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Abstract

Chronic low back pain (CLBP) is a multifactorial condition with a variety of 

symptoms; one being gait variability. The lumbar spine and its musculature are 

important in controlling gait and in CLBP the lumbar extensors are often 

deconditioned. Because of this specific exercise for the lumbar extensors is often 

recommended. It was therefore of interest to examine relationships between lumbar 

kinematic variability during gait, with pain, disability and isolated lumbar extension 

(ILEX) strength in CLBP participants in addition to the effects of a 12 week 

intervention of ILEX exercise upon these variables. Twenty four CLBP participants 

were assessed for lumbar kinematics during gait, ILEX strength, pain (VAS), and 

disability (ODI) pre and post a 12 week intervention. Kinematic variability has been 

previously examined using Winter’s coefficient of variation (CV). We utilised novel 

methods of differentiating waveform pattern (CVp) and offset (CVo) variability for 

comparison. Participants were randomised to either a training group undergoing 12 

weeks of ILEX exercise 1x/week or a non-training control. Examination of Winters 

CV, CVp and CVo showed they incorporate largely different sources of variability and 

that CVp best represents motor repeatability. Baseline comparisons also showed 

kinematic variables differed across movement planes; displacement and Winter’s CV 

highest and similar in frontal and transverse planes, and CVp and CVo higher in the 

sagittal plane compared to frontal and transverse planes which were similar. 

Spearman’s correlations of baseline data showed significant correlations between 

transverse plane CVp and ILEX strength (r = -.411) and ODI (r = .401). However, VAS 



was not correlated with CVp in any plane. These findings contrast with earlier studies 

utilising Winter’s CV. CVp instead suggests that highest variability occurs in sagittal 

plane movement during gait in CLBP. After the ILEX intervention the training group 

showed a significant reduction in sagittal plane CVp  (-20.90+43.53%) indicating 

improved motor pattern replication. Considering the role of the lumbar extensors in 

gait, the relationship between both ILEX strength and ODI with transverse plane CVp 

suggests gait variability may result in consequence of lumbar extensor 

deconditioning or disability accompanying CLBP. The ILEX intervention however 

appeared to specifically improve sagittal plane variability perhaps due to the plane of 

movement utilised during the exercise. 
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1. Introduction

Chronic low back pain (CLBP) is a highly prevalent musculoskeletal disorder 

(Waddell & Burton. 2000; Walker et al. 2000) with costs amounting to billions 

worldwide (Katz, 2006; Freburger et al., 2009). Despite its prevalence, in as much as 

85% of LBP cases no specific patho-anatomical diagnosis can be found (White & 

Gordon, 1982). However, more recently it is acknowledged as a multifactorial 

condition with a variety of associated dysfunctions (National Research Council, 

1998; National Research Council & Institute of Medicine, 2001). One of the 

dysfunctions is atypical gait pattern (Waddell et al., 1997; Vogt et al., 2001).

Average movement amplitudes of the trunk and pelvis in CLBP participants are 

usually not significantly different from those seen in asymptomatic participants (Vogt 

et al., 2001; Lamoth et al., 2006a; Seay et al., 2011a). However despite this, CLBP 

participants do present differently in other aspects of lumbar spine movement, such 

as inability to adapt pelvis/trunk coordination phase differences during increases in 



walking velocity,and greater stride-to-stride variability of lumbar spine kinematics with 

respect to the pelvis. Healthy participants demonstrate relatively low stride-to-stride 

variability in lumbar kinematic patterns during both level and incline gait (Vogt et al., 

1999). However, greater stride-to-stride variability at the lumbar spine in all 

movement planes (Vogt et al., 2001), greater frontal plane coordination variability of 

the pelvis and trunk (Lamoth et al., 2006a; Seay et al 2011b) and more rigid 

transverse plane coordination variability of the pelvis and trunk (Lamoth et al., 2002; 

Lamoth et al., 2006a; van der Hoorn et al., 2012) is reported in CLBP participants 

compared with healthy controls. These atypical patterns are combined with poorer 

erector spinae activity adaptability to unexpected perturbations (Lamoth et al., 2004), 

or walking velocity changes (Lamoth et al., 2006b). In fact, the findings of numerous 

studies are suggestive of muscular dysfunction of the lumbar extensors during gait in 

those with CLBP compared with asymptomatic controls (Arendt-Nielsen et al., 1996; 

Vogt et al., 2003; Lamoth et al., 2004; Lamoth et al., 2006a; Lamoth et al., 2006b). 

Hanada et al. (2011) also report that where asymptomatic controls significantly 

activated their rectus abdominus and internal obliques more, symptomatic 

participants had significantly greater activation of the lumbar extensors. More recent 

work shows evidence of greater lumbar extensor activity in CLBP participants 

compared with controls (van der Hulst et al., 2010a), at a range walking velocities 

(van der Hulst et al., 2010b), and that neither disability nor fear of movement is 

associated with this greater activity (van der Hulst et al., 2010a). 

The lumbar spine plays an important role in driving human bipedal gait (Gracovetsky, 

1985). It is possible that the greater activation of the lumbar extensors, and altered 

lumbar spine kinematics during gait in CLBP participants, is a manifestation of the 



lumbar extensor deconditioning (i.e. reduced strength/endurance, atrophy, and 

fatigability) commonly associated with CLBP (Steele et al., 2013a). Deconditioning 

therefore may impact upon motor control strategies and greater activation in the face 

of fatigue, due to deconditioning, could be a compensatory attempt to maintain 

control of the lumbar spine during gait. Hart et al., (2009) demonstrate that inducing 

fatigue in the lumbar extensors impacts lumbar kinematics during running gait of 

healthy participants and CLBP participants. Arjunan et al. (2009) also show 

significantly greater lumbar extensor activity during running gait in CLBP participants. 

Indeed, prospective evidence supports lumbar extensor deconditioning as being a 

risk factor for low back injury and pain (Biering-Sorenson, 1984; Luoto et al., 1995; 

Salminen et al., 1995; Lee et al., 1999; Sjolie et al., 2001). Thus it may be 

responsible for the development of the atypical gait associated with CLBP also.

Exercise programs have been successful in improving gait variability in older 

individuals and improvement appears to be in part determined by gains in strength 

(Hausdorff et al., 2001). Specific exercise for the lumbar extensors, however, is often 

used to specifically address the lumbar extensor deconditioning associated with 

CLBP (Mayer et al., 2008) and thus may be valuable in addressing the associated 

lumbar spine kinematic gait variability also. Varied types of exercise based 

interventions (Pilates, trunk extensions, stability exercise, transverse abdominus 

exercise) elicit improvements in gait control in CLBP participants (Carpes et al., 

2008; Tsao & Hodges, 2008; Da Fonseca et al., 2009). However, a more specific 

means of training the lumbar extensors comes in the form of isolated lumbar 

extension (ILEX) exercise (Steele et al., 2013b). Its efficacy in strengthening the 

lumbar extensors as well as improving pain and disability in CLBP participants have 



been demonstrated in numerous studies (Smith et al., 2011; Bruce-Low et al., 2012; 

Steele et al., 2013c). In addition, recent work has found that improvement in ILEX 

strength resulting from a strengthening program predicts improvement in gait 

endurance in CLBP participants (Vincent et al., 2013). This specific form of exercise 

however has yet to be examined for its effects upon lumbar kinematics during gait. 

Considering this it was therefore of interest in the present study to examine the 

relationships between lumbar kinematic variability during gait, with pain, disability 

and ILEX strength and also the effects of an ILEX exercise intervention upon lumbar 

kinematic variability during gait in participants with CLBP. 

2. Methods

2.1 Study Design

A randomised controlled trial design was adopted with one experimental group and a 

control group. The study was part of a wider investigation examining ILEX in CLBP 

participants which has been published in part elsewhere (Steele et al., 2013c). The 

original study sought to examine the effect of range of motion (ROM) during exercise 

upon ILEX strength, ROM, pain and disability. Gait data were also collected as part 

of this study to be examined as an outcome measure though it was not hypothesised 

that the different ROM groups (FULLROM & LimROM) would differ in this outcome. 

Data analysis confirmed there to be no differences between the two intervention 

groups for gait variable outcomes. Thus in this present study the two experimental 

groups from the wider investigation (FullROM & LimROM) were combined to form a 

single experimental group who had performed training using ILEX in order to 

increase the sample size of the intervention group for statistical comparison. Here 

the kinematic data are described only. The study was approved by the NHS National 



Research Ethics Service, Southampton & South West Hampshire Research Ethics 

Committee B (REC Reference: 11/H0504/9) and the Centre for Health, Exercise and 

Sport Science ethics committee at Southampton Solent University (SSU) and was 

conducted within the Sport Science Laboratories at SSU.

2.2 Participants

Thirty eight participants (males n = 21, females n = 17) were initially identified and 

recruited by posters, group email and word of mouth from Southampton Solent 

University and the surrounding locality. Direct referral was also provided from a local 

private chiropractor in addition to posters in their practice. A power analysis 

examining effect size for ILEX strength from ILEX intervention (ES = 1.48) was 

conducted to determine participant numbers and showed that each group required 7 

to meet the required power of 0.8 at an alpha value of p<.0.05. This power analysis 

is described elsewhere (Steele et al., 2013c). No previous work has examined effect 

sizes of the kinematic variables considered here as outcome measures and so, 

though  the study was considered to be adequately powered with respect to ILEX 

strength outcomes, there was the possibility that a type II error may result with 

respect to kinematic data. In an attempt to reduce this likelihood this number of 

participants was combined with 5 kinematic trials per participant which is considered 

sufficient for achieving adequate statistical power in a study of kinematic data 

utilising single subject statistical methods (Bates et al., 1992).

Inclusion criteria were as follows; participants suffered from non-specific low back 

pain having lasted longer than 12 weeks (Frymoyer, 1988) and had no medical 

condition for which resistance training would be contraindicated. Exclusion criteria 



were as follows; participants must have no medical condition for which movement 

therapy would be contraindicated. These included: acute (not re-occurring) low back 

injury occurring within the last 12 weeks, pregnancy, evidence of sciatic nerve root 

compression (sciatica), leg pain radiating to below the knee, paraesthesia (tingling or 

numbness), current tension sign, lower limb motor deficit, current disc herniation, 

previous vertebral fractures or other major structural abnormalities. All participants 

were cleared prior to involvement in the study by either their General Practitioner or 

the Chiropractor in the research group and provided written informed consent. 

Figure 1 shows a CONSORT diagram highlighting the participant numbers for 

enrolment, allocation, follow-up and analysis stages. After initial drop outs thirty one 

participants were randomised using an randomisation program (Research 

Randomizer vs. 3.0) to one of three participant groups; a full ROM training group 

(FullROM; n = 12), a limited ROM training group (training using the mid 50% of their 

ROM) (LimROM; n = 10), and a control group (n = 9) who did not train but continued 

with any treatment or intervention (or lack thereof) they were currently undertaking. 

As noted, the two experimental groups were combined for analysis in this particular 

part of the investigation.

2.3 Equipment

Participants’ stature was measured using a stadiometer (Holtan ltd, Crymych, 

Dyfed), body mass measured using scales (SECA, Germany) and Body Mass Index 

(BMI) calculated. Isometric ILEX strength testing, ROM and training were performed 

using the MedX Lumbar Extension Machine (MedX, Ocala, Florida; figure 1). The 

lumbar extension machine has been shown to be reliable in assessing isometric 



strength at repeated angles in asymptomatic (r = 0.81 to 0.97; Graves et al, 1990) 

and symptomatic participants (r = 0.57 to 0.93; Robinson et al. 19921), and valid in 

measurement through removal of gravitational effects (Pollock et al. 1991) and pelvic 

movement (Inanami, 1991). Pain was measured using a 100mm point visual 

analogue scale (VAS; Ogon et al. 1996), and disability measured using the revised 

Oswestry disability index (ODI; Fairbank et al. 1980). Gait kinematic variables were 

captured at 500hz using a 10 MX T20 camera three dimensional motion capture 

system (Vicon, Oxford) and analysed using both Vicon Nexus software version 

1.4.116 (Vicon, Oxford), MATLAB version R2012a (MathWorks, Cambridge) and 

Microsoft Excel version 2010 (Microsoft, Reading).

2.4 Participant Testing

Isometric ILEX strength was tested twice, on separate days (at least 72 hours apart 

in order to avoid the effects of residual fatigue or soreness) both before and after the 

intervention. Each test using the lumbar extension machine involved maximal 

voluntary isometric contractions at various angles through the participant’s full ROM. 

Details of the full test protocol using the lumbar extension machine and details of the 

restraint mechanisms have been documented previously elsewhere (Graves et al. 

1990). During the first and second to last visit to the laboratory, participants were 

required to complete the VAS and the ODI. Gait data was collected using the Vicon 

system during the third visit to the laboratory, and also during the participant’s final 

visit to the laboratory after the intervention period. 

2.5 Three dimensional motion analyses



Due to the lumbar spine’s capacity to rotate about three orthogonal axes, a three 

dimensional approach was used for data collection. Ten cameras were set up and 

angled in a manner so as to reduce hidden spots that might obscure data collection. 

The cameras identified reflective markers attached to the participant and output 

three dimensional coordinates for each marker. Data were recorded for 5 walking 

trials both pre and post intervention. Participants walked barefoot from one end of a 

marked runway to the other that was 8 metres in length at their free walking speed. 

At least one full gait cycle was captured per trial.

 

2.4 Biomechanical Model

The body of interest for the current study was the lumbar spine considered from S1 

to T12 relative to the pelvis. For the purpose of analysis the lumbar spine was 

modelled as a rigid segment. The reasoning for not considering intervertebral 

segment movements was due to the small segments ranging from S2 to T10 always 

bending laterally toward the support leg with little variation between segments 

(Syczewska et al., 1999). Lumbar spine data were collected through three axes 

using the same model previously described by Schache et al. (2002a), which has 

been shown to have high overall repeatability of angular parameters (Schache et al., 

2002b).

2.5 Marker Set Up

Markers were placed by the same investigator for all gait trials. Markers were placed 

using double sided adhesive tape over anatomical landmarks on the pelvis at both 

anterior superior iliac spines (ASIS) and at the midpoint of the posterior superior iliac 

spine (PSIS). Reflective markers were also used upon a thoraco-lumbar marker 



cluster similar to that used by Schache et al., (20021a; 2002b). As with the 

biomechanical model, this marker set up has been previously described elsewhere 

(Schache et al., 2002a; Schache et al., 2002b). The only alteration in this present 

study was the use of a flexible based wand marker for the thoraco-lumbar cluster. 

2.6 Kinematic Data 

Variability of angular kinematics of the lumbar spine about the three described axes 

relative to the pelvic segment was of primary interest (i.e. movement of the thoraco-

lumbar marker cluster with respect to the pelvic markers). Angular data were filtered 

using a low pass Butterworth filter (fourth order, optimal cutoff frequency determined 

for each individual participant as sum of residuals closest to zero examining 2Hz, 

4Hz, 6Hz, 8Hz, 10Hz, and 12Hz) and normalised to percentage gait cycle 

corresponding to initial right heel contact (0%) and subsequent right heel contact 

(100%) for the first full gate cycle captured during each trial. Heel contacts were 

identified as the lowest vertical displacement of a right heel marker. 

Intra-subject variability in the mean ensemble average has been typically calculated 

using Winter’s (1983) CV in studies of lumbar kinematic variability in CLBP (Vogt et 

al., 2001). Thus to ensure comparability between the population used in this study 

with the CVs reported in earlier study of CLBP participants, intra-subject variability 

was calculated using Winter’s CV. However, the use of this method has recently 

been criticised due to the effect of waveform mean offsets altering relative variability 

away from the true variability in the system (O’Dwyer et al., 2009). O’Dwyer et al. 

(2009) note that variability of mean offsets and waveform pattern variability should 

be calculated separately to account for the different information they provide; CVo 



being determined by the reference frame used, identification of anatomical 

landmarks, markers and their configuration, whereas CVp is more representative of 

repeatability of motor performance. Adding to this, the model used in this study has 

been examined for within-day repeatability previously and it was reported that 

marker reapplication errors and their effect upon daily mean offsets were the main 

source of concern (Schache et al., 20022). Thus both CVp and CVo were also 

calculated to allow differentiation of offset variability from pattern variability, the latter 

being better representative of motor performance repeatability (For details on 

calculation please refer to O’Dwyer et al., 2009). 

2.7 Participant Training 

Training was conducted at a frequency of 1x/week for a period of 12 weeks. This 

frequency of training has been shown to significantly improve ILEX strength and was 

chosen over more frequent training due to potential for overtraining when the lumbar 

extensor muscles are isolated (Graves et al. 19902). Also a second weekly training 

session offers no further improvements in symptomatic participants (Bruce-Low et 

al., 2012). Twelve weeks was the chosen duration as Carpenter et al (1991) have 

demonstrated that strength improvement from ILEX training occurs largely within the 

first 12 weeks. Both groups performed one set of variable resistance ILEX exercise. 

The FullROM group used their full ROM while the LimROM group only used the mid 

50% of their individual ROM (Steele et al., 2013c). Resistance load was 80% of max 

recorded tested functional torque (TFT) during maximal isometric testing for both 

groups and repetitions performed until momentary muscular failure in order to control 

for intensity of effort (Steele, 2013). Repetitions were performed taking at least 2 

seconds to complete the concentric phase, holding for 1 second in full extension and 



taking at least 4 seconds for the eccentric phase. Resistance load was increased by 

5% in the next session once the participant was able to continue exercise for over 

105 seconds using their current load before achieving failure. 

2.8 Data Analysis

Eligibility for analysis required participants to have completed 75% of the intervention 

within the 12 week period. Twenty four participants’ data (Males, n = 13; Females, n 

= 11) were available for analysis after allowing for attrition. Thus the number of 

participants combined with 5 trials per participant was sufficient for achieving 

adequate statistical power. Isometric ILEX strength, recorded in units of torque, was 

measured across the participants’ full ROM as foot pounds (ft.llbs-1) and converted to 

Newton metres (Nm) using a correction of 1.356. Because of individual differences 

between participants for lumbar ROM, ILEX strength data was averaged across all 

angles tested. Mean values for angular displacements, stride-to-stride intra-subject 

variability using Winter’s CV, CVp
 and CVo, were calculated for lumbar spine 

kinematics relative to the pelvis across all three planes of movement.

Demographic data met assumptions of normality and homogeneity of variance and 

thus were compared between groups at baseline using an independent samples t-

test. Kinematic data did not meet assumptions of normality or homogeneity of 

variance as is typical for this type of data (Bates et al., 2004). Thus non-parametric 

statistical analysis was used and baseline kinematic data was compared between 

groups using the Mann Whitney-U exact test to check that randomisation had 

succeeded for these variables. Previous researchers have performed gender 

comparisons (Crosbie et al., 1997; Vogt et al., 2001) and so in this study using 



unique methods of analysis male and female differences in baseline demographic 

characteristics were examined using an independent samples t-test, while 

kinematics, VAS, ODI, and ILEX strength, were examined using a Mann Whitney-U 

exact test. For baseline kinematic variables (including means for displacements, 

stride-to-stride intra-subject variability using Winter’s CV, CVp
 and CVo), spearman’s 

correlations were examined between them and VAS, ODI, and ILEX strength.

In examining the effects of the ILEX intervention the independent variable examined 

was participant group (i.e. Combined ILEX training or Control) and dependent 

variables were the absolute change from pre to post for kinematic variables 

examined, VAS, ODI and ILEX strength. Wilcoxon Signed Ranks Exact test was 

used to compare across the independent conditions. Statistical analysis was 

performed using SPSS statistics computer package (vs.20) and p<.05 set as the limit 

for statistical significance.

3. Results

3.1 Participant Demographics

Participant demographics, pain, disability and ILEX strength data are shown in Table 

1 for groups. Comparison between groups revealed that the majority of demographic 

variables at baseline did not significantly differ thus it was considered that 

randomisation had been successful. The only significantly different characteristic 

between groups was VAS score (t(22) = 2.420, p = 0.024). 

Gender comparisons also revealed males had significantly greater stature (t(21) = 

6.087, p < 0.0001), body mass (t(21)
 = 4.700, p < 0.0001), BMI (t(21) = 2.674, p = 



0.014) and ILEX strength (t(22) = 5.879, p < 0.0001) than females. No significant 

differences between males and females were found for age, symptom duration, VAS 

or ODI.

3.2 Baseline Kinematic Data 

Between group comparisons again revealed that the majority of kinematic variables 

did not significantly differ at baseline. Only sagittal CVo (U = 23.000, Z = -2.318, p = 

0.019), and both transverse Winters CV and CVo (respectively; U = 17.000, Z = 

-2.699, p = 0.005) differed between groups.

No significant differences between males and females were observed for the 

majority of kinematic variables. However, respectively for men compared with 

women, men exhibited lower frontal displacement (U = 12.000, Z = -3.447, p < 

0.0001), greater frontal CVp (U = 30.000, Z = -2.404, p = 0.008) and lower sagittal 

displacement (U = 31.000, Z = -2.347, p = 0.009).

 

Due to the use of a new method of determining ensemble average variation in this 

study (CVp and CVo ;O’Dwyer et al., 2009), compared with others use of Winters CV 

research (Vogt et al., 2001), baseline data was pooled for all participants in order to 

compare Winters CV, CVp, and CVo in this population of CLBP participants. 

Displacement and Winter’s CV were highest and similar in frontal and transverse 

planes. Contrastingly CVp and CVo were higher in the sagittal plane than in frontal 

and transverse planes which were both also similar. Figure 2 presents a comparison 



of these pooled data showing mean and SDs with Winter’s CV, and mean and SDs 

transformed to zero with both CVp and CVo.

Spearman’s correlations revealed a significant moderate positive correlation 

between VAS and only sagittal plane Winters CV (r = .411, p = 0.023). Significant 

moderate positive correlations were found between ODI and sagittal plane Winters 

CV (r = .457, p = 0.012), transverse plane Winters CV (r = .404, p = 0.025) and 

transverse plane CVp (r = .401, p 0.026). Significant moderate negative correlations 

were also found between ILEX strength and frontal plane CVo(r = -.370, p = 0.045), 

sagittal plane Winters CV (r = -.467, p =0.014), transverse plane Winters CV (r = 

-.435, p = 0.021), transverse plane CVp (r = -.411, p = 0.029), transverse plane CVo (r 

= -.378, p = 0.042) and a significant moderate positive correlation with transverse 

plane displacement (r = .442, p =0.020). 

3.3 Effects of Intervention upon Kinematic Variables

Table 2 shows pre and post data for displacement, Winters CV, CVp and CVo. 

Wilcoxon Signed Ranks Exact test revealed significant changes from pre to post only 

for sagittal plane CVp (W(16), Z = -1.728, p = 0.044) in the training group only 

suggesting improvement in stride to stride waveform pattern replication after the 

intervention. 

4. Discussion

This study of lumbar kinematic variability during gait in CLBP participants yields 

several interesting and unique results: 1) sagittal plane lumbar kinematic waveform 

patterns appear to be considerably more variable in CLBP than frontal or transverse 



planes, this being observed through the use of unique methods of differentiating 

offset variability from pattern variability in this population and in contrast to earlier 

studies using Winters CV,  2) transverse plane lumbar spine pattern variability is 

significantly correlated with ILEX strength and ODI, and 3) the use of a 12 week 

ILEX resistance training intervention produces significant improvement in sagittal 

plane variability during gait in CLBP participants. These findings potentially offer 

further understanding of the nature of the relationships between CLBP, gait variability 

and lumbar extensor deconditioning.

Within this study however the foremost interest was the repeatability of lumbar spine 

movement patterns exhibited (intra-subject stride-to-stride variability) as, despite 

similar average movements occurring at the lumbar spine, symptomatic participants 

appear less able to replicate these consistently (Vogt et al., 2001). Vogt et al. (2001) 

reported data using Winter’s CV suggesting lumbar movement variability during gait 

was significantly higher in CLBP participants compared with asymptomatic controls, 

and that both sagittal and transverse plane variability was greater than frontal plane 

variability. In order to compare our results with this previous research we calculated 

Winter’s CV for the present study’s data. Our results for Winter’s CV differed from 

those of Vogt et al. (2001) in that sagittal plane variability appears lowest in our data 

(Vogt et al. 2001 – 26.93%; Present study – 6.73%), and that both frontal and 

transverse plane variability was slightly higher (Vogt et al., 2001 – 14.87% and 

26.45% frontal/transverse respectively; Present study – 34.74% and 38.66% 

frontal/transverse respectively). The considerable difference in sagittal plane 

Winter’s CV might be accounted for by the large mean offset in the waveform of our 

data. Vogt et al. (2001) calibrated their measurements to angles during the standing 



posture in order to zero the measurements whereas in the present study they were 

not. Our sagittal plane data were instead closer in similarity to those of Lamoth et al. 

(2002a). Thus a large mean offset value effectively deflates the value calculated for 

Winter’s CV (O’Dwyer et al., 2009). Because of this O’Dwyer et al. (2009) have 

suggested the use of methods to differentiate the offset from calculation of the 

variability in the waveform pattern; the latter they suggest being far more 

representative of movement replication whereas the offset incorporates a greater 

degree of other variance sources (i.e. marker error). Indeed Schache et al. (2002b) 

have shown that although high within-day repeatability was displayed for the model 

adopted in the present study, angular parameters were most susceptible to marker 

reapplication errors from repeated measures and affected waveform offset. 

Our data show that CVp differs considerably from variation calculated using Winter’s 

CV. Sagittal plane variation (106.44%) is more than double the variation seen in the 

frontal (45.07%) and transverse planes (42.81%). Figure 2 shows that the CVp better 

represents the absolute variation in the waveform (the standard deviations depicted 

by the dotted lines) as noted by the sagittal plane standard deviation bandwidth 

being twice as wide as the frontal and transverse planes. Winter’s CV on the other 

hand does not represent this in the raw data as it is clear that both frontal and 

transverse plane variance are not ~5 times larger than sagittal plane variance. This 

further demonstrates, as O’Dwyer et al. (2009) suggest, that differentiation of offset 

and pattern variability is better representative of motor performance repeatability and 

less affected by inter-individual marker application errors affecting mean offset 

values for individual participants. 



CVp has not been calculated in CLBP participants previously and thus it is not 

possible to verify whether this greater sagittal plane pattern variability is a typical 

characteristic of their gait. Nor is it possible to define the clinical meaning of this in 

comparison to healthy gait as CVp has also not been reported on lumbar spine gait 

kinematics in asymptomatic participants to the author’s knowledge. Our results from 

correlation analysis suggest that those with lower ILEX strength exhibit higher 

sagittal and transverse plane variability when considering Winter’s CV. However, the 

inherent limitation of this method must be taken into account. Yet, despite the high 

sagittal plane CVp in comparison to other planes of movement, our baseline 

correlation results suggest that there is instead a relationship between ILEX strength 

and transverse plane kinematics; lower transverse displacement and higher CVp 

being associated with lower ILEX strength. It might be speculated upon that this 

relationship in CLBP participants may be a consequence of the lumbar extensor 

deconditioning frequently associated with this population (Steele et al., 2013a). 

Indeed it could be recalled that extensor fatigue impacts upon lumbar kinematics 

during gait emphasising the link between deconditioning and gait abnormality (Harts 

et al., 2009).

It seems reasonable that in a pathology such as CLBP, wherein there is an 

associated deconditioning of what appears to be a critically important musculature 

for controlling gait (Gracovetsky, 1985; Thorstensson et al. 1982; Callaghan et al. 

1999; Winter et al. 1993), that the deconditioning of this musculature might be 

considered as potentially responsible for altered motor control. Indeed our results 

tend towards supporting this with respect to transverse plane CVp during gait, 



however, that the correlations reported were only modest highlights that they are not 

the only influencing factor. It might be noted that some authors have reported that 

transverse plane kinematics typically show lower variability in those with CLBP 

(Lamoth et al., 2002; Lamoth et al., 2006a; van der Hoorn et al., 2012). However, 

these studies have examined the coordination of the trunk and pelvis and variability 

in the phase differences whereas the present study has instead examined the 

lumbar spines waveform relative to the pelvis. This difference in methodology may 

account for the difference in conclusions between these studies. Our baseline results 

did also suggest that low ILEX was associated with smaller transverse 

displacements. Perhaps transverse movement is more rigid in CLBP, yet within that 

smaller range of movement there is poor waveform pattern repeatability. The rigidity 

seen in transverse kinematic coordination in CLBP (Lamoth et al., 2002; Lamoth et 

al., 2006a; van der Hoorn et al., 2012) may yet still be a manifestation of lumbar 

extensor deconditioning. Considering this it may be of future interest to examine the 

relationship between ILEX and trunk/pelvis coordination in those with CLBP.

In addition, our results provide further evidence against the idea that pain per se may 

cause the variability seen during gait in CLBP. Although a significant positive 

correlation was found between VAS and Winters CV there was no significant 

correlation found between VAS and CVp or any other kinematic variable supporting 

the findings of others that pain presence appears to not be associated with gait 

variability (Lamoth et al., 2004; Anders et al., 2005; Seay et al., 2011a). There was 

however also a significant correlation between ODI and transverse plane CVp. 

Considering the multifactorial nature of CLBP it would be reasonable then to 

consider this evidence suggests that gait variability is potentially a symptom 



associated with CLBP that may result as a consequence of deconditioning of the 

lumbar extensors or the disability accompanying CLBP. However, it is also possible 

that the absence of direct correlation instead suggests that the consequences of pain 

may be responsible. Though neither disability nor fear of movement is associated 

with greater lumbar extensor activity during gait in CLBP (van der Hulst et al., 2010a), 

different cognitive strategies may be associated with either greater activity 

(catastrophizing), or greater relaxation during double support (distraction), 

suggesting some influence of pain consequences upon the lumbar extensors during 

gait (van der Hulst et al., 2010c).

With regards to the baseline observations a limitation within the present study was 

the lack of a comparable healthy control group due to the study’s initial design as an 

experimental trial. Our data on Winter’s CV suggests that our CLBP participants 

show higher lumbar spine variability compared to data from normal participants in 

earlier studies (Vogt et al., 1999; Vogt et al., 2001). Thus it might seem reasonable to 

speculate that variability identified from CVp data would likely be greater in the CLBP 

participants in this study compared with healthy controls. However, CVp has not been 

calculated for lumbar spine kinematics in healthy participants as of yet to the author’s 

knowledge. Thus future work in healthy participants should utilise this method 

(O’Dwyer et al., 2009) in order to produce normative data in order to conduct 

comparisons and also provide data in order to judge improvement from clinical 

intervention. 

The baseline analysis showing weak ILEX strength to be associated with greater 

variability however lends support to the notion that exercise might be an intervention 



worthy of examination. Indeed previous studies have provided support for exercise 

based interventions on improving aspects of gait variability including muscle 

activation (Tsao & Hodges, 2008), ground reaction force parameters (Da Fonseca et 

al., 2009) and displacements during gait (Carpes et al., 2008). However, none have 

examined lumbar kinematic variability during gait, nor has prior work utilised specific 

exercise designed to isolate the lumbar extensors. Within the present study an 

intervention employing a highly specific form of exercise evidenced as most effective 

for conditioning the lumbar extensors was used (Steele et al., 2013b). The results 

indicate that ILEX resistance training produced a significant reduction in sagittal 

plane CVp suggesting greater ability for participants to replicate motor patterns in this 

plane during gait. 

Baseline data indicated a relationship between transverse CVp and ILEX strength yet 

the intervention aimed at improving ILEX strength resulted in reduced sagittal CVp. 

Unlike previous research examining Winters CV finding that it was low in CLBP 

participants (Vogt et al., 2001), sagittal plane CVp was found to be highest in this 

population of CLBP and so may play a role in the improvements observed being that 

there was the greatest scope for improvement. However, the significant improvement 

(-20.90+43.53%) in sagittal CVp may suggest a specific intervention effect due to the 

plane of motion that ILEX exercise is performed through. An exercise device similar 

to the one used in this study for ILEX also exists that allows pelvic restraint for torso 

rotation through the transverse plane to be performed in isolation (Torso Rotation 

Machine, MedX, Ocala, Florida). Mooney et al. (2001), after demonstrating that the 

latissumus dorsi and contralateral gluteus maximus follow a reciprocal relationship in 

activity during gait presumably contributing to control about the transverse plane, 



further examined the effects of torso rotation exercise. In this study Mooney et al. 

(2001) examined activation during torso rotation exercise showing that abnormal 

activation patterns were present in symptomatic participants compared with controls. 

After a training intervention of progressive resistance training using the torso rotation 

device this activation had returned to normal levels of activity seen in asymptomatic 

participants. However, despite reporting EMG results for the latissumus and gluteus 

to clarify their role during gait, Mooney et al. (2001) did not perform pre and post 

intervention measurements to identify if any change had occurred in muscular 

control during gait in the symptomatic participants. In light of the results of the 

present study it is suggested that future research perhaps quantify whether plane of 

movement specific training may produce consequent plane of movement specific 

changes in control of the lumbar spine during gait. For example, whether torso 

rotation may perhaps improve transverse CVp. 

5. Conclusions 

The results of this study have provided novel information on lumbar spine kinematic 

variability during gait in CLBP through the use of recently suggested methods of 

analysing pattern variability. These new findings are in contrast to earlier ones 

utilising Winter’s CV and instead suggest that the highest variability is observed in 

sagittal plane lumbar movement during gait in CLBP. Further to this, there was a 

significant relationship between both ILEX strength and ODI with transverse plane 

lumbar CVp. And, a lack of relationship between VAS and CVp in any plane measured 

during gait. An intervention utilising 12 weeks of ILEX resistance exercise was found 

to significantly improve sagittal plane CVp indicating improved motor pattern 

replication. These findings are important as they demonstrate that improvements 



may be possible in various factors typically associated with CLBP through use of 

ILEX exercise.
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