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Abstract

The aim of this thesis is to develop an SPH method free of post formulation corrections

with application to the classical Dam-break problem. The analysis has been focused on

the weakly compressible smoothed particle hydrodynamics (SPH) formulation of the fluid

flow.

The discretization and implementation of classical Euler equations has been revised in

order to avoid artificial and unphysical corrections commonly used in literature. Many

other tools are also used to improve accuracy and performance features, such as a new

Kernel Theory to achieve the lowest error and a higher order adaptive time integrator. The

results obtained are encouraging either from the physical reliability or the performance

time. The obtained simulations are fully comparable with the other already existing in

literature, as well as the running time being very promising as it is of order of few hours

in a single CPU machine.
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Outline of the thesis

The aim of this thesis is the development of an SPH method free of post formulation cor-

rections, suitable for the treatment of problems concerning violent wave impacts against

fixed structures.

The discretization of the fluid equations using SPH (with kernel approximation) is con-

sistent as h (smoothing length) approaches to zero, see e.g. Vila (1999). On the other

hand, in order to guarantee a good approximation of the equations, the number of fluid

particles in a neighbourhood of radius h of a given particle, should be as high as possible.

Unfortunately, in the applications, such a condition is not always satisfied: first of all, in

order to compute the interactions among particles a high CPU time is required, secondly

there can exist regions in which the particle concentration is not sufficient to guarantee a

prefixed order of accuracy (a very frequent situation in violent impact problems).

To overcome bad behaviours arising from low accuracy approximations of the flow equa-

tions, many corrections have been introduced in literature, such as artificial viscosity,

XSPH, tensile correction, etc. Unfortunately, these tools have a non-obvious physical

meaning, and often require the use of constants whose values are determined in an empir-

ical and non-rigorous way. For this reasons, throughout the work, the possibility to avoid

the use of corrections without affecting the simulation quality was investigated. Rather,

attention was focused on the theory of kernel approximation, examining the possibility to

choose more appropriate functions in order to reduce the error as much as possible.

Another difficult task is the correct implementation of the boundary action. Initially, Mon-

aghan (1992), as a model of the above mentioned forces, used the well-known Lennard-

Jones potential (more properly related to molecular problems). As it will be shown, such

tool may lead to instability phenomena due to the singularity of the potential in pres-

ence of collisions. As a consequence, a very small time-step for the ODEs discretization

scheme is required, and therefore a significant CPU time.

Another possible approach consists of using ghost particles. In most cases, especially in

presence of high pressures and velocities problems (as in the dam-break case), such parti-
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cles do not exert sufficiently high forces in order to prevent fluid particles passing through

the boundary. Such trouble is generally overcome by using several layers of ghost parti-

cles (usually two or three) to improve the repulsive effect. Nevertheless, it is not evident

how to give a general criteria for a rigorous (and not empirical) dependence between the

number of layers of ghost particles and the problem at hand.

The classical dam-break problem is a simplified example of a violent wave impact prob-

lem, however its implementation exhibits a wide number of problems from the hydro-

dynamical and numerical point of view. The aim is to point out, through a large set of

simulations, the above mentioned problems and how to overcome them by using various

tools and improvements that were introduced.

Either the classical dam-break problem or its obstacle version have been implemented

by a brand-new implementation, obtaining simulations that are fully comparable with the

others in literature (e.g. Gomez-Gesteira et al. (2010) and Liu et al. (2003)). As for

the above discussed CPU time, a direct approach (i.e. a particle-particle interaction test)

would require a number of operations of order N2 (where N is the number of particles).

To prevent such huge cost, the interaction list (IL) tool is generally introduced. The latter

is a structure linking the particles interacting with a given fluid particle. In principle it

would be necessary to update the IL at every time-step, but that would be computationally

expensive. The key point is that it is possible to give a criterion to avoid the IL updating

process at every time-step. In this way the implementation efficiency can be improved,

obtaining in this way a performance time reduction greater than 50 percent.
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Main results

The only way to perform a critical evaluation of the SPH approach, was to produce an

ex-novo code based on a revised discretization of the fluid equations. Together with the

accuracy, the relevant problem of the performance time has been taken into account. The

difficult task in performing the simulation on a single-CPU laptop, has required the use of

several tools for an efficient management of the bounded performance capabilities.

Among the features of the obtained implementation the following original achievements

can be mentioned:

• Complete absence of unphysical corrections, such as XSPH, artificial viscosity,

tensile correction etc., and empirically determined parameters,

• Use of high order integrator as Runge-Kutta-Fehlberg (4th-5th orders, RKF45),

with a fully automated time-step adjustment,

• Use of a second order smoothing kernel leading to a minimal error (optimal kernel),

see Sec 3.1.2,

• CSPM formulation of the Euler equations.

xiv



Chapter 1

Introduction and Literature Review

Smoothed Particle Hydrodynamics (SPH) is a recent development in the field of Com-

putational Fluid Dynamics (CFD). It is a Lagrangian method that does not use a mesh,

where the fluid is discretized into a set of particles, whose motion are explicitly computed

and tracked via standard tools of Ordinary Differential Equations (ODEs). The main step

leading to the particle approximation is the use of a smooth function, called smoothing-

kernel, to define the collision rules (i.e. the interacting forces) among the particles.

As a meshfree technique, it facilitates the simulation of certain problems where Eulerian

methods can be difficult to apply, such as violent wave impacting structures during storms,

on coastal and fixed marine structures or breakwaters, harbour walls, cliffs, and other sea

defences. Recent works, e.g. Hughes et al. (2008), have shown that a fully incompress-

ible SPH formulation (I-SPH) can provide accurate simulations of wave impacts and their

flip-through phenomena against the wall of some coastal structures.

The estimation of loads arising from the action of these violent wave impacts is a key

point of these simulations, since it is essential to prevent inland flooding, damage to struc-

tures and to guarantee their survivability in such hostile conditions.

Few numerical methods have been widely used to treat this kind of problem, such as the

classical finite difference, finite volume, or finite element methods, despite being con-

sidered nowadays as fundamental tools in CFD. However these methods are essentially
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mesh-based, and often exhibit some difficulties in the treatment of free-surface, moving

or deformable boundary problems. The necessary process of generating and refreshing

a mesh may require large CPU times. Moreover, in certain problems, the mesh captur-

ing the free surface may break-up and recombine as the wave breaks, see Hughes et al.

(2008), and this can be a very difficult task.

Existing methods such as SPH and MPS (Moving Particle Semi-implicit) use I-SPH or

weakly compressible (WCSPH)single-phase formulation with a stiffened equation of state

for the water. Both methods have been shown to be well suited to treat wave impacts with

some common generic features. Nevertheless, the incompressible formulation does not

work properly with so-called aerated impacts, that is, when the wave breaks against the

wall. In any case the single-phase formulation implies the vanishing of enclosed air pock-

ets produced during wave generation.

WCSPH uses explicit schemes that do not require solving the pressure Poisson equation.

However, without any correction, the density of the particles rapidly exhibits some noisy

and chaotic behaviour, implying, in this way, a loss of hydrodynamical information.

1.1 Numerical methods in hydrodynamics

As supercomputers and parallelization techniques have been developed in recent years,

they have replaced expensive (and often very dangerous) laboratory experiments. As for

the hydrodynamical problems, numerical simulations are appropriate as the latter are able

to describe large-scale phenomena (such as tsunamis, inland floods, etc.) that cannot be

studied via laboratory experiments. As a problem involving continuous media, a hydrody-

namical model, is described by a system of Partial Differential Equations (PDEs). There-

fore every simulation provides a finite set of ODEs, which characterizes the discretization

technique (or method) at hand. Depending on the geometry of the problem and the evolu-

tion of the fluid mass, it is possible to solve the domain decomposition problem through

a Mesh-based method or a Meshless method. Each of them could be suitable for a given

problem but highly disadvantageous for another one. This choice strongly depends on the

2



geometry of the problem and its evolution.

1.1.1 Mesh-based methods

There are two fundamental points of view to describe the fluid evolution: Eulerian and

Lagrangian. See Sec. 1.3 for their mathematical description.

The first one uses mainly the Finite Differences Method (FDM) or Finite Volume Method

(FVM) to discretize the system of PDE, while the second one, that uses a material descrip-

tion of the flow, is based on the Finite Elements Method (FEM). Both have been widely

used in literature, see e.g. Anderson (1995), Hirsch (1988), Wilkins (1999) for the FDM,

and Taylor et al. (2000), Liu et al. (2003) for the FEM.

Lagrangian mesh

As a main feature of the Lagrangian technique the mesh is attached to the material through-

out the entire simulation, therefore the mesh cells move according to the material move-

ment and their shape and volume can change during the computation process. This point

of view has several advantages:

1. An irregular mesh can be used to treat conveniently complicated geometries,

2. The grid points are collocated only within the problem domain, implying CPU time

saving,

3. The approach facilitates the treatment of free surface and moving boundary prob-

lems,

4. Easy tracking of all the field variables at a single material point (as the grid moves

together with the material).

This method is very successful in problems where there is not a large material defor-

mation. It is very popular in solving computational solid mechanics (CSM) problems.
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However there could be problems when the mesh is very distorted, affecting the compu-

tational accuracy. This aspect has been pointed out in simulation of events of extremely

large deformation, as in Hans (1999) and Benson (1992).

Eulerian mesh

Differently from the Lagrangian approach, the Eulerian mesh is fixed in space. The mate-

rial moves across the mesh cells while their shape and volume remain unchanged for all

t. This method could be suitable for large deformation problems as the mesh evolution is

not required. The above described process has to be performed on the entire space, even

though the fluid occupies a small portion of it, and this could be computationally expen-

sive. In addition, the fluid profile is not exactly known (but only if a given cell is occupied

or not), unless one resorts to a very fine mesh (with obvious computational costs).

Combination of Lagrangian and Eulerian mesh and limitation of grid-based

methods

The above described techniques have been combined in order to overcome the difficulties

of each one, obtaining in this way more stable solutions. During the last years specialists

have tried to develop many commercial hydrocodes using this approach. See e.g. Hal-

lquist (1988) and Hallquist (1998).

Nevertheless, in many situations, mesh-based numerical methods exhibit some difficul-

ties. First of all, the mesh generation process could be very expensive, especially in large

deformations, irregular or complex geometries and free-surface flows. Of course, the use

of this class of methods is challenging for certain phenomena such as explosions and

high velocity impact. In both cases, there exist large deformations, moving material inter-

faces, free surfaces and deformable boundaries that are difficult to treat via a grid-based

approach.
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1.1.2 Meshless methods

Meshless methods give a more appropriate approach to the above described class of phe-

nomena, in which large errors or expensive simulation processes arise with grid-based

techniques. The basic idea is to construct a moving mesh for a more stable and robust

version of the standard grid-based methods. This point of view allows the simulation of

a wide class of phenomena such as those arising from maritime and naval architecture,

geotechnical, solids and fracture mechanics and biomechanics fields.

In this framework, Smoothed Particle Hydrodynamics (SPH) offers a flexible and power-

ful tool in order to implement the above described problems. After the pioneering works

Lucy (1977) and Gingold et al. (1977), in Liszka et al. (1980) a generalized FDM that

can deal with arbitrary irregular grids is proposed. Afterwards, many other methods have

been improved and developed in order to solve some specific computational matters, such

as consistency of SPH approximation close to the boundary (Reproducing Kernel Particle

Method) or the singularity issue in the polynomial Point Interpolation Methods. Nowa-

days some substantial improvements have been achieved either from the theoretical or the

simulation performance point of view. In Lind et al. (2012b) the multi-phase incompress-

ible setting is developed. In particular, the gaseous phase is modelled with a compressible

SPH formulation. The paper is a further improvement of Lind et al. (2012a), where the

obtained pressure field with the I-SPH formulation is noise free and fully comparable with

the semi-analytical solution.

1.2 Applications of meshless methods

As above mentioned, the class of problems in which the application of mesh-based meth-

ods exhibits technical issues is extremely wide. It should be stressed that in areas such

as astrophysics, solid state physics, biophysics, biochemistry and biomedical research,

one may encounter situations where the object under consideration is not a continuum,

but a set of particles. It is clear that a discretization is not required in such cases and a

particle-based method is the most natural choice for their numerical simulation. Forma-
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tion phenomena of star systems, nano-scale movements of atoms in a non-equilibrium

state, folding and unfolding of DNA are relevant example of such a class of problems.

On the other hand, there is a wide range of problems arising from continuum mechanics

for which the discretization in terms of nodes turns out to be much more convenient either

from the accuracy or computational cost aspects point of view. All the problems involving

features such as large deformations, moving boundaries, complex geometries or detona-

tion and collisions are well suited for a meshless based treatment.

Meshfree Galerkin methods (see e.g. Belytschko et al. (1996)) have clear advantages

over finite element computations due to its ability to handle large deformation problems:

crack growth/propagation problems Dolbow et al. (2000), large deformation of rubber

materials Chen et al. (1997), metal forming and extrusion Chen et al. (1998) can be men-

tioned among the successful applications of this approach. The paper Adams et al. (2009)

describes the advantages of the Moving Least Squares (MLS) method, able to provide

high-order accuracy for elasticity computations in the context of computer graphics.

At the origin of the SPH theory, which is among the most consolidated and devel-

oped among the meshless methods, the contributions of Lucy (1977) and Gingold et al.

(1977), involved astrophysical problems such as the formation and evolution of proto-stars

or galaxies. Essentially, they observed that the collective movement of those particles is

similar to the movement of a liquid, or gas flow, and it may be modelled by the gov-

erning equations of classical Newtonian hydrodynamics. The cosmological applications

of this approach concern a wide range of problems: single and multiple detonations in

white dwarfs, Garcia-Senz et al. (1999), cloud fragmentation and collisions, Durisen et

al. (1986) and even the evolution of the Universe problem, Monaghan (1990).

As it is well known, the SPH method has been successful in several applications in CFD

that would have been difficult or even unattainable with mesh-based methods. In Panizzo

et al. (2004) underwater landslide generated waves are studied by using a parallel algo-

rithm in order to optimize the performances of the model.

Another example of a relevant application in such area is described in Panizzo et al. (2006)

and Rogers and Dalrymple (2008), where the SPH model allowed the study of a sliding

6



mass impacting a body of water.

The dam-break problem, discussed in the next chapters, can be interpreted as a toy model

of a violent impact problem. Its implementation could be expensive and inaccurate us-

ing a mesh-based method (due to the small area occupied by the water, with respect to

the whole domain), while it is naturally and profitably treated with the use of the SPH

approach.

1.3 Eulerian and Lagrangian descriptions of motion

In this section the differences between the Lagrangian and Eulerian description of motion

are addressed. This is a key step in order to introduce the SPH discretization technique.

Given a continuum system, a certain number of quantities of mechanical and/or thermo-

dynamical nature, can be associated to it. These quantities, such as velocity or thermal

energy in the case of a fluid, can be scalar or vectorial; in any case these are defined lo-

cally i.e. they depend on the considered point of the system.

There exist essentially two descriptions that can be used to represent a given quantity:

Eulerian and Lagrangian.

In the first case the value of a chosen (e.g. scalar) quantityQ is a function of the time t and

of the spatial coordinates x ∈ R3 in a fixed frame of reference with respect to the moving

fluid. In the second one, instead, the quantity Q (still a function of the time) depends on

the so-called material coordinates X ∈ R3. This is a comoving frame of reference with

the fluid particles. More precisely, denoting with Φt the fluid flow, the relation between

the two coordinate systems is

X = Φ−1
t (x). (1.1)

In other words, in the Lagrangian description the observer follows a given particle in order

to evaluate Q. In the Eulerian case Q is evaluated at a fixed point of the space, no matter

which particle occupies that particular point during the evolution.

Let QE(t, x) and QL(t,X) the Eulerian and Lagrangian representation of the same quan-

7



tity, respectively. Hence, by using (1.1) the relation between the two descriptions is

QL(t,X) = QE(t,Φt(X)) ≡ QE(t, x(t,X)). (1.2)

The material derivative of a quantityQ describes its rate of variation as a function of time.

It is immediate that in the Lagrangian description the material derivative coincides with

the partial derivative with respect to time

DQ

Dt
(t,X) =

∂QL
∂t

(t,X). (1.3)

By (1.2), the computation of the same derivative in the Eulerian case, leads to a further

term, due to the dependence of x on t. I.e.

DQ

Dt
(t,X) =

∂QE
∂t

(t, x(t,X)) +

3∑
i=1

∂QE
∂xi

(t, x(t,X))Vi(t,X), (1.4)

with Vi := ∂xi/∂t. By using (1.1) we find

DQ

Dt
(t,X)|X=Φ−1

t (x) =
∂QE
∂t

(t, x) +
3∑
i=1

∂QE
∂xi

(t, x)vi(t, x) (1.5)

where vi(t, x) := Vi(t,X)|X=Φ−1
t (x) is the velocity field in the Eulerian description.

1.4 Why SPH?

SPH was initially developed to deal with non-asymmetric phenomena in astrophysics in

Lucy (1977) and Gingold et al. (1977). Fields such as free-surface flows, where Eulerian

methods can be difficult to apply, represent a very high potential of applications (waves,

impact on dams, offshore etc.) as the meshfree technique facilitates the simulation of

highly distorted fluids and bodies. In such phenomena the geometry can change very

drastically losing the regularity properties of a structured scheme which enables a domain

decomposition software. Furthermore, with the ever increasing size and cost reduction

of computer clusters, parallel simulations allow large scale simulations that were previ-

ously limited to mainframes. The classical dam-break problem, that is going to be studied

8



throughout this work, exhibits some various features for which the SPH approach is ap-

propriate. For instance, the volume occupied by the fluid mass is just a small part of the

problem domain. In addition the wave reaches high velocities within a small time interval.

Finally, the wave impact leads to an irregular and complicated wave front that cannot be

easily tracked with the standard tools of mesh-based methods.

After an overview of the numerical methods for PDEs and a description of the meshless

methods advantages for a wide number of applications, in the next chapter, the basics of

the SPH approach will be introduced.

In particular, the SPH approximation theory is recalled, together with the discretization of

the fluid equations based on this approach. The final part of the chapter is devoted to the

description of an adaptive Runge-Kutta scheme. The latter will be used for the treatment

of the system of ODEs arising from the fluid equations discretization.

9



Chapter 2

Background of SPH method

This chapter is devoted to the background material. Firstly, some basic notions of the SPH

approximation theory have been recalled, with some relevant remarks on its accuracy and

on the error introduced in the approximation. This is a key step for a critical evaluation of

the numerical consequences of the SPH approach.

After recalling the classical Euler equations of the inviscid fluids, the standard derivation

of the SPH equations for the fluid flow will be described.

2.1 The SPH approach

2.1.1 Main ideas

In order to fix the simplest framework, the basic properties of the objects at hand are

briefly recalled, restricting the treatment to the one dimensional case. The extension to

higher dimension is straightforward.

The key idea in the SPH approach is the following. Let [a, b] be a compact subset of R,

for all k ≥ 1, denoting with Ck([a, b],R) the set of k−times differentiable functions on

[a, b] with continuous derivative(s). Now, for all f(x) ∈ Ck([a, b],R) the Dirac delta is

10
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implicitly defined by the following equality∫ b

a
δ(x− x0)f(x) := f(x0). (2.1)

The SPH approximation consists in replacing the above defined “function” (more prop-

erly, distribution, see for instance Vladimirov (1981)) with a smooth function1. So is

given the following

Definition 2.1. A smoothing kernel is defined as a function W (x, h) ∈ C∞([a, b],R)

satisfying, for all x0 ∈ [a, b] the following conditions

1.
∫ b

a
W (x− x0, h)dx = 1, unity condition

2. lim
h→0

∫ b

a
W (x− x0, h)dx =

∫ b

a
δ(x− x0)dx,

3. W (x− x0, h) = 0 if |x− x0| > kh compact support.

The real positive parameter h is usually known as smoothing length and k is a scale

factor.

W (x− x0, h)

kh

x0 x0

W2

W3

Figure 2.1: A typical smoothing kernel shape (left). On the right a pictorial idea of the

Dirac delta definition as the weak limit of the sequence Wn := W (x − x0, h/n) for

n→∞

In this setting, the first well known approximation formula of the SPH theory takes

the form

f(x0) =

∫ b

a
f(x)δ(x− x0)dx ∼

∫ b

a
f(x)W (x− x0, h)dx. (2.2)

1vice-versa, the Dirac delta can be defined as the (weak) limit of a sequence of smooth func-

tions
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The second approximation step in SPH can be described as follows. Consider a set of

(randomly distributed) points xi ∈ (a, b), i = 1, ..., N modelling the particle distribution

at the generic time t. Then it is possible to construct a “lower approximating covering” of

the interval [a, b] by taking into account the union of certain sets Ii centred at xi respec-

tively, defined in a way these are as large as possible but non-intersecting. More precisely,

let

h∗ := min
i=1,...,N−1

xi+1 − xi
2

, h := min{x1 − a, b− xN , h∗}, (2.3)

by defining Ii := [xi − h, xi + h] one has

N⋃
i=1

Ii ⊆ [a, b], (2.4)

and the equality holds if, and only if, xi are equally spaced on [a, b] and the endpoints

of I1 and IN match exactly with a and b respectively, as usually done in the classical

Riemann integration theory (see Figure 2.2).

In this setting, the following approximation formula holds∫ b

a
f(x)dx ∼ 2h

n∑
i=1

f(xi). (2.5)

It is clear that in the above described situation of equally spaced points, this formula is

exactly the simplest quadrature formula used in numerical integration, often known as the

rectangle rule.

The main drawback in choosing randomly distributed points clearly arises in dimension

greater than one: if a domain decomposition of Ω realized by Ii is a union of disks or

spheres that, even if defined with non-constant radius, cannot cover the entire domain un-

less the limit N → ∞ is taken. The corresponding one-dimensional case is depicted in

Figure 2.2.

As a matter of fact, in this particle-based approach, the only way to obtain a good approx-

imation is to take N very large; in this case the distribution (if uniform) approximates

an equal spacing and relations (2.4) and (2.5) tend to equality (exactly as done in Monte

Carlo methods).
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a b
x1 x2 xn

f(x)

I1 I2

x1 x2 xn

f(x)

a b

Figure 2.2: A comparison between the classical rectangle rule and the integration per-

formed in the SPH approximation. The arrows show some missing areas due to the non-

uniform spacing.

Let us visualize Ii in a three dimensional space: Ii is a volume centred at xi ∈ Rn (a

position vector), so it can be interpreted as the mass mi of the particle divided by its den-

sity ρi. In this way, the second fundamental rule in SPH approximation for a general one,

two or three dimensional domain Ω, is obtained∫
Ω
f(x)dx ∼

N∑
i=1

mi

ρi
f(xi). (2.6)

The dependence of mi and ρi upon i should be regarded as an adaptive method of cover-

ing Ω.

Remark 1. While the first formula (2.2) requires a small value of the smoothing length,

the second one (2.6) requires a great number of particles within the subdomain Ii. As Ii,

by construction, has to contain the compact support of W (|x− xi|, h), it is evident that a

SPH simulation must provide a very large number of particles.
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2.1.2 Accuracy and consistency of the SPH approximation

Now, if f(x) is replaced with its Taylor expansion computed at x0 in the right hand side

of (2.2), one obtains∫ b

a
f(x)W (x− x0, h)dx =

∫ b

a

[
f(x0) +

+∞∑
n=1

1

n!
f (n)(x0)(x− x0)n

]
W (x− x0, h)dx

= f(x0) +

+∞∑
n=1

f (n)(x0)

n!

∫ b

a
W (x− x0, h)(x− x0)ndx.

(2.7)

By choosing W (x− x0) as an even function (i.e. symmetric with respect to x0), with x0

suitably chosen in a way that, for a given h,

[x0 − h, x0 + h] ⊆ [a, b] (2.8)

the odd terms vanish. This implies∫ b

a
f(x)W (x− x0, h)dx = f(x0) +R(x0, h) (2.9)

R(x0, h) = 2
+∞∑
n=1

f (2n)(x0)

(2n)!

∫ h

0
W (r, h)r2ndr. (2.10)

Hence the error arising in the approximation (2.2) is of order h2. The possibility to im-

prove the approximation by reducing (or even neglecting) the remainder R(x0, h) up to

an arbitrary high order in h by a careful choice of the kernel function will be discussed

later.

Nevertheless, for a given h, all the x0 ∈ {(a, a + h) ∪ (b − h, b)} (particles close to the

boundary) do not satisfy (2.8). In these cases the integrals
∫ b
a W (x−x0, h)(x−x0)dx do

not vanish and the error is of O(h). This implies that the particles close to the boundary

in the SPH approximation of the flow equations are affected by an error greater than the

one of the internal particles. In addition, even if the hypothesis (2.8) is satisfied, the case

of non-uniformly distributed particles in the support domain of the kernel, may lead to

integrals that, computed as a weighted sum all over the particles, will be not zero. The

error in computing integrals via formula (2.6) is not smaller than the error arising in the
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classical rectangle rule. It is well known that, if f ′(x) is bounded on [a, b], this error is

O(h). So the convergence of the SPH approach could be very “slow” as h→ 0.

2.2 Derivation of SPH equations

In this section the SPH approach in order to discretize the inviscid fluids equations is

recalled. This is a standard argument and it is used systematically in the SPH literature.

Nevertheless, a brief discussion of this key procedure could be useful either to discuss the

introduced approximation or to fix the notational setting once and for all.

Let Ω ⊂ Rn be the domain surrounding the fluid. The classical Euler equations for

inviscid fluids read as

D

Dt
u =− 1

ρ
∇P + F (2.11a)

ρt + div(ρu) =0 (2.11b)

u · n =0 on ∂Ω (2.11c)

where D/Dt is the material operator defined in (1.3), u(x, t) is the velocity field at the

point x and time t, n is the normal vector to the boundary ∂Ω. P is a scalar function

known as pressure and ρ(x, t) is the density. F = (F1, F2) is the resultant of the external

forces.

Let N be the total number of fluid particles, and ni be the number of particles interacting

with the i−th particle, i.e. where distance from the i−th particle is not greater than kh.

Let f : R2 → R be a smooth function. For a generic particle i, whose position is xi, the

basic formula of the SPH approximation reads

f(xi) ∼
∫

Ω
f(x)W (|x− xi|)dx

=

∫
Ωi

f(x)W (|x− xi|)dx

∼
ni∑
j=1

f(xj)
mj

ρj
Wj ,

(2.12)
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where

Ωi := {x ∈ Ω : |x− xi| ≤ kh} ⊂ Ω

is the kernel compact support.

The expression of the divergence of a function g : R2 → R2 can be written down by using

the same formula2:

div g(xi) ∼
∫

Ωi

div g(x)W (|x− xi|)dx

= −
∫

Ωi

g(x)∇W (|x− xi|)dx

∼ −
ni∑
j=1

g(xj)
mj

ρj
∇Wj

(2.13)

Let us consider (2.11b), i.e. the continuity equation. The discretization can be obtained,

for all i = 1, ..., N , by multiplying both sides of the latter equation by the smoothing

kernel W (|x− xi|) and then integrating over Ωi. In detail∫
Ωi

∂tρW (|x− xi|)dx ∼ ρ̇i
∫

Ωi

W (|x− xi|)dx

∼ ρ̇i

 ni∑
j=1

mj

ρj
W (|xj − xi|)

 (2.14)

∫
Ωi

div(ρu)W (|x− xi|)dx ∼ −ρi
∫

Ωi

u · ∇W (|x− xi|)dx

∼ −ρi
ni∑
j=1

mj

ρj
uj · ∇W (|xj − xi|) (2.15)

Note that the integral ∫
Ωi

W (|x− xi|)dx (2.16)

is (should be) equal to one according to the partition of unity.

Unfortunately, this condition is hardly ever satisfied in real simulations because of errors

in numerical computation of the integral and non-uniform particles distribution. So this

defect has been taken into account by bringing the SPH approximation of the integral

(2.16) into the equations. This technique is usually known as Corrective Smoothed Parti-

cle Method (CSPM), see e.g. Liu et al. (2003).

2recall that W (x− x0)|∂Ωi
= 0
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In this way, by (2.14) and (2.15), the continuity equation (2.11b) in SPH form reads:

ρ̇i =

 ni∑
j=1

mj

ρj
W (|xi − xj |)

−1

ρi

ni∑
j=1

mj

ρj
uj · ∇W (|xi − xj |). (2.17)

The equation (2.11a) can be treated in the same way. The following identity can be used

for its right hand side
1

ρ
∇P = ∇

(
P

ρ

)
+
P

ρ2
∇ρ. (2.18)

This trick is known as symetrization and was suggested by Monaghan (1988). In this way

the right hand side splits into two terms,∫
Ωi

∇
(
P

ρ

)
W (|x− xi|)dx = −

∫
Ωi

P

ρ
∇W (|x− xi|)dx

∼ −
ni∑
j=1

Pjmj

ρ2
j

∇W (|xi − xj |) (2.19)∫
Ωi

P

ρ2
∇ρW (|x− xi|)dx = −Pi

ρ2
i

∫
Ωi

ρ∇W (|x− xi|)dx

∼ −Pi
ρ2
i

ni∑
j=1

mj∇W (|xi − xj |) (2.20)

in addition ∫
Ωi

FW (|x− xi|)dx ∼ F
ni∑
j=1

mj

ρj
W (|xi − xj |). (2.21)

On the other hand∫
Ωi

D

Dt
uW (|x− xi|)dx ∼ u̇i

ni∑
j=1

mj

ρj
W (|xi − xj |). (2.22)

collecting the obtained terms, the momentum equation in the SPH form easily follows

u̇i =

 ni∑
j=1

mj

ρj
W (|xi − xj |)

−1
ni∑
j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
∇W (|xj − xi|) + F . (2.23)

Denoting

z ≡ (z1, z2, z3, z4, z5) := (x1, x2, u1, u2, ρ),

equations (2.23) and (2.17) can be written in the following form

żi = F i(z), i = 1, ..., 5. (2.24)
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where the vector field F is explicitly given by

F1 = z3

F2 = z4

F3 = λi

ni∑
j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
∂

∂z1
W (|xj − xi|) + F1

F4 = λi

ni∑
j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
∂

∂z2
W (|xj − xi|) + F2

F5 = λiρi

ni∑
j=1

mj

ρj
uj · ∇W (|xi − xj |)

(2.25)

with

λi :=

 ni∑
j=1

mj

ρj
W (|xi − xj |)

−1

. (2.26)

Note that λi 6= 0 for all i as every particle interacts at least with itself. As for the pressure,

as usual in SPH, the Tait equation of state has been used

P = P0

[(
ρ

ρ0

)γ
− 1

]
, (2.27)

where γ = 7, ρ0 is the density at t = 0 and P0 is a linear function of height, suitably

determined from the hydrostatic configuration.



CHAPTER 2. BACKGROUND OF SPH METHOD 19

2.3 Time integrator

2.3.1 Runge-Kutta VS lower order methods

The aim of this section is to give an high order time integrator for the already obtained

system of ODEs. More precisely, the Adaptive Runge-Kutta-Fehlberg Method usually

known as RKF45 is going to be described. As it is well known, Verlet and leap-frog

schemes are widely used methods for SPH simulations. This is because of the compro-

mise between computational cost (i.e. function evaluations) and accuracy. As an advan-

tage, these schemes are symplectic and consequently they preserve the total energy of the

system, see e.g. Sanz-Serna (1992). That is why, more in general, their use in Hamilto-

nian dynamics simulations looks to be so appropriate.

Unfortunately, in this case, the huge computational cost of a single evaluation of the vec-

tor field given by the (2.24) right hand side should be taken into account. The key fact

is that, despite the (linearly) low number of function evaluations in case of a low order

method, a (polynomially) higher number of time-steps is necessary in order to cover the

same time interval, if compared with an higher order method. More precisely, in the case

at hand, let [a, b] be the time interval and ε > 0 the prefixed error.

The error of a Verlet scheme is Ev = Cvσ
2 where Cv is a positive constant and σ denotes

the time-step, while the number of the function evaluations at each stage is 2. Hence the

total number of function evaluation Nv in order to reach the precision requested with ε, is

obtained by setting σ = (ε/Cv)
1
2 then

Nv ≥ 2

(
Cv
ε

) 1
2

(b− a). (2.28)

As for a non adaptive 4−th order Runge-Kutta we have Erk = Crkσ
4, then σ = (ε/Crk)

1
4

and finally

Nrk ≥ 4

(
Crk
ε

) 1
4

(b− a), (2.29)

where subscripts v and rk denote Verlet and Runge-Kutta, respectively.

By comparing these two formulae, it is clear the linear dependence on the function evalu-

ation per stage versus the polynomial dependence on ε.
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The RKF45 not only allows us to improve this aspect, but provides an automatic time-step

choice by a joint action of a fourth order and a fifth order methods. This is a necessary ap-

proach when dealing with impact problems, in which the velocity field may lead to large

variations in magnitude and a fixed step size could be unsuitable for certain parts of the

simulation as redundant for another.

A general (explicit) m−stages Runge-Kutta (RK) method can be written in the form

xi+1 = xi + σ

m∑
r=1

crkr, (2.30)

where kr = kr(ti, xi, σ) are given by

k1 = f(t, x), kr = f(t+ σar, x+ σ

r−1∑
s=1

brsks), r = 2, ...,m, (2.31)

and  ẋ(t) = f(x, t)

x(t0) = x0

(2.32)

is the Cauchy problem at hand, while σ is meant to be interpreted as the time-step.

In order to construct a method is necessary to fix m and to determine the Butcher tableau

of the Table 2.1.

0

a2 b21

a3 b31 b32

...
...

...
...

am bm1 bm2 · · · bmm−1

c1 c2 · · · cm−1 cm

Table 2.1: The Butcher tableau

The main argument allowing us to get an estimate of the truncation error every step,

is to compare solutions computed by two (RK) methods of different order (e.g. 4 and 5).
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Unfortunately, if one tries to do this by using two generic RK methods, as their respective

tableau are completely different, the entire set of function evaluations of both schemes (at

least 4 + 6 = 10 in this case) turns out to be necessary.

The main feature of the RKF45 is to use a common set of function evaluations for both

methods. More precisely, the single step of a 4−th and a 5−th order RK methods can be

respectively performed by using the following formulae

xi+1 = xi + σ
5∑
r=1

crkr, x̂i+1 = x̂i + σ
6∑
r=1

ĉrkr (2.33)

where

c1 = 25
216 , c2 = 0, c3 = 1408

2565 , c4 = 2197
4104 , c5 = −1

5 ,

ĉ1 = 16
135 , ĉ2 = 0, ĉ3 = 6656

12825 , ĉ4 = 28561
56430 , ĉ5 = − 9

50 , ĉ6 = 2
55

and the coefficients ai and bij are given by the following common tableau

1/4 1/4

3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197

1 439/216 −8 3680/513 −845/4104
1/2 −8/27 2 −3544/2565 1859/4104 −11/40

bringing down the function evaluations per step to 6.

2.3.2 Adaptive scheme

The aim is now to describe a criterion for a suitable choice of the time-step size σ = σi,

in order to control the truncation error at each step3 i.

3Obviously, the argument that is going to be illustrated for a 4 − 5−th order methods, can

be repeated whenever two numerical methods, which order is p and p + 1, for all p ≥ 1, are

considered.
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Let us consider a single step given by the two schemes (2.33) with the same initial data

xi = x̂i = x(ti) (2.34)

where i is chosen once and for all and x(ti) denotes the exact solution at the time ti. By

definition, the truncation error εi of the first method is

σiεi = x(ti+1)− x(ti)− σi
5∑
r=1

crkr. (2.35)

By construction

x(ti+1)− x(ti)− σi
5∑
r=1

crkr = x(ti+1)− xi − σi
5∑
r=1

crkr = x(ti+1)− xi+1. (2.36)

In this way4

εi =
1

σi
||x(ti+1)− xi+1||∞

=
1

σi
||x(ti+1)− x̂i+1||∞ +

1

σi
||x̂i+1 − xi+1||∞

= ε̂i +
1

σi
||x̂i+1 − xi+1||∞

(2.37)

then εi is interpreted as a function εi = εi(σi).

By assumption εi = αiσ
4
i and ε̂i = βiσ

5
i for some αi, βi ∈ R. By substituting into the

previous equation one has

αiσ
4
i = βiσ

5
i +

1

σi
||x̂i+1 − xi+1||∞ (2.38)

by multiplying both members by σ−4
i , and for σi sufficiently small,

αiσ
4
i = εi ∼

1

σi
||x̂i+1 − xi+1||∞. (2.39)

Now a corrected step σi ← γiσi is searched, where γi is a scaling factor to be determined,

in order to obtain

|εi(γiσi)| ≤ E (2.40)

where E is the prefixed truncation error. On the other hand

εi(γiσi) = αi · (γiσi)4 = γ4
i · (αiσ4

i ) ∼
γ4
i

σi
||x̂i+1 − xi+1||∞, (2.41)

4If v is a (real-valued) n−dimensional vector, is denoted with ||v||∞ := supi=1,..,n |vi|
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where approximation (2.39) has been used in the last passage. Comparing with (2.40) the

following estimate is finally obtained

γi ≤ (Eσi)
1
4 ||x̂i+1 − xi+1||

− 1
4∞ . (2.42)

The latter has been used in the implementation as a time-step adjustment device.

The aim of this chapter was to introduce the standard tools and methodology of the SPH

theory that is used in the implementation of the dam-break problem discussed in chapter

4.

The overview of the theory will be completed in the next chapter, addressing some top-

ics related to the accuracy of the kernel approximation. In particular, the construction

of higher order kernels described in Liu et al. (2003), is extended to all orders. This

discussion is followed by the presentation of a new class of (optimal) kernels, which con-

struction is based on the minimization of the approximation error.

A discussion on the ideas and the advantages of an interaction list storing criterion, orig-

inally due to Verlet, closes the rest of the next chapter. The performance features of this

tool are compared with other results in literature.



Chapter 3

Theory

3.1 Construction of kernels

The kernel choice is a key step in the SPH approach. In this section, the possibility

to improve the accuracy of the SPH approximation by using a kernel constructed in a

suitable way, is discussed.

First of all, it will be shown that an arbitrary small interpolation error can be obtained only

by requiring that the kernel is of non-constant sign in its domain. Unfortunately these kind

of functions are unsuitable from a physical point of view.

In the light of this difficulty, a possible approach to obtain the kernel reaching the optimal

accuracy is discussed. This kernel in the cubic case is explicitly computed.

3.1.1 Higher-order kernels

The aim is to construct a kernel approximating the Dirac delta up to an arbitrary high

order. The approach goes along the lines of Liu et al. (2003) with some slightly different

details. In addition, a general formula to construct a kernel of any order is given. As this

discussion is of purely theoretical interest, the one-dimensional case is the only one that

is going to be treated.

Let us consider a smooth function f : [a, b] → R and let h > 0 and x0 ∈ (a, b) be such

24
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that condition (2.8) is satisfied.

Now recalling formula (2.10), express the remainder R(x0, h) as a sum of two terms

R(x0, h) = R≤N (x0, h) +O(h2N+2), (3.1)

where

R≤N := 2
N∑
n=1

f (2n)(x0)

(2n)!

∫ h

0
W (r, h)r2ndr. (3.2)

Now, the aim is to neglect the cut-off

R≤N (x0, h) = 0 (3.3)

obtaining, in this way, an accuracy of order 2N + 2 with an arbitrary high N ∈ N that is

supposed to be fixed.

The vanishing conditions arising from (3.3) together with the normalization condition,

immediately lead to the following system
∫ h

0
W (r, h)dr = 1/2∫ h

0
W (r, h)r2ndr = 0 ∀n = 1, ..., N

(3.4)

As the kernel is supposed to be an analytic function, it is constructed as a formal power

series expansion in which the coefficients are determined as a solution of the already

obtained system. As W (r, h) is defined on a compact support, let us set R := r/h. The

polynomial kernel of degree p can be naturally constructed as follows

W (R, h) :=


(1−R)

p−1∑
k=0

akR
k R ∈ [0, 1]

0 R ≥ 1

(3.5)

In Liu et al. (2003) the vanishing condition of W (R, h) at R = 1 is not intrinsically taken

into account as above. This leads to an additional equation to the system (3.4).

First of all, note that (3.4) can be easily written as follows∫ 1

0
W (R, h)R2ndR = δn, n = 0, ..., N . (3.6)



CHAPTER 3. THEORY 26

where δn = 1/2h if n = 0 and zero otherwise.

By taking into account of (3.5) one gets, for all n = 0, ..., N

δn =

∫ 1

0

(
a0 − ap−1R

p +

p−1∑
k=1

(ak − ak−1)

)
R2ndR

=
a0

2n+ 1
− ap−1

p+ 2n+ 1
+

p−1∑
k=1

ak − ak−1

k + 2n+ 1
.

(3.7)

Now, collecting the pairs of terms ak with the same subscript, after a re-summation, the

following set of N + 1 linear equations in the p unknowns a0, . . . , ap−1 is obtained

p∑
k=1

1

(2n+ k)(2n+ k + 1)
ak−1 = δn, n = 0, ..., N . (3.8)

This is clearly a square system if N = p− 1, so a kernel of degree p− 1 leads to an error

of order 2p, for all p.

The obtained system can be written in the usual form

Ax = b, (3.9)

simply by defining

aij =
1

(2i+ j − 2)(2i+ j − 1)
, x :=


a0

...

ap

 b :=


(2h)−1

0
...

0

 (3.10)

where aij are the entries of A.

As can be easily seen, the matrix A possesses an interesting entries structure (see also the

next example).

The difficult problem of the computational aspects of the linear system (3.9) solution with

an arbitrary high dimension is not here addressed. Due to the “bad” dependence of the

aij as i and j increase, the matrix A turns out to be ill-conditioned, even worse than the

classical Hilbert matrix1.
1which elements are given by hij := 1

i+j−1
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Example 3.1.1 (Construction of a cubic kernel). What is needed is to solve system (3.9)

in dimension three, where explicitly

A =


1
2

1
6

1
12

1
12

1
20

1
30

1
30

1
42

1
56

 (3.11)

admitting as a solution

(a0, a1, a2) =

(
15

4h
,−57

4h
,
12

h

)
. (3.12)

The obtained kernel is then

W (R, h) =
1

4h
(1−R)(15− 57R+ 48R2). (3.13)

It is easy to explicitly check that

2h

∫ 1

0
W (R, h)dR = 1,

∫ 1

0
W (R, h)RkdR = 0, k = 2, 4 (3.14)

while ∫ 1

0
W (R, h)R6dR =

1

210
6= 0 (3.15)

as expected.

It is clear that the kernel is not positive on the entire support. As pointed out in Liu

et al. (2003), pag.85, this phenomenon leads to a non-physical situation such as negative

pressures and energies. Unfortunately this obstruction is unavoidable at the first step too,

as the integral ∫ h

0
W (r, h)r2dr (3.16)

cannot be neglected if W (r, h) does not change sign.
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3.1.2 Optimal kernels

Note that the integral appearing in formula (3.16) cannot be required to vanish. Never-

theless, it is possible to make it as small as possible via a careful kernel choice. This

integral can be interpreted as a cost function and the coefficients of the polynomial kernel

are determined as the solution of an optimization problem.

Another crucial feature of kernel functions is the behaviour of their second derivative on

its support. As pointed out in Swegle et al. (1995) a second derivative changing of sign

leads to certain instability region in the kernel support, implying some non-physical parti-

cle behaviours throughout the simulation. A way to overcome this trouble is the so-called

Tensile correction (see, for instance Crespo (2008)). As usual, this requires parameters to

be determined empirically like the average particle spacing.

In order to avoid the use of this correction, let us start with a kernel prototype whose sec-

ond derivative does not change sign at all on the support.

Let W = W (ρ) be the kernel function, where ρ := |x − x0|. The compact support of

W (ρ) is a disk centred at x0 of radius l.

A suitable choice could be such that

W ′′(ρ) = a0(l − a1ρ), ρ ∈ [0, l], (3.17)

with a0 ∈ R+ to be determined. The previous function is positive for all a1 ∈ [0, 1].

As usual in kernel construction, in order to ensure a smooth joint with the exterior domain,

the following vanishing conditions

W (l) = 0, W ′(l) = 0, (3.18)

are imposed. Firstly

W ′(ρ) = a0

(
−1

2
a1ρ

2 + lρ+ a2

)
, (3.19)

for all a2 ∈ R. From (3.18b)

a2 = l2
(

1

2
a1 − 1

)
. (3.20)

Similarly, for all a3 ∈ R, follows

W (ρ) = a0

(
−1

6
a1ρ

3 +
1

2
lρ2 + a2ρ+ a3

)
. (3.21)
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Now by taking into account of (3.20), condition (3.18a) gives

a3 = l3
(

1

2
− 1

3
a1

)
. (3.22)

In conclusion one gets

W (ρ) = −1

6
a0[a1ρ

3 − 3lρ2 − 3l2(a1 − 2)ρ− l3(3− 2a1)]. (3.23)

The following statement is going to be used

Proposition 3.1.2 (Second order Taylor formula in 2D). LetW (ρ) be a kernel and f(x) ∈
C2(Ω,R), then the following formula holds∫

Ω
f(x)W (x)dx = f(0) +

π

2

(
∂2f

∂(x1)2
(0) +

∂2f

∂(x2)2
(0)

)∫ l

0
W (ρ)ρ3dρ+ o(k2).

(3.24)

Proof. Given in Appendix

It is clear that, in order to reach the best approximation, a minimization of the integral

I3 :=
∫ l

0 W (ρ)ρ3dρ under the constraint

(2π)−1 =

∫ l

0
W (ρ)ρdρ =: I1, (3.25)

(unity condition) is required.

These integrals evaluated on kernel (3.23) give

I1 =
l5

6
a0

(
1

4
− a1

5

)
, I3 =

l7

20
a0

(
1

6
− a1

7

)
. (3.26)

By substituting a0 as determined by the unity condition (3.25)

a0 =

[
π

3l5

(
1

4
− a1

5

)]−1

, (3.27)

the optimization problem is reduced to

min
a1∈(0,1]

I3 =
l2

14π
min

a1∈(0,1]

7− 6a1

5− 4a1
. (3.28)
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It is easy to check that the minimum is attained on the boundary at a1 = 1. By (3.27),

follows a0 = 60/πl5, implying that the best polynomial kernel of degree three is

W (ρ) =
10

πl5
(l3 − ρ3 + 3lρ2 − 3l2ρ). (3.29)

Now replacing the smoothing length in its usual form l = kh and performing the standard

variable rescaling R := ρ/h, one obtains

W (R) =
10

πk5h2
(k −R)3, R ∈ [0, k] (3.30)

and, obviously, W (R) = 0 if R > k.

In the simulations described in the following chapters, the previous kernel with k = 2 (as

done, e.g. in Crespo (2008)) is used, i.e.

W (R) =
5

16πh2
(2−R)3. (3.31)

A comparison between this kernel and other classical kernels, such as cubic spline, quadratic

and Gaussian, will be given in Section 3.2.

This argument can be generalized, in principle, to polynomial kernels with an arbitrary

high degree or piecewise kernels. The substantial difference with the previous section is

that an higher degree kernel leads to non-linear equations in the coefficients ai. So the

minimization problem easily solved in this very special case involves more complicated

objects. A numerical solution of the implicit equations arising in this way is, in general,

necessary.

An investigation of this possibility could be taken up in future work.
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Figure 3.1: The optimal cubic kernel (divided by the factor 5/(16πh2)) depicted in blue,

its first and second derivative in green and in red respectively. Note that W ′′(R) is always

non-negative on the compact support as required by construction.



CHAPTER 3. THEORY 32

3.2 Comparison between kernels

In this section a comparison between the kernel described in this work and the other clas-

sical kernels of the SPH literature is carried out. As already stressed in section 3.1.2 the

interpolation error is of the form αhβ where the exponent β ≤ 2 cannot in general be im-

proved. The possibility to obtain the smallest constant α has been shown in section 3.1.2

as well. The aim is now to compare this constant with the other kernels by performing

explicit computations on a generic function.

As a test function, let us consider the quadratic form f : R2 → R

f(x, y) = a0 + b1x+ b2y + c11x
2 + 2c12xy + c22y

2, (3.32)

with real coefficients. It should be stressed that the latter is the most general case to be

considered, as the cubic terms would not contribute to the coefficient of the quadratic

error.

In order to compute this coefficient, the following integral needs to be evaluated

I :=

∫ ∫
Ω
Wopt(x, y;h)f(x, y)dxdy, (3.33)

where Wopt(x, y;h) is the kernel defined by (3.31). In general, the error introduced by

the kernel approximation is given by

E := I − f(0, 0). (3.34)

By using polar coordinates for two dimensions, it reads as

Iopt =
5

16πh2

∫ 2h

0
ρdρ

∫ 2π

0
dθf(ρ, θ)

(
2− ρ

h

)3

=
5

16πh2

∫ 2h

0
ρdρ(2πa0 + πc12ρ

2 + πc22ρ
2)
(

2− ρ

h

)3

= a0 +
2

7
h2(c12 + c22).

(3.35)

The same computation can be repeated below for the other kernels. These are recalled

below for the reader’s convenience (the same notational setting of Sec 3.1.2 is used).
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1. Cubic spline

Wc(R, h) :=
10

7πh2


1− 3

2R
2 + 3

4R
3 if 0 ≤ R < 1

1
4(2−R)3 if 1 ≤ R < 2

0 if R ≥ 2

(3.36)

2. Quadratic

Wq(R, h) =
1

πh2

(
3

8
R2 − 3

2
R+

3

2

)
, 0 ≤ R ≤ 2, (3.37)

and zero otherwise.

3. Gaussian

Wg =
1

πh2
e−R

2
, 0 ≤ R ≤ 2, (3.38)

and zero otherwise.

By using these formulae, the same computation done for the Optimal kernel can be easily

carried out as follows.

• Cubic spline:

Ic =
10

7πh2

∫ h

0
ρdρ(2πa0 + πc12ρ

2 + πc22ρ
2)

(
1− 3

2

ρ2

h2
+

3

4

ρ3

h3

)
+

5

14πh2

∫ 2h

h
ρdρ(2πa0 + πc12ρ

2 + πc22ρ
2)
(

2− ρ

h

)3

= a0 +
31

98
h2(c12 + c22)

(3.39)

• Quadratic:

Iq =
2

πh2

∫ 2h

0
ρdρ(2πa0 + πc12ρ

2 + πc22ρ
2)

(
3

4
− 3

4

ρ

h
+

3

16

ρ2

h2

)
= a0 +

2

5
h2(c12 + c22).

(3.40)

• Gaussian:

Ig =
e4

(e4 − 1)πh2

∫ 2h

0
ρdρ(2πa0 + πc12ρ

2 + πc22ρ
2)e−

ρ2

h2

= a0 +
e4 − 5

2e4 − 2
h2(c12 + c22).

(3.41)
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It is evident that, in each case, the errors E are O(h2) as previously discussed. The corre-

sponding coefficients of h2 are computed numerically in the table below and graphically

represented in Fig. 3.2.

Kernel h2 coefficient of E

Optimal 0.2857

Cubic spline 0.3163

Quadratic 0.4

Gaussian 0.4627

Figure 3.2: Comparison between the errors introduced by the above mentioned kernels:

Optimal (continuous line), Cubic spline (dashed), Quadratic (dotted) and Gaussian (dash-

dotted).
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3.3 Interaction list (IL)

3.3.1 Set-up of the problem

The particle-based approach of the SPH is closely related to the computation of the in-

teractions among particles. It is clear from the previously obtained discretized equation,

that the motion of a particle is determined by means of neighbouring particles action, as

weighted via the chosen kernel function.

The set of particles interacting with every single particle is stored in a structure called in-

teraction list (IL). This can be considered as a matrix-like structure in which the number

of rows is equal to the number of particles N , while the number of columns is not fixed.

More precisely, it depends on the number of particles contained in a disk of radius equal

to l = hk and centered at the chosen particle.

l

Figure 3.3: Particles enclosed in the circle of radius l are said to be interacting with the

particle placed at the center.

Evidently, the computational cost of a straightforward calculus of the IL is of order

N2. This would be far from acceptable in cases of a large number of particles. Several

advanced techniques can be found in literature to avoid this huge amount of CPU time.

Tree search algorithms (Hernquist et al. (1989)), Bucket algorithms (Liu et al. (2001)) or

parallelization techniques (Harada et al. (2010)) can be mentioned as examples.
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3.3.2 Some further tools in IL calculus

Now, some simple tools in IL calculus can be introduced, saving in this way an appreciable

amount of CPU time.

IL storing

In order to establish if a particle is close to a given particle within a disk of radius hk,

the Euclidean distance between the particles i and j has to be computed, and this requires

exactly six operations:

1. two subtractions: d1 = xi − xj , d2 = yi − yj

2. two squares: a = d2
1, b = d2

2

3. a sum and a square root: d =
√
a+ b

Nevertheless if |d1| > hk or |d2| > hk the particle at hand does not need to be stored and

the other operations are unnecessary. More precisely it is possible to create a hierarchy

of IF blocks in order to prevent every redundant operation, depicted in the flow chart of

Figure 3.4

IL refreshing

The technique we are going to describe has been developed in Verlet (1967) and is widely

known as Verlet-List.

The latter has been used in Panizzo (1994) and in Dominiguez et al. (2011) in which

several tools are described to improve this technique in order to obtain a more efficient

implementation. We shall give an explicit example of its computational advantage.

The underlying idea can be illustrated as follows.

Usually the interaction list is updated at each time-step. Nevertheless, by taking into

account the equations of the RK solver (2.30), it is clear that the particles are not moving

so much at each time-step, as σ is chosen very small.

Let l := hk be the radius of the compact support of the kernel and δ ∈ R+ suitably
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d1 := xi − xj

|d1| ≤ l

d2 := yi − yj

|d2| ≤ l

r := d21 + d22

r ≤ l2

FALSE

TRUE

DO NOT STORESTORE

Figure 3.4: The sequence of IF blocks to store particles. The constants l := hk and

l2 := l2 are computed once and for all.

chosen. The main idea is to consider an auxiliary structure Iδ, called extended IL, in

which particles closer than l + δ to every single particle are stored. In order to preserve

efficiency without loss of information about the particles positions, it is necessary to avoid

that a particle xj , initially external to Iδ (depicted in red in Fig. 3.5), could interact with

xi, without being stored in the IL. This implies that xj has covered a distance greater than

δ.

The maximum displacement at the q−th time step, over the particles indexed by i, is

bounded by

λq := ( sup
m=1,...,N

|vm|σ)q, (3.42)

where vm is the velocity vector of the m−th particle of the whole fluid.
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Criterion 3.3.1. Suppose that for q = 1, xj /∈ Iδ. This implies xj /∈ Bl(xi) for all

q = 1, ..., Ñ such that
Ñ∑
q=1

λq ≤ δ (3.43)

This is a necessary condition in order to guarantee that the particle xj is interacting

with xi (a straight line displacement). Clearly it is not-sufficient, in the sense that a

particle could cover a distance greater or equal to δ without crossing ∂Bl(xi), as particle

x′j depicted in Fig. 3.5 .

Let us discuss in detail the numerical consequence of the above described criterion for

l

l + δ
xi

xj

xi

xj

Figure 3.5: The criterion of the IL refreshing. In blue, the set of all interacting parti-

cles with i−th particle. Green and blue particles are stored in Iδ. The j−th particle is

approaching to the particle. On the right the evolved set after condition 3.43 is satisfied:

j−th particle is actually interacting with the i−th and the IL has to be refreshed.

the IL refreshing. Let Tr be the time needed to refresh the IL. The data of Table 3.1

arise from one of the most expensive (and accurate) simulations on the simple dam-break

problem. It is evident from this table that the number of IL refreshing that we avoid in

this way is 96522 − 1931 = 94591 i.e. the 98%, equivalent to a saved performance time

of 94591 ∗ 0.79s = 74726.89s ∼ 21h.
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N. of fluid particles 3600

N. of boundary particles 350

Total solver steps 96522

N. of IL refreshing 1931

Tr 0.79s

Table 3.1: Data from simulation of a simple dam-break problem

3.3.3 IL efficiency

In this section we are going to reference and compare computational efficiency data of

the above described IL refreshing with the paper Dominiguez et al. (2011). In particular,

the behaviour of the computational cost in terms of memory and time has been studied as

a function of the number of fluid particles and compared with the graphs excerpted from

the above mentioned paper.

In order to produce these data we considered a set of N randomly distributed particles

on a bounded region of the plane (reproducing the most general situation during an SPH

simulation). The Figs. 3.6 and 3.7 have been produced by using a range forN from 20000

to 80000. Even if the range used in Dominiguez et al. (2011) is larger than N = 140000,

it is not difficult to recognize the advantages of the IL refreshing presented in this thesis.
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(a) Present work

(b) Dominiguez et al. (2011)

Figure 3.6: Memory used as a function of N . In subfigure (a) the x−axis represents N

while the memory occupied, expressed in byte, is on the y−axis. In subfigure (b) the same

setting is used. It should be remarked that the graph to be compared with (a) is denoted

with VL (Verlet List).
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(a) Present work

(b) Dominiguez et al. (2011)

Figure 3.7: Elapsed time as a function ofN . In subfigure (a) the y−axis scale is expressed

in seconds. The x−axis remains unchanged.
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In both cases an appreciable difference can be noticed. From Fig. 3.6 is clear that the

memory used to store the IL associated to N = 80000 particles in the case (a) requires

less than 10 Mb, while in the case (b) it is between 10 and 15 Mb.

As for the elapsed time in the same case of N = 80000, the difference is much more

evident. The required time of nearly 3 hours of Dominiguez et al. (2011) is reduced to

less than 700s i.e. less than 12 minutes.

For a true comparison, each method should be implemented in the same code.

3.4 Dam-break

The dam-break problem consists of the collapse of a water column of a given volume,

under the action of gravity, and impacting against a rigid vertical wall. Several variants

2m

6m

g

2m

Figure 3.8: The Dam-break setting used in our simulation

of this most famous problem can be found in literature as an SPH test case. Monaghan,

in Monaghan (1994), used a total number of 2910 particles for the simulation. Recently,

many other improvements were obtained, e.g. Armanini et al. (2010), where the problem

has been extended to 3D, with the use of different levels of refinement, from 250000 up

to 2 million particles and parallelized on 256 CPUs units. In our case, data and results

obtained are produced on a single CPU unit laptop. Reasonably, this technological limi-
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tation, pushed and motivated us to optimize the implementation performance avoiding, as

much as possible, redundant operations and by using more efficient tools (such as RKF45,

our IL refreshing criterion and so on). Of course, as a consequence, this will have a strong

impact on the implementation on a powerful machine.

After the simple dam-break problem, the presence of an obstacle will be considered, in

order to produce a completely different break-up of the wave generated in the collapse.

Once the preliminary overview of the SPH technique and a discussion of its computational

aspects has been completed, it is now possible to address the core of the present work, the

SPH formulation of the dam-break, which will be the aim of the next chapter.

The discussion will concern different formulations of the above mentioned problem. In

particular, the results related to a different kernels, geometries and number of particles

will be presented and compared with existing results in literature. The study on different

geometries includes a well known variant of the classical dam-break, obtained by adding

a triangular obstacle on the dry bed.
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Implementation

4.1 The boundary conditions problem

One of the main issues when dealing with the SPH formulation is the boundary treatment.

A correct understanding of this aspect is a crucial point in order to obtain an appropriate

behaviour of the wave impact against the wall on the right.

The simple impenetrability of the boundaries, provided in a wide class of problems,

does not have an obvious implementation. In Monaghan (1994), the use of the classical

Lennard-Jones potential, arising from molecular dynamics, has been suggested. In this

way, the force acting on a particle located at a distance r from the boundary is described

by

f(r) =
1

r

((r0

r

)p1 − (r0

r

)p2)
n, p1 > p2, (4.1)

where n denotes the unit vector perpendicular to the boundary.

It is clear that the particles are repelled by a force which modulus tends to infinity as these

approach to the boundary. This model may lead to certain instability phenomena, since

many ODE solvers could not work properly with unbounded force fields.

A natural way to avoid this kind of problems is to treat a boundary as fixed particles.

These interact as standard fluid particles but remain in the same position for all t; with this

approach the boundary impenetrability is a mere consequence of the continuity equation,

44
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see Crespo et al. (2007).

4.2 First SPH formulation

A basic implementation of the problem at hand, fully exhibits a wide range of problems to

solve, in order to obtain more accurate results. The initial features of the implementation

were:

1. Explicit Euler ODEs solver

2. Straightforward computing of the interaction list

3. Lennard-Jones based boundary conditions.

Since it is a first-order method, the use of an explicit Euler scheme requires a very small

time-step and then a very large CPU time, despite the number of particles used was just

of approximately 300. It is appropriate to recall that the time-step cannot be chosen to

be arbitrary small due to the accumulation of numerical errors at every solver step. For

every numerical scheme it is necessary to give a criterion for an appropriate time-step

size to choose, in order to prevent either the above mentioned accumulation of errors or

discretization errors, related to a too large time-step (see Fig. 4.1). The above mentioned

criterion is described in section 2.3.2. As expected, the use of Lennard-Jones force be-

tween fluid particles and boundary, leads to an instability of the particles close to the

boundary just after few seconds. By looking at formula (4.1) it is clear that, for r ap-

proaching to zero, the modulus of the force grows unboundedly due to the singularity at

r = 0 . This implies that the more the fluid particles get close to the boundary (due to

pressure of overlying particles), the bigger the repelling force becomes, and then an un-

bounded growth of the particles acceleration.

As it is well known, explicit Euler method is a Taylor expansion based scheme. For in-

stance, let x(t) be the position of a particle, and let σ > 0 be a small time-step, therefore

the position at the time t+ σ is given by

x(t+ σ) = x(t) + ẋ(t)σ +
1

2
ẍ(t∗)σ2, t∗ ∈ (t, t+ σ), (4.2)
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total error

truncation error

rounding error

σ∗

E

σ

Figure 4.1: Behaviour of the numerical errors E (in the case of first order Euler method)

as a function of the time-step size and its optimal choice σ∗. Figure from Comincioli

(2010).

but ẍ is proportional to the force acting on the particle, and if the latter is unbounded,

the remainder is not small with respect to the first order truncation, implying that the

approximation does not make any sense.

This instability phenomenon rapidly propagates through the entire fluid with a complete

loss of hydrodynamical reliability almost everywhere, more precisely, the simulation does

not describe a physical phenomenon anymore.
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4.3 Original SPH formulation

The main features of the developed simulation are:

• RKF45 time integrator,

• Total absence of corrections of non-physical nature (such as artificial viscosity,

tensile correction, XSPH variant, etc.),

• Optimal second order kernel constructed in section 3.1.2,

• IL refreshing criterion as described in section 3.3.2,

• Boundary treatment by using ghost particles.

• CSPM formulation of the flow equations

The use of an higher order time scheme (also with respect to the application usually men-

tioned in literature) and the tools described in section 3.3.2 allowed us to substantially

increase the number of fluid particles with respect to the earlier version of the code with-

out drastically affecting the performance time. In the final simulation, whose frames are

depicted below, up to 3950 particles were used, with an elapsed time of less than seven

hours1.

As previously mentioned, another key feature of the RKF45 integrator is the adaptivity.

This allowed us to use a larger time-step before the impact against the wall as the phase

flow is regular and the motion of the particles is ordered. Due to the shock, the latter prop-

erties are no longer true and a smaller time-step is required in order to preserve numerical

stability and hydrodynamical reliability. The time-step evolution is depicted in Fig. 4.2

1On a single CPU laptop machine, Intel r Celeron r M Processor 410, 533MHz.
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Figure 4.2: The time-step decreasing performed by RKF45. The x−axis represents time

t (expressed in seconds) and the y−axis the time-step size (in seconds) for RKF45. As

it can be seen, the minimum value is reached when the fluid mass impacts the right wall

(compare with Fig. 4.3(c)).
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(a) t = 0.3s (b) t = 0.6s

(c) t = 0.9s (d) t = 1.2s

Figure 4.3: Four frames from the classical Dam-break simulation at four different in-

stants. The axis scales are expressed in meters. The reported frames have been produced

by using a time detection device in the algorithm and their accuracy is ±σ with respect to

each ti, where σ is the current time-step.
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4.4 Comparison with existing results

The purpose is now to compare the above described results with an existing simulation in a

straightforward way. The simulations reported in Gomez-Gesteira et al. (2010) have been

chosen as a test bench. For a more adequate comparison, the geometry of the discussed

implementation has been adapted to the setting used in Gomez-Gesteira et al. (2010), see

Fig. 4.4.

Figure 4.4: Initial configuration of the water column and the tank used in Gomez-Gesteira

et al. (2010).

The implementation used in the present section has been performed with 3200 fluid parti-

cles and 282 boundary particles, as a consequence the smoothing length has been chosen

as h = 0.03m. Either the Optimal kernel (constructed in Sec 3.1.2) and the classical

Cubic spline kernel (see 3.36) have been used.

This section is divided in two parts. The first is devoted to the analysis of the two water

columns positions, sampled at the same instants, more precisely, ti := {0.4, 0.6, 0.8, 1}s,

determined with the same criterion described in Fig. 4.3.

In the subsequent part the analysis of the position of two wave toes and the height of the

collapsing dam are going to be discussed.
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4.4.1 Position of the water column

First frame

(a) Optimal kernel (b) Cubic spline kernel

(c) Gomez-Gesteira et al. (2010)

(d)

Figure 4.5: Frames from the dam-break simulation at t = 0.4s. Fig. 4.5(a) and 4.5(b):

frames from the simulations performed by using Optimal and Cubic spline kernel, respec-

tively. Fig. 4.5(c) represents the position of the water column as excerpted from Gomez-

Gesteira et al. (2010). The axis scales are expressed in meters. Fig. 4.5(d) expresses

particle velocities of 4.5(c) (in m/s). The subsequent figures are similarly organized.
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Second frame

(a) Optimal kernel (b) Cubic spline kernel

(c) Gomez-Gesteira et al. (2010)

Figure 4.6: Frames from the Dam-break simulation at t = 0.6s.
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Third frame

(a) Optimal kernel (b) Cubic spline kernel

(c) Gomez-Gesteira et al. (2010)

Figure 4.7: Frames from the Dam-break simulation at t = 0.8s.
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Fourth frame

(a) Optimal kernel (b) Cubic spline kernel

(c) Gomez-Gesteira et al. (2010)

Figure 4.8: Frames from the Dam-break simulation at t = 1s.

As can be easily seen from the four frames a full similarity between the simulations

performed by using the two different kernels can be appreciated. Despite some differ-

ences due to the absence of post formulation corrections, both of the wave profiles occupy

a position that is fully comparable to the frames excerpted from Gomez-Gesteira et al.

(2010).
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4.4.2 Evolution of the toe and height

A further tool to analyse the similarity with the chosen reference consists in comparing

the time evolutions of the dam toe and height.

Position of the toe

The consistency of the simulations performed by using the two different kernels (Optimal

and Cubic spline) are deduced by a straightforward comparison in the Figs. 4.9 and 4.10

below. These represent the position of the toe of the collapsing dam as a function of time

(continuous line) and a set of data as provided by Koshizuka et al. (1996) (dots), taken

from Gomez-Gesteira et al. (2010).

Figure 4.9: Position of the toe in the Optimal kernel case (continuous line) and experi-

mental data from Koshizuka et al. (1996) (dots). The x−axis scale is expressed in sec-

onds, while the y−axis scale is expressed in meters.
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Figure 4.10: Position of the toe in the Cubic kernel case (continuous line) and experi-

mental data from Koshizuka et al. (1996) (dots). The axes scales are organized as in Fig.

4.9.
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Figure 4.11: Position of the toe as excerpted from Gomez-Gesteira et al. (2010). The

three curves correspond to different numerical discretization, more precisely for h chosen

as 0.0390m (top curve), 0.0260m and 0.0156m, respectively. Dots represent experimen-

tal data provided by Koshizuka et al. (1996).
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Height of the wave

In order to compare the simulations which toe evolutions have been described by Figs.

4.9 and 4.10, the analysis can be completed by reporting the corresponding plots for the

heights of the collapsing dams.

(a) Optimal kernel

(b) Cubic spline kernel

Figure 4.12: Evolution of the highest point of the collapsing dam as a function of time

(reported on the x−axis and expressed in seconds). The y−axis scale is expressed in

meters.

Despite the fact that the two graphs are fully comparable, in the Optimal kernel case

it is possible to appreciate a smoother evolution of the height.
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4.4.3 Qualitative convergence study

In this section the behaviour of the implementation is studied in case of coarser particles.

The toe evolutions corresponding to three different values are reported in Fig. 4.13, to-

gether with a straightforward comparison with Gomez-Gesteira et al. (2010).

As can be easily deduced by Fig. 4.13 as the particles size decreases, the trajectory of

the toe becomes smoother and closer to the trajectory reported by Gomez-Gesteira et al.

(2010) and to the experimental data.
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(a)

(b)

Figure 4.13: In (a), position of the toe for the following values of the smoothing length

h: 0.067m (900 particles, dotted line), 0.05m (1434 particles, dash dotted line), 0.04m

(2112 particles, continuous line) and experimental data excerpted from Koshizuka et al.

(1996) (dots). Fig. (b) excerpted from Gomez-Gesteira et al. (2010) for h chosen as

0.0390m (top curve), 0.0260m and 0.0156m, respectively. Dots represent experimental

data provided by Koshizuka et al. (1996).
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4.5 Dam-break with an obstacle

The aim is now to test the implementation on a very interesting and widely-used variant

of the classical dam-break problem, see e.g. Liu et al. (2003). In this case a small obstacle

with the shape of a right-angled isosceles triangle is positioned on the ground.

Until the wave reaches the obstacle, the problem is fully analogous to the classical dam-

2m

3, 5m

g

2m

Figure 4.14: The dam-break with a triangular obstacle. The equal sides have been chosen

40cm long.

break; however the break-up after the impact is substantially different from the previous

setting. In this case, the right wall has been removed in order to study the wave produced

by the impact. This problem should be regarded as an indicative model of a violent impact

against a fixed marine structure such as platforms or coastal defences.

The simulation has been done with exactly the same original SPH formulation, through

a simple modification of the boundaries configuration. The simulation time is slightly

smaller (equal to 1s) than the classical problem as it is not needed to examine the effect

due to the right wall on the wave.
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(a) t = 0.3s (b) t = 0.6s

(c) t = 0.9s (d) t = 1.2s

Figure 4.15: Four frames from the dam-break simulation with an obstacle; the initial

condition is the same as depicted in Fig. 4.3(a). The axis scales are expressed in meters.
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4.5.1 Comparison

As for the classical case, a direct comparison with an existing example is performed. In

such case, the frames depicted below, and labelled with (b), have been excerpted from Liu

et al. (2003). The frames labelled with (a), corresponding to the formulation described in

Sec. 4.5, have been computed using a wave front detection control and taking into account

of the different scales used by the two formulations. The total number of particle used is

3919.

An appreciable similarity between the two sets of frames can be observed. As discussed

in the classical dam-break case, the obtained wave profile looks more noisy than (b) (from

Liu et al. (2003)), due to the complete absence of artificial corrections. Nevertheless, from

the physical point of view, it is not completely clear which one is more reliable: in cases

(b), any kind of particle fragmentation is completely absent, whereas it should naturally

be produced because of the wave impacting against the obstacle.

First frame

(a) (b)

Figure 4.16: Comparison between the Dam-break variant simulations, subfigure (b) is

excerpted from Liu et al. (2003) for x = 3.11m.
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Second frame

(a) (b)

Figure 4.17: Comparison between the Dam-break variant simulations at x = 3.91m (left)

and Liu et al. (2003) results (right).

Third frame

(a) (b)

Figure 4.18: Comparison between the Dam-break variant simulations at x = 4.44m (left)

and Liu et al. (2003) results (right).
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Fourth frame

Figure 4.19: Comparison between the Dam-break variant simulations at x = 5.59m (left)

and Liu et al. (2003) results (right).

The above presented results show the comparability between the SPH formulation de-

scribed in this work and other relevant results found in literature. The comparative study

performed on the optimal kernel, with respect to the well known cubic spline, exhibited

an appreciable equivalence between the two interpolation functions.

A summary of the results obtained will be presented in the following chapter. Further-

more, the optimal kernel will be compared with the other standard kernels used in litera-

ture, showing that it allows to attain the minimum O(h2) error.
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Conclusions

5.1 Discussion of results

The main goal of this research was to approach the SPH implementation of dam-break

problem differently, to give a critical evaluation of the already existing theory.

The crucial point of the analysis concerned not using of corrections in the fluid equations.

It is well known that corrections such as artificial viscosity, XSPH variant, tensile cor-

rection and so on, are used mainly to guarantee a better particles behaviour. Basically,

the use of additional terms, is a way to force particles to move according to certain laws

(more orderly, less noisy), which do not arise from the equations of motion1. In this way

one gets a description (and then a simulation) of a phenomenon that is not a fluid motion

anymore.

On the other hand, it is known that a straightforward SPH approximation, can lead to

severe errors in certain situations such as a small number of particles within the support

domain and/or not uniformly distributed particles. Nevertheless, these potential errors do

not justify the use of the previously mentioned non-physical corrections.

The attention was focused instead, on the SPH discretization accuracy (mainly on theory

1In addition, a large number of parameters appearing in such adjustments has to be determined

empirically.
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of kernels), more accurate ODEs solvers and interaction list storing optimization. As said

in the foreword, the original results of this work are centred on these topics.

In particular, the aim of the theory of kernel developed in this thesis, was to construct a

kernel function with the following features:

• Does not require the use of tensile correction as its second derivative is positive on

the support domain by construction;

• Leads to an error of order h2 unavoidable for non-negative (i.e. non-physical)

function, times a constant with the smallest value achievable.

This theory can be generalized in principle to arbitrary high degree or piecewise kernels,

even if this approach requires to deal with a non-linear system that has to be solved, in

general, with a numerical method.

The use of RKF45 method is a way to obtain either efficiency or accuracy. The adaptive

time-step adjustment provided by this scheme, allows to fix a given precision a priori

(controlling in this way the error throughout the simulation), but can also accelerate the

simulation process increasing the time-step, if the chosen one is too small. This is a crucial

point as this class of implementations requires, in general, a very large computation time.

RKF45 is advantageous with respect to other time marchers frequently used in literature.

The widely used Verlet scheme, despite its symplectic feature, it is just a second order

method. RKF45, instead, exhibits an error at least of order four, allowing us to choose

a time-step hundreds time greater than the Verlet scheme, in order to obtain the same

accuracy.

The IL refreshing criterion 3.3.1, has been another decisive tool used to save a large

amount of CPU time. The idea to update the IL only if the maximum displacement of the

particles (evaluated all over the fluid) is greater than a prefixed quantity, allows to avoid

redundant storage processes in case of slow variations due to small time-steps. The results

obtained by a joint action of the above mentioned tools are described in Table 3.1.



CHAPTER 5. CONCLUSIONS 68

5.2 Future work

There are several refinement to be taken into account in order to improve the implemen-

tation. From the theoretical point of view, a development of the theory of optimal kernels

and its application to higher degree kernels and piecewise kernels is highly desirable.

Even if, a general treatment (as mentioned in Chapter 3), requires the use of a numerical

method to solve the n− dimensional optimization problem.

Another issue to be addressed is the computational efficiency. Mainly, a considerable im-

provement could be a more efficient interaction list storing algorithms, such as bucket,

tree search etc. Such algorithms give rise to a logarithmic computational costs versus the

linear cost of a straightforward search. On the other hand, the usage of higher order RK

adaptive schemes and their symplectic variants could lead to a further improvement of the

accuracy. As it is well known, the symplectic feature of a numerical integrator guarantees

the best performance from the energy conservation point of view.

As matter of fact, in the model some adjustments are required: the use of Euler formu-

lation is a fundamental step in a critical analysis but it does not lead to some relevant

physical phenomena such as the so-called aerated impacts, bubble entrapment and so on.

For this reason the use of multiphase formulation of the fluid equation could be the next

step to be achieved.

An interesting problem, actually more closely related to an engineering approach, could

be the measurement of the loads exerted in the impact either on the right wall (classical

dam-break) or on the obstacle (dam-break with an obstacle) Lobovsky et al. (2014).



Appendix A

A second order Taylor formula

In this appendix a detailed proof of the proposition 3.1.2 is given.

Let us choose, without loss of generality x0 = 0. As usual, denoting with x = (x1, x2),

follows ∫
Ω
f(x)W (x)dx = f(0)

∫
Ω
W (x)dx

+
2∑
i=1

∂f

∂xi

∫
Ω
W (x)xidx

+
2∑

i,j=1

∂2f

∂xi∂xj

∫
Ω
W (x)xixjdx+ o(h2).

(A.1)

The first integral appearing in the right hand side of the previous expansion is clearly equal

to one by unity condition. Due to the rotational symmetry of the kernel is convenient to

evaluate the other integrals by using polar coordinates: x1 = ρ cos θ

x2 = ρ sin θ
(A.2)

so
Ω = {(x1, x2) ∈ R2 :

√
(x1)2 + (x2)2 ≤ l}

= {(ρ, θ) ∈ R× S : ρ ∈ [0, l]}
(A.3)

One gets ∫
Ω
W (x)xidx = Ii

∫ l

0
W (ρ)ρ2dρ = 0 (A.4)
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where I1 :=
∫ 2π

0 cos θdθ = 0 =
∫ 2π

0 sin θdθ =: I2. While∫
Ω
W (x)x1x2dx =

(
1

2

∫ 2π

0
sin 2θdθ

)(∫ l
0 W (ρ)ρ3dρ

)
= 0∫

Ω
W (x)(xi)2dx = Ĩi

∫ l

0
W (ρ)ρ3dρ

(A.5)

with Ĩ1 :=
∫ 2π

0 cos2 θdθ = π =
∫ 2π

0 sin2 θdθ =: Ĩ2.

The substitution of the obtained values in the first formula closes the proof.
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