1x102 10x102 
Protease 

(Arb.) 
19(3.46) 16(4.62) 1(1.73) 27(0.58) 10(4.62) 

V6 CFUs 0 0 100x102 100x102 10x102 
Protease 

(Arb.) 
31(5.77) 9(9.81) 73(27.14) 31(2.89) 29(7.51) 

V8 CFUs 0 10x102 1000x102 100x102 100x102 
Protease 

(Arb.) 
0 16(8.66) 0 7(5.77) 9(6.93) 

V9 CFUs 0 100x102 100x102 10x102 100x102 
Protease 

(Arb.) 
0 15(6.35) 7(3.46) 19(0.58) 11(7.51) 

V10 CFUs 0 100x102 100x102 100x102 100x102 
Protease 

(Arb.) 
0 8(1.73) 3(2.31) 12(1.73) 23(4.62) 

V12 CFUs 0 10x102 1x102 10x102 100x102 
Protease 

(Arb.) 
17(1.73) 18(1.73) 16(6.35) 3(0.58) 20(4.04) 

 

Table 6. Shows the mean viable counts of bacteria and protease production from a 4 

cm2 area of skin swab where Mepiform® was applied over a one month period. Results 

for the viable counts are the approximate mean of two direct CBA plates, incubated at 

37°C and 25°C. Protease results are the mean of triplicates and expressed in arbitrary 

units where 1 unit of activity refers to an absorbance of 1000 at 328 nm. Where 0 is 

quoted for CFUs, actual values are between 0-9x102 CFUs. Values in ( ) represent SE. 

-- = Increase in protease/bacterial growth from previous week 

-- = Decrease in protease/bacterial growth from previous week 

Underline = Shows where dressings were changed/lost  
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 4.3.2 Mepiform® dressing 

Of the results that were available during the second week of wearing Mepiform® (table 

7.), 86% of the dressings showed an increase in bacterial growth, but 57% had a 

reduction in protease activity. In the third week, bacterial growth did not alter for 50% 

of the volunteers and 50% also had no change in protease production, but 40% did have 

an increase in protease. In week four of the data available, 38% still presented an 

increase in bacterial growth, however 50% experienced a decrease in protease 

production. 

 

An ANOVA was performed, showing no statistical significance in difference in 

protease activity (P=0.133) or viable counts (P=0.152) per week.  
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  Week 1 Week 2 Week 3 Week 4 

V1 CFUs 10x102 - 1x102 10x102 

Protease (Arb.) 4(2.89) - 0 0 
V2 CFUs 10x102 1000x102 10x102 100x102 

Protease (Arb.) 0 0 0 0 
V3 CFUs 0 0 1x102 1x102 

Protease (Arb.) 10(1.73) 0 0 6(1.73) 
V4 CFUs 0 10x102 10x102 - 

Protease (Arb.) 3(9.24) 0 30(15.01) - 
V5 CFUs 1x102 - 1x102 10x102 

Protease (Arb.) 17(4.04) - 21(4.04) 10(8.08) 
V6 CFUs 1x102 100x102 10x102 - 

Protease (Arb.) 9(26.56) 9(6.93) 21(2.89) - 
V8 CFUs 1x102 100x102 100x102 10x102 

Protease (Arb.) 17(2.31) 0 28(7.51) 0 
V9 CFUs 1x102 10x102 10x102 10x102 

Protease (Arb.) 11(4.62) 22(6.35) 21(2.31) 8(6.35) 
V10 CFUs 10x102 100x102 100x102 10x102 

Protease (Arb.) 8(1.15) 4(3.46) 11(2.31) 18(4.62) 
V12 CFUs 1x102 - 10x102 10x102 

Protease (Arb.) 12(2.31) - 7(1.73) 5(3.46) 
 

Table 7. Shows the level of total protease activity and mean viable counts of bacterial 

growth from the fitting side of the dressing Mepiform® over a one month period. 

Results for the viable counts are the approximate mean of two direct CBA plates, 

incubated at 37°C and 25°C. Protease results are the mean of triplicates and expressed 

in arbitrary units where 1 unit of activity refers to an absorbance of 1000 at 328 nm. 

Where 0 is quoted for CFUs, actual values are between 0-9x102 CFUs. Values in ( ) 

represent SE. Where – is shown, data was unavailable. 

-- = Increase in protease/bacterial growth from previous week 

-- = Decrease in protease/bacterial growth from previous week 

Underline = Shows where dressings were changed/lost 
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4.3.3 Skin under BAP SCAR CARE T 

This	
  dressing	
  had	
  very	
  poor	
  adherence	
  for	
  two	
  of	
  the	
  volunteers	
  and	
  three	
  

experienced	
  a	
  mild	
  tingling	
  sensation	
  whilst	
  wearing	
  the	
  dressing.	
  Similar	
  

organisms	
  were	
  found	
  as	
  in	
  4.3.1. Control	
  swabs	
  that	
  were	
  taken	
  mainly	
  showed	
  

negligible	
  or	
  no	
  growth,	
  with	
  a	
  maximum	
  growth	
  of	
  10x102	
  CFUs	
  for	
  S.epidermidis,	
  

which	
  were	
  observed	
  when	
  the	
  weather	
  was	
  hotter.	
  Control	
  swab	
  results	
  were	
  not	
  

analyzed	
  and	
  can	
  be	
  found	
  in	
  the	
  appendix.	
  

 

Of the volunteers, 100% had Micrococcus sp. present at some point during the one 

month period, but the change in numbers only changed 10-fold between weeks at most 

(table 8.). For S.epidermidis, 30% of volunteers showed up to a 1000-fold increase in 

bacterial growth after the first week of wearing BAP. In general for all the volunteers, 

S.epidermidis growth increased with wearing BAP After the first week of wearing BAP, 

80% of volunteers showed an increase in S.epidermidis growth, and 90% had a decrease 

in Micrococcus sp. or no growth at all. Of the 10 volunteers, 20% had some fungus or 

yeasts present throughout the study but were not included in the data as there were not 

significant numbers of growth. 
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 After 1 week After 2 weeks After 3 weeks After 4 weeks 
 S.epi Micro S.epi Micro S.epi Micro S.epi Micro 

V1 ^^^ ^ - - - v x x 
V2 ^^ 0 - 0 - 0 - ^ 
V3 - v ^ v v ^ ^ v 
V4 - v ^ ^ x x x x 
V5 ^ v ^ v ^^ 0 - ^ 
V6 ^^ v - - x x x x 
V8 ^^ 0 - ^ - ^ ^ v 
V9 ^^^ v v ^ ^ 0 v ^ 

V10 ^^^ v - ^ - 0 v 0 
V12 ^^ 0 ^^ 0 vv ^ ^ 0 
 

Table 8. Shows the change in microbial flora of the skin under BAP over a one month 

period. Results are the mean of  two direct CBA plates, incubated at 37°C and 25°C. 

 

S.epi = S.epidermidis 

Micro = Micrococcus sp. 

^ = 10-fold increase from the week before 

^^ = 100-fold increase from the week before 

^^^ = 1000-fold increase from the week before 

- = No change from previous week 

0 = None present 

v = 10-fold decrease from the week before 

vv = 100-fold decrease from the week before 

x= No data available  

hig = Changed/lost dressing 
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Prior to dressing application, all volunteers except for volunteers 3, 6 and 8 did not 

show more than 0-9x102 CFUs. After the first week of wearing BAP, 70% of volunteers 

showed an increase in bacterial growth (table 9.). Protease levels were also increased in 

50% of volunteers in the first week.  

 

In the second week 60% of the volunteers had no significant changes in the viable 

counts, and 30% had a further increase. For protease production, there was an increase 

of activity in 50% of volunteers. 80% changed or lost the dressing during this week.  

 

After 3 weeks of wearing the dressing, two volunteers were unable to finish the study. 

50% of the remaining volunteers did not have a change in bacterial counts, but 63% had 

an increase in protease production and 39% showed a decrease. 

 

 In the final week, 42% of the remaining volunteers had an increase in CFUs. 71% of 

the volunteers had decrease in protease production in this week  

 

The dressing was only changed once for 60% of volunteers and 30% had a new dressing 

applied twice whilst volunteer 5 needed a new dressing applied every week. 

 

An ANOVA was performed, showing no statistical significance in difference in 

protease activity (P=0.561) or viable counts (P=0.246) per week.  
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  Skin prior 
dressing 

Skin under 
dressing after 

1 week 

Skin under 
dressing after 

2 weeks 

Skin under 
dressing after 

3 weeks 

Skin under 
dressing after 

4 weeks 
V1 CFUs 0 100x102 100x102 100x102 - 

Protease 
(Arb.) 

0 0 1(5.20) 8(1.15) - 

V2 CFUs 0 100x102 100x102 100x102 100x102 

Protease 
(Arb.) 

0 0 0 7(4.62) 0 

V3 CFUs 10x102 10x102 100x102 10x102 100x102 

Protease 
(Arb.) 

40(32.33) 56(27.14) 48(4.04) 39(3.46) 0 

V4 CFUs 0 0 0 - - 

Protease 
(Arb.) 

2(3.46) 3(2.31) 19(4.62) - - 

V5 CFUs 0 0 10x102 100x102 100x102 

Protease 
(Arb.) 

3(4.04) 32(4.04) 25(6.35) 20(5.20) 18(2.31) 

V6 CFUs 10x102 100x102 100x102 - - 

Protease 
(Arb.) 

27(2.31) 40(5.77) 13(2.31) - - 

V8 CFUs 10x102 100x102 100x102 100x102 1000x102 

Protease 
(Arb.) 

0 0 3(2.89) 16(4.62) 40(9.24) 

V9 CFUs 0 100x102 10x102 100x102 10x102 

Protease 
(Arb.) 

8(1.15) 35(4.62) 21(4.04) 35(6.35) 34(4.04) 

V10 CFUs 0 100x102 100x102 100x102 10x102 

Protease 
(Arb.) 

0 0 4(6.93) 23(4.62) 6(0.58) 

V12 CFUs 0 10x102 1000x102 10x102 100x102 

Protease 
(Arb.) 

0 0 18(5.77) 17(4.62) 17(5.77) 

 

Table 9. Shows the mean viable counts of bacteria and protease production from a 4 

cm2 area of skin swab where BAP was applied over a one month period. Results for the 

viable counts are the approximate mean of two direct CBA plates, incubated at 37°C 

and 25°C. Protease results are the mean of triplicates and expressed in arbitrary units 

where 1 unit of activity refers to an absorbance of 1000 at 328 nm. Where 0 is quoted 

for CFUs, actual values are between 0-9x102 CFUs. Values in ( ) represent SE. 

-- = Increase in protease/bacterial growth from previous week 

-- = Decrease in protease/bacterial growth from previous week 

Underline = Shows where dressings were changed/lost 
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 4.3.4 BAP dressing results 

Of the results that were available during the second week of wearing BAP (table 10.), 

89% of the dressings showed an increase in bacterial growth and 56% had an increase in 

protease activity. In the third week, bacterial growth increased for 57% of the volunteers 

and protease production decreased. In week four of the data available, 43% presented no 

change in bacterial numbers and 43% had decrease, however 71% experienced a 

decrease in protease production. 

 

An ANOVA was performed, showing no statistical significance in difference in 

protease activity (P=0.548) or viable counts (P=0.740) per week.  
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  Week 1 Week 2 Week 3 Week 4 

V1 CFUs 10x102 10x102 10x102 - 

Protease (Arb.) 9(4.62) 13(4.62) 2(1.73) - 
V2 CFUs 10x102 1x102 10x102 10x102 

Protease (Arb.) 0 0 8(0.58) 0 
V3 CFUs 10x102 10x102 10x102 10x102 

Protease (Arb.) 25(9.81) 54(3.46) 43(7.51) 0 
V4 CFUs - - - - 

Protease (Arb.) - - - - 
V5 CFUs 0 0 10x102 100x102 

Protease (Arb.) 42(6.35) 18(5.77) 7(4.04) 0 
V6 CFUs 100x102 100x102 - - 

Protease (Arb.) 29(1.15) 26(2.31) - - 
V8 CFUs 10x102 10x102 100x102 10x102 

Protease (Arb.) 8(4.04) 19(16.74) 42(12.12) 28(6.93) 
V9 CFUs 10x102 10x102 10x102 1x102 

Protease (Arb.) 23(2.31) 72(2.89) 35(5.20) 30(4.04) 
V10 CFUs 10x102 10x102 100x102 10x102 

Protease (Arb.) 12(5.77) 0 3(1.15) 6(3.46) 
V12 CFUs 10x102 10x102 - 10x102 

Protease (Arb.) 0 14(2.31) - 12(2.89) 
 

Table 10. Shows the level of total protease activity and mean viable counts of bacterial 

growth from the fitting side of the dressing BAP over a one month period. Results for 

the viable counts are the approximate mean of two direct CBA plates, incubated at 37°C 

and 25°C. Protease results are the mean of triplicates and expressed in arbitrary units 

where 1 unit of activity refers to an absorbance of 1000 at 328 nm. Where 0 is quoted 

for CFUs, actual values are between 0-9x102 CFUs. Values in ( ) represent SE. Where – 

is shown, data was unavailable. 

-- = Increase in protease/bacterial growth from previous week 

-- = Decrease in protease/bacterial growth from previous week 

Underline = Shows where dressings were changed/lost 
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 4.3.5 Case study results 

The skin with BAP applied displayed higher protease production levels over month than 

Mepiform®, except after the dressings were worn for three weeks (figure 14.). The 

highest protease level produced was seen after BAP was worn for one week at 31 

arbitrary units, but the highest level was measured at 21 arbitrary units for Mepiform®. 

The skin swabs prior to the application of both dressings did not show any activity for 

protease production. As with figure 14, figure 15 which shows the protease levels found 

on the fitting side of the dressings also showed that the higher levels of protease were 

seen in week one of wearing the dressing for BAP and week three for Mepiform®. 

 

The bacterial counts for the area of skin under Mepiform® stayed at a constant level of 

around 10x102 CFUs each week ,whereas the fitting side had a maximum of 1x102 

CFUs for weeks two and four. BAP also showed an average of around 10x102 CFUs on 

the skin and 1x102 CFUs on the fitting side only in the first week of wearing the 

dressing. 
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Figure 14. Case study: Shows the level of total protease activity of the skin swab where 

a 4 cm2 dressing was applied. Levels are expressed in arbitrary units where 1 unit of 

activity refers to an absorbance of 1000 at 328 nm. Results were the mean of three 

replicates. Error bars denote SE. 
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Figure 15. Case study: Shows the level of total protease activity of the fitting side of the 

4 cm2 dressings worn. Levels are expressed in arbitrary units where 1 unit of activity 

refers to an absorbance of 1000 at 328 nm. Results were the mean of three replicates. 

Error bars denote SE. 
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4.4 Volunteer study discussion 

Overall, 12 volunteers were recruited in the study as some were poor candidates or the 

dressings did not adhere very well and were lost. The majority of volunteers, however, 

managed to wear a dressing continuously before a new dressing was required due to 

lack of adhesion or the dressing was no longer aesthetic.  There was a lot of variability 

with the results, the most interesting of which was that one volunteer did not seem to 

produce any protease, whilst others produced huge amounts, with 73 arbitrary units as 

the highest in table 6. It was also interesting to see that the case study showed varying 

amounts of protease production, but the bacterial growth was quite low compared to the 

healthy volunteers. This could be due to the lack of sweat glands, which were inevitably 

damaged by the burn injury. Fu et al. (2005) found that there were less secretory glands 

on the skin where there was a burn injury, thus the skin is probably much drier than 

healthy skin, and is not an ideal area for bacteria to flourish. The lack of sebum secreted 

by sweat glands would also affect the pH balance of the skin (acid mantle), which acts 

as protection against fungal and bacterial infection. From these results, it is difficult to 

distinguish whether an increase in protease production would suggest better healing of 

hypertrophic scars, or the increase in bacterial numbers simply has an effect for other 

reasons. 

 

Both tables 5 and 8 displayed growth increase in S.epidermidis in the first two weeks of 

the dressings being worn. Current usage procedures suggest wearing the dressings for 7 

days, therefore from this study it could be suggested that if the increase in protease 

modulates the skin to improve scars, it would be beneficial to advise patients to keep the 

same dressing on longer. 
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Table 5 showed the increases and decreases in numbers of S.epidermidis and 

Micrococcus sp. over the one month of wearing Mepiform®. At most, Micrococcus sp. 

only showed variations in numbers by 10-fold increases or decreases, unlike 

S.epidermidis, which had up to 1000-fold increases in numbers. Both organisms are part 

of common skin flora, so it was not surprising to find these Gram-positive organisms in 

abundance compared to Gram-negative organisms like P.aeruginosa, which is more 

commonly found in wounds. The only other organism found in this study was S.homini, 

but in small numbers on the skin prior to application of a dressing or from the control 

swabs. The lack of diversity from the 4 cm2 area on the arm could be due to the arm 

being a generally dry habitat for bacteria to colonize, and therefore is not most 

preferable for bacterial growth. However, Koziel and Potempa (2012) stated that 

S.epidermidis plays a probiotic role by preventing other pathogenic organisms from 

colonizing the skin, such as S.aureus. A study by Ariani et al. (2012) investigated 

microbial biofilm formation on facial prostheses that are made by a similar silicone 

elastomer. Healthy facial skin was swabbed and the diversity of bacteria found CNS, 

P.aeruginosa and Bacillus spp. as the most prominent organisms. The fitting side of the 

facial prosthesis revealed ten organisms, which does not seem similar to the results to 

this study apart from the CNS organisms, but the area swabbed is a different ecological 

habitat of the body to this study. Ariani et al. (2012) explain that the enrichment of 

some organisms found on the prosthesis could be related to the surface roughness and 

hydrophobicity of the material. Mepiform® and BAP are both self-adhesive dressings, 

and it could be possible that the technique swabbing of the fitting side could not pick up 

some organisms strongly adhered to the adhesive which may account for the lack of 

diversity of bacteria, but could also explain the lower CFUs numbers of the fitting side 

(table 7.) compared to the CFUs found on the skin under the dressings (table 6.).  
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The volunteers of particular peculiarity when wearing Mepiform® were volunteers 2 

and 6. Volunteer 2 showed no protease activity at all (table 6.), but the viable count 

showed that the growth under the dressing increased 1000-fold. Volunteer 6 was found 

to have high protease levels after 2 weeks of wearing the dressing with 73 arbitrary 

units, however, the viable count was approximately the same as volunteer 2 for that 

week. The skin under BAP for volunteer 3 showed the highest level of activity at 56 

arbitrary units (table 9.), but with only 10x102 CFUs. It is difficult to conclude if the 

amount of bacterial growth affected the absorbance readings as heavier growths resulted 

in greater optical density. Yellow producing pigments which show on growth plates as 

yellow colonies characterize some strains of S.aureus and Micrococcus sp., which may 

have caused some interference with the azocasein assay. S.aureus produces carotenoid 

pigments (Liu and Nizet, 2009), which could affect the absorbance readings, as it would 

be read at the same wavelength as the azo pigment. It could also be concluded that 

different strains of S.epidermidis may have lead to variations in absorbance. A study by 

Brown (1966) investigated the absorbance and reflectance of different strains of 

S.epidermidis isolated from cows. It was implied that spectral absorbance varied 

between the different strains of S.epidermidis by purity and brightness. Though the 

samples were centrifuged for ten minutes, there is a possibility that perhaps the speed or 

length of time was insufficient and remnants of the bacteria remained in the broth 

culture, and affected the absorbance readings. The results for the case study (figures 13. 

And 14.) did not reveal any discernable trends apart from an initial spurt of protease 

activity after one week of wearing each of the dressings. 
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The swabs were incubated in 10 ml of TSB for 7 days after the initial results were taken 

(T=0) to investigate if similar values were seen as in the in-vitro studies, but this was 

not the case. Some values for the viable counts and protease production did not seem in 

line with the values at T=0. This might be due to the variability of skin flora that may 

have changed upon incubation, but this was not explored owing to time restrictions. As 

was discussed in Chapter 3, more accurate results may have been obtained following the 

method of fluorescence to quantify proteases. 

 

Although the data for volunteer 11 was excluded due to poor compliance, the results 

showed a higher level of protease activity compared to other volunteers before dressings 

were applied, and then it seems that the protease activity stopped after wearing the 

dressings. This suggests that protease modulation may be affected by silicone, but 

varies between people, which could explain why some patients present better results 

than others. From this study, conclusions cannot be drawn that silicone dressings affect 

protease modulation as a mechanism for the healing of hypertrophic scars. Although it 

has been accepted that skin organisms like S.epidermidis and S.aureus are known to 

secrete proteases that degrade collagen and fibrinogen, noticeable effects are probably 

only seen in wounds where the proteolytic activity of P.aeruginosa are used for 

pathogenicity in chronic ulcers (Koziel and Potempa, 2012). Seven of the volunteers did 

comment that the skin under the dressings had more moisture than the skin adjacent, 

which could suggest that the mechanism of action is more likely hydration of the skin. 

As mentioned in Chapter 1, Berman et al. (2007) identified a temperature increase in 

patients wearing silicone sheeting that varied between 29-30.7°C. The volunteers in this 

study quoted moistness, which coupled with temperature increase, it is very likely these 

conditions increased the growth rate of bacteria. It would be rational to suggest that this 

would also increase protease production, but this study did not prove this.  
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Chapter 5 – General Discussion 

Hypertrophic scars are formed where there is an abnormality during the process of 

normal wound healing. The scars normally present as hyperpigmented, tight and raised 

lesions that are not aesthetic (Engrav et al., 2007). Treatments using silicone are still 

relatively new (O’Brien and Pandit, 2008). Many authors who have conducted studies 

all over the world have debated the exact mechanism of how the sheets work. Some 

suggest that hydration is the main factor (Sawada and Sone, 1992; Borgognoni, 2002), 

whilst others claim it is the raising of the surface skin temperature (Musgrave et al., 

2002), occlusion or oxygen transmissivity (Bermen et al., 2007). Interestingly, during 

the participant study, six of the volunteers commented that the skin surface under the 

dressing felt damp after wearing it and four experienced a mild tingling sensation when 

pressure was applied in the area where the dressing was present. This may infer that the 

dressings do have an effect on hydration, and possibly occlusion, but this cannot be 

proven. The protease activity could be responsible for the tingling sensation as bacterial 

proteases are normally excreted mainly to increase its own pathogenicity. Although this 

may not seem like an advantage, but if particular proteases such as collagenase and 

hyaluronidase are secreted, the healing mechanism of the silicone dressings could be 

due to the changes of the amount or type of proteases released by the skin flora from a 

change in environment. In theory, collagenase and hyaluronidase could be ideally the 

best explanation of hypertrophic scar breakdown as the scars are formed from an excess 

of collagen. 

 

The aim of this project was to investigate the microbiology of intact skin under silicone 

sheeting and to construct a model to study the in-vitro effects on extracellular protease 

production. 
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The first part of this study investigated the detection of bacterial proteases and the effect 

of the presence of silicone in a broth culture. One of the main problems experienced 

with this assay was measuring the absorbance of the TSB. The initial assays showed no 

problems, with average level of absorbance being relatively the same across each assay, 

but during the volunteer study, there was a considerable amount of difference in 

numbers and may have skewed the results slightly for this part of the study. An overall 

average of absorbance for TSB was calculated and used for the volunteer part. The 

change in absorbance reading could have been due to a different batch of TSB being 

used as the project was conducted over an eight-month period. There is also the 

possibility that there may have been some interference of the assay between the 

azocasein and the broth, or the pigments produced by certain species of bacteria. 

Overall, it was concluded that the silicone dressing Mepiform® instigated increased 

bacterial growth for all organisms tested, but the effect on protease activity seemed to 

affect S.epidermidis noticeably.  

 

The second part of the study sampled volunteer skin to research bacterial diversity, 

counts and protease activity. This part of the study remains inconclusive as to the effect 

of silicone dressings on hypertrophic scar healing effectiveness, as protease activity was 

variable throughout the month. However, it was concluded that bacterial growth 

increased upon wearing the dressings. An ANOVA did not reveal any statistical 

significance for the volunteers as a whole for viable counts or protease activity. 

S.epidermidis and Micrococcus sp. were mainly found, especially after wearing the 

silicone dressings. The problems outlined above could have resulted in this variability, 

and needs to be further studied.  
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To further explore the findings in this study, a larger sample size would be ideal to 

conclude whether there may be a trend in protease production and individual people. 

The small sample size was insufficient to make any solid conclusions. It would also be 

valuable to administer a social questionnaire to correlate the protease results with the 

possibility of whether or not protease levels may be influenced by a person’s 

predisposition to form hypertrophic scars. An additional investigation into bacterial 

isolates from certain people that may heal better could perhaps help find if the 

application of such isolates could be beneficial to those who do not heal from 

hypertrophic scars as easily. Although the main organisms found in this study from 

healthy volunteers were S.epidermidis and Micrococcus sp., examination of a larger 

array of skin organisms could be looked at in future work. Micrococcus sp. should be 

investigated, but various strains of CNS organisms should also be tested, as it could be 

possible that some strains possibly secrete more protease than others that could have an 

effect on hypertrophic scar treatment. Additional results that would complement this 

project would be temperature and pH measurements of skin under the dressings to 

determine actual environmental factors that can then be replicated in in-vitro analyses. 

 

Further investigation should be followed on other dressings that are used on 

hypertrophic scars, but it would also be interesting to see if there would be an effect on 

a dressing without silicone incorporated. There could be the possibility that the silicone 

in the dressings may not be the reason scars improve, but is merely serving as a placebo. 

It was found by de Oliveira et al. (2001) that there were no significant differences in 

effective treatment between silicone and no silicone dressings, but only 26 patients were 

recruited. 
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A lot of focus around the mechanisms of action of silicone on scars revolves around the 

epidermis, such as surface temperature and epidermal hydration. Although this pilot 

study cannot prove that protease definitely modulates the skin, which could improve 

scar formation, examining effects on the dermis where the collagen fibres lie could 

further this investigation. Collagen is an important component in the formation of 

hypertrophic scars and it would be likely that maybe the action of silicone cannot be 

found because clinical studies examine the epidermis mainly. If protease indeed does 

have an effect, there should be some further study into the absorption of components 

into the skin. Some cosmetic skin primers contain silicone to create a pore free 

complexion that hydrates the skin. While pores cannot physically open or close, silicone 

primers achieve this complexion by covering and possibly filling up inside the pore 

channels. Since the sweat glands are likely to be damaged in burn patients, any 

remaining pore channels may not fill with sebum, allowing a passage for silicone to 

travel through, or even proteases. This could be a viable way that silicone or proteases 

reaches the dermis via pore channels. A review on the function of silicone in the dermis 

or the effect on collagen could be researched. 
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To broaden the in-vitro studies, it may be suitable to assess the effect of hypertrophic 

scar dressings on a pig model, using pieces of pork. The pig model could serve as a 

medium to simulate bacterial growth on the skin in similar conditions as a volunteer. A 

study was conducted by O’Shaughnessy et al. (2009) on rabbits, which were 

purposefully wounded to create hypertrophic scars. Tandara and Mustoe (2008) 

constructed a rabbit ear model and deduced that at early onset of treatment with 

silicone, epidermal thickness was reduced and suggested that hydration was the key 

stimulus. A model developed by Birch et al. (2005) could be adapted to mimic burn 

wounds and skin grafts to try and simulate human clinical situations. Testing the growth 

of bacteria and protease production in different broths would be an ideal supplementary 

piece of work to improve the laboratory in-vitro studies. In this study, only TSB was 

used, but it would be interesting to observe if other broths such as Brain Heart Infusion, 

nutrient and Mueller Hinton affected protease production. Although this may be of 

certain relevance in a laboratory environment, this may not be of beneficial significance 

from a clinical perspective as an important question raised in this study, was better 

healing linked to higher protease levels. 

 

In conclusion, there is no conclusive evidence that exoproteins from microorganisms 

modulate the skin in anyway under the influence of silicone sheeting. Further 

investigation is needed to determine the mechanism of action of silicone sheeting on 

scars. 
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Mepiform® volunteer average sample plate results 

 

Results for each table are the mean of two CBA plates, one at 37°C and one at 25°C. 

The tables show only the growth of the two major organisms that were found. Where 

yeasts were present, the results were of one SDA plate.  

 

Key:  

o + = Approx. 100 CFU 

o ++ = Approx. 1000 CFU 

o +++ = Approx. 10000 CFU 

o ++++ = Approx. 100000 CFU 

o - = No data available 



 
 
 

 

Volunteer 1 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to Mepiform® 

 
 11 

Skin under Mepiform® 

after 1 week 
++ 1 

Mepiform® 

 
++ 4 

Skin under Mepiform® 

after 2 weeks 
++ 14 

Mepiform® 

 
- - 

Skin under Mepiform® 

after 3 weeks 
++ 18 

Mepiform® 
 

+ 5 

Skin under Mepiform® 
after 4 weeks 

++ + 

Mepiform® 
 

++ + 

 
 
 
 
Volunteer 2 S.epidermidis 

(CFU/4cm2) 
Micrococcus sp. 
(CFU/4cm2) 

Skin prior to Mepiform® 

 
6 4 

Skin under Mepiform® 

after 1 week 
+++  

Mepiform® 

 
++  

Skin under Mepiform® 

after 2 weeks 
+++  

Mepiform® 

 
++++  

Skin under Mepiform® 

after 3 weeks 
+++  

Mepiform® 
 

++  

Skin under Mepiform® 
after 4 weeks 

+++  

Mepiform® 
 

+++  

  



 
 
 

Volunteer 3 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to Mepiform® 

 
++ ++ 

Skin under Mepiform® 

after 1 week 
++ + 

Mepiform® 

 
2 5 

Skin under Mepiform® 

after 2 weeks 
++ + 

Mepiform® 

 
30 8 

Skin under Mepiform® 

after 3 weeks 
++ 14 

Mepiform® 
 

+  

Skin under Mepiform® 
after 4 weeks 

+++ 5 

Mepiform® 
 

+ + 

 
 
 
Volunteer 4 S.epidermidis 

(CFU/4cm2) 
Micrococcus sp. 
(CFU/4cm2) 

Skin prior to Mepiform® 

 
2  

Skin under Mepiform® 

after 1 week 
4  

Mepiform® 

 
22  

Skin under Mepiform® 

after 2 weeks 
++  

Mepiform® 

 
++  

Skin under Mepiform® 

after 3 weeks 
+++  

Mepiform® 
 

++  

Skin under Mepiform® 
after 4 weeks 

+  

Mepiform® 
 

- - 

 
 



 
 
 

 

Volunteer 5 S.epidermidis 
(CFU/4cm2) 

Micrococcus 
sp. (CFU/4cm2) 

White yeast 
(CFU/4cm2) 

Pink yeast 
(CFU/4cm2) 

Skin prior to 
Mepiform® 

16 4 4 4 

Skin under Mepiform® 

after 1 week 
15 4 15 12 

Mepiform® 

 
+ 3  1 

Skin under Mepiform® 

after 2 weeks 
6 + 7 6 

Mepiform® 

 
- - - - 

Skin under Mepiform® 

after 3 weeks 
+ 6 21 7 

Mepiform® 
 

17 2 2 2 

Skin under Mepiform® 
after 4 weeks 

++  5 2 

Mepiform® 
 

+  1  

 

 

Volunteer 6 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

White yeast 
(CFU/4cm2) 

Pink yeast 
(CFU/4cm2) 

Skin prior to 
Mepiform® 

2 18   

Skin under Mepiform® 

after 1 week 
18 3 2  

Mepiform® 

 
+ + 7  

Skin under Mepiform® 

after 2 weeks 
+++    

Mepiform® 

 
+++  2  

Skin under Mepiform® 

after 3 weeks 
+++  2  

Mepiform® 
 

++  2  

Skin under Mepiform® 
after 4 weeks 

++ 3 9 1 

Mepiform® 
 

- - - - 

 



 
 
 

 

Volunteer 7 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to Mepiform® 

 
3 + 

Skin under Mepiform® 

after 1 week 
6 23 

Mepiform® 

 
+ + 

Skin under Mepiform® 

after 2 weeks 
3  

Mepiform® 

 
26  

Skin under Mepiform® 

after 3 weeks 
2 3 

Mepiform® 
 

- - 

Skin under Mepiform® 
after 4 weeks 

- - 

Mepiform® 
 

- - 

 

 

Volunteer 8 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to Mepiform® 

 
4 15 

Skin under Mepiform® 

after 1 week 
++ 4 

Mepiform® 

 
+  

Skin under Mepiform® 

after 2 weeks 
++++  

Mepiform® 

 
+++  

Skin under Mepiform® 

after 3 weeks 
+++ 3 

Mepiform® 
 

+++ 5 

Skin under Mepiform® 
after 4 weeks 

+++ 13 

Mepiform® 
 

++ 2 



 
 
 

 

Volunteer 9 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to Mepiform® 

 
14 2 

Skin under Mepiform® 

after 1 week 
+++  

Mepiform® 

 
+  

Skin under Mepiform® 

after 2 weeks 
+++ 2 

Mepiform® 

 
++  

Skin under Mepiform® 

after 3 weeks 
++ 2 

Mepiform® 
 

++  

Skin under Mepiform® 
after 4 weeks 

+++ + 

Mepiform® 
 

++  

 

 

Volunteer 10 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to Mepiform® 

 
7 9 

Skin under Mepiform® 

after 1 week 
+++  

Mepiform® 

 
++  

Skin under Mepiform® 

after 2 weeks 
+++  

Mepiform® 

 
+++  

Skin under Mepiform® 

after 3 weeks 
+++  

Mepiform® 
 

+++  

Skin under Mepiform® 
after 4 weeks 

+++ 1 

Mepiform® 
 

++  



 
 
 

 

Volunteer 11 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to Mepiform® 

 
9 1 

Skin under Mepiform® 

after 1 week 
30  

Mepiform® 

 
- - 

Skin under Mepiform® 

after 2 weeks 
+++  

Mepiform® 

 
+++  

Skin under Mepiform® 

after 3 weeks 
- - 

Mepiform® 
 

- - 

Skin under Mepiform® 
after 4 weeks 

- - 

Mepiform® 
 

- - 

 

 

Volunteer 12 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to Mepiform® 

 
4 2 

Skin under Mepiform® 

after 1 week 
++  

Mepiform® 

 
+  

Skin under Mepiform® 

after 2 weeks 
+  

Mepiform® 

 
- - 

Skin under Mepiform® 

after 3 weeks 
++  

Mepiform® 
 

++  

Skin under Mepiform® 
after 4 weeks 

+++  

Mepiform® 
 

++  



 
 
 

Case study 1 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to Mepiform® 

 
++ 20 

Skin under Mepiform® 

after 1 week 
++ + 

Mepiform® 

 
- - 

Skin under Mepiform® 

after 2 weeks 
++ 2 

Mepiform® 

 
+ 1 

Skin under Mepiform® 

after 3 weeks 
++ 1 

Mepiform® 
 

20 2 

Skin under Mepiform® 
after 4 weeks 

++ + 

Mepiform® 
 

+ 2 

 
 



 
 
 

BAP SCAR CARE T volunteer average sample plate results 
 
 
Results for each table are the mean of two CBA plates, one at 37°C and one at 25°C. 

The tables show only the growth of the two major organisms that were found. Where 

yeasts were present, the results were of one SDA plate.  

 

Key:  

o + = Approx. 100 CFU 

o ++ = Approx. 1000 CFU 

o +++ = Approx. 10000 CFU 

o ++++ = Approx. 100000 CFU 

o - = No data available 



 
 
 

 
Volunteer 1 S.epidermidis 

(CFU/4cm2) 
Micrococcus sp. 
(CFU/4cm2) 

Skin prior to BAP 

 
  

Skin under BAP after 1 
week 

+++ + 

BAP 

 
++ 2 

Skin under BAP after 2 
weeks 

+++ + 

BAP 

 
++ 1 

Skin under BAP after 3 
weeks 

+++ 5 

BAP 
 

++  

Skin under BAP after 4 
weeks 

- - 

BAP - - 

 

Volunteer 2 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to BAP 

 
+ + 

Skin under BAP after 1 
week 

+++  

BAP 

 
++  

Skin under BAP after 2 
weeks 

+++  

BAP 

 
+  

Skin under BAP after 3 
weeks 

+++  

BAP 
 

++  

Skin under BAP after 4 
weeks 

+++ 19 

BAP ++ 6 

 



 
 
 

 

Volunteer 3 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to BAP 

 
++ ++ 

Skin under BAP after 1 
week 

++ 8 

BAP 

 
++  

Skin under BAP after 2 
weeks 

+++ 5 

BAP 

 
++  

Skin under BAP after 3 
weeks 

++ + 

BAP 
 

++ 5 

Skin under BAP after 4 
weeks 

+++ 3 

BAP ++  

 
 
 
 
Volunteer 4 S.epidermidis 

(CFU/4cm2) 
Micrococcus sp. 
(CFU/4cm2) 

Skin prior to BAP 

 
5 2 

Skin under BAP after 1 
week 

5 1 

BAP 

 
- - 

Skin under BAP after 2 
weeks 

6 3 

BAP 

 
- - 

Skin under BAP after 3 
weeks 

- - 

BAP 
 

- - 

Skin under BAP after 4 
weeks 

- - 

BAP - - 



 
 
 

 

Volunteer 5 S.epidermidis 
(CFU/4cm2) 

Micrococcus 
sp. 
(CFU/4cm2) 

White yeast 
(CFU/4cm2) 

Pink yeast 
(CFU/4cm2) 

Skin prior to BAP 

 
12 9 8 1 

Skin under BAP after 
1 week 

26 5 9 1 

BAP 

 
5  5 4 

Skin under BAP after 
2 weeks 

+ 4 10  

BAP 

 
12  3 1 

Skin under BAP after 
3 weeks 

+++  7 4 

BAP 
 

++  1  

Skin under BAP after 
4 weeks 

+++ 4 5 3 

BAP +++  3 2 

 

 

Volunteer 6 S.epidermidis 
(CFU/4cm2) 

Micrococcus 
sp. 
(CFU/4cm2) 

White yeast 
(CFU/4cm2) 

Pink yeast 
(CFU/4cm2) 

Skin prior to BAP 

 
+ 13 11 2 

Skin under BAP after 
1 week 

+++    

BAP 

 
+++    

 
Skin under BAP after 
2 weeks 

+++    

BAP 

 
+++    

Skin under BAP after 
3 weeks 

- - - - 

BAP 
 

- - - - 

Skin under BAP after 
4 weeks 

- - - - 

BAP - - - - 

  



 
 
 

 

Volunteer 7 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to BAP 

 
4 22 

Skin under BAP after 1 
week 

18 6 

BAP 

 
- - 

Skin under BAP after 2 
weeks 

- - 

BAP 

 
- - 

Skin under BAP after 3 
weeks 

5 4 

BAP 
 

- - 

Skin under BAP after 4 
weeks 

- - 

BAP - - 

 
 
 
 
Volunteer 8 S.epidermidis 

(CFU/4cm2) 
Micrococcus sp. 
(CFU/4cm2) 

Skin prior to BAP 

 
+ 9 

Skin under BAP after 1 
week 

+++  

BAP 

 
++ 2 

Skin under BAP after 2 
weeks 

+++ 1 

BAP 

 
++  

Skin under BAP after 3 
weeks 

+++ 11 

BAP 
 

+++ 6 

Skin under BAP after 4 
weeks 

++++ 2 

BAP ++ 22 

 



 
 
 

 

Volunteer 9 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to BAP 

 
4 3 

Skin under BAP after 1 
week 

+++ 2 

BAP 

 
++  

Skin under BAP after 2 
weeks 

++ 10 

BAP 

 
++ 3 

Skin under BAP after 3 
weeks 

+++  

BAP 
 

++ 1 

Skin under BAP after 4 
weeks 

++ 2 

BAP +  

 
 
 
 
Volunteer 10 S.epidermidis 

(CFU/4cm2) 
Micrococcus sp. 
(CFU/4cm2) 

Skin prior to BAP 

 
10 9 

Skin under BAP after 1 
week 

+++ 4 

BAP 

 
++  

Skin under BAP after 2 
weeks 

+++ 9 

BAP 

 
++ 10 

Skin under BAP after 3 
weeks 

+++  

BAP 
 

+++  

Skin under BAP after 4 
weeks 

++  

BAP ++  

 



 
 
 

 

Volunteer 11 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to BAP 

 
1  

Skin under BAP after 1 
week 

+++  

BAP 

 
+++  

Skin under BAP after 2 
weeks 

++++  

BAP 

 
+++  

Skin under BAP after 3 
weeks 

+++  

BAP 
 

++  

Skin under BAP after 4 
weeks 

- - 

BAP - - 

 
 
 
 
Volunteer 12 S.epidermidis 

(CFU/4cm2) 
Micrococcus sp. 
(CFU/4cm2) 

Skin prior to BAP 

 
7 12 

Skin under BAP after 1 
week 

++  

BAP 

 
++  

Skin under BAP after 2 
weeks 

++++  

BAP 

 
++  

Skin under BAP after 3 
weeks 

++ 6 

BAP 
 

- - 

Skin under BAP after 4 
weeks 

+++  

BAP ++  



 
 
 

 

Case study 1 S.epidermidis 
(CFU/4cm2) 

Micrococcus sp. 
(CFU/4cm2) 

Skin prior to BAP 

 
+  

Skin under BAP after 1 
week 

++ 4 

BAP 

 
+ 1 

Skin under BAP after 2 
weeks 

+ 16 

BAP 

 
17  

Skin under BAP after 3 
weeks 

++ 1 

BAP 
 

13 2 

Skin under BAP after 4 
weeks 

++ 3 

BAP 16  

 
 



 
 
 

Control swab volunteer average sample plate results 
 
 
Results for each table are the mean of two CBA plates, one at 37°C and one at 25°C. 

The tables show only the growth of the two major organisms that were found. Where 

yeasts were present, the results were of one SDA plate.  

 

Key:  

o + = Approx. 100 CFU 

o ++ = Approx. 1000 CFU 

o +++ = Approx. 10000 CFU 

o ++++ = Approx. 100000 CFU 

o - = No data available 

o W. Yeast = White yeast 

o P. Yeast = Pink yeast 



 
 
 

 After 1 week After 2 weeks After 3 weeks After 4 weeks 
 S.epi Micro S.epi Micro S.epi Micro S.epi Micro 

V1 0 0 ++ 11 1 0 ++ + 
V2 0 0 0 0 5 1 8 + 
V3 ++ + ++ + + 14 + + 
V4 1 0 0 0 14 1 0 0 
V5 0 0 3 4 32 3 8 1 
V6 0 0 5 0 0 0 0 0 
V7 5 + 8 10 0 2 - - 
V8 4 3 ++ + + 7 1 7 
V9 3 2 1 3 17 1 3 + 
V10 6 15 1 1 13 + 2 2 
V11 2 0 3 0 1 0 - - 
V12 6 1 2 0 16 10 1 0 
C1 ++ + + 0 + 0 ++ ++ 

 
 
 
 
 
 
 
 
 
 
 After 1 week After 2 weeks After 3 weeks After 4 weeks 
 W. 

Yeast 
P. 
Yeast 

W. 
Yeast 

P. 
Yeast 

W. 
Yeast 

P. 
Yeast 

W. 
Yeast 

P. 
Yeast 

V5 0 0 5 3 7 6 16 0 
V6 0 0 2 1 0 0 1 0 
 
 


