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Abstract 
 
It has previously been established that individuals with mild chronic low back pain (CLBP) 
have a delayed rate of post-exercise stature recovery compared to asymptomatic controls, 
and that this is associated with increased paraspinal muscle activity, pain and disability. 
The purpose of this thesis was to explore these relationships further in NHS patients with 
CLBP and to establish if links exist between these measures and a number of psychological 
factors known to play an important role in the development of the condition.  
 
Forty seven patients were recruited from the waiting list for two physiotherapist-led 
rehabilitation programmes. Paraspinal muscle activity was assessed via surface EMG while 
standing at rest and stature recovery over a 40-minute unloading period was measured on a 
precision stadiometer. Self-report of pain was noted and patients were asked to complete a 
questionnaire booklet assessing disability, anxiety, depression, pain-related anxiety, fear of 
movement, self-efficacy, catastrophising and defensiveness. Where possible, patients 
returned for a second testing session after completing the rehabilitation programme (n = 
23) and again after a further six months (n = 14). The effect of superficial heat treatment 
was additionally assessed via a similar testing session (n = 24), but on this occasion the 
participant put on a heat wrap two hours before the time of the appointment.  
 
Significant correlations were found between baseline muscle activity and both pain and 
disability. Pain was a significant mediator in the relationship between muscle activity and 
disability. Muscle activity also demonstrated links with self-efficacy, depression, anxiety, 
pain-related anxiety and catastrophising and was a significant mediator in the relationship 
between self-efficacy and pain. Stature recovery was not significantly related to any of the 
other baseline measures, perhaps reflecting the heterogeneous nature of the patients 
involved. A high prevalence of defensive high anxious individuals was found in the patient 
group. Changes in stature recovery immediately following the programme were 
significantly linked to improvements in pain and disability, although a significant increase 
in stature recovery was only observed by the end of the follow-up period. Resting EMG 
was not reduced following the rehabilitation programme. The heat wrap resulted in a 
significant decrease in non-normalised EMG levels and a positive effect on self-report of 
disability, self-efficacy, catastrophising and pain-related anxiety.  
 
In conclusion, the relationship between stature change and muscle activity appears to be 
more complex than originally hypothesized. However, six months after a rehabilitation 
programme, the rate of stature recovery had increased to levels similar to asymptomatic 
individuals, suggesting that the delayed recovery seen in CLBP patients is not primarily the 
result of pathology. The findings confirm that muscle activity plays an important role in 
CLBP, in particular as a pathway by which psychological factors may impact on clinical 
outcome. The role of muscle activity as a mediator between psychological factors and pain 
suggests that interventions that are able to reduce muscle activity may be of particular 
benefit to patients demonstrating characteristics such as low self-efficacy, which may help 
in the targeting of treatment for CLBP. The results also highlight that an immediate 
decrease in EMG levels following active treatment may not always be the optimal response 
for long-term improvements in clinical outcome and that a period of adaptation might be 
expected. The unexpectedly high prevalence of a defensive high anxious coping style 
suggests that this may represent a risk factor for CLBP, a predictor of poor outcome or an 
adaptation to a chronic condition.  
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CHAPTER ONE 



 

 1 

1. Introduction 

 

Back pain is a widespread problem with a one-year prevalence of up to 65% (Walker, 

2000) and a lifetime prevalence of up to 84% (Airaksinen et al., 2006). In 1998 it was 

estimated that the direct health care cost of LBP in the UK was £1,632 million per annum. 

If the estimated production losses due to incapacity to work and informal care costs are 

included, the total figure was conservatively estimated at £6,650 million and may be as 

high as £12,300 million per annum (Maniadakis & Gray, 2000). LBP symptoms, pathology 

and radiological findings are poorly correlated and less than 15% of patients receive a 

specific diagnosis (Airaksinen et al., 2006). This leads to many patients being classified as 

having ‘non-specific LBP’. A wide range of different treatments exist for LBP, many of 

which result in reduced pain and/or disability for some patients, although perhaps due to 

the heterogeneity of the condition, there is no single treatment that is effective for all 

patients. This has led to increasing calls for research to aid in the identification of 

subgroups of LBP patients which will benefit most from specific interventions.  

 

LBP patients often demonstrate altered muscle function compared to asymptomatic 

controls. This manifests in a number of ways. When dealing with internal or external 

perturbations to the body, people with LBP tend to exhibit delayed or reduced activation of 

the deep trunk muscles (Hodges & Moseley, 2003); during movement, LBP patients 

frequently have increased antagonistic muscle activity (e.g. Ahern, Follick, Council, Laser-

Wolston, & Litchman, 1988); and in static postures, such as standing and full flexion, there 

is often hyperactivity of the superficial paraspinal muscles (e.g. Ambroz, Scott, Ambroz, & 

Talbott, 2000). Several hypotheses have been put forward to explain the presence of 

elevated trunk muscle activity in LBP patients. It has been suggested that hyperactivity 

may represent a spasm caused by pain (Travell, Rinzler, & Herman, 1942); a strategy to 
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splint the trunk and prevent further injury (Lund, Donga, Widmer, & Stohler, 1991); or 

compensation for spinal instability resulting from dysfunction or injury (Panjabi, 1992a). 

However, the heterogeneity of the changes in muscle activation between patients suggests 

that they may be more complicated than can be explained by any one of these models 

alone, leading to the popular current view that individuals develop unique muscle 

recruitment strategies aimed at maintaining homeostasis and minimising pain (Murray & 

Peck, 2007). 

 

Linked to this elevated paraspinal muscle activity is the finding that LBP patients appear to 

exhibit increased loading of the intervertebral discs as manifested by delayed stature 

recovery after loading. Intervertebral discs lose height in response to compressive forces, 

due to a combination of fluid outflow and elastic deformation of both the disc and the 

vertebral endplates. When the spine is subsequently unloaded, these processes are reversed, 

leading to fluid inflow and disc height recovery (Koeller, Funke, & Hartmann, 1984). 

Changes in disc height lead to changes in overall body height, or stature. Hence 

stadiometry, which measures changes in body height, is often used as an indirect and non-

invasive method for assessing changes in disc height.  

 

People with LBP appear to lose stature at a similar rate to healthy controls in response to 

loading. However, they are significantly slower to recover this height when the spine is 

unloaded and this reduced stature recovery has been linked to increased paraspinal muscle 

activity (Healey, Fowler, Burden, & McEwan, 2005a). It is therefore hypothesized that the 

elevated muscle activity observed in people with LBP results in greater compressive loads 

on the spine that, in turn, prevent the intervertebral discs from regaining their initial height 

and consequently prolongs stature recovery (Healey et al., 2005a). Intervertebral disc 

height loss may increase the risk of future back pain by compromising spinal stability 
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(Zhao, Pollintine, Hole, Dolan, & Adams, 2005) and has been associated with a decrease in 

the discs’ shock absorbing properties, increased loading on spinal structures such as the 

facet joints and concentrations of compressive stress (Adams, Bogduk, Burton, & Dolan, 

2002). Significant negative correlations between stature recovery and both pain and 

disability support the clinical relevance of this relationship (Healey et al., 2005a). These 

findings imply that reducing paraspinal muscle activity may increase the rate of stature 

recovery and therefore have a beneficial effect on clinical outcome.  

 

The argument for causality was supported by the findings of a subsequent study (Healey, 

Burden, McEwan, & Fowler, 2008) in which paraspinal muscle activity of asymptomatic 

participants was increased using functional electrical stimulation to a level intended to 

mimic that seen in patients with LBP and there was an associated reduction in stature 

recovery, similar to that observed in LBP patients. Although an important finding, this 

does not prove that elevated muscle activity is causal for reduced stature recovery in a 

clinical population. The link between muscle activity and stature recovery in patients with 

LBP may be due to a third factor such as disc degeneration, which is known to affect the 

loading response (Adams & Hutton, 1983). The pain resulting from degeneration and the 

accompanying reduced stature recovery may then lead to increased muscle activity. In this 

case, reducing muscle activity would not be expected to have a major impact on stature 

recovery. This possibility was considered when determining the study design for the thesis.  

 

Psychological factors play an important role in LBP. Although they have been identified as 

potential causal factors of low back disorders (Adams, Mannion, & Dolan, 1999), they 

appear to have a greater impact in the development of chronic pain and disability (Adams 

et al., 2002) and are sometimes viewed as “obstacles to recovery” (e.g. Foster, Thomas, 

Bishop, Dunn, & Main, 2010, p.398). Catastrophizing, fear of movement (Picavet, 
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Vlaeyen, & Schouten, 2002), self-efficacy (Woby, Urmston, & Watson, 2007b), 

depression and anxiety (Linton, 2000) have all been identified as significant in the onset 

and/or perpetuation of LBP. It has been suggested that one of the ways psychological 

factors may affect the condition is via increased spinal loading resulting from altered 

paraspinal muscle activity. For example, psychological stress has been observed to 

increase spinal compression and lateral shear, with these increased spinal loadings traced 

to differences in muscle co-activation (Marras, Davis, Heaney, Maronitis, & Allread, 

2000). Furthermore, LBP patients who have high levels of pain-related fear generally 

exhibit elevated paraspinal muscle activity compared to low fearful patients, especially 

when confronted with movements which they believe are harmful (Vlaeyen & Linton, 

2000). It is proposed that pain-related fear may perpetuate pain and disability via this 

muscle guarding. Muscle activity may therefore be a contributory factor in the link 

between psychological factors and clinical outcome.  

 

This thesis aims to investigate the two main general hypotheses which follow from the 

above research findings. Firstly, that reducing paraspinal muscle activity leads to an 

increase in the rate of stature recovery, and so has a beneficial impact on clinical outcome. 

Secondly, that certain psychological factors are linked to levels of muscle activity and that 

these associations may help to explain causes of, and changes in, pain and disability. If the 

results supported these hypotheses, it would suggest that interventions that were able to 

reduce paraspinal muscle activity and promote more rapid stature recovery may be more 

effective in improving clinical outcome than those that do not influence this primary load 

mechanism. Furthermore, it may be possible to identify subgroups of patients, with certain 

psychological characteristics, for whom muscle hyperactivity and delayed stature recovery 

appear to play a greater role. If so, this may help in the targeting of treatment for LBP.  
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1.1. Global aim: 

To establish whether active rehabilitation programmes and superficial heat treatment 

result in reduced paraspinal muscle activity in chronic LBP (CLBP) patients and 

whether this affects an increase in the rate of stature recovery. If so, to investigate 

whether this has a beneficial effect on clinical outcome, or can help to identify any 

subgroups of patients for whom this approach might be most effective. 

 

1.2. Specific aims: 

(1) extend the current knowledge about the relationship between paraspinal muscle 

activity, stature recovery and levels of pain and disability in NHS patients with 

CLBP;  

(2) assess the repeatability of inter-day stadiometer measurements in patients with 

CLBP; 

(3) investigate the role of psychological factors on paraspinal muscle activity, stature 

recovery and clinical outcome;  

(4) identify whether baseline levels of muscle activity, stature recovery or 

psychological factors, or changes in these variables following treatment, are 

associated with better clinical outcome; 

(5) investigate the effect of superficial heat treatment on muscle activity and stature 

recovery. 

 

1.3. Structure of the thesis 

The structure of the thesis is as follows: a review of literature to determine current state of 

knowledge with regards to the area of study, followed by three experimental studies to test 

the research hypotheses. The main aim of Study 1 was to assess whether the established 

relationships between stature recovery, muscle activity, pain and disability exist in a more 
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clinically relevant population of NHS patients with CLBP, including individuals with more 

severe back pain than previously examined. In addition, this study furthered previous work 

by seeking to establish whether a range of self-report psychological factors demonstrated 

an association with muscle activity or stature change. An asymptomatic control group was 

also included to enable comparison of stature change and muscle activity levels between 

the two groups. Study 2 was longitudinal; patients were tested both before and after they 

participated in an active rehabilitation programme and at a six-month follow up session. 

Relationships between changes in the variables were examined and any characteristics 

associated with better clinical outcome were sought. For both ethical and practical reasons, 

a separate control group was not included in this study. However, the patients on the 

rehabilitation programme were all long-term sufferers of back pain and hence it was 

believed that the measures would be relatively stable over time. This was assessed (within 

Study 1), where possible, by means of two testing sessions held approximately a week 

apart prior to the participant commencing the rehabilitation programme. These additional 

visits also enabled repeatability of inter-day stadiometer measurements in patients with 

CLBP to be analysed, an area lacking in the literature. Study 3 investigated the effect of 

superficial heat treatment, which is thought to result in a short term reduction in muscle 

activity. If muscle activity could be temporarily reduced in this way, it would enable 

analysis of the acute effect of muscle relaxation on stature recovery. Since neither active 

rehabilitation programmes nor heat treatment would be expected to affect pathology, any 

changes in stature recovery following either intervention would help to address the 

suggestion that such factors are the primary cause of reduced stature recovery. 
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2. Literature review 

 

2.1. Low back pain 

Low back pain can be classified as acute, sub-acute and chronic. Definitions vary, but most 

commonly CLBP is classed as that lasting more than three months, with sub-acute 

covering durations of between six weeks and three months, and acute less than six weeks 

(Waddell, 2004). This can be misleading, however, because LBP is often a recurrent 

problem, with a previous history of back pain identified as the greatest risk factor for a new 

episode of LBP (Mannion, Dolan, & Adams, 1996).   

 

LBP symptoms, pathology and radiological findings are poorly correlated and less than 

15% of patients will have a specific diagnosis (Airaksinen et al., 2006). This leads to many 

patients being diagnosed as having ‘non-specific LBP’, defined in the recent National 

Institute for Health and Clinical Excellence (NICE) guidelines (NICE, 2009, p.9) as 

“tension, soreness and/or stiffness in the lower back region for which it isn’t possible to 

identify a specific cause of the pain”. Pain and disability represent distinct aspects of the 

condition and are not as closely related as might be expected (Waddell, Newton, 

Henderson, Somerville, & Main, 1993). In fact, a number of researchers have found 

cognitive factors such as pain-related fear to be better predictors of self-reported disability 

levels than pain intensity or biomedical status (e.g. Crombez, Vlaeyen, Heuts, & Lysens, 

1999). This illustrates the multifactorial nature of the condition, in which biomechanical, 

psychological and social factors have all been identified as important and are often thought 

to be inter-linked (Waddell, 2004). 
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2.2. Anatomy 

2.2.1. Anatomy of the vertebral column 

The main functions of the vertebral column are to support the trunk, allow movement and 

locomotion, and protect the spinal cord (Middleditch & Oliver, 2005). It typically consists 

of 24 separate vertebrae: 7 cervical (C1-C7) in the neck or cervical region, 12 thoracic (T1 

– T12) connected with the ribs and 5 lumbar (L1-L5) in the lower back. Below this are five 

fused vertebrae that form the sacrum and usually four fused vertebrae that form the coccyx. 

There are intervertebral discs between the adjacent vertebral bodies, except for between C1 

and C2.  

 

 

Figure 2.1 Lateral view of the vertebral column (A.D.A.M. Medical Encyclopedia, 2010) 

 

The anterior pillar of the spine (including the intervertebral discs) has primarily weight-

bearing and shock absorbing functions whereas the posterior pillar (including the 

apophyseal joints) controls movement and maintains stability (Adams et al., 2002; 

Middleditch & Oliver, 2005). In-between is the vertebral canal, containing the spinal cord 

and associated structures. There are four curves in the vertebral column (one each of 

cervical, thoracic, lumbar and sacral) when in the upright posture, which also act in a 

shock-absorbing capacity.  
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Figure 2.2 The curves in the vertebral column (A.D.A.M. Medical Encyclopedia, 2010) 

 

2.2.2. The motion segment 

A motion segment consists of two vertebrae and the intervening disc and ligaments 

(Adams et al., 2002) and represents the smallest functional unit of the spine. Vertebrae 

consist of a roughly cylindrical vertebral body, from the posterior surface of which are two 

projections, or pedicles. These extend posteriorly to connect to the laminae. The pedicles 

and laminae form the vertebral or neural arch, and between this and the vertebral body is 

the vertebral foramen which encircles the spinal cord (Jenkins, 1998). Projecting laterally 

from the junction of the lamina and pedicle is a bony projection called the transverse 

process for the attachment of muscles and ribs (Jenkins, 1998; Adams et al., 2002). The 

superior and inferior articular processes extend from the lateral corners of the lamina on 

either side and bear smooth facets for articulation with the vertebrae above and below to 

form the apophyseal joints (Jenkins, 1998; Adams et al., 2002). 
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Figure 2.3. A typical vertebra, superior and lateral view (NCBI Bookshelf, 2001) 

 

2.2.3. Anatomy and function of the spinal joints 

There are three joints connecting the vertebrae: two are synovial gliding joints formed 

from the inferior articular processes of the upper vertebrae and the superior articular 

processes of the lower vertebrae. These are called apophyseal, zygapophysial or facet 

joints (Bogduk, 2005). The direction and range of motion at the joint is determined by the 

orientation of the articular surfaces. The apophyseal joints aid spinal stability, resist 

horizontal forces acting on the spine and protect the discs from excessive shear and torsion 

(Adams et al., 2002). They are also weight-bearing, particularly following disc narrowing, 

although evidence regarding the extent to which this occurs has found fairly wide-ranging 

results (Middleditch & Oliver, 2005). The intervertebral joints are cartilaginous joints 

between the vertebral bodies, formed by the union of the intervertebral discs with the 

vertebral bodies. These are reinforced anteriorly and posteriorly by the longitudinal 

ligaments. 

 

2.2.4. Anatomy and function of the spinal ligaments 

The ligamentous structures of the spine contribute to its intrinsic stability (Bogduk, 2005). 

The intervertebral discs are reinforced and protected by the longitudinal ligaments, which 
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run the length of the vertebral column anteriorly and posteriorly and give it important 

support (Cailliet, 1991). Their function is to prevent excessive separation of the posterior 

and anterior ends of the vertebral bodies. The deepest fibres extend from one vertebra to 

the next while more superficial fibres extend over several vertebrae (Jenkins, 1998; 

Middleditch & Oliver, 2005).  

 

The ligaments of the posterior elements are the ligamentum flavum, the interspinous 

ligament and the supraspinous ligament. The supraspinous ligaments join the tips of the 

spinous processes, the interspinous ligaments connect adjoining spinous processes and the 

ligamentum flavum is a short, thick ligament that joins the laminae of each consecutive 

vertebra (Middleditch & Oliver, 2005). It is thought that its elastic nature helps restore a 

flexed lumbar spine to its natural extended position (Bogduk, 2005).  In addition, there are 

intertransverse ligaments which connect adjacent transverse processes and which are most 

prominent in the lumbar region (Jenkins, 1998). 

 

 

Figure 2.4. The ligaments of the spinal column (SpineUniverse, 2010) 
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2.2.5. Type and function of the lumbar paraspinal muscles 

The lumbar muscles can be divided into three groups: the posterior, the intertransverse, and 

the anterolateral muscles (Adams et al., 2002). 

 

Posterior muscles 

The erector spinae is a large powerful musculotendinous mass, which gained its name due 

to its action in extending the vertebral column (Jenkins, 1998; Middleditch & Oliver, 

2005).  It consists of three muscles, which are (from lateral to medial): iliocostalis, 

longissimus and spinalis, only the first two of which are well developed. It extends the 

length of the spine, from skull to sacrum and lies lateral to multifidus. It acts bilaterally to 

extend the vertebral column and unilaterally to create lateral flexion (Middleditch & 

Oliver, 2005).   

 

The multifidus is the largest and deepest of the lumbar back muscles (Bogduk, 2005) and is 

thought to be important for spinal stability. The muscle fibres arise from the sacrum and 

transverse processes of the lumbar and lower cervical vertebrae to insertions on the spinous 

processes (Jenkins, 1998). The arrangement of the fibres allows the multifidus to act on 

each spinous process individually and the muscle acts to pull downwards on the processes 

causing extension of the vertebral column, controlling flexion and acting as a stabiliser 

during rotation (Adams et al., 2002; Middleditch & Oliver, 2005).  

 

As their name suggests, the interspinales connect the edges of opposing spinous processes.  
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Intertransverse muscles 

The intertransversarii span adjacent transverse processes. Along with the interspinales, 

these intersegmental muscles have a large number of muscle spindles, and hence are 

thought to have an important proprioceptive role (Adams et al., 2002). 

 

Anterolateral muscles 

Quadratus lumborum is a wide, quadrilateral muscle, deep to erector spinae, that connects 

the lumbar transverse processes, the ilium and 12th rib. The exact function of this muscle is 

unclear, although it is thought to support the 12th rib during respiration and control the rate 

of descent during lateral flexion (Bogduk, 2005; Middleditch & Oliver, 2005). 

 

 

Figure 2.5. The erector spinae group, posterior view (Primal Pictures, 2009). 

 

Psoas major is a long muscle which arises from the anterolateral aspect of the lumbar spine 

and inserts into the lesser trochanter of the femur. The lumbar vertebral column acts as a 

base as the muscle performs its principal action of flexing the hip, thought to cause very 

Erector spinae: iliocostalis lumborum 

Erector spinae: longissimus thoracis 

Erector spinae: spinalis thoracis 
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large compressive forces on the lumbar discs. However, being too close to the axes of 

rotation of the lumbar vertebrae, the psoas is not able to exert a substantial moment on the 

lumbar spine with respect to flexion and extension (Adams et al., 2002; Middleditch & 

Oliver, 2005). 

 

Classification 

The back muscles may be categorised into local, or deep, muscles (e.g. multifidi, 

interspinales, and intertransversarii) that connect individual lumbar segments, and global, 

or superficial, muscles (e.g. erector spinae) that don’t attach directly to the spine and 

primarily act to generate movement (Bergmark, 1989). The intersegmental nature of the 

deep back muscles makes them well-suited for stabilisation of the vertebral column and 

‘fine-tuning’ of movements (Middleditch & Oliver, 2005). Meanwhile, the superficial 

muscles, being larger in size and further from the centre of rotation, are better adapted to 

counterbalance external loads, and have the greatest potential to generate torque to move 

the trunk (Hodges & Moseley, 2003; Middleditch & Oliver, 2005).  

 

2.2.6. Structure and function of the intervertebral disc 

The intervertebral discs lie between the vertebral bodies, forming approximately one-third 

of the height of the spinal column (Reilly, Boocock, Garbutt, & Troup, 1988). The discs 

consist primarily of proteoglycans (large molecules that have the property of attracting and 

retaining water), collagen and water (Middleditch & Oliver, 2005). At the centre of each 

disc is a gelatinous mass, known as the nucleus pulposus, which consists of around 80 – 

90% water (Park, 1997) and is primarily involved in weight-bearing (Bogduk, 2005). 

Surrounding this is the annulus fibrosus, which consists of 10-20 sheets of collagen, called 

lamellae, tightly packed together around the periphery of the disc (Adams et al., 2002). 

This acts to restrain movement and aid stability (Bogduk, 2005). The third component of 
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the disc is the vertebral endplates; plates of cartilage that separate the discs from the 

adjacent vertebral bodies (Middleditch & Oliver, 2005). Disc height varies in the different 

regions of the spine, being thickest in the lumbar region. The discs are also wedge-shaped 

in the cervical and lumbar regions, helping to form the lordotic curves (Middleditch & 

Oliver, 2005). The discs provide flexibility, enabling bending, flexion and torsion. They 

also transmit loads arising from body weight and muscle activity through the spinal 

column (Urban & Roberts, 2003) and distribute compressive loading evenly onto the 

vertebral bodies (Adams, 2004).  

 

 

 

Figure 2.6. An intervertebral disc, consisting of a nucleus pulposus surrounded by an 

annulus fibrosus, both sandwiched between two cartilaginous vertebral endplates (Primal 

Pictures, 2009) 

 

2.3. Stature loss and stadiometry 

2.3.1. Behaviour of the spinal motion segment when exposed to loading 

Intervertebral discs have been observed to demonstrate viscoelastic deformation in 

response to compressive forces. Over short periods of time, the disc behaves elastically in 

response to loading, but a slow compression of the disc known as ‘creep’ also occurs over 

longer periods (Smeathers, 1984). Two main causes of disc height loss have been 

identified. First, the disc contains a high percentage of water, which flows into and out of 
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the disc in response to loading until a new equilibrium is reached. Fluid loss that occurs in 

this way will lead to a reduction in disc volume and hence a decrease in disc height 

(Adams & Hutton, 1983). Second, height loss occurs due to elastic deformation of the disc 

and vertebral endplates. The annulus fibres bulge radially in response to loading (Heuer, 

Schmitt, Schmidt, Claes, & Wilke, 2007; Park, 1997) and the vertebral endplates bulge 

vertically into the vertebral bodies (Brinckmann, Frobin, Hierholzer, & Horst, 1983). 

When the spine is unloaded (typically overnight or when lying down), these processes are 

reversed, leading to fluid inflow and disc height recovery (Koeller et al., 1984). It is 

believed that this fluid flow induced by loading and unloading of the spine is important for 

the nutrition of the discs (Adams & Hutton, 1983).  

 

Several in vivo studies have used Magnetic Resonance Imaging (MRI) in an attempt to 

directly measure diurnal changes in the lumbar spine and have observed mean disc height 

changes of 0.9-1.2mm (Boos, Wallin, Aebi, & Boesch, 1996; Botsford, Esses, & Ogilvie-

Harris, 1994; Park, 1997). In addition, the volume of the three lower lumbar discs has been 

found to decrease by approximately 16-17% over the course of a day (Botsford et al., 

1994; Roberts, Hogg, Whitehouse, & Dangerfield, 1998), supporting the fluid loss 

mechanism. The presence of radial bulging in these studies has been less clear, with Park 

(1997) reporting bulging of approximately 9%, whereas Botsford et al. (1994) conversely 

found a decrease in disc diameter. The low participant numbers in all of these studies, 

however, means that caution is needed in interpreting the results, none having more than 

ten participants. To date, the use of MRI to evaluate the effects of shorter-term loading 

appears to be limited, although Kimura, Steinbach, Watenpaugh and Hargens (2001) used 

MRI to scan the lumbar region of eight participants following five minutes of axial loading 

of 50% of body weight (to simulate upright posture). MRI was performed with the axial 

force still applied and a decrease in spine length (from T12 to S1) of 2.5mm was observed.  
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The difficulty in measuring individual disc dimensions in vivo has led to a number of in 

vitro experiments to investigate the effect of loading on cadaveric discs. However, the 

validity of these studies has been questioned due to the different physiologic and 

mechanical properties of discs in live compared to cadaver animals (Keller, Holm, 

Hansson, & Spengler, 1990) and the difficulty in replicating physiological forces (Botsford 

et al., 1994). Adams, McMillan, Green and Dolan (1996) found mean lumbar disc height 

loss of 1.2mm after two to three hours of loading (1-2kN) that simulated sustained manual 

labour and Adams and Hutton (1983) reported a decrease of approximately 1.5mm after 

four hours of creep loading at around 700N, which was accompanied by fluid loss of 

approximately 11%. The authors concluded that approximately two-thirds of the average 

height loss was due to fluid loss, the remaining one-third being due to creep deformation of 

the vertebrae and annulus fibrosus. The contribution of each mechanism is also thought to 

be time-dependent. This was supported by the results of a mechanical model of lumbar 

disc function, which showed that deformation of annulus fibres was the primary 

mechanism initially, but contributed only approximately one quarter of the height change 

obtained after several hours’ normal activity (Broberg, 1993).  

 

The magnitude of disc height loss varies greatly between individuals and has been found to 

be dependent on factors such as age, gender, disc cross-sectional area and disc 

degeneration (Althoff, Brinckmann, Frobin, Sandover, & Burton, 1992; 

Kanlayanaphotporn, Lam, Williams, Trott, & Fulton, 2001; Natarajan & Andersson, 1999). 

In particular, degenerated discs demonstrate reduced stiffness and lose more height in 

response to loading. However, due to reduced proteoglycan content, the fluid loss is 

relatively less than for non-degenerate discs (Adams & Hutton, 1983), implying that 
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degenerated discs have reduced stiffness of the annulus fibres (and possibly the endplate 

and underlying bone) (van Dieën & Toussaint, 1993). 

 

Disc height loss results in a measurable decrease in stature, both in response to short term 

loading tasks and over the course of a day. This can be exacerbated by an increased 

lordosis following loading (De Puky, 1935; Kimura et al., 2001). Mean circadian variation 

has been found to be of the order of 1.1% of stature, with approximately 50% of the 

diurnal loss of stature occurring in the first hour after rising and approximately 70% 

regained during the first half of the night (Tyrrell, Reilly, & Troup, 1985).  

 

2.3.2. Clinical relevance of disc height loss  

Decreased disc height affects spinal mechanics and causes increased loading on spinal 

structures such as the facet joints (Dunlop, Adams, & Hutton, 1984). A height loss of 

approximately 1mm was observed to increase the percentage of intervertebral compressive 

load that is borne by the apophyseal joints from 4% to 16% (Adams & Hutton, 1980). 

Within the disc, the associated water loss causes a transfer of load from the nucleus to the 

annulus, which can result in stress concentrations in the posterior annulus, possibly leading 

to pain and structural disruption (Adams et al., 1996). At the same time, the space for the 

spinal nerve roots is reduced by the diminished height and diameter of the intervertebral 

foramen, thereby increasing the risk of nerve root impingement (Adams et al., 2002). 

Furthermore, reduced disc height results in some slack in the annulus and intervertebral 

ligaments, allowing increased flexion, lateral bending and translation, and potentially 

comprising spinal stability (Zhao et al., 2005). The risk of injury may also be increased due 

to the decreased shock absorbing properties of the disc (Koeller et al., 1984) and as a result 

of delayed reflex activation of the back muscles, which has been observed following spinal 

creep (induced via sustained flexion) (Sánchez-Zuriaga, Adams, & Dolan, 2010). Some 
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LBP treatments have recognised the potential for pain generation resulting from reduced 

disc height. For example, spinal traction is a relatively popular procedure used to treat and 

alleviate the symptoms of LBP by the application of a force to temporarily increase 

intervertebral disc height and hence reduce pressure and overloading on spinal structures 

(Rodacki, Weidle, Fowler, Rodacki, & Persch, 2007). Non-invasive spinal decompression 

has also been associated with a significant reduction in LBP, which was correlated with an 

increase in disc height (Pergolizzi, Apfel, Florio, & Richmond, 2008), although further 

research would be required to prove a causative relationship. 

 

As discussed in more detail below, LBP patients tend to demonstrate delayed or reduced 

recovery of stature following loading (Healey et al., 2005a). This potentially exposes them 

to increased pain and a greater risk of further injury. It has been suggested that individuals 

with LBP may also exhibit reduced diurnal variation of stature. In support of this, Reilly et 

al., (1988) reported a diurnal variation for five CLBP patients awaiting surgery that was 

approximately 40% of that of healthy participants (although the results were clearly based 

on a limited sample size). However, it was noted that the patients took periods of rest to 

alleviate their symptoms and hence the reduced variation may have been the result of lower 

levels of spinal loading throughout the day. Although little detail is given on the pain and 

disability levels of these patients, it is assumed that their back pain was relatively severe 

since they were awaiting surgery and the authors mention that difficulties arose during 

training “due to excessive pain”. A more recent study (Fowler & Healey, 2008) found no 

significant difference between the diurnal variation in stature for participants with mild 

CLBP and healthy controls. Interestingly, Hupli, Heinonen and Vanharanta (1997) found 

that an active rehabilitation programme increased both the morning and evening heights of 

patients with relatively mild CLBP, with an average morning increase of 7.2mm after 2.5 

weeks. However, the daily variation did not change significantly.   
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2.3.3. Stadiometry 

The stadiometer was popularised by Eklund and Corlett and was designed to accurately 

measure stature change or ‘spinal shrinkage’, which the authors suggested could be used to 

measure disc compression and hence quantify spinal loading (Eklund & Corlett, 1984). 

Most stadiometers are modifications of the one developed by Eklund and Corlett and 

generally consist of a frame that inclines the body backwards at an angle of between 5-15°, 

allowing the participant to adopt a relaxed position. A number of supports or markers 

control the position of the body, with various approaches adopted to control the head 

position. Participants are typically trained on the stadiometer beforehand until they are able 

to relax in the apparatus, as repeatability has been observed to improve following such 

familiarisation sessions. The criterion used for determining adequate training varies 

between researchers. Most commonly, training continues until the standard deviation (SD) 

of ten successive measurements is ≤ 0.5mm, the reasoning for this apparently being that it 

represents an achievable target, while being significantly less than the stature change 

observed in most stadiometer studies. A number of studies have involved measuring 

participants in the seated position, which has the potential advantage of reducing the extent 

to which height loss in areas other than the spine, such as the heel pad, are included. 

However, loss of stature measurements in the two postures has not been found to be 

significantly different (McGill, van Wijk, Axler, & Gletsu, 1996), supporting the argument 

that the majority of stature change is in fact due to spinal height changes. Furthermore, 

participants appear to require more training on the seated stadiometer in order to achieve 

adequate repeatability (Rodacki, Fowler, Rodacki, & Birch, 2001).  

 

Reilly et al., (1988) raised concern over the reliability of stature measurements of LBP 

patients. In observations of eight patients, the authors reported that excessive pain when 

trying to relax within the apparatus meant that only five were able to achieve the training 
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standard of SD ≤ 0.5mm over ten consecutive measurements. These patients were all 

awaiting surgery, however, and hence the results may not be generalisable to typical 

patients with non-specific mechanical LBP. A more recent study (Healey, Fowler, Burden, 

& McEwan, 2005b) reported that both CLBP patients and asymptomatic individuals were 

able to produce stature measurements with a good level of repeatability after appropriate 

prior practice and also that this ability was retained for at least two weeks. Since many 

stadiometer studies involve testing on more than one day, the day-to-day variation in 

stature change response to loading and unloading is also important, although research in 

this area is extremely scarce. Leivseth and Drerup (1997) measured the vertical spinal 

creep (VSC) response to work in standing and sitting postures using a standing stadiometer 

on two consecutive days and found low intra-individual variation (with reported means of 

SDs of 0.51mm and 0.64mm for the standing and sitting activities respectively). 

Kanlayanaphotporn, Williams, Fulton and Trott (2002) investigated the reliability of a 

VSC response over a 25-minute loading and unloading protocol on two consecutive days. 

Five patients with LBP and an asymptomatic group of ten individuals were included and 

the results demonstrated that both groups had good levels of repeatability. Although the 

response was found to vary between days, the variation (SEM and mean of SDs) was less 

than 2mm in both cases.  

 

2.3.4. Measurement of spinal loading  

The reduction of loading on the spine is considered to be beneficial in decreasing the 

incidence or severity of LBP. In vivo measurement of spinal loading is difficult, however, 

and has involved invasive techniques such as intradiscal pressure measurements (using 

transducer needles or an implanted transducer) (Sato, Kikuchi, & Yonezawa, 1999; Wilke, 

Neef, Caimi, Hoogland, & Claes, 1999) or surgically implanted spinal fixators equipped 

with load cells (Rohlmann et al., 2001). As a consequence, a number of researchers have 
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developed various biomechanical models, the most complex of which use EMG to 

determine the activity of each relevant muscle (e.g. the Marras group and the McGill 

group). This approach is validated, for example, by the findings of pressure-needle studies 

which have confirmed that most of the compressive force acting on the lumbar spine arises 

from muscle action (Adams & Dolan, 1995). 

 

Since intervertebral disc height loss (and hence stature loss) has been shown to be greater 

for greater loads, spinal loading may alternatively be quantified by measuring changes in 

disc height (or stature). Radiography, ultrasound and MRI have all been used to image the 

spine to allow disc height measurement, or, more simply, total stature change has been 

assessed via stadiometry. This approach is supported by findings which have suggested a 

linear relationship between stature loss and static axial loading of the spine (e.g. Althoff et 

al., 1992). Furthermore, a recent study identified a significant and very high (r = 0.99) 

correlation between spinal shrinkage and intradiscal pressure during static situations and 

walking (van Deursen, van Deursen, Snijders, & Wilke, 2005). Criterion validity is 

additionally demonstrated by the finding that spinal shrinkage is significantly related to 

biomarkers of type I collagen metabolism, which are used to assess the alterations of spinal 

tissues in response to physical loading (Kuiper, van Dieën, Everts, Verbeek, & Frings-

Dresen, 2004). The apparent relationship between spinal shrinkage and perceived 

discomfort (Beynon & Reilly, 2001; Corlett, Eklund, Reilly, & Troup, 1987; Troup, Reilly, 

Eklund, & Leatt, 1985) also implies concurrent validity.  
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2.4. Paraspinal muscle activity 

2.4.1. Electromyography 

Electromyography (EMG) is a technique for assessing muscular activation by recording 

changes in the electrical potential of muscle fibres (Burden, 2008). The measurement can 

be taken from within the muscle using needle EMG, or via less invasive surface EMG. A 

review carried out by Mohseni-Bandpei, Watson and Richardson (2000) considered the use 

of surface EMG in assessing lumbar muscle activity in static and/or dynamic positions.  Of 

the 14 studies included, all except two reported favourable results, leading the authors to 

conclude that surface EMG is a reliable technique for assessing lumbar muscle function 

and acceptable for clinical application in LBP populations.  

 

Absolute EMG amplitudes are affected by a variety of factors. Those which have an 

elemental influence on the EMG signal, known as causative factors, have been classified 

by De Luca (1997) as either extrinsic or intrinsic. Extrinsic factors include the electrode 

structure and its orientation and location on the skin, which, in particular, will affect the 

cross-talk from neighbouring muscles. Intrinsic factors include “the physiological, 

anatomical and biochemical characteristics of the muscle” and include the thickness of the 

subcutaneous fat layer, the fibre type composition and their depth and location in respect to 

the electrodes and the blood flow in the muscle, which will be affected by muscle 

temperature. In addition, variations in temperature may influence the EMG signal via 

changes in sweat levels, which will alter the skin impedance. Many of these factors, which 

will affect the amplitude recorded, can not be controlled for and hence there is an argument 

that comparison of EMG amplitudes between individuals should not be carried out directly 

(Burden, 2008). In particular, when the comparison involves LBP patients and 

asymptomatic controls, differences in physical activity levels may lead to variations in 
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body fat (unless adequate matching is undertaken), and patient groups are often older than 

control groups due to the difficulty of recruiting older participants with no history of LBP. 

 

The traditional approach to the issue of inter-individual differences is to normalise the 

EMG data relative to the amplitude achieved during a maximum voluntary contraction 

(MVC). However, this method is dependent on the motivation of the individual to perform 

a true maximal contraction and again this is a particular issue for LBP patients who have 

often proven unwilling or unable to perform a maximal contraction due to (fear of) 

pain/(re)injury (Al-Obaidi, Nelson, Al-Awadhi, & Al-Shuwaie, 2000). The generally 

accepted approach in this case is therefore to normalise the data relative to a sub-maximal 

reference voluntary contraction (RVC). Lehman (2002) considered between-day 

repeatability of EMG activity of the erector spinae muscle during quiet standing. Eight 

healthy participants were tested on three separate days. Both MVC and RVC normalisation 

techniques were observed to improve the repeatability of the EMG signal, although even 

non-normalised trials demonstrated excellent repeatability. Similar results were found by 

Healey (2005) who found good between-days repeatability of integrated EMG 

measurements during standing and a RVC for CLBP patients and controls. Normalising 

relative to a RVC was found to improve the level of repeatability for both groups. 

Dankaerts, O’Sullivan, Burnett, Straker and Danneels (2004) compared the reliability of 

surface EMG from both MVCs and RVCs in six healthy controls and five CLBP patients. 

Although excellent within-day reliability was observed for both contractions, the between-

day results revealed good reliability for the RVC compared to poorer levels for the MVC. 

The observed pattern was consistent for both healthy controls and CLBP patients. The 

authors therefore recommended the use of a sub-maximal contraction for amplitude 

normalisation.  
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Conversely, van Dieën, Selen and Cholewicki (2003b) concluded that non-normalised 

EMG amplitudes are preferable for clinical studies. In addition to the problems of 

achieving a maximal contraction, the authors argue against the use of a RVC since the 

EMG activity during the reference contraction may be affected in the same manner as the 

levels during the experimental task. Instead they stress the importance of careful matching 

with respect to factors such as body mass, body mass index or skinfold thickness and the 

need for adequate group size to maintain power despite random variance in raw EMG 

amplitudes. A number of studies have adopted this approach of attempting to reduce inter-

individual differences by controlling for confounding factors instead of (or as well as) 

normalising EMG data.  

 

2.4.2. Hyperactivity of muscle activity  

A considerable body of research has focused on the issue of whether superficial trunk 

muscle activity (as recorded by either surface or intramuscular EMG) is increased in 

individuals with LBP compared to asymptomatic controls during static postures. The 

findings have been conflicting and inconclusive. While a number of studies have 

seemingly demonstrated that patients with LBP have higher paraspinal muscle activity than 

healthy controls (e.g. Ambroz et al., 2000; Flor, Birbaumer, Schugens, & Lutzenberger, 

1992; Healey et al., 2005a), others have found no difference or even the converse (e.g. 

Collins, Cohen, Naliboff, & Schandler, 1982; Glombiewski, Tersek, & Rief, 2008). In 

some cases, results have been mixed: for example, Kravitz, Moore and Glaros (1981) 

found no significance difference between groups at rest, but when contracting other 

muscles, the patients with LBP exhibited higher levels of lumbar muscle activity compared 

to controls. Differences in EMG technique may explain some of the discrepancies, one of 

the main issues being the normalisation of EMG data, as mentioned above. It is notable 

that two recent studies which controlled for potential confounding factors found a clear 
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difference between the EMG activity of CLBP patients and asymptomatic controls. 

Ambroz et al. (2000) included 30 CLBP patients and 30 controls matched for BMI, sex 

and age, and found static EMG activity to be three times greater for the CLBP patients than 

the controls. Healey et al. (2005a) considered 20 CLBP patients and 20 controls matched 

for body mass, physical activity level, sex and age and also normalised EMG levels to a 

RVC. Resting EMG levels were found to be significantly higher than for controls, despite 

the patient group only having mild back pain.  

 

The apparent inconsistency of results may also be due to individual patterns of 

hyperactivity which only become evident in certain postures. For example, Sherman 

(1985) compared paraspinal EMG activity of LBP patients and controls during six 

positions (both static and dynamic) and found that each of the 83 LBP patients showed 

elevated muscle activity (exceeding two SDs above the control mean) during at least one 

position, with each individual having a consistent, unique profile. However, when 

analysing the data for each task, no differences between patients and controls were found. 

In a review paper, Roland (1986) concluded that, although LBP patients tend to have 

increased spinal muscular activity at rest or following exercise, in no study were patients 

with LBP found to have increased back muscle activity under all conditions. Subsequent 

reviews (Geisser et al., 2005; van Dieën et al., 2003b) have similarly found fairly strong 

evidence that increased muscle activation can occur at rest in the LBP patient population, 

but that this appears to be dependent on the posture considered, with the largest effect size 

found for standing.  

 

Research findings may also be affected by the pain state at the time of the investigation. 

Often this is either not reported or participants are in remission during testing (Sherman, 

1985), possibly affecting results. Sherman (1985) found that for nine of the eleven 
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participants who reported changes in pain intensity between recording sessions, there was a 

positive correlation between the reported intensity of pain and the level of contraction in 

the one position most different from the control group. Arena, Sherman, Bruno and Young 

(1991) recorded the muscle activity of 46 LBP patients and 20 asymptomatic controls 

during six positions and identified a non-significant trend for patients to have higher EMG 

levels during a higher pain state. However, pain state only became significant when 

considering the position that gave the highest EMG levels relative to the group mean for 

each individual during high pain and then comparing that position during low pain. The 

authors suggested that a time delay may exist between muscle activity levels and pain, 

although as yet, there is no conclusive evidence for either an immediate or a lagged 

relationship between EMG activity and pain in LBP patients. 

 

Another issue that has attracted criticism is the tendency to combine all back pain patients 

into a single group. The potential disadvantage of this approach was highlighted by Arena, 

Sherman, Bruno and Young (1989) who sub-classified the back pain patients into a number 

of different diagnostic categories and observed that, in various positions, muscle activity 

differed significantly between subgroups. Similarly, in a study considering muscle activity 

during sitting, Dankaerts, O'Sullivan, Burnett and Straker (2006) demonstrated that when 

non-specific LBP patients were included as a single group, there was no difference in 

superficial trunk muscle activity compared to healthy controls. However, when the patients 

were then sub-classified into Flexion Pattern (FP) (patients position themselves near end-

range flexion during sitting) and Active Extension Pattern (AEP) (patients hold themselves 

actively into hyperextension), the AEP subgroup exhibited significantly higher levels of 

muscle co-activation compared with the controls and FP groups. The authors concluded 

that when non-specific LBP patients are pooled, the findings in one subgroup of patients 

may be ‘washed-out’ by the opposite findings in another subgroup, potentially leading to 
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differences between patients and controls being overlooked. Key, Clift, Condie and Harley 

(2008) have suggested a similar classification system based on clinical observation. They 

report that back pain patients commonly demonstrate consistent underactivity of the deep 

system but show variable overactivity of the superficial system, with some patients having 

a tendency for low tone, while others demonstrate more hyperactive tone with general 

tension and stiffness. Both classification systems have therefore identified sub-groups of 

LBP patients that tend to exhibit superficial trunk muscle hyperactivity.  

 

2.4.3. Flexion-relaxation phenomenon (FRP) 

There is one posture in which LBP patients consistently demonstrate increased paraspinal 

muscle activity compared to healthy controls and that is in full flexion. As described by 

Floyd and Silver (1955), most healthy participants exhibit relative electrical silence in the 

paraspinal muscles in full flexion (known as the FRP). The required supporting moment is 

thought to be primarily generated by the passive tissues, particularly the spinal ligaments, 

although the extensor muscles may generate force elastically through passive stretching of 

the series elastic elements (McGill & Kippers, 1994) and some deep muscle activation has 

been demonstrated (Andersson, Oddsson, Grundström, Nilsson, & Thorstensson, 1996). 

The flexion-relaxation response has consistently been shown to be absent in patients with 

LBP, who instead continue to exhibit activation of superficial trunk muscles during full 

flexion (Watson, Booker, Main, & Chen, 1997b). This is illustrated by comparison of the 

flexion-relaxation ratio (FRR), which compares paraspinal muscle activity during forward 

flexion and the activity at full flexion and has been shown to reliably discriminate between 

LBP patients and healthy controls (Watson et al., 1997b). The reason for this elevated 

muscle activity in patients is not known, although it has been suggested that it may be 

either a conscious or unconscious guarding action due to (fear of) pain or a reflex from 

injured spinal ligaments (Fryer, Morris, & Gibbons, 2004). However, it has also been 
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found to be predictive of future LBP in pregnant women (Sihvonen, Huttunen, Makkonen, 

& Airaksinen, 1998). The absence of flexion-relaxation in the lumbar paraspinal muscles 

correlates strongly with back pain (Sihvonen, Partanen, Hänninen, & Soimakallio, 1991) 

and a ‘normal’ response has been observed to return following treatment that consisted of 

exercise progression and disability management (Mayer, Neblett, Brede, & Gatchel, 2009; 

Neblett, Mayer, Gatchel, Keeley, Proctor, & Anagnostis, 2003). A significant increase in 

the FRR of LBP patients, towards that seen in healthy participants, was also observed after 

an intensive 12-week functional restoration programme of physical conditioning, working 

conditioning and work readiness (Mak et al., 2010). Watson, Booker and Main (1997a) 

similarly reported that, following a pain management programme, CLBP patients 

demonstrated reduced muscle activity at full flexion and a significant increase in the FRR. 

Although paraspinal muscle activity during standing also showed a reduction, this did not 

reach significance, although this may have been because the initial static activity levels for 

this particular patient group were not significantly different to those of a matched control 

group. Mannion, Taimela, Muntener and Dvorak (2001b) conversely reported no 

significant change in EMG levels during flexion after any of three randomly assigned 

treatments (active physiotherapy, muscle reconditioning or low-impact aerobics). 

However, they did report altered back muscle activation during trunk extension exercises, 

which they suggest may be due to increased confidence in using the lumbar muscles and 

hence a decrease in guarding mechanisms.  

 

Loss of flexion-relaxation has also been demonstrated following induced experimental 

pain, even when participants were instructed to maintain the same velocity and range of 

motion as in pain-free conditions, suggesting that the change was more than just a 

voluntary response (Zedka, Prochazka, Knight, Gillard, & Gauthier, 1999). The authors 

instead proposed that pain caused a change in the strategy of the central nervous system, 
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which resulted in the muscle working in a protective ‘pain mode’. Similarly to the lack of 

flexion-relaxation, patients with LBP show significantly increased paraspinal EMG activity 

in the swing phase during gait; a phase where lumbar muscles are normally silent (Arendt-

Nielsen, Graven-Nielsen, Svarrer, & Svensson, 1995; van der Hulst, Vollenbroek-Hutten, 

Rietman, & Hermens, 2010a). Similar EMG patterns have been found following induced 

pain (Arendt-Nielsen et al., 1995; Lamoth et al., 2004), but not fear of pain (Lamoth et al., 

2004), suggesting that again the altered gait is more complex than a voluntary guarding 

strategy. 

 

2.4.4. Altered muscle patterns 

Analysis of EMG levels during dynamic movements has led to mixed results, with some 

studies observing a greater tendency for reduced activity for LBP patients compared to 

controls (Roland, 1986). The clearest finding is that of reduced muscle activity during re-

extension after full flexion (Geisser et al., 2005), with the ratio of EMG activity during 

flexion and extension being significantly different between patients and controls (Sihvonen 

et al., 1991). This was also observed following induced pain (Zedka et al., 1999). In 

addition to variations in absolute levels of muscle activity, asymmetry of muscle activity 

and altered muscle recruitment patterns have been found to accompany LBP, both in static 

postures and during movements. Hoyt et al., (1981) found that LBP patients showed 

significantly greater left-right erector spinae difference during standing than pain-free 

controls, although there was no significant difference in either the semi-Fowler’s or sitting 

position. Using large-array surface EMG, Finneran, Mazanec, Marsolais, Marsolais and 

Pease (2003) demonstrated that not only did a LBP population of 28 patients have 

significantly higher EMG activity than 163 pain-free controls in static postures, but 93% of 

the controls had symmetrical back muscle function, whereas 89% of the LBP population 

had abnormal images, showing more asymmetrical and/or multifocal patterns of activity. 
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The images were found to return to normal in the three patients reporting full recovery 

from pain during the six-week follow up period. Extending this to dynamic lumbar motion, 

Hu, Siu, Mak and Luk (2010) used surface EMG topography to investigate patterns of 

muscle activity in 15 LBP patients and 20 healthy controls during flexion-extension. The 

dynamic topography of the healthy controls was found to have a consistent symmetric 

pattern whereas LBP patients had a significantly different topography with an obviously 

more asymmetric or disorganised pattern. After physiotherapy rehabilitation, the images of 

the LBP patients tended towards the normal pattern. 

 

EMG activity has been shown to be generally higher for LBP patients than controls during 

upright isometric trunk extensions, with significant differences between the painful and 

painless side (Alexiev, 1994). Additionally, during rotation, patients have shown 

hyperactivity of the muscles contralateral to rotation direction (Ahern et al., 1988), 

suggesting protective guarding. There are also reports that using EMG biofeedback to 

teach a more symmetrical EMG pattern to a patient results in pain reduction (e.g. Jones & 

Wolf, 1979). 

 

Asymmetrical muscle activation may be the result of muscle underactivity, (e.g. due to 

pain, reflex inhibition or selective muscle atrophy) or hyperactivity (e.g. due to reflex 

spasm, as a splinting mechanism to protect a painful spinal segment, or as compensation 

for underactivity of other muscles) (Adams et al., 2002). For example, LBP patients may 

attempt to avoid pain by avoiding activating the painful muscles or by stiffening the joints 

by activating the surrounding muscles, both of which will lead to abnormal muscle patterns 

(Hermens & Hutten, 2002). Asymmetrical muscle activation may be clinically significant, 

possibly leading to stress concentrations within the disc and neural arch. It is suggested 

that either left-right asymmetries, or flexor/extensor imbalances in the back muscles, could 
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potentially result in back pain if they are sufficiently marked to change the angulation of 

adjacent lumbar vertebrae by at least two degrees (Adams et al., 2002).  

 

2.4.5. Pain-spasm-pain model 

Hyperactivity of the back muscles is consistent with the pain-spasm-pain model, formally 

proposed by Travell et al. (1942), who suggested that ischemic pain is the consequence of 

a sustained spasm of the skeletal musculature, and may itself cause reflex muscle spasm, 

leading to a self perpetuating, pain-producing cycle.  There is evidence that pain and injury 

can lead to muscle hyperactivity. A number of studies have observed muscle spasms 

caused by stimulation or deformation of the annulus fibrosus or spinal ligaments in animals 

and this has also been demonstrated to a limited extent in humans (Indahl, Kaigle, 

Reikerås, & Holm, 1997; Solomonow, Zhou, Harris, Lu, & Baratta, 1998). Muscle spasm 

may result in reduced blood flow, leading to an accumulation of metabolic waste products 

and inflammatory substances in the muscles, which may increase pain sensitivity 

(Lundberg et al., 2002). Consistent with the model, reduced tissue oxygenation in the 

lumbar extensor muscles has been shown to result from muscle contractions as low as 2% 

of MVC (McGill, Hughson, & Parks, 2000) and muscle relaxants have been shown to 

increase paraspinal muscle blood flow in LBP patients (Sakai et al., 2008). Indeed, muscle 

hyperactivity and its clinical importance appear to be assumed in a number of both 

pharmacological (e.g. muscle relaxants) and psychophysiological (e.g. biofeedback, 

relaxation therapy) interventions which are aimed specifically at reducing paraspinal 

and/or overall body muscle tension (Arena et al., 1991). Furthermore, a recent Cochrane 

review of muscle relaxants concluded that they were effective in the management of both 

acute and chronic LBP (van Tulder, Touray, Furlan, Solway, & Bouter, 2003). Despite 

this, the pain-spasm-pain model has lost popularity, partly due to the inability to 

consistently demonstrate elevated muscle activity in LBP patients and doubt as to whether 
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observed increases are of significant magnitude to be clinically relevant. Furthermore, it 

has become clear that, in some instances, LBP patients tend to show reduced muscle 

activation, a phenomenon which can not be explained by the model.  

 

2.4.6. Lack of muscle relaxation 

Perhaps answering one of these issues, there is a body of research (largely focused on 

work-related musculoskeletal pain), which argues that even low level, but sustained EMG 

hyperactivity can contribute to the development and maintenance of chronic pain. The lack 

of muscle relaxation characteristic of patients with chronic pain is suggested as a possible 

cause (Hägg & Åström, 1997; Hermens & Hutten, 2002). Hägg (1991) proposed the 

Cinderella principle (resulting from Henneman’s principle of orderly recruitment of motor 

units) by which, even at low levels of muscle activity, single muscle fibres may be 

intensely active and therefore lack of sufficient relaxation may cause damage and prevent 

repair of damaged fibres, leading to pain. Following patient training, decreases in pain 

have been found to be related to an increased ability to relax but not to reductions in the 

absolute EMG levels (Vollenbroek-Hutten, Hermens, Voerman, Sandsjö, & Kadefors, 

2006), suggesting that lack of relaxation may be even more important than the absolute 

level of muscle contraction. This, therefore, may be one mechanism by which even low 

level muscle activity can impact on chronic back pain. 

 

2.4.7. Pain-adaptation model 

A review carried out by Lund et al. (1991) concluded that, contrary to Travell et al.’s 

findings, the only situation in which EMG activity appeared to be higher than normal was 

when the muscle was acting as an antagonist.  This led to the authors rejecting the pain-

spasm-pain theory and instead proposing the pain-adaptation model. This model states that 

pain causes the output of agonist muscles to be decreased whilst the level of antagonist co-
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contraction is increased, leading to a reduction in MVC and in the range and velocity of 

movement, thereby protecting the injured part. This concept of the muscles acting to splint 

or guard the injured part has gained support (Graven-Nielsen, Svensson, & Arendt-Nielsen, 

2000), although van Dieën et al. (2003b) reviewed the evidence for both the pain-spasm-

pain model and the pain adaptation model and concluded that neither was consistently 

supported by the literature. Although there was evidence for reduced activation in some 

cases, in line with the pain adaptation model (and contrary to the pain-spasm-pain model), 

they also found “fairly strong evidence” that increased muscle activation can occur at rest 

and in full flexion in patient groups and this was interpreted as being contrary to the pain-

adaptation model. However, it should be noted that some researchers instead interpret these 

findings as supportive of the model and suggest that increased co-contraction and 

stiffening of muscles, even at rest, is part of a general splinting or guarding strategy which 

is consistent with the pain-adaptation model (Hodges & Moseley, 2003).  

 

2.4.8. Instability 

Panjabi (1992a) proposed that the spinal stabilising system consists of three interdependent 

subsystems: the passive system (vertebrae, ligaments and intervertebral discs), active 

system (muscles and tendons) and the neural control system. The three subsystems work 

together to provide spinal stability and, within certain limits, deficiency in one system can 

be compensated for by an increase in another. The ‘neutral zone’ was defined as that part 

of the range of motion within which there is minimal resistance to intervertebral motion, 

increased neutral zone being an indicator of clinical instability (Panjabi, 1992b). 

Dysfunction in one of the subsystems (caused for example by injury, disease or 

degeneration) may increase the neutral zone and cause strain on discs and ligaments, 

possibly leading to a compensatory increase in muscle co-contraction to restore stability.  

This was supported by the calculation that trunk muscle co-activation of around 1 -3% 
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MVC was required to maintain stability around a neutral spine, but that this increased to 3 

– 6% MVC when the model was run with reduced passive spine stiffness to simulate an 

injury (Cholewicki, Panjabi, & Khachatryan, 1997).  Alternatively, abnormal muscle 

activation may itself lead to spinal instability. For example, insufficient activation of the 

deep trunk muscles, such as multifidus and transversus abdominus (TrA), may reduce 

spinal stiffness, increasing the neutral zone and causing injury to discs and other soft 

tissues. Hence instability can be both the cause and the consequence of injury (McGill, 

Grenier, Kavcic, & Cholewicki, 2003). Panjabi’s model suggests that alterations in muscle 

recruitment, in particular, increased muscle co-contraction, may therefore be functional to 

provide additional stabilisation of the spine. However, these changes may remain present 

after their functional significance has disappeared and injured structures have recovered 

(van Dieën et al., 2003b). 

 

Consistent with the instability hypothesis (Panjabi, 1992b), the presence of increased 

muscle co-activation in people who report LBP is a common finding (Nelson-Wong, 

Gregory, Winter, & Callaghan, 2008; Radebold, Cholewicki, Panjabi, & Patel, 2000) and a 

greater ratio of lumbar over thoracic activity has also been observed, a recruitment pattern 

thought to enhance spinal stability (van Dieën, Cholewicki, & Radebold, 2003a). The 

disadvantage of adopting a strategy of muscle co-activation to stabilise the spine, is that it 

also increases spinal load (Granata & Marras, 2000), with the greatest differences in spinal 

loading between LBP patients and controls being observed during the least taxing 

biomechanical conditions (Marras, Ferguson, Burr, Davis, & Gupta, 2004). Marras, Davis, 

Ferguson, Lucas and Gupta (2001) observed that LBP patients experienced 26% greater 

spine compression and 75% greater lateral shear than an asymptomatic group during 

controlled exertions, primarily as the result of increased trunk muscle co-activation. The 

additional force caused by excessive antagonistic muscle activity could exacerbate existing 
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injuries and cause pain (Adams et al., 2002). Furthermore, during lifting exertions, the 

erector spinae muscles were found to activate significantly earlier and remained active 

significantly longer in LBP patients compared to healthy controls (Ferguson, Marras, Burr, 

Davis, & Gupta, 2004), increasing exposure to potentially injurious circumstances. 

Previously asymptomatic participants who developed LBP during prolonged standing have 

been shown to have greater muscle activity and co-activation levels (Gregory, Brown, & 

Callaghan, 2008; Nelson-Wong et al., 2008) and these higher levels of muscle co-

activation were demonstrated immediately on commencement of the standing protocol, 

prior to any subjective reports of LBP (Nelson-Wong & Callaghan, 2010). This suggests 

that muscle co-activation may not be entirely adaptive and may in fact be contributory to 

the problem and predispose some individuals to develop LBP (Nelson-Wong et al., 2008).  

 

The instability hypothesis assumes a relationship between abnormal intervertebral motion 

and LBP. The idea that decreasing intervertebral motion in a patient with LBP may result 

in reduced pain is in fact the basis for many low back treatments e.g. fusion, muscle 

strengthening (Panjabi, 2003). However, support for this concept is not universal. 

Mulholland (2008) suggests that the problems of patients with chronic back pain tend to be 

postural, rather than related to the process of movement and proposes that load transfer 

disturbance is the central issue in mechanical back pain, with abnormal loading pattern and 

high ‘spot-loading’ potentially causing pain. The author states that artificial discs, which 

alter load transmission, have had similar clinical success as spinal fusion, used to treat 

‘instability’. Adams (2004) also suggests that back pain may arise from abnormal loading 

and proposes that stress concentrations within innervated tissues may still result in pain 

even if they are insufficient to cause physical disruption or obvious pathology.  
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2.4.9. Integrated pain adaptation model 

van Dieën et al. (2003b) concluded that the observed changes in muscle activation in LBP 

patients are of a more complicated nature than suggested by either the pain-spasm-pain or 

pain-adaptation models. The authors support the hypothesis on instability suggested by 

Panjabi (1992b) and propose that the changes are functional adaptations aimed at reducing 

noxious tensile stresses in injured structures by limiting range of motion and providing 

stabilisation of the spine. This concept of functional alterations in trunk muscle recruitment 

which are both highly variable within individuals and task dependent has been largely 

accepted as the current view (Koumantakis, 2006) and has been formalised by Murray and 

Peck (2007) as the Integrated pain adaptation model, in which individuals develop unique 

muscle recruitment strategies aimed at maintaining homeostasis and minimising pain.  

 

2.4.10. Motor control and spinal reflexes 

The nervous system deals with internal or external perturbations to the body through two 

main mechanisms: anticipatory postural adjustments which occur before or up to around 

70ms after the onset of activity in a prime mover muscle (feed-forward control) and reflex 

responses which occur after this time (feedback control) (Koumantakis, 2006). The clearest 

alteration in feed-forward control in patients with LBP occurs in the TrA muscle, the 

deepest of the abdominal muscles. In healthy participants, TrA is active prior to limb 

movement and onset is not influenced by the direction of movement, supporting the 

proposal that this muscle acts to increase the stiffness of the spine and hence oppose any 

perturbing force (Hodges & Richardson, 1996). In contrast, this onset of TrA is 

significantly delayed in patients with LBP and varies with the direction of limb movement, 

which the authors suggest indicates a fundamental problem of motor control of this muscle 

(Hodges & Richardson, 1996). Preliminary evidence has suggested that delayed activation 

of TrA is associated with reorganisation of trunk muscle representation at the motor cortex 
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in individuals with recurrent LBP (Tsao, Galea, & Hodges, 2008). This is thought to be 

reversible however: motor skill training involving isolated voluntary contractions of TrA 

resulted in a significant shift in motor cortical representation, towards that observed in 

healthy individuals, and this shift was associated with earlier postural activation of TrA 

(Tsao, Galea, & Hodges, 2010).  

 

Delayed and/or reduced activation of TrA is found consistently in LBP patients and similar 

changes have also been observed following experimental induced pain (Hodges, Moseley, 

Gabrielsson, & Gandevia, 2003). This implies that the delays in anticipatory responses 

seen in LBP patients may be caused by pain, although the converse may also be true. 

Moseley (2004) found that patients and controls who showed an abnormal response on an 

abdominal drawing-in task (aimed at assessing postural control of TrA) were three to six 

times more likely to develop persistent or recurrent LBP, suggesting that trunk muscle 

dysfunction may be etiologic in the development of LBP. The association between pain 

and delayed TrA onset was further supported by the identification of a significant 

relationship, although of low to moderate strength, between self-reported pain and latency 

times during rapid limb movement (Marshall & Murphy, 2009). Despite these findings, 

concern has been raised as to whether timing differences of only a few tens of milliseconds 

could really be a primary cause of LBP (Hasan, 1997; Koumantakis, 2006).   

 

It has been suggested that multifidus, the deepest back muscle in the lumbar region, may 

show similar changes in activity (Hodges & Moseley, 2003) and LBP patients have 

demonstrated reduced EMG activity of the multifidus muscle during co-ordination and 

strength exercises compared to controls (Danneels et al., 2002). However, the evidence in 

this case appears less convincing; LBP patients unexpectedly demonstrated earlier 

activation of multifidus than controls during rapid shoulder abduction (Hodges & 
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Richardson, 1996) and experimental pain also led to earlier onset (Hodges et al., 2003). 

Reduced activity of multifidus is consistent with changes in its morphology (Hodges & 

Moseley, 2003). Atrophy of the multifidus muscle is a common finding in LBP patients 

(Hides, Gilmore, Stanton, & Bohlscheid, 2008; Hides, Stokes, Saide, Jull, & Cooper, 

1994), even being observed as soon as 24 hours after the onset of acute LBP (Hides et al., 

1994). Although premorbid atrophy has been suggested, the phenomenon of rapid, 

localised atrophy following injury was supported by the finding of significantly reduced 

cross-sectional area (CSA) three days after disc lesion in pigs (Hodges, Holm, Hansson, & 

Holm, 2006). The nature of the atrophy led the authors to suggest disuse following reflex 

inhibitory mechanisms as a cause. In addition to reduced CSA, patients with unilaterally 

distributed LBP also demonstrate asymmetry of the multifidus muscle, the painful side 

being smaller in each case (Hides et al., 2008). Atrophy of the multifidus is likely to affect 

the control and stability of the spine (Hides, Richardson, & Jull, 1996), possibly 

contributing to a predisposition to further injury and recurrence of LBP (Hides et al., 

1994). Although recovery does not appear to occur spontaneously on resolution of pain and 

disability, training of multifidus has been reported to restore symmetry and muscle size 

(Hides et al., 1996), and improve clinical outcome (Hides, Jull, & Richardson, 2001; 

O'Sullivan, Twomey, & Allison, 1997). 

 

A recent study (Silfies, Mehta, Smith, & Karduna, 2009) investigated alterations in trunk 

muscle timing patterns in two subgroups of CLBP patients (segmental instability and non-

instability), according to their diagnosis. Overall, the CLBP patients demonstrated 

significantly delayed feedforward activation of the trunk muscles compared to a healthy 

control group. However, within the CLBP patients, the instability group demonstrated 

significantly delayed onset of both erector spinae and lumbar multifidus compared to the 
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non-instability group, supporting the notion of meaningful subgroups within the CLBP 

population. 

 

In general, spinal pain appears to be associated with hypoactivity of the deep trunk 

muscles, typically accompanied by hyperactivity of the superficial muscles (Hodges & 

Moseley, 2003), although the mechanism by which pain affects motor control, or vice 

versa, is unclear. The delay of anticipatory muscle activation in LBP patients may be 

because specific anticipation imposes a risk of further disturbing equilibrium and patients 

may therefore prepare by instead co-contracting muscles (van Dieën et al., 2003b). 

Alternatively, the changes may reflect a central nervous system strategy to splint the trunk 

(Moseley, Nicholas, & Hodges, 2004a) via hyperactivity of the superficial muscles, 

possibly resulting in a reduced need for fine control and hence reduced activity of the deep 

trunk muscles (Hodges & Moseley, 2003). Although neither attention demanding nor 

stressful tasks were found to replicate the motor control changes observed following pain 

(Moseley et al., 2004a), Hodges and Moseley suggest that fear of pain may play an 

important role. Anticipation or threat of back pain has been shown to result in increased 

reaction times, delayed activation of the deep trunk muscles, and an increase in superficial 

muscle activity, consistent with the activation patterns exhibited by LBP patients 

(Moseley, Brhyn, Ilowiecki, Solstad, & Hodges, 2003; Moseley, Nicholas, & Hodges, 

2004b). The results of these studies suggest a link between psychosocial factors and 

physiological changes (Hodges & Moseley, 2003), a concept which is discussed further 

below. The strategy of reduced deep trunk muscle activity combined with increased 

superficial muscle activity and co-contraction may lead to greater spinal loading and 

reduced control, both of which are risk factors for further pain and injury (Hodges & 

Moseley, 2003). 
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Analysis of the feedback control system has also identified differences between LBP 

patients and controls. In response to sudden loading, patients with LBP demonstrate 

generally longer trunk muscle reaction times and, unlike the healthy controls, tend to keep 

their antagonistic muscles contracted as they activate the agonistic muscles (Radebold et 

al., 2000; Reeves, Cholewicki, & Milner, 2005). LBP patients also tend to demonstrate 

loss of position sense, repositioning error, poorer balance and postural control (Brumagne, 

Janssens, Knapen, Claeys, & Suuden-Johanson, 2008; Luoto et al., 1998; Taimela, 

Kankaanpää, & Luoto, 1999; O'Sullivan et al., 2003), with proprioceptive deficiency 

thought to be a common underlying cause (Leinonen et al., 2003). Such proprioception 

deficits may be the result of soft tissue injuries that have damaged receptors in ligaments, 

intervertebral discs, facet joints and muscles. A loss of proprioception may result in an 

altered muscle recruitment pattern and an increase in trunk muscle co-activation to 

compensate for the loss of stability (Radebold et al., 2000). Panjabi (2006) has recently 

formalised this concept in a new hypothesis in which he suggests that subfailure injuries of 

ligaments (spinal ligaments, disc annulus and facet capsules) may disrupt and/or injure the 

embedded mechanoreceptors, resulting in corrupted transducer signals. These may then 

lead to a corrupted muscle response pattern, including co-activation of agonist and 

antagonist muscles to stabilise the spine. However, this altered muscle response pattern 

may result in abnormal stresses and strains in the ligaments, mechanoreceptors and 

muscles and excessive loading of the facet joints, leading to a vicious circle and the 

development of chronic back pain. 

 

2.4.11. Muscle fatigue and fibre type 

It has been suggested that LBP patients demonstrate lower levels of both strength and 

endurance than asymptomatic individuals, although the evidence to date has been 

conflicting and inconclusive. Common measurement techniques tend to rely on high 
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participant motivation and it has been argued that patients with LBP may simply be 

unwilling/unable to sustain a contraction for as long as healthy controls due to 

psychological factors such as (fear of) pain/(re)injury. Therefore a number of studies have 

instead focussed on the EMG power spectrum, since it is widely accepted that there is a 

shift towards lower frequencies as a muscle fatigues and median frequency decline has 

been found to correlate well with endurance time and subjective measures of fatigue for 

healthy participants (Dedering, Németh, & Harms-Ringdahl, 1999). Spectral parameters 

measured during fatiguing contractions from the paraspinal muscles have also been shown 

to discriminate LBP patients with a high degree of accuracy (Peach & McGill, 1998; Roy, 

De Luca, & Casavant, 1989). However, while earlier studies have tended to report that 

LBP patients show a greater decline in median frequency during isometric contractions, 

suggesting greater fatigue (Roy et al., 1989; Tsuboi, Satou, Egawa, Izumi, & Miyazaki, 

1994), later studies have tended to show either little difference or the converse (Elfving, 

Dedering, & Németh, 2003; Kramer et al., 2005; Larivière, Arsenault, Gravel, Gagnon, & 

Loisel, 2003). Some of the discrepancies may be explained by the different approaches 

taken. In particular, while some have used a consistent load between groups, many have 

used a load proportional to MVC, with some authors subsequently suggesting that their 

results may have been affected by the underestimation of the MVC in the LBP patients 

(Larivière et al., 2003). The severity and duration of pain in the LBP group has also varied 

greatly between studies and potential confounding factors (e.g. gender, age and body fat) 

were often not controlled for. In addition, the presence of pain may lead to an inhibition of 

certain muscles (Elfving et al., 2003), resulting in altered recruitment patterns, which may 

help to explain some of the unexpected findings. For example, Mannion et al. (Käser et al., 

2001; Mannion et al., 2001b) counter-intuitively found that therapy led to a greater decline 

in median frequency (implying greater fatigue) despite increased strength and endurance of 

LBP patients. The authors suggested that their findings may be due to greater muscle 
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activation and co-ordination and different recruitment patterns following treatment, 

perhaps as the result of less guarded movement.  

 

van Dieën et al. (2003b) suggest that alterations in muscle recruitment and reduced ability 

to activate back muscles as a consequence of LBP may lead to changes in muscle fibres 

and hence greater fatigability. This might then create a vicious circle. Mannion, Dumas, 

Stevenson and Cooper (1998) considered the link between fatigability and muscle fibres 

and reported a highly significant relationship between the relative area of Type I (slow 

twitch) muscle area and median frequency decline, with a lower percentage of Type I fibre 

area being associated with greater fatigue, suggesting that fibre type distribution may 

predispose some individuals to LBP. In an earlier study (Mannion, Weber, Dvorak, Grob, 

& Müntener, 1997), it was determined that LBP patients had a lower relative area of Type I 

fibres than controls, suggesting greater fatigability. Patients, particularly those who had 

only experienced symptoms for a short period of time, also had more Type IIC 

‘intermediate’ fibres reflecting ongoing fibre type transformation. The results suggested 

that the process is one of general disuse and that fibre type transformation rather then 

changes in fibre size are predominant changes in muscles of LBP patients.  

 

2.4.12. Muscle activity and stature change  

Back muscle activity exerts a high compressive force on the spine due to the longitudinal 

direction of the muscle action, which then raises the intradiscal pressure (Bogduk, 2005; 

Middleditch & Oliver, 2005). Adams et al. (2002) suggested that the high antagonistic 

muscle forces typical of people with back pain may subject the spine to high chronic 

loading, leading to accelerated loss of disc height and therefore high stress concentrations 

within the disc. Earlier studies support the concept that compressive loading resulting from 

muscle co-activity can affect intervertebral disc height. Spinal shrinkage observed during 
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deep water running was attributed to compressive forces resulting from the activity in the 

trunk muscles required to maintain an upright posture in the water (Dowzer, Reilly, & 

Cable, 1998) and a study to investigate the spinal shrinkage induced by torsion, lateral 

bending or flexion found that torsion, which involves the greatest muscular co-activity, 

also resulted in the greatest stature change (Au, Cook, & McGill, 2001). 

 

In fact, analysis of stature change between LBP patients and healthy controls has indicated 

no significant difference in the magnitude of disc height loss following loading (Garbutt, 

Boocock, Reilly & Troup, 1990, Healey et al., 2005a). Interestingly though, participants 

with LBP consistently appear unable to recover stature to the same extent as healthy 

controls (Fowler, Rodacki, & Rodacki, 2005; Healey et al., 2005a; Rodacki, Fowler, 

Rodacki, & Birch, 2003). Healey et al. (2005a) observed that individuals with CLBP 

exhibited elevated muscle activity compared to asymptomatic controls and that paraspinal 

muscle activity correlated negatively with stature recovery. Significant negative 

correlations between stature recovery and levels of both perceived pain and disability 

suggest that the delayed recovery of height may be clinically important. Since disc 

degeneration is associated with greater disc height loss following mechanical loading 

(Adams & Hutton, 1983), the similar loading response in both the patient and 

asymptomatic groups implies an alternative cause of the recovery rate difference. The 

authors suggested that, instead, the prolonged and higher levels of paraspinal muscle 

activity in CLBP patients may result in greater compressive loads on the spine, which 

reduce the rate at which the intervertebral discs recover their initial height and 

consequently prolong stature recovery. This argument was supported by the findings of a 

subsequent study (Healey et al., 2008) in which paraspinal muscle activity of 

asymptomatic participants was increased using functional electrical stimulation to a level 

intended to mimic that seen in patients with CLBP and there was an associated reduction in 
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stature recovery, similar to that observed in CLBP patients. In addition, Hupli et al. (1997) 

found that an active back rehabilitation programme significantly increased the morning 

height of CLBP patients compared to those who received no treatment, with a reduction in 

muscle contraction suggested as a possible explanation for the greater height recovery. 

Again, the gain of height was significantly correlated with reduction of pain and decrease 

in disability. Importantly, however, the height gain did not correlate with the state of disc 

degeneration and neither did the MRI scans of the discs show any differences after 

treatment, supporting the view that the reduced stature recovery observed in CLBP patients 

is not simply the result of disc degeneration. 

 

As discussed, reduced stature recovery may increase the risk of future back pain by 

increasing the size of the neutral zone and compromising spinal stability (Zhao et al., 

2005). It may also cause a decrease in the discs’ shock absorbing properties, increased 

loading on spinal structures such as the facet joints and concentrations of compressive 

stress (Adams et al., 2002). Therefore delayed stature recovery, itself a potential 

consequence of increased paraspinal muscle activity, may contribute to a vicious cycle via 

an increase in pain and a greater risk of further injury. 
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2.5. Psychological factors 

2.5.1. Role of psychological factors in low back pain 

LBP is not solely a physical problem. The importance and interdependence of 

physiological, psychological and social factors in the development and maintenance of the 

disorder are now accepted widely and formalised in the biopsychosocial model of LBP 

(Waddell, 2004).  

 

A number of studies have considered whether psychological characteristics may be risk 

factors for both first time and subsequent episodes of LBP (e.g. Adams et al., 1999; Linton, 

2000; Linton, 2005). Psychological distress (in terms of increased somatisation, depressive 

and anxiety symptoms) has been shown to be a significant predictor of first time pain 

(Adams et al., 1999; Mannion et al., 1996). However, in general, the role of psychological 

factors in first time onset appears limited, with Mannion et al. (1996) observing that scores 

on psychological questionnaires (measuring somatic anxiety, depression and beliefs about 

health) predicted less than 3% of first-time LBP. The argument regarding the recurrence of 

LBP is more convincing. In several population based studies, catastrophising (exaggerated 

negative rumination or worry), kinesiophobia (excessive fear of movement) (Picavet et al., 

2002), depression (Carroll, Cassidy, & Côté, 2004) and psychological distress (Linton, 

2005) were found to significantly increase the risk of future episodes of back pain. 

However, it is feasible that factors such as distress may also make individuals more likely 

to report symptoms (Waddell, 2004) and/or lead to a heightened sensitivity to back 

discomfort (Mannion et al., 1996). Mannion et al. (1996) concluded that psychological 

variables are more important in explaining how people respond to back pain than in 

explaining the onset of pain and this is supported by recent research findings. Numerous 

studies have identified psychological factors as significant in the transition from acute to 

chronic pain and the perpetuation of pain and disability (e.g. Buer & Linton, 2002; Pincus, 
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Burton, Vogel, & Field, 2002; Woby et al., 2007b). In particular, self efficacy (Denison, 

Åsenlöf, & Lindberg, 2004; Woby et al., 2007b;), catastrophising (Sullivan, Stanish, 

Waite, Sullivan, & Tripp, 1998; Picavet et al., 2002), kinesiophobia, fear-avoidance beliefs 

(Crombez et al., 1999, Vlaeyen et al., 1999, Picavet et al., 2002), depression, anxiety, 

distress and stress (Linton, 2000; Keogh, McCracken, & Eccleston, 2006) have all been 

shown to play a significant role in the development and/or perpetuation of LBP.  

 

Psychological factors are also relevant in the treatment of LBP, and there is a complex 

interaction between such factors and clinical outcome (Woby, Watson, Roach, & Urmston, 

2004). Firstly, not all patients benefit from treatment to the same extent and psychological 

variables can be viewed as predictors of treatment outcome. For example, patients who 

demonstrate high emotional distress, catastrophising and other forms of negative thinking 

in response to pain tend to derive less benefit from treatments than other patients 

(McCracken & Turk, 2002).  More importantly, however, cognitive processes have been 

demonstrated to influence treatment outcome strongly (Woby et al., 2004). In particular, 

pre- to post-treatment modifications in pain-related anxiety (McCracken, Gross & 

Eccleston, 2002), fear (avoidance) (Vlaeyen, de Jong, Geilen, Heuts, & van Breukelen, 

2002; Woby, Roach, Urmston, & Watson, 2008), psychological distress (Grotle, Vøllestad, 

& Brox, 2006; Mannion, Junge, Taimela, Müntener, & Dvorak, 2001a), catastrophising 

and self-efficacy (Foster et al., 2010; Woby et al., 2008) have all been identified as 

significant predictors of clinical outcome, thus supporting the role of such factors in the 

perpetuation of the condition.  

 

Numerous models have been suggested that aim to explain the process by which 

psychological factors affect the development of and recovery from LBP. One of the most 

influential has been the fear-avoidance model, which is described on page 49. Fear-
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avoidance refers to the “avoidance of movement or activities based on fear” (Vlaeyen & 

Linton, 2000, p.317). 

 

2.5.2. Fear-avoidance model 

The fear-avoidance model (proposed by Lethem, Slade, Troup, & Bentley (1983) and 

developed by Vlaeyen, Kole-Snijders, Boeren, & van Eek (1995)) is a widely influential 

cognitive-behavioural model that, for a subgroup of patients, aims to explain the transition 

from acute to CLBP. The model suggests two behavioural responses to acute pain. If the 

patient engages in catastrophic thinking, the consequence may be pain-related fear, 

avoidance behaviour and hypervigilance. These responses may be adaptive in the acute 

pain stage but, if they persist in the long term, may become dysfunctional and lead to a 

vicious cycle of disuse, depression and increased disability (Leeuw et al., 2007a). 

Alternatively, if acute pain is viewed as non-threatening, recovery may occur following the 

adaptive response of confrontation and continued engagement in daily activities. In 

essence, the model proposes that fear of movement/(re)injury mediates the relationship 

between catastrophising and functional disability (Leeuw et al., 2007b).  

 

Numerous studies have supported the proposal that catastrophising and pain-related fear 

are significantly related to pain and disability (e.g. Grotle, Foster, Dunn, & Croft, 2010; 

Picavet et al., 2002; Thomas & France, 2008; Woby et al., 2004), and changes in 

catastrophising have been shown to mediate the reduction of disability and pain intensity 

(Smeets, Vlaeyen, Kester, & Knottnerus, 2006). Furthermore, prospective studies have 

found pain catastrophising to be predictive of pain-related fear (Leeuw et al., 2007b) and 

fear of movement/(re)injury to be a powerful predictor of future perceived disability and, 

to a lesser extent, of participation in daily activities (Swinkels-Meewisse et al., 2006b). 

Although prospective studies fully confirming the sequential relationships proposed by the 



 

 50 

fear-avoidance model are lacking, a recent cross-sectional study involving sub-acute 

whiplash patients did show that fear of movement mediated the relationship between 

catastrophising and disability (Nieto, Miró, & Huguet, 2009).    

 

Further support for the model is provided by the fact that pain-related fear and 

catastrophising are associated with hypervigilance to symptoms, greater attentional 

demand of pain and difficulty in disengaging from pain (Goubert, Crombez, Eccleston, & 

Devulder, 2004; Van Damme, Crombez, & Eccleston, 2004; Vlaeyen & Linton, 2000), 

which may be reflected in increased report of pain. LBP patients also demonstrate 

increased sensitivity to pressure-induced pain over the painful muscles, with highly 

significant correlations identified between pressure pain threshold scores and fear 

avoidance beliefs (Watson, 2002). This suggests that the increased responsiveness is 

distinct from central sensitisation, which is thought to be present in some cases of CLBP, 

and may result in generalised hypersensitivity to pain and increased sensitivity to a variety 

of stimuli including mechanical pressure (Nijs, Van Houdenhove, & Oostendorp, 2010). 

 

One aspect of disuse is considered to be disturbed trunk muscle activity during movement 

(Leeuw et al., 2007a). Pain-related fear has been associated with limited movement during 

lumbar flexion (Geisser, Haig, Wallbom, & Wiggert, 2004; Thomas & France, 2008), 

alternative movement strategies during reaching tasks (Thomas & France, 2007) and 

reduced activation of certain trunk muscles during maximal isometric exertions (Thomas, 

France, Sha, & Vander Wiele, 2008). It is also proposed that avoidance behaviour may 

lead to decreased physical activity and hence physical deconditioning, which may be 

measured as either a reduced level of aerobic fitness or a decrease in muscle strength 

(Leeuw et al., 2007a). Studies investigating the muscle strength of LBP patients have 

indeed shown correlations between fear of movement and reduced performance in lifting 
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tasks, isokinetic extension and flexion tasks and isometric strength tests (Al-Obaidi et al., 

2000; Crombez et al., 1999; Swinkels-Meewisse, Roelofs, Oostendorp, Verbeek, & 

Vlaeyen, 2006a; Vlaeyen et al., 1995), although Huijnen, Verbunt, Peters and Seelen 

(2010) only found fear of movement to be predictive of performance in patients who also 

persistently over-predicted activity-related pain. A consistent problem with studies 

involving maximal strength testing is determining whether fearful patients are simply 

displaying sub-maximal physical performance during the task due to fear of pain (Al-

Obaidi et al., 2000; Crombez et al., 1999; Vlaeyen et al., 1995). For example, Verbunt et 

al. (2005a) measured muscle strength of the quadriceps muscle on a dynamometer. During 

peak torque, electrical stimulation was applied to the muscle, which generated additional 

twitch torque in the case of sub-maximal performance.  A higher additional twitch torque 

therefore represented a lower performance level. Using this approach, it was observed that 

CLBP patients had a significantly lower performance level than healthy controls. In 

particular, CLBP patients who reported increased psychological distress and a higher 

current level of pain tended to show increased inhibition of muscle activity, leading to sub-

optimal performance. However, no association was found with either catastrophising or 

fear of injury in this case, suggesting that levels of distress and pain actually have a greater 

influence on underperformance.  

 

It has been found that fear avoidance beliefs more than double the risk of lower levels of 

activity (Buer & Linton, 2002) and that increases in physical activity appear to accompany 

decreases in pain-related fear (Vlaeyen et al., 2002). However, research which aimed to 

demonstrate that LBP patients have lower aerobic fitness than matched healthy 

counterparts has produced largely inconclusive results. While Schmidt (1985) did find 

lower treadmill endurance of CLBP patients compared to controls, the patients actually 

showed lower levels of physiological demand and appeared to stop because of over-
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estimate of exertion rather than increased pain. When CLBP patients and controls were 

matched for level of sport activity as well as age and sex, CLBP patients were found to 

have significantly lower aerobic fitness than their matched controls (Smeets, van Geel, & 

Verbunt, 2009). This lower level of aerobic fitness was significantly associated with lower 

levels of leisure and work activity but, in line with another cross-sectional study (Verbunt, 

Seelen, Vlaeyen, van der Heijden, & Knottnerus, 2003b), was not associated with pain-

related fear or catastrophising. In a study involving over 100 LBP patients, Verbunt et al. 

(2005b) found that activity decline was correlated with disability, fear of 

movement/(re)injury, catastrophising and pain intensity. Consistent with the fear-

avoidance model, activity decline also appeared to play a mediating role between fear of 

movement/(re)injury and disability. However, this study was limited by being cross-

sectional in design and therefore relied on self-report of past physical activity levels, 

possibly suggesting that it is perceived rather than actual loss of physical activity levels 

that is disabling (Verbunt et al., 2005b). Two more recent longitudinal studies have, in 

fact, not supported the link between pain-related fear and physical activity levels 

(Bousema, Verbunt, Seelen, Vlaeyen, & Knottnerus, 2007; Leonhardt et al., 2009). In a 

study involving over 100 patients with sub-acute LBP, only a subgroup of patients showed 

a decrease in physical activity levels (PALs) (measured using an accelerometer over a 

seven-day period) over the following year and neither fear of movement nor 

catastrophising were found to be significant predictors (Bousema et al., 2007). 

Furthermore, no signs of physical deconditioning were found in the patients (although this 

was only assessed via changes in strength and lean body mass and weight, rather than 

changes in aerobic fitness). These findings were supported by a more recent questionnaire 

based, longitudinal study (Leonhardt et al., 2009) which followed 787 acute and chronic 

LBP patients over a year. Physical activity levels were found to increase rather than 

decrease over the year and initial fear avoidance beliefs did not significantly predict 
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physical activity levels at the end of the year. The authors suggested that patients with high 

fear avoidance beliefs were only avoiding specific activities which they believed to be 

dangerous rather than reducing their general level of activity. This is supported by the 

observation that performance in tasks chosen to resemble typical daily activities (such as 

walking, climbing stairs and reaching) was not related to fear of movement in a study 

involving over 200 CLBP patients (Smeets, Van Geel, Kester, & Knottnerus, 2007). 

 

Research findings may have been affected by patients who cope with pain using endurance 

strategies, as described in the avoidance-endurance model (Hasenbring, Hallner, & Klasen, 

2001; Bousema et al., 2007). It has been suggested that, in addition to the adaptive coping 

and avoidance behaviours described by the fear-avoidance model, there may also be 

patients who tend to suppress or ignore pain (Hasenbring et al., 2001). Extreme 

suppressive behaviour may lead to patients overloading their muscles, leading to muscular 

hyperactivity and pain. These patients may be expected to have a cyclic pattern of over and 

underactivity, as the pain caused by overloaded muscles, bones and discs leads to periods 

of rest in order to recover. In the long run, both strategies would be expected to result in a 

decline in PALs and physical deconditioning (Verbunt et al., 2003a), but it has been 

suggested that fluctuations in activity levels may actually have a greater association with 

disability than mean activity level over time (Huijnen, Verbunt, Roelofs, Goossens, & 

Peters, 2009). 

 

There are undoubtedly some results which appear inconsistent with the relationships 

proposed in the fear avoidance model. For example, Sieben et al. (2005) found that pain-

related fear is not independently predictive of future disability. In a recent prospective 

study including over 400 participants with back pain, Gheldof et al. (2010) also found that 

pain-related fear at baseline did not directly affect pain-severity at 18-month follow-up and 
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the direct effect on disability was significant but of small effect size. Furthermore, the 

model in which pain-related fear is a consequence of pain severity was, unexpectedly, 

found to be a better fit than the model in which pain-related fear is an antecedent of pain 

severity, as would be predicted by the fear avoidance model, although the relatively low 

level of disability of the participants in this study may have affected these results. Other 

researchers have reported that distress (Grotle et al., 2006), depression (Boersma & Linton, 

2005) and self-efficacy (Denison et al., 2004; Woby et al., 2007b) are stronger predictors 

of disability then fear avoidance. In two review articles, Pincus et al. (Pincus et al., 2002; 

Pincus, Vogel, Burton, Santos, & Field, 2006) concluded that there was little evidence for 

the role of fear avoidance as a risk factor for poor outcome and suggested other pathways, 

such as social factors and depression, to reduced activity and hence poor outcome. One 

explanation suggested for their findings is that fear plays an important role only in later 

stages of pain. In support of this, Boersma and Linton (2005) found that the relationship 

between function and fear of movement was moderated by the stage of chronicity and that 

fear of movement did not emerge as a significant predictor for function until after one year 

of pain duration, although this may also be interpreted as inconsistent with the fear-

avoidance model.  

 

A recent study (Wideman, Adams, & Sullivan, 2009) investigated the sequential 

relationships proposed by the fear avoidance model in over 100 patients with 

musculoskeletal injuries during a ten-week disability management intervention and at a 

four-week follow-up. Although changes in catastrophising and fear of movement were 

shown to predict return to work at follow-up, the authors found that early changes (up to 

the mid-point of the intervention) in catastrophising were not correlated with late changes 

(after the mid-point of the intervention) in fear of movement and pain. They therefore 

concluded that their findings did not support the sequential components of the fear-
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avoidance model, although acknowledged that changes in fear of movement may have 

followed changes in catastrophising too closely for this to be detected via the five-week 

testing sessions. Furthermore, this study was in fact investigating the relationships 

involved in the treatment and recovery of CLBP rather than its development, which may 

not necessarily follow the same pattern. In a response to Wideman et al.’s study, Vlaeyen, 

Crombez and Linton (2009, p.222) state that the fear-avoidance model was intended as a 

“theory-based heuristic”, rather than a “final model to be unconditionally embraced or 

falsified”. Despite conflicting findings, the model remains popular and still constitutes a 

useful model of chronic pain for at least a proportion of patients (McCracken & Samuel, 

2007). 

 

2.5.3. Self-efficacy 

Functional self-efficacy refers to the confidence that an individual has in his or her own 

ability to accomplish certain functional tasks, such as household and social activities 

(Woby et al., 2007b). Self-efficacy was not included in the original fear-avoidance model, 

and this variable has also been excluded from many of the studies that reported a strong 

association between pain-related fear and disability (Woby, Roach, Urmston, & Watson, 

2007a). Woby et al. (2007b) found that functional self-efficacy mediated the relationship 

between pain-related fear and both pain and disability. The authors therefore suggested a 

modification to the fear-avoidance model, such that high self-efficacy may enable even 

patients with high pain-related fear to become ‘confronters’ and maintain physical activity 

levels. A number of studies have highlighted the importance of self-efficacy (e.g. Denison 

et al., 2004), observing that it significantly predicts physical performance (Lackner & 

Carosella, 1999) and mediates the relationship between pain intensity and both pain related 

disability and depression (Arnstein, Caudill, Mandle, Norris & Beasley, 1999; Costa, 

Maher, McAuley, Hancock & Smeets, in press; Woby et al., 2007b). Costa et al. (in press) 
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found that both self-efficacy and fear of movement were partial mediators in the 

relationship between pain and disability, but in a longitudinal analysis, only improvements 

in self-efficacy beliefs partially mediated the relationship between changes in pain and 

disability over a 12-month period, thereby supporting the potential importance of 

interventions that are able to improve self-efficacy. They also note the common limitation 

of these studies, however; that there may be overlap in self-report of disability and self-

efficacy as patients may find it difficult to distinguish between the constructs. 

  

Lackner and Carosella (1999) found self-efficacy to be a better predictor of performance in 

a lifting task than either perceptions of pain control or psychological distress. In a recent 

study involving over 800 patients with LBP in primary care and assessing 20 psychological 

factors, pain self-efficacy was one of four factors found to be most predictive of outcome 

at six months (the others being: patients’ perceptions that the problem will last well into 

the future, that many symptoms are related to their back problem and weak beliefs about 

personal controllability) (Foster et al., 2010). Interestingly, neither catastrophising nor 

fear-avoidance were found to be significant independent predictors of outcome, the authors 

suggesting that this may be because some factors are important earlier in the LBP episode. 

Despite these positive findings regarding the importance of self-efficacy, Mannion et al. 

(2001a) reported that self-efficacy beliefs correlated significantly with disability in women 

only and overall, their influence on disability was less than that of other psychological 

factors and pain. However, the participants in this study were recruited via advertisements 

in the local media and hence may not have been representative of the typical patient 

population. In particular, participants who volunteer for such a study are probably less 

likely to report low self-efficacy than patients recruited from clinical practice. 
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2.5.4. Depression 

Depression is characterised by a pervasive low mood, loss of interest in usual activities and 

diminished ability to experience pleasure (Woo, 2010). It is well known that depression 

and chronic pain often co-exist and that physiologically similar responses can exist 

between the two (Woo, 2010); however, the mechanism to explain why so many chronic 

pain patients experience depression and even the direction of the cause-effect relationship 

remains unclear. Psychological distress (in terms of increased somatisation, depressive and 

anxiety symptoms) and depression have been shown to significantly increase the risk of 

first and future episodes of back pain (Mannion et al., 1996; Adams et al., 1999; Carroll et 

al., 2004; Linton, 2005). Furthermore, the presence of depression is associated with a 

worse prognosis (Bair, Robinson, Katon, & Kroenke, 2003). In particular, depression was 

found to be a significant predictor of poor outcome both seven weeks and one year after an 

initial visit to a primary care clinic for an episode of low back pain (Cherkin, Deyo, Street, 

& Barlow, 1996). However, there has been growing acceptance of the notion that pain 

generally precedes depression, rather than vice versa (Arnstein et al., 1999), although it has 

been suggested that depression is not a direct consequence of pain. Instead, pain intensity 

may be related to depressive symptoms via the mediating role of interference with 

activities (Woby et al., 2008). This is supported by the finding that changes in disability, 

rather than pain intensity, are strongly linked to changes in depression (Woby et al., 2008).  

 

Boersma and Linton (2005) separated nearly 200 chronic pain patients into three groups 

depending on the duration of their pain (< 1 year, 1-3 years and > 3 years) and found 

depression and function to be strongly correlated at all three stages (Boersma & Linton, 

2005). Following suggestions that depression may lead to self-report bias of function, 

Alschuler, Theisen-Goodvich, Haig and Geisser (2008) assessed disability via physical 

performance on a lifting task and found a relationship of similar magnitude as when using 
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a self-report measure, suggesting that self-report bias was not an issue. However, 

physiologic effort (as assessed via maximum heart rate) partially mediated the relationship 

between depression and physical performance, supporting the idea that function is at least 

partly influenced by reduced physiologic effort.  

 

The fear avoidance model predicts that depression may follow catastrophising and pain-

related fear (Leeuw et al., 2007a). Consistent with this, reductions in catastrophising 

following treatment were reported to mediate reductions in depression (Spinhoven et al., 

2004). It has also been suggested that depression may play a greater role than previously 

thought in the early stages of back pain (Pincus et al., 2006). Following a review of the 

fear avoidance model, Pincus et al., (2006) suggested further investigation into the 

individual contribution of the components of depression (cognitions, negative mood and 

somatic symptoms) and their interaction with fear and anxiety in the development of disuse 

and avoidance behaviours. This proposal is supported by the recent observation that CLBP 

patients classified as ‘distressed’ spent one hour and thirty minutes less time upright (as 

measured with an accelerometer) over an average day than a ‘non-distressed’ group, with 

depressive symptoms emerging as the only psychosocial variable measured which was a 

significant independent predictor of time spent upright (Ryan, Gray, Newton, & Granat, 

2010). In particular, contrary to the theory of the fear-avoidance model, fear of movement 

was not found to be a significant predictor of physical activity levels. The cross-sectional 

nature of the study meant that causal relationships could not be explored and, therefore, it 

may also be possible that lack of physical activity contributes to any increased depressive 

symptoms.  
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2.5.5. Anxiety 

Anxiety and depression often co-occur in clinical populations, possibly representing 

characteristics of a broader negative affect dimension, or reflecting a common origin 

(Rutledge et al., 2009). Anxiety is a psychophysiological state characterised by cognitive, 

somatic, emotional and behavioural components producing fear and worry (Woo, 2010). 

Anxiety disorders are common in chronic pain populations and, in fact, depression is the 

only more frequent psychological co-morbidity (Woo, 2010). Many markers of anxiety 

exist. For chronic pain populations, more specific markers of anxiety related to pain are 

often used, such as the Pain Anxiety Symptoms Scale (PASS), which acts as a marker of 

behavioural responses to pain.     

 

In the literature, the term pain-related fear is often used as a general term to cover several 

aspects of pain-related fear and anxiety, including fear of movement and (re)injury. 

However, evidence supports the independence of pain-related fear (fear of current pain) 

and pain-related anxiety (fear of the possibility of pain), in particular, as related but distinct 

constructs (Carleton & Asmundson, 2009). In a study comparing a number of 

questionnaires assessing pain-related fear and anxiety, Crombez et al. (1999) also 

concluded that they appeared to measure unique constructs. The subscales of the 

questionnaires assessing fear-avoidance beliefs (Fear-Avoidance Beliefs Questionnaire) 

and fear of movement/(re)injury (Tampa Scale for Kinesiophobia) were superior in 

predicting disability and poor behavioural performance, whereas the questionnaire 

designed to assess pain-related anxiety (Pain Anxiety Symptoms Scale) appeared more 

strongly correlated with catastrophising and negative affect.   

 

Asmundson, Norton, and Vlaeyen (2004) presented an updated fear-anxiety-avoidance 

model which differentiates between fear and anxiety. They argue that anxiety typically has 
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a greater cognitive component and a more suppressed physiological component than fear 

and that different behavioural responses also exist. Fear occurs in response to a perceived 

immediate threat, and can lead to escape and defensive behaviours. In contrast, anxiety 

occurs in response to anticipated threats that are often more uncertain in nature and it is 

this pain-related anxiety which can lead to avoidance and preventative behaviours. In light 

of this, Asmundson et al. (2004) added an anxiety pathway in addition to the existing fear 

pathway but suggested that both may trigger each other in a mutually reinforcing fashion.  

 

Eysenck (1997) proposed a cognitive theory of anxiety. Central to the theory is the 

suggestion that the emotional experience of anxiety depends on an individual’s attentional 

and interpretive processing of four factors: (1) the situation; (2) their own physiological 

activity; (3) negative cognitions about possible future events (worries); and (4) their own 

behaviour. Evidence suggests that high-anxious individuals demonstrate an attentional bias 

to attend to threat related rather than neutral stimuli and an interpretive bias to interpret 

ambiguous stimuli in a threatening rather than a neutral fashion (Eysenck, 2000). In 

general, low-anxious individuals are not thought to exhibit cognitive biases (Eysenck, 

2000). 

 

2.5.6. Coping styles 

Research into coping has conceptualised it in a variety of ways, including viewing coping 

both as a trait like disposition and a dynamic process (transactional approach). Within the 

transactional approach, two major functions of coping were identified: to manage or alter 

the problem causing the distress, and to regulate emotional response to the problem 

(Lazarus & Folkman, 1984). Coping strategies were subsequently grouped into three main 

categories: problem focused, emotion focused and avoidance, which may involve 

behavioural (e.g. physically removing oneself from the situation) and/or cognitive 
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avoidance (e.g. mentally blocking out stressors) (Endler & Parker, 1990; Lazarus & 

Folkman, 1984). In general, problem focused coping is believed to be the most efficacious 

strategy, associated with more positive outcomes, whereas avoidance is often considered a 

maladaptive coping strategy (Richards & Steele, 2007).  

 

The term ‘coping style’ refers to a more trait like disposition that influences the coping 

strategies that an individual might use and their response to a stressor (Prasertsri et al., in 

press). One approach to classifying coping styles is on the basis of scores obtained on 

measures of defensiveness such as the Marlowe-Crowne Social Desirability Scale (MC-

SD) (Crowne & Marlowe, 1960). The MC-SD was originally developed to measure the 

extent to which an individual will respond in a culturally acceptable manner in order to 

gain social approval (and hence has been used to adjust for the influence of response bias 

for example), but has also been widely adopted as a measure of psychological 

defensiveness (with a high score reflecting greater defensiveness). A high MC-SD score is 

thought to reflect a tendency to over-report socially desirable and under-report socially 

undesirable personal information, although it is possible that people who score highly on 

the MC-SD may actually behave in an altruistic manner (Johnson & Fendrich, 2002). 

Women typically score higher than men on social desirability, with less educated and older 

respondents also reportedly scoring higher (Burris, Johnson, & O’Rouke, 2003). 

Defensiveness is generally assumed to be a relatively stable personality trait, although it 

has also been suggested that it includes both self-deception and impression management, 

with the latter being situational (Burris et al., 2003).  

 

Weinberger, Schwartz and Davidson (1979) classified individuals based on self-report 

scores of trait anxiety and defensiveness. Four groups of individuals were identified: high-

anxious, low-anxious, defensive high-anxious (DHA) and repressors, who score low on 
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anxiety measures, but high on defensiveness. According to the four-factor theory (Eysenck, 

1997), repressors exhibit opposite attentional and interpretive biases to high-anxious 

individuals, leading them to avoid attending to threat related stimuli, and interpreting 

ambiguous stimuli as non-threatening. Experimental evidence that has attempted to detect 

these predicted biases has generally been most successful in cases where the situation or 

stimuli was personally relevant to the individual (Eysenck, 2000). Despite the belief that a 

repressive coping style is associated with avoidant strategies, repressors themselves tend to 

report more adaptive or problem focused strategies, perhaps distorting the true situation in 

order to present a view of more socially desirable methods of coping (Richards & Steele, 

2007). This is in contrast to high anxious individuals who often score high on avoidance 

and low on problem focused coping, and DHA individuals who report a variety of coping 

strategies (Richards & Steele, 2007).  

 

Although reporting low anxiety, repressors tend to exhibit elevated behavioural and 

psychophysiological responses, similar to high-anxious individuals, in stressful situations 

(Eysenck, 2000). In order to explain this apparent discrepancy, Derakshan, Eysenck and 

Myers (2007) proposed the vigilance-avoidance theory, which suggests that, in response to 

self-relevant threats, repressors have an initial rapid vigilant response triggering 

behavioural and physiological responses. This is then followed by an avoidance stage 

involving avoidant cognitive biases that produces low levels of experienced anxiety 

(Derakshan et al., 2007). There is evidence that, in line with the theory, repressors do show 

elevated responses in cardiovascular, electrodermal and muscular systems (Burns, 2000a). 

It has additionally been suggested that in patient groups, repressors may exacerbate chronic 

pain via physiological reactivity e.g. stress-induced muscle activity, but to date this 

remains largely speculative (Burns, 2000a). This discrepancy between physiological 

activity and self-report measures of distress and anxiety may lead to relationships between 
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psychological and physiological variables being overlooked if repressors are not accounted 

for in research and rehabilitation/therapy. Although reporting low distress, repressors 

appear willing to report high levels of pain, suggesting that they may be suppressing 

negative emotions associated with the pain rather than all pain-related thoughts (Elfant, 

Burns, & Zeichner, 2008). 

 

Repressors are relatively common, accounting for between 10 and 20% of non-clinical 

populations and up to 50% in various clinical and elderly groups (Myers, 2010). Certain 

chronic illness populations, such as those with heart disease, cancer and asthma, appear to 

have an increased prevalence of repressive coping (Myers, 2010; Phipps & Steele, 2002), 

which questions whether this coping style may be a risk factor for chronic conditions, or 

whether a shift towards increased defensiveness and more repressive styles of adaptation is 

a response to the threat of serious illness (Phipps & Steele, 2002). The results of a study of 

646 women referred to mammographic examination for breast cancer (Zachariae et al., 

2004) suggest the latter. Four weeks after diagnosis, increased repression was found in the 

group of 71 women diagnosed with breast cancer, but not in those without cancer. The 

change was primarily found to be due to an increase in defensiveness (Zachariae et al., 

2004).  

 

Within chronic illness populations, repressive coping appears to be associated with poor 

prognosis and a higher rate of mortality (Myers, 2010). In particular, repressors do not 

appear to respond well when given ‘high-risk’ news about their medical condition (Myers, 

2010), which perhaps follows from their general tendency to avoid negative personal 

information. Repressors are also better at undertaking self-care health behaviours, 

compared to those which they perceive as being outside their control (Myers, 2010), and 

may be reluctant to seek social support or engage effectively in psychotherapy (Phipps & 
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Steele, 2002). Indeed, among chronic pain patients, a repressive coping style is associated 

with poorer long-term adjustment and a poor response to a multidisciplinary rehabilitation 

programme (Burns, 2000b, Elfant et al., 2008). Repressors also tend to be overly 

optimistic, both in terms of interpretation bias (Eysenck, 2000), and in predicting their 

future performance (Jones, Smith, & Holmes, 2004). This may have an impact on pacing, 

potentially leading to task persistence and endurance behaviour, but to date this has not 

been investigated. Although repressors show short-term tolerance of acute pain, this is 

thought to lead to long-term sensitivity to pain (Elfant et al., 2008), suggesting that, 

although it is associated with lower reports of depression, distress and catastrophising 

(Prasertsri et al., in press), this is a maladaptive long-term coping style.  

 

In addition to the evidence regarding repressors, high defensiveness in general, 

incorporating both the repressive (appearing as defensive low-anxious) and DHA coping 

styles, may be associated with negative outcomes. Defensive patients may not respond well 

to treatment, perhaps being unwilling to acknowledge issues and challenge beliefs (Burns, 

2000a) and it has been suggested that a DHA coping style may also have a detrimental 

effect on health, particularly via immunological functioning (Creswell & Chalder, 2001). 

Consistent with this, Jamner and Leigh (1999) observed a significant positive correlation 

between resting plasma β-endorphin (a powerful immunoregulator) levels and 

defensiveness in men (although not women), and the correlation was strengthened 

following the presentation of painful stimuli. Similarly, Brody et al. (2000) observed that 

defensiveness (Marlowe-Crowne Social Desirability) scores were associated with higher 

cortisol levels in 60 firefighters under the age of 45, although, interestingly, the same 

relationship was not apparent in the older firefighters, where there was a trend in the 

opposite direction. The authors conclude that the higher cortisol levels suggest “poorer 

stress coping, greater depression and greater risk for long-term neuronal and immunologic 
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damage” (Brody et al., 2000, p.228). Due to the low prevalence of the DHA coping style in 

the general population, research into the area has been scarce. It has been reported, 

however, that certain chronic pain populations contain an unusually high proportion of 

DHA patients. Creswell and Chalder (2001) found that 46% of participants with chronic 

fatigue syndrome (CFS) were classified as DHA, compared to 17% of asymptomatic 

controls and 10% of diabetes. The inclusion of the diabetes group confirmed that the result 

was not simply caused by the anxiety associated with having a chronic condition (Creswell 

& Chalder, 2001). This finding for CFS is particularly interesting given that a cognitive-

behavioural model of CFS proposed that it is characterised by low levels of self-esteem 

accompanied by rigid defence mechanisms (Surawy, Hackmann, Hawton, & Sharpe, 

1995). In addition to the effect of high defensiveness, high levels of anxiety may also have 

an adverse effect on clinical outcome, perhaps resulting in avoidance of physical and 

functional restoration activities (Burns, 2000a).  

 

To date, the effect of coping styles, or even the prevalence of different coping styles, 

within the CLBP population, has not been addressed. It may be expected that, despite 

reporting low anxiety and disability, an initial vigilant response will cause repressors to 

exhibit similar physiological reactivity (such as elevated muscle activity) as high anxious 

individuals in stressful situations. Additionally, by attempting to suppress pain, they may 

actually experience a high sensitivity to pain in the long term. Repressors may also be less 

willing to seek or accept treatment and may be over-optimistic about their ability to 

perform tasks, resulting in persistence behaviours and a cycle of over and under-activity. 

Therefore the theory suggests that a repressive coping style in patients with CLBP will be 

associated with a poor long term outcome. The information on the effect of a DHA coping 

style and the cognitive biases associated with it are more limited and it is not clear how 

such a coping style would affect clinical outcome in the case of CLBP. In general it is 
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assumed that DHA individuals act in a similar manner to those who are high anxious, 

although it is apparent that important differences do exist. For example, DHA individuals 

were found to spend less time worrying about future negative events (Eysenck & 

Derakshan, 1997) and were less vigilant for threat (Ioannou, Mogg, & Bradley, 2004) than 

high anxious individuals, which suggests a defensive coping style may have some benefits. 

High prevalence in certain chronic conditions, however, suggests an overall negative 

impact of the DHA coping style. Given the issues associated with repressors and DHA 

patients, the presence of both should be considered in CLBP patients, particularly when 

investigating links between psychological and physiological factors.  

 

2.6. Psychological factors and muscle activity 

2.6.1. Muscle guarding 

LBP patients who have high levels of pain-related fear generally exhibit greater paraspinal 

EMG readings compared to low fearful patients, especially when confronted with 

movements which they believe are harmful (Vlaeyen & Linton, 2000). Fear-induced 

increase in paraspinal muscle activity has also been demonstrated to predict greater pain 

during a subsequent physical performance test (Vlaeyen et al., 1999). Vlaeyen et al. 

therefore propose that pain-related fear perpetuates pain and disability through muscular 

reactivity, implying that reduction in fear-avoidance beliefs may reduce muscular 

reactivity, and thereby disability. In support of this notion, fearful patients demonstrate less 

relaxation at the end of trunk flexion (Geisser et al., 2004) than non-fearful patients and 

controls, leading to a significant, inverse relationship between pain-related fear and the 

flexion-relaxation ratio (FRR) (Watson et al., 1997a). Significant correlations have also 

been found between reductions in fear-avoidance beliefs, increases in pain self-efficacy 

beliefs and increased FRRs following a pain management programme (Watson et al., 

1997a). Changes in range of motion or self-report of pain were not related to changes in 
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the FRR. This muscle guarding is thought to continue despite the resolution of the 

physiological cause and conditioning might mean that simply anticipating a movement 

results in a muscular guarding response (Main & Watson, 1999). Over time, abnormal 

motion and a transfer of loads to other structures of the musculoskeletal system may 

contribute to the development of disuse and deconditioning (Verbunt et al., 2003a). This 

may therefore represent one pathway by which fear avoidance leads to increased disability 

as suggested by the fear-avoidance model. Support for the role of conditioned muscular 

responses in chronic pain was provided by a study investigating muscular factors in 

relation to both conditioned and unconditioned pain stimuli. The chronic pain patient 

groups had both greater muscular responses to the unconditioned pain stimulus and also a 

higher number of conditioned responses compared to healthy controls. Furthermore, a 

significant relationship was found between muscular responses and the experience of pain 

the following day (Klinger et al., 2010). 

 

2.6.2. Catastrophising and muscle activity 

van der Hulst, Vollenbroek-Hutten, Rietman and Hermens (2010b) responded to the 

suggestion in pain-models such as the fear-avoidance model, that coping strategies may 

play a role in the ‘chronification’ of pain via changes in physical activity. They 

investigated the relationships between three coping strategies (labelled ‘catastrophising’, 

‘distraction’, and ‘persistence and control’) and lumbar muscle activity during walking in 

63 patients with CLBP. Catastrophising was significantly related to increased lumbar 

muscle activity during all periods of stride, and distraction was found to be related to 

increased relative relaxation during the swing phase. Catastrophising is associated with 

both avoidance behaviour and difficulty in disengaging from pain (Van Damme et al., 

2004) and the higher muscle activity associated with catastrophising would support the 

view that this is a maladaptive coping strategy (although it has also been suggested that 
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catastrophising may more closely reflect emotional distress than a coping strategy (van der 

Hulst et al., 2010b)). As alternation between relaxation and exertion is thought to reflect a 

healthy pattern of muscle activity during walking, this may suggest that distraction is an 

adaptive strategy. However, this study does not enable analysis of any long term effects. In 

particular, the use of distraction to control pain has been associated with greater pain once 

distraction ceases (Goubert et al., 2004). Distraction also represents a form of avoidance, 

which is often considered a maladaptive long-term coping strategy (Richards & Steele, 

2007).  

 

2.6.3. Diathesis-stress 

In a widely reported series of studies, Flor et al. (Flor, Turk, & Birbaumer, 1985; Flor et 

al., 1992) found that EMG amplitudes in the lumbar paraspinal muscles increased for 

CLBP patients compared to controls when they were exposed to personally relevant 

stressful situations, although the muscle activity levels of more distal sites were not 

significantly different between groups. The patients with high paraspinal reactivity 

appeared to be those who were most depressed, worried and emotionally affected by their 

pain problem. The authors therefore proposed a diathesis-stress model in which they 

suggest that CLBP may be the consequence of extensive and sustained reactions of the 

back muscles resulting from the interaction of personally-relevant stressful events with a 

predisposing organic or psychological condition. Increases in muscle activity might lead to 

ischemia, reflex muscle spasms, oxygen depletion and the release of pain-eliciting 

substances, with the subsequent pain itself potentially a further stressor (Flor et al., 1985). 

The appeal of this model over the pain-spasm-pain model is that, since the muscle 

hyperactivity is dependent on the presence of a relevant stressor, it would explain the 

apparent inconsistent muscle activity findings for CLBP patients. Other studies have 

supported this model and also demonstrated symptom specific muscular hyper-reactivity to 
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a wider range of stressors, including personal, cognitive and social stressors (DeGood, 

Stewart, & Adams, 1994; Glombiewski et al., 2008), anger (Burns, 2006), and pain 

(Watson, 2002), with Burns (2006) finding that paraspinal reactivity correlated 

significantly with everyday pain severity. CLBP patients have also shown slower recovery 

in muscle activity levels than controls following stress (Burns, 2006; Flor et al., 1985), 

possibly related to the underestimation of high muscle activity that has been observed in 

CLBP patients (Flor, Fürst, & Birbaumer, 1999). It is not known why CLBP patients 

exhibit this symptom specific response. Knost, Flor, Birbaumer and Schugens (1999) 

suggest that chronic pain patients might have learned to increase their muscle activity as a 

pain inhibitory mechanism (via increased non-nociceptive input and diversion of attention) 

when anticipating stress/pain. When maintained, however, this strategy may itself induce 

pain via ischemia and hypoxia.  

 

2.6.4. Stress, spinal loading and muscle relaxation 

Marras et al. (2000) demonstrated that psychosocial stress is associated with mean activity 

increases of between 3.5% and 6.5% in trunk muscles and a 12% increase in lateral shear, 

with results varying markedly between individuals. The increased spine loadings were 

traced to greater trunk muscle co-activity. This study provides an indication for the first 

time that there is a biomechanical pathway to spinal loading associated with psychosocial 

stress. A subsequent study (Davis, Marras, Heaney, Waters, & Gupta, 2002) also found 

that mental stress led to poorer co-ordination and greater trunk muscle co-activation, 

resulting in increased spinal loading. Although both studies identified that certain 

personality types responded with significantly greater spinal loading, the traits that 

appeared to make patients more susceptible were different in each case, perhaps reflecting 

the way different pressures affect different personality types (Davis et al., 2002). 
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Recent research has identified a significant correlation between perceived psychosocial 

work stress and muscle activity. A significant negative correlation has also been observed 

between perceived negative stress and the amount of muscle rest time (Rissén, Melin, 

Sandsjö, Dohns, & Lundberg, 2000). Lack of muscle relaxation time in particular has been 

suggested as a contributory factor in the development and perpetuation of chronic pain 

(Hägg & Åström, 1997; Hermens & Hutten, 2002), suggesting that stress may play an 

important role in the maintenance of chronic pain.  

 

2.7. Management of low back pain 

Approximately four million people see their GP with back pain each year (Waddell, 2004), 

with medication the most commonly prescribed treatment (Airaksinen et al., 2006). 

Although there is no cure for LBP, a wide range of different treatments exist. Broadly, 

these can be categorised into the following areas: education/information, exercise, manual 

therapies (including manipulation, massage, mobilisation), other non-pharmacological 

interventions (including transcutaneous electrical nerve stimulation (TENS), traction, 

heat/cold), psychological interventions (including cognitive behavioural therapy (CBT), 

graded exposure), combined physical and psychological interventions (including 

multidisciplinary rehabilitation programmes), pharmacological interventions (including 

anti-depressants, opioids, muscle relaxants and non-steroidal anti-inflammatory drugs 

(NSAIDS)), invasive procedures (including acupuncture), and surgical referral (NICE, 

2009). The recent NICE guidelines for LBP promote patient education and state that the 

key priorities are to initially offer patients a structured exercise programme, a course of 

manual therapy or a course of acupuncture. Patients who have received at least one less 

intensive treatment and have high disability and/or significant psychological distress 

should then be considered for referral for a combined physical and psychological treatment 
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comprising around 100 hours. Only after this should surgery be considered (NICE, 2009). 

A number of the available treatments for LBP are discussed in more detail below. 

 

2.7.1. Exercise 

Exercise has become an increasingly popular treatment choice for LBP and there is some 

evidence to suggest that regular exercise also decreases the risk of recurrence (Rainville et 

al., 2004). ‘Exercise therapy’ encompasses a wide range of different programmes, although 

there appears to be little difference between aerobic exercise, muscle reconditioning or 

physiotherapy exercises in relation to their effect on pain and disability up to twelve 

months after treatment (Airaksinen et al., 2006; Mannion, Müntener, Taimela, & Dvorak, 

1999). Although there is ‘strong’ evidence that exercise therapy is more effective in 

reducing pain and/or disability than ‘GP care’, the “European Guidelines for the 

management of chronic non-specific LBP” (the European Guidelines) (Airaksinen et al., 

2006) also conclude that there is also strong evidence that these changes in pain and 

disability are not related to changes in any aspect of physical performance capacity. 

Perhaps then, exercise may (to some extent) improve outcome via its effect on pain-related 

fears and beliefs and by changing behaviours (Mannion et al., 1999; Rainville et al., 2004). 

Exercise therapy may additionally help to reduce depression and also lead to a greater 

feeling of well-being through achieving an increase in physical fitness (Mannion et al., 

1999). Overall, it may therefore play an important role in breaking the cycle of 

deconditioning, disability and depression suggested by the fear-avoidance model (Vlaeyen 

et al., 1995).  

 

2.7.2. Manual therapies 

Evidence regarding the use for manual therapies (manipulation, mobilisation, massage) has 

been promising (Airaksinen et al., 2006; Furlan, Imamura, Dryden, & Irvin, 2009; Koes, 
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Assendelft, Van der Heijden, & Bouter, 1996; NICE, 2009). Spinal manipulation is defined 

as a high velocity thrust to a joint beyond its restricted range of movement. Spinal 

mobilisation involves low-velocity, passive movements within or at the limit of joint range 

(Koes et al., 1996). It has been suggested that one of the ways that both techniques reduce 

pain may be via altered paraspinal muscle activity, although the results appear inconsistent, 

with both increased and decreased activity of the paraspinal muscles being reported 

(Ferreira, Ferreira, & Hodges, 2007). Krekoukias, Petty and Cheek (2009) recently 

observed a significant decrease in the EMG activity of erector spinae following 

mobilisation in an asymptomatic population, but the ability to generalise to a clinical 

population may be limited. For example, spinal manipulation was shown to increase the 

activity of the oblique abdominal muscles in LBP patients, but not controls (Ferreira et al., 

2007).  In this study, postural activity of the trunk muscles of LBP patients was modified 

by spinal manipulation, but it did not appear to affect the postural response of TrA. 

DeVocht, Pickar and Wilder (2005) reported that in 27 of 31 paraspinal muscle sites, 

muscle activity was reduced following spinal manipulation (and by at least 25% in 24 of 

these sites), but in four cases EMG activity was higher. Lumbar spine manipulation on 

LBP patients has also been shown to have an immediate effect of reducing abnormally 

high EMG activity of paraspinal muscles during full flexion and hence increasing the FRR 

(Bicalho, Setti, Macagnan, Cano, & Manffra, 2010; Lalanne, Lafond, & Descarreaux, 

2009).  

 

2.7.3. Superficial heat therapy 

Superficial heat therapy is commonly used to treat LBP, both by practitioners and by 

patients at home. It is generally accepted that heat increases the extensibility of collagen 

tissue, decreases joint stiffness, relieves muscle spasm, produces pain relief, and increases 

both blood flow and metabolism (Lehmann & Lateur, 1990). Although it is commonly 



 

 73 

observed that muscle spasms can be reduced through the use of heat, the mechanisms that 

cause this are still not fully understood. It is thought that there is a selective cessation of 

firing of secondary spindle afferent endings which reduce muscle tone and this may be 

supplemented by greater inhibitory impulses from the Golgi tendon organs (Lehmann & 

Lateur, 1990). Heat is also widely used to relieve pain, although again the physiological 

data underpinning this is limited. It has been suggested that the thermal stimulus affects the 

pain sensation in line with the “gate theory” of Melzack and Wall (1965). Pain relief may 

also occur through the action of endorphins or via increased blood flow ‘washing out’ pain 

provoking metabolites (Low & Reed, 2000). Additionally, the interdependence of pain and 

muscle spasm implies that a reduction in one may cause a reduction in the other (Low & 

Reed, 2000). An animal study reported that superficial heat treatment also decreases pain-

related behaviours. The effects of heat treatment were investigated on rats with knee joint 

inflammation. After treatment with heat, the rats reduced guarding behaviour and increased 

weight bearing on the inflamed limb (Sluka, Christy, Peterson, Rudd, & Troy, 1999).  

 

A number of studies have considered the effect of heat on muscle activity. In general, the 

results have shown that the EMG amplitude during isometric contractions is unaffected by 

heating up to temperatures in the region of 40 - 45°C (Holewijn & Heus, 1992; Krause et 

al., 2001; Mito et al., 2007; Petrofsky & Laymon, 2005), although changes in the mean 

frequency of the signal have been noted (Krause et al., 2001; Petrofsky & Laymon, 2005).  

 

A Cochrane review (French, Cameron, Walker, Reggars, & Esterman, 2006) concludes 

that there is moderate evidence that heat therapy reduces short-term pain and disability for 

acute back pain, but that there is insufficient evidence regarding the effect of heat for 

CLBP.  Most of the existing studies have been carried out by two research teams, both 

assessing the effect of the same disposable lumbar heat wrap (Thermacare heat wrap) 
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(Mayer et al., 2005; Mayer et al., 2006; Nadler et al., 2002; Nadler et al., 2003a; Nadler et 

al., 2003b). The wrap heats to 40°C within 30 minutes of exposure to air and maintains this 

temperature for eight hours of continuous wear (Nadler et al., 2003a).  

 

Four of the five studies compared the heat wrap with various different interventions for 

patients with acute LBP (Mayer et al., 2005; Nadler et al., 2002; Nadler et al., 2003a; 

Nadler et al., 2003b). For the three Nadler studies, treatments were administered for either 

two or three days or nights, followed by two days of follow-up. By the end of the follow-

up period, patients using the heat wrap had greater pain relief, reduced disability, less 

muscle stiffness and increased flexibility compared to those taking an oral placebo (Nadler 

et al., 2003a) and either ibuprofen or acetaminophen (Nadler et al., 2002). Overnight use 

of the wrap also provided effective pain relief throughout the next day, reduced muscle 

stiffness and disability and improved trunk flexibility compared to an oral placebo (Nadler 

et al., 2003b). Mayer et al. (2005) investigated the efficacy of the wrap alone and 

combined with active exercise, versus exercise alone and a control (which in this case was 

an educational booklet) over five consecutive days. Patients receiving the combined heat 

and exercise treatment had significantly improved function and reduced disability 

compared to the other groups and pain relief was significantly greater than for exercise 

alone or the control group. These differences were most apparent at the end of the two-day 

follow-up period. It should be noted, however, that the participants in the combined group 

received approximately twice the amount of intervention and attention as either treatment 

alone, which may have affected the results.  

 

A second study by Mayer et al. (2006) examined the efficacy of heat treatment in both 

preventing and treating delayed-onset muscle soreness (DOMS) in previously 

asymptomatic individuals. Vigorous eccentric exercise was performed to induce DOMS. In 
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the prevention sub-study participants who wore a heat wrap (for four hours before the 

exercise and four hours afterwards) had significantly less pain intensity, disability and 

deficits in function after 24 hours than the control group. The results of the treatment study 

were less convincing. Although pain relief was significantly less with heat treatment than 

with the cold pack after 24 hours, there was no difference in self-reported physical function 

or disability. It should also be noted that the heat therapy group had a longer treatment time 

than the cold therapy group. Furthermore participants were able to remain active while 

wearing the heat wrap, in contrast to the cold pack which was applied with the participant 

either prone or supine. Overall, however, the results suggest that heat therapy is beneficial 

in the prevention and early phase treatment of low back DOMS, contrary to the traditional 

practice of applying cold therapy for acute muscular pain.  

 

Nuhr et al. (2004) carried out a study involving 100 patients with acute back pain during 

emergency transfer to hospital. Patients were randomly assigned to two groups: active 

warming with an electric heated blanket or passive warming with a woollen blanket. Those 

patients who received active heating had significantly lower pain and anxiety scores and a 

lower heart rate on arrival at hospital compared to those who received passive warming. 

The changes observed in the pain and anxiety scores were large enough to be clinically 

relevant as well as statistically significant. The authors suggest that as well as the 

physiological benefits, the psychological benefits should be considered such as increased 

central relaxation and increased feelings of well-being.  

 

2.7.4. Cognitive and behavioural treatments  

The main assumption of a behavioural approach is that pain and disability are not only 

influenced by pathology, but also by psychological and social factors (van Tulder et al., 

2000). There are three general behavioural treatment approaches: operant treatments 
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include positive reinforcement of healthy behaviours and withdrawal of attention from pain 

behaviour; cognitive treatments are designed to modify patients’ cognitions regarding their 

pain and disability e.g. by modification of maladaptive thoughts and beliefs; and 

respondent treatments aim to directly modify the physiologic response system e.g. by 

reduction of muscle activity via techniques such as relaxation or EMG biofeedback (van 

Tulder et al., 2000). Pain Management Programmes, based on cognitive-behavioural 

principles, are becoming increasingly popular and are described as the treatment of choice 

for people with persistent pain by the British Pain Society (British Pain Society, 2007). 

Pain Management Programmes are delivered in a group format and consist of education 

and guided practice, typically involving goal-setting and exercise (British Pain Society, 

2007). There is strong evidence for the effectiveness of behavioural treatments for LBP 

and CBT is therefore recommended for patients by the European Guidelines (Airaksinen et 

al., 2006). It is also noted, however, that some patients appear to improve more than others 

and hence more research is needed on possible underlying mechanisms to define any 

subgroups which may benefit most from behavioural treatment (Airaksinen et al., 2006). 

 

2.7.5. Graded exposure in vivo 

Graded exposure is a recently developed intervention aimed at chronic pain patients with 

high levels of fear and avoidance (Boersma et al., 2004). It is based on the principles of 

systematic desensitisation and involves a gradual confrontation with feared activities, 

thereby challenging and disconfirming catastrophic expectations (Lohnberg, 2007). 

Exposure-based interventions have proved to be effective in significantly reducing fear 

beliefs, avoidance behaviour and pain-related anxiety, and in improving self-efficacy and 

function (Boersma et al., 2004; Lohnberg, 2007; Woods & Asmundson, 2008). However, 

perhaps contrary to expectations, exposure has been shown to be effective only for patients 
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with low or moderate pre-treatment levels of catastrophising (Flink, Boersma, & Linton, 

2010).  

 

2.7.6. Multidisciplinary rehabilitation programmes 

Multidisciplinary treatment programmes are based on the biopsychosocial model of illness 

(Karjalainen et al., 2001) and usually consist of an extensive combination of physical, 

vocational and behavioural components, and the modification of medication use. True 

multidisciplinary treatment programmes have to be provided at least by three health care 

professionals with different clinical backgrounds (Airaksinen et al., 2006). They are often 

carried out over a considerable number of hours and require substantial staff and financial 

resources (Karjalainen et al., 2001). There is strong evidence in their favour (Airaksinen et 

al., 2006) however, with the NICE guidelines concluding that the best evidence for 

effectiveness exists for those programmes of over 100 hours of exposure (NICE, 2009). 

 

2.7.7. Antidepressants/muscle relaxants 

There is strong evidence that antidepressants are effective in relieving pain in CLBP 

patients, but they do not appear to improve function. The benefit also appears to be 

independent of depression status (Airaksinen et al., 2006).  

 

The European Guidelines concluded that, while there was some evidence that muscle 

relaxants were effective for the short-term relief of pain, in the studies included in the 

review, this did not always appear to occur via the reduction of muscle spasm (Airaksinen 

et al., 2006). 
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2.8. Summary 

It appears that (at least certain subgroups of) LBP patients tend to exhibit altered patterns 

of muscle activity and increased co-contraction, whether this is in response to a loss of 

stability, damage to ligaments and other soft tissues, or abnormal loading on spinal 

structures. Activity of the deep trunk muscles tends to be delayed and/or reduced, and is 

associated with hyperactivity of the superficial trunk muscles. The result is less control 

over the trunk and a reduction in position sense. Increased superficial muscle activity and 

co-contraction increase spinal compression and are linked to slower recovery of 

intervertebral disc height following loading, which may exacerbate the condition.  

 

It is clear that psychological factors such as pain-related fear, catastrophising, self-efficacy 

and stress can play an important role in the development and perpetuation of LBP. The 

fear-avoidance model details one potential pathway by which such factors can result in an 

outcome of disuse and disability. Even here, disuse is taken not just to mean the avoidance 

of activity, but the abnormal motion or muscular guarding which is a recognised 

accompaniment to high levels of pain-related fear and which may persist beyond the 

resolution of the physical cause. This supports the proposition that altered muscle activity 

may be a contributory factor in the link between psychological factors and pain and 

disability.  

 

Although much research has focussed on either the biomechanical or psychological aspects 

of LBP, a number of researchers have linked the two strands of research. In particular, 

fear-avoidance beliefs have been associated with muscle guarding (Vlaeyen et al., 1999), 

and especially loss of the FRP (Geisser et al., 2004); pain-related fear has been 

demonstrated to replicate the delayed activation of deep trunk muscles and increase in 

superficial muscle activity observed in LBP patients (Moseley et al., 2003); catastrophising 
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is associated with higher lumbar muscle activity during walking (van der Hulst et al., 

2010a); and stress has been linked to symptom specific muscular hyper-reactivity (Flor et 

al., 1992), lack of muscle relaxation (Rissén et al., 2000) and an increase in spinal loading 

via greater trunk muscle co-activity (Marras et al., 2000). Altered muscle activity therefore 

represents a common factor in both biomechanical and psychological models and may be a 

cause of the persistence or recurrence of the condition. One of the mechanisms by which 

this may occur is via delayed recovery of intervertebral disc height (and hence stature) 

following loading. However, research in this area is scarce and it remains to be seen if 

improved stature recovery, via reduced muscle activity, improves clinical outcome. In 

addition, further research is required to investigate the relationship between altered muscle 

activity, psychological factors and pain and disability in patients with LBP.  
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3. General methods 

 

NHS patients 

All three studies involved NHS patients with CLBP. The self-reported duration of back 

pain varied from 3 months to 40 years. Patients were recruited from the waiting list for two 

physiotherapist-led rehabilitation programmes in North Manchester. In the case of Studies 

1 and 3, participants also included patients who had attended one of the programmes 

during the previous two years. All participants of both the longitudinal and heat treatment 

investigations for Studies 2 and 3 respectively were also included for baseline analysis in 

Study 1 and some patients took part in all three studies. Potential participants identified 

from the waiting lists were sent information about the study in the post (Appendix 1) and 

asked to return a reply slip if they were willing to take part. A diagram of the procedure for 

those who were recruited from the waiting lists is given in Figure 3.1 on page 82. 

 

In addition, to increase participant numbers for Study 3, patients who had been through the 

rehabilitation programmes in the last two years were contacted and invited to take part in 

the study (Appendix 2). These participants completed two sessions only, one with a heat 

wrap and one without. The results for the sessions without a heat wrap were also included 

in Study 1. The numbers of participants included in each study are shown in Figure 3.2 on 

page 83. All testing of NHS patients took place at North Manchester General Hospital. 
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Figure 3.1. Procedure for patients recruited from waiting lists 
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Figure 3.2. Numbers of patients recruited to each study 
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Exclusion criteria were nerve root compression, central nervous system impairment, 

progressive motor deficit, sphincter impairment from neurologic cause and presence of 

‘red flags’ (e.g. unexplained weight loss, recent urinary tract infection, history of 

intravenous drug use). Many of the patients were taking pain-killers for their back pain as 

it was not considered practical to exclude those on medication. Participants were offered 

£12.50 for each session they attended to cover travel and parking expenses. Ethical 

approval was granted by the North Manchester NHS ethics committee and local NHS 

permission was granted by Pennine Acute NHS Trust. All participants provided written 

informed consent (Appendix 3). 

 

Asymptomatic participants 

Candidates were excluded from the asymptomatic group if they had, at any time; 

experienced recurring or persistent back pain; lost a working day because of back pain; or 

had consulted a physician about back pain within the last 15 years. Participants were 

people known personally to the author and were not directly matched to the patient group. 

 

The stadiometer 

Changes in stature were measured with a standing stadiometer, which consisted of a rigid 

frame, mounted at a right angle to a base plate and inclined backward 15° from the vertical. 

Four anatomical points were identified and then supported by the frame to maintain the 

natural contours of the head and spine. These points were (1) the most posterior distension 

of the head at the occipitut, (2) the deepest point of cervical lordosis approximate to C4, (3) 

the most prominent point of the thoracic kyphosis approximate to the inferior angle of the 

scapula (T7), and (4) the deepest point of lumbar lordosis approximate to L3. The position 

of the feet was marked and head position was controlled by the use of spectacle frames 

with attached lasers. These were aligned with two movable targets above the participant’s 
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head. A high-resolution linear variable displacement transducer (LVDT) was used to detect 

changes in stature by measuring vertical displacement with an accuracy of approximately 

0.1mm. The LVDT was fixed to the top of the stadiometer and positioned to lie directly 

above the apex of each participant’s head. The information was observed graphically on a 

laptop computer at the time of collection and stored digitally for later analysis at a 

sampling rate of 100Hz.  

 

 

 

 

Plate 3.1. Participant in position in the stadiometer   
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All participants initially undertook a brief familiarisation session on the stadiometer to 

enable them to practice the adoption of a repeatable and comfortable posture. This 

consisted of five recordings, between which the participant was asked to lean forward and 

break contact with the postural controls before resuming their position for the next 

measurement. A pilot study demonstrated that this approach was sufficient to produce 

reliable stadiometer readings (average SD 1.0mm, SEM 0.8mm).  

 

Testing was carried out in both the morning and afternoon as research has indicated that 

this does not significantly affect measurements of stature change (Puntumetakul, Trott, 

Williams, & Fulton, 2008). However, participants who attended multiple testing sessions 

attended at the same time of day each time (or within one hour of the previous time), 

except in one case as noted within Study 2 when, due to work commitments, the patient 

attended in the morning for the first visit and the afternoon for the two subsequent visits. 

Participants remained in position for a period of 20 seconds and the stature value used was 

the mean reading over the final 10 seconds. This approach was based on the findings of a 

pilot study which confirmed that readings measured in this way were not significantly 

different to averaging over a 30 second period, whilst reducing the amount of time that the 

Plate 3.2. Spectacle frames with lasers 
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participant was required to remain in position. All measures were recorded as changes 

from the baseline as this first measure was arbitrary and dependent on the initial location of 

the LVDT. 

 

Muscle Activity Measurement 

Raw electromyographic signals were recorded using a DELSYS EMG system (Delsys Inc. 

Boston, MA, USA). Single differential surface electrodes consisting of two silver bars with 

an inter-electrode spacing of 10mm were used. Signals were band-pass filtered between 20 

and 450 Hz with a sampling frequency of 1000Hz. The raw EMG signal was then rectified, 

integrated and normalised to the reference. 

 

Dry shaving, skin abrasion and cleaning with alcohol preceded electrode placement. 

Electrodes were placed over the erector spinae muscle at the L1-2 and L4-5 interspaces, 

approximately 3cm from the midline. These landmarks were the same as those used by 

Healey et al. (2005a) and were chosen to avoid unwanted signal effects related to the 

innervation zones and to minimise cross-talk (Healey et al., 2005a). After the same skin 

preparation, the reference electrode was placed on the right iliac crest. Participants then 

assumed a standing posture for ten seconds while a recording was taken. 
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The electromyographic data were normalised relative to a reference voluntary contraction 

(RVC). This reference task required each participant to stand while holding a specific mass 

(0.5kg) in each hand with arms bent (upper arms horizontal, lower arms vertical) for ten 

seconds (shown in Plate 3.4).  

Plate 3.3. EMG electrode placement 
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The raw electromyograms (EMGs) were rectified and integrated over a period of five 

seconds. This approach was the same as that used by Healey et al. (2005a) and is 

recognised as an appropriate processing method (Burden, 2008). The EMG reading and the 

RVC were both taken to be the average of the three readings recorded during the session. 

All processed integrated EMGs recorded throughout the testing session were expressed as 

a percentage of the integrated EMG from the RVC.  

 

Normalising relative to a sub-maximal RVC has been shown to improve the repeatability 

of the EMG signal (Lehman, 2002) and this is the most common approach when testing 

LBP patients who may be unwilling or unable to perform a maximal contraction due to 

Plate 3.4.  Participant performing a reference voluntary contraction (RVC) 
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(fear of) pain/(re)injury. However, it has also been suggested that non-normalised values 

are preferable for clinical studies since the EMG activity during the reference contraction 

may be affected in the same manner as the levels during the experimental task (van Dieën 

et al., 2003b). Therefore non-normalised values were also subject to analysis. 

 

Measures 

Patients completed a series of self-report measures following each visit (Appendix 4). The 

patients were asked about their pain intensity during the past 24 hours at the end of the 

testing session. Although some patients completed the remaining questionnaire booklet 

immediately, the majority completed it at home and returned it either by post or on their 

subsequent visit. A self-report measure was classified as incomplete if there were three or 

more data items missing. If there were either one or two items missing, then these were 

assumed to be the same as the answers filled in by the same participant on the previous or 

subsequent questionnaire (as applicable). If only one questionnaire had been completed, 

the mean score from the completed items on that measure was used.  

 

Pain intensity 

A numerical rating scale (NRS) (see Appendix 4) was employed to assess pain intensity. 

Participants were asked to rate their pain during the past 24 hours on a scale ranging from 

(0) “no pain” to (10) “worst possible pain”. Research supports the reliability and validity of 

numerical rating scales of pain intensity (Jensen, 2003) and the 11-point NRS was recently 

recommended by the Initiative on Methods, Measurement and Pain Assessment in Clinical 

Trials (IMMPACT) to assess chronic pain intensity (Dworkin et al., 2005). 
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Disability  

The Roland Disability Questionnaire (RDQ; Roland & Morris, 1983) (see Appendix 4b) is 

a 24-item self-report measure that assesses disability due to back pain. Patients are asked to 

select which statements, related to perceived limitations in typical daily activities, apply to 

them. The score is calculated by adding up the number of selected items, so that a higher 

number represents greater perceived disability. The RDQ has excellent reliability, validity 

and responsiveness (Roland & Fairbank, 2000; Turner, Fulton-Kehoe, Franklin, Wickizer, 

& Wu, 2003) and is widely used to sample within the specific population for this study.  

 

Anxiety and Depression 

The Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983) (see 

Appendix 4a) is a widely used measure, designed for use with general medical outpatient 

populations. It consists of anxiety and depression subscales, both of which have seven 

items. Each item is rated on a four-point scale from 0 to 3, determining the extent to which 

the individual feels that each statement applies to them. A higher score reflects greater 

levels of anxiety or depression. Both subscales of the HADS have established validity and 

reliability in a clinical population (Johnston, Pollard, & Hennessey, 2000; Pallant & 

Bailey, 2005; Bjelland, Dahl, Haug, & Neckelmann, 2002).  

 

Functional self-efficacy 

Functional self-efficacy refers to the confidence that an individual has in their ability to 

successfully accomplish functional activities. The functional subscale of the Chronic Pain 

Self-Efficacy Scale (CPSS-PF; Anderson, Dowds, Pelletz, Edwards, & Peeters-Asdourian, 

1995) (see Appendix 4c) was used to assess functional self-efficacy. The original CPSS-

PF, which has been shown to be reliable and valid (Anderson et al., 1995), is scored on a 

ten-point Likert scale, with higher scores reflecting higher levels of self-efficacy. This 
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study used a nine-point Likert scale because it provides patients with a mid-point option. 

The nine-point version has also been shown to have excellent internal consistency and test-

retest reliability with CLBP patients (Woby et al., 2007a). 

 

Fear of movement/(re)injury 

The Tampa Scale of Kinesiophobia (TSK; Kori, Miller, & Todd, 1990) (see Appendix 4e) 

aims to measure fear of movement/(re)injury in individuals with pain. It consists of 17 

items, for which patients rate themselves on a four-point Likert scale ranging from 

“strongly disagree” to “strongly agree”. Four of the items are inversely scored. Scores 

range from 17 to 68, with higher scores representing greater fear of movement/(re)injury. 

The English version of the TSK has been found to be valid and reliable (Woby, Roach, 

Urmston, & Watson, 2005; French, France, Vigneau, French & Evans, 2007). 

 

Catastrophising 

The Pain Catastrophising Scale (PCS; Sullivan, Bishop, & Pivik, 1995) (see Appendix 4f) 

consists of 13 items describing thoughts or feelings that may be experienced when in pain. 

For each statement, participants rate the extent to which they have the feeling when 

experiencing pain on a five-point Likert scale ranging from (0) “not at all” to (4) “all the 

time”. A higher score indicates greater levels of pain catastrophising. In addition to a total 

score reflecting the level of catastrophising, there are three subscales assessing rumination, 

magnification and helplessness. The PCS has been shown to have good reliability and 

validity (Sullivan et al., 1995; Osman et al., 1997; Osman et al., 2000).  

 

Pain-related anxiety 

The Pain Anxiety Symptoms Scale-20 (PASS-20) (see Appendix 4d) is a shortened 20-

item version of the original Pain Anxiety Symptoms Scale (PASS; McCracken, Zayfert, & 



 

 93 

Gross, 1992), a 40-item measure developed to assess pain-related anxiety in individuals 

with chronic pain. Higher scores represent higher levels of pain-related anxiety. Both the 

PASS and the PASS-20 consist of four subscales that assess fearful appraisal of pain, 

cognitive anxiety, physiological anxiety and escape/avoidance behaviour. The PASS-20 

has been shown to have good factorial validity, internal consistency and close association 

to the original 40-item version (Coons, Hadjistavropoulos, & Asmundson, 2004; Roelofs et 

al., 2004).   

 

General procedure 

On first attending, each participant was verbally informed about the testing procedures and 

requirements of the study and signed an informed consent form. Height and body mass 

were recorded. Participants then undertook a brief familiarisation session on the 

stadiometer as described above. 

 

After this familiarisation period, electrodes were attached to the skin overlying the 

paraspinal muscles and initial EMG readings (at rest and during the RVC) were taken. 

Since these were performed in a standing position, the time taken for the EMG readings 

also allowed soft tissue deformation to stabilise, which reduced the likelihood of it 

influencing the ensuing stature measurements. Participants then assumed the correct 

position within the stadiometer and a baseline stature measurement was recorded. 

 

Following these baseline measurements, participants assumed an unloading position on a 

physiotherapy bed for 20 minutes. This was either a side-lying or a prone position, 

whichever the participant felt was the most comfortable. After 20 minutes, the participants 

stood up and performed the same EMG and stadiometer measurements, before assuming 

the same unloading position for a further 20 minutes. The same measurements were then 
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taken for a final time. The protocol for an initial visit, with approximate timings, is shown 

in Figure 3.3 on page 95. 

 

The protocol involved measurement of stature recovery rather than stature loss, which has 

been covered more widely in the literature. This decision followed the findings of Healey 

et al. (2005a), who reported that, although stature loss occurred at the same rate for 

individuals with CLBP as for asymptomatic controls, stature recovery was significantly 

delayed in the CLBP group. The unloading period of 40 minutes was also based on the 

study by Healey et al. (2005a), who similarly used a 40-minute unloading period, although 

in that case it was preceded by a 20-minute loading task. The severity of the back pain 

experienced by some of the patients in all three studies meant that a similar weight-bearing 

task, or even a simple walking task, was not considered appropriate for this thesis.  

However, a pilot study confirmed that even in the absence of an initial loading task, a 

significant height gain was still demonstrated after 40 minutes of unloading. 
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Figure 3.3. Protocol for initial testing session 
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Sample size 

Healey et al. (2005a) reported significant negative correlations between stature recovery 

and each of muscle activity (r = -0.68), perceived pain (r = -0.45) and perceived disability 

(r = -0.43). Power analysis (Cohen, 1988) based on these correlation results suggested a 

sample size of 11 would be required to achieve power of 80% in detecting a link between 

baseline measures of stature recovery and muscle activity. Similarly, the sample sizes 

required for detecting the expected correlations with pain and disability were 29 and 32 

respectively. On this basis, a minimum sample size of 40 patients was selected for Study 1. 

No studies had been published concerning the relationship between changes in muscle 

activity and stature recovery following either a CLBP rehabilitation programme or 

superficial heat treatment. As such, a priori power analysis was not possible for Studies 2 

and 3. Most published studies assessing stature change had used sample populations of 

approximately 20 participants in each group. Studies of clinical outcome have varied 

greatly in size; therefore, an initial analysis of approximately 20 participants was 

performed to establish the basis for a power analysis, with the results discussed in the 

General Discussion section. 

 

Statistical analysis 

Data analysis was conducted using SPSS software (version 16.0). Parametric tests were 

employed provided that all assumptions were met. In all cases a probability of p < 0.05 was 

considered to be significant. Pearson’s product moment and regression analyses were 

implemented to assess the relationships between the data sets obtained. Reliability was 

assessed via the intraclass correlation coefficient and the standard error of measurement.  
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Limitations 

The thesis is inevitably affected by the heterogeneous nature of CLBP, with specific 

symptoms varying between patients. This is a common issue in research of this kind. This 

heterogeneity, however, also enabled analysis of the data with the aim of identifying 

meaningful subgroups within the patient population. The patient group also varied in the 

severity of their back pain with some patients having only mild levels of pain and 

disability. 

 

Many of the patients were taking pain-killing medication and were not asked to cease this 

for the purposes of the study. This may have affected some of the measures, particularly 

the self-report of pain. For Study 2, some patients also changed their use of medication 

during the course of the study. One reason for this was that effective medication use was 

one of the topics covered in the rehabilitation programmes.  

 

The patient group covered a wide range of ages, heights and weights, all of which are 

known to affect the stature change response (Althoff et al., 1992; Rodacki, Fowler, 

Provensi, Rodacki, & Dezan, 2005), although allowance was made for this in the data 

analysis. Although no patients reported that standing in the stadiometer was painful, a few 

patients did report mild discomfort, either when in position or when stepping in or out. 

This may have affected their ability to relax and hence the reliability of the subsequent 

measurements. However, all patients were able and willing to complete all the stadiometer 

measurements. Ideally all testing would have taken place at the same time of day, although 

this is not thought to significantly affect stature change results (Puntumetakul et al., 2008). 

It was also not possible to control the spinal loading that occurred prior to the participants 

attending each testing session. This may therefore have varied between both participants 

and visits. 
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The method of assessing muscle activity has its limitations. Absolute EMG amplitudes are 

affected by a variety of factors such as electrode position, skin and muscle temperature and 

thickness of the subcutaneous fat layer, leading to the argument that comparison of EMG 

amplitudes between individuals should not be carried out directly (Burden, 2008). A 

normalised value was therefore used, but, as reported by van Dieën et al. (2003b), the 

EMG activity during the reference contraction may also be altered in CLBP patients. 

Additionally, a few patients found even the relatively easy RVC used in this thesis caused 

slight discomfort, which may have affected the readings.  

 

Some patients completed the questionnaire immediately, but many took it away with them 

and, in some cases, may have filled it in some time later, possibly affecting the answers 

given. Although all the questionnaires used in this thesis have been found to be reliable and 

valid, they relied on patients’ self-report, rather than any objective measure. Anecdotally, it 

was noted in particular that some patients verbally reported feeling better and in less pain 

on their return visit, but completed the pain NRS to show the same or a higher pain level 

than previously.  
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4. Study 1:  The relationships between baseline measures of stature recovery, 

muscle activity and psychological factors in chronic low back pain patients 

 

4.1. Introduction  

Although conflicting results have been reported, individuals with CLBP have often been 

found to exhibit hyperactivity of the superficial paraspinal muscles during static postures 

such as standing (e.g. Ambroz et al., 2000). Linked to this elevated paraspinal muscle 

activity is the finding that individuals with CLBP appear to exhibit increased loading of the 

intervertebral discs as manifested by delayed stature recovery after loading (Healey et al., 

2005a). Healey et al. (2005a) observed significantly reduced stature recovery in a group of 

individuals with mild CLBP (who all self-managed their pain) compared to a control 

group, with stature recovery negatively correlated with paraspinal muscle activity. Healey 

et al. (2005a) hypothesized that the elevated muscle activity observed in the CLBP group 

resulted in greater compressive loads on the spine that, in turn, prevented the intervertebral 

discs from regaining their initial height and consequently prolonged stature recovery. 

Reduced stature recovery may increase the risk of future back pain and increase loading on 

spinal structures such as the facet joints (Adams et al., 2002). Significant negative 

correlations between stature recovery and both pain and disability support the clinical 

relevance of this relationship (Healey et al., 2005a).  

 

As discussed in Chapter 2, psychological factors play an important role in LBP, possibly 

via increased spinal loading resulting from altered paraspinal muscle activity. Muscle 

activity may, therefore, be a contributory factor in the link between psychological factors 

and clinical outcome.  

  



 

 101 

The aim of this study was to extend the findings of Healey et al. (2005a) by analysing the 

relationship between stature recovery, muscle activity, pain and disability in a more 

clinically relevant population of NHS patients with CLBP, including individuals with more 

severe back pain than previously examined. In addition, the study furthered previous work 

by seeking to establish whether a range of self-report psychological factors were linked to 

muscle activity or stature change in this group. An asymptomatic control group was also 

included to enable comparison of stature change and muscle activity levels between the 

two groups. It was hypothesized that, consistent with the findings of Healey et al. (2005a), 

the patients with CLBP would have higher muscle activity and reduced stature recovery 

compared to the asymptomatic group and that stature recovery would be negatively related 

to each of muscle activity, pain and disability. Although research into the area is limited, 

there has been support for associations between paraspinal muscle activity and 

psychological factors such as pain-related fear (Vlaeyen et al., 1999), stress (Flor et al., 

1992) and catastrophising (van der Hulst et al., 2010b). It was therefore expected that 

muscle activity would be correlated with the psychological factors considered in the 

current study. It was also thought that such factors may impact on stature recovery via their 

influence on muscle activity and hence lead to observed correlations between stature 

change and a range of psychological variables.  

 

The specific hypotheses addressed by this study were as follows: 

 (1) patients with CLBP demonstrate acceptable levels of repeatability for inter-day 

stadiometer measurements; 

(2) patients with CLBP have higher muscle activity and reduced stature recovery compared 

to asymptomatic individuals; 

(3) stature recovery for patients with CLBP is negatively related to each of muscle activity, 

pain and disability; 
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(4) muscle activity for patients with CLBP is negatively related to pain and disability; 

(5) psychological factors are associated with paraspinal muscle activity and stature 

recovery for patients with CLBP.  

 

4.2. Methods 

Participants 

Data were collected from 47 patients with CLBP (age, 46.6 ± 11.1y; height, 166.4 ± 

7.5cm; body mass, 79.3 ± 18.8kg) who had been referred to a physiotherapist-led 

rehabilitation programme in North Manchester and 18 asymptomatic controls (age, 44.6 ± 

13.3y; height, 169.0 ± 10.3cm; body mass, 70.8 ± 12.7kg). The CLBP group was mixed 

(18 men, 29 women), between the ages of 23 and 70 years. The control group consisted of 

nine men and nine women, between the ages of 25 and 64 years. Further details of the 

patients are provided in the General Methods section.  Candidates were excluded from the 

control group if they had, at any time; experienced recurring or persistent back pain; lost a 

working day because of back pain; or had consulted a physician about back pain within the 

last 15 years.  

 

Procedure 

The majority of patients attended the testing session shortly before starting the 

rehabilitation programme, although six patients attended shortly after the programme 

commenced and the study also included 13 patients who had completed the programme 

within the last two years. Where possible, patients attended twice before the 

commencement of the programme to enable test-retest analysis. Healthy controls 

completed one testing session each and completed only the anxiety and depression 

(HADS) and defensiveness questionnaires (see page 103). Testing was carried out in 

morning and afternoon sessions. Patients who attended twice came at the same time (or 
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within one hour of the previous time) for both visits. Paraspinal muscle activity was 

assessed via surface electromyography (EMG), whilst both standing at rest and during a 

reference voluntary contraction (RVC). Stature recovery over a 40-minute unloading 

period was measured on a standing stadiometer. Details of the protocol are provided in the 

“General Methods” section. Patients also completed a series of self-report measures 

following their visit. In addition to the measures described in the “General Methods” 

section, an additional questionnaire to assess defensiveness was used for this study.  

 

Defensiveness 

The ten item short form Marlowe-Crowne Social Desirability Scale (MC-SD) (see 

Appendix 4g) was used to assess defensiveness. Participants answer “True” or “False” to 

each of ten statements concerning personal attitudes and traits e.g. “I have never intensely 

disliked anyone”.  The items are thought to reflect culturally approved behaviours but 

behaviours believed unlikely to occur.  A correlation coefficient r > 0.9 between the 10-

item version and the original 33-item scale (Strahan & Gerbasi, 1972) and an acceptable 

level of reliability (alpha coefficient = 0.66) have been reported (Reynolds, 1982).  

 

Identifying coping style with HADS and MC-SD 

The anxiety scale of the HADS and the MC-SD were used to classify participants as high-

anxious, low-anxious, defensive high-anxious and repressors. Methods of classifying the 

different coping styles vary. For this study, tertiary splits based on normative data for the 

HADS (Crawford, Henry, Crombie, & Taylor, 2001) was used with low anxious classified 

as a score of four or below and high anxious as eight and above. Similar normative data 

was not available for the specific short form Marlowe-Crowne scale used in this study. 

However, two population studies based in Chicago reported a mean score of 5.4 (standard 

deviation of 2.2, mode of 5) for 614 randomly selected residents aged between 18 and 40 
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(Johnson & Fendrich, 2002), and a mean score of 6.8 (standard deviation of 2.3, mode of 

7) for 588 randomly selected women aged 50 and over (Burris et al., 2003). Both studies 

used the short version of the MC-SD with a highest possible score of 10. It is observed 

both that women typically score higher than men and that the older the respondent, the 

more likely they are to score highly (Burris et al., 2003), which may explain the different 

findings from the two studies. Based on these average results, a score of eight and above 

was considered to be high-defensive. 

 

Analysis 

For the patients who attended two testing sessions prior to the programme, reliability of 

measures, particularly the inter-day stature recovery measurements, was assessed via the 

intraclass correlation coefficient (ICC), the standard error of measurement (SEM) and the 

mean of the standard deviations (SDs). To compare the data between the CLBP patients 

and the asymptomatic controls, one-tailed t-tests were calculated to examine for 

differences in levels of muscle activity, stature recovery, anxiety, depression and 

defensiveness. For the CLBP patients, Pearson’s correlation coefficient was calculated to 

investigate the relationships between baseline measures of stature recovery, muscle 

activity, pain, disability and the range of psychological factors considered.  

 

Hierarchical multiple regression analysis was performed to investigate the extent to which 

the variance in disability could be explained. Age and sex were entered in Step 1 of the 

analysis, pain was entered in Step 2, and self-efficacy and a combined anxiety and 

depression score (represented by the total HADS score) were entered as Step 3. The 

approach taken for Steps 1 and 2 was based on a similar regression analysis by Woby et al. 

(2007a), in which demographics were included as covariates in Step 1, and then, because 

previous research has shown it to be a strong predictor of disability, pain was included as 
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an additional covariate. The factors selected for Step 3 were those that had the strongest 

relationships with disability based on the results of the zero-order correlational analysis. 

Due to the common co-occurrence of anxiety and depression in clinical populations and 

overlap of symptoms (Rutledge et al., 2009), a composite measure of anxiety and 

depression was included in the analysis. The predictor variables all had variance inflation 

factors below ten and tolerance levels higher than 0.2. It was also verified that there were 

no cases with a Cook’s distance of greater than one nor leverage values that were three 

times the average value.  Furthermore less than 5% of cases had standardised residuals 

greater than two.  

 

Mediational analysis, including Sobel’s test of mediation, was carried out to investigate 

whether muscle activity acted as a partial mediator between a range of psychological 

factors and either pain or disability. In each case, three linear regressions were performed. 

In Analysis 1, either pain or disability was the dependent variable and the psychological 

factor was the independent variable. In Analysis 2, muscle activity was the dependent 

variable and the psychological factor was again the independent variable. In the third 

analysis, either pain or disability was the dependent variable and the psychological factor 

and muscle activity were the independent variables. If muscle activity did mediate the 

relationship between the psychological factor and either pain or disability then the 

relationship with muscle activity should remain significant after controlling for the 

psychological factor, whereas the impact of the psychological factor should be 

significantly less.  

 

Similar mediational analysis was carried out to investigate whether pain (or disability) 

mediated the relationship between muscle activity and disability (or pain) and also whether 

muscle activity acted as a mediator between disability and pain.  
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In each case, a one-tailed Sobel test was calculated to determine the statistical significance 

of any mediational effect. It was verified that there were no cases with a Cook’s distance of 

greater than one nor leverage values that were three times the average value and, to control 

for multi-collinearity, variance inflation factors had to be below ten.  

 

4.3. Results 

Parametric tests were used, based on the results of Kolmogorov-Smirnov and Shapiro-Wilk 

tests of normality. As can be seen in Table 4.2 on page 113, the sample represented 

moderate levels of pain and disability. The mean duration of pain was 7.2 years and the 

median was 2 years (range: 3 months – 40 years). 42 patients and 15 asymptomatic 

participants completed the questionnaires. Some participants found it difficult to maintain a 

consistent posture in the stadiometer. Eleven patients and one control group participant 

were excluded from the stature recovery data as the standard deviation (SD) of the five 

familiarisation readings was considered to be too high. For this purpose a SD of 1.7mm 

was taken as the cut-off point as it marked a clear gap between the majority of participants 

and the relatively small number with large SD values. The remaining patients had an 

average SD of 1.0mm over the five familiarisation readings, which compared to an average 

SD of 1.0mm for the control group. Technical problems with the EMG system at the start 

of the study meant that EMG data were not recorded for two patients. In addition, one 

patient was excluded from the EMG data due to high noise levels in the signal (possibly as 

this patient asked not to be shaved at the electrode site), which meant that the values were 

considered unreliable. The EMG data of two further patients were excluded from the 

analysis as they were materially different to the values of all other patients (muscle activity 

was < 30% of RVC) and they were therefore considered to be outliers. The numbers of 

patients and controls whose data was included in the analyses are set out in Figures 4.1 on 

page 107 and Figure 4.2 on page 108 respectively.
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Figure 4.1. Numbers of patients included in the analyses (figures in red reflect the numbers included in the matched comparison of baseline factors) 

 
 

 
 
Fully: All sections of the questionnaire were completed; Excl. PASS-20: the questionnaires were all completed with the exception of the Pain Anxiety Symptoms Scale-20; Excl. 
MC-SD: the questionnaires were all completed with the exception of the Marlowe-Crowne Social Desirability Scale; Excl. PASS-20 & MC-SD: the questionnaires were all 
completed with the exception of the Pain Anxiety Symptoms Scale-20 and the Marlowe-Crowne Social Desirability Scale 
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Figure 4.2. Numbers of controls included in the analyses 
 

 
 
HADS: The Hospital Anxiety and Depression Scale; MC-SD: the Marlowe-Crowne Social Desirability Scale 
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Repeatability of measures 

Ten patients attended two testing sessions before commencement of the programme, and 

eight of these completed a questionnaire each time. Due to technical problems with the 

EMG system, only seven had complete EMG readings for both visits. The participant 

numbers are detailed in Figure 4.3.  

 
Figure 4.3. Numbers of patients included in the repeatability study  

 

Fully: All sections of the questionnaire were completed on both visits; Excl. PCS: the questionnaires were all 
completed on both visits with the exception of the Pain Catastrophising Scale 
 

The results from the two visits are shown in Table 4.1 on page 110. The average SD of the 

two stadiometer readings was 1.4mm, ICC was 0.72 and the SEM was 1.4mm. 

Additionally, some of this variation may have been expected due to a difference in pain 

scores between the two sessions. Therefore, it was concluded that the stadiometer readings 

reached acceptable levels of repeatability. 
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Table 4.1. Repeatability of measures  
 
 
Variable Visit 1 

Mean (± SD) 
Visit 2 

Mean (± SD) 
Average SD ICC SEM 

Stature change (mm) 1.8 (± 3.5) 1.7 (± 1.9) 1.4 0.72 1.4 

Muscle activity (% of RVC) 77.1 (± 8.4) 79.5 (± 6.9) 7.9 * 16.2 

Disability 12.1 (± 4.8) 11.8 (± 5.5) 1.5 0.92 1.4 

Pain NRS 5.4 (± 2.8) 6.1 (± 2.7) 0.7 0.93 0.7 

Anxiety 10.3 (± 4.2) 10.0 (± 4.2) 1.4 0.89 1.4 

Depression 8.1 (± 1.9) 8.4 (± 2.2) 0.9 0.75 1.0 

Functional self-efficacy 49.5 (± 13.2) 41.8 (± 15.6) 5.8 0.97 2.7 

Pain-related anxiety 41.4 (± 21.7) 44.4 (± 27.9) 6.5 0.95 5.6 

Catastrophising 21.3 (± 12.4) 23.6 (± 13.6) 5.7 0.85 5.0 

Fear of movement 37.5 (± 7.3) 39.1 (± 7.6) 3.0 0.80 3.4 

 

* The ICC in respect of muscle activity has been excluded because it resulted in a negative figure (as inter-individual differences between patients were 

small, but two patients had large variations between visits).  
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Relationships between changes in outcome measures over the two visits prior to 

commencement of the rehabilitation programme 

Correlational analysis was carried out on the changes in each of the outcome measures 

over the two visits, although the limited participant numbers involved in this analysis 

should be noted. There was a significant correlation between changes in stature recovery 

and changes in each of muscle activity (r = -0.68, p = 0.05), disability (r = -0.66, p = 0.04), 

and anxiety (r = -0.73, p = 0.02). There was also a significant correlation between changes 

in muscle activity and changes in self-efficacy (r = -0.96, p < 0.01), although this was 

based on the results for five patients only. 

 

Baseline characteristics 

The characteristics of the patient and control groups (where applicable) are given in Table 

4.2 on page 113. As the location of patients’ pain (e.g. right or left side) was not recorded, 

the four EMG electrode sites were not considered separately and the muscle activity 

figures presented are the average of the four electrode sites used.  

 

As shown in Table 4.2, the control group had significantly greater stature recovery and less 

muscle activity (as a % of the RVC) compared to the patient group. However, the control 

group had significantly lower body mass, a factor known to affect stature change. Any 

differences in body fat would also be expected to affect EMG readings. The patient group 

was additionally shorter in stature on average and although the difference in body height 

did not reach significance, it may have influenced the stature recovery results. Therefore, 

the control group was also compared with a matched (age, sex, height, weight) subset of 

the patient group (as shown in Table 4.3 on page 114).  In this case, there was a trend for 

reduced stature recovery and elevated muscle activity in the patient group compared to the 

control group, but it no longer reached significance.  
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The baseline characteristics have also been shown separately for the 30 patients who 

attended the BEG and the 17 patients who attended the WBTL group in Table 4.4 on page 

115. On average, the patients in the WBTL group were more disabled than the BEG group 

in terms of pain, disability, anxiety, depression, self-efficacy, pain-related anxiety and 

catastrophising. Muscle activity was also significantly higher for the WBTL group, but 

there was no difference in stature recovery.
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Table 4.2. Baseline characteristics  
 
 
Variable Patient group 

Mean (± SD) 
Control group 
Mean (± SD) 

Significance Effect size Possible range 

Body mass (kg) 79.3 ± 18.8 70.8 ± 12.7* p = 0.04 0.45  

Stature change (mm) 2.6 (± 2.2) 3.7 (± 1.4)* p = 0.03 0.50  

Muscle activity (% of RVC) 75.5 (± 12.2)† 66.8 (± 15.8)* p = 0.01 0.71  

Disability 11.5 (± 5.9)    0-24 

Pain NRS 4.8 (± 2.2)    0-10 

Anxiety 8.5 (± 3.7) 5.2 (± 2.8)** p < 0.01 0.88 0-21 

Depression 6.3 (± 3.4) 3.5 (± 2.1)** p < 0.01 0.80 0-21 

Functional self-efficacy 45.5 (± 18.3)    0-72 

Pain-related anxiety 42.4 (± 23.9)    0-100 

Catastrophising 21.1 (± 12.8)    0-52 

Fear of movement 36.7 (± 9.3)    17-68 

Defensiveness 7.8 (± 1.9) 4.9 (± 1.3)** p < 0.001 1.47 0-10 

 
† The muscle activity details for the patient group exclude two outliers. If these two patients’ details are included, the mean (± SD) would be 73.1% (± 
16.3%), p = 0.09, effect size = 0.38. 
 

* p < 0.05, ** p < 0.01 
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Table 4.3. Baseline characteristics of matched patient and control groups  
 
 
Variable Patient group 

Mean (± SD) 
Control group 
Mean (± SD) 

Significance Effect size 

Age (yrs) 43.8 (± 10.6) 44.6 (± 13.3)   

Height (cm) 167.2 (± 6.8) 169.0 (± 10.3)   

Body mass (kg) 71.6 (± 11.9) 70.8 (± 12.7)   

Disability 10.3 (± 5.6)    

Pain NRS 4.4 (± 2.1)    

Stature change (mm) 2.7 (± 2.4) 3.7 (± 1.4) p = 0.06 0.44 

Muscle activity (% of RVC) 72.8 (± 13.0) 66.8 (± 15.8) p = 0.09 0.42 
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Table 4.4. Baseline characteristics for the BEG and WBTL groups  
 

Variable BEG 
Mean (± SD) 

WBTL 
Mean (± SD) 

Significance Effect size 

Body mass (kg) 82.3 (± 13.2) 78.9 (± 26.7)  -0.26 

Stature change (mm) 2.7 (± 2.2) 2.4 (± 2.2)  -0.18 

Muscle activity (% of RVC) 72.6 (± 12.5) 81.2 (± 9.7)* p = 0.02 0.69 

Disability 9.7 (± 5.2) 15.1 (± 5.6)** p < 0.01 1.05 

Pain NRS 4.3 (± 2.1) 5.8 (± 2.1)* p = 0.01 0.70 

Anxiety 7.2 (± 2.8) 10.8 (± 4.2)** p < 0.01 1.31 

Depression 5.0 (± 2.6) 8.5 (± 3.5)** p < 0.01 1.34 

Functional self-efficacy 53.4 (± 14.7) 31.3 (± 15.6)** p < 0.01 -1.49 

Pain-related anxiety 35.2 (± 19.0) 57.3 (± 26.8)** p < 0.01 1.16 

Catastrophising 17.8 (± 10.3) 27.0 (± 14.9)* p = 0.01 0.89 

Fear of movement 35.6 (± 9.0) 38.8 (± 9.6)  0.35 

Defensiveness 7.7 (± 1.9) 7.9 (± 2.1)  0.13 

 

* p < 0.05, ** p < 0.01  
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Correlational analysis: muscle activity 
 
When analysing the baseline measures for the patients with CLBP, significant correlations 

were found between muscle activity and both pain (r = 0.48, p < 0.01) (Figure 4.4) and 

disability (r = 0.43, p < 0.01) (Figure 4.5). 
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Figure 4.4. Relationship between pain and muscle activity 

Figure 4.5. Relationship between disability and muscle activity 
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From the psychological factors considered, muscle activity was correlated with functional 

self-efficacy (r = -0.45, p < 0.01) (Figure 4.6), depression (r = 0.33, p = 0.03) (Figure 4.7), 

anxiety (r = 0.31, p = 0.03), pain-related anxiety (r = 0.29, p = 0.05) and catastrophising (r 

= 0.29, p = 0.04). There was also a trend for a negative link with defensiveness (r = -0.28, 

p = 0.07).   
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Figure 4.6. Relationship between self-efficacy and muscle activity 
 
 
 

Figure 4.7. Relationship between depression and muscle activity 
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When the subscales of the PASS-20 and PCS were considered separately, muscle activity 

was correlated with both cognitive anxiety and helplessness. 

 

Correlational analysis was also carried out to investigate links with the non-normalised, 

integrated EMG, rather than the value normalised relative to the RVC. Non-normalised 

muscle activity was found to be significantly related to fear of movement (r = 0.34, p = 

0.02) and catastrophising (r = 0.31, p = 0.03) and there was a negative correlation with 

defensiveness (r = -0.46, p = 0.01). 

 

Correlational analysis: stature recovery 

The relationship between the baseline measures of stature recovery and pain for the CLBP 

patients is shown in Figure 4.8. 
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There were trends for links between stature recovery and pain (r = -0.23, p = 0.09) and 

depression (r = 0.25, p = 0.08). Stature recovery was not significantly related to disability 

or any of the psychological factors. 

Figure 4.8. Relationship between pain and stature recovery 
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Relationship between muscle activity and stature recovery 

The relationship between muscle activity and stature recovery (as shown in Figure 4.9) was 

not found to be significant. 
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The correlations between all the measures are shown in Table 4.5 on page 120. 

 

Figure 4.9. Relationship between muscle activity and stature recovery 
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Table 4.5. Correlation coefficients between outcome measures  
 
 1. 

 
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 

1. Stature change  
 

-           

2. Muscle activity 
 

-0.18 -          

3. Disability 
 

-0.09 0.43** -         

4. Pain  
 

-0.23 0.48** 0.57** -        

5. Anxiety 
 

0.10 0.31* 0.55** 0.42** -       

6. Depression 
 

0.25 0.33* 0.57** 0.34* 0.68** -      

7. Self-efficacy 
 

0.00 -0.45** -0.73** -0.49** -0.47** -0.57** -     

8. Pain-related anxiety 
 

0.13 0.29* 0.54** 0.37* 0.67** 0.57** -0.56** -    

9. Catastrophising 
 

0.13 0.29* 0.41** 0.38** 0.59** 0.63** -0.45** 0.81** -   

10. Fear of movement 
 

0.12 0.20 0.39** 0.27* 0.57** 0.44** -0.25 0.63** 0.65** -  

11. Defensiveness 
 

0.21 -0.28 -0.27 -0.08 -0.15 -0.10 0.02 -0.14 -0.12 -0.19 - 

 
* p < 0.05, ** p < 0.01 
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Correlational analysis: BEG and WBTL 

Patients in the WBTL group were more disabled than those in the BEG on most of the 

baseline measures considered. Therefore separate correlational analysis between stature 

recovery and muscle activity and the other outcome measures was carried out for the two 

groups to investigate whether the results differed.  

 

Table 4.6. Correlation coefficients between stature recovery, muscle activity and the other 

outcome measures for the BEG and WBTL groups 

 Stature recovery Muscle activity 
 BEG  

(n = 22) 
WBTL  
(n = 9) 

BEG  
(n = 25) 

WBTL  
(n = 12) 

1. Stature change  
 

- -   

2. Muscle activity† 
 

-0.45* 0.76* - - 

3. Disability 
 

-0.25 0.40 0.31 0.36 

4. Pain  
 

-0.39* 0.25 0.45* 0.37 

5. Anxiety 
 

-0.13 0.71* -0.10 0.78** 

6. Depression 
 

0.23 0.51 -0.07 0.67* 

7. Self-efficacy 
 

0.02 -0.26 -0.34 -0.31 

8. Pain-related anxiety 
 

0.16 0.33 0.03 0.65* 

9. Catastrophising 
 

0.10 0.25 0.00 0.61* 

10. Fear of movement 
 

0.07 0.27 -0.03 0.65* 

11. Defensiveness 
 

0.18 0.48 -0.28 
 

-0.41 

 
† n = 24 for BEG, n = 10 for WBTL 
 

As shown in Table 4.6, the relationships between muscle activity and psychological factors 

were notably stronger for the more disabled WBTL group than the BEG. For the BEG, 

stature recovery was negatively correlated with muscle activity and pain. In contrast, for 

the WBTL group, stature recovery showed positive correlations with muscle activity and 
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anxiety. However, it should be noted that participant numbers were limited for the stature 

recovery analysis for the WBTL group and the more disabled patients also tended to be 

those who were less reliable on the stadiometer, as confirmed by the trend for a greater SD 

on the familiarisation readings (p = 0.06) for these patients compared to the BEG.     

 

Regression analysis 

The results of the overall correlational analysis were used to guide selection in a stepwise 

multiple regression analysis to investigate the extent to which the variance in disability 

could be accounted for by self-efficacy and a combined anxiety and depression score 

(represented by the total HADS score). The results are shown in Table 4.7. 

 
Table 4.7. Hierarchical regression analysis with disability as the outcome measure 
 

Step and variable R2 R2 change Standardised β 

Step 1 0.01 0.01  

  Age   0.11 

  Sex   0.20 

Step 2 0.34 0.33  

  Pain     0.28* 

Step 3 0.68 0.34  

  Self-efficacy (CPSS)      -0.55** 

  Anxiety & Depression (HADS)   0.20 
 
   The β weights are from the final regression equation. 
   * p < 0.05, ** p < 0.01 
 

Therefore pain intensity explained 33% of the variance in disability beyond that explained 

by age and sex. A further 34% of the variance in disability could be accounted for by self-

efficacy and a combined anxiety and depression score. Overall, the model explained 68% 

of the total variance in disability. 
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Muscle activity as a mediator in the relationship between psychological factors and 

clinical outcome 

On the basis of the strong correlations found with muscle activity, mediational analysis 

was performed to investigate whether muscle activity acted as a partial mediator between 

any of the psychological factors and either pain or disability. The results (Table 4.8) 

showed that muscle activity was a significant mediator in the relationship between self-

efficacy and pain (z = -1.92, p = 0.028).  

 
Table 4.8. Muscle activity as a mediator in the relationship between self-efficacy and pain 
 

Dependent variable Independent variable R2 Significance 

Pain (Analysis 1) Self-efficacy 0.24 0.001 

    

Muscle activity (Analysis 2) Self-efficacy 0.21 0.005 

    

Pain (Analysis 3) Muscle activity 0.29 0.019 

 Self-efficacy  0.169 

 

Similar analysis showed that there was a trend for muscle activity to also be a partial 

mediator in the relationship between anxiety (p = 0.056), depression (p = 0.051), pain-

related anxiety (p = 0.061) and catastrophising (p = 0.061) and pain. Muscle activity was 

not found to be a mediator in the relationships between any of the psychological factors 

and disability. 

 

Pain as a mediator in the relationship between muscle activity and disability 

Mediational analysis (Table 4.9 on page 124) demonstrated that pain was a significant 

mediator in the relationship between muscle activity and disability (z = 2.13, p = 0.017). 

Similar analysis also indicated both that disability acted as a partial mediator between 
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muscle activity and pain (z = 1.95, p = 0.025) and that muscle activity acted as a partial 

mediator between disability and pain (z = 1.77, p = 0.038). 

 
Table 4.9. Pain as a mediator in the relationship between muscle activity and disability 
 

Dependent variable Independent variable R2 Significance 

Disability (Analysis 1) Muscle activity 0.18 0.007 

    

Pain (Analysis 2) Muscle activity 0.23 0.001 

    

Disability (Analysis 3) Pain 0.32 0.011 

 Muscle activity  0.198 

 

Defensiveness 

The anxiety and defensiveness results for both the patients with CLBP and the 

asymptomatic controls are shown in Figure 4.10.  
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The CLBP patients scored significantly higher than the control group on the MC-SD, 

suggesting that CLBP patients are typically more defensive than asymptomatic individuals. 

Repressors 

Defensive 
high-anxious 

Figure 4.10. Anxiety and defensiveness for patients and controls  
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Of the 33 patients who had full HADS and MC-SD data, three were classified as repressors 

and 13 as defensive high-anxious (DHA). None of the controls were classed as high-

defensive (either DHA or repressors). 

 

As reported above, defensiveness was found to be significantly negatively related to non-

normalised EMG, with a trend for a similar negative link with normalised EMG. However, 

further investigation of the data revealed that the results were strongly influenced by the 

data for just three patients, all with low reported defensiveness, but relatively high levels of 

both normalised and non-normalised EMG. If these three patients were excluded, none of 

the relationships remained significant. Care should therefore be taken in interpreting these 

results. 

 

As defensiveness has been reported to vary by age and by gender, the participants were 

separated by gender and additionally into those above and below age 45. In neither case 

was the difference significant. For both young and old groups the average defensiveness 

score was very similar (7.7 and 7.8 for those under and over 45 respectively) and the 

average score for women was only slightly higher than for men (7.9 versus 7.5).  

 

4.4. Discussion 

In line with previous research, there was a trend for patients with CLBP to have higher 

muscle activity and delayed stature recovery compared to asymptomatic individuals, 

although the effect size of 0.42 for the comparison of muscle activity (0.71 for the 

comparison with the total, unmatched, patient group) was less than the average effect size 

of 1.14 during standing reported in a recent meta-analysis of 20 studies (Geisser et al., 

2005). In the current study, many of the patients with the greatest body mass were also 

those who were most disabled by their back pain. Excluding these in order to match with 
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the asymptomatic group also had the effect of reducing the average pain and disability 

scores of the patient group, which may have affected the results. The patient group also 

scored significantly higher on anxiety, depression and defensiveness and consisted of a 

greater proportion of DHA individuals.  

 

The results confirm that patients with greater self-report of pain and disability exhibit 

elevated paraspinal muscle activity compared to those with lower self-report scores. There 

was also a trend for those with higher pain to demonstrate reduced stature recovery (and 

this became significant when considering the BEG only). Muscle activity was significantly 

correlated with self-efficacy, depression, anxiety, pain-related anxiety and catastrophising 

and was found to be a partial mediator in the relationship between self-efficacy and pain. 

This is an important finding which verifies the link between psychological and 

biomechanical factors in CLBP and confirms the role of muscle activity as a pathway by 

which psychological factors may affect clinical outcome.  

 

Although muscle activity was significantly associated with a range of psychological 

factors, it was not found to be related to fear of movement (except when considering the 

WBTL group only), which appears contrary to current literature relating to the fear-

avoidance model and muscle guarding. However, this may be because muscle activity was 

only measured during relaxed standing whereas hyperactivity due to muscle guarding, for 

example, may become more apparent in certain postures or during movements perceived as 

threatening/harmful.  

 

The results of the mediational analysis suggest that muscle activity may affect disability 

via its influence on pain, further confirming the importance of muscle activity within LBP. 

However, further analysis indicated that the relationship between these three variables is 
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likely to be more complicated than a single pathway and that, within their impact on pain, 

both muscle activity and disability may separately play a mediating role.  

 

Although there was a trend for a negative link between pain and stature recovery, in 

general the baseline data did not support the hypothesized relationships between stature 

recovery and the other factors considered. In particular, the results did not support the 

hypothesized negative link between muscle activity and stature recovery, which is in 

contrast to the findings of Healey et al. (2005), who did establish such a relationship in 

individuals with mild LBP (RDQ: 5.6 ± 2.9 compared to 11.5 ± 5.9 for the current study). 

The current study had the advantage of deriving data from a clinical sample with moderate 

levels of pain and disability and the results suggest that the relationship between muscle 

activity and stature recovery within this patient population may be more complex than 

originally thought. However, the results may also reflect the heterogeneity typical of such a 

clinical population and the existence of sub-groups within the patient group who exhibit 

different patterns of muscular activity and/or stature recovery. The participant numbers 

were unfortunately insufficient to test for this.  It was interesting to note, however, that 

when considering the patients who attended the BEG only, significant negative 

relationships were observed between stature recovery and both pain and muscle activity. In 

addition, it is possible that the stature change measurements were influenced by patients 

attending the testing session at different times of day, whereas Healey et al. (2005) 

restricted the testing sessions to approximately one hour after rising in the morning.  

 

The repeatability data indicated that even patients with moderate CLBP are able to achieve 

reliable readings in the stadiometer, and the inter-day variation was similar to that reported 

in a previous repeatability study (Kanlayanaphotporn et al., 2002). The ICCs also 

confirmed that pain, disability and the psychological factors considered remained relatively 
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stable over time. The finding of a significant correlation between changes in stature 

recovery and muscle activity in the seven patients who attended twice before starting the 

rehabilitation programme (and who had full EMG data) supports the hypothesized 

relationship between the two measures. It is also consistent with the suggestion that inter-

individual differences were the reason that this relationship was not observed within the 

full baseline data. The results from the two pre-measures additionally highlighted a 

significant link between changes in stature recovery and changes in both disability and 

anxiety. Despite limited patient numbers, these results also showed a significant correlation 

between changes in muscle activity and changes in self-efficacy, further supporting the 

relationship between these two measures.  

 

The regression analysis revealed that, together, self-efficacy and a combined anxiety and 

depression measure accounted for 34% of the variance in disability, beyond that explained 

for by age, sex and pain. Overall, the model explained 68% of the total variance in 

disability, with pain and self-efficacy both uniquely contributing to the prediction of 

outcome. This compares to a figure of 61% of the variance in disability accounted for by 

the predictors in a regression analysis performed by Woby et al. (2007a). Although a 

greater number of cognitive factors were included in this earlier study, pain, self-efficacy 

and depression were found to be the sole factors to contribute unique variance to the 

prediction of disability. A possible limitation of both these studies is that the disability 

measure asks patients to rate the extent to which their back pain interferes with daily 

activities, and the self-efficacy measure asks patients to rate their confidence in performing 

activities in spite of pain. Although these questions are conceptually different, it is possible 

that patients may not have made the distinction and hence that the two measures may not 

be entirely independent. 
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Patients were significantly more defensive than controls and the high proportion of DHA 

patients compared to the asymptomatic group is consistent with similar findings observed 

in a study involving patients with chronic fatigue syndrome (CFS) (Creswell & Chalder, 

2001). Although classification of patient groups is still relatively limited, in general 

chronic illnesses have been associated with high prevalence of a repressive, rather than 

DHA, coping style. This therefore makes the high number of DHA patients in the current 

study an interesting finding, particularly as CFS shares a number of similarities with CLBP 

(such as a cycle of depression, avoidance and de-conditioning) and (as proposed by a 

cognitive behavioural model) defence mechanisms are thought to play an important role in 

the development of CFS (Surawy et al., 1995). To date, however, the effect of 

defensiveness within CLBP remains unclear. Defensiveness is generally assumed to be a 

relatively stable trait (Burns, 2000), and hence the high prevalence suggests that it may be 

a risk factor for CLBP (and possibly chronic illness in general), or associated with poor 

outcome, although this remains to be investigated. Of course, it should be remembered that 

certain coping styles may make certain individuals more likely to attend an active 

rehabilitation programme and then to volunteer for a research study, which is likely to have 

influenced the prevalence observed in the current study. In particular, repressors are 

thought to be reluctant to seek medical support and hence may be less likely to attend such 

a programme. Additionally, responses to the MC-SD may have been affected by patients 

meeting (and expecting to meet again) the researcher, as compared to anonymous 

completion by post, for example. It may have been expected that high defensiveness would 

be associated with elevated muscle activity. In fact, this was not found to be the case and 

there was a trend for a negative relationship between the two variables. Unfortunately, as 

there were only three patients classified as repressors in the current study, it was not 

possible to analyse any links between this coping style and either of the biomechanical 

measures.  
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4.5. Conclusions 

Patients who demonstrated higher paraspinal muscle activity were those with more severe 

CLBP and the mediational analysis also indicated that muscle activity may affect disability 

via its influence on pain. The results therefore support the clinical relevance of this 

measure and suggest that treatments that reduce muscle activity may improve outcome. In 

addition, muscle activity was significantly correlated with a number of psychological 

factors and was found to act as a partial mediator between self-efficacy and pain, 

confirming the link between psychological and biomechanical factors in CLBP. 

Furthermore, it suggests that there may be particular benefit in reducing muscle activity in 

those with low self-efficacy.  

 

The conclusions to the specific hypotheses addressed by this study were as follows: 

 (1) Hypothesis: patients with CLBP demonstrate acceptable levels of repeatability for 

inter-day stadiometer measurements. 

Conclusion: patients with CLBP do demonstrate acceptable levels of repeatability for inter-

day stadiometer measurements. 

 

(2) Hypothesis: patients with CLBP have higher muscle activity and reduced stature 

recovery compared to asymptomatic individuals. 

Conclusion: there was a trend for patients with CLBP to have higher muscle activity and 

reduced stature recovery compared to asymptomatic individuals. 

 

(3) Hypothesis: stature recovery for patients with CLBP is negatively related to each of 

muscle activity, pain and disability. 

Conclusion: there was a trend for patients’ stature recovery to be negatively related to pain, 

but there was no link with muscle activity or disability. However, when considering the 
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BEG only, there was a negative relationship between stature recovery and both muscle 

activity and pain. For the patients who attended twice before starting the rehabilitation 

programme, there was a significant correlation between changes in stature recovery and 

changes in both muscle activity and disability.  

 

(4) Hypothesis: muscle activity for patients with CLBP is related to pain and disability. 

Conclusion: significant correlations supported the hypothesis that patients’ muscle activity 

is related to both pain and disability. 

 
 
(5) Hypothesis: psychological factors are associated with paraspinal muscle activity and 

stature recovery for patients with CLBP.  

Conclusion: muscle activity was significantly related to self-efficacy, depression, anxiety, 

pain-related anxiety and catastrophising and was a partial mediator in the relationship 

between self-efficacy and pain. Psychological factors were not found to be related to 

stature recovery, although changes in stature recovery were linked to changes in anxiety 

for the patients who attended twice before starting the programme.  
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5. Study 2: the effect of a CLBP rehabilitation programme on stature recovery, 

muscle activity and psychological factors  

 

5.1. Introduction 

Individuals with CLBP often exhibit hyperactivity of the superficial paraspinal muscles 

during static postures such as standing (e.g. Ambroz et al., 2000) or full flexion (e.g. 

Watson et al., 1997b). Linked to this elevated muscle activity is the finding that patients 

with mild CLBP appear to exhibit increased loading of the intervertebral discs as 

manifested by delayed stature recovery after loading (Healey et al., 2005a). Altered 

paraspinal muscle activity has also been linked to various psychological factors which have 

been shown to play an important role in CLBP, and this is further supported by the results 

of Study 1. This altered or elevated muscle activity has been suggested as a potential 

pathway by which these factors may affect the development and perpetuation of the 

condition.  

 

Studies investigating the effect of treatment programmes on both abnormal superficial 

back muscle activity and stature recovery are limited. Hupli et al. (1997) found that an 

intense physical exercise rehabilitation programme significantly increased the morning 

height of CLBP patients (by 7.2mm on average) after two and a half weeks compared to 

those who received no treatment. The gain of height was significantly correlated with 

reduction of pain and decrease in disability. The MRI scans of the discs did not show any 

differences after treatment and therefore a reduction in muscle contraction was suggested 

as a possible explanation for this increase.  

 

It has been shown that an absence of flexion-relaxation can be corrected with treatment 

that consists of exercise progression and disability management (Neblett et al., 2003; 



 

 134 

Mayer et al., 2009). Mak et al. (2010) also reported a significant increase in the flexion-

relaxation ratio (FRR) of LBP patients, towards that seen in healthy participants, after an 

intensive 12-week functional restoration programme of physical conditioning, working 

conditioning and work readiness. Watson et al. (1997a) reported that, following a pain 

management programme, CLBP patients demonstrated reduced muscle activity at full 

flexion and a significant increase in the FRR. This was correlated with reductions in fear 

avoidance beliefs and increased self-efficacy beliefs, supporting the link between 

psychological factors and elevated muscle activity.  

 

Research into the effect of rehabilitation programmes on psychological factors is more 

common and it has been shown that such programmes can be effective in positively 

influencing the psychological status of CLBP patients (e.g. Woby et al., 2008). Cognitive 

processes have also been demonstrated to strongly influence treatment outcome (Woby et 

al., 2004). In particular, pre- to post-treatment modifications in pain-related anxiety 

(McCracken et al., 2002), fear (avoidance) (Vlaeyen et al., 2002; Woby et al., 2008), 

psychological distress (Grotle et al., 2006; Mannion et al., 2001a), catastrophising and 

self-efficacy (Foster et al., 2010; Woby et al., 2008) have all been identified as significant 

predictors of clinical outcome, although it is not known specifically how these cognitive 

processes lead to improvements in pain and/or disability. 

 

The aim of this study was to investigate the effect of an active physiotherapist-led 

rehabilitation programme for patients with CLBP. Stature recovery, static paraspinal 

muscle activity and a range of psychological factors were measured both before and after 

the programme and at a six-month follow-up session in order to investigate any 

relationships between the variables and to identify any factors associated with clinical 

outcome.  The results of Study 1 highlighted strong links between paraspinal muscle 
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activity and pain, disability, and a number of psychological factors such as self-efficacy 

and depression. It was therefore hypothesized that muscle activity would be reduced 

following the programme and that changes in muscle activity would be associated with 

improvements in pain and disability and cognitive processes. The failure to find 

relationships between stature recovery and the other outcome measures in Study 1 was 

attributed largely to inter-individual differences and hence it was hypothesized that 

stronger links may be observed between changes in the variables in this longitudinal study. 

In line with previous research (McCracken & Turk, 2002), it was expected that patients 

who had high baseline levels of factors such as anxiety, depression and catastrophising 

would tend to derive less benefit from treatment and hence that these factors would be 

associated with poor clinical outcome. Furthermore, since these factors were shown to be 

linked to levels of muscle activity in Study 1, it was hypothesized that high baseline levels 

of muscle activity would also be related to poor clinical outcome.   

 

The specific hypotheses addressed by this study were as follows: 

(1) following the rehabilitation programme, patients with CLBP demonstrate 

improvements in pain, disability and psychological factors; 

(2) paraspinal muscle activity of CLBP patients is reduced following the rehabilitation 

programme, and this improvement is linked to improvements in pain, disability and 

psychological factors; 

(3) stature recovery of CLBP patients is increased following the rehabilitation programme, 

and this improvement is linked to reductions in muscle activity and improvements in pain, 

disability and psychological factors; 

(4) patients with low baseline levels of both muscle activity and psychological factors, 

such as anxiety, depression and catastrophising, demonstrate better clinical outcome than 

those with high levels. 
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5.2. Methods 

Participants 

Patients were recruited from the waiting list for both the Back Exercise Group (BEG) and 

the Work Back to Life Group (WBTL), both of which are run in North Manchester. Data 

were collected from 23 patients with CLBP (age, 47.7 ± 11.7y; height, 165.4 ± 7.5cm; 

body mass, 75.1 ± 23.0kg). The group was mixed (8 men, 15 women), between the ages of 

23 and 70 years. Fourteen (six men, eight women) of these patients (age, 51.6 ± 8.3y; 

height, 165.2 ± 8.7cm; body mass, 71.9 ± 15.5kg) went on to complete the six-month 

follow-up session. The follow-up group did not differ significantly in terms of age, height 

or body mass, from either the 23 patients who participated after the programme or the total 

patient population included in Study 1. Further details of the patients are provided in the 

General Methods section.    

 

Intervention 

Patients were referred to the rehabilitation programmes via their physiotherapist. The BEG 

involved four sessions (one a week). The first and last sessions were two hours in duration 

and consisted of exercise and education. The middle two sessions were one hour of 

exercise only. The exercise facet of the programme consisted of specific stretching and 

strengthening exercises and became progressively more difficult over the four weeks. 

Patients were also encouraged to exercise daily at home. The educational component 

included: medical terms used to describe back pain, the physical and psychological 

benefits of participating in physical activity and the role of medication in the management 

of back pain. The WBTL group included five sessions (one a week), each of three and a 

quarter hours in duration. This programme included the exercise and education 

components that were in the BEG, but was based more on cognitive-behavioural 

principles. In particular, the WGTL group included individual goal setting aimed at 
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returning patients to activities and tasks that they had stopped doing because of their back 

pain. These were followed up each week. Patients were allocated to either the BEG or the 

WBTL based on the results of TSK and RDQ questionnaires. The WBTL group was 

intended for those patients who were more severely disabled and had a score on the TSK-

11 (a shortened version of the TSK) of at least 26. Further details on the WBTL 

programme are given in the study by Woby et al. (2008). 

 

Procedure 

Patients attended the testing session before starting the rehabilitation programme (except 

for five patients who attended shortly after the programme commenced). Patients then 

returned for another testing session shortly after completing the rehabilitation group and 

then again six months later, where possible. (For one of the patients, the follow-up session 

was carried out nine months later as she was involved in a minor traffic accident just 

before she was due to come back for her six-month follow-up session.) Patients came at the 

same time for each visit (or within one hour of the previous time), except in one case when 

due to work commitments, the patient attended in the morning for the first visit and the 

afternoon for the two subsequent visits. Paraspinal muscle activity was assessed via surface 

electromyography (EMG), whilst both standing at rest and during a RVC. Stature recovery 

over a 40-minute unloading period was measured on a standing stadiometer. Patients also 

completed a series of self-report measures following their visit. Details of both the protocol 

and the measures used are provided in the “General Methods” section.  

 

The procedure, and numbers of patients at each stage, are shown in Figures 5.1 and 5.2. 

The numbers for the BEG and the WBTL groups are shown separately , although the 

limited participant numbers for the WBTL group meant that separate analysis was not 

performed for the two groups. 
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Figure 5.1. Procedure and patient numbers for the BEG 
 
 

 

 

 

Figure 5.2. Procedure and patient numbers for the WBTL group 
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Analysis 

A number of key analyses were carried out. Firstly, a series of t-tests were performed to 

explore whether the baseline characteristics of patients who dropped out of the intervention 

differed from those who completed it. Secondly, one-tailed t-tests were calculated to 

determine whether pre- to post- treatment improvements occurred in the outcome measures 

(i.e. stature recovery, muscle activity, pain, disability, anxiety, depression, functional self-

efficacy, pain-related anxiety, catastrophising and fear of movement). For those patients 

who completed the six-month follow-up, Kolmogorov-Smirnov tests indicated that the 

baseline data for disability and anxiety were not normally distributed and hence Wilcoxon 

signed rank tests were instead used for these variables. Parametric analyses were used in 

respect of the change scores for each of the outcome measures, based on the results of 

Kolmogorov-Smirnov and Shapiro-Wilk tests of normality. Pearson’s correlation 

coefficient was therefore implemented to show the inter-relations that existed between the 

changes that occurred in these measures (both over the duration of the programme and up 

to the end of the six-month follow-up period). Finally, two-tailed correlation coefficients 

were employed to investigate the extent to which any of the measures at baseline were 

linked to overall levels of improvement in pain, disability, muscle activity and stature 

recovery. 

 

5.3. Results 

Experimental mortality 

Of the 34 patients who participated in Study 1 before starting the rehabilitation programme 

(or shortly after the programme commenced), 10 dropped out (which in this case is taken 

to mean that they attended a maximum of two sessions of the programme). A number of 

differences on the self-report measures were observed between those patients who dropped 

out and those who completed the programme as shown in Table 5.1 on page 142.  It should 
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be noted that although stature recovery was greater for ‘drop-outs’ than ‘completers’, the 

data for the drop-out group is limited because four of this group were considered unreliable 

on the stadiometer and therefore their stature recovery results have been excluded. The 

numbers of patients whose data was included in the analysis is shown in Figure 5.3 on 

page 141. In particular, patients who dropped out had lower baseline levels of self-efficacy 

than those who completed the programme. Pain-related anxiety, depression and 

catastrophising were significantly higher for drop-outs than completers. 

 

Pre-post analysis 

As can be seen in Table 5.2 on page 144, the sample represented patients with moderate 

levels of pain and disability. The mean duration of pain was 6.2 years and the median was 

2 years (range: 3 months – 25 years). Twenty two patients attended sessions both before 

and after the programme and one further patient attended before the programme and then 

completed a questionnaire afterwards (and hence did not have full stature or EMG data). 

Twenty patients completed the questionnaire both before and after the programme. Some 

patients found it difficult to maintain a consistent posture in the stadiometer and three 

patients were excluded from the stature recovery data as the standard deviation (SD) of the 

five familiarisation readings was considered to be too high. As for Study 1, a SD of 1.7mm 

was taken as the cut-off point. The remaining patients had an average SD of 1.1mm over 

the five familiarisation readings. Technical problems with the EMG system at the start of 

the study meant that two patients did not have EMG data both before and after the 

programme. As for Study 1, the EMG data of one patient was excluded from the analysis 

as they were considered to be an outlier (muscle activity was < 30% of RVC). The 

numbers of patients included in the analyses are shown in Figure 5.3 on page 141. 
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Figure 5.3. Numbers of patients included in the comparison of baseline measures for those who completed the programme (shown in black) and those 
who dropped out (shown in red) 
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the exception of the Pain Anxiety Symptoms Scale-20 and the Marlowe-Crowne Social Desirability Scale 
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Table 5.1. Baseline measures for those who completed the programme and those who dropped out  
 
 
Variable Completers 

Mean (± SD) 
Drop-outs 

Mean (± SD) 
Effect size 

Stature change (mm) 2.4 (± 2.0) 4.4 (± 2.7)* 0.74 

Muscle activity (% of RVC) 73.8 (± 13.1) 79.0 (± 10.4) 0.50 

Disability 11.5 (± 5.9) 12.1 (± 5.9) 0.10 

Pain NRS 4.8 (± 2.2) 5.0 (± 2.6) 0.07 

Anxiety 8.3 (± 3.5) 10.1 (± 4.3) 0.43 

Depression 5.9 (± 3.5) 8.8 (± 3.5)* 0.81 

Functional self-efficacy 49.3 (± 17.0) 31.8 (± 18.0)** -0.98 

Pain-related anxiety 34.9 (± 21.1) 58.0 (± 27.9)* 0.83 

Catastrophising 18.5 (± 13.3) 28.7 (± 13.2)* 0.76 

Fear of movement 36.8 (± 7.8) 40.6 (± 6.6) 0.58 

Defensiveness 8.2 (± 1.5) 7.3 (± 3.5) -0.26 

 
* p < 0.05, ** p < 0.01  
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Figure 5.4. Numbers of patients included in the pre-post analyses 
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Outcome measures pre- and post-treatment  

For those patients who completed the programme and returned for a second testing session, 

a summary of the outcome measures before and immediately following treatment are given 

in Table 5.2. 

 

Disability, pain, fear of movement, catastrophising and functional self-efficacy were all 

significantly improved immediately following the rehabilitation programmes. It is 

noteworthy that stature recovery was, on average, unchanged, and that the majority of 

patients actually demonstrated no change or a slight increase in muscle activity following 

the programme (although the mean change was not significant).  

 
Table 5.2. Outcome measures pre- and post-treatment  
 
 
Variable Pre 

Mean (± SD) 
Post 

Mean (± SD) 
Effect size 

Stature change (mm) 2.5 (± 2.0) 2.7 (± 2.5) 0.10 

Muscle activity (% of RVC) 73.9 (± 13.2) 75.5 (± 11.1) 0.12 

Disability 11.4 (± 5.9) 9.2 (± 7.1)** -0.37 

Pain NRS 4.7 (± 2.2) 3.4 (± 2.5)** -0.58 

Anxiety 8.4 (± 3.5) 7.6 (± 3.3) -0.24 

Depression 5.9 (± 3.5) 5.7 (± 4.0) -0.06 

Functional self-efficacy 50.7 (± 16.5) 57.0 (± 13.5)* 0.38 

Pain-related anxiety 32.3 (± 18.9) 28.1 (± 20.4) -0.22 

Catastrophising 17.4 (± 12.0) 13.2 (± 10.1)* -0.35 

Fear of movement 36.3 (± 7.3) 32.8 (± 8.2)** -0.47 

 
One outlier excluded from the stature change data as explained on page 145 
* p < 0.05, ** p < 0.01 
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Correlational analysis: changes in stature recovery 

There was a significant relationship between changes in stature recovery and pain such that 

those patients with reduced pain after the programme also tended to have increased stature 

recovery (r = -0.48, p = 0.02). 

 

-8

-4

0

4

8

-4 -2 0 2 4 6 8
Improvement in pain NRS

C
ha

ng
e 

in
 st

at
ur

e 
re

co
ve

ry
   (m

m
)

 

 

 

There was an outlier in the stature recovery data for this study (circled in Figures 5.5 and 

5.6). This was a patient who unexpectedly had a materially negative stature recovery (< -

3mm) on his return visit (and thus distorted the results). As the SD of his familiarisation 

readings was just below the cut-off point, it is likely that this patient found it difficult to 

maintain a consistent posture on the stadiometer. This patient has therefore been excluded 

from the correlation table on page 147. With this outlier excluded, the link with pain 

becomes highly significant (r = -0.60, p < 0.01) and the relationships between changes in 

stature recovery and changes in both disability (r = -0.46, p = 0.04) and catastrophising (r = 

-0.59, p = 0.01) also become significant. In addition, there was a trend for reductions in 

both anxiety (r = -0.35, p = 0.10) and depression (r = -0.41, p = 0.07) to be associated with 

increased stature recovery. 

Figure 5.5. Relationship between changes in stature recovery and changes in pain. 
(A positive improvement in pain on the graph represents a reduction in the pain score 
following the programme.) Outlier circled 
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Changes in stature recovery were significantly linked to all three subscales (Rumination, 

Magnification and Helplessness) of the catastrophising questionnaire and there was a 

highly significant relationship with the Magnification subscale (r = -0.73, p < 0.01).  

 

Correlational analysis: changes in muscle activity 

The patients with increased EMG levels after the programme tended to be those with 

higher baseline self-efficacy (r = 0.53, p = 0.03). Additionally, there was a trend for a 

negative link between changes in both muscle activity and self-efficacy (r = -0.38, p = 

0.08). This indicates that those patients who did have reduced EMG levels following the 

programme were generally those who showed a greater increase in self-efficacy. This 

perhaps reflects the lower initial levels of self-efficacy for these patients.   

 

The correlations between changes in the factors from pre- to post-therapy are shown in 

Table 5.3 on page 147. 

Figure 5.6. Relationship between changes in stature recovery and changes in catastrophising. 
(A positive improvement in catastrophising on the graph reflects a reduction in the score 
following the programme.) Outlier circled 
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Table 5.3. Correlation coefficients between changes in outcome measures  
 
 1. 

 
2. 3. 4. 5. 6. 7. 8. 9. 10. 

1. Stature change  
 

-          

2. Muscle activity 
 

-0.07 -         

3. Disability 
 

-0.46* 0.17 -        

4. Pain  
 

-0.60** 0.07 0.47* -       

5. Anxiety 
 

-0.35 -0.18 0.51* 0.44* -      

6. Depression 
 

-0.41 -0.02 0.56** 0.66** 0.78** -     

7. Self-efficacy 
 

0.32 -0.38 -0.60** -0.50* -0.31 -0.54** -    

8. Pain-related anxiety 
 

-0.24 0.24 0.73** 0.47* 0.29 0.46* -0.63** -   

9. Catastrophising 
 

-0.59* -0.24 0.56** 0.45* 0.43* 0.64** -0.52** 0.55** -  

10. Fear of movement 
 

-0.18 0.21 0.48* 0.38* 0.20 0.40* -0.60** 0.67** 0.64** - 

 
One outlier excluded from the stature change data as explained on page 145 
 
* p < 0.05, ** p < 0.01 
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Reductions in pain-related anxiety and depression had the strongest relationships with 

improvements in disability and pain respectively, although reductions in both pain and 

disability were significantly correlated with improvements in each of the psychological 

factors considered.  

 

Relationships between baseline factors and clinical outcome 

There was a correlation between reductions in pain immediately following the programme 

and high initial levels of pain (r = -0.55, p < 0.01). There was also a trend for a decrease in 

pain to be associated with high baseline levels of pain-related anxiety (r = -0.43, p = 0.07). 

No baseline factors were found to be related to a reduction in disability. 

 

Follow-up data 

Thirteen patients attended all three sessions, including the six-month follow-up, and eleven 

of these completed a questionnaire on each visit. One patient was considered to be 

unreliable on the stadiometer and hence his stature recovery data were omitted from the 

analysis. One further patient attended pre- and post-treatment sessions and completed a 

questionnaire after a following six months.  The numbers of patients included in the 

analyses are shown in Figure 5.7 on page 149. 
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Figure 5.7. Numbers of patients included in the analyses of the follow-up data  
 

 

 
There was a trend for the patients who completed the follow-up sessions to have lower 

initial self-reported pain-related anxiety compared to the total patient population who 

attended for Study 1 (30.4 ± 12.8 vs 42.4 ± 23.9, p = 0.05). The results for the patients who 

completed the follow-up are given in Table 5.4 on page 149. 

 

By the end of the follow-up period, there was a significant reduction in disability, anxiety, 

depression and fear of movement. There were trends for reductions in pain (p = 0.06) and 

catastrophising (p = 0.08). Stature recovery and self-efficacy were significantly higher.  
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(n = 1) 

Questionnaire 
completed  
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 150 

Table 5.4. Outcome measures pre- and post- treatment for patients who completed the follow-up  
 
Variable Pre 

Mean (± SD) 
A 

Post 
Mean (± SD) 

B 

Effect size Follow-up 
Mean (± SD) 

C 

Overall effect 
size  

Post – follow-
up effect size  

p 

Stature change (mm) 2.6 (± 1.6) 3.3 (± 1.7) 0.42 4.5 (± 2.3) 1.18 0.72 A < C** 

Muscle activity (% of RVC) 72.6 (± 14.1) 74.0 (± 9.7) 0.10 69.8 (± 11.4) -0.20 -0.43  

Disability 12.2 (± 5.1) 9.9 (± 7.6) -0.44 8.6 (± 7.8) -0.70 -0.18 A > C* 

Pain NRS 4.9 (± 2.0) 3.5 (± 2.3) -0.71 3.5 (± 2.4) -0.71 0.00 A > B** 

Anxiety 8.9 (± 2.7) 7.6 (± 3.9) -0.49 6.4 (± 4.3) -0.92 -0.30 A > C**, B > C* 

Depression 6.2 (± 3.4) 6.1 (± 4.6) -0.02 4.8 (± 4.3) -0.42 -0.29 A > C*, B > C** 

Functional self-efficacy 52.5 (± 14.0) 56.0 (± 13.9) 0.25 58.6 (± 14.2) 0.43 0.19 A < C* 

Pain-related anxiety 30.4 (± 12.8) 28.5 (± 19.0) -0.15 26.3 (± 19.3) -0.32 -0.12  

Catastrophising 15.7 (± 9.6) 13.8 (± 12.3) -0.36 11.6 (± 10.7) -0.43 -0.18  

Fear of movement 37.7 (± 6.4) 35.4 (± 8.6) -0.36 32.1 (± 13.5) -0.88 -0.38 A > C* 

 
* p < 0.05, ** p < 0.01 
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Relationships between overall changes in outcome measures  

The relationships between changes in the factors from baseline to follow-up are shown in 

Table 5.5 on page 152. Reductions in disability were significantly correlated with 

improvements in all the psychological factors considered and improvements in pain were 

associated with reductions in catastrophising. There was also a trend for overall decreases 

in EMG levels to be associated with improvements in depression (p = 0.06) and self-

efficacy (p = 0.07).  

 

Relationships during the follow-up period 

When considering the period from immediately after the programme to follow-up, 

decreases in muscle activity were associated with changes in anxiety (r = 0.78, p = 0.04). 

No correlation was found between those patients who had a short term increase in muscle 

activity levels immediately following the programme and clinical outcome.  

 
 
Relationships between baseline factors and clinical outcome at follow-up 

A reduction in pain by the end of the six-month follow-up period was significantly linked 

to high baseline levels of pain (r = -0.60), catastrophising (r = -0.66) and defensiveness (r = 

-0.79). An overall reduction in EMG was correlated with high initial levels of muscle 

activity (r = -0.60). There was also a trend for overall increases in stature recovery to be 

linked to low initial self-efficacy (r = -0.56).  
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Table 5.5. Correlation coefficients between overall changes in outcome measures for patients who completed the follow-up  
 
 

 1. 
 

2. 3. 4. 5. 6. 7. 8. 9. 10. 

1. Stature change  
 

-          

2. Muscle activity 
 

0.24 -         

3. Disability 
 

0.29 0.29 -        

4. Pain  
 

-0.08 0.05 0.46 -       

5. Anxiety 
 

0.06 -0.06 0.52* 0.17 -      

6. Depression 
 

0.47 0.51 0.63* 0.12 0.61* -     

7. Self-efficacy 
 

0.08 -0.49 -0.75** -0.46 -0.43 -0.55* -    

8. Pain-related anxiety 
 

0.38 0.23 0.58* 0.11 0.30 0.58* -0.26 -   

9. Catastrophising 
 

-0.18 0.22 0.75** 0.63* 0.37 0.30 -0.63* 0.52 -  

10. Fear of movement 
 

-0.14 0.17 0.74** 0.37 0.76** 0.58* -0.75** 0.44 0.59* - 

 
* p < 0.05, ** p < 0.01 
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5.4. Discussion 

Improvements in both pain and disability were observed in patients who completed the 

rehabilitation programmes. Average pain remained the same at the six-month follow-up, 

but disability continued to decrease. Consistent with previous research, improvements in 

clinical outcome were significantly related to cognitive processes (e.g. Woby et al., 2008), 

and depression and pain-related had the strongest relationships with improvements in pain 

and disability respectively immediately following the programme. Reduced disability at 

the end of the six-month follow-up period was significantly related to improvements in all 

of the psychological factors considered.   

 

Contrary to expectations, immediately following the rehabilitation programme, most 

patients demonstrated either no change or an increase in resting EMG.  However, at the 

six-month follow-up, EMG levels had reduced to below the initial value (although this 

change was not significant). This pattern existed in both absolute and normalised EMG 

levels and therefore the initial increase was not simply due to a reduction in RVC values. It 

perhaps indicates an adaptation period following a programme of increased activity and 

exercise, as the muscles compensate for increased demands in the context of pre-existing 

instability and it is thus, only after an extended period of time that resting EMG levels 

achieve the expected decrease. Interestingly, the increased EMG levels were associated 

with higher initial self-efficacy, perhaps because this reflects greater participation in the 

daily exercise and stretching recommended in the programmes (although unfortunately 

physical activity was not measured in this study). This is not the first study to find that 

EMG levels do not make an immediate return to more ‘healthy’ patterns of activity. 

Mannion et al. (2001b) reported that EMG levels for CLBP patients during full flexion 

were not reduced following active therapy and initial EMG levels during isometric 

exercises were also increased. Additionally an increased rate of decline in EMG median 
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frequency, suggesting increased muscle fatigability, was observed during the post-therapy 

dynamic fatigue test. The authors suggested that patients may be employing different 

motor control/recruitment patterns, perhaps as a result of less guarding mechanisms after 

therapy (Mannion et al., 2001b). This may also be a possible explanation in the current 

study, such that patients are using painful lumbar muscles to maintain upright posture to a 

greater extent than previously, resulting in higher EMG levels. Alternatively, patients may 

be adopting an altered posture, such as a more neutral spine, following the programme, 

leading to changes in muscle activation patterns. This short term effect on muscle activity 

suggests that increases in EMG may not always be detrimental, but may reflect a positive 

adjustment and thus techniques such as EMG biofeedback that aim to decrease EMG levels 

may not be appropriate in such situations. 

 

Perhaps due to this short-term effect of the programme on EMG levels, changes in muscle 

activity were not found to be significantly related to overall changes in any of the other 

outcome measures, although there was a trend for links with improvements in depression 

and self-efficacy by the end of the six-month period. During the follow-up period only, 

changes in muscle activity were correlated with changes in anxiety. 

 

Excluding one outlier, there was a significant negative correlation between changes in pain 

and stature recovery immediately following the programme, confirming the relationship 

between pain and stature recovery identified by Healey et al. (2005a). Although there was 

a trend for this association to be present in the baseline factors analysed in Study 1, the 

relationship between changes in the factors in this longitudinal study is stronger, probably 

due to the removal of the effect of inter-individual differences. Despite the correlation with 

changes in pain, stature recovery was only significantly higher at the follow-up session and 

not immediately following the programme. Immediate increases in stature recovery were 
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also associated with improvements in disability and catastrophising (with a trend for links 

with improvements in anxiety and depression), although changes in muscle activity and 

stature recovery were not found to be related. Furthermore, when considering the overall 

changes up to the six-month follow-up, changes in stature recovery were not linked to 

changes in any of the other outcome measures, possibly as a result of the limited numbers 

for this section of the study. 

 

Although patients were encouraged to continue exercising on completion of the 

programme, this was not monitored, either by the physiotherapists or as part of the current 

study. It is therefore unknown whether the changes observed at follow-up were the result 

of increased physical activity levels. Anecdotally, many patients reported that they had 

continued exercising, but at a reduced level since completing the programme.  

 

The effect sizes observed immediately following the programmes can be compared to the 

results of a study by Woby et al. (2008), who also recruited patients from the WBTL 

programme for their investigation into the role of cognitive processes in clinical outcome 

(although the programme was slightly different at this time. Most notably the final session 

was held two weeks after the fourth session rather than the following week as currently). 

One hundred and thirty seven patients were included, and unsurprisingly, the baseline 

characteristics reveal patients with higher initial levels of disability, fear of movement and 

depression, and lower self-efficacy than the current study, which involved mainly less 

disabled BEG patients. Despite this, mean pain levels actually appear higher in the current 

study (although a visual analogue scale (VAS) was used for the Woby et al. study which 

prevents a direct comparison). Woby et al. reported effect sizes for pre- to post-treatment 

changes of 0.56 for disability and 0.04 for pain, which compares to 0.37 and 0.58 for 

disability and pain respectively in the current study. Woby et al. also reported much greater 
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effect sizes for the psychological factors (depression, fear of movement, functional self-

efficacy and catastrophising) than the current study. Along with the greater effect size for 

disability, this is probably partly a result of the higher baseline levels and also because the 

WBTL group aims to tackle psychosocial issues to a greater extent than the BEG.  

 

Patients who dropped out of the rehabilitation programme tended to report higher 

depression, pain-related anxiety and catastrophising and lower self-efficacy than patients 

who completed the programme. For those who did complete both the programme and the 

six-month follow-up, a reduction in pain by the end of this period was significantly linked 

to high baseline levels of pain, catastrophising and defensiveness. This appears contrary to 

previous research which has tended to show that patients who demonstrate high emotional 

distress, catastrophising and other forms of negative thinking in response to pain tend to 

derive less benefit from treatments (McCracken & Turk, 2002). However, it should be 

remembered that the number of patients who completed the follow-up session in this study 

was limited. Furthermore, patients attending the follow-up had volunteered for a minimum 

of three testing sessions in addition to completing the rehabilitation programme and there 

is therefore likely to be an element of self-selection. In particular, those patients with the 

highest baseline levels of depression, pain-related anxiety and catastrophising and lowest 

self-efficacy tended not to complete the rehabilitation programme or the follow-up session 

and therefore were excluded from this analysis as their clinical outcome was unknown. 

This led to a trend for a lower initial level of pain-related anxiety in the patients completing 

the follow-up compared to the total patient group included in Study 1. Therefore caution 

should be exercised in generalising these results. 
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5.5. Conclusions 

Improvements in both pain and disability were observed in patients who completed the 

rehabilitation programmes. The important role of cognitive processes was highlighted by 

the significant correlations between reductions in disability and improvements in all of the 

psychological factors considered, both immediately following the programme and at the 

six-month follow-up. Significant relationships between changes in stature recovery and in 

pain and disability immediately following the programme supported the hypothesized link 

between these factors, although a significant increase in stature recovery was only 

observed by the end of the six-month follow-up period. 

 

For many of the patients, muscle activity did not decrease immediately following the 

programme, despite improvements in pain and disability, perhaps reflecting a period of 

adaptation or altered patterns of motor control. However, by the end of the six-month 

follow-up, there was a (non-significant) reduction in muscle activity levels, suggesting that 

more ‘normal’ patterns of activity may accompany improved clinical outcome over the 

longer term. 

 

The conclusions to the specific hypotheses addressed by this study were as follows: 

 

(1) Hypothesis: following the rehabilitation programme, patients with CLBP demonstrate 

improvements in pain, disability and psychological factors. 

Conclusion: by the end of the six-month follow-up period, CLBP patients demonstrated 

improvements in disability, self-efficacy, anxiety, depression and fear of movement, with 

trends for improvements in pain and catastrophising. 
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(2) Hypothesis: paraspinal muscle activity of CLBP patients is reduced following the 

rehabilitation programme, and this improvement is linked to improvements in pain, 

disability and psychological factors. 

Conclusion: for many of the patients, muscle activity was unexpectedly increased 

immediately following the programme. Levels were reduced by the end of the six-month 

follow-up period, but this was not significant. There was a trend for overall decreases in 

EMG levels to be associated with improvements in depression and self-efficacy, and 

changes in the follow-up period only were related to changes in anxiety. 

 

(3) Hypothesis: stature recovery of CLBP patients is increased following the rehabilitation 

programme, and this improvement is linked to reductions in muscle activity and 

improvements in pain, disability and psychological factors. 

Conclusion: stature recovery was significantly increased by the end of the six-month 

follow-up period, but not immediately following the rehabilitation programme. Initial 

changes in stature recovery were linked to changes in pain, disability and catastrophising. 

There was also a trend for reductions in both anxiety and depression to be associated with 

increased stature recovery. 

 
 
(4) Hypothesis: patients with low baseline levels of both muscle activity and psychological 

factors, such as anxiety, depression and catastrophising, demonstrate better clinical 

outcome than those with high levels. 

Conclusion: contrary to expectations, for those patients who completed the programme, 

and returned for a six-month follow-up, a reduction in pain by the end of this period was 

significantly linked to high baseline levels of pain, catastrophising and defensiveness. 

Participant numbers were limited, however, and self-selection may have influenced the 

results.  Initial muscle activity levels were not related to clinical outcome. 
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6. Study 3: The effect of superficial heat treatment on paraspinal muscle activity 

and stature recovery 

 

6.1. Introduction 

Superficial heat therapy is commonly used to treat CLBP, both by practitioners and by 

patients at home. It is generally accepted that heat increases the extensibility of collagen 

tissue, decreases joint stiffness, relieves muscle spasm, produces pain relief, and increases 

both blood flow and metabolism (Lehmann & Lateur, 1990). Additionally, the 

interdependence of pain and muscle spasm implies that a reduction in one may cause a 

reduction in the other (Low & Reed, 2000). A Cochrane review (French et al., 2006) 

concluded that there is moderate evidence that heat therapy reduces short-term pain and 

disability for acute back pain, but that there is insufficient evidence regarding the effect of 

heat for CLBP.   

 

Most of the existing studies on superficial heat therapy for LBP have been carried out by 

two research teams, both assessing the effect of the same disposable lumbar heat wrap 

(Thermacare heat wrap) (Mayer et al., 2005; Mayer et al., 2006; Nadler et al., 2002; 

Nadler et al., 2003a; Nadler et al., 2003b). The results of the five studies were 

encouraging. Four of the studies compared the heat wrap with various different 

interventions for patients with acute LBP (Mayer et al., 2005; Nadler et al., 2002; Nadler 

et al., 2003a; Nadler et al., 2003b). For the three Nadler studies, treatments were 

administered for either two or three days or nights, followed by two days of follow-up. By 

the end of the follow-up period, patients using the heat wrap had greater pain relief, 

reduced disability, less muscle stiffness and increased flexibility compared to both those 

taking an oral placebo (Nadler et al., 2003a) and either ibuprofen or acetaminophen 

(Nadler et al., 2002). Overnight use of the wrap also provided effective pain relief 
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throughout the next day, reduced muscle stiffness and disability and improved trunk 

flexibility compared to an oral placebo (Nadler et al., 2003b). Mayer et al. (2005) reported 

that patients receiving combined heat and exercise treatment had significantly improved 

function and reduced disability compared to either exercise or heat treatment alone or a 

control group, and pain relief was significantly greater than for exercise alone or the 

control group. A second study by Mayer et al. (2006) showed heat therapy to be beneficial 

in the prevention and early phase treatment of low back delayed-onset muscle soreness 

(DOMS).  

 

In a study involving 100 patients with acute back pain during emergency transfer to 

hospital, patients were randomly assigned to two groups: active warming with an electric 

heated blanket or passive warming with a woollen blanket (Nuhr et al., 2004). Those 

patients who received active heating had significantly lower pain and anxiety scores and a 

lower heart rate on arrival at hospital compared to those who received passive warming.  

 

The effect of heat treatment on muscle activity or spasm is of particular importance for 

LBP since patients often demonstrate hyperactivity of the superficial paraspinal muscles 

(e.g. Ambroz et al., 2000). This elevated paraspinal muscle activity has also been linked to 

delayed stature recovery in people with mild CLBP (Healey et al., 2005a). Similarly, the 

impact of heat treatment on psychological factors is highly relevant as such factors are 

known to play an important role in the condition and have been linked to the perpetuation 

of pain and disability (Woby et al., 2007a), with altered paraspinal muscle activity 

suggested as a possible pathway by which this may occur.  

  

This study aimed to investigate the effect of superficial heat therapy on both paraspinal 

muscle activity and stature recovery in patients with CLBP, and any relationship between 
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changes in these two factors. In addition, the study aimed to establish whether the heat 

wrap had any effect on the self-report of a range of psychological factors and, if so, 

whether these changes were linked to changes in muscle activity and/or stature recovery. 

As it is generally accepted that heat therapy reduces muscle spasm, it was hypothesized 

that the heat wraps would have the effect of decreasing muscle activity.  

 

Studies 1 and 2 were unable to show the expected relationship between muscle activity and 

stature recovery. For Study 1, this may have been due to pathological differences between 

patients which impacted on stature change results and, in Study 2, relationships with 

muscle activity may have been obscured by a short-term adaptation period immediately 

following the rehabilitation programme. Without these issues, it was hypothesized that the 

previously established link between muscle activity and stature recovery (in patients with 

mild CLBP) would be observed in the CLBP patients included in Study 3. Hence, if the 

heat wrap reduced muscle activity as anticipated, it was expected that this would be 

accompanied by increased stature recovery and that there would be a negative link between 

changes in stature recovery and muscle activity.  

 

Heat therapy has been shown to increase feelings of well-being and reduce anxiety (Nuhr 

et al., 2004). It was therefore expected that wearing the heat wrap would have a short-term 

beneficial impact on the self-report scores on the psychological measures considered. 

Studies 1 and 2 identified correlations between these self-report measures and both stature 

recovery and muscle activity; the results of Study 1 showed strong relationships between 

baseline levels of psychological factors and muscle activity and Study 2 highlighted that 

changes in stature recovery were related to changes in catastrophising, with a trend for 

similar associations with changes in anxiety and depression. Therefore it was hypothesized 

that even short term changes in self-report of psychological factors resulting from wearing 
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the heat wrap may be linked to changes in both paraspinal muscle activity and stature 

recovery in the current study. 

 

The specific hypotheses addressed by this study were as follows: 

(1) superficial heat treatment would result in a reduction in muscle activity and an increase 

in stature recovery for CLBP patients and that changes in these two factors would be 

related; 

(2) superficial heat treatment would have a short term beneficial effect on the self report 

levels of the psychological factors considered and these changes would be linked to 

changes in both muscle activity and stature recovery. 

 

6.2. Methods 

Participants 

Participants were CLBP patients who had completed either the Back Exercise Group 

(BEG) or the Work Back to Life Group (WBTL) within the previous two years. Data were 

collected from 24 patients with CLBP (age, 48.0 ± 9.0y; height, 166.6 ± 7.3cm; body mass, 

80.2 ± 12.9kg). The group was mixed (9 men, 15 women), between the ages of 30 and 61 

years. There was also a control group of 11 asymptomatic participants (age, 47.9 ± 15.4y; 

height, 168.7 ± 11.6cm; body mass, 69.3 ± 13.1kg). Further details in respect of the 

patients are provided in the General Methods section. Candidates were excluded from the 

control group if they had ever experienced recurring or persistent back pain, if they had 

ever lost a working day because of back pain, or had consulted a physician about back pain 

within the last 15 years. Participants were offered £12.50 for each session they attended to 

cover travel and parking expenses and CLBP patients were additionally offered two free 

heat wraps.  
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Procedure 

All participants attended two testing sessions on separate days, both at the same time of 

day. On the second occasion, a heat wrap was given to the participant in advance, with 

instructions to put it on two hours before the time of the appointment. The heat wrap was 

then continued to be worn throughout the testing session, except for when it was briefly 

removed to apply the EMG electrodes. This heat wrap is made of cloth-like material which 

wraps around the lumbar region. It heats to 40C within 30 minutes of exposure to air and 

maintains this temperature for eight hours of continuous wear. 

        

Plate 6.1. Participant wearing the heat wrap 

 

Plate 6.2. Participant wearing the heat wrap 
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Paraspinal muscle activity was assessed via surface electromyography (EMG), whilst both 

standing at rest and during a RVC. The signal was rectified and integrated over a five 

second period to give the integrated EMG (IEMG) value. Stature recovery over a 40-

minute unloading period was measured on a standing stadiometer.  

 

Patients were verbally asked about their pain intensity during the past 24 hours at the end 

of the testing session and completed a series of self-report measures following their visit. 

Following the session with the heat wrap they were asked, if possible, to complete the 

remaining questionnaire booklet in the evening after wearing the wrap all day. Details of 

both the protocol and the measures used are provided in the “General Methods” section.  

 

Analysis 

For the majority of outcome measures, one-tailed dependent t-tests were calculated to 

examine whether there were any differences between the two visits (one with a heat wrap 

and one without). However, for the non-normalised EMG data, a Kolmogorov-Smirnov 

test indicated that the baseline data were not normally distributed and hence a Wilcoxon 

signed rank test was used for this variable. Pearson’s correlation coefficient was used to 

determine whether changes in stature recovery were associated with changes in muscle 

activity. For the self-report measures, Kolmogorov-Smirnov tests indicated that a number 

of the change scores were not normally distributed and Spearman’s correlation coefficient 

was therefore implemented to analyse the change scores for these measures. Two-tailed 

Pearson correlation coefficients (or Spearman’s correlation coefficient for non-normalised 

EMG) were employed to investigate the extent to which any of the measures at baseline 

were linked to reductions in muscle activity. 
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6.3. Results 

It was notable that the patients who participated in this study had significantly lower levels 

of pain and disability and were also psychologically less impaired than the total patient 

group which took part in Study 1. This may have been because Study 1 mainly involved 

patients who were about to commence the rehabilitation programme and hence were likely 

to be experiencing more severe symptoms at that time than the patients in the current study 

who had all completed the programme at some point within the previous two years.  

 

The mean duration of pain was 8.8 years and the median was 2 years (range: 4 months – 40 

years). Eighteen patients completed the questionnaire on both visits. Some patients found it 

difficult to maintain a consistent posture in the stadiometer and three patients were 

excluded from the stature recovery data as the standard deviation (SD) of the five 

familiarisation readings was considered to be too high. As for Study 1, a SD of 1.7mm was 

taken as the cut-off point. The remaining patients had an average SD of 1.0mm over the 

five familiarisation readings. The patient who was identified as an outlier in Study 2 was 

again excluded from the stature recovery data. In addition, one patient was having a flare-

up on his second visit and found lying down was causing him pain. The session was 

therefore terminated early and hence he did not have a stature recovery measurement for 

the heat wrap visit. As for Study 1, one patient was excluded from the EMG data as the 

signal contained high levels of noise and hence was considered unreliable. The numbers of 

patients included in the analyses are shown in Figure 6.1 on page 167.
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Figure 6.1. Numbers of patients included in the analyses (figures in red reflect the numbers when the patients with differences in pain ratings of 3 or 
more are excluded) 
 

 

Fully: All sections of the questionnaire were completed; Excl. HADS: the questionnaires were all completed with the exception of the Hospital Anxiety and Depression Scale 

Both stature & 
EMG data 
included  
(n = 18) 
(n = 12) 

 

Patients recruited to study (n = 24)  
(n = 16) 

Pain NRS completed by all patients 

Questionnaire 
completed  
(n = 15) 
(n = 9) 

 
Fully (n = 14) 

(n = 8) 
Excl. HADS (n = 1) 

(n = 1) 
 
 

Questionnaire 
not 
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(n = 3) 
(n = 3) 

Stature data 
included, EMG 
data excluded  

(n = 1) 
(n = 1) 

Stature data 
excluded, EMG 
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(n = 5) 
(n = 3) 

Full questionnaire 
data  

(n = 3) 
(n = 2) 

Questionnaire 
not completed 

(n = 1) 
(n = 1) 

 

Questionnaire 
not completed  

(n = 2) 
(n = 1) 
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The results of the two visits are shown in Table 6.2 on page 169. Unfortunately the results 

were affected by the naturally fluctuating nature of CLBP and hence a number of patients 

had a notable difference between their pain ratings on the two visits (taken to be a 

difference of at least three on the pain NRS). The pain ratings were based on the pain 

levels over the previous 24 hours, rather than specifically at the time of the visit and the 

differences were not thought to be caused in any way by the wearing of the heat wrap. In 

fact, no patients reported that the heat wrap caused them pain. Six patients had notably 

higher pain ratings at the time of their second visit (wearing the heat wrap) compared to 

their visit without the wrap and two patients had a notably lower pain score. Overall this 

led to higher pain ratings for the heat wrap sessions. Since this was thought to affect the 

results, the same table has been shown (Table 6.3 on page 170), but excluding all patients 

with a difference of at least three in pain ratings between the two visits. 

 

The asymptomatic participants did not exhibit any significant differences in ether stature 

recovery or muscle activity levels between the two visits. Eleven participants were 

included in the analysis but the stature recovery data for one individual was excluded as 

the standard deviation (SD) of the five familiarisation readings was considered to be too 

high. The results for the asymptomatic participants are given in Table 6.1. 

 

Table 6.1. Outcome measures for the asymptomatic participants with and without the heat 

wrap 

Variable Without heat wrap 
Mean (± SD) 

With heat wrap 
Mean (± SD) 

Stature change (mm) 3.7 (± 1.4) 4.2 (± 2.4) 

Muscle activity (% of RVC) 68.7 (± 14.7) 67.5 (± 19.9) 

Muscle activity (IEMG) (µV.s) 23.4 (± 13.5) 24.4 (± 17.7) 
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Table 6.2. Outcome measures with and without the heat wrap  
 
Variable Without heat wrap 

Mean (± SD) 
With heat wrap 
Mean (± SD) 

Significance Effect size 

Stature change (mm) 2.9 (± 2.5) 2.8 (± 1.8)   

Muscle activity (% of RVC) 73.3 (± 11.3) 71.9 (± 13.0)   

Muscle activity (IEMG) (µV.s) 22.9 (± 8.9) 20.1 (± 7.0)* p = 0.02 0.31 

Pain during past 24 hours 3.8 (± 2.2) 4.5 (± 2.6) p = 0.08  

Disability  7.7 (± 5.9) 7.9 (± 5.5)   

Anxiety 6.4 (± 3.5) 6.1 (± 3.7)   

Depression 4.0 (± 2.4) 4.0 (± 2.7)   

Functional self-efficacy 59.7 (± 10.8) 60.6 (± 10.3)   

Pain-related anxiety 28.7 (± 20.9) 25.8 (± 19.7) p = 0.11  

Catastrophising 13.5 (± 10.5) 13.4 (± 12.2)   

Fear of movement 30.1 (± 12.7) 31.2 (± 12.6)   

 

* p < 0.05 
 

The reduction in non-normalised muscle activity represents an average decrease of 9.3% compared to the visit without the heat wrap.  
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Table 6.3. Outcome measures with and without the heat wrap, excluding patients with difference in pain ratings of 3 or more  
 
 
Variable Without heat wrap 

Mean (± SD) 
With heat wrap 
Mean (± SD) 

Significance Effect size 

Stature change (mm) 3.2 (± 2.4) 3.2 (± 1.6)   

Muscle activity (% of RVC) 74.6 (± 12.5) 74.4 (± 11.3)   

Muscle activity (IEMG) (µV.s) 22.5 (± 7.1) 19.7 (± 6.8)* p = 0.05 0.40 

Pain during past 24 hours 3.9 (± 2.6) 3.9 (± 2.5)   

Disability  7.7 (± 6.5) 6.3 (± 6.5)** p < 0.01 0.22 

Anxiety 4.9 (± 3.3) 4.2 (± 3.5)   

Depression 2.7 (± 2.1) 2.6 (± 2.4)   

Functional self-efficacy 57.6 (± 12.3) 61.8 (± 10.2)** p < 0.01 0.34 

Pain-related anxiety 24.7 (± 19.8) 18.5 (± 15.8)* p = 0.04 0.32 

Catastrophising 11.5 (± 9.9) 8.6 (± 9.6)* p = 0.04 0.29 

Fear of movement 27.8 (± 12.6) 29.1 (± 12.9)   

 
* p < 0.05, ** p < 0.01 
 

The reduction in non-normalised muscle activity represents an average decrease of 10.4% compared to the visit without the heat wrap.  
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Relationship between muscle activity and stature recovery  

Including all patients, changes in stature recovery were significantly related to changes in 

non-normalised muscle activity (r = -0.56, p < 0.01), as shown in Figure 6.2. 
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Correlational analysis: changes in stature recovery 

Including all patients, changes in stature recovery were significantly related to changes in 

each of disability (r = -0.70, p < 0.01) (as shown in Figure 6.3 on page 172), fear of 

movement (r = -0.53, p = 0.02) (as shown in Figure 6.4 on page 172), pain (r = -0.43, p = 

0.03), anxiety (r = -0.51, p = 0.03), pain-related anxiety (r = -0.48, p = 0.04) and 

catastrophising (r = -0.49, p = 0.04).  

 
 

 

 

 

Figure 6.2. Relationship between changes in stature recovery and changes in  
non-normalised EMG 
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Figure 6.3. Relationship between changes in stature recovery and changes in disability. 
(A positive improvement in disability on the graph reflects a reduction in the score when 
wearing the wrap.) 

Figure 6.4. Relationship between changes in stature recovery and changes in fear of 
movement. 
(A positive improvement in fear of movement on the graph reflects a reduction in the score 
when wearing the wrap.) 
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Correlational analysis: changes in muscle activity 

Similarly, including all patients, changes in non-normalised muscle activity had 

significant correlations with changes in anxiety (r = 0.79, p < 0.01) (as shown in Figure 

6.5) and fear of movement (r = 0.78, p < 0.01) (as shown in Figure 6.6). 
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Figure 6.6. Relationship between changes in muscle activity and changes in fear of 
movement 

Figure 6.5. Relationship between changes in muscle activity and changes in anxiety 
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There was also a trend for an association with changes in both pain-related anxiety (r = 

0.36, p = 0.07) and self-efficacy (r = -0.37, p = 0.06). 

 

Interestingly, changes in both anxiety and fear of movement were significantly linked to 

changes in both stature recovery and non-normalised muscle activity. However, analysis 

did not support changes in muscle activity as either a partial mediator or a moderator in 

the relationship between changes in any of the psychological factors and changes in 

stature recovery.  

 

Relationships between baseline factors and outcome 

Two-tailed tests revealed that patients who demonstrated reduced muscle activity when 

wearing the heat wrap were those with high baseline levels of both normalised (r = -0.59, 

p < 0.01) and non-normalised muscle activity (r = -0.62, p < 0.01) and low initial 

defensiveness (r = 0.50, p = 0.02). There were also trends for associations with high 

baseline levels of both fear of movement (r = -0.42, p = 0.06) and anxiety (r = -0.42, p = 

0.07). For the patients who took part in this study, high initial levels of non-normalised 

muscle activity were significantly linked to high initial levels of fear of movement (r = 

0.50, p = 0.02) and low defensiveness (r = -0.51, p = 0.02), but no other baseline factor. 

 

Including all patients, the correlations between changes in the factors with and without the 

heat wrap are shown in Table 6.4 on page 175. Changes in disability were significantly 

related to changes in pain, catastrophising and self-efficacy, and changes in pain were also 

associated with changes in pain-related anxiety. 
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Table 6.4. Correlation coefficients between changes in outcome measures  
 
 

 1. 
 

2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 

1. Stature change  
 

-           

2. Muscle activity (% of RVC) 
 

-0.09 -          

3. Muscle activity (non-normalised) 
 

-0.56** 0.52** -         

4. Disability 
 

-0.70** -0.21 0.25 -        

5. Pain  
 

-0.43* -0.00 0.21 0.42* -       

6. Anxiety 
 

-0.51* 0.51* 0.79** 0.19 0.22 -      

7. Depression 
 

-0.26 0.05 0.21 0.10 0.13 0.61** -     

8. Self-efficacy 
 

0.33 -0.12 -0.37 -0.44* -0.33 -0.27 -0.33 -    

9. Pain-related anxiety 
 

-0.48* 0.11 0.36 0.30 0.43* 0.55* 0.71** -0.48* -   

10. Catastrophising 
 

-0.49* -0.40 -0.08 0.67** 0.08 0.13 0.08 -0.27 0.09 -  

11. Fear of movement 
 

-0.53* 0.59** 0.78** 0.21 0.17 0.72** 0.16 -0.20 0.37 -0.00 - 

 
* p < 0.05, ** p < 0.01 
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6.4. Discussion 

Muscle activity expressed as a percentage of the RVC was not significantly different 

between the two visits. However, when the non-normalised values were considered, the 

values for the visit with the heat wrap were significantly lower, even when the patients in 

more pain were included. This therefore suggests that the heat wrap has the effect of 

reducing muscle activity at both rest and during the RVC. The average reduction of all 

patients was approximately 10%, although the effect size was only small to medium.  

 

Normalised EMG values were used in Studies 1 and 2, and this is the typical approach 

when comparing EMG amplitudes. However, it is reasonable to assume that the heat wrap 

would have a similar effect on the muscle activity during an RVC as at rest and therefore 

the use of non-normalised values was considered appropriate in this case. This is consistent 

with the approach that has been taken by previous researchers when investigating the effect 

of temperature on the EMG signal (e.g. Mito et al., 2007, who also carried out their testing 

on different days). There are issues around the inter-day comparison of non-normalised 

values e.g. the skin preparation and exact placement of the electrodes may differ, meaning 

that some variation between visits may be expected. This was seen in the inter-day 

variation during repeated visits in Study 1 and is likely to have contributed to the large 

standard deviation of the reductions seen in the current study. However, the variation in 

intrinsic factors, such as the thickness of the subcutaneous fat layer, is reduced due to the 

repeated-measures design. 

 

Application of heat may potentially affect the EMG signal via changes in the amount of 

sweat and hence skin impedance. However, this was not thought to be the primary cause of 

the observed reduction in muscle activity when patients wore the heat wrap, since a similar 

decrease was not observed for the asymptomatic participants. This is consistent with 
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previous studies involving healthy volunteers participants, which have also tended to report 

that EMG amplitude is unaffected following application of heat (Holewijn & Heus, 1992; 

Krause et al., 2001; Mito et al., 2007; Petrofsky & Laymon, 2005). 

 

Although a significant reduction in muscle activity was observed, this does not necessarily 

mean that the decrease was of clinical relevance. It has been reported, however, that even 

low level, but sustained EMG hyperactivity can contribute to the development and 

maintenance of chronic pain via the intense activity of single muscle fibres (Hägg, 1991). 

Therefore lack of sufficient relaxation may cause damage and prevent repair of damaged 

fibres, leading to pain. This suggests that, even if the heat wrap is able to achieve a small 

decrease in muscle activity, this may have a positive influence on pain in the short-term. In 

fact, in daily life, patients are more likely to wear the wrap when their back pain is most 

severe, which may mean that the true benefit is greater than was measured in the current 

study when patients wore the wrap on a pre-set date. This is supported by the fact that the 

greatest decrease in muscle activity was seen in those with high initial levels of both 

normalised and non-normalised muscle activity. The results also suggested that there may 

particularly be a benefit of heat therapy for those patients with low defensiveness or high 

initial levels of fear of movement or anxiety, as these were associated with greater 

reductions in EMG. It is important to note that the heat wrap remains warm for eight hours 

and is designed to be worn all day, whereas, for practical reasons, the testing session in the 

current study took place two hours after the wrap was put on. Therefore, it may be 

expected that a greater effect may be seen after a longer period of time with the wrap in 

place.  

 

Although, stature recovery was not significantly different when wearing the heat wrap, 

there was a significant relationship between the change in non-normalised muscle activity 
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and the change in stature recovery. There was no link with changes in normalised EMG 

levels. Changes in stature recovery were also significantly related to changes in self-report 

of disability and pain. The results therefore generally support the hypothesized link 

between stature recovery and each of muscle activity, pain and disability as previously 

reported by Healey et al. (2005a). 

 

Patients were asked to fill in the questionnaire booklets, if possible, at the end of the day 

(after wearing the heat wrap for the recommended eight hours) to investigate whether any 

differences in the psychological factors were reported. Excluding the patients with large 

differences in pain, self-report of functional self-efficacy was increased and self-report of 

disability, pain-related anxiety and catastrophising were decreased when wearing the heat 

wrap. It should be remembered that, by definition, self-report measures are not objective 

and may be subject to demand characteristics. In particular, patients might have felt that it 

was expected that they would answer the questionnaire in a more positive manner when 

wearing the heat wrap than without. In general, however, this was not thought to be the 

case because improvements were not reported on all the outcome measures. Therefore it 

was believed that the heat wrap had a positive short term effect on certain aspects of ‘well-

being’. In particular, the wrap appeared to have the effect of making patients feel that they 

were more able to continue with daily tasks, as shown in the decreased disability and 

increased self-efficacy scores. This is consistent with patients’ comments on attending 

when wearing the wrap. Almost all the patients reported the wrap to be pleasant and 

several thought it was helping to reduce stiffness and/or possibly helping with the pain. 

Only two or three patients made slightly negative comments about wearing the wrap, as 

they found the heat to be an annoyance, although this may be partly because this study was 

carried out over the summer and some patients attended on hot days. None of the 
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participants reported that the wrap caused pain and nearly all the patients said that they 

would continue to wear it for the rest of the day after completing the study. 

 

Changes in muscle activity were found to be correlated with changes in self-report of 

anxiety and fear of movement. This supports the strong relationships between muscle 

activity and psychological factors identified in Study 1, and also suggests that changes in 

psychological factors may have mediated the observed reductions in muscle activity. In 

addition, changes in stature recovery were related to changes in anxiety, pain-related 

anxiety, fear of movement and catastrophising. It is of interest that changes in anxiety and 

fear of movement were associated with changes in both muscle activity and stature 

recovery, which would be consistent with the original hypothesis of muscle activity as a 

pathway by which such factors affect stature recovery. However, analysis did not support 

either partial mediation or moderation in this case, although this may be the result of 

limited participant numbers. Additionally, only minimal changes in stature recovery were 

observed following use of the heat wrap, meaning that confounding factors and inter-day 

variation may obscure any relationships.  

 

6.5. Conclusions 

The effect of the heat wrap varied between individuals, and appeared to have particular 

benefit for those with high initial levels of muscle activity and low defensiveness, but 

overall, two hours of wear resulted in a significant decrease in non-normalised EMG 

levels. Care should be taken in generalising these findings due to the small to medium 

effect size and the well-reported issues of comparing non-normalised values for between-

day visits. Although, stature recovery was not significantly different when wearing the heat 

wrap, there was a significant relationship between the change in non-normalised muscle 
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activity and the change in stature recovery. Changes in stature recovery were also 

significantly related to changes in self-report of disability and pain.  

 

The wrap appeared to have a positive short-term effect on self-report of disability, self-

efficacy, catastrophising and pain-related anxiety. Changes in both stature recovery and 

muscle activity were found to be related to changes in many of the psychological factors, 

again supporting the results of Studies 1 and 2 and confirming the link between the 

biomechanical and psychological outcome measures. 

 

The conclusions to the specific hypotheses addressed by this study were as follows: 

 

(1) Hypothesis: superficial heat treatment would result in a reduction in muscle activity 

and an increase in stature recovery for CLBP patients and that changes in these two factors 

would be related. 

Conclusion: superficial heat treatment resulted in a reduction in muscle activity for CLBP 

patients, both at rest and during the RVC. Stature recovery was not significantly reduced, 

although changes in non-normalised muscle activity were negatively correlated with 

changes in stature recovery as hypothesized. 

 
 
(2) Hypothesis: superficial heat treatment would have a short term beneficial effect on the 

self report levels of the psychological factors considered and these changes would be 

linked to changes in both muscle activity and stature recovery. 

Conclusion: superficial heat treatment had a short-term beneficial effect on self-report 

levels of disability, self-efficacy, pain-related anxiety and catastrophising. Changes in 

stature recovery were significantly related to changes in self-report of disability, pain, 

anxiety, pain-related anxiety, fear of movement and catastrophising. Changes in non-
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normalised muscle activity had significant correlations with changes in anxiety and fear of 

movement. 
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CHAPTER SEVEN 
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7. Epilogue: General discussion, conclusions and directions for future research 

 

7.1. General discussion 

This thesis aimed to investigate two main hypotheses. Firstly, that reducing paraspinal 

muscle activity leads to an increase in the rate of stature recovery, and so has a beneficial 

impact on clinical outcome. Secondly, that certain psychological factors are linked to 

levels of muscle activity and that these associations may help to explain causes of, and 

changes in, pain and disability.  

 

The relationship between muscle activity and stature recovery  

The association between paraspinal muscle activity and stature recovery was investigated 

in all three of the studies. In general, the results of the first two studies were unable to 

support the hypothesis of a significant correlation between these factors in NHS patients 

with CLBP, which appears to be in contrast to the findings of Healey et al. (2005a), who 

did establish such a relationship in a group of individuals with mild CLBP, who all self-

managed their pain. The studies within this thesis had the advantage of deriving data from 

a clinical sample with moderate levels of pain and disability and the results suggest that the 

relationship between muscle activity and stature recovery within this patient population 

may be more complex than originally thought. In particular the results of Study 1 may 

reflect the heterogeneity typical of such a clinical population and the existence of sub-

groups within the patient group who exhibit different patterns of muscular activity and/or 

stature recovery. In addition, it is possible that the stature change measurements were 

influenced by patients attending the testing session at different times of day, whereas 

Healey et al. (2005) restricted the testing sessions to approximately one hour after rising in 

the morning. These issues were addressed by the longitudinal nature of Study 2, which 

measured changes in both stature recovery and muscle activity before and after a 
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rehabilitation programme. In this second study, changes in stature recovery were found to 

be related to changes in pain and disability (and also catastrophising), but not to changes in 

muscle activity.  

 

Despite these results, there was some evidence for the hypothesized relationship between 

stature recovery and muscle activity. In Study 1, when considering the patients who 

attended the BEG only, a significant negative relationship was observed between stature 

recovery and muscle activity. In addition, a limited number of patients attended two testing 

sessions before starting the rehabilitation programme and, for the seven patients who had 

full EMG and stadiometer data, there was a significant negative correlation between 

changes in stature recovery and changes in muscle activity. Similarly, Study 3 identified a 

significant negative link between changes in stature recovery and short-term changes in 

non-normalised muscle activity after wearing a heat wrap (despite no overall change in 

stature recovery). It is important to note that all three studies only measured superficial 

muscle activity as recorded by surface EMG and hence no conclusions can be drawn about 

the role of deeper muscles and their effect on stature recovery.  

 

Delayed stature recovery in patients with CLBP 

Although superficial muscle activity was reduced when wearing the heat wrap, the wrap 

did not appear to affect stature recovery. However, Study 2 demonstrated that six months 

after a rehabilitation programme, stature recovery was significantly increased. Since an 

active rehabilitation programme would not be expected to affect pathology, this suggests 

that the delayed stature recovery observed in CLBP patients compared to asymptomatic 

individuals is not primarily the result of pathology. In fact, the stature recovery exhibited 

by the patients at the follow-up session was similar to that shown by the control group in 

Study 1. Study 2 showed that immediate increases in stature recovery following 
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rehabilitation were linked to changes in pain and disability, which supports the clinical 

relevance of the reduced stature recovery observed in CLBP patients, although the study 

did not aim to prove causality. The link between changes in stature recovery and changes 

in self-reported disability was confirmed in both Studies 1 and 3, with Study 3 also 

showing that changes in stature recovery were related to changes in pain.  

 

Links with psychological factors 

Study 1 identified significant correlations between muscle activity and both pain and 

disability. Relationships were also established between muscle activity and a number of 

psychological factors, namely self-efficacy, depression, anxiety, pain-related anxiety and 

catastrophising. Furthermore muscle activity was found to partially mediate the link 

between self-efficacy and pain. This is an important finding which confirms the 

importance of paraspinal muscle activity as a pathway by which psychological factors 

affect clinical outcome. Although it is widely accepted that psychological factors such as 

self-efficacy have an impact on clinical outcome and there is also a limited body of 

research which has reported correlations between such factors and muscle activity, this is 

one of the first studies to show that muscle activity acts as a partial mediator in this way. 

 

Although muscle activity was significantly associated with a range of psychological 

factors, it was not found to be related to fear of movement (except when considering the 

WBTL group only), which appears contrary to current literature relating to the fear-

avoidance model and muscle guarding. However, this may be because muscle activity was 

only measured during relaxed standing whereas hyperactivity due to muscle guarding, for 

example, may become more apparent in certain postures or during movements perceived as 

threatening/harmful.  
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Following use of a heat wrap, changes in stature recovery were significantly related to 

changes in fear of movement, anxiety, catastrophising and pain-related anxiety. The 

repeatability data in Study 1 (based on two visits before commencing the programme) also 

highlighted a correlation between changes in both stature recovery and catastrophising, and 

following the rehabilitation programme, changes in stature recovery were significantly 

related to changes in catastrophising (with a trend for links with anxiety and depression). 

As there was no observed link with muscle activity in this second study, it suggests that 

there may be an alternative mechanism by which such factors are associated with stature 

recovery. Alternatively, the common link may be an aspect of muscle activity that was not 

measured within these studies. For example, any causal changes in the patterns or levels of 

paraspinal muscle activity may be more complicated or perhaps occurring at a deeper level 

than could be detected by four sites of surface EMG. Additionally, the rate at which stature 

recovery occurs may be associated with the ability to relax during the 40-minute unloading 

period. This could conceivably be associated with factors such as pain or anxiety, but 

would not necessarily be reflected in the subsequent EMG measurement during standing. 

In hindsight, it would have therefore been informative to also record the EMG levels 

during the unloading period. The actual EMG value used was calculated as the average of 

the measurements taken at the beginning, middle and end of the 40-minute unloading 

period and it was observed that some patients did demonstrate a reduction in EMG levels 

over the three readings; however this reduction in muscle activity was not found to be 

related to stature recovery. 

 

Muscle activity, disability and pain 

The results of the mediational analysis suggest that muscle activity affects disability via its 

influence on pain. However, the relationship between these three variables is likely to be 

more complicated than a single pathway and, within their impact on pain, both muscle 
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activity and disability may separately play a mediating role. This potential interaction 

between muscle activity, disability and pain further supports the importance of muscle 

activity in LBP and implies that reducing muscle activity may have a beneficial impact on 

clinical outcome.  

 

This notion of an interaction between muscle activity, disability and pain appears broadly 

consistent with the biomedical/biomechanical models of LBP such as the pain-spasm-pain, 

pain adaptation and instability models. Although these models generally suggest pain as an 

initial trigger for increased muscle activity, once the condition has become chronic, the 

increased muscle activity itself is thought to then cause a cycle of increased pain and 

disability via hyperactivity of painful muscles, lack of muscle relaxation, altered patterns 

of movement and increased and abnormal spinal loading. The results could also be argued 

to be consistent with the fear avoidance and muscle guarding theories. These propose that, 

although initially triggered by pain, fear of pain/movement can subsequently lead to 

increased levels of muscle activity, pain and disability and a vicious cycle of fear of 

pain/movement, increased pain and disability, deconditioning and muscle hyperactivity. 

 

Relationships between baseline factors and outcome and sub-groups 

Patients with high baseline levels of anxiety, pain-related anxiety and catastrophising and 

low levels of self-efficacy were those least likely to complete the programme. Patients who 

did complete, however, showed improvements in pain, disability and self-report measures 

that persisted to at least the six-month follow-up session. From the self-selected group who 

participated in the follow-up, high initial levels of pain, catastrophising and defensiveness 

were associated with greater overall reductions in pain. To some extent, this may just 

reflect the fact that the most anxious patients had dropped out before this stage, as well as 

the fact that the patients in the most pain had the most to gain. However, it also emphasises 
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the importance of encouraging attendance and completion of the programme, as those most 

likely to drop out are potentially those who would benefit most. 

 

The results of Study 1 highlight that muscle hyperactivity plays an important role, 

particularly for those patients with low self-efficacy and/or high levels of depression, 

anxiety, pain-related anxiety and catastrophising. As muscle activity acts as a partial 

mediator in the link between back pain and self-efficacy (with a trend for a similar role in 

the link with depression, anxiety, pain-related anxiety and catastrophising), a reduction in 

muscle activity may be expected to help reduce the effect of these factors on pain. This 

therefore suggests that interventions that are able to reduce muscle activity may be of 

particular benefit to patients demonstrating these characteristics, which may help in the 

targeting of treatment for LBP.  

 

The patients who appeared to benefit most from wearing the heat wrap (in terms of 

reductions in muscle activity) were those with high initial levels of both normalised and 

non-normalised muscle activity, low baseline defensiveness and high initial fear of 

movement and anxiety. This may also suggest that such patients may benefit from other 

interventions aimed at reducing muscle activity, such as massage. 

 

Coping styles 

The results of Study 1 highlighted that a high proportion of the patients were classified as 

defensive high-anxious (DHA). This is in contrast to a number of studies which have 

instead found the repressive coping style to be prevalent in patients with chronic illnesses, 

although a similar finding was reported for chronic fatigue syndrome. The role of 

defensiveness within CLBP is not an area widely covered by the literature, although the 

current findings suggest that it may be a risk factor for either initial onset or poor clinical 
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outcome. It may have been expected that high defensiveness would be associated with 

elevated muscle activity, particularly given the strong positive relationships between 

muscle activity and the other psychological factors considered. In fact, this was not found 

to be the case and there was a trend for a negative relationship between the two variables. 

It is not clear why this should be and it would be interesting to investigate this further.  

 

As defensiveness was assumed to be a stable trait, patients were only asked to fill in the 

MC-SD once. The decision to include the MC-SD was based on the preliminary findings 

of Studies 1 and 2, which highlighted anxiety as a potentially important factor, justifying 

further sub-classification of patients within the low/high anxious groups. As it was 

included at a later date, the MC-SD was completed at varying points within the treatment 

process, which may have affected results if, in fact, defensiveness is affected by factors 

such as clinical outcome. In hindsight, it would have been informative to administer the 

MC-SD more than once to assess whether defensiveness did remain stable throughout the 

rehabilitation programme and six-month follow-up period. The answer to this question is 

particularly pertinent since a reduction in pain by the end of the six-month follow-up was 

observed to be linked to high baseline levels of defensiveness, but it is unknown whether 

reductions in pain were linked to changes in defensiveness. If this were the case, it may 

encourage interventions that aim to reduce defensiveness. A positive conclusion, however, 

is that defensiveness did not appear to be a barrier to improvement during rehabilitation. 

 

Repressors tend to be overly positive, both in terms of interpretation bias (Eysenck, 2000), 

and in predicting their future performance (Jones et al., 2004). This may have an impact on 

pacing, potentially leading to task persistence and endurance behaviour. In fact, 

Hasenbring, Hallner and Rusu (2009) describe an endurance subgroup characterised by 

task persistence behaviour linked with marked positive mood despite pain, which may 
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overlap with the group of patients classified as repressors. Unfortunately, given the very 

small number of repressors identified, it was not possible to investigate whether a 

repressive coping style was associated with elevated muscle activity, as would be 

consistent with the increased physiological reactivity predicted by the theory. In fact, the 

number of repressors identified in Study 1 is slightly fewer than might be expected in a 

typical non-clinical population, probably reflecting the reluctance of individuals with this 

coping style to initially seek medical support and then to persist with a additional 

rehabilitation programme. Screening patients for a repressive coping style may help during 

their subsequent treatment as likely effects on pacing and under-reporting of ‘true’ levels 

of distress could be acknowledged and allowed for. 

 

Superficial heat treatment 

The effect of the heat wrap varied between individuals, and appeared to have particular 

benefit for those with high initial levels of muscle activity and low defensiveness, but 

overall, it was associated with a significant decrease in non-normalised EMG levels. This 

may have a positive influence on pain in the short-term. Although the reduction in muscle 

activity only represented a small to medium effect size, this result was based on two hours 

of wear, whereas the wrap is actually designed to be worn for eight hours. Additionally, in 

daily life, patients may be more likely to wear the wrap during periods of higher pain and 

possible higher muscle activity, which may lead to a greater benefit than was measured in 

the current study. The wrap appeared to have a positive short-term effect on self-report of 

disability, self-efficacy, catastrophising and pain-related anxiety and, in particular, there 

were significant correlations between reductions in anxiety and fear of movement and 

decreases in muscle activity. It is therefore possible that the beneficial effects of the heat 

wrap on muscle activity occurred, to some extent, via its effect on psychological factors.    
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Power analysis 

Power analysis based on the correlations between stature recovery and each of muscle 

activity, pain and disability reported by Healey et al. (2005a) suggested that a sample size 

of 32 would be sufficient to achieve power of 80% in detecting a link between these 

baseline measures. For reasons stated above however, any associations with stature 

recovery may be weaker for the patients included in the current study. In fact 47 patients 

participated in Study 1, although 13 were excluded from the stadiometer and/or EMG data 

(due to technical problems or because their data were considered unreliable), but a post-

hoc power analysis for the stature recovery and pain data indicated power of only 39%. A 

priori power analysis was not carried out for Studies 2 and 3 and the lower participant 

numbers for these studies (particularly for the follow-up data in Study 2) inevitably 

resulted in reduced power, which may have led to correlations being overlooked. The 

results of these studies should therefore be interpreted with care with this in mind. The 

results of these studies should therefore be interpreted with this in mind. As is often the 

case, greater participant numbers would have been preferred. However, even where 

associations were not found to be significant, the results still form a useful basis for further 

research.   

 

7.2. Conclusions and directions for future research 

The conclusions to the specific hypotheses addressed by each study were as follows: 

 

Study 1 

(1) Hypothesis: patients with CLBP demonstrate acceptable levels of repeatability for 

inter-day stadiometer measurements. 

Conclusion: patients with CLBP do demonstrate acceptable levels of repeatability for inter-

day stadiometer measurements. 
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(2) Hypothesis: patients with CLBP have higher muscle activity and reduced stature 

recovery compared to asymptomatic individuals. 

Conclusion: there was a trend for patients with CLBP to have higher muscle activity and 

reduced stature recovery compared to asymptomatic individuals. 

 

(3) Hypothesis: stature recovery for patients with CLBP is negatively related to each of 

muscle activity, pain and disability. 

Conclusion: there was a trend for patients’ stature recovery to be negatively related to pain, 

but there was no link with muscle activity or disability. However, when considering the 

BEG only, there was a negative relationship between stature recovery and both muscle 

activity and pain. For the patients who attended twice before starting the rehabilitation 

programme, there was a significant correlation between changes in stature recovery and 

changes in both muscle activity and disability.  

 

(4) Hypothesis: muscle activity for patients with CLBP is related to pain and disability. 

Conclusion: significant correlations supported the hypothesis that patients’ muscle activity 

is related to both pain and disability. 

 
 
(5) Hypothesis: psychological factors are associated with paraspinal muscle activity and 

stature recovery for patients with CLBP.  

Conclusion: muscle activity was significantly related to self-efficacy, depression, anxiety, 

pain-related anxiety and catastrophising and was a partial mediator in the relationship 

between self-efficacy and pain. Psychological factors were not found to be related to 

stature recovery, although changes in stature recovery were linked to changes in anxiety 

for the patients who attended twice before starting the programme.  
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Study 2 

(1) Hypothesis: following the rehabilitation programme, patients with CLBP demonstrate 

improvements in pain, disability and psychological factors. 

Conclusion: by the end of the six-month follow-up period, CLBP patients demonstrated 

improvements in disability, self-efficacy, anxiety, depression and fear of movement, with 

trends for improvements in pain and catastrophising. 

 

(2) Hypothesis: paraspinal muscle activity of CLBP patients is reduced following the 

rehabilitation programme, and this improvement is linked to improvements in pain, 

disability and psychological factors. 

Conclusion: for many of the patients, muscle activity was unexpectedly increased 

immediately following the programme. Levels were reduced by the end of the six-month 

follow-up period, but this was not significant. There was a trend for overall decreases in 

EMG levels to be associated with improvements in depression and self-efficacy, and 

changes in the follow-up period only were related to changes in anxiety. 

 

(3) Hypothesis: stature recovery of CLBP patients is increased following the rehabilitation 

programme, and this improvement is linked to reductions in muscle activity and 

improvements in pain, disability and psychological factors. 

Conclusion: stature recovery was significantly increased by the end of the six-month 

follow-up period, but not immediately following the rehabilitation programme. Initial 

changes in stature recovery were linked to changes in pain, disability and catastrophising. 

There was also a trend for reductions in both anxiety and depression to be associated with 

increased stature recovery. 
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(4) Hypothesis: patients with low baseline levels of both muscle activity and psychological 

factors, such as anxiety, depression and catastrophising, demonstrate better clinical 

outcome than those with high levels. 

Conclusion: contrary to expectations, for those patients who completed the programme, 

and returned for a six-month follow-up, a reduction in pain by the end of this period was 

significantly linked to high baseline levels of pain, catastrophising and defensiveness. 

Participant numbers were limited, however, and self-selection may have influenced the 

results.  Initial muscle activity levels were not related to clinical outcome.  

 

Study 3 

(1) Hypothesis: superficial heat treatment would result in a reduction in muscle activity 

and an increase in stature recovery for CLBP patients and that changes in these two factors 

would be related. 

Conclusion: superficial heat treatment resulted in a reduction in muscle activity for CLBP 

patients, both at rest and during the RVC. Stature recovery was not significantly reduced, 

although changes in non-normalised muscle activity were negatively correlated with 

changes in stature recovery as hypothesized. 

 
 
(2) Hypothesis: superficial heat treatment would have a short term beneficial effect on the 

self report levels of the psychological factors considered and these changes would be 

linked to changes in both muscle activity and stature recovery. 

Conclusion: superficial heat treatment had a short-term beneficial effect on self-report 

levels of disability, self-efficacy, pain-related anxiety and catastrophising. Changes in 

stature recovery were significantly related to changes in self-report of disability, pain, 

anxiety, pain-related anxiety, fear of movement and catastrophising. Changes in non-
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normalised muscle activity had significant correlations with changes in anxiety and fear of 

movement. 

 

The overall aim of the thesis was: 

Global aim: To establish whether active rehabilitation programmes and superficial heat 

treatment result in reduced paraspinal muscle activity in CLBP patients and whether this 

affects an increase in the rate of stature recovery. If so, to investigate whether this has a 

beneficial effect on clinical outcome, or can help to identify any subgroups of patients for 

whom this approach might be most effective.  

 

In conclusion, there was limited evidence for a link between muscle activity and stature 

recovery within the CLBP patient population, but there was no evidence that reducing 

paraspinal muscle activity directly affected an increase in the rate of stature recovery. 

However, stature recovery was significantly increased to levels similar to an asymptomatic 

control group following an active rehabilitation programme, suggesting that the delayed 

recovery in CLBP patients is not primarily caused by pathology. The link between initial 

changes in stature recovery and clinical outcome supports the argument that the increase is 

of clinical relevance. Future investigations with a more intensive heat treatment (as well as 

other interventions aimed at muscle relaxation) may be expected to lead to a more marked 

reduction in muscle activity and hence provide further information regarding the 

association between changes in muscle activity and stature recovery. Overall, the results 

indicated that stature recovery measurements were less useful than expected for 

comparisons between patients with back pain and should not be used as a proxy indicator 

of absolute levels of pain or disability, or of the impact of psychological factors. In 

contrast, when considering intra-individual changes in stature recovery over time, and 

following rehabilitation or heat treatment, the results were more positive. Changes in 
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stature recovery were linked to changes in pain, disability and a number of psychological 

factors, both in Studies 1 and 3, where the measurements were up to two weeks apart and 

also in Study 2, where the measurements were up to six weeks apart. However, no 

correlations were found in the follow-up data for Study 2, suggesting that comparisons of 

stadiometer readings taken six months apart may be less reliable. Nevertheless, over 

periods of up to six weeks, stature recovery measurements could potentially be used as a 

proxy indicator of changes in clinical outcome. 

 

There were a number of important findings regarding the role of muscle activity in CLBP. 

Study 1 identified significant correlations between muscle activity and both pain and 

disability and indicated that muscle activity affects disability via its influence on pain. 

Relationships were also established with each of self-efficacy, depression, anxiety, pain-

related anxiety and catastrophising. Furthermore muscle activity was found to partially 

mediate the link between self-efficacy and pain. By measuring EMG levels, it was 

observed that there appears to be an adaptation period immediately following the 

rehabilitation programme, during which levels of muscle activity remain broadly the same, 

or even increase, before eventually reducing as expected. These findings confirm that 

muscle activity plays an important role in CLBP, particularly as a pathway by which 

psychological factors may impact on clinical outcome. This is despite EMG readings only 

being taken during relaxed standing at rest. More information may be gained by examining 

muscle activity levels in different postures or during movements perceived as 

threatening/harmful.  

 

The role of muscle activity as a mediator between certain psychological factors and pain 

suggests that interventions that are able to reduce muscle activity may be of particular 

benefit to patients demonstrating these characteristics, which may help in the targeting of 
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treatment for LBP. For example, scores which exceed pre-set levels on psychological 

questionnaires could act as triggers to indicate that a patient is likely to demonstrate 

elevated muscle activity and that interventions, such as massage or relaxation techniques 

which are focused on reducing that hyperactivity, may be appropriate. These patients may 

also benefit simply by receiving education regarding the relationships between certain 

psychological factors and muscle activity and learning techniques to relax their back 

muscles during times of high anxiety, for example. Alternatively, high levels of muscle 

activity might indicate that a patient should be screened for the presence of psychological 

factors as a priority and that they may benefit from receiving treatments such as CBT, 

which aim to tackle psychosocial issues. However, the observations following the 

rehabilitation programme demonstrate that an immediate decrease in EMG levels may not 

always be the optimal result for long-term improvements in clinical outcome and that a 

period of adaptation might be expected. Research is needed to measure EMG levels 

following a cognitive therapy that does not include an exercise component to see whether a 

similar adaptation period is observed, or whether this is an adaptation to increased levels of 

physical activity only.  

 

The high proportion of defensive high-anxious (DHA) individuals within the CLBP 

population is an interesting finding. Longitudinal studies are needed to clarify whether this 

coping style is a risk factor for initial onset of LBP, whether it is associated with poor 

outcome, or even whether a more defensive coping style tends to be adopted in response to 

a chronic condition, as has been indicated by some of the initial research in this area. It is 

important to understand the role that coping styles play within the development of CLBP 

and hence whether interventions aimed specifically at reducing defensiveness might be 

associated with improved outcome for CLBP patients. High defensiveness, however, did 

not appear to be a barrier to benefiting from treatment as reductions in pain following 
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rehabilitation were linked to high baseline levels of defensiveness. Information regarding 

the DHA coping style is limited due to its scarcity and hence little is known about 

associated cognitive biases or coping strategies and their effect on treatment effectiveness. 

The observation of a high prevalence of DHA individuals within the CLBP population 

provides an opportunity to study this coping style and its impact in more detail.  

 

Only a limited number of patients were identified as repressors, although this may be 

because repressors would be less likely to participate in such a study. It would therefore be 

useful to establish the prevalence of this coping style within CLBP, whether it is in fact 

maladaptive within this condition and whether repressors do display the elevated muscle 

activity that might be anticipated from the theory. In general, classifying coping style may 

help identify vulnerable patients, highlight possible under-reporting of distress (in the case 

of repressors) and help with more effective targeting of treatments. For example, 

treatments that give repressors a greater feeling of control may encourage participation. In 

addition, the tendency to be overly positive may have an impact on pacing, potentially 

leading to task persistence despite pain, in which case education regarding effective pacing 

may be beneficial. Further studies are needed to investigate the link between coping style 

and pacing and whether a repressive coping style is associated with an endurance-related 

pattern of high persistence behaviour. To date, the effect of coping styles within CLBP, or 

even the prevalence of different coping styles with the CLBP population, has not been 

addressed.  

 

To summarise, the three studies were unable to unequivocally confirm that elevated 

paraspinal muscle activity and stature recovery were related in patients with CLBP and that 

reducing muscle activity would necessarily lead to improved stature recovery. However, 

the results do indicate that both stature recovery and muscle activity play an important role 
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within CLBP and the management of the condition. The key findings from the thesis with 

respect to muscle activity were that significant correlations support the hypothesis that 

patients’ muscle activity is negatively related to both pain and disability and that 

mediational analysis suggests that muscle activity affects disability via its influence on 

pain. Muscle activity is significantly related to self-efficacy, depression, anxiety, pain-

related anxiety and catastrophising and is a partial mediator in the relationship between 

self-efficacy and pain. In addition, there appears to be an adaptation period such that 

muscle activity is not reduced immediately following a rehabilitation programme. The 

principal results in respect of stature recovery were that changes in stature recovery are 

linked to changes in both clinical outcome and psychological factors and that stature 

recovery is significantly increased six months after a rehabilitation programme. The thesis 

also made the important finding of a high prevalence of the DHA coping style within the 

CLBP population.  

 

There are a number of clinical implications which follow from the findings in the thesis. 

The results generally support the importance of muscle activity in LBP and indicate that 

reducing muscle activity may have a beneficial impact on clinical outcome. The role of 

muscle activity as a mediator between psychological factors and pain suggests that 

interventions that are able to reduce muscle activity may be of particular benefit to patients 

demonstrating characteristics such as low self-efficacy. Furthermore, the presence of 

elevated muscle activity might indicate that a patient should be screened for the presence 

of psychological factors as a priority and conversely, high scores on certain psychological 

questionnaires might act as triggers to indicate that a patient is likely to demonstrate 

elevated muscle activity. Superficial heat treatment was associated with both a short-term 

decrease in muscle activity and a positive effect on self-report of disability, self-efficacy, 

catastrophising and pain-related anxiety. However, the results of the longitudinal study 
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also highlight that an immediate decrease in EMG levels following active treatment may 

not always be the optimal response for long-term improvements in clinical outcome and 

that a period of adaptation might be expected. The relationship between stature change and 

muscle activity appears to be more complex than originally hypothesized. Six months after 

a rehabilitation programme, however, the rate of stature recovery might be expected to 

have increased to levels similar to asymptomatic individuals, suggesting that the delayed 

recovery seen in CLBP patients is not primarily the result of pathology. The results support 

the use of changes in stature recovery measurements as a proxy indicator of changes in 

clinical outcome over periods of up to six weeks, but measurements should not be used as 

indicators of absolute levels of pain or disability, or of the impact of psychological factors. 

A high prevalence of patients classified as DHA was identified within the patient group 

attending the outpatient rehabilitation programme and therefore treatments may be more 

effective if targeted at this particular coping style. In contrast, the number of repressors 

was lower than might be expected in the general population and hence tailoring 

interventions to better suit this coping style (for example, by giving patients a greater sense 

of control) may encourage attendance.  
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