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Abstract 

It is well accepted that inter-individual variability exists in muscle strength (more 

specifically maximal voluntary contraction torque), and many of its determinants.  The 

extent of this inter-individual variability, however, has yet to be quantified despite many 

researchers suggesting genetic factors contribute.  The aims of the present thesis were to 

first quantify the inter-individual variability within skeletal muscle phenotypes in a 

homogenous population, and secondly to investigate the contribution of multiple genetic 

polymorphisms to the inter-individual variability within these phenotypes.  Genotype and 

phenotype data was collected from 120 untrained Caucasian males (aged 18-39 yr).  

Considerable inter-individual variability in muscle strength phenotypes and many of its 

determinants was observed.  Subsequently, polymorphisms in the CNTF, TTN, PTK2, TRHR 

and ACTN3 genes demonstrated significant associations with one or more of the skeletal 

muscle phenotypes, but neither ACE nor COL5A1 were found to associate with any of the 

measured phenotypes.  Adopting a polygenic approach that incorporated all of these 

genetic polymorphisms did not account for the inter-individual variability observed within 

VL muscle size (inter-individual variability = 13-20%; P ≥ 0.166) or strength (14-19%; P ≥ 

0.220).  The results identified novel genetic associations between TTN, CNTF and skeletal 

muscle architecture, in addition to providing the first independent replications of 

associations between PTK2 and specific force, and TRHR and lean mass.  In conclusion, 

there appears to be a genetic influence on skeletal muscle phenotypes, however, further 

research is necessary to replicate the associations observed within the current thesis in 

comparable and different populations.  Nonetheless, the work presented here has 

applications for improving physical performance, in addition to enhancing our 

understanding of skeletal muscle disorders, which may have implications for how 
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individuals exercise and how skeletal muscle disorders are treated and/or prevented in 

future. 
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2 
 

1.1 Introduction 

Skeletal muscle strength is a key determinant of an individual’s ability to perform activities 

of daily living and achieve peak physical performance (Thompson et al., 2004; Beunen & 

Thomis, 2004).  Muscle weakness has been suggested as an independent predictor of long-

term mortality risk (Rantanen et al., 2000), in addition to being associated with other 

predictors of mortality such as low body weight (Era et al., 1994) and chronic diseases  

(Bernard et al., 1998; Häkkinen et al., 1995).  Improvements in quality of life, on the other 

hand, have been associated with increased muscle mass and strength (Guralnik et al., 

1995).  Muscle strength is multifactorial and is influenced by both intrinsic and extrinsic 

factors.  For instance, reductions in muscle strength are known to occur as a consequence 

of the ageing process and have also been observed in certain disease states secondary to a 

reduction in skeletal muscle mass (Lindle et al., 1997; Larsson et al., 1979; Park et al., 2006; 

Tisdale, 2002; Mitch et al., 1994).  Gains in both muscle size and strength are known to 

occur with growth and in response to training (Larsson et al., 1979; Atha, 1981; Jones & 

Rutherford, 1987).  It is unsurprising therefore, that differences in muscle strength have 

been extensively reported between young and elderly individuals (Clarkson et al., 1981; 

Frontera et al., 1991; Lindle et al., 1997; D'Antona et al., 2003; Morse et al., 2005a), males 

and females (Danneskiold-Samsøe et al., 1984; Miller et al., 1993; Leyk et al., 2007), and as 

a consequence of training (Maughan et al., 1983).  In well-matched, homogenous groups 

however, where apparent stimuli for gains or losses in muscle strength are lacking, inter-

individual variability in strength persists (Maughan et al., 1983; Kanehisa et al., 1994; 

Erskine et al., 2009).  It is likely that genetic factors may partially explain this persistent 

inter-individual variability, as muscle strength phenotypes demonstrate a reasonable 

degree of heritability, although the true extent of this heritability remains unclear (Thomis 
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et al., 1997; Thomis et al., 1998; Beunen & Thomis, 2004; Tiainen et al., 2004).  Heritability 

refers to the proportion of total phenotypic variation in a population that is attributable to 

genetic variation.  More specifically, broad sense heritability is the ratio of total genetic 

variance to phenotypic variance and represents the extent to which a phenotype is 

genetically determined, whereas narrow sense heritability is the ratio of additive genetic 

variance to total phenotypic variance and represents the extent to which a phenotype is 

passed from parents to offspring (Visscher et al., 2008).  Furthermore, a phenotype is the 

physical manifestation of the underlying genotype for a particular trait.  For example in 

humans, blue eyes would be one possible phenotype for the eye colour trait.  However, 

there exist more complex traits, such as muscle strength, that are quantitatively measured 

on a continuous scale and are influenced by multiple genotypes.  Consequently the work 

presented in this thesis is concerned with investigating the genetic influence on muscle 

strength and its determinants in a homogenous population, where muscle strength 

nominally represents the varying terms used to denote the measurement of contractile 

force under different experimental set ups (e.g. isometric maximal voluntary torque, force 

and also broader measures of maximal concentric load).  The findings of which may have 

implications for facilitating the development of new treatments or interventions for ageing, 

disuse or certain disease states, where reductions in muscle strength and size are readily 

observed, by identifying novel gene targets. 

 

1.2 Inter-individual variability  

Muscle strength, or rather the measurement of torque/force during an isometric maximal 

voluntary contraction (MVC) is influenced by a descending cascade of factors ranging from 

the degree of recruitment from depolarisation of the motor neurone, to the final actin-
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myosin cross-bridge formation, and all the propagation and contractile elements in 

between.  It is unsurprising therefore given the neural, muscular and structural 

components involved in this process that a degree of inter-individual variability persists in 

otherwise homogenous population groups.  The inter-individual variability in muscle 

strength represents the spread of values produced by individuals within a sample 

population, and is dependent on experimental error, environmental factors and an 

individual’s genetic profile (Tiainen et al., 2005; Beunen & Thomis, 2004; Silventoinen et 

al., 2008; Thomis et al., 1998; Simoneau & Bouchard, 1995).  The environmental 

contribution to inter-individual variability in muscle strength and its determinants ranges 

from ~20-60% (Thomis et al., 1997; Tiainen et al., 2004; Carmelli & Reed, 2000), and is likely 

to be the consequence of factors such as habitual physical activity levels and diet, which 

can often prove difficult to control when using strength as an outcome measure in human 

populations.  Using well-matched, homogenous samples however, could minimise the 

variability observed within the values produced, and therefore demonstrates the need for 

careful consideration of these factors in aspects of research design and statistical analysis. 

Contrastingly, experimental error in the measurement of muscle strength and its 

determinants is generally under greater control, depending on what variable is being 

measured and the measurement method being used, and thus contributes the least to 

overall estimates of inter-individual variability (Simoneau & Bouchard, 1995).  The 

remaining variability may be accounted for by the genetic profile of an individual, however 

the magnitude of this genetic contribution remains inconclusive (Beunen & Thomis, 2004). 

 

1.2.1 Genetic contribution  
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Attempts to elucidate the genetic contribution to the inter-individual variability in muscle 

strength and its determinants have been undertaken using heritability estimates (Visscher 

et al., 2008), typically by completing twin and/or family studies.  Twin studies draw 

comparisons between monozygotic (identical) twin pairs, who have identical genotypes; 

and dizygotic (non-identical) twin pairs, who share approximately 50% of their genotype.  

It is assumed that as twin pairs are likely to share the same environment, the environmental 

contribution to variability in a given phenotype will be reduced.  Therefore, for a phenotype 

under strong genetic control, it is expected that monozygotic twin pairs would demonstrate 

a higher intra-pair correlation coefficient than dizygotic twin pairs (Figure 1.1) (Beunen & 

Thomis, 2004).  

 

 

 

 

 

 

 

 

 

 

 

Family studies draw comparisons between more combinations of family members than 

twin studies and are therefore more representative of the population (Bouchard, 1997).  

Furthermore, flexible statistical analyses allow for the discovery of genomic regions of 

Figure 1.1. An example of a higher intra-pair correlation coefficient for monozygotic (MZ) 
twin pairs (r = 0.82) in comparison to dizygotic (DZ) twin pairs (r = 0.42) for serum 
surfactant protein D levels. Figure modified from Sorensen et al. (2006). 

Twin 1 

Twin 2 
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interest in relation to the phenotype, making family studies a desirable approach.  To date, 

heritability estimates have been calculated for a variety of somatic and performance-

related phenotypes in humans (Beunen & Thomis, 2000; Arden & Spector, 1997; 

Silventoinen et al., 2003; Silventoinen et al., 2008), and it is probable that many of these 

estimates have led to the identification of new associations between genetic 

polymorphisms and observed phenotypes.  With particular reference to the human muscle 

strength phenotype, reports of heritability are extensive, however estimates range from 

~40-80% (Table 1.1), thus the extent of the genetic contribution to inter-individual 

variability in muscle strength remains uncertain (Thomis et al., 1997; Thomis et al., 1998; 

Beunen & Thomis, 2004; Tiainen et al., 2004).  Nonetheless, it is accepted that the 

multifactorial muscle strength phenotype is under strong genetic control, with a number 

of studies reporting significant associations between muscle strength and various genetic 

polymorphisms (Bray et al., 2009).  

 

Table 1.1. Heritability estimates for various muscle strength phenotypes in different muscle 
groups. 

Strength 

Phenotype 

Muscle Group Heritability [Mean 

(confidence intervals)] 

Article 

Isometric MVC Knee extension 0.82 – 0.96 Huygens et al. (2004) 

 0.66 – 0.70 Thomis et al. (1997) 

Forearm flexion 0.36 (0.03 – 0.69) Arden and Spector 

(1997) 

Elbow flexion 0.66 – 0.78 Thomis et al. (1998) 

Isokinetic MVC Knee extension 0.63 – 0.87 Huygens et al. (2004) 

1 RM Elbow flexion 0.65 – 0.75 Thomis et al. (1998) 

 

 

1.3 Skeletal muscle properties 
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The work presented in this thesis aims to identify associations between gene variants and 

the structural and functional properties of human skeletal muscle, which may impact on an 

individual’s ability to generate muscle strength.  An overview of skeletal muscle structure 

and function is presented in the following sections of this thesis, and provides a foundation 

upon which potential genetic associations can be made in subsequent sections. 

 

1.3.1 Skeletal muscle structure and composition 

The regular arrangement of human skeletal muscle reflects its function to produce 

movement by generating force.  Skeletal muscle is comprised of fascicular bundles that 

each contains numerous smaller bundles of muscle fibres surrounded by the sarcolemma 

(Figure 1.2).  These individual muscle fibres contain an abundance of long, thin myofibrils 

that in turn house the muscle contractile proteins and an array of structural proteins; 

together known as the myofilament (Figure 1.2).  The serial arrangement of myofilaments 

into repeated segments, known as sarcomeres, run along the length of the myofibril and it 

is the contraction and co-ordination of these sub-units that result in muscle contraction 

and thus force generation.  This classical description of skeletal muscle structure, however, 

is not a true reflection of the structure of pennate fibred muscles in which muscle fibres do 

not run parallel to the tendon (Narici, 1999), or each other (Scott et al., 1993).   
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Figure 1.2.  Overview of the regular arrangement of skeletal muscle structures from whole 

muscle level down to the myofilaments.  Figure taken from (Jones et al., 2004).  

 

Furthermore, the presence of numerous additional proteins within skeletal muscle, such as 

those involved in myofilament cross-linking (Patel & Lieber, 1997), inevitably increases the 

potential sources of inter-individual variability within the production of muscle strength 

and its determinants.  Thus, identification of the roles of a number of these proteins to 

elucidate sources of inter-individual variability within them seems prudent at this stage in 

the review.  

 

1.3.2 Sarcomere  
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The sarcomere is the basic contractile unit of the myofibril and has a striated appearance 

that demonstrates the regular arrangement of the sarcomere’s principle components, actin 

and myosin (Figure 1.3).  At rest a degree of overlap between interdigitating actin and 

myosin filaments exists, which is evidenced by the darker, anisotropic ‘A’-band under light 

microscopy.  Lying within the A-band, the H-zone is characterised by a relatively paler 

appearance due to a lack of myofilament overlap in this region.  Central to the H- 

 

zone, A-band and sarcomere in general is the M-line, which is indicative of the proteins 

involved in myosin filament cross-linking to form M-bridges, namely myomesin (Ehler et 

al., 1999) and M-proteins (Masaki & Takaiti, 1974).  The isotropic band (I-band), identified 

as the palest region using light microscopy, is the sarcomeric region where only thin 

filaments are present, and these are anchored at the lateral boundary of the sarcomere, 

identified by the Z-disc (Clark et al., 2002).  In addition, numerous accessory proteins are 

Figure 1.3. Overview of sarcomere structure including contractile and structural 

components, and the characteristic regions as observed under a microscope.  Figure 

modified from (Jones et al., 2004). 
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involved in maintaining myofilament uniformity throughout the sarcomere.  The functions 

of many of these sarcomeric components, protein interactions and links to the 

cytoskeleton are discussed in more detail below, however to comment on all currently 

identified sarcomeric and cytoskeletal components is beyond the scope of this review, 

although existing reviews are available (Clark et al., 2002; Bottinelli & Reggiani, 2000). 

 

1.3.3 Thin filament – Actin, tropomyosin and troponin 

Actin is the most abundant protein expressed in skeletal muscle cells, and is the major 

component of the thin filaments alongside tropomyosin and troponin, at a molar ratio of 

7:1:1 respectively (Ebashi et al., 1968).  Approximately, 200 G-actin monomers comprise 

each F-actin filament, and two F-actin filaments form a twisted α-helix that is ~1000 nm in 

length and ~8 nm in diameter (Hanson & Lowy, 1963).  Cross-linking of actin filaments by 

α-actinin homodimers forms mechanical ‘Z-links’, and helps stabilize and maintain the 

parallel arrangement of the filaments.  The location of actin filaments, in either a 

predominantly slow-oxidative or fast-glycolytic muscle generally dictates the number of Z-

links formed.  Typically, more Z-links are present in slow muscle types such as the soleus 

than in fast muscle types such as the extensor digitorum longus (Gautel, 2011).  

Consequently, slow muscle fibres typically possess Z-discs of approximately ~100-130 nm 

wide in comparison to the narrower Z-discs (~50 nm) observed in fast muscle fibres (Luther 

et al., 2003).  An increase in the lateral mechanical strength of myofibrils has been 

associated with increased Z-disc width (Gautel, 2011).  Therefore individual differences in 

the fibre type composition of heterogeneous muscles, such as the vastus lateralis (Lexell et 

al., 1983; Lexell et al., 1988), could contribute to the inter-individual variability in muscle 
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strength by enhancing or reducing transmission of contractile force to the tendon, possibly 

by altering the arrangement of actin filaments within the sarcomere.   

Along the length of the actin filament in the groove between the F-actin filaments, end-to-

end binding of individual tropomyosin molecules forms an elongated regulatory unit that 

is involved in modulating actin and myosin filament interaction (Lehman et al., 2000).  

Individual tropomyosin molecules are ~40 nm in length and span 7 G-actin monomers on 

each F-actin filament (Lehman et al., 2000).  In human striated muscles, nine different 

tropomyosin isoforms are expressed and depending on which tropomyosin and actin 

isoforms are expressed will determine the position of tropomyosin along the actin filament 

(Lehman et al., 2000; Chandy et al., 1999).  The continuous strand of neighbouring 

tropomyosin molecules along the actin filament is involved in the regulation of sarcomere 

shortening (and thus muscle contraction) through troponin-linked positional changes to 

effectively block or reveal the myosin-binding site on F-actin (Poole et al., 1995).  It is 

suggested, however, that these positional changes differ slightly depending on the original 

position of tropomyosin, and may therefore contribute to the varied contractile properties 

of different muscle and fibre types (Clark et al., 2002).   

Troponin is a complex of three sub-units that attaches to tropomyosin and actin at regular 

38 nm intervals (Ohtsuki & Shiraishi, 2002) via its tropomyosin-binding site (TnT) and 

adenosine triphosphatase (ATPase) inhibitor (TnI) sub-units (Greaser & Gergely, 1973).  A 

third calcium-binding (TnC) sub-unit initiates myofibril contraction in the presence of 

calcium by instigating conformational change within the troponin-tropomyosin complex 

(Greaser & Gergely, 1973).  Mutations in the genes encoding the sub-units of cardiac 

troponin present as various types of cardiomyopathy, most notably hypertrophic 
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cardiomyopathy (Hofmann et al., 2001), and have also been associated with an increased 

risk of sudden death (Watkins et al., 1995).  Despite the evident significance of these 

mutations within cardiac muscle, the impact of such mutations within skeletal muscle has 

not been extensively investigated.  Nonetheless, it is clear that troponin is essential for the 

regulation of skeletal muscle contraction. 

1.3.4 Thick filament – Myosin 

Myosin II is the primary component of myofibril thick filaments, and is a two-headed 

molecule consisting of two pairs of light chains and two identical heavy chains.  On each 

myosin heavy chain, the N-terminal forms the globular myosin heads, known as S1, and the 

C-terminal forms an α-helical tail by interweaving with the tail of the identical heavy chain 

to form a dimer.  The staggered arrangement of hundreds of myosin II molecules ultimately 

forms the thick myofilament, each containing approximately 300 globular heads (Alberts 

et al., 2008).  Furthermore, antiparallel myosin tail interactions in the H-zone of the 

sarcomere are the consequence of the bipolar myosin filament arrangement, such that 

their relative polarity is the same on adjacent sides of the M-line and allows for interaction 

with successive actin filaments (Luther, 2009).  Within human skeletal muscle, three 

distinct myosin isoforms exist; myosin heavy chain-I (MHC-I), MHC-IIa and MHC-IIx, which 

correspond to type I, type IIa and type IIx muscle fibres, respectively (Bottinelli & Reggiani, 

2000).  Previous research has demonstrated type II fibres produce more force than type I 

fibres (Bottinelli et al., 1996; D'Antona et al., 2006; Degens & Larsson, 2007), and a 

difference in fibre cross-sectional area is apparent depending on the myosin heavy chain 

isoform present (Staron et al., 2000; Kofotolis et al., 2005).  Thus, it is probable that some 

of the inter-individual variability in the measurements of muscle strength and/or muscle 
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size originates at the molecular level of skeletal muscle and can be attributed to differences 

in the myosin heavy chain content, and thus fibre type. 

 

1.3.5 Structural filaments – Titin and nebulin 

In addition to actin and myosin, striated muscle cells also contain the two giant proteins, 

titin and nebulin.  Titin is estimated to have a molecular mass of ~3 MDa (Maruyama et al., 

1984), is ~1 µm in length (Nave et al., 1989), and behind actin and myosin is the third most 

abundant protein in skeletal muscle, comprising 8-10% of skeletal muscle content (Trinick 

et al., 1984).   Titin filaments extend from the Z-disc to the M-line, thus spanning half-

sarcomere length (Maruyama et al., 1985; Wang et al., 1984).  Within the I-band region of 

the sarcomere, titin demonstrates elastic properties thought to impact on myofibrillar 

stiffness (Clark et al., 2002), whereas in the A-band region of the sarcomere titin interacts 

closely with myosin filaments and is reported to have an organisational and structural role 

as a template for thick filament assembly (Granzier & Labeit, 2002).  Moreover, titin 

interacts with myofibrillar proteins such as α-actinin at the Z-disc and further demonstrates 

its role in maintaining the structural integrity of the myofilament.  A mutation in the Z-disc 

region of titin filaments has been known to reduce its affinity for α-actinin and is observed 

in some dilated cardiomyopathy patients, who typically experience cardiac muscle stretch 

and weakness (Itoh-Satoh et al., 2002).  Furthermore, the presentation of a number of 

muscular dystrophies has been associated to mutations in the protein encoding titin 

(Hackman et al., 2002; Liu et al., 2008; Garvey et al., 2002). Similarly to titin, nebulin 

filaments anchor at the Z-disc of the sarcomere, however dissimilarly, nebulin associates 

with only the thin filaments in striated muscle cells (Keller III, 1995).  Suggestions of nebulin 

as a regulator of thin filament length arose partly due to its inextensible structural nature 
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(Clark et al., 2002), and further evidence demonstrated that thin filament length was 

proportional to nebulin isoform size (Kruger et al., 1991).  Therefore, whilst the primary 

phenotype of interest in the work of the current thesis is strength, it is possible that 

variability in the titin and nebulin proteins may indirectly increase the inter-individual 

variability observed in measurements of muscle strength by altering skeletal muscle 

architecture. 

 

It is pertinent at this stage to briefly introduce the potential genetic role in influencing 

muscle structure and function.  Many of the aforementioned proteins of the sarcomere 

and cytoskeleton are known to respond to mechanical stimuli, which in turn impacts on 

gene expression, regulation and control of gene products at a molecular level.  Thus, an 

understanding of the pathways of force transmission is essential to investigate the genetic 

influences of muscle strength production. 

 

1.3.6 Skeletal muscle contraction 

Within a resting muscle, the concentration of calcium ions (Ca2+) remains low and 

tropomyosin effectively blocks the myosin-binding site preventing the formation of cross-

bridges.  Initiation of skeletal muscle contraction by the release of Ca2+ from the 

sarcoplasmic reticulum increases the concentration of intracellular free Ca2+, which binds 

to the TnC sub-unit of troponin and instigates conformational change.  This change results 

in tropomyosin movement via action at the TnT sub-unit from its position in the centre of 

the actin filament to reveal the myosin-binding site, thus allowing the myosin heads to bind 

to the actin filament and form cross-bridges.  Once attached, partial hydrolysis of ATP by 
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ATPase results in a change in the angle of the myosin head attachment, which then exerts 

a small force on the thin filaments causing them to slide past the thick filament.  In the 

presence of sufficient ATP supply, the myosin head detaches, returns to its resting 

orientation and can reattach to a different actin monomer further along the thin filament.  

During rapid contractions, each myosin head can cycle up to five times a second, which 

equates to sarcomere shortening rates of up to 15 µm per second (Alberts et al., 2008).  

This well accepted model of muscle contraction, by which serial force transmission 

between adjacent sarcomeres continues along the length of the muscle to the muscle-

tendon unit, is known as the sliding filament theory (Huxley, 1957).  Evidence of an 

additional model of force transmission, however, suggests contractile force is also 

transmitted laterally between parallel myofibrils towards the sarcolemma and extracellular 

matrix (ECM) (Bloch & Gonzalez-Serratos, 2003).  

 

1.3.7 Extracellular matrix 

The ECM is a network of interstitial connective tissue located between individual myofibrils, 

and is composed primarily of collagens, tenascins and fibronectin.  The basement 

membrane of the ECM comprises laminins, collagen IV and proteoglycans, and associates 

closely with the myofibril cell surface via regular connections called costameres; which are 

integral in the lateral transmission of force between superficial myofibrils, the sarcolemma 

and ECM (Danowski et al., 1992). 

 

1.3.8 Costameres 

Costameres were first identified as transverse, rib-like structures overlying the Z-line of 

myofibrils (Pardo et al., 1983), but this term also describes similar structures over the M-
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line (Porter et al., 1992) and lying longitudinally over the long axis of the myofibril (Bloch & 

Gonzalez-Serratos, 2003).  In addition to having a major role in effective lateral force 

transmission, costameres help maintain the structural integrity of the sarcolemma during 

muscle contraction/relaxation cycles.  This is achieved through the concurrent actions of 

three cytoskeletal networks; integrin/focal adhesion complex, dystroglycan-sarcoglycan 

complex and spectrin-based complex (Figure 1.4) (Clark et al., 2002).  

 

Figure 1.4. Cytoskeletal costamere networks involved in lateral force transmission to the 

ECM and maintaining membrane stability. Figure taken from Grounds et al. (2005). 

 

Increased expression of some proteins located within these networks (e.g. focal adhesion 

kinase) has been observed in hypertrophied skeletal muscle and unsurprisingly, is 

associated with increased muscle force per unit cross-sectional area (Flück et al., 1999).  

Contrastingly, mutations in several of these costameric proteins (e.g. integrins and 

dystrophin) are associated with muscle weakness, and in some instances muscular 

dystrophy (Blake et al., 2002), thus emphasising the role of costameres in maintaining the 

structural integrity of the muscle and in the lateral transmission of contractile force. 
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1.4 In vivo assessment of skeletal muscle strength and its determinants 

It is probable that some of the inter-individual variability observed in measurements of 

muscle strength and its determinants are artefacts of methodological differences, with a 

variety of techniques previously employed to investigate muscle anatomical cross-sectional 

area, muscle volume, voluntary activation capacity and tendon moment arm length.  

Furthermore, assessments of muscle function in vivo are susceptible to the inherent error 

associated with equipment and the measurement techniques employed. 

 

Interest in the genetic contribution to the functional and morphological characteristics of 

muscle has increased considerably in the past 10 years but remains limited to 

predominantly measurements of strength and size.  Furthermore, the majority of studies 

investigating the genetic associations with muscle strength and size use simple 

measurements such as one repetition maximum (1 RM), maximum voluntary contraction 

(MVC) and anatomical cross-sectional area (ACSA) instead of, for example, specific force 

and physiological cross-sectional area (PCSA).  These simple measurements are known to 

underestimate the intrinsic strength of a muscle as they include both agonist and 

antagonist muscle efforts and do not account for factors known to affect the intrinsic 

strength of a muscle (Maganaris et al., 2001; Erskine et al., 2009). Collecting data using 

more controlled assessments of the functional and morphological characteristics of a 

muscle, even if in a relatively smaller population, may be beneficial in determining the 

genetic contribution to such factors. 
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A range of muscles have been the focus of investigations in human muscle function, 

although muscles of the appendices appear favourable, perhaps due to their accessibility 

and the superficial location of the muscles within them.  Differences in function, loading 

patterns and fibre type composition between different muscles exist, (Bottinelli & Reggiani, 

2000), which may impact on assessments of muscle size and strength, specifically ACSA, 

maximal joint torque and specific force.  As previously stated, human skeletal muscle fibres 

can be separated into three different categories; type I, type IIa and type IIx.  Of these 

categories, type II fibres are able to produce more force than type I fibres regardless of 

contraction velocity (Bottinelli et al., 1996; D'Antona et al., 2006; Degens & Larsson, 2007), 

and in male populations fibre cross-sectional area is greater for type IIa fibres and smallest 

for type IIx fibres (Staron et al., 2000; Kofotolis et al., 2005).  It remains unclear, however, 

if these single fibre-type differences are observed in vivo or at the level of whole muscle 

(Miller et al., 2015; Schantz et al., 1983; Tesch & Karlsson, 1978; Harridge et al., 1998).  

Nonetheless, an awareness of these fibre type differences is therefore necessary when 

comparing data from previous studies, especially those investigating athletes or clinical 

patients for whom fibre type transitions due to chronic loading/unloading patterns are a 

likely possibility (D'Antona et al., 2006; Gallagher et al., 2005).  With this in mind, studies 

investigating the morphological and functional characteristics of the quadriceps femoris 

muscle (or one or more of its constituent muscles) will be the main focus of the review 

from this point on, thus allowing for more appropriate comparisons between the methods 

used. 
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1.4.1 Muscle mass and architecture 

Muscle size is generally accepted as being the greatest determinant of muscle strength and 

a significant relationship (r ≥ 0.51, P ≤ 0.01) exists between them (Maughan et al., 1983), 

although a variety of measurements to assess size have been reported in the literature 

(Maughan et al., 1983; Narici et al., 1988; Bamman et al., 2000; Miyatani et al., 2002; 

Reeves et al., 2004b; Wakahara et al., 2009).  A number of early studies investigating the 

relationship between muscle size and strength reported a direct proportionality between 

maximal voluntary muscle force and muscle size by measuring ACSA (Ikai & Fukunaga, 

1968; Young et al., 1984; Maughan et al., 1984).   Anatomical CSA is defined as the area of 

muscle perpendicular to the longitudinal axis of the limb and can be measured non-

invasively using imaging techniques such as magnetic resonance imaging (MRI), computed 

tomography (CT) and ultrasonography (Maughan et al., 1983; Narici et al., 1988; Reeves et 

al., 2004b).  Using measurements of ACSA as a measure of contractile area in investigations 

of pennate muscle function is limited because differences in muscle architecture are not 

accounted for.  Physiological CSA on the other hand, is defined as the area of muscle 

perpendicular to the muscle fibres and accounts for inter-individual differences in muscle 

architecture, more specifically fibre length and fibre pennation angle (Figure 1.5).  

Consequently, PCSA offers a more accurate measurement of muscle contractile area than 

ACSA, which represents only an estimate of true contractile area in pennate-fibred muscles 

(Alexander & Vernon, 1975).  It remains unclear however, if the inter-individual variability 

in measurements of PCSA and ACSA is similar or different in magnitude. 
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Figure 1.5. Schematic diagram adapted from Haxton (1944) demonstrating the difference 

between measurement of PCSA (red line) and ACSA (blue line) in pennate-fibred muscles. 

 

Muscle fibre length is determined by the number of sarcomeres arranged in series, 

whereas the number of sarcomeres arranged in parallel determines muscle PCSA, and the 

latter can be affected by fibre pennation angle.  Pennation angle refers to the angle of 

muscle fibre insertion into the aponeurosis and an increased angle of pennation allows for 

a greater proportion of muscle contractile material to attach to the tendon, subsequently 

increasing the force generating capacity of the muscle (Aagaard et al., 2001).  Antithetically, 

greater pennation angles reduce the ability of the individual muscle fibres to effectively 

transmit force to the associated tendon, therefore decreasing maximal muscle force 

production (Aagaard et al., 2001).  Consequently, the trade-off between these two 

opposing factors culminates in an increase in maximal muscle force production with an 

increasing pennation angle up to 45° (Alexander & Vernon, 1975).  Thus, assessment of 

muscle architecture is pertinent to accurately estimate muscle fascicle force production 

from measurements of joint torque, especially when considering the changes in fibre 

length and pennation angle as a function of joint angle (Fukunaga et al., 1997).  Production 

of muscle force is dependent on the amount of overlap between the muscle contractile 

proteins actin and myosin within the sarcomere (Gordon et al., 1966).  If joint angle is 

manipulated to lengthen or shorten the muscle, sarcomere length will change accordingly.  
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In human skeletal muscles, the optimal sarcomere length for force production is ~2.5 µm, 

therefore in instances where sarcomere length is too long (i.e. the overlap between actin 

and myosin is limited), or too short (i.e. the degree of overlap exceeds the optimum length) 

production of force decreases (Gordon et al., 1966).   

 

Inter-individual variability in muscle architecture and differences in optimum joint angle 

for force production exist within the literature, and are often the consequence of training 

adaptations (Aagaard et al., 2001; Reeves et al., 2004c; Reeves et al., 2004a).  Reports in 

untrained individuals alone, however, have also demonstrated inter-individual variability 

in muscle architecture and optimum joint angle.  In particular, several authors have 

demonstrated maximal torque production at the knee joint occurs between 60-90° (Houtz 

et al., 1957; Lindahl et al., 1969; Scudder, 1980; Marginson & Eston, 2001; Reeves et al., 

2004a; Knapik et al., 1983; Erskine et al., 2009), although when focussing specifically on a 

population of untrained, young males, this range is reduced to between 70-90° knee flexion 

(Marginson & Eston, 2001; Knapik et al., 1983; Erskine et al., 2009).  Consequently, this 

evidence emphasises the importance of identifying optimum joint angle and measuring 

muscle architecture when assessing maximal muscle force.   

 

Measurement of muscle architecture in vivo is possible from images obtained using 

ultrasonography to identify individual muscle fascicular paths between the deep and 

superficial aponeuroses, and the angle of fascicular insertion into these aponeuroses 

(Henriksson-Larsen et al., 1992; Rutherford & Jones, 1992) (Figure 1.6). 
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Figure 1.6.  Sagittal ultrasonography scan of the right vastus lateralis (VL) demonstrating 

identification of muscle fascicular path (red dashed line) and pennation angle (θ) from the 

fascicle insertion into the deep and superficial aponeurosis (yellow dashed lines).  VI = 

vastus intermedius. Scan was obtained from a participant of the work described in the 

current thesis. 

 

1.4.2 Agonist muscle activation and antagonist muscle co-activation 

To accurately assess maximum skeletal muscle force it is imperative that the agonist muscle 

is maximally activated, that is, all available motor units are stimulated at their optimal firing 

rate.  Reports of voluntary activation capacity in untrained individuals are somewhat 

contradictory (Moritani & deVries, 1979; Häkkinen et al., 1998; Thorstensson et al., 1976; 

Komi & Buskirk, 1972), however sensitive use of the interpolated twitch technique suggests 

that untrained individuals probably cannot activate 100% of their motor units (Folland & 

Williams, 2007b).  Failure to account for voluntary activation capacity is likely to lead to 

inaccurate measurements of maximum muscle force and could result in greater inter-

individual variability in maximal muscle strength measurements. Additionally, during 

agonist muscle contractions, antagonist muscle co-activation occurs to provide stability to 

the joint about which the movement is occurring (Baratta et al., 1988).  The level of this 

VL 

VI 

θ 

1 cm 
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antagonist muscle co-activation has also been found to vary considerably between 

similarly-aged, untrained individuals (Carolan & Cafarelli, 1992; De Vito et al., 2003; 

Macaluso et al., 2002).  A consequence of not accounting for co-activation could lead to an 

underestimation of maximal muscle force and overestimation of inter-individual variability 

in the calculation of net joint torque and subsequently muscle force. 

 

1.4.3 Tendon moment arm length 

In addition to accounting for the level of agonist and antagonist muscle activation, in vivo 

assessments of muscle force should also account for variation in tendon moment arm 

length.  During knee joint extension, the patellar tendon moment arm functions as the lever 

of effective force transmission to the tibia during contractions of the quadriceps femoris 

(Tsaopoulos et al., 2006), and can be identified by measuring the perpendicular distance 

from the tibio-femoral contact point to the patellar tendon line of action (Nisell et al., 1986) 

(Figure 1.7).  Patellar tendon moment arm length can be measured in vivo using video 

fluoroscopy, sagittal MRI scans and more recently using dual energy x-ray absorptiometry 

(DXA) (Wretenberg et al., 1996; Kellis & Baltzopoulos, 1999; Maganaris, 2004; Erskine et 

al., 2014).  It has been suggested that bone geometry is the primary determinant of 

moment arm length (Krevolin et al., 2004), and as this is known to differ inter-individually, 

it is probable that this is also the main source of inter-individual variability in tendon 

moment arm length (Maganaris et al., 2001; Tsaopoulos et al., 2006; Tsaopoulos et al., 

2007a).  Furthermore, as tendon moment arm length has been found to differ with 

changing joint angle (Baltzopoulos, 1995), it is necessary to obtain contraction-specific 

measurements of tendon moment arm when calculating maximal muscle force (Maganaris 
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et al., 2001).  Therefore, imaging of patellar tendon moment arm length, for example, 

should occur at the knee joint angle that coincides with the production of peak MVC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7.  A sagittal DXA scan of the right knee joint from which patellar tendon moment 

arm length can be estimated as the perpendicular distance from the tibio-femoral contact 

point (TFCP) and the patellar tendon.  Scan was obtained from a participant of the work 

described in the current thesis. 

 

1.4.4 Specific force 

Accounting for all of the aforementioned determinants of strength is necessary for 

accurate assessment of muscle force.  Measurement of muscle specific force takes into 

account all of these determinants to estimate the intrinsic strength of the muscle.  

Furthermore, by accounting for the inter-individual variability in the determinants of 

strength, it could be expected that reported values of specific force would be homogenous.  

Measurements of in vivo human muscle specific force, however, range from 6-86 N·cm-2 

(Table 1.2) (Maughan et al., 1983; Erskine et al., 2009; Reeves et al., 2004c; Narici et al., 

1992; Chow et al., 1999; Gorgey et al., 2006; Claassen et al., 1989).   
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Evident inconsistencies in sample populations and measurements are likely to contribute 

to such widespread values, and this range was reduced considerably (20-30 N·cm-2) when 

only those studies accounting for all of the necessary factors were considered (Erskine et 

al., 2009; Reeves et al., 2004c; Narici et al., 1992; Chow et al., 1999).  Despite this, inter-

individual variability of approximately 16% in muscle specific force has been reported 

within the literature, suggesting differences in the force-generating capacity of the 

individual fibres is contributing to the observed variability in specific force (Erskine et al., 

2009).  Individual variability in fibre type composition has been documented among 

untrained, young adults (Glenmark et al., 1992; Simoneau & Bouchard, 1989; Staron et al., 

2000) and variability in fibre type composition of different muscles is evident (Harridge et 

al., 1996; Schantz et al., 1983). Furthermore, it is possible that the presence of 

intramuscular fat and connective tissue could also contribute to the reported variability in 

specific force (Kent-Braun et al., 2000; Evans et al., 1995; Macaluso et al., 2002; Frontera 

et al., 1991).   

 

Failure to account for the presence of intra-muscular non-contractile material would result 

in an underestimation of muscle specific force by overestimating PCSA (Frontera et al., 

1991; Erskine et al., 2009).  Whereas, the consequence of increased connective tissue 

content could be an increase in muscle specific force through improvements in lateral force 

transmission via costameres to the tendon (Jones et al., 1989).  Finally, a potential genetic 

contribution to the inter-individual variability in specific force should not be overlooked.  

Recently, two single nucleotide polymorphisms (SNPs) in the protein tyrosine kinase 2 

gene, responsible for encoding focal adhesion kinase, were found to explain ~10% of the 
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inter-individual variability in the muscle specific force of untrained individuals (Erskine et 

al., 2012). 

 

1.5 Genetics of skeletal muscle  

In excess of 200 genetic polymorphisms have been associated with health and fitness 

related phenotypes within the literature over the past 50 years (Bray et al., 2009).  Of these, 

~30 polymorphisms have specifically been associated with a muscle-strength or power-

related phenotype (Hughes et al., 2011; Garatachea & Lucía, 2013; Leońska-Duniec, 2013), 

but few have had a significant association replicated independently.  This suggests, 

therefore, that more research is needed to confirm or refute these reported significant 

associations independently and strengthen the body of literature.   

 

1.5.1 Identifying candidate genes 

Muscle strength is a quantitative phenotype measured on a continuous scale, and thus a 

range of obtainable strength values is possible within a population.  Traditionally, an 

unmeasured genotype, or top-down, approach has been used to identify the heritability of 

the muscle-strength phenotype.  Whilst heritability estimates are useful for identifying 

phenotypes under strong genetic control, they are unable to provide information on the 

specific gene, or combination of genes that contribute to these phenotypes.  Much of the 

recent research into muscle strength and muscle-related phenotypes, therefore, has 

focussed on identifying associations with a single candidate gene through case-control, 

cross-sectional or longitudinal association studies (MacArthur & North, 2005), collectively 

known as the measured genotype or bottom-up approach (Sing & Boerwinkle, 1987).  

When investigating the genetic contribution to muscle strength and muscle-related 
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phenotypes, much of the challenge is identifying the specific gene variants that contribute 

to the variability within the phenotype, ultimately to determine how the polymorphism(s) 

influences a given phenotype.  For example, a polymorphism within the angiotensin I-

converting enzyme (ACE) gene is known to influence concentrations of the associated 

enzyme product, whereas a functional polymorphism in the alpha-actinin-3 (ACTN3) gene 

results in an inability to produce the protein product.  Furthermore, alterations to gene 

transcription and translation, protein function and rates of protein degradation are other 

possible outcomes associated with genetic polymorphisms.   

 

Identification of candidate genes is possible by first establishing a complete theoretical 

understanding of a particular protein and how it may contribute towards the phenotype of 

interest.  Subsequent screening of the gene encoding for the protein may reveal 

polymorphisms that, if functionally significant, could be used to determine an association 

with the phenotype.  Despite this approach working successfully in the past, demonstrated 

by the association between a polymorphism in the ACE gene and cardiac hypertrophy 

(Montgomery et al., 1997; Montgomery et al., 1998), recent estimates suggests there are 

~19,000 genes in the human genome (Ezkurdia et al., 2014) meaning this process can be 

time-consuming and expensive.   

  

Genome wide association studies (GWAS) are an increasingly popular alternative approach 

to identifying candidate genes now possible as a result of technological advances and 

decreasing costs, albeit these remain high in contrast to candidate gene approaches.  

GWAS identify genomic loci associated with a phenotype in a large population of individuals 

by completing a comprehensive scan of the genome to simultaneously genotype as many 
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as 4 million gene variants.  Often the variants identified within adjacent loci are correlated, 

and are said to be in linkage disequilibrium (Wall & Pritchard, 2003).  Linkage disequilibrium 

refers to the non-random association of alleles from neighbouring loci, occurring as a 

consequence of allele crossover in haplotype blocks during meiotic recombination (Daly et 

al., 2001).  It is therefore possible for two neighbouring loci in linkage disequilibrium to 

both demonstrate significant genotype-phenotype associations, but for only one of these 

loci to have functional relevance for the phenotype.  Due to the simultaneous analysis of 

thousands or millions of gene variants for associations with one or more phenotypes, the 

risk of identifying false positives is high (Cantor et al., 2010).  Consequently, current practice 

in GWAS is to adopt a significance threshold of P ≤ 5 x 10-8 (Panagiotou & Ioannidis, 2012), 

although some earlier GWAS used a lower threshold of P ≤ 5 x 10-7 (Panagiotou & Ioannidis, 

2012).  Thus the sample size required for such studies increases substantially, an increase 

that would likely be unfeasible in studies performing detailed assessments of multiple 

phenotypes such as those of the subsequent chapters.  The work presented in this thesis 

investigated the genetic contribution to the inter-individual variability in human skeletal 

muscle strength and its determinants.  As completion of GWAS or sequence analyses was 

not possible, a candidate gene approach was taken.  Ideally, genotyping of as many 

candidate genes as possible would occur, however due to the logistics surrounding time, 

expense and equipment available this was not feasible.  Consequently, seven individual 

candidate genes were identified (Table 1.3), from an initial group of 11 candidate genes 

(inclusive of insulin-like growth factor, interleukin-6, vitamin D receptor and myostatin), for 

investigations relating to the aforementioned skeletal muscle phenotypes.  

 

 



Chapter 1  Literature review 

 30 

Table 1.3. Candidate genes, candidate proteins and their respective abbreviations. 

 

The selection of these seven specific candidate gene polymorphisms was based on 1) the 

greater existing frequency of associations with skeletal muscle phenotypes for some 

polymorphisms, particularly ACE and ACTN3; 2) existing gene transcriptional analyses 

demonstrating the likelihood of polymorphisms being functional (ACE, COL5A1, CNTF, 

PTK2); 3) the necessity for independent replications with particular skeletal muscle 

phenotypes (PTK2 and TRHR); and 4) the potential for novel genotype associations with 

skeletal muscle phenotypes (particularly COL5A1, CNTF and TTN).  Specific reviews of the 

selected candidate genes are detailed in the subsequent section of this review. 

 

1.6 Candidate genes of interest 

1.6.1 Angiotensin I-converting enzyme 

In relation to human physical performance phenotypes, the ACE gene has been studied 

more extensively than any other.  ACE is a zinc metallopeptidase, and is recognised as being 

integral to the renin-angiotensin system (RAS) (Rigat et al., 1990).  Production of 

Candidate Protein Candidate 

Protein 

Abbreviation 

Candidate Gene(s) Candidate 

Gene 

Abbreviation 

Angiotensin I-

converting enzyme 

ACE Angiotensin I-

converting enzyme 

ACE 

Alpha-actinin-3 ACTN3 Alpha-actinin-3 ACTN3 
Ciliary neurotrophic 

factor 

CNTF Ciliary neurotrophic 

factor 

CNTF 

Type V collagen Col V Collagen type V alpha 1 COL5A1 
Focal adhesion kinase FAK Protein tyrosine kinase 

2 

PTK2 intron 

PTK2 UTR 

Titin TTN Titin TTN 

Thyrotropin-releasing 

hormone receptor 

TRHR Thyrotropin-releasing 

hormone receptor 

TRHR 
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angiotensin II (Ang II), thought to enhance skeletal muscle growth, is catalysed by ACE 

(Gordon et al., 2001) and the actions of Ang II are predominantly mediated by the 

angiotensin type-1 (AT1R) and type-2 (AT2R) receptors (Payne & Montgomery, 2003).  ACE 

is also involved in the degradation of bradykinin, a potent vasodilator due to its actions on 

the bradykinin type-1 (BK1R) and type-2 (BK2R) receptors (Dendorfer et al., 2001; Regoli et 

al., 1998).  Thus, ACE activity has a key role in the regulation of blood pressure in humans 

(Kem & Brown, 1990).  In addition to endocrine RAS, local RAS are known to exist in skeletal 

muscle (Dragović et al., 1996), cardiac muscle (Dzau, 1988) and adipose tissue (Jonsson et 

al., 1994), which are involved in the regulation of tissue growth (Figure 1.8) (Ishigai et al., 

1997; Nazarov et al., 2001; Dzau, 1988).  

 

Figure 1.8. Angiotensin I-converting enzyme (ACE) activity within the renin-angiotensin 

system.  Increased ACE production elevates angiotensin II-dependent vasoconstriction and 

enhances cell growth but decreases bradykinin-dependent vasodilation and metabolic 

influences.  Figure modified from Roth (2007). 

 

A functional polymorphism of ACE has been identified within intron 16 of the gene on 

chromosome 17 (Rigat et al., 1990).  The absence (deletion, D) rather than presence 

(insertion, I) of a 287 amino acid base pair Alu repeat sequence is associated with increased 
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concentrations of tissue and serum ACE activity (Rigat et al., 1990; Danser et al., 1995). 

Accordingly, this polymorphism results in the II, ID and DD genotypes with the respective 

frequencies among Caucasian adults approximately 25%, 50% and 25% (Myerson et al., 

1999).  In humans, ACE genotype has been associated with cardiac and skeletal muscle 

hypertrophy in response to exercise training (Montgomery et al., 1997; Folland et al., 

2000).  The D-allele in particular has been repeatedly associated with increased left 

ventricular mass following training, with this being observed in Caucasian military recruits 

(Montgomery et al., 1997), endurance athletes (Di Mauro et al., 2010) and elite footballers 

(Fatini et al., 2000).  Similarly, in skeletal muscle, D-allele carriers have been associated with 

greater increases in isometric and dynamic quadriceps muscle strength following 9-week 

of training (Folland et al., 2000), and in strength and power oriented athletes there exist an 

abundance of studies reporting an overrepresentation of the D-allele and/or 

underrepresentation of the I-allele (Nazarov et al., 2001; Woods et al., 2001; Costa et al., 

2009; Tsianos et al., 2004).  When considering untrained muscle strength, the D-allele has 

also been associated with baseline isometric quadriceps muscle strength in patients with 

chronic obstructive pulmonary disorder (Hopkinson et al., 2004).  In age-matched healthy 

controls, however, Hopkinson et al. (2004) observed no association between ACE genotype 

and quadriceps muscle strength.  Contrastingly, Williams et al. (2005) identified a 

significant linear trend between ACE genotype and baseline isometric quadriceps strength, 

although there have since been numerous reports on healthy, untrained individuals 

reporting no association between ACE genotype and muscle strength (Thomis et al., 2004; 

Erskine et al., 2013; McCauley et al., 2008), which might indicate untrained muscle strength 

is independent of ACE genotype. 
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Considering Ang II (production of which may be elevated with the presence of the D-allele) 

is a potent growth factor, stimulates the release of systemic growth hormone and is known 

to alter steroid metabolism (Messerli et al., 1977), a link between muscle size and/or mass 

and ACE genotype may be expected.  To date, however, few studies have investigated this 

potential association and inconsistencies in the assessment of muscle size or mass, and the 

muscle of interest are evident between these studies (Frederiksen et al., 2003; Thomis et 

al., 2004; Erskine et al., 2013).  Nonetheless, no association between ACE genotype and 

muscle size and mass has been identified, although independent replications of these initial 

reports are warranted. 

 

1.6.2 Alpha-actinin-3  

Alpha-actinins constitute a family of actin-binding proteins necessary to anchor actin 

filaments to the sarcomeric Z-line to stabilise the muscle contractile components 

(MacArthur & North, 2004; Blanchard et al., 1989).  Alpha-actinin-3 (ACTN3) is the gene 

that codes for the myofibrillar α-actinin protein expressed only in type II muscle fibres 

(Beggs et al., 1992).  A functional polymorphism of ACTN3 has been located in humans at 

position 1,747 in exon 16 where a C > T transition results in the conversion of an arginine 

(R) to a premature stop codon (X) at amino acid 577 (R577X) (North & Beggs, 1996).  

Therefore, RR homozygotes have the fully functioning gene variant, whereas individuals 

homozygous for the 577X allele are unable to produce the ACTN3 protein in their muscle 

(Clarkson et al., 2005; Mills et al., 2001).  The frequency of the 577X allele has been 

reported to be 42% in a Caucasian population, 52% in Asian Americans and 16% in Africans 

(Mills et al., 2001).  Furthermore, approximately 18% of Europeans are estimated to be 

homozygous for the 577X allele (Yang et al., 2003). 
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Similar to ACE, extensive reports of ACTN3 genotype and associations with muscle 

strength/power and endurance in athletic populations exist.  In such populations, the R-

allele appears to be overrepresented and the X-allele underrepresented in strength and/or 

power oriented athletes (Yang et al., 2003; Druzhevskaya et al., 2008; Roth et al., 2008), 

whereas the X-allele appears to be overrepresented and R-allele underrepresented in 

endurance athletes, although this latter observation remains contentious (Ahmetov et al., 

2010; Niemi & Majamaa, 2005).  These observations may be explained to some extent by 

genotype-dependent differences in fibre type composition; with RR homozygotes 

demonstrating significantly more type IIx fibres than XX homozygotes (Vincent et al., 2007).  

Therefore, as type II fibres are known to produce greater force than type I fibres, RR 

homozygotes may be expected to produce greater muscle force, and consequently may be 

more suited to competing in strength and/or power oriented sports.  Additionally, as type 

I fibres contain greater concentrations of mitochondria than type II fibres and respire 

aerobically, they are more resistant to fatigue and XX homozygotes may therefore be 

advantaged when completing endurance exercise. 

 

In non-athlete populations, reports of associations between ACTN3 genotype and skeletal 

muscle-related phenotypes are less conclusive, thus it is unclear if ACTN3 influences 

untrained muscles in the same way as is observed in athletes.  In support of a comparable 

influence of ACTN3 genotype on skeletal muscle phenotypes in untrained  populations, as 

is observed in athletes, Moran et al. (2007) reported improved 40 m sprint time in R-allele 

carrying adolescent males compared to XX homozygotes.  However, no associations 

between ACTN3 and a number of other skeletal muscle phenotypes were observed, nor 
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were any genotype-phenotype associations observed in female adolescents.  Contrastingly, 

isometric elbow flexion MVC and 1 RM (Clarkson et al., 2005), and concentric and eccentric 

knee extension peak torque (Walsh et al., 2008) were lower in females homozygous for the 

X-allele compared to R-allele carriers, whereas no associations were observed in males.  

Thus these initial reports, although inconsistent, may suggest the influence of ACTN3 on 

skeletal muscle differs according to age and sex.  However, there exist a number of studies 

that have found no association between ACTN3 genotype and skeletal muscle strength or 

power phenotypes in young males (McCauley et al., 2009), young females (Gavin & 

Williams, 2010) or young adults (Santiago et al., 2010), which may suggest muscle strength 

and/or power is independent of ACTN3 genotype in young non-athletes.  Furthermore, in 

contrast with the aforementioned hypothesis that the R-allele is beneficial for strength 

and/or power and the X-allele perhaps more suited for endurance performance, Delmonico 

et al. (2007) reported the XX genotype was associated with increased muscle peak power 

in older females but not older males.  Consequently, these often contrasting reports 

demonstrate the lack of parity within the existing literature and highlights the requirement 

for further research to be undertaken. 

 

1.6.3 Ciliary neurotrophic factor  

Ciliary neurotrophic factor (CNTF) is a cytokine belonging to the interleukin-6 family and 

has a molecular mass of approximately 22 kDa (Sleeman et al., 2000).  The binding of CNTF 

to its receptor activates signal transduction pathways involved in cell survival, proliferation, 

differentiation, activation and death (Sleeman et al., 2000; Vergara & Ramirez, 2004).  CNTF 

is pleiotropic, meaning it can elicit different responses in different tissues, and although it 

was originally identified as a factor supporting the survival of parasympathetic neurons of 
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the chick ciliary ganglion in vitro (Adler et al., 1979), subsequent reports have 

demonstrated CNTF also influences sympathetic neurons, sensory neurons, motor neurons 

and skeletal muscle in addition to other tissues (Sleeman et al., 2000).   

 

The CNTF gene is localised to chromosome 11q.12 and contains a single 1 kB intron within 

the coding domain (Lam et al., 1991).  A G-6A transition identified in intron 1 of the CNTF 

gene results in three CNTF genotypes; AA, GA, GG with corresponding frequencies of 2.2%, 

21.3% and 76.5% in a Caucasian population (Roth et al., 2001).  The rare AA genotype 

results in the production of a non-functional protein (Takahashi et al., 1994), and as lower 

levels of CNTF have been associated with lower muscle strength in rats (Guillet et al., 1999), 

Roth et al. (2001) hypothesized that individuals homozygous or heterozygous for the rare 

A-allele would produce lower muscle strength than GG homozygotes.  Despite AA 

homozygotes exhibiting the lowest values of knee extension and flexion concentric torque, 

it was the heterozygous individuals who demonstrated the greater concentric torque 

values in their investigation (Roth et al., 2001).  In agreement with these initial findings, a 

subsequent investigation of bilateral handgrip strength in older females (aged 70-79 years) 

demonstrated those females homozygous for the rs1800169 A-allele produced, on 

average, 3.8 kg less handgrip strength than G-allele carriers (Arking et al., 2006).  

Furthermore, De Mars et al. (2007) reported middle-aged females homozygous for the rare 

A-allele produced the lowest knee flexion concentric torque (at 180·sec-1) in comparison 

to G-allele carriers, thus providing further evidence to suggest the CNTF rs180169 A-allele 

is associated with lower muscle strength.  However, De Mars et al. (2007) did not find any 

associations between CNTF genotype and muscle strength in their male participants, which 

may suggest this association is sex specific.  Additionally, in response to resistance training 
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of the elbow flexors, it appears that females carrying the A-allele exhibit significantly lower 

gains in muscle strength compared to females homozygous for the G-allele, though again 

no significant associations were observed in males (Walsh et al., 2009).  

 

Despite the CNTF rs1800169 AA genotype appearing unfavourable for muscle strength 

production, it remains unclear which genotype (GG or GA) is preferential for muscle 

strength production, and if the associations observed to date are sex-specific or not (Roth 

et al., 2001; De Mars et al., 2007; Arking et al., 2006; Walsh et al., 2009).  Furthermore, 

evident in the methodologies of the aforementioned investigations is the repeated use of 

gross measurements of muscle strength, such as 1 RM and MVC (De Mars et al., 2007; 

Arking et al., 2006; Roth et al., 2001; Walsh et al., 2009).  When considering the inter-

individual variability present within these measurements, the use of them in these 

investigations might demonstrate a lack of sensitivity by which genotype-phenotype 

associations in muscle strength can be detected, and may explain the inconsistent 

associations between muscle strength and CNTF G-allele carriers, and between CNTF 

genotype and male participants.  Thus, there is a requirement for more research to 

investigate this polymorphism for associations with muscle strength, and its determinants, 

by using more sensitive assessments of the phenotype, such as muscle specific force.  

 

1.6.4 Collagen type V alpha 1  

Collagen is the primary structural protein of the ECM, and although types III and I are 

predominantly expressed, collagen type V is known to associate with both types (Gillies & 

Lieber, 2011).  Together, collagen type V and I fibrils co-polymerise to form heterotypic 

fibres, an interaction which is reported as a regulatory mechanism to control fibril structure 
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and diameter (Birk et al., 1990).  The major collagen type V isoform comprises two 1 (V) 

chains, encoded by the COL5A1 gene and one 2 (V) chain encoded by the COL5A2 gene 

(Wenstrup et al., 2004; Malfait et al., 2010).  The COL5A1 gene is located in region 9q.34.3 

and comprises 66 exons, whereas COL5A2 is located in region 2q.32.2 and comprises 54 

exons (Birney et al., 2004). 

 

Mutations within COL5A1 have been identified in patients of Ehlers-Danlos syndrome 

(EDS), a disease characterised by joint hypermobility, joint laxity and muscle hypotonia 

(Beighton et al., 1998).  Haploinsufficiency is reportedly common among EDS patients 

(Wenstrup et al., 2006; Malfait et al., 2010), resulting in irregular collagen fibrils of a larger 

size located within connective tissue (Vogel et al., 1979), which is attributed to a reduced 

synthesis of collagen type V (Malfait & De Paepe, 2005).  In addition to the association 

between COL5A1 and this rare skeletal muscle disease, the common COL5A1 rs12722 

polymorphism has also been previously associated with flexibility (Collins et al., 2009), 

anterior cruciate ligament injury in females (Posthumus et al., 2009) and Achilles 

tendinopathy (Mokone et al., 2006; September et al., 2009), but not patellar tendon 

properties (Foster et al., 2014). 

 

Differences in COL5A1 mRNA stability, associated with increased 1 (V) chain protein 

production, have been reported between COL5A1 genotypes (Laguette et al., 2011).  More 

specifically, the rs12722 T-allele was associated with increased mRNA stability and by 

implication, increased collagen type V production in a Caucasian population (Laguette et 

al., 2011; Abrahams et al., 2013).  Furthermore, considering that collagen type V is 

ubiquitous in human tissues and that both collagens type III and I associate with collagen 
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type V, differences in collagen type V production as a consequence of the rs12722 

polymorphism might have implications for skeletal muscle morphological and/or functional 

phenotypes.  For instance, as the ECM plays a major role in the transmission of force during 

muscle contraction, differences in collagen type V production may impact on the structure 

and/or diameter of heterotypic collagen fibrils, thus enhancing or impairing force 

transmission to the skeleton.  In addition, several animal models have observed a greater 

collagen content, most likely due to larger collagen fibrils, in muscles with a greater 

composition of slow twitch muscle fibres in comparison to those with less slow twitch fibres 

(Nakamura et al., 2003), although causality between collagen content and fibre type 

composition has not been confirmed.  Additionally, it is not clear if the findings from these 

earlier animal models can be extrapolated to humans, greater muscle strength production 

might be expected from those individuals producing less collagen type V, as this might 

indicate a greater quantity of the more powerful fast twitch fibres (Nakamura et al., 2003) 

within the muscle and warrants further research. Furthermore, increased collagen type V 

production as a consequence of COL5A1 rs12722 could influence fibril diameter and 

structure within the connective tissue of skeletal muscle.  Thus, differences in the 

arrangement of the muscle connective tissue may influence the normally precise parallel 

arrangement of muscle fibres they surround.  Subsequently, this may affect the muscle 

architecture of individuals with altered collagen type V production, such that genotype 

differences in pennation angle and/or fascicle length might be observed and should be 

investigated further. 

 

1.6.5 Protein tyrosine kinase 2 
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Focal adhesion kinase (FAK) is an integrin-associated protein tyrosine kinase localised at 

focal adhesion complexes via interactions between its focal adhesion targeting domain and 

other integrin-associated proteins (Hildebrand et al., 1993; Schaller, 2001).  Focal adhesion 

complexes are important components of cell costameres, which in skeletal muscle provide 

an integral link between the ECM, cytoskeleton and muscle fibres (Flück et al., 1999; Patel 

& Lieber, 1997) and have a major role in the effective lateral transmission of force as well 

as in the maintenance of sarcomeric structural integrity during muscle contraction. 

Autophosphorylation of FAK is critical in the initiation of intracellular integrin signalling 

pathways (Wolfson et al., 2009), involving both mitogen-activated protein kinase signalling 

and cytoskeletal remodelling (Mitra et al., 2005).  Ultimately, this intracellular integrin-

signalling cascade is responsible for the regulation of such processes as cell growth, 

migration and differentiation (Quach & Rando, 2006).  Furthermore FAK plays an integral 

role in costamere formation and turnover, and it has been suggested that the observed 

increases in muscle force per unit CSA (Flück et al., 1999) following skeletal muscle 

hypertrophy, may be the consequence of improved lateral force transmission due to 

enhanced costamere density (Erskine et al., 2012). 

 

FAK is encoded by protein tyrosine kinase 2 (PTK2), and two polymorphisms within this 

gene have been investigated for associations with human phenotypes (Garatachea et al., 

2014; Erskine et al., 2012).  Most recently the rs7843014 and rs7460 polymorphisms were 

investigated for associations with exceptional longevity in several European cohorts and a 

Japanese cohort (Garatachea et al., 2014).  Garatachea et al. (2014) reported a possible 

association between the rs7843014 CC and rs7460 TT genotypes, which are in linkage 

disequilibrium (Erskine et al., 2012), and lower gene expression as potentially increasing 



Chapter 1  Literature review 

 41 

the likelihood of reaching exceptional longevity in a Spanish population only.  The first 

study involving these two polymorphisms demonstrated a significant association between 

the rs7843014 AA and rs7460 TT genotypes and higher baseline specific force production, 

which was suggested to be the consequence of improved lateral force transmission due to 

an increased costamere density in the muscles of rs7843014 AA and rs7460 TT 

homozygotes compared to C-allele and A-allele carriers respectively (Erskine et al., 2012).  

This initial investigation, however, was only a preliminary report on a relatively small 

population (n = 51), therefore independent replications are required to confirm these 

observations.  Furthermore, when taken together, the results from Garatachea et al. (2014) 

and Erskine et al. (2012) indicate a potential complex relationship between PTK2 gene 

expression and subsequent influence on FAK and thus costamere formation and turnover 

that also warrants further investigation to elucidate. 

 

1.6.6 Titin 

Titin (TTN) encodes the largest described protein to date, which behind actin and myosin 

is the third most abundant protein within the myofilament of human cardiac and skeletal 

muscle (Vikhlyantsev & Podlubnaya, 2012; Fürst et al., 1988).  Within the sarcomere, TTN 

is important for both myocyte development and function (Rankinen et al., 2003).  Due to 

its size, TTN provides a molecular blueprint for the assembly and organisation of the thin 

and thick filaments during myofibrillogenesis (Chauveau et al., 2014; Gregorio et al., 1999), 

in addition to providing an attachment site for several myofibrillar proteins (Figure 1.8) 

(Trinick, 1994).  During contraction, TTN functions to maintain the structural integrity of 

the sarcomere (Freiburg & Gautel, 1996), and is also involved in intracellular signalling 

(Mayans et al., 1998).  The TTN protein is characterised by four regions; Z-disc, I-band, A-
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band and M-line (Figure 1.8).  The I-band region is highly elastic and plays an important role 

in the development of muscle passive tension, primarily due to the PEVK region  [named 

according to its composition of proline (P), glutamate (G), valine (V) and lysine (K)] and 

immunoglobulin (Ig)-like domain (Herzog et al., 2012).  

 

Figure 1.9. (A) Schematic diagram of TTN structure and associated myofibrillar proteins; 

(B) schematic diagram of a TTN isoform demonstrating the four distinct regions of the 

protein.  Figure taken from Chauveau et al. (2014). 

 

Seven splice isoform variants of TTN exist within human striated muscle, and three of these 

isoforms are known to differ according to the length of their PEVK region and Ig-like 

domains (Chauveau et al., 2014).  Within human skeletal muscle, the predominant TTN 
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isoform is N2A, although both the novex-2 and novex-3 isoforms are also expressed (Bang 

et al., 2001; Vikhlyantsev & Podlubnaya, 2012; Freiburg et al., 2000). 

 

To date several skeletal muscle diseases have been associated with mutations in TTN, with 

39 known mutations reported to contribute to four known purely skeletal muscle diseases, 

and a further nine mutations associated with combined skeletal and cardiac muscle 

diseases (Chauveau et al., 2014).  A commonality evident across all of these known skeletal 

muscle diseases is muscle atrophy and/or muscle weakness (Udd, 2012; Edström et al., 

1990; Romero, 2010).  Although much of the research surrounding TTN has tended to focus 

upon mutations associated with skeletal muscle diseases, other non-pathological 

polymorphisms have been identified (Herman et al., 2012), and one in particular has 

demonstrated an association with an exercise-related phenotype in healthy, untrained 

Caucasians (Timmons et al., 2010; Rankinen et al., 2003).   

 

A missense C > T transition identified within TTN has been reported to contribute to the 

variability in the training response of maximal oxygen consumption (Timmons et al., 2010) 

and stroke volume (Rankinen et al., 2003).  Within cardiac muscle, TTN is suggested to be 

a key regulator of the Frank-Starling mechanism (Fukuda et al., 2001), and considering 

substantial differences in the elasticity of cardiac TTN isoforms, this C > T transition, an 

exon splicing enhancer (ESE), is likely to contribute to the variability within TTN isoform 

expression.  In turn, differences in the TTN isoforms expressed may explain the training-

related increases in stroke volume (Rankinen et al., 2003) and consequently the maximal 

oxygen consumption (Timmons et al., 2010).  Furthermore, if this TTN polymorphism 

influences TTN isoform expression as suggested, there exists a distinct possibility that a 
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similar influence is occurring within skeletal muscle tissues.  To the author’s knowledge 

there exist no investigations on potential associations between the TTN rs10497520 

polymorphism and human skeletal muscle functional or morphological phenotypes.  

Differences in TTN isoform expression within skeletal muscle, such as increased expression 

of the larger N2A isoform and decreased expression of the smaller novex-2 and -3 isoforms, 

or vice versa, may have implications for muscle architecture and/or strength phenotypes.  

For instance, a recent investigation on TTN isoform size in rat skeletal muscle demonstrated 

an association between isoform size and sarcomere length, which could impact on muscle 

fascicle length (Greaser & Pleitner, 2014).  Subsequently, if differences in skeletal muscle 

fascicle length are apparent, then variability in the length-tension relationship of muscle 

contraction might also be observed.  Accordingly, individuals with longer fascicles would in 

theory experience a rightward shift in their length-tension relationship, which would result 

in a concurrent change in the optimal joint angle for maximal torque production in the 

direction of full flexion.  Therefore, TTN is a suitable candidate gene for investigations 

between the aforementioned C > T transition and skeletal muscle properties in humans. 

 

1.6.7 Thyrotropin-releasing hormone receptor 

Belonging to the G protein-coupled receptor-1 family, thyrotropin-releasing hormone 

receptor (TRHR) is integral in the activation of the phospholipid-calcium-protein kinase C 

transduction pathway (Liu et al., 2009; Matre et al., 1999).  This complex signalling cascade 

is primarily initiated by the binding of thyrotropin-releasing hormone (TRH) to its receptor, 

both of which are found throughout the central and peripheral nervous systems and 

extraneural tissues (Sharif, 1989; Satoh et al., 1993).  Ultimately, this transduction pathway 

is responsible for controlling the synthesis and secretion of thyroid stimulating hormone 



Chapter 1  Literature review 

 45 

(TSH) and prolactin from the anterior pituitary gland (Matre et al., 1999).  In turn, the 

secretion of TSH results in the release of thyroxin (T4), a hormone that has an important 

role in skeletal muscle development (Norenberg et al., 1996; Larsson et al., 1994).  TRHR, 

located in the region 8q.23.1, is the gene encoding TRHR and mutations in this gene have 

been reported to alter the binding capacity of TRH to TRHR, and can result in central 

hypothyroidism (Collu et al., 1997).   

 

A link between central hypothyroidism and MHC isoform expression is well established, 

with several authors identifying a significant increase in MHC-I transcription following 

induction of hypothyroidism compared with euthyroidism (Norenberg et al., 1996; 

Montgomery, 1992; Vadaszova et al., 2006). Additionally, concomitant reductions in the 

CSA of both type I and type II fibres, attributed to a disproportionate increase in protein 

degradation (Brown & Millward, 1983) following the induction of hypothyroidism, have 

also been observed (Norenberg et al., 1996).  Consequently, the generation of absolute 

tension is significantly lower in the soleus muscle fibres of hypothyroid rats than euthyroid 

rats (Norenberg et al., 1996).  Interestingly, however, due to simultaneous reductions in 

cell size and myofibrillar protein content, no differences in the specific force generating 

capacity of these fibres were observed (Norenberg et al., 1996). 

 

Although many of these aforementioned observations were from hypothyroid rats, a more 

recent investigation has identified two single nucleotide polymorphisms within TRHR as 

important for lean body mass in humans (Liu et al., 2009).  These two SNP were identified 

following an initial GWAS and are in strong linkage disequilibrium (r2 = 0.98).  Lean body 

mass of individuals homozygous for the rs16892496 G-allele was, on average, 2.7 kg higher 
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than T-allele homozygotes; similarly, the lean body mass of individuals homozygous for the 

rs7832552 T-allele was, on average, 2.5 kg higher than heterozygotes and C-allele 

homozygotes (Liu et al., 2009).  A subsequent investigation was able to replicate the 

association between TRHR and lean body mass for the rs16892496 polymorphism but not 

the rs7832552 polymorphism (Lunardi et al., 2013).  Furthermore, as total body lean mass 

correlates with muscle strength (r = 0.365) (Bamman et al., 2000), Lunardi et al. (2013) also 

investigated a potential association between TRHR and muscle strength.  The authors 

demonstrated a tendency for TRHR rs16892496 genotype to differ according to isokinetic 

strength, such that those individuals with significantly lower appendicular lean mass were 

more likely to produce lower values of peak torque, however, as this is the only study to 

date to investigate this genetic polymorphism for associations with a muscle strength 

phenotype, independent replications are warranted.  In addition, differences in total body 

or appendicular lean mass might reflect differences in individual muscle size, thus potential 

associations between TRHR genotype and various indices of muscle size might also exist 

and should be investigated further. 

 

1.7 Aims and objectives  

Consequently, the overall aim of the current thesis was to investigate some of the genetic 

contribution to the inter-individual variability within skeletal muscle strength and some of 

its determinants.  More specifically, the objectives were: 

1. To investigate the extent of inter-individual variability within skeletal muscle 

strength and some of its determinants in healthy, untrained males. 
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2. To determine whether eight gene polymorphisms in seven separate genes (ACE, 

ACTN3, CNTF, COL5A1, PTK2, TRHR and TTN) are associated with skeletal muscle 

strength and/or some of its determinants in healthy, untrained males. 

3. To investigate whether polygenic profiles comprising these eight gene 

polymorphisms are associated with skeletal muscle strength and/or some of its 

determinants in healthy, untrained males. 

 

1.8 Overview of thesis 

Chapters 2 and 3 of this thesis are both concerned with the research methodology and 

design adopted to investigate the skeletal muscle phenotypes necessary for Chapters 4, 5, 

6 and 7.  More specifically, Chapter 2 describes the measurement, calculation or estimation 

of each of the skeletal muscle phenotypes under investigation in subsequent chapters, in 

addition to outlining the procedures necessary for DNA collection, extraction and 

genotyping.  In Chapter 3 the reliability of the measurements necessary for the calculation 

of muscle specific force was investigated to confirm that these measurements would be 

appropriate for use in subsequent chapters. 

 

The main aim of Chapter 4 was to investigate the inter-individual variability within the 

measurements of muscle strength and its determinants.  It was hypothesized that the inter-

individual variability within the more stringent measurements of muscle strength and size, 

such as muscle specific force and PCSA would be less than that identified within the less 

stringent measurements, such as maximal voluntary contraction torque and ACSA. 
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Chapters 5, 6 and 7 all followed a similar research design, in which associations between 

polymorphisms in the candidate genes identified in the current chapter and skeletal muscle 

functional and morphological phenotypes were investigated.  More specifically, in Chapter 

5 associations between polymorphisms in five of these candidate genes (ACTN3, CNTF, 

COL5A1, PTK2 and TTN) and vastus lateralis muscle fascicle length and pennation angle 

were investigated.  In Chapter 6, polymorphisms in ACE, ACTN3, CNTF, PTK2 and TRHR were 

investigated for associations with several skeletal muscle size phenotypes (vastus lateralis 

ASCA, PCSA, volume, thickness, total body lean mass and measures of appendicular lean 

mass); and in Chapter 7, polymorphisms in all seven candidate genes (ACE, ACTN3, CNTF, 

COL5A1, PTK2, TRHR and TTN) were investigated for associations with maximal voluntary 

knee extension isometric torque, maximal voluntary knee extension net torque and vastus 

lateralis specific force.  It was hypothesized that associations would exist between the 

genetic polymorphisms and skeletal muscle phenotypes. 

 

Subsequently in Chapter 8, separate polygenic profiles were completed for the size and 

strength phenotypes investigated in Chapters 6 and 7 respectively.  These polygenic 

profiles and their associations with the respective muscle size and strength phenotypes 

were assessed.  It was expected that by involving all of the genetic polymorphisms 

investigated in the preceding chapters in a polygenic profile, a greater proportion of the 

observed inter-individual variability described in these phenotypes in Chapter 4, would be 

accounted for than could be achieved when investigating associations with single candidate 

polymorphisms. 
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Finally, Chapter 9 took a retrospective view of the results observed within each chapter 

and attempts to combine these to, in particular, identify how each of the candidate genes 

under investigation influences both skeletal muscle function and morphology.  In 

combining the findings of the preceding chapters, this chapter also considers the 

implications of these for future research in addition to outlining possible future directions. 

  



 

 
 

 
 
  

08 Fall 

Chapter 2 

General methodology 
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2.1 Participants 

Participants were healthy, untrained and unrelated Caucasian males [n = 120, age 20.6 (2.3) 

yr, height 1.79 (0.06) m and mass 75.1 (10.1) kg; mean (SD)], and all gave written consent 

to participate prior to involvement.  Participants self-reported as not having a known 

musculoskeletal or neurological disorder, were aged between 18 yr and 39 yr, had a body 

mass index (BMI) between 18.5 kg∙m-2 and 30 kg∙m-2, and had not undertaken any 

structured resistance training in the preceding 12 months.  Additionally, a questionnaire 

designed to assess habitual activity levels (Baecke et al., 1982) (Appendix 1) was used to 

ensure that only untrained participants, those undertaking less than 3 hours of low-to-

moderate intensity habitual work-based and leisure time physical activity per week, took 

part in the study.  All experimental procedures were conducted in accordance with the 

guidelines in the Declaration of Helsinki (World Medical Association, 2013) and approved 

by the Ethics Committee of Manchester Metropolitan University.   

 

2.2 Measurement of muscle morphological and functional properties 

2.2.1 Knee extension and flexion torque 

Maximum voluntary isometric knee extension (MVCKE) and flexion (MVCKF) torque was 

measured using an isokinetic dynamometer (Cybex Norm, Cybex International Inc., NY, 

USA) with participants seated at 85° hip flexion (Figure 2.1).  A minimum of 3 maximal 

voluntary contractions (MVC) were performed at knee joint angles of 70°, 80° and 90° of 

flexion on the right leg only.  If the third MVC was the highest, additional MVC attempts 

were performed until no further increases in MVC were apparent.  This range of knee joint 

angles has been shown previously to include the optimum angle for a comparable sample 

population (Erskine et al., 2009).  Alignment of the dynamometer rotational axis with the 
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participant’s knee joint centre of rotation took place prior to attaching the cuff of the lever 

arm to the lower leg proximal to the lateral malleolus.  Participants were secured in the 

dynamometer via inextensible straps across the shoulders, waist and right thigh to prevent 

any extraneous movement during maximal contraction efforts (Figure 2.1).  Following a 

series of sub-maximal knee extension and flexion contractions to warm-up, participants 

were instructed to maintain each MVC for approximately 3 s until they received a verbal 

signal to relax.  Maximal isometric knee extension and flexion torques were assessed at all 

knee joint angles in a randomised order, and a 2 min rest period was given between 

contractions (Parcell et al., 2002).  The knee joint angle at which peak MVC torque occurred 

was considered the optimal angle and was used for subsequent measurements.  

 

Figure 2.1. Example of participant set-up for measurement of knee extension and flexion 
MVC torque (A); reference (B) and active (C) EMG electrode placement; and vastus lateralis 
mark-up and external reference marker placement (D). 
 

2.2.2 Muscle activation and co-activation 
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Two self-adhesive electrodes (7.5 x 12.5 cm; Tyco Galvanic Pad, Uni-Patch, MN, USA) were 

positioned over the muscle belly of the vastus medialis, rectus femoris and vastus lateralis 

and connected to an external stimulation device (DS7, Digitimer stimulator, Welwyn, 

Garden City, UK) such that the anode was placed 5-10 cm proximal to the superior border 

of the patella and the cathode was located 5-10 cm distal to the inguinal crease (Place et 

al., 2010).  With the participant at rest, the maximal twitch torque stimulation intensity was 

identified by administering single twitches of increasing current intensity until no further 

increases in twitch torque were observed.  The current intensity at which no further 

increases in twitch torque were observed was defined as the supramaximal stimulation 

intensity and was used to deliver two doublets to the participant during MVCKE and one 

doublet during relaxation (each separated by 1.5 s) to assess voluntary activation capacity 

as (Behm et al., 1996): 

 

Equation 1: Activation (%) = (1 – t/T) x 100 

(Eq 1) 

where t is the higher of the two interpolated doublet amplitudes and T is the potentiated 

doublet amplitude (Behm et al., 2001).  Doublets were preferred to singlets as these have 

been associated with improved signal-to-noise ratio (Behm et al., 1996); reduced variability 

(Suter & Herzog, 2001), and multiple stimuli are more sensitive in the detection of muscle 

activation than single stimulations (Kent‐Braun & Le Blanc, 1996).  Furthermore, to 

overcome potential reductions in MVCKE torque as a consequence of twitch anticipation 

(Button & Behm, 2008) doublets were only superimposed on those MVCKE efforts eliciting 

comparable torque values to those previously assessed (see section 2.2.1).  Antagonist 

muscle co-activation during MVCKE was determined through electromyographic (EMG) 
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assessment of the biceps femoris, as this muscle is reportedly representative of the 

hamstrings (Kellis & Baltzopoulos, 1999).  Two pre-gelled Ag-AgCl electrodes (Ambu, 

Neuroline 720, Denmark) were positioned with an inter-electrode distance of 20 mm over 

the long head of the biceps femoris.  Prior to electrode placement the skin was shaved, 

abraded and cleansed with an alcohol wipe to reduce skin impedance (Hermens et al., 

2000).  To minimise muscle cross talk from adjacent muscles, electrodes were placed over 

the distal third of the muscle in the mid-sagittal plane and a reference electrode was 

positioned over the lateral tibial condyle (Figure 2.1).  Pre-amplified raw EMG activity was 

filtered using low (10 Hz) and high (500 Hz) band pass filters.  The integral of the root mean 

square (RMS) EMG activity corresponding to peak MVCKE torque at the optimal knee joint 

angle was calculated and averaged over 0.5 s either side of the instantaneous peak.  EMG 

activity of the biceps femoris during MVCKF was measured and, assuming a linear 

relationship between torque and EMG activity, was used to estimate co-activation torque 

(Reeves et al., 2004c).  Subsequently, net MVCKE torque was calculated as: 

 

Equation 2: Net MVCKE torque = CcT + (MVCKE + STT) 

(Eq 2) 

where CcT is the co-activation torque and STT is the superimposed twitch torque.  All 

signals of torque, electrical stimuli and EMG activity were displayed on a computer screen 

(Macintosh, iMac, Apple Computer, Cupertino, USA) interfaced with an acquisition system 

(AcqKnowledge, Biopac Systems, Santa Barbara, USA) to enable analogue-to-digital 

conversion at a sampling frequency of 2000 Hz.   

 

2.2.3 Muscle architecture 
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Muscle architecture of the vastus lateralis (VL) muscle was assessed in vivo during MVCKE 

at the pre-determined optimum joint angle using B-mode ultrasonography (AU5, Esaota, 

Italy).  With the participant seated on the dynamometer as described previously, the origin 

and insertion and the medial and lateral borders of the VL muscle were identified at rest. 

VL muscle length was measured, and an external echo-absorptive reference marker was 

placed at 50% of muscle length (Figure 2.1).  Scans were obtained using a 40 mm, 7.5 MHz 

linear-array probe coated in water-soluble transmission gel to increase acoustic contact.  

The probe was positioned perpendicular to the skin surface over the echo-absorptive 

marker in the mid-sagittal plane of the VL muscle.  The external reference marker was 

visible on the scanned image; thus, any movement of the probe in relation to the marker 

during each MVC trial would be identified.  If movement of the probe was apparent, the 

trial was omitted and an additional trial would take place.  An external voltage trigger 

enabled synchronization of the ultrasound scans with the acquisition system to allow for 

the ultrasound image corresponding to peak MVCKE torque to be exported for subsequent 

analysis.  All ultrasound scans were recorded in audio video interleave (AVI) format at a 

sampling frequency of 25 Hz, and single images were captured using frame-capture 

software (Adobe Premiere Elements version 10, Adobe Systems).  Measurement of VL 

muscle fibre pennation angle and fascicle length was completed on single images using 

digitising software (NIH ImageJ, version 1.44o, National Institutes of Health, Bethesda, USA) 

(Reeves et al., 2004c).  Pennation angle was measured as the angle of fascicular insertion 

into the deep aponeurosis.  Identification of fascicle length was achieved by measuring the 

distance from fascicular origin to insertion on the aponeuroses (Narici et al., 1996).  Often 

the VL muscle fascicles extended beyond the scanning window; therefore estimation of 

fascicle length was necessary by extrapolating the deep and superficial aponeuroses and 
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fascicle (Figure 2.2) (Reeves & Narici, 2003).  Pennation angle and fascicle length were 

measured on a minimum of three fascicles for every ultrasound image, and an average of 

these measurements was taken as the pennation angle and fascicle length. 

 

Figure 2.2. Extrapolation of VL fascicle length and aponeuroses beyond the ultrasound-
scanning window.  VL = vastus lateralis, VI = vastus intermedius, θ = pennation angle. 
 

2.2.4 Muscle volume 

VL muscle anatomical cross-sectional area (ACSA) was measured using previously validated 

methods with B-mode ultrasonography (Reeves et al., 2004b). A series of transverse plane 

scans were taken at the level of 50% of VL muscle length with the use of external reference 

markers to identify sections from the medial to lateral edge of the VL (Figure 2.3).  Care 

was taken to ensure minimal pressure was applied to the VL during scanning to avoid 

compression of the muscle.  A recording of the scans was saved in AVI format, and single 

scans were captured using frame-capture software (Adobe Premiere Elements version 10, 

Adobe Systems) and used for subsequent analysis.  Single scans were fitted using contour 

VL 

VI 

θ 
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matching (Figure 2.3), and ACSA was measured using digitising software (ImageJ 1.44o, 

National Institutes of Health, Bethesda, USA).   

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3. VL muscle ACSA measured using single transverse plane B-mode ultrasound 
scans and contour matched. VI = vastus intermedius. 
 
 
The mean of 3 measurements was taken and used to estimate VL muscle volume using 

previously applied methods based on a series of regression derived constants (Morse et al., 

2007) along with VL muscle length. 

 

Equation 3: Muscle Volume = LVL x ACSAVL x (a/4 + b/3 + c/2 + d) 

(Eq 3) 

where LVL equates to VL muscle length, ACSAVL is the mean of three ACSA measurements 

taken at 50% muscle length and a (-2.9244), b (0.74), c (2.2178) and d (0.0244) are the 
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regression-derived constants (Morse et al., 2007).  Subsequently, calculation of VL muscle 

physiological cross-sectional area (PCSA) was achieved as:  

 

Equation 4: PCSAVL = Muscle volume / Lƒ 

(Eq 4) 

where, Lƒ is the fascicle length obtained under contraction at the optimal knee joint angle. 

 

2.2.5 Tendon moment arm length 

Moment arm length of the patellar tendon was measured to calculate patellar tendon 

forces using a dual energy X-ray absorptiometry (DXA) scanner (Hologic Discovery W, 

Vertec Scientific Ltd, UK), consistent with Erskine et al. (2014).  A single, low-energy (0.9 

µSv) sagittal plane scan was obtained using a 22.6 x 13.7 cm field of view, which lasted 

approximately 11 s.  During scanning, each participant lay on their side with the hip flexed 

at 85° and the right knee joint positioned at the previously determined optimum angle 

using a goniometer (Figure 2.4).  

 

Scans were exported to a DICOM file viewer (OsiriX 5.0.2, Pixmeo Sarl, Geneva, 

Switzerland), and the perpendicular distance between the tibiofemoral contact point and 

the axis of the patellar tendon was measured as the patellar tendon moment arm length 

(Figure 2.3)(Tsaopoulos et al., 2006).  Measurement of patellar tendon moment arm length 

using DXA imaging is highly reproducible [ICC = 0.97, ratio limits of agreement (LoA) 

(Atkinson & Nevill, 1998) = 1.01(x/÷ 1.07)], but has been shown to consistently 

overestimate moment arm length by 9.7% in comparison with MRI obtained data (Erskine 

et al., 2014).  
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2.2.6 Patellar tendon, VL fascicle and specific force 

Patellar tendon force was calculated by dividing net MVCKE torque at the optimum knee 

joint angle by patellar tendon moment arm length.   

 
 

Figure 2.4.  (A) Participant positioning during single-energy DXA scan of the patellar tendon 
moment arm. (B) DXA scan image showing the patellar tendon moment arm length (i), and 
patellar tendon length (ii).  Both images taken from a participant involved in the work 
described in the current thesis. 
 

Equation 5: FPT = Net MVCKE torque / dPT 

(Eq 5) 

where FPT is the patellar tendon force and dPT is patellar tendon moment arm length.  The 

contribution of the VL muscle to patellar tendon force was calculated by estimating the 

A 

(i) 

(ii) 

B 
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relative PCSA of the VL in relation to the quadriceps femoris muscle as approximately 21% 

using previously reported data (Narici et al., 1992). Subsequently, fascicle force of the VL 

was estimated by dividing VL muscle force by the cosine of the pennation angle.  

 

Equation 6: FFVL = MFVL / cosθ 

(Eq 6) 

where, FFVL is VL fascicle force, MFVL is VL muscle force and cosθ is the cosine of the 

pennation angle obtained at the optimum joint angle during MVC.  Finally, VL muscle 

specific force was calculated by dividing VL fascicle force by VL PCSA (Reeves et al., 2004c).  

 

Equation 7: Specific force = FFVL / PCSAVL 

(Eq 7) 

 

2.3 Body composition 

Quantification of fat mass, lean mass and percentage body fat was completed using DXA, 

following a period of overnight fasting for 12 hours by all participants (Tomlinson et al., 

2014).  All participants wore a cotton wraparound examination gown and were instructed 

to remove all metal items prior to the scan.  Participants lay supine in the centre of the 

table with arms by their side and legs outstretched and internally rotated (Figure 2.5).  Care 

was taken to ensure enough space was left between the arms and torso, and between legs 

to maximise the accuracy of the subsequent analysis.  To aid participant comfort and 

minimise movement during the scan, medical tape (Transpore™ Medical Tape, 3M™, USA) 

was placed around the outside of the feet.  The default whole-body scan mode was 

selected which emits dual energy (140/100 kVp) fan-beam x-rays to estimate body 
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composition.  The scanning region was 195 cm x 65 cm with 1.3 cm line spacing and 0.2 cm 

point resolution.  Scan duration was approximately 7 minutes and the effective radiation 

dose to each participant was 8.4 µSv (Blake et al., 2006).  All images were analysed by the 

same trained investigator using Physician’s Viewer v6.1 software. 

 

 

Figure 2.5. Participant positioning for whole-body DXA scanning. 

 

2.4 Genetic analysis 

2.4.1 DNA sample collection 

A 5 ml blood sample was collected by a trained phlebotomist (the principal investigator in 

all cases) from a superficial forearm vein into EDTA tubes (BD Vacutainer Systems, 

Plymouth, UK) before being aliquotted into 2 mL microcentrifuge tubes (Eppendorf AG, 

Hamburg, Germany) and stored at -20°C.  Although whole-blood sampling is preferable for 

collection of large amounts of genomic DNA, buccal cell sampling provides a less invasive 

alternative and is therefore preferable for some participants (Feigelson et al., 2001).  For 
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24 participants, buccal cell samples were obtained in duplicate (Whatman Sterile 

OmniSwab, GE Healthcare, USA) following a minimum 1-hour abstinence from food and 

drink.  Participants were instructed to brush one OmniSwab collection tip firmly against the 

inside of the cheek for approximately 30 s and repeat with a second swab on the opposite 

cheek.  Each collection tip was ejected into a 2 mL microcentrifuge tube and stored at -

20°C.  All collection tubes were coded and labelled to ensure participant anonymity in 

accordance with the Human Tissue Act (2004).  

 

2.4.2 DNA extraction 

The Qiagen QIAcube spin protocol (Qiagen, Crawley, UK) was used for the extraction of 

genomic DNA from both whole blood and buccal samples.  The protocol was completed in 

accordance with the manufacturer’s guidelines and used the buffers contained in the 

Qiagen DNA Blood Mini kit (Qiagen, Crawley, UK).  Briefly, DNA extraction from whole 

blood required cell lysing with protease and AL buffer during incubation at 56°C for 10 mins.  

Following brief centrifugation and the addition of ethanol, the resultant lysate was 

centrifuged at 8000 rpm for 60 s to allow silica gel membrane binding to occur.  Removal 

of proteins, nucleases and other impurities was achieved following additional buffer-

centrifugation cycles before elution of the remaining solution with 200 µL of AE buffer into 

a 1.5 mL microcentrifuge tube.  DNA extraction from buccal swabs followed the same 

process as detailed for whole blood, however an additional stage of transferring the lysate 

into clean 2 mL microcentrifuge tubes prior to the DNA purification phase was necessary.  

The automated Qiagen QIAcube was used to standardise these procedures and could 

process a maximum of 12 samples at a time.  Although genomic DNA yield is sample-

dependent and affected by the number of cells contained in each sample, typical yields 



Chapter 2                                                                                                       General methodology 
 

 63 

from 200 µL of whole blood (5-11 µg) and one buccal swab (1.3-2.9 µg) in the current 

samples using this protocol are deemed good quality with A260/A280 ratios of 1.2-1.7 (Glasel, 

1995).  Furthermore, during the subsequent genotyping process for blood and buccal 

samples, mean (±SD) DNA content of each 10 µl reaction volume was 9.9±1.1 ng and 

18.6±4.6 ng, respectively.  These data were taken from a sub-set of 30 samples to negate 

superfluous use of ~10 µl of participant DNA. 

 

2.4.3 Genotyping 

Each participant was genotyped for eight polymorphisms (Table 2.1) using the fluorophore-

based detection technique of TaqMan® real-time polymerase chain reaction (PCR).  This 

technique requires the amplification of a segment of genomic DNA overlapping the specific 

polymorphism being genotyped.  To achieve amplification, forward primers were used to 

identify the starting point of the genomic DNA segment and reverse primers to identify the 

end-point (Applied Biosystems®, UK).  Allele-specific probes, identified by either VIC® or 

FAM® (Table 2.1; Applied Biosystems®, UK) attached to their respective complementary 

sequences and emitted a fluorescent dye that was detected by the PCR machine. 

 

Real-time PCR was carried out in 96-well plates with each well containing a reaction volume 

of 10 µL.  The reaction volume for genotyping of ACE using DNA obtained from whole blood 

samples contained 0.5 µL of participant DNA, 5 µL of TaqMan® genotyping master mix 

(Applied Biosystems®, UK), 1.55 µL of nuclease-free H2O (Qiagen, Crawley, UK), 0.9 µL of I 

and D allele-specific probes and 0.38 µL of ACE primer 111, 112 and 113 (Koch et al., 

2005)(refer to Table 2.1 for specific sequences).   
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Table 2.1. Polymorphisms used in genotyping, identification of allele-specific probes and 

when known the flanking primers and probes used for DNA amplification. 

 

For DNA samples obtained from buccal cells, volumes of the TaqMan® genotyping master 

mix (Applied Biosystems®, UK), probes and primers remained the same, instead 0.05 µL of 

nuclease-free H2O  (Qiagen, Crawley, UK) and 2 µL of participant DNA were used.  For 

genotyping of all other polymorphisms using DNA obtained from whole blood samples, the 

reaction volume contained 0.2 µL of participant DNA, 5 µL of TaqMan® genotyping master 

Polymorphism VIC® FAM® Primers (5’-3’) 

ACE I/D 

(rs4341) 

 

I-allele 

(5’-AGGCGTGA-

TACAGTCA-3’) 

D-allele 

(5’-TGCTGCCT-

TATACAGTCA-3’) 

ACE111 

CCCATCCTTTCTCCCATTTCTC 

ACE112 

AGCTGGAATAAAATTGGCGAAAC 

ACE113 

CCTCCCAAAGTGCTGGGATTA 

 

ACTN3  

(rs1815739) 

 

R-allele X-allele  

COL5A1 

(rs12722) 

 

C-allele T-allele  

CTNF 

(rs1800169) 

 

A-allele G-allele  

PTK2  

(rs7843014) 

 

A-allele C-allele  

PTK2 3’UTR 

(rs7460) 

 

A-allele T-allele  

TRHR 

(rs7832552) 

 

C-allele T-allele  

TTN 

(rs10497520 

C-allele T-allele  
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mix (Applied Biosystems®, UK), 4.3 µL of nuclease-free H2O (Qiagen, Crawley, UK) and 0.5 

µL of TaqMan® genotyping assay mix (Applied Biosystems®, UK).  For DNA samples 

obtained from buccal cells, the 10 µL reaction volume contained 1 µL of participant DNA, 5 

µL of TaqMan® genotyping master mix, 3.5 µL of nuclease-free H2O and 0.5 µL of TaqMan® 

genotyping assay mix.  Control wells were included on each 96-well plate, in which 

nuclease-free H2O replaced the DNA sample. 

 

Real-time PCR was performed on two different PCR machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

such that the 96-well plate (LightCycler® 480 Multiwell Plate 96, Roche Diagnostics Ltd, UK) 

used for the genotyping of ACTN3 and CNTF was sealed (Microseal ‘B’ Adhesive Seal, 

BioRad Laboratories, Hercules, USA) and DNA amplification completed on the LightCycler® 

96 Real-Time PCR System (Roche Diagnostics Ltd, UK).  For the remaining polymorphisms, 

the PCR plate (MicroAmp® EnduraPlateTM Optical 96-Well Clear Reaction Plate, Applied 

Biosystems®, Crawley, UK) was sealed (MicroAmp® Optical Adhesive Film, Applied 

Biosystems®, Crawley, UK) and run on a StepOnePlusTM Real-Time PCR System (Applied 

Biosystems®, Crawley, UK).  To identify the agreement between the two different PCR 

machines, a sub-set of participant samples were analysed on both machines and 100% 

agreement was achieved in all samples.  DNA amplification of each polymorphism (except 

ACE I/D) was completed using the following PCR protocol: denaturation for 10-min at 95° 

followed by 40 cycles of incubation for 15 s at 92°C, primer annealing and extension for 1-

min at 60°C and plate read.  The DNA amplification protocol for ACE I/D was 50 cycles of 

denaturation for 15 s at 92°C, primer annealing and extension for 1-min at 57°C and plate 

read.  All samples were analysed in duplicate to minimise the occurrence of genotyping 

errors known to negatively affect the statistical power of genetic association studies (Tintle 
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et al., 2009) and 100% agreement between all duplicate samples was achieved.  Genotypes 

were determined by measurement of the end-point fluorescence of VIC® and FAM® 

detected by the PCR machine.  Results were subsequently analysed using a computer 

interfaced with software supplied by the respective manufacturers of each PCR machine.  

An example of the results from both PCR machines is displayed in Figure 2.6. 

 

2.5 Statistical analysis 

Statistical analysis was completed using the Statistical Package for Social Sciences (SPSS) 

version 19.0.  Prior to completing any statistical analyses the data was tested for 

parametricity.  Normal distribution of the population was identified using Kolmogorov 

Smirnov and the homogeneity of variance of each phenotype was assessed using Levene’s 

statistic.  The frequency of each SNP was assessed for compliance with Hardy-Weinberg 

equilibrium (HWE) using X2 tests and all SNPs were in HWE (P > 0.05; Table 2.2).  To 

determine the statistical power to detect genotype-phenotype associations, power 

calculations, using an alpha of 0.05 and beta of 0.80 in addition to mean and standard 

deviation data on muscle morphology obtained in our laboratory, were computed using 

G*Power 3.1.9 (Franz Faul, Universitat Kiel, Germany).   Consequently, it was estimated 

that approximately 100 participants would be required to complete assessments of muscle 

morphology to detect differences of ~3-5% for muscle strength (MVCKE torque, net MVCKE 

torque and specific force), ~6% for muscle architecture (fascicle length and pennation 

angle) and ~3-5% for muscle size (muscle thickness, ACSA, PCSA and muscle volume) and 

mass. 
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Figure 2.6. Example allelic discrimination plots for TRHR rs7832552 obtained using the 
StepOnePlusTM Real-Time PCR System (A), and PTK2 rs7460 obtained using the LightCycler® 
96 Real-Time PCR System (B). 
 

 

A one-way analysis of variance (ANOVA) was conducted to determine any significant 

differences in physical characteristics (stature, mass, BMI and age) between genotype 

groups (Table 2.2).  When genotype groups were combined into a dominant or recessive 

model, an independent samples t-test was used to identify any differences in physical 

TT 

CT 

CC Negative Control 

A 

Negative  
Control 

CC 

CT 

TT 

B 
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characteristics.  Pearson’s correlation coefficient were used to identify the variables that 

made a meaningful contribution to the variability within the phenotype under 

investigation, and those identified were included as confounding variables in subsequent 

analyses of covariance (ANCOVA).  ANOVA, and where appropriate ANCOVA, was 

conducted to identify any genotype differences in muscle phenotypes.  Furthermore, the 

effects of each genotype on the muscle phenotypes of interest were assessed for linear 

trend using ANOVA or ANCOVA.  All significant associations identified in the main ANOVA 

or ANCOVA analyses were subject to post-hoc pairwise comparisons using the Benjamini-

Hochberg correction (Benjamini & Hochberg, 1995).  Independent samples t-tests were 

used to complete two group analyses on genotype groups following combination into a 

dominant or recessive model.  Only in those instances were a tendency between genotype 

groups was observed, such that P > 0.05 but < 0.15 (Danilovic et al., 2007; Fischer et al., 

2004), were the two genotype groups with the closest means combined and a two group 

analysis completed.  Statistical significance was accepted when P ≤ 0.05 and data are 

presented as means (SD). 
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3.1 Introduction 

Human muscle strength is essential for locomotion and other activities of daily living, and 

is known to change in response to training, ageing and disease (Reeves et al., 2004c; Morse 

et al., 2005a; Park et al., 2007).  In addition to environmental influences, muscle strength 

is strongly influenced by genetics and heritability estimates range from ~40-80% for a 

number of strength phenotypes (Thomis & Aerssens, 2012; Huygens et al., 2004).  

Measurement of muscle strength is useful for both athlete populations, to assess the 

effectiveness of training, and patient populations to determine functional ability to 

complete activities of daily living.  Typical assessments of muscle strength use simple 

measurements such as maximal voluntary contraction (MVC) or one repetition maximum 

(Reeves et al., 2004c).  These gross measurements of muscle strength do not account for 

the physiological determinants of strength and are therefore susceptible to inter-individual 

variability in said determinants, and could over- or underestimate the influence of genetic 

or environmental factors on muscle strength (see Chapter 4).   

 

Calculating the intrinsic strength of muscle, or specific force, takes into account the neural 

and structural determinants of strength and provides a more stringent measure of the 

contractile capacity of the muscle.  Despite this, calculating muscle specific force is a 

complex process and requires the accurate measurement of isometric MVC torque, muscle 

activation and co-activation, muscle architecture (fascicle length and pennation angle), 

muscle size [anatomical cross-sectional area (ACSA), physiological cross-sectional area 

(PCSA) and muscle volume], and tendon moment arm length, ideally using gold standard 

techniques (Reeves et al., 2004b).  Although it is well established that MRI represents the 

gold standard for in vivo measures of muscle mass, due to the clear contrast between 
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hyperechoic and hypoechoic tissues and ability to complete contiguous scans along the 

length of a muscle (Reeves et al., 2004b; Morse et al., 2007), alternative techniques such 

as ultrasound alleviate some of the limitations associated with using MRI (Reeves et al., 

2004c).  For example in populations with impaired mobility, or in instances where an MRI 

is not available, ultrasound provides a more mobile and cheaper alternative to assess 

individuals that may not have access to MRI, or are not able to attain supine postures. 

Further application of ultrasound imaging is in the measurement of muscle architecture 

necessary for the calculation of specific force, during isometric MVC.  Kwah et al. (2013) 

recently demonstrated moderate to high reliability of using ultrasound to measure VL 

fascicle length, both at rest and during MVC (ICC = 0.62-0.99).  Additionally, due to the small 

ultrasound-scanning window, it is often necessary to extrapolate the fascicles beyond the 

field of view during analysis.  Despite this, the linear extrapolation method has been 

associated with only 2.4% error when used to measure fascicle length under contraction, 

thus suggesting high validity of applying this technique (Reeves et al., 2003).  However, 

using ultrasound to measure the muscle architecture of several muscles such as in the 

quadriceps femoris (QF) can be a timely process, especially when large sample sizes are 

required as in studies of inter-individual variability or genetic associations. 

 

To save on participant time and resources in the measurement of specific force, previous 

research has estimated QF muscle volume using a single QF ACSA measurement and this 

alternative method correlates highly with measurements of QF muscle volume using the 

contiguous MRI method (Erskine et al., 2009).  Furthermore, measurement of VL muscle 

ACSA using ultrasound in comparison to MRI-obtained measurements has previously been 

associated with ~2% error, therefore demonstrating that ultrasound is a suitable 
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alternative to MRI (Reeves et al., 2004c).  Despite this, the reliability of using ultrasound to 

measure VL ACSA for use in the estimation of VL muscle volume currently remains 

unreported.  Furthermore, as the VL muscle is known to be the predominant constituent 

of the QF (Alexander & Vernon, 1975; Wickiewicz et al., 1983; Scott et al., 1993) it would 

be useful to accurately and reliably measure VL muscle architecture in the calculation of 

specific force using alternative methods to MRI, such as ultrasound and dual energy x-ray 

absorptiometry (DXA) respectively.  Therefore the aim of the current study was to identify 

the reliability of using an alternative method of assessing VL muscle volume, which may 

benefit studies requiring large sample sizes in future.  Additionally, the study aimed to 

assess the reliability of measuring other determinants of muscle strength that are used in 

the calculation of muscle specific force in vivo. 

 

3.2 Method 

3.2.1 Participants 

Eight Caucasian males [age 22.1 (2.2) yrs, stature 1.74 (0.10) m, mass 79.4 (11.1) kg; mean 

(SD)] gave written informed consent to participate in this study.  All participants were 

identified as recreationally active, defined here as undertaking less than 3 hours of low-to-

moderate intensity exercise per week.  Participants were excluded if they had taken part 

in resistance exercise during the preceding 12 months, had a BMI outside the normal range 

(18.5-24.0 kg∙m-2) or reported a history of lower limb injury.  The study was in agreement 

with the Declaration of Helsinki and approval was obtained from the local Ethics Committee 

of Manchester Metropolitan University. 

 

3.2.2 Experimental procedure 
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Participants were required to attend the laboratory on two occasions separated by at least 

24-hrs at the same time of day on each occasion (Coldwells et al., 1994).  All participants 

completed a series of sub-maximal knee extension and flexion contractions as a warm-up 

prior to collection of the following measurements on day 1 and day 2.  

 

3.2.3 Knee extension and flexion 

Participants sat in an isokinetic dynamometer with hips flexed at 85° (Cybex Norm, Cybex 

International Inc., NY, USA).  The dynamometer axis of rotation was visually aligned with 

the knee joint centre of rotation and participants were secured in the dynamometer using 

inextensible straps positioned over the thigh, hips and shoulders to prevent any extraneous 

movement during contraction.  Maximum isometric voluntary contraction torque was 

measured for knee extension (MVCKE) and flexion (MVCKF) of the right limb.  Three MVCs 

were completed at knee joint angles of 60°, 70°, 80°, 90° and 100° of flexion in a randomised 

order to counterbalance order effects, and participants were given a 2-min rest period 

between contractions.  Visual feedback and verbal encouragement were given throughout 

each trial and participants were asked to maintain each MVC for ~3 s until receiving a signal 

to relax. 

 

3.2.4 Activation capacity and co-activation torque 

Voluntary activation capacity was measured using the interpolated twitch technique (Behm 

et al., 2001).  Two self-adhesive electrodes (7.5 x 12.5 cm; Tyco Galvanic Pad, Uni-Patch, 

MN, USA) were used to administer a supramaximal doublet (DS7, Digitimer stimulator, 

Welwyn, Garden City, UK) with a 50 s pulse width and 50 ms interstimulus gap to the QF 

(Behm et al., 1996).  Maximal twitch torque stimulation intensity was identified with the 
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participant at rest by administering repeated single twitches of increasing current intensity 

until no further increases in twitch torque were measured (Behm et al., 2001).  Voluntary 

activation capacity of the QF was calculated as: 

Equation 1: Activation (%) = (1 – t/T) x 100 

(Eq 1) 

where, t is the interpolated doublet amplitude and T is the potentiated doublet amplitude 

(Behm et al., 2001).  Co-activation torque was calculated by measuring the 

electromyographic (EMG) activity of the biceps femoris (BF) during MVCKE, and a linear 

relationship between EMG activity and torque when measuring MVCKF torque was 

assumed (Kellis & Baltzopoulos, 1997).  EMG activity was measured using two pre-gelled 

percutaneous electrodes positioned in the mid-sagittal plane over the distal third of the BF 

long head using a constant 20 mm inter-electrode distance (Ambu, Neuroline 720, 

Denmark).  A third electrode was placed on the lateral tibial condyle as a reference.  

Recording of torque, electrical stimuli and EMG activity was via a multi-channel analogue-

to-digital converter at 2 kHz, with pre-amplified raw EMG data filtered using low (10 Hz) 

and high (500 Hz) band pass filters (AcqKnowledge, Biopac Systems, Santa Barbara, USA).  

The integral of the root mean square of the EMG activity was calculated over 0.5 s either 

side of peak MVCKE torque for the knee joint angle at which peak torque was recorded.  Net 

knee extension torque was calculated as: 

Net torque = co-activation torque + (MVCKE torque + superimposed stimulation torque) 

Patellar tendon moment arm length was measured using DXA with participants at rest 

(Hologic Discovery, Vertec Scientific Ltd, UK) consistent with Erskine et al (2014).  Sagittal 

plane DXA scans were taken of the knee joint positioned at the angle corresponding to that 

of peak torque production.  The perpendicular distance between the patellar tendon and 
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tibiofemoral contact point was measured as the tendon moment arm length using an 

offline DICOM viewer (OsiriX 5.0.2, Pixmeo Sarl, Geneva, Switzerland).  Subsequently, 

patellar tendon force was calculated by dividing net torque by patellar tendon moment 

arm length. 

 

3.2.5 Muscle architecture 

In vivo measurements of VL muscle architecture were completed during contraction using 

ultrasound at the knee joint angle corresponding to peak knee extension torque (AU5, 

Esaota, Italy).  VL muscle length was measured as the distance between the muscle origin 

and insertion using a 40 mm, 7.5 MHz linear-array probe.  An external reference marker 

was positioned over the skin at 50% of muscle length, and measurements of VL muscle 

architecture were obtained during MVCKE with the probe held perpendicular to the external 

reference marker in the mid-sagittal plane.  MVCKE trials during which movement of the 

probe in relation to the external reference marker was observed were omitted and an 

additional trial was completed.  Synchronisation of the ultrasound scans via an external 

trigger and data acquisition system enabled offline analysis of the ultrasound image 

corresponding to peak MVCKE torque using digitising software (NIH ImageJ, version 1.44o, 

National Institutes of Health, Bethesda, USA).  Scans were recorded using a 25 Hz sampling 

frequency in audio video interleave format.  The angle of fascicle insertion into the deep 

aponeurosis was measured as pennation angle, and the distance between fascicle insertion 

into the superficial and deep aponeuroses was measured as fascicle length.  When 

necessary, estimates of fascicle length were made by extrapolating the aponeuroses 

beyond the ultrasound field of view (Reeves et al., 2003c).  The mean of three 

measurements for pennation angle and fascicle length was taken for each participant. 
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3.2.6 Muscle size 

VL muscle ACSA was measured at 50% of VL muscle length using ultrasound (Reeves et al., 

2004c).  External reference markers were placed along the line of 50% muscle length from 

the medial to lateral border of the VL.  A series of ultrasound scans taken in the transverse 

plane were recorded and single scans were isolated using frame-capture software (Adobe 

Premiere Elements v10, Adobe Systems) and used for offline analysis.  Individual 

ultrasound scans were contour matched to allow for the measurement of ACSA using 

digitising software (NIH ImageJ, version 1.44o, National Institutes of Health, Bethesda, 

USA).  VL muscle volume was estimated by multiplying the mean of three VL ACSA 

measurements by VL muscle length and a series of regression equation constants (Morse 

et al., 2007).  VL PCSA was calculated by dividing muscle volume by the mean fascicle length 

during contraction at the knee joint angle at which peak MVCKE torque was recorded. 

 

3.2.7 Specific force 

Calculation of VL muscle force was achieved by estimating the contribution of the VL 

muscle to patellar tendon force based on the relative PCSA of the VL accounting for 21.3% 

within the QF (Narici et al., 1992).  VL muscle force was then divided by the cosine of the 

pennation angle during contraction at the optimum knee joint angle to estimate VL fascicle 

force.  VL specific force was subsequently calculated by dividing VL fascicle force by PCSA 

(Reeves et al., 2004c). 

 

3.2.8 Statistical analysis 
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Two-tailed paired t-tests were used to identify any differences in the measurements of 

strength and its determinants between day 1 and day 2 (Statistical Package for Social 

Sciences 19.0, SPSS Inc., Chicago, Il, USA).  To determine the level of agreement between 

tests (day 1 vs. day 2), the reliability of the measurements of muscle strength and its 

determinants was calculated using coefficients of variation (CV) as (SD*1.96)/mean*100)  

(Reeves et al., 2004c), one-way random effects intra-class correlation coefficients (ICC) and 

ratio limits of agreement (Atkinson & Nevill, 1998). Statistical significance was accepted at 

P ≤ 0.05. 

 

3.3 Results 

Descriptive data on the functional and morphological characteristics of the VL are displayed 

in Table 3.1.  Measurements of muscle size between day 1 and day 2 demonstrated 

significant ICCs (muscle volume = 0.969, ACSA = 0.967 and PCSA = 0.958, all P < 0.0005).  

Ratio limits of agreement revealed no systematic bias on the estimation of muscle volume 

(0.994 ×/÷ 1.055, t = -0.619, P = 0.555), ACSA (0.995 ×/÷ 1.056, t = -0.494, P = 0.637) and 

PCSA (0.999 ×/÷ 1.068, t = -0.856, P = 0.421).  The bias ratio (0.994) for muscle volume 

demonstrates <1.0% difference between measurements taken on day 1 and day 2 which is 

in agreement with the mean inter-day difference (Table 3.1).  Based on the agreement 

ratio, 95% of measurements taken on day 2 were within 5.5% above or below the 

measurement taken on day 1. 
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Table 3.1. Reliability of the functional and morphological characteristics of the VL. 

Variable Day 1 Day 2 CV (%) ICC 

Isometric  MVCKE torque (N∙m) 249 (7.4) 250 (8.2) 4.2 0.989 

Net knee extension torque 
(N∙m) 

274 (13.5) 277 (9.3) 5.6 0.986 

Muscle volume (cm3) 622 (6.2) 626 (12.0) 2.5 0.969 

ACSA (cm2) 18.7 (0.2) 18.8 (0.4) 2.7 0.967 

Fascicle length (cm) 8.5 (0.2) 8.5 (0.2) 2.5 0.978 

Pennation angle (°) 14.6 (0.3) 14.6 (0.4) 2.1 0.998 

PCSA (cm2) 66.2 (1.1) 66.9 (2.5) 3.6 0.958 

Moment arm (cm) 4.51 (0.1) 4.50 (0.1) 1.8 0.974 

Patella tendon force (N) 6112 (313) 6190 (249) 5.6 0.989 

VL fascicle force (N) 1345 (68.5) 1362 (53.7) 5.5 0.990 

Specific force (N∙cm-2) 24.2 (1.1) 24.3 (1.4) 5.7 0.979 

ACSA, anatomical cross-sectional area; CV, coefficient of variation MVCKE, maximal 
voluntary knee extension contraction; PCSA, physiological cross-sectional area; VL, 
vastus lateralis. 
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Figure 3.1.  
Bland-Altman 
plots identifying 
the bias (solid 
line) and the 95% 
limits of 
agreement 
(dashed line) 
between day 1 
and day 2 for the 
measurement of 
muscle volume 
(A) and ACSA (B) 
and PCSA (C). 
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Calculation of VL fascicle force and specific force identified significant inter-day ICCs of 

0.990 and 0.979 respectively (P < 0.0005).  There was no systematic bias for VL fascicle 

force (0.988 ×/÷ 1.084, t = -0.857, P = 0.420) or specific force (0.998 ×/÷ 1.107, t = -0.128, P 

= 0.902), and the ratio limits of agreement indicate 95% of the mean inter-day ratios should 

be within 8.4% and 10.7% of the bias ratio respectively. 

 

Figure 3.2.  
Bland-Altman 
plots identifying 
the bias (solid 
line) and the 95% 
limits of 
agreement 
(dashed line) 
between day 1 
and day 2 for the 
measurement of 
VL fascicle force 
(A) and specific 
force (B). 

 

 

 

 

 

 

 

 

 

Measurements of isometric MVCKE torque and net knee extension torque on day 1 were 

significantly correlated with the measurements taken on day 2 (ICC = 0.989, P < 0.0005 and 
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ICC = 0.986, P < 0.0005, respectively).  Analysis of the inter-day agreement revealed no 

systematic bias in the measurement of isometric MVCKE (0.998 ×/÷ 1.073, t = -0.126, P = 

0.903) and net knee extension torque (0.990 ×/÷ 1.085, t = -0.662, P = 0.529), with 95% of 

the mean inter-day ratios expected between 7.3% and 8.5% of the bias ratio respectively. 

Figure 3.3. Bland-
Altman plots 
identifying the bias 
(solid line) and the 
95% limits of 
agreement (dashed 
line) between day 1 
and day 2 for the 
measurement of 
isometric MVCKE 
torque (A) and net 
knee extension 
torque (B). 

 

 

 

 

 

 

 

 

 

 

 

 

Inter-day ICC assessments of VL fascicle length (ICC = 0.978) and pennation angle (ICC = 

0.998) were significant (P < 0.0005).  Analysis of ratio limits of agreement identified no 

systematic bias for VL fascicle length (t = 0.530, P = 0.613) and the 95% limits of agreement 
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were between 0.96 and 1.04.  No systematic bias was identified for VL pennation angle (t 

= -0.141, P = 0.892) and the 95% limits of agreement were between 0.97 and 1.03. 

Figure 3.4.  Bland-
Altman plots 
identifying the 
bias (solid line) 
and the 95% limits 
of agreement 
(dashed line) 
between day 1 and 
day 2 for the 
measurement of 
fascicle length (A) 
and pennation 
angle (B). 

 

 

 

 

 

 

 

 
 
 

 

3.4 Discussion  

The aim of the current study was to ascertain the reliability of an alternative method for 

measuring VL muscle volume, and to identify the reliability of the methods used to measure 

muscle MVCKE torque, specific force and its determinants.  The results demonstrate that 

the method used to estimate VL muscle volume was reliable, as were the methods used in 
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the measurement of VL muscle specific force and its constituent elements.  These methods 

could be used to reliably identify inter-individual variability in the functional and 

morphological characteristics of the VL in studies requiring large sample sizes. 

 

Triangulation of multiple statistical tests when assessing test re-test reliability is 

recommended to obtain a more complete understanding of measurement error (Atkinson 

& Nevill, 1998).  This is particularly salient when considering the limitations of employing 

some popular statistical tests that can be affected by sample variance (Atkinson & Nevill, 

1998).  By using triangulation in the current study, it is evident that the measurement of 

ACSA, and subsequent estimation of muscle volume and PCSA using ultrasound are highly 

repeatable and reliable methods (Atkinson & Nevill, 1998).  Furthermore, analysis of ratio 

limits of agreement indicates no significant systematic bias and strong measurement 

agreement between day 1 and day 2.  Based on this data, it is possible that for an individual 

whose VL muscle volume is estimated at 620 cm3 using the current method, a repeated 

measurement could yield values as low as 596 cm3 or as high as 645 cm3.  Together with 

the mean data presented in Table 3.1 these values would translate into inter-day 

measurement differences of 2.98 cm2 for PCSA and 0.77 N∙cm-2 for specific force, which 

according to previous data would suggest appropriate measurement sensitivity (Erskine et 

al., 2013).  Furthermore, the values of VL muscle volume (624 cm3), ACSA (18.8 cm2) and 

PCSA (66.6 cm2) in the current study are comparable to those obtained in previous in 

assessments of muscle size (674 cm3, 18.3 cm2 and 75.1 cm2 respectively) using gold 

standard techniques on a similar population (Erskine et al., 2009).  Therefore suggesting 

that the reported methods of measuring VL muscle size are sensitive enough to allow for 
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the detection of genetic associations and accurately quantify inter-individual variability in 

muscle volume, ACSA and PCSA. 

 

Accurate calculation of VL specific force requires the measurement of maximal knee 

extension torque and muscle architecture during contraction (Chow et al., 1999; Maganaris 

et al., 2001).  It is reasonable to assume that for the calculation of VL fascicle force and 

specific force to be reliable, the measurement of the contributing functional and 

morphological characteristics of the VL would also need to be reliable.  According to all 

statistical analyses, measurements of isometric MVCKE torque, fascicle length and 

pennation angle were deemed reliable.  In particular, ratio limits of agreement indicate 

small inter-day differences in measurements of isometric MVCKE torque (7.3%), fascicle 

length (<1.0%) and pennation angle (2.8%), which would suggest adequate repeatability of 

the current measurement techniques.  Comparisons with previous literature demonstrated 

the mean isometric MVCKE torque in the current study was similar to those obtained (~200-

270 N∙m) using equivalent methods in other studies (Erskine et al., 2009; Reeves et al., 

2004c).  Similarly, the measurements of VL fascicle length and pennation angle in the 

current study (8.5 cm and 14.6° respectively) were comparable to those obtained 

previously using ultrasound, which ranged from 8.4 cm to 9.1 cm and 12.5° to 16.0°, 

respectively (Erskine et al., 2009; Reeves et al., 2004c).  It is evident from the close ratio 

limits of agreement (<10.7%), high ICCs (>0.979) and the relatively small CVs (<5.6%) that 

the calculation of VL fascicle force and specific force based on the aforementioned methods 

was reliable.  Furthermore, VL specific force has previously been reported between 23.6-

27.0 N∙cm-2 in studies employing a variety of techniques to assess muscle volume (Reeves 
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et al., 2004c; Narici et al., 1992), suggesting the current method of estimating muscle 

volume does not negatively affect the reliability of subsequent measurements. 

 

Measurement reliability can be compromised as a result of investigator, procedural and 

equipment error (Dvir, 2004).  For example, when using ultrasound to image muscle 

properties, Esformes (2002) stated the importance of applying minimal pressure to the 

probe to prevent muscle tissue compression, which could impact on the reliability of 

measurements of muscle architecture and ACSA.  Furthermore, high reliability of the Cybex 

isokinetic dynamometer system used to assess isometric MVC has been reported 

previously, with ICCs between 0.92-0.98 (Impellizzeri et al., 2008; Bandy & McLaughlin, 

1993).  However, visual alignment of the knee joint centre of rotation to the dynamometer 

axis could be a potential source of error if not recorded in studies requiring one or more 

re-tests (Sole et al., 2007).  In an attempt to increase the measurement reliability of the 

current study, procedural and investigator errors were minimised by having one 

investigator following a standardised procedure for all participants.  Furthermore, the 

inclusion of a familiarisation session prior to day 1 may have reduced any learning effects 

from repeated trials and thus reduced the measurement errors associated with participant 

variability (Sole et al., 2007). 

 

3.5 Conclusion 

For studies requiring large (>50), homogenous samples such as for performing genetic 

associations between muscle-related phenotypes and single nucleotide polymorphisms, it 

is essential to use reliable measurements of muscle properties to minimise the likelihood 

of type II error.  The very good agreement observed for the repeated measurement of VL 
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muscle volume, specific force and a range of other measurements of functional and 

morphological muscle characteristics demonstrated in the current study suggest the 

aforementioned method is suitable when gold standard equipment is inaccessible or time 

may be limited. 
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4.1 Introduction 

Human skeletal muscle is a highly adaptive tissue that responds to changes in functional 

loading, and consequently muscle strength (here defined as maximal isometric joint 

torque) is known to vary between individuals.  Much of the variability among untrained, 

asymptomatic individuals of a similar age has been attributed to differences in the 

structural and neural determinants of muscle strength (Maughan et al., 1983; Erskine et 

al., 2009).   

 

Muscle size is generally considered to be the greatest determinant of muscle strength 

(Maughan et al., 1983; Knuttgen, 1976), and measurements of muscle thickness have 

revealed inter-individual variability in appendicular muscle size ranging from 9-18% 

(Wakahara et al., 2009).  Assessments of muscle thickness, however, are relatively simple 

and may actually underestimate the true contractile area of the muscle that contributes to 

force production (Alexander & Vernon, 1975; Wickiewicz et al., 1983; Reeves et al., 2004b).  

Physiological cross-sectional area (PCSA) on the other hand, provides a more accurate 

assessment of muscle contractile area than measurements of muscle thickness or 

anatomical cross-sectional area (ACSA) by accounting for inter-individual differences in 

muscle architecture and muscle length.  Taking account of such differences by using PCSA 

could reduce the inter-individual variability compared with ACSA, which represents only an 

estimate of true contractile area in pennate muscles (Alexander & Vernon, 1975).  

However, as PCSA is affected directly by muscle length while ASCA is not, it could 

alternatively be that PCSA may demonstrate greater inter-individual variability than ACSA.  

Thus, the relationships between PCSA, ACSA, muscle length, and muscle architecture are 
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complex, and it is difficult to predict realistically whether the inter-individual variability in 

PCSA and ACSA in a population will be similar or different in magnitude. 

 

The importance of measuring agonist and antagonist muscle activation during assessments 

of in vivo maximal isometric strength has been highlighted previously (Maganaris et al., 

2001; Reeves et al., 2004c). While reports of voluntary activation capacity in untrained 

individuals are somewhat contradictory (Moritani & deVries, 1979; Häkkinen et al., 1998; 

Thorstensson et al., 1976; Komi & Buskirk, 1972), sensitive use of the interpolated twitch 

technique suggests that untrained individuals probably cannot activate 100% of their 

motor units (Folland & Williams, 2007b).  All else being equal, individuals with greater 

observed maximal voluntary contraction (MVC) torque are likely to have greater voluntary 

activation capacity.  Therefore, accounting for inter-individual differences in voluntary 

activation capacity is likely to increase the calculated joint torque relatively more in weaker 

muscles, bringing the values closer to the mean in a population.  This should have the net 

effect of reducing inter-individual variability in calculated maximal joint torque compared 

to that in observed MVC torque.  Furthermore, antagonist muscle co-activation of the 

hamstrings during knee extension MVCs has been reported to range between 15-30% in 

healthy, untrained, adults (Carolan & Cafarelli, 1992; De Vito et al., 2003; Macaluso et al., 

2002).  Once again, all else being equal, individuals with greater observed MVC torque are 

likely to have lower antagonist co-activation, whereas those with lower observed MVC 

torque are likely to have higher antagonist co-activation.  Consequently, accounting for 

inter-individual differences in antagonist co-activation should increase the calculated 



Chapter 4   Inter-individual variability in muscle strength 
 

91 
 

maximal joint torque relatively more in the weaker muscles, thus bringing those values 

closer to the mean in a population and reducing inter-individual variability. 

 

A tendon moment arm functions as a lever of effective force transmission during muscle 

contraction (Tsaopoulos et al., 2006) and is therefore central to accurate measurement of 

muscle force from torque.  Bone geometry has been suggested as the primary determinant 

of tendon moment arm length and, as this is known to differ between individuals, is 

probably also the main source of inter-individual variability in moment arm length 

(Maganaris et al., 2001; Tsaopoulos et al., 2006; Tsaopoulos et al., 2007b).  Therefore, 

assuming all else is equal, individuals with longer tendon moment arms would produce 

greater isometric MVC torque than those with shorter tendon moment arms.  One would 

also expect individuals with larger bone geometry and longer moment arms to generally 

possess larger, stronger muscles.  Therefore, individuals capable of producing values of 

MVC torque above the observed mean value in a population are likely to have MVC torque 

further inflated by a longer moment arm, and those below the mean further reduced by 

the shorter moment arm, which would exaggerate the deviation of observed MVC torque 

values from the mean in a population.  Consequently, controlling for moment arm length 

when calculating tendon force (and subsequently muscle force) should result in reduction 

in the distribution of observed force values and thus reduction in inter-individual variability 

in muscle force compared with observed isometric MVC torque.   

 

Muscle specific force reflects the intrinsic strength of a muscle and is estimated by 

accounting for all of the aforementioned determinants of strength.  As such, it could be 
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expected that reports of specific force within the literature would be homogenous.  

However, measurements of human muscle specific force in vivo are widespread, ranging 

from 6-86 N∙cm-2 (Maughan et al., 1983; Erskine et al., 2009; Reeves et al., 2004c; Narici et 

al., 1992; Chow et al., 1999; Gorgey et al., 2006; Claassen et al., 1989). Differences in sample 

selection and/or inconsistencies in measurements could contribute to such widespread 

values.  Unsurprisingly, when only those studies that accounted for all of the necessary 

factors were considered, the range of values for in vivo specific force of the vastus lateralis 

(VL) was noticeably reduced to 20-30 N∙cm-2 (Erskine et al., 2009; Reeves et al., 2004c; 

Narici et al., 1992; Chow et al., 1999). 

 

Consequently, the aim of the study was three-fold; firstly to develop a normative set of 

data on the inter-individual variability in measurements of muscle strength and its 

determinants in a relatively large, homogenous sample.  Secondly, to demonstrate the 

extent of the differences in the inter-individual variability between the less stringent 

measurements of strength and its determinants (isometric MVC torque and ACSA) 

compared with the more stringent measurements (specific force, fascicle force, and PCSA).  

The final aim was to ascertain the strength of the relationship between the different 

measurements of muscle strength and size.  We hypothesized that a stronger relationship 

would exist between PCSA and VL fascicle force than between ACSA and isometric MVC 

torque, because greater physiological variability is accounted for in the more stringent 

measurements of muscle size and strength. 

 

4.2 Methods 
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Detailed descriptions of participant recruitment and the assessment of skeletal muscle 

properties are included in Chapter 2 (section 2.1 and 2.2 respectively), thus only a brief 

description of these methods is detailed below. 

 

4.2.1 Participants 

A sample of 73 untrained Caucasian males [age 20.6 (2.5) yr, stature 1.78 (0.07) m and mass 

76.0 (9.8) kg; mean (SD)] volunteered to participate in this study.  All participants met the 

inclusion criteria (described in Chapter 2.1) and provided written informed consent prior 

to involvement.  

 

4.2.2 Skeletal muscle properties 

Maximal voluntary knee extension (MVCKE) and flexion (MVCKF) torque was measured at 

three knee joint angles to identify the angle of peak torque production.  Agonist muscle 

activation (Eq 1) and antagonist muscle co-activation during MVCKE was determined to 

enable the calculation of net MVCKE torque (Eq 2).  Measurement of VL ACSA, by contour 

matching a series of transverse plane scans, was used in the estimation of VL muscle 

volume (Eq 3).  VL fascicle length, pennation angle and patellar tendon moment arm length 

were measured and used in the calculation of PCSA (Eq 4), fascicle force (Eq 6) and tendon 

force (Eq 5), respectively.  Ultimately, VL specific force was calculated by dividing VL fascicle 

force by VL PCSA (Eq 7). 

 

4.2.3 Statistical analysis   
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Coefficients of variation (CV) were calculated to identify the extent of inter-individual 

variability in all functional and morphological characteristics of the VL using Microsoft 

Excel.  To determine any differences in inter-individual variability between isometric MVCKE 

torque, VL fascicle force, VL ACSA, and VL PCSA, a Friedman ANOVA was conducted using 

corrected percentage distribution data, which breached the parametric assumption of 

normal distribution following correction (Statistical Package for Social Sciences 19.0, SPSS 

Inc., Chicago, Il, USA).  The Wilcoxon signed-rank test was used to perform appropriate 

post-hoc analyses where necessary.  Regression analyses were conducted to determine the 

relation between isometric MVCKE torque and VL ACSA, and VL fascicle force and VL PCSA.  

The use of the Fisher Z-transformation enabled the difference between these correlations 

to be analysed.  Reliability of the architectural measurements was determined by 

calculation of ratio limits of agreement (LoA)(Atkinson & Nevill, 1998) and CVs on data 

collected during pilot testing on 2 separate occasions separated by 1 day for 8 participants 

(Chapter 3).  Data are displayed as means (SD), and statistical significance was set at P ≤ 

0.05. 

 

4.3 Results 

Descriptive data on the functional and morphological characteristics of the VL are 

presented with CVs in Table 4.1.  Notably, the CVs of VL specific force and VL ACSA were 

lower than those for isometric MVCKE torque and VL PCSA, respectively. The Shapiro-Wilk 

test revealed that the data were distributed normally (P = 0.063-0.706).  Calculation of ratio 

LoA and CVs were used to determine the repeatability of architectural measurements on 

two occasions by the same investigator on eight participants (Table 4.2).  There was no 
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significant difference between day 1 and day 2; all limits of agreement were less than 10%, 

and most were less than 6%, which when taken in the context of the measurement showed 

very good reliability.  For example, based on the reliability data presented in Chapter 3, 

together with the mean data presented in Table 4.1, differences in the measurements of 

VL specific force (1.2 N∙cm-2) and PCSA (4.2 cm2) could be expected for an individual 

estimated to have a VL muscle volume of 561 cm3, which according to previous data would 

suggest appropriate measurement sensitivity (Erskine et al., 2013). 

 

Table 4.1. Functional and morphological characteristics of the vastus lateralis. 

 

Variable Mean (SD) Range CV (%) 

Isometric  MVCKE torque (N∙m) 259 (49) 168-363  18.9 

Activation capacity (%) 89.5 (5.1) 80.1-98.5 5.7 

Antagonist co-activation (%) 13.9 (1.0) 8.0-24.8 6.8 

Net KE torque (N∙m) 282 (50) 146-339  17.9 

Muscle volume (cm3) 561 (115) 424-816  20.2 

ACSA (cm2) 21.3 (2.8) 14.1-28.6  13.0 

Fascicle length (cm) 8.0 (1.3) 6.3-11.5 16.6 

Pennation angle (°) 14.6 (2.4) 9.0-21.4 16.7 

PCSA (cm2) 65.7 (11.0) 43.3-114.5  17.2 

Moment arm (cm) 4.4 (0.4) 3.5-5.3  8.8 

Patellar tendon force (N) 6430 (1113) 4624-8270  17.3 

VL fascicle force (N) 1458 (213) 1079-1812 14.6 

Specific force (N∙cm-2) 23.8 (3.5) 17.7-27.9  13.5 

ACSA, anatomical cross-sectional area; CV, coefficient of variation MVCKE, maximal 
voluntary knee extension contraction; PCSA, physiological cross-sectional area; VL, 
vastus lateralis. 
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Table 4.2. Inter-day measurement reliability. 

 

The mean knee joint angle at which maximal MVCKE torque was determined was 80°.  

Histograms showing the percentage deviation from the mean value for isometric MVCKE 

torque, VL fascicle force, VL ACSA, and VL PCSA can be seen in Figure 4.1.  Output from a 

Friedman ANOVA revealed a significant difference (P < 0.0005) in corrected distribution 

data.  Post-hoc analyses identified a significant difference in the percentage distribution 

between isometric MVCKE torque and VL fascicle force (P = 0.025) and between VL ACSA 

and VL PCSA (P < 0.0005). 

 

A regression analysis revealed a significant relationship between VL ACSA and isometric 

MVCKE torque (r2 = 0.57; P < 0.0005, Figure 4.2 A).  Additionally, there was a significant 

relationship between VL PCSA and VL fascicle force (r2 = 0.68; P < 0.0005, Figure 4.2 B).  

However, the relationship between VL PCSA and VL fascicle force was not significantly 

different from the relationship between VL ASCA and isometric MVCKE torque (P = 0.359).  

The relation between stature and both PCSA and ACSA was assessed using regression 

Variable CV (%) LoA (%) Mean (SD) 

Muscle volume (cm3) 2.5 5.3 523 (14) 

Pennation angle (°) 2.1 2.6 14.5 (2.4) 

Fascicle length (cm) 2.5 4.5 7.8 (0.6) 

Moment arm length (cm) 1.8 2.5 4.5 (0.2) 

Specific force (N∙cm-2) 5.6 9.9 20.2 (3.3) 



Chapter 4   Inter-individual variability in muscle strength 
 

97 
 

analyses and a stronger significant relationship between PCSA and stature (r2 = 0.674, P < 

0.0005) when compared with ACSA and stature (r2 = 0.217, P = 0.001) was apparent.   

 

 
 
Figure 4.1. Frequency distributions around the mean (displayed as %) for: A) MVCKE torque, 
B) VL fascicle force, C) VL ACSA, and D) VL PCSA.  Significant differences were apparent 
between MVCKE torque and VL fascicle force (P = 0.025) and ASCA and PCSA (P < 0.0005).  
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Figure 4.2. A) The relationship between VL ACSA and isometric MVCKE torque (P < 

0.0005); B) The relationship between VL PCSA and VL fascicle force (P < 0.0005).   

 

4.4 Discussion 

One of the aims of this study was to develop a normative set of data on the inter-individual 

variability in measurements of muscle strength and its determinants in a relatively large, 

homogenous sample.  This was achieved for 73 asymptomatic young men using a range of 

measurements related to muscle size and strength.  This not only applies to mean values, 
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but in particular to inter-individual variability.  Table 4.1 presents those data and includes 

CVs ranging from 5.7% (agonist activation capacity) to 20.2% (muscle volume).  These data 

are useful for researchers who investigate the causes of inter-individual variability in these 

parameters, such as various genetic and environmental factors.  

  

Inter-individual variability in the measurement of isometric MVCKE torque is associated with 

the variability of its determinants.  It was hypothesized that accounting for these 

determinants in the calculation of specific force would result in a reduction in inter-

individual variability compared to that present in the measurement of isometric MVCKE 

torque.  Inter-individual variability in specific force (13.5%) is comparable with previous 

reports in healthy, untrained adults (16.2%)(Erskine et al., 2009; Degens et al., 1995).   

Despite this, the hypothesis is only partially accepted, as the inter-individual variability in 

specific force was only 4% less than the inter-individual variability in isometric MVCKE 

torque.   Nevertheless, the difference in inter-individual variability between specific force 

and isometric MVCKE torque is slightly more than that reported previously (3%) in the only 

other study to the author’s knowledge that investigated inter-individual variability in 

specific force in vivo in a smaller (n = 27), but comparable sample (Erskine et al., 2009).   

 

Differences in the inter-individual variability of isometric MVCKE torque, tendon force and 

specific force are dependent on the differing extent to which the physiological 

determinants are accounted for.  For example, gross measurements of strength such as 

isometric MVCKE torque are likely to be more susceptible to this inherent variation, because 

they are influenced by the inter-individual variability in agonist and antagonist muscle 
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activity (Reeves et al., 2009).  In contrast, specific force may provide a more accurate 

representation of the contractile properties of the muscle while accounting for inter-

individual variability in neural properties, tendon moment arm length, and muscle 

architecture.  Unsurprisingly, in the current study the inter-individual variation in isometric 

MVCKE torque was greater than that for specific force and all of its determinants (with the 

exception of muscle volume).  However, the inter-individual variation observed in agonist 

activation and antagonist co-activation was relatively small (5.7% and 6.8%, respectively).  

It is evident that muscle activation in untrained, young males is relatively complete and 

likely contributes to a lower degree of inter-individual variability in the measurement of 

isometric MVCKE torque than in some other populations.  It could be expected that within 

a more heterogeneous population where activation levels show greater variability greater 

inter-individual variability in isometric MVCKE torque would also be observed. 

 

A significant relationship was observed between isometric MVCKE torque and ACSA (r2 = 

0.57), which is comparable to that reported previously in the plantar flexors and 

dorsiflexors (r2 = 0.59-0.62)(Fukunaga et al., 1996).  As expected, this relationship was 

weaker than that between VL fascicle force and PCSA (r2 = 0.68), although this difference 

was not significant statistically.  The high inter-individual variability in isometric MVCKE 

torque and ACSA is likely to contribute to this tendency for a difference.  Inter-individual 

variability in VL ACSA was found to be 13%, which is comparable to previous reports of 

approximately 14% in muscle thickness of the rectus femoris and vastus intermedius in 

untrained men (Wakahara et al., 2009).  In comparison, the observed inter-individual 

variability in VL PCSA was greater than for VL ACSA.  A plausible explanation for the greater 
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inter-individual variability in VL PCSA compared with VL ACSA could be the consequence of 

the inter-individual variability observed in pennation angle and fascicle length.  The source 

of inter-individual variation in these measures of muscle size and architecture could be 

differences in body size (Gallagher et al., 1997; Janssen et al., 2000).  Both PCSA and ACSA 

are related to body mass, whereas only PCSA is related to stature, given that fascicle length 

is proportional to femur length.  This is substantiated in this study, which revealed a 

stronger relationship between VL PCSA and stature than between VL ACSA and stature. 

 

The lower inter-individual variability observed in VL fascicle force compared to that in 

isometric MVCKE torque could be attributed to architectural and structural factors.  By 

accounting for inter-individual variability in tendon moment arm length it is possible to 

account for differences in bone geometry (and hence body size) within a population; this 

has been suggested previously to be the key determinant of tendon moment arm length 

(Krevolin et al., 2004).  For example, for any given VL fascicle force, the 8.8% inter-individual 

variability in moment arm length observed in the current chapter would result in an 

isometric MVCKE torque difference of 23 N∙m.  It should be noted that much of the reported 

variation in bone geometry, however, has been observed between different ethnic 

populations (Seeman, 1997) and genders (Krevolin et al., 2004), whereas the current 

chapter sampled only Caucasian men.  Nonetheless, the inter-individual variation in tendon 

moment arm length made a contribution to the inter-individual variability observed in the 

estimation of VL specific force.  
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Despite the obvious sources of variation in the measurement of isometric MVCKE torque 

and its determinants, the calculation of specific force failed to reduce this to the extent 

envisaged initially.  It is possible that differences in the intrinsic force-generating capacity 

of individual fibres exist which contribute to the observed inter-individual variability 

(Erskine et al., 2009).  One plausible explanation is inter-individual differences in fibre type 

composition of the VL (Glenmark et al., 1992; Simoneau & Bouchard, 1989; Staron et al., 

2000), as type I fibres are reported to have lower specific tension than type II fibres 

(Bottinelli et al., 1996; Harridge et al., 1996).  Additionally, inter-individual variability in VL 

specific force may be explained by the presence of intramuscular fat and connective tissue 

(Macaluso et al., 2002; Kent-Braun et al., 2000; Frontera et al., 1991).  Variation in intra-

muscular non-contractile material has been observed previously in a sample of young 

adults (Macaluso et al., 2002), and although this was not measured in the current chapter, 

it could contribute to some of the unexplained inter-individual variability in specific force.  

Failure to account for the presence of intra-muscular non-contractile material would result 

in an overestimation of muscle PCSA and thus underestimate muscle specific force (Erskine 

et al., 2009; Frontera et al., 1991).  On the other hand, it has been suggested that increased 

connective tissue content may be associated with improved lateral force transmission from 

the muscle fibre to the tendon, the consequence of which would be an increase in muscle 

specific force (Jones et al., 1989).  Furthermore, myofilament-packing density is known to 

influence cross-bridge interaction of actin and myosin filaments and consequently may also 

contribute to the observed inter-individual variability in specific force (Alway, 1980).  Data 

on inter-individual variability in human skeletal myofilament-packing density is lacking, 

although reports from training studies have found no change in pre- and post-training 
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packing densities (MacDougall et al., 1980; McCullagh et al., 1983).  Nonetheless, more 

research is needed to establish if myofilament packing density varies in untrained adults.  

One way in which fibre type composition and intramuscular values of collagen and adipose 

tissue could be accounted for is through biopsy, however, the estimate of whole muscle 

properties based on biopsies may be limited (Clarkson et al., 2005). 

 

The assessment of muscle specific force includes a number of assumptions or surrogate 

measures where direct measurement is not possible. For example, previous studies have 

adopted estimates of fascicle length based on previously published values of muscle length 

(Kawakami et al., 1994).  Similarly, where MRI is not available to measure muscle volume 

directly, estimates have been made based on single measures of ACSA multiplied by limb 

length.  Indeed the measurement of moment arm during MVC requires X-ray fluoroscopy 

to account for deformation and extension of the moment arm through contraction; in 

contrast, moment arm is often estimated based on external anthropometric measures 

(Morse et al., 2005a).  In the current body of work, direct measurement of moment arm 

length during MVC was not possible, and force was estimated from resting measures of 

moment arm length. Furthermore, muscle volume was estimated based on a single 

measure of ACSA.  Although both of these methods have been demonstrated to be valid 

surrogates in the calculation of specific force (Morse et al., 2007; Cotofana et al., 2010; 

Wretenberg et al., 1996; Reeves et al., 2004b), direct measurement may have improved 

the validity of the measures. 
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One of the applications of these data is in research into genetic factors that may be 

associated with specific force, by seeking to minimise unexplained inter-individual 

variability in associated strength measurements.  By 2007, 22 genetic polymorphisms 

associated specifically with a muscle strength-related phenotype had been reported, 

however this number will have increased in subsequent years (Hughes et al., 2011).  Using 

more stringent measurements of muscle strength and size that reduce confounding 

variability, as demonstrated here, would increase the likelihood of identifying small 

associations between individual genetic polymorphisms and strength-related phenotypes.   

 

4.5 Conclusion 

In conclusion, the current chapter confirmed the extent of the inter-individual variability 

previously reported in human muscle specific force and isometric MVC torque.  

Furthermore, establishing the inter-individual variability in the factors involved in the 

determination of muscle strength provides normative data on a relatively large sample of 

apparently healthy, untrained men that had previously remained unreported.   These 

results substantiate previous findings that calculation of inter-individual variability in 

human knee extension specific force explained little of the inter-individual variability 

observed in MVC torque.  Thus, factors other than muscle fibre architecture, moment arm 

length, and agonist muscle activation and antagonist muscle co-activation appear to 

contribute to the observed variation. 
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5.1 Introduction 

Skeletal muscle architecture, here defined as fascicle length and pennation angle, is an 

important determinant of muscle function.  Maximal muscle fibre shortening velocity is 

proportional to the number of sarcomeres arranged in series, or fascicle length; whilst the 

production of maximal muscle force is proportional to the number of sarcomeres arranged 

in parallel [physiological cross-sectional area (PCSA)], which for a given muscle volume is 

largely determined by fibre pennation angle (Narici, 1999).   

 

Muscle shortening velocity is one determinant of power output (Josephson, 1993), and 

previous research into elite power athletes has identified a significant correlation  (r = -0.43 

– -0.57) between muscle fascicle length and sprint performance (Kumagai et al., 2000; Abe 

et al., 2000).  Conversely, reductions in power output (-81% and -27%) have been observed 

alongside decreases in muscle fascicle length (-19%) in ageing populations (Thom et al., 

2007) and following disuse (Rittweger et al., 2007; de Boer et al., 2008).  Whilst it is 

probable that environmental factors such as training and detraining adaptations contribute 

to the differences in fascicle length in these populations, the work presented in Chapter 4 

demonstrates that in homogenous untrained populations, where the contribution of such 

environmental influences is likely to be reduced, inter-individual variability in fascicle 

length persists. 

 

The ability to generate maximal muscle force is the product of two opposing factors 

culminating in an increase in pennation angle of up to 45, beyond which point the ability 
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of the muscle to transmit force effectively to the tendon is diminished and force production 

decreases accordingly (Alexander & Vernon, 1975; Rutherford & Jones, 1992).  Changes in 

pennation angle are commonly reported following muscle hypertrophy and atrophy, and 

greater pennation angles have been observed for resistance trained compared to untrained 

individuals (+8-36%) (Aagaard et al., 2001; Reeves et al., 2004c; Seynnes et al., 2007).  

Again, although it is probable that training and detraining adaptations contribute 

substantially to the observed differences in fibre pennation angle within these populations, 

it is also possible that these individuals are completing the training most suited to them as 

a consequence of their muscle architecture.  Furthermore, in untrained populations where 

the contribution of environmental factors to the observed variability is likely to be reduced, 

inter-individual variability in pennation angle of the vastus lateralis (VL) is approximately 

17% (Chapter 4).  Thus, it is possible that differences in both pennation angle and fascicle 

length are influenced to some extent by genetic factors. 

 

To date there has been a considerable amount of research into skeletal muscle fascicle 

length and pennation angle in relation to different aspects of muscle function, which 

together with the work presented in Chapter 4, demonstrates the persistent inter-

individual variability apparent within these phenotypes (Abe et al., 2000; Erskine et al., 

2009; Fukunaga et al., 1997; Reeves et al., 2004a).  Although many of the authors within 

this area have speculated about a potential genetic contribution to the inter-individual 

variability in fascicle length and pennation angle, research is lacking and thus appropriate 

candidate genes need identifying.   
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A plethora of proteins exist within the sarcomere, thus polymorphisms in any number of 

the genes encoding these proteins could contribute to the variability observed in muscle 

architecture.  Due to the close association between muscle architecture and contractile 

force, a reasonable starting point to identify suitable candidate genes would be to 

investigate those polymorphisms within sarcomeric proteins that have already 

demonstrated associations with strength and/or power-related phenotypes.  For example, 

a common polymorphism within -actinin-3 (ACTN3), the gene encoding the ACTN3 

protein involved in anchoring actin filaments within type II muscle fibres, has been 

identified (North & Beggs, 1996).  Individuals homozygous for the ‘R’ allele are able to 

produce the fully functioning ACTN3 protein whereas homozygous XX individuals are not 

(Clarkson et al., 2005).  Overexpression of the R-allele and under-expression of the X-allele 

has been reported in strength and power trained athletes (Eynon et al., 2013).  Although 

an association between ACTN3 and muscle architecture has yet to be investigated, it is 

possible that the presence of the protein may influence fascicle length and/or pennation 

angle and thus explain some of the previous associations between ACTN3 and increased 

muscle strength and/or power.   

 

Furthermore, two polymorphisms within protein tyrosine kinase 2 (PTK2), a gene encoding 

the phosphoprotein focal adhesion kinase (FAK), have previously been associated with 

increased muscle specific force (Erskine et al., 2012).  An association believed to exist as a 

result of an improved capacity to transmit muscle contractile force laterally to the 

extracellular matrix and tendon (Erskine et al., 2012).  It is reasonable to speculate 

therefore, that improvements in lateral force transmission may be facilitated by increased 
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muscle fibre pennation angles, as this would allow for the arrangement of a greater number 

of smaller parallel muscle fibres, subsequently increasing muscle costamere density. 

 

Titin is a major sarcomeric protein commonly referred to as a ‘ruler’ for myofilament 

length, therefore polymorphisms within the gene encoding this protein (TTN) could 

potentially contribute to the inter-individual variability observed in muscle fascicle length.  

To the author’s knowledge, however, no reports of this single nucleotide polymorphism 

(SNP) and associations with skeletal muscle phenotypes currently exist.  Interestingly, a C 

> T transition identified within TTN has previously been reported as one of 11 SNPs 

explaining a proportion of the variability in the training response of maximal oxygen 

consumption (Timmons et al., 2010).  This is most likely due to differences in a cardiac titin 

isoform influencing the training-related increase in stroke volume due to more/less 

effective use of the Frank-Starling mechanism, depending on the genotype present 

(Rankinen et al., 2003).  Therefore, if TTN genotype is responsible for regulating these 

cardiac-specific changes to the myofilament, it stands to reason that TTN genotype may 

influence skeletal muscle similarly.  

 

In addition to identifying genes encoding sarcomeric proteins, the possible influence of 

proteins within the extracellular matrix (ECM) should not be overlooked.  The primary 

structural protein within skeletal muscle ECM is collagen, of which type I and type III are 

predominantly expressed in the perimysium (type I), endomysium and epimysium of 

skeletal muscle (both type III) (Gillies & Lieber, 2011).  Collagen type V associates with both 

type I and type III collagen, and mutations in type V collagen have been associated with 
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joint range of motion (Collins et al., 2009) and are also responsible for the development of 

Ehlers-Danlos syndrome, a connective tissue disorder characterised by joint instability, 

chronic myalgia and muscle hypotonia (Voermans et al., 2008).  Mutations identified in the 

collagen type V alpha 1 (COL5A1) gene (encoding the 1 chain of collagen type V) disrupt 

collagen fibril formation and results in irregular fibril packing and diameter (Beighton et al., 

1998).  Thus, it is possible that potential differences in collagen fibres of the ECM may 

impact on the parallel arrangement of the muscle fibres they surround, and should be 

investigated. 

 

Another potential candidate gene is ciliary neurotrophic factor (CNTF), a member of the 

interleukin-6 cytokine family with known myotrophic effects (Guillet et al., 1999), which 

has also previously been associated with muscle strength and size both at baseline and in 

response to resistance training in humans (Roth et al., 2001; Walsh et al., 2009).  However, 

as neither of the aforementioned studies measured muscle architecture, it is unclear 

whether the observed genotype differences in muscle strength and size could be explained 

to some extent by differences in muscle fascicle length and/or pennation angle.  Thus, CNTF 

is an ideal candidate gene to investigate the potential genetic influence on muscle 

architecture. 

 

The aim of this chapter, therefore, was to investigate the influence of polymorphisms 

within ACTN3, CNTF, COL5A1, PTK2 and TTN on muscle architectural phenotypes (fascicle 

length and pennation angle) in an untrained, apparently healthy population. 
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5.2 Methods 

Detailed descriptions of participant recruitment, assessment of skeletal muscle properties, 

and the genotyping of the ACTN3 (rs1815739), CNTF (rs1800169), COL5A1 (rs12722), PTK2 

(rs7843014 and rs7460) and TTN (rs10497520) polymorphisms is included in Chapter 2 

(section 2.1, 2.2 and 2.4, respectively), thus only a brief description of these methods is 

detailed below. 

 

5.2.1 Participants 

A sample of 120 untrained Caucasian males [age 20.6 (2.3) yr, stature 1.79 (0.06) m and 

mass 75.1 (10.1) kg; mean (SD)] volunteered to participate in this study.  All participants 

met the inclusion criteria (described in Chapter 2.1) and gave written informed consent 

prior to involvement. 

 

5.2.2 Skeletal muscle architecture 

Muscle architecture of the VL was assessed in vivo using ultrasound at 50% of muscle 

length.  Single ultrasound images were used for the measurement of VL fascicle length and 

pennation angle.  Identification of fascicle length was achieved by measuring the distance 

from fascicular origin to insertion on the aponeuroses.  In instances where muscles 

extended beyond the ultrasound field of view, fascicle length was estimated by 

extrapolating the deep and superficial aponeuroses and fascicle. Pennation angle was 

measured as the angle of fascicular insertion into the deep aponeurosis.  A minimum of 
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three fascicles were measured per image and an average was taken as VL fascicle length 

and pennation angle.  

 

5.2.3 Genotyping 

Genotyping was completed using the fluorophore-based detection technique of TaqMan® 

real-time PCR.  Genomic DNA amplification of fragments overlapping polymorphisms in the 

ACTN3, CNTF, COL5A1, PTK2 and TTN genes was completed for all participants. 

 

5.2.4 Statistical analysis 

The frequency of each SNP was assessed for compliance with Hardy-Weinberg equilibrium 

using X2 tests.  A one-way analysis of variance (ANOVA) was conducted to determine any 

significant differences in physical characteristics (stature, mass, BMI and age) between 

genotype.  When genotype groups were combined, an independent samples t-test was 

used to identify any differences in physical characteristics.  Pearson’s correlation coefficient 

was used to identify the variables that made a meaningful contribution to the variability 

within muscle fascicle length and pennation angle, and were then included as confounding 

variables.  ANOVA, and where appropriate analysis of covariance (ANCOVA), was 

conducted to identify any genotype differences in muscle architectural phenotypes.  

Additionally, any genotype effects on muscle architectural phenotypes were also assessed 

for linear trend using ANOVA or ANCOVA.  In instances when too few participants 

represented one genotype group, this group was combined with the heterozygous group 

and an independent samples t-test was used to identify any differences between muscle 

architectural phenotypes.  All significant associations identified in the main ANOVA or 
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ANCOVA analyses were subject to post-hoc pairwise comparisons using the Benjamini-

Hochberg correction.  In instances where a tendency between genotype groups was 

observed, such that P > 0.05 but < 0.15, the two groups with similar means were combined 

and the analysis re-run using independent samples t-tests.  All statistical analyses were 

performed using SPSS version 19.0 and statistical significance was accepted when P ≤ 0.05.  

Data are presented as mean (SD). 

 

5.3 Results 

Genotype frequencies for SNPs in the ACTN3, COL5A1, CNTF, PTK2 and TTN genes are 

presented in Table 5.1 and were all in Hardy-Weinberg equilibrium (P ≥ 0.436).  

 

No differences between any SNP genotypes were observed for stature (P ≥ 0.196), mass (P 

≥ 0.091), BMI (P ≥ 0.130) or age (P ≥ 0.094; Chapter 2, Table 2.2).  Pearson’s correlation 

coefficients revealed significant weak correlations between VL muscle architecture (both 

pennation angle and fascicle length), and body mass (r ≥ 0.190, P ≤ 0.039), BMI (r ≥ 0.200, 

P ≤ 0.03), muscle thickness (r ≥ 0.225, P ≤ 0.014) and muscle length (r ≥ 0.231, P ≤ 0.012). 

Consequently, body mass, BMI, muscle thickness and muscle length were all included as 

covariates where appropriate in subsequent analyses.  
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Table 5.1. Means (SD) for fascicle length and pennation angle according to genotype for 

SNPs in the ACTN3, COL5A1, CNTF, PTK2 and TTN genes. 

 

 

Due to low numbers of CNTF AA homozygotes (n = 2) present in the sample population, 

these data were combined with those of the heterozygotes and a two-group analysis 

completed.  VL pennation angle was significantly greater for A-allele carriers than GG 

homozygotes for CNTF (11.1%, t = 3.148, P = 0.002; Figure 5.1).  No differences between 

CNTF A-allele carriers and GG homozygotes for VL fascicle length (t = 0.924, P = 0.357) were 

observed. 

 

SNP Genotype 
Number 

Frequency (%) Fascicle 
Length  
(cm) 

Pennation 
Angle  
(°) 

Hardy-
Weinberg Genotype Minor 

Allele 

ACTN3 

(rs1815739) 

RR (n = 44) 36.7 

0.396 

7.1 (1.6) 19.3 (3.7)  

RX (n = 57) 47.5 7.2 (1.8) 19.7 (3.9) 0.997 

XX (n = 19) 15.8 7.1 (1.1) 19.2 (4.2)  

COL5A1 

(rs12722) 

CC (n = 19) 15.8 

0.413 

7.4 (1.8) 20.3 (3.3)  

CT (n = 61) 50.8 7.0 (1.4) 19.2 (4.0) 0.867 

TT (n = 40) 33.4 7.3 (1.7) 19.4 (4.0)  

CNTF 

(rs1800169) 

AA (n = 2) 1.7 

0.154 

6.5 (1.6) 22.2 (0.6)  

GA (n = 33) 27.5 7.0 (1.5) 21.0 (3.6) 0.837 

GG (n = 85) 70.8 7.2 (1.6) 18.8 (3.8)  

PTK2 

(rs7843014) 

AA (n = 42) 35.0 

0.433 

7.2 (1.8) 19.2 (3.8)  

AC (n = 52) 43.3 7.0 (1.4) 20.1 (4.0) 0.436 

CC (n = 26) 21.7 7.5 (1.4) 18.5 (3.6)  

PTK2 

(rs7460) 

AA (n = 34) 28.3 

0.492 

7.3 (1.4) 18.8 (3.2)  

AT (n = 54) 45.0 7.1 (1.7) 20.2 (4.6) 0.550 

TT (n = 32) 26.7 7.2 (1.7) 18.8 (3.0)  

TTN 

(rs10497520) 

CC (n = 95) 79.2 

0.104 

7.3 (1.6) 19.3 (3.8)  

CT (n = 25) 20.8 6.6 (1.1) 20.1 (3.9) 0.444 

TT (n = 0) 0.0 - -  
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Figure 5.1. Comparison of VL pennation angle by the combined preferential (n = 35) and 
non-preferential (n = 85) CNTF genotype (*P = 0.002). Data presented are means (SD). 
 

Analysis of TTN genotype revealed VL fascicle length was longer in CC homozygotes in 

comparison to CT heterozygotes when controlling for covariates (10.1%, F = 4.780, P = 

0.031; Figure 5.2).  No TT homozygotes were identified so further comparisons were not 

completed.  No differences between TTN genotype for VL pennation angle (t = 0.929, P = 

0.337) were observed.   
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Figure 5.2. Comparison of VL fascicle length by TTN CC (n = 95) and CT (n = 25) genotype 
(*P < 0.05). Data presented are means (SD). 
 

No significant differences in fascicle length or pennation angle were observed between 

genotype groups for ACTN3 (F ≤ 1.830, P ≥ 0.165), COL5A1 (F ≤ 0.898, P ≥ 0.410), PTK2 

rs7843014 (F ≤ 1.721, P ≥ 0.183) or PTK2 rs7460 (F ≤ 2.051, P ≥ 0.133).  Similarly, there were 

no significant linear trend effects on fascicle length or pennation angle for ACTN3 (P ≥ 

0.562, p
2 ≤ 0.01), COL5A1 (P ≥ 0.410, p

2 ≤ 0.025), PTK2 rs7843014 (P ≥ 0.431, p
2 ≤ 0.029) 

or PTK2 rs7460 (P ≥ 0.585, p
2 ≤ 0.034). 

 

5.4 Discussion 

The genetic contribution to inter-individual variability in the muscle architecture of 

untrained, apparently healthy individuals is presently unknown.  In the current chapter 
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polymorphisms in ACTN3, CNTF, COL5A1, PTK2 and TTN were investigated for associations 

with VL muscle fascicle length and pennation angle in untrained and apparently healthy 

young men.  Significant genotype-phenotype associations were identified between CNTF 

and resting VL pennation angle, and between TTN and resting VL fascicle length, thus 

highlighting novel genetic associations with skeletal muscle architecture.  No other 

significant associations were observed.   

 

Genotype and allele frequencies for SNPs in the current chapter (Table 5.1) were similar to 

previous reports in Caucasian populations (North et al., 1999; Posthumus et al., 2011; De 

Mars et al., 2007; Erskine et al., 2012)(allele frequencies based on European [CEU] HapMap 

data).  Mean VL fascicle length in the current sample (7.2 ± 1.6 cm) was comparable to 

some previous reports of VL fascicle length (~7 cm)(Fukunaga et al., 1997; Abe et al., 2000), 

but less than others (~8 cm and ~9 cm)(Reeves et al., 2004c; Erskine et al., 2009).  Mean VL 

pennation angle for the current sample (19.4 ± 3.8) was in accordance with some (~20; 

(Fukunaga et al., 1997; Abe et al., 2000), but greater than other reports of VL pennation 

angle (~13 and ~16)(Reeves et al., 2004c; Erskine et al., 2009).  Differences in participant 

positioning [knee at 0 flexion in the current chapter compared to 60- 90 flexion in Reeves 

et al. (2004c) and Erskine et al. (2009)] during measurement of muscle architecture may 

explain the reported differences between VL fascicle length and pennation angle in the 

current chapter and reports elsewhere (Fukunaga et al., 1997). 

 

The CNTF G6-A gene polymorphism was associated with VL pennation angle but not fascicle 

length in untrained, apparently healthy males.  Individuals carrying the mutant A-allele had 
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the biggest pennation angle, while GG homozygotes had the smallest pennation angle 

(Figure 5.1).  Greater pennation angles allow for more parallel muscle fibres to attach along 

the aponeurosis and tendon, and are associated with bigger muscle PCSAs and the ability 

to generate increased muscle strength (Narici, 1999; Blazevich, 2006).  Therefore, in 

addition to the bigger pennation angles observed, A-allele carriers in the current chapter 

could also be expected to have increased muscle CSA and knee extension muscle voluntary 

contraction (MVCKE) torque.   

 

Previous studies, however, have associated the AA genotype with lower concentric muscle 

strength at 180s-1 in a predominantly (but not exclusively) Caucasian, mixed-gender 

cohort (Roth et al., 2001), and a middle-aged Caucasian female cohort (De Mars et al., 

2007), both of which were apparently healthy and untrained (with the exception of <1% of 

the cohort from Roth et al.).  The low frequency of AA homozygotes (n = 2) in the current 

sample, although reflective of other studies on Caucasian populations (De Mars et al., 

2007), was insufficient to perform statistical analyses on independently.  Consequently 

combination of the AA and GA genotype groups demonstrated that pennation angle was 

significantly greater for A-allele carriers compared to GG homozygotes (Figure 5.1), 

therefore suggesting that the A-allele may confer an advantage for greater pennation 

angles.  It is possible that the greater pennation angles observed in the A-allele carriers of 

the current chapter created a mechanical disadvantage for force transmission during 

contraction, which may be reflected by a decreased MVCKE torque production (see Chapter 

7).  Since loss of contractile force transmission is proportional to 1 – cos (where  = 

pennation angle), when current pennation angle data is considered and all else is assumed 
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equal, A-allele carriers could expect to experience up to a 6.8% loss in force transmission 

during MVCKE in comparison to only 5.3% by GG homozygotes.  This may explain why 

previous studies have observed lower muscle strength in AA homozygotes (Roth et al., 

2001; De Mars et al., 2007).  If, however, current differences in VL fascicle length are taken 

into account, in addition to potential differences in muscle activation and co-activation, 

moment arm length and muscle fibre type composition it is unlikely that the greater 

pennation angles observed for A-allele carriers would translate into lower MVCKE torques.  

Furthermore, previous research has identified significantly greater concentric torque at 

180s-1 for heterozygotes of the G6-A polymorphism, which may identify a role for CNTF 

genotype in the development of muscle power (De Mars et al., 2007).   

 

As CNTF is a pleiotropic cytokine, it is possible that through a combination of neurological 

factors and influences on skeletal muscle, such as altering pennation angle to 

accommodate the fascicle length necessary to maintain sarcomere contractile force during 

a high velocity of shortening (Blazevich, 2006), CNTF genotype could be influential for 

muscle power production (Vergara & Ramirez, 2004).  It should be noted, however, that 

the association observed by De Mars et al. between GA heterozygotes and concentric 

torque was in females only, and no associations between CNTF genotype and muscle 

torque was observed in males.  Thus, the lack of association in the current chapter between 

CNTF genotype and fascicle length in males may not reflect the genotype-phenotype 

associations within a female population.  Indeed, Forger (2006) reported evidence to 

suggest the interactions between trophic factors and their receptors mediate sex 

differences in motor unit development, and this is substantiated by reports of sex 
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differences in neural cell number and cell death in rats (Sumida et al., 1993).  Consequently, 

there is a requirement to further investigate muscle architectural phenotypes for 

associations with CNTF G6-A genotype in a female cohort to further understand this 

polymorphism.  

 

Alternatively, previous research has demonstrated increases in muscle fibre number 

(+300%) without increasing muscle fibre size following exogenous administration of CNTF 

in developing rat muscle (Peroulakis & Forger, 2000).  It is likely such a substantial increase 

in fibre number was possible due to a concurrent increase in pennation angle (although 

this was not measured), however as AA homozygotes express the non-functional protein, 

and thus lack CNTF, this does not explain why GG homozygotes in the current chapter had 

the smallest fibre pennation angles.  Consequently, it remains unclear what mechanism is 

responsible for the observed differences in pennation angle in the mature adult muscles of 

participants in the current chapter.  Although it is apparent that CNTF may influence 

developing muscle and different muscle types in different ways (Guillet et al., 1999), it 

should also be noted that previous observations in rat models may not be applicable to 

humans (Rennie et al., 2010).  More specifically, differences in muscle fibre type 

distribution (Schiaffino & Reggiani, 2011) and myosin heavy chain isoform expression 

(Pellegrino et al., 2003) have been observed between humans and rats, which may respond 

differently to the same CNTF genotype.  Thus more research in human populations is 

required to elucidate the mechanism underpinning the observed CNTF genotype group 

differences in pennation angle in the current chapter. 
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TTN acts as a template for myofibrillar protein assembly during sarcomere formation and 

provides an attachment site for a plethora of myofibrillar proteins to maintain the 

structural integrity of the sarcomere (Chauveau et al., 2014).  In the current chapter, the 

TTN C > T gene polymorphism was associated with VL fascicle length but not pennation 

angle in untrained, apparently healthy males.  Individuals homozygous for the wild type C-

allele had longer VL fascicles than heterozygotes but as no individuals homozygous for the 

rare T-allele were present, it is unclear if the VL fascicles of TT homozygotes would have 

been smaller still.  This missense gene variant is an exon splicing enhancer (ESE) involved 

in facilitating the assembly of the spliceosome during mRNA transcription (Lam & Hertel, 

2002).  Although multiple ESEs are involved in the activation of regulated exons (Lam & 

Hertel, 2002), it is possible that presence of the T-allele affects TTN splicing thus increasing 

expression of a different, smaller TTN isoform within the muscle fascicles of heterozygotes.  

To date, 7 different TTN isoforms have been identified within human striated muscle that 

differ in size (Vikhlyantsev & Podlubnaya, 2012).  In skeletal muscle, the predominant TTN 

isoform is N2A, of which multiple isovariants exist ranging from 3400 kDa to 3700 kDa, 

although the smaller novex-2 (~3000 kDa) and novex-3 (616 kDa) isoforms are also 

expressed in smaller quantities (Freiburg et al., 2000; Bang et al., 2001; Vikhlyantsev & 

Podlubnaya, 2012).  Thus, it is possible that altered TTN splicing as a result of the C > T 

polymorphism may influence the expression of one of more of these TTN isoforms and 

might explain the observations of the current chapter.  Evidence to support this idea arises 

from observations of a TTN mutation that alters splicing in rat cardiac muscle and results 

in the expression of a large (3900 kDa) cardiac isoform (Greaser et al., 2005).  Furthermore, 

the same rat TTN mutation was recently associated with both cardiac and skeletal muscle 
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sarcomere length, with resting sarcomere lengths corresponding to the larger mutant TTN 

isoforms significantly longer than those of wild type counterparts (Greaser et al., 2008; 

Greaser & Pleitner, 2014), suggesting that TTN isoform size directly influences sarcomere 

length in striated muscles.  Consequently, it stands to reason that for individuals with an 

equal number of serial sarcomeres, fascicles would be longer in those expressing more of 

the larger TTN isoforms, and thus exhibiting longer resting sarcomeres.  It is important to 

note, however, that sarcomere length (like TTN isoform expression) is not homogeneous 

within skeletal muscle (Wickiewicz et al., 1983; Greaser et al., 2005) and it remains unclear 

if the findings of the aforementioned studies using rat models can be extrapolated to 

human populations, hence more research is necessary to confirm or refute the current 

interpretations. 

 

Regardless of the mechanism(s) responsible for the association between TTN and VL 

fascicle length observed in the current chapter, there are a number of possible implications 

of this association.  Firstly, when considering the length-tension relationship of muscle 

contraction, individuals with longer fascicles would in theory experience a rightward shift 

in their length-tension relationship resulting in a concurrent change in the optimal joint 

angle for maximal torque production in the direction of full flexion.  Such a shift in the 

length-tension relationship has been linked to a reduction in injury occurrence, as a longer 

optimum muscle length would ensure that less of the muscle’s functional range would be 

along the more unstable descending limb of the length-tension curve (Brughelli & Cronin, 

2007).  Secondly, shorter TTN isoforms are reportedly less compliant than longer isoforms 

(Freiburg et al., 2000), therefore at any given joint angle, individuals expressing more 
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shorter N2A, novex-2 and/or novex-3 isoforms could experience increased passive tension 

compared to individuals expressing more of the longer TTN isoforms, although this has yet 

to be shown experimentally.  If future research is able to confirm these early speculations, 

the findings of the current chapter may be beneficial for improving performance in 

athletes, and improving the ability to complete certain activities of daily living in ageing or 

diseased populations.  Until further research is conducted to investigate the impact of TTN 

on muscle architecture and muscle functional phenotypes however, the interpretations of 

the current chapter regarding this genetic polymorphism should be taken with caution. 

 

Despite extensive reports of ACTN3 influencing muscle strength and/or power phenotypes 

in the literature, the findings of the current chapter suggest this is independent of any 

genotype-phenotype interactions between ACTN3 and muscle architecture.  A complex 

network of cytoskeletal protein interactions closely regulates the precise structured 

arrangement of muscle fibres.  ACTN3 is expressed exclusively in type II muscle fibres 

(North & Beggs, 1996), and is one such protein involved in maintaining the structural 

organisation of the sarcomere, which having been associated with muscle strength and 

power phenotypes elsewhere (Eynon et al., 2013), was an ideal candidate polymorphism 

to examine the possibility of a potential influence on muscle architecture.  Inter-individual 

variability in fascicle length and/or pennation angle, for example, could be expected as a 

consequence of differences in sarcomere Z-disc width, known to occur according to the 

quantity of -actinin proteins present (Luther et al., 2003; Luther, 2009).  However, since 

there is no obvious detrimental consequence on muscle structure for individuals lacking 

the ACTN3 protein (North et al., 1999), perhaps due to a compensatory upregulation of the 



Chapter 5                                               Genetic influence on muscle architectural phenotypes 
 

124 
 

-actinin-2 isoform (Mills et al., 2001), there appears to be no influence of ACTN3 on either 

muscle fascicle length or pennation angle in untrained, apparently healthy males.  Despite 

this, there is a necessity to confirm this observation in other skeletal muscles as the fibre 

type composition of the human VL muscle in untrained individuals is ~45/55% in favour of 

type II fibres, although considerable inter-individual variability in this ratio is known to exist 

in this population (Simoneau & Bouchard, 1989).  Thus, in muscles composed of 

predominantly type II muscle fibres, where the consequence of lacking the ACTN3 protein 

may be more pronounced considering ACTN3 deficiency is associated with a shift in fibre-

type towards a slow oxidative phenotype (Seto et al., 2013), ACTN3 genotype may well be 

associated with muscle architecture. 

 

No associations between the COL5A1 3’-UTR C > T polymorphism and either VL fascicle 

length or pennation angle were observed in the untrained and apparently healthy male 

population of this chapter.  COL5A1 is the gene encoding the 1 chain of collagen type V, 

a minor fibrillar collagen known to intercalate with collagen types I and III in the skeletal 

muscle ECM (Collins & Posthumus, 2011).  Collagen type V is primarily involved in the 

regulation of collagen fibrillogenesis (Wenstrup et al., 2004), and previous research has 

demonstrated that soft tissues relatively abundant in type V collagen are characterised by 

small collagen fibril diameters (Birk et al., 1990).  Thus, as muscle fibres are embedded 

within a matrix of collagen-enriched ECM, it is reasonable to assume that even minor 

changes to collagen fibril diameter may affect the precise arrangement of the muscle fibres 

between them, which, in turn could be reflected by changes in muscle pennation angle.  

This has potential implications for force transmission, as ultimately, following contraction 
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of the sarcomere, the contractile force produced is transmitted via the ECM to the tendon 

(Grounds, 2008).  It could be assumed therefore, that individuals possessing larger collagen 

fibrils would experience faster force transmission and/or a greater torque would emanate 

at the joint.  However, as no significant genotype group differences in fibre pennation angle 

for COL5A1 rs12722 were observed, it is unlikely that this polymorphism is influencing VL 

muscle architecture in such a way.  Nonetheless increases in collagen fibril diameter as a 

consequence of COL5A1 genotype might confer an advantage during maximal voluntary 

contraction efforts and a potential association with this phenotype should be investigated 

(Chapter 7).  Furthermore, over 79 SNPs have been identified within the COL5A1 3’-UTR 

gene (www.ncbi.nlm.nih.gov, accessed on 8 August 2014), some having a more profound 

impact on muscle function than others, thus potential associations between muscle 

architecture and one or more of these additional polymorphisms should be investigated to 

confirm the current finding that COL5A1 does not influence skeletal muscle architecture. 

 

Focal adhesion kinase (FAK), a major integrin effector encoded by PTK2, is influential in 

costamere formation and turnover (Flück et al., 1999).  In the current chapter, no significant 

associations between PTK2 rs7843014 and rs7460 polymorphisms and VL muscle 

architecture were observed, suggesting that a previous link between these SNPs and 

muscle specific force was independent of any architectural influences (Erskine et al., 2012).  

This recent study reported a baseline difference in specific force between genotype groups 

for both PTK2 SNPs, which was attributed to differences in costamere density (Erskine et 

al., 2012).  It remains unclear, however, if the proposed increase in costamere density is 

due to a greater number of costameres per muscle fibre, or a greater number of smaller 
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fibres with more costameres relative to fibre area.  If the latter were correct, it is possible 

that fibre pennation angle would remain relatively low, and thus fascicle length may 

increase alongside a concomitant decrease in PCSA to accommodate the greater number 

of smaller fibres.  Although it would appear this is not the case as no association between 

polymorphisms of PTK2 and VL muscle architecture were observed in the current chapter.  

Furthermore, without measurements of VL PCSA to accompany these architectural 

measurements, the confidence of these findings is somewhat limited.  Nonetheless, 

regardless of the mechanism underpinning the association between PTK2 and muscle 

specific force, more research to attempt to replicate this finding in a larger sample is 

required.  

 

5.6 Conclusion 

This chapter has identified novel associations between polymorphisms in CNTF and TTN 

and VL muscle architecture and has also found that no association between polymorphisms 

in the ACTN3, COL5A1 and PTK2 genes and muscle architecture exist.  Consequently, there 

is reason to assume an architectural mechanism may underlie the genetic association 

previously reported between CNTF and muscle strength; and could also suggest a potential 

influence of TTN genotype on muscle strength that should be investigated in future.  

Furthermore, the findings of this chapter have applications for a variety of individuals, 

including athletic, ageing and clinical populations, for whom completion of activities of 

daily living or sporting performance may be improved as a consequence of better 

understanding their individual-specific muscle mechanics. 
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6.1 Introduction

Inter-individual variability in muscle size is considerable (Chapter 4) (Seeman et al., 1996), 

and can be attributed to differences in fibre cross-sectional area (CSA), and/or differences 

in fibre number (Sale et al., 1987).  Bigger fibre CSA and/or more fibres correspond to a 

greater number of muscle sarcomeres in parallel, which during muscle contraction 

translates into the formation of a greater number of cross-bridges and thus increased force 

production.  Accordingly, muscle size is generally considered to be the main determinant 

of muscle strength (r ≥ 0.51, P ≤ 0.01) (Maughan et al., 1983), and increases in both are 

commonly observed following functional overload (Jones & Rutherford, 1987).  For many 

athletic populations, a bigger muscle mass and thus ability to produce greater force is 

essential, and athletes from strength/power-oriented sports are often reported as having 

larger muscle thickness, CSA and/or volume than their endurance and sedentary 

counterparts (Abe et al., 2000; Hakkinen & Keskinen, 1989; Fukunaga et al., 2001).  

Additionally, for populations in which sarcopenia and cachexia are prevalent, an 

individual’s ability to complete activities of daily living is diminished (Hyatt et al., 1990), 

whilst mortality risk is increased (Wannamethee et al., 2007).  Therefore, individuals with 

a smaller muscle mass predisposed by their genetic profile may be less likely to compete at 

the top level athletically, or may be at a greater risk of early mortality following the onset 

of sarcopenia or cachexia. 

 

The role of muscle size and mass in health and disease is evident, so it is unsurprising that 

a number of genetic polymorphisms have already been investigated for associations with 

this phenotype (Thompson et al., 2004).  Perhaps the most extensively studied of these 

genes is myostatin (MSTN), although as with many of these polymorphisms, this has 
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predominantly been in livestock where muscle size has been linked to meat tenderness 

(Koohmaraie et al., 2002).  The MSTN gene is a known negative regulator of skeletal muscle 

mass and a mutation in this gene, resulting in MSTN knockout, has been observed in the 

Belgian Blue and Piedmontese breeds of cattle, which typically exhibit a ‘double-muscled’ 

appearance (McPherron & Lee, 1997).  In humans, however, there has been only one 

reported homozygote with this mutation, a German infant who also demonstrated a similar 

‘double-muscled’ appearance from birth (Schuelke et al., 2004).  Although the impact of 

MSTN on muscle mass cannot be disputed, with only one reported case in humans to date, 

it is unlikely that another case would be identified in the apparently healthy population 

recruited in the current chapter.  Furthermore, as considerable inter-individual variability 

in muscle mass is known to exist in homogenous populations (Chapter 4) (Arden & Spector, 

1997; Seeman et al., 1996), it is reasonable to assume that control of muscle mass is 

polygenic and thus under the influence of a number of genetic polymorphisms, six of which 

are discussed below as candidate genes for investigation in the current chapter. 

 

Angiotensin I-converting enzyme (ACE) is central to the renin-angiotensin system (RAS), 

where it is essential for the conversion of angiotensin I to angiotensin II (Reid, 1998).  The 

absence (D) rather than the presence (I) of a 287 amino acid base pair is associated with 

increased concentrations of tissue and serum ACE activity (Rigat et al., 1990; Danser et al., 

1995).  Although ACE and the gene encoding growth hormone (GH) are not related 

(McKenzie et al., 1995), they are closely located and angiotensin II is known to stimulate 

the release of GH systemically (Messerli et al., 1977), in addition to being an effective 

growth factor in smooth and striated muscle tissues (Geisterfer et al., 1988).  Furthermore, 

ACE is associated with cardiac and skeletal muscle hypertrophy in response to exercise 
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training (Montgomery et al., 1997; Folland et al., 2000), as well as degrading growth-

inhibitory kinins (Ishigai et al., 1997).  Subsequently there appears to be a role for ACE in 

the regulation of muscle size, however, investigations into a potential association between 

ACE and muscle size in an apparently healthy, untrained population to date are limited 

(Erskine et al., 2013; Thomis et al., 2004; Frederiksen et al., 2003), thus there is a 

requirement to further investigate this potential link in a relatively large homogenous 

population.   

 

Alpha-actinin-3 (ACTN3) is a protein expressed exclusively in type II muscle fibres (North & 

Beggs, 1996; Mills et al., 2001), however, individuals homozygous for the X-allele of the 

R577X polymorphism within the ACTN3 gene are unable to produce the fully functioning 

protein (Clarkson et al., 2005).  In addition to anchoring actin filaments to the sarcomeric 

Z-line, ACTN3 also interacts with cell-signalling proteins and may have a role in fibre type 

differentiation (Mills et al., 2001; Seto et al., 2013).  Observations of smaller muscle fibre 

diameters and an increased number of oxidative enzymes in type II fibres of XX mice 

compared to RR mice (Chan et al., 2008; MacArthur et al., 2008; Seto et al., 2013), suggests 

fibre type differentiation from type II to type I muscle fibres in the absence of ACTN3 may 

contribute to inter-individual variability in muscle mass, especially in muscles composed of 

approximately similar quantities of type I and type II fibres, such as the vastus lateralis (VL).  

Furthermore, type II fibres are known to have larger fibre CSA than type I fibres (Bottinelli 

et al., 1996), therefore it could be expected that RR individuals able to produce the fully 

functioning ACTN3 protein, may have a greater percentage of type II fibres and thus an 

increased muscle mass (Vincent et al., 2007).  Recently, a significantly larger quadriceps 

femoris muscle volume was observed in RR homozygotes compared to XX homozygotes 
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(Erskine et al., 2013), however because this study used only a small sample (n = 51), 

attempts to replicate these findings in a larger sample are required.  

 

Ciliary neurotrophic factor (CNTF) is a cytokine with myotrophic factors known to influence 

muscle fibre number and muscle volume (Peroulakis & Forger, 2000; Bengston et al., 1996; 

Forger et al., 1995).  Previously, exogenous administration of CNTF to developing rat muscle 

resulted in a ~300% increase in muscle fibre number, which led to an increase in muscle 

CSA and volume (Peroulakis & Forger, 2000).  In addition, a mutation in the CNTF receptor 

gene has been associated with fat-free mass (FFM), potentially via alterations in how the 

receptor interacts with CNTF, although the exact mechanism by which this occurs is unclear 

(Roth et al., 2003).  Secondary to an increase in muscle fibre number, is likely to be an 

increase in muscle strength due to a rise in the number of sarcomeres increasing cross-

bridge formation during muscle contractions.  In humans, polymorphisms in CNTF have 

been associated with muscle strength in some Caucasian populations (Roth et al., 2001; De 

Mars et al., 2007), although no association between the CNTF G6-A polymorphism and FFM 

was observed in these studies.  However, as accurate assessments of muscle size, such as 

ultrasound assessments of anatomical and physiological CSA (ACSA and PCSA respectively) 

were not carried out in these studies, an association of this polymorphism with muscle size 

cannot be discounted and should be investigated.  

 

Focal adhesion kinase (FAK) is a phosphoprotein located within integrin/focal adhesion 

complexes of muscle costameres (Quach & Rando, 2006).  In hypertrophied rooster skeletal 

muscle, increased expression of FAK has been observed (Flück et al., 1999) and although 

this has yet to be investigated in humans, may demonstrate a link between FAK and muscle 
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size.  Protein tyrosine kinase 2 (PTK2) is the gene encoding FAK, and two polymorphisms in 

this gene have demonstrated an association with muscle specific force (Erskine et al., 

2012).  Although Erskine et al. (2012) did not measure FAK density, inherent differences in 

FAK density may explain their findings, as greater FAK densities (and thus costamere 

densities) in skeletal muscle are believed to occur through one of two mechanisms, 1) a 

greater number of costameres per muscle fibre; or 2) a greater number of smaller fibres 

per costamere (Erskine et al., 2012), however the exact mechanism remains unclear at this 

stage.  Nonetheless, as PTK2 genotype influences FAK expression within skeletal muscle 

(Flück et al., 1999), genotype differences in muscle size could be expected as a 

consequence of one, or both of the aforementioned mechanisms and a potential 

association should be investigated in a homogenous group of untrained individuals. 

 

Thyroid hormone signalling is important for skeletal muscle development (Norenberg et 

al., 1996) and muscle weakness is a notable symptom of some thyroid-related conditions 

such as hypothyroidism and thyrotoxicosis (Salvatore et al., 2014).  Production of 

triiodothyronine (T3) and thyroxine (T4) thyroid hormones is regulated by thyroid-

stimulating hormone (TSH), secretion of which is determined by the binding of thyrotropic-

releasing hormone (TRH) to the thyrotropin-releasing hormone receptor (TRHR) (Salvatore 

et al., 2014).  A mutation in the TRHR gene which alters the TRH:TRHR binding capacity, has 

been identified as the primary cause of central hypothyroidism in some instances (Collu et 

al., 1997).  Although this mutation was associated with a serious disease condition, two 

different polymorphisms in the TRHR gene have since been identified as having less severe 

consequences, following a genome-wide association study (GWAS) linking this gene to FFM 

(Liu et al., 2009).  More recently, Lunardi et al. (2013) replicated these initial findings with 
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limited success.  Whilst both of these studies used dual energy x-ray absorptiometry (DXA), 

the gold-standard, to assess body composition, neither study attempted to isolate 

individual muscles by identifying ACSA, PCSA or volume to identify if these polymorphisms 

were also linked to individual muscle size.  Considering sarcopenia affects the muscles of 

the lower body to a greater extent than the upper body (Lynch et al., 1999), investigating 

the potential association between TRHR and individual muscle size and muscle mass may 

be more beneficial in targeting the development of preventions and treatments against 

muscle wasting.  

 

The aim of this chapter, therefore, was to investigate the influence of polymorphisms 

within ACE, ACTN3, CNTF, PTK2 and TRHR genes on muscle size phenotypes (total body, 

appendicular, arm, and leg lean mass, VL muscle thickness, ACSA, PCSA and volume) in an 

untrained, apparently healthy population. 

  

6.2 Methods 

Detailed descriptions of participant recruitment, assessment of skeletal muscle size and 

mass, and the genotyping of the ACE (rs4341), ACTN3 (rs1815739), CNTF (rs1800169), PTK2 

(rs7843014 and rs7460) and TRHR (rs7832552) polymorphisms is included in Chapter 2 

(section 2.1, 2.2 and 2.4, respectively), thus only a brief description of these methods is 

detailed below. 

 

6.2.1 Participants 

One hundred and twenty untrained active Caucasian males [age 20.6 (2.3) yr, stature 1.79 

(0.06) m and mass 75.1 (10.1) kg; mean (SD)] volunteered to participate in this study.  All 
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participants met the inclusion criteria (described in Chapter 2.1) and gave written informed 

consent prior to involvement. 

 

6.2.2 Skeletal muscle properties 

VL muscle thickness was identified from sagittal plane ultrasound scans at 50% of muscle 

length.  Measurement of VL ACSA, by contour matching a series of transverse plane 

ultrasound scans, was used in the estimation of VL muscle volume (Eq 3).  VL fascicle length 

was measured from a single ultrasound image and used in the calculation of PCSA (Eq 4).  

Finally, DXA was used to quantify total body, appendicular, arm and leg lean mass, all of 

which were analysed excluding bone mineral content (BMC). 

   

6.2.3 Genotyping 

Genotyping was completed using the fluorophore-based detection technique of TaqMan® 

real-time PCR.  Genomic DNA amplification of fragments overlapping polymorphisms in the 

ACE (rs4341), ACTN3 (rs1815739), CNTF (rs1800169), PTK2 (rs7843014 and rs7460) and 

TRHR (rs7832552) genes was completed for all participants. 

 

6.2.4 Statistical analysis 

The frequency of each polymorphism was assessed for compliance with Hardy-Weinberg 

equilibrium using X2 tests.  A one-way analysis of variance (ANOVA) was conducted to 

determine any significant differences in physical characteristics (stature, mass, BMI and 

age) between genotype.  When genotype groups were combined, an independent samples 

t-test was used to identify any differences in physical characteristics.  Pearson’s correlation 

coefficient was used to identify any covariates with muscle size phenotypes (VL ACSA, 
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PCSA, muscle volume, muscle thickness, and total body, appendicular, leg and arm lean 

mass). ANOVA, and where appropriate additional analysis using analysis of covariance 

(ANCOVA), was conducted to identify any genotype differences in muscle size phenotypes. 

Additionally, any genotype effects on muscle size phenotypes were also assessed for linear 

trend using ANOVA or ANCOVA.  In instances when too few participants represented one 

genotype group, this group was combined with the heterozygous group and an 

independent samples t-test was used to identify any differences between muscle size 

phenotypes.  All significant associations identified in the main ANOVA or ANCOVA analyses 

were subject to post-hoc pairwise comparisons using the Benjamini-Hochberg correction.  

In instances where a tendency between genotype groups was observed, such that P > 0.05 

but < 0.15, the two groups with similar means were combined and the analysis re-run using 

an independent samples t-tests.  All statistical analyses were performed using SPSS version 

19.0 and statistical significance was accepted when P ≤ 0.05.  Data are presented as mean 

(SD). 

 

6.3 Results 

Genotype frequencies for polymorphisms in the ACE, ACTN3, CNTF, PTK2 and TRHR genes 

are presented in Table 6.1 and all were in Hardy-Weinberg equilibrium (P ≥ 0.436).  No 

differences between genotypes for any polymorphism were observed for stature (P ≥ 

0.217), mass (P ≥ 0.106), BMI (P ≥ 0.140) or age (P ≥ 0.094; Chapter 2: Table 2.2).  Pearson’s 

correlation coefficients revealed significant weak correlations between pennation angle (r 

≥ 0.231, P ≤ 0.012) and VL muscle length and muscle thickness; and moderate positive 

correlations between ACSA (r ≥ 0.422, P ≤ 0.0005) and VL muscle volume, PCSA and 

thickness; and VL muscle length (r ≥ 0.424, P ≤ 0.0005) and VL muscle volume and thickness. 
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Consequently, pennation angle, ACSA and VL muscle length were included as covariates 

where appropriate in subsequent analyses.  Additionally, stature (r ≥ 0.235, P ≤ 0.01), mass 

(r ≥ 0.328, P ≤ 0.0005) and BMI (r ≥ 0.227, P ≤ 0.013) were moderately correlated with all 

muscle size phenotypes (with the exception of muscle thickness for BMI and stature) and 

were included as covariates in subsequent analyses. 

 

Analysis of limb lean mass revealed significant differences between TRHR genotypes for 

total appendicular lean mass (F = 4.629, P = 0.012), leg lean mass (F = 4.004, P = 0.021) and 

arm lean mass (F = 3.841, P = 0.024).  Similarly, significant linear trend effects of TRHR on 

total appendicular lean mass (P = 0.004, p
2 = 0.073) and leg lean mass (P = 0.006, p

2 = 

0.062) were observed, whilst a linear trend effect of TRHR on arm lean mass approached 

significance (P = 0.055, p
2 = 0.064).  Post-hoc comparisons revealed that TT homozygotes 

had significantly greater appendicular, leg and arm lean mass than their CT (all P = 0.025) 

and CC counterparts (P = 0.025, P = 0.05 and P = 0.025 respectively; Table 6.1).  Following 

combination of the CC and CT genotypes, TT homozygotes demonstrated significantly 

greater appendicular lean mass (9.6%, t = 3.005, P = 0.003), arm lean mass (11.4%, t = 2.417, 

P = 0.017) and leg lean mass (8.6%, t = 2.676, P = 0.008; Figure 6.1).  There was a tendency 

for VL muscle thickness of TRHR TT individuals to be greater than that of both CT and CC 

genotype groups when mass was included as a covariate (TT, 2.61 cm; CT, 2.34 cm; CC, 2.42 

cm; F = 2.527, P = 0.084; Table 6.1), however, when CT and CC groups were pooled, this 

difference remained non-significant (t = 1.671, P = 0.097).  No significant linear trend effect 

of TRHR on VL muscle thickness was observed (P = 0.197, p
2 = 0.034).  Furthermore, no 

significant TRHR genotype group differences existed for total body lean mass (F = 0.746, P 

= 0.477), VL muscle ACSA (F = 0.056, P = 0.945), PCSA (F = 0.334, P = 0.717) or volume (F = 
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0.035, P = 0.966), nor did any significant linear trend effects on these phenotypes exist (P 

≥ 0.513, p
2 ≤ 0.013) 

 

Figure 6.1. Limb lean mass according to TRHR genotype.  Preferential (black bars) TT (n = 
9) homozygotes had significantly greater lean mass (kg) than non-preferential (white bars) 
C-allele carriers (n = 111; *P < 0.05).  Data presented are means (SD). 
 

Due to low numbers of CNTF AA homozygotes (n = 2) in the current sample, a two-group 

analysis was completed between GG homozygotes and A-allele carriers.  VL muscle 

thickness was significantly smaller for GG homozygotes than A-allele carriers for CNTF 

(7.9%, t = 2.657, P = 0.009; Figure 6.2).  No CNTF genotype group differences were apparent 

for limb lean mass (F ≤ 1.027, P ≥ 0.361), total body lean mass (F = 0.165, P = 0.848), VL 

ACSA (F = 0.557, P = 0.574), PCSA (F = 0.379, P = 0.686) or volume (F = 1.058, P = 0.350). 
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Figure 6.2. Comparison of VL muscle thickness by the combined preferential (n = 35) and 
non-preferential (n = 85) CNTF genotype (*P < 0.01).  Data presented are means (SD). 
 

VL PCSA of ACTN3 heterozygotes was significantly greater than that of both homozygote 

groups when mass and BMI were included as covariates (F = 3.085, P = 0.049, Figure 6.3).  

Consequently, no significant linear trend was observed between ACTN3 genotype and VL 

PCSA (P = 0.460; p
2 = 0.042).  Following combination of RR and RX, however, no significant 

difference in VL PCSA between XX homozygotes and R-allele carriers was apparent (F = 

2.950, P = 0.089).  Furthermore, no significant ACTN3 genotype group differences existed 

for limb lean mass (F ≤ 0.540, P ≥ 0.584), total body lean mass (F = 0.188, P = 0.829), or VL 

ACSA (F = 1.957, P = 0.146), thickness (F = 0.447, P = 0.641) or volume (F = 1.315, P = 0.272).  

Similarly, there were no significant linear trend effects of ACTN3 genotype on limb lean 

mass (P ≥ 0.544, p
2 ≤ 0.009), total body lean mass (P = 0.638, p

2 = 0.003) or muscle size 

phenotypes (P ≥ 0.859, p
2 ≤ 0.032). 
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Figure 6.3. ACTN3 genotype group differences for VL PCSA (*P < 0.05).  Data presented are 

means (SD). 

 

No significant differences in any of the measured phenotypes were observed between 

genotype groups for ACE (F ≤ 1.448, P ≥ 0.239) and PTK2 rs7843014 (F ≤ 2.615, P ≥ 0.077) 

or rs7460 (F ≤ 2.730, P ≥ 0.069).  Furthermore, no linear trend effects were observed for 

ACE (P ≥ 0.155, p
2 ≤ 0.024), PTK2 rs7843014 (P ≥ 0.073, p

2 ≤ 0.034) or rs7460 (P ≥ 0.128, 

p
2 ≤ 0.035) and any of the measured phenotypes. 
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6.4 Discussion 

The current chapter aimed to identify associations between polymorphisms in ACE, ACTN3, 

CNTF, PTK2, TRHR and muscle size phenotypes in untrained and apparently healthy young 

men.  Significant genotype-phenotype associations were identified between TRHR and 

measures of appendicular lean mass; CNTF and VL muscle thickness; and ACTN3 and VL 

PCSA, thus highlighting novel associations with skeletal muscle size, in addition to 

independently replicating the findings of some previous reports.  No other significant 

associations were observed. 

 

Genotype frequencies for polymorphisms in the current chapter (Table 6.1) were similar to 

previous reports in Caucasian populations (Williams et al., 2005; North et al., 1999; De Mars 

et al., 2007; Erskine et al., 2012).  Mean lean mass for the legs (18.4 kg), arms (6.3 kg), total 

appendicular (24.8 kg) and total body (54.7 kg) in the current sample were comparable to 

previous reports (Roth et al., 2003).  Similarly, VL muscle volume (666 cm3), ACSA (21.4 

cm2), PCSA (71.7 cm2) and muscle thickness (2.4 cm) were all in accordance with values 

(674 cm3, 18.3 cm2, 75.1 cm2 and 2.3 cm, respectively) reported previously in comparable 

adult male samples (Erskine et al., 2009; Abe et al., 2000).    

 

The TRHR rs7832552 gene polymorphism was associated with appendicular lean mass but 

not total body lean mass or other measures of muscle size in untrained, apparently healthy 

males.  Individuals homozygous for the T-allele had the greatest leg, arm and total 

appendicular lean mass, whilst for CC homozygotes leg (-1.8 kg compared to TT),
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arm (-0.94 kg compared to TT) and total appendicular lean mass (-2.6 kg compared to TT) 

was smallest (Figure 6.1).  Furthermore, 6-7% of the observed variation in appendicular 

lean mass could be attributed to TRHR genotype.  As muscle fibre number and CSA largely 

determine muscle size (Sale et al., 1987), individuals with greater appendicular lean mass 

might also be expected to produce greater maximal voluntary contraction (MVC) torques.  

Although data on muscle strength is addressed in the subsequent chapter (Chapter 7), a 

recent study has reported an association between a different polymorphism in TRHR and 

total body FFM, appendicular FFM and muscle strength (Lunardi et al., 2013).  Presumably, 

therefore, the greater muscle strength in these individuals could be largely attributed to 

their greater FFM, which in turn may reflect an increased number of sarcomeres per 

muscle, and therefore improve the force-generating capacity of the muscle.  It is important 

to note, however, that in the same study no association between appendicular FFM and 

the TRHR rs732552 gene polymorphism was observed (Lunardi et al., 2013), which is in 

contrast to the findings of the current study.  Selection of an older female population in the 

former compared to the young male population recruited in the latter may explain this 

discrepancy, as females are known to have fewer muscle fibres and smaller fibre CSA than 

males (Henriksson-Larsen et al., 1985; Sale et al., 1987).  

 

Despite observations of an association between TRHR rs7832552 and appendicular lean 

mass in the current chapter, no association between this genetic polymorphism and total 

body lean mass was observed.  In contrast, however, a recent GWAS identified an 

association between TRHR rs7832552 and total body lean mass, which demonstrated a 2.6 

kg larger total body lean mass of TT homozygotes compared to C-allele carriers (Liu et al., 
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2009).  GWAS allow the simultaneous genotyping of as many as 4 million gene variants 

across the genome of thousands of participants, and the greater sample sizes increase the 

power to detect associations, which may explain the discrepancy between these studies.  

Alternatively, whilst in the current chapter BMC was excluded from the measurement of 

total body lean mass, it is unclear if total body lean mass in the previous study was inclusive 

of BMC or not.  It is possible that a greater discrimination of whole body lean mass in the 

current study enabled a closer approximation of muscle mass and could explain the 

discrepancies between the findings of the current chapter and those of Liu et al. (2009), 

although without confirmation this remains speculative. 

 

The current chapter is the first study to the author’s knowledge to investigate a potential 

association of TRHR with VL muscle size, as determined by muscle thickness, ACSA, PCSA 

and volume.  However, no significant association of the TRHR gene polymorphism with any 

of these measures of muscle size was observed, despite leg lean mass demonstrating a 

significant association.  A plausible explanation for this could be that TRHR genotype 

confers only a modest influence on individual muscle size phenotypes.   Therefore, when 

individual muscles are investigated alone, such as the current analyses of VL muscle size, 

this genotype influence is undetected but when multiple muscles are considered together, 

such as in the current analysis of leg lean mass, a detectable genotype association becomes 

apparent.  It would be useful, therefore, for future research to measure muscle volume, 

ACSA, PCSA and thickness in several muscles to ascertain if TRHR is associated with muscle 

size phenotypes. 
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Nonetheless, the association of TRHR rs7823552 with appendicular lean mass observed in 

the current study has implications for a number of populations.  With ageing, for example, 

sarcopenia is associated with a reduction in functional capacity (Baumgartner et al., 1998), 

increased risk of falls (Whipple et al., 1987) and is an independent predictor of mortality 

risk (Wannamethee et al., 2007).  Furthermore, in athletes muscle mass is important for 

the production of strength, speed and power (Arden & Spector, 1997), and those 

predisposed to have a lower lean muscle mass may be weaker, slower, less powerful and 

subsequently less likely to succeed in certain playing positions (Sutton et al., 2009) or at 

the top level of elite sporting competition (Olds, 2001).  Although previous research has 

demonstrated altered levels of thyroid hormone following exercise bouts (Schmid et al., 

1982; Galbo et al., 1977), the exact effect of exercise on thyroid hormone remains a 

controversial topic (Huang et al., 2004).  It stands to reason, however, that if baseline 

thyroid levels respond to prolonged exercise training as can be expected for athletes, a 

reversal of this response could be expected following a period of detraining or disuse.  Thus, 

it is evident that the potential impacts of TRHR genotype for lean muscle mass are 

extensive, and this may well be a worthwhile target for researchers hoping to treat and/or 

prevent muscle-wasting diseases in the future. 

 

CNTF is a member of the interleukin-6 family of cytokines and is known to influence muscle 

fibre number and volume (Peroulakis & Forger, 2000; Bengston et al., 1996; Forger et al., 

1995).  In the current chapter, the CNTF G6-A polymorphism was associated with VL muscle 

thickness only.  Individuals homozygous for the G-allele had significantly smaller VL muscle 

thickness than A-allele carriers (Figure 6.2).  This is the first study to the author’s knowledge 
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to report an association between CNTF G6-A and muscle thickness in humans.  Previously, 

the presence of CNTF, either through production of the functioning protein in vivo or 

exogenous administration of recombinant CNTF has been linked to a reduction in fibre 

degeneration (Peroulakis & Forger, 2000), increased fibre number (Peroulakis & Forger, 

2000) and increased fibre CSA (Guillet et al., 1999).  Although these earlier studies were 

conducted in rats, and the applicability of the findings to a human population are unclear, 

it appears that CNTF affects muscle differently according to the stage of its development.  

For example, in developing muscle, changes in fibre number appeared to be the primary 

effect (Peroulakis & Forger, 2000), whereas in mature muscle, increases in fibre CSA were 

more likely (Guillet et al., 1999).  Accordingly, evidence exists to suggest, that although 

CNTF genotype remains stable throughout an individual’s lifetime, muscle fibre number in 

humans is determined before birth (Alberts et al., 2008; Rehfeldt et al., 1999), and that 

hyperplasia does not occur thereafter (MacDougall et al., 1984; McCall et al., 1996).  Muscle 

fibre hypertrophy, however, is extensively reported in response to functional overload in 

humans (McCall et al., 1996; MacDougall et al., 1980; Widrick et al., 2002), thus, it is unclear 

which of these mechanisms underlies the association between CNTF and VL muscle 

thickness currently observed.  Despite this, it is reasonable to assume that those individuals 

able to produce the functioning CNTF protein would exhibit the greatest muscle thickness. 

However, in the current study it is the GG homozygotes, predicted to produce the CNTF 

protein, who exhibit the smallest VL muscles which contradicts these earlier reports 

(Peroulakis & Forger, 2000; Guillet et al., 1999).  Differences in the potency of human and 

rat recombinant CNTF have been noted (Helgren et al., 1994), and as the majority of this 

previous research focussed on rats rather than humans, it is possible that CNTF affects 
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skeletal muscle differently in the two species and explains this discrepancy.  Contrastingly, 

exogenous administration of recombinant human CNTF in certain quantities, actually 

results in muscle atrophy and cachexia in rodents (Martin et al., 1996; Henderson et al., 

1994), and is not associated with reduced fibre degeneration, increased fibre number or 

CSA.  A more plausible explanation for the current findings, therefore, is that assuming G-

allele carriers were producing normal circulatory levels of CNTF such that the atrophic 

effects of CNTF would be milder than those experienced previously in rodents, GG 

individuals may be predisposed to smaller muscles fibres, which is subsequently reflected 

by their reduced muscle thickness.  Nonetheless, when considering the results from 

Chapter 5 together with the current findings, both report genotype differences in the order 

of GG < GA < AA for VL fibre pennation angle and muscle thickness.  This suggests that the 

mechanism underlying the association of CNTF and VL muscle thickness, may also be 

contributing to the observed association between CNTF and VL fibre pennation angle, 

although future research should be undertaken to confirm this.  

 

As both VL muscle thickness and pennation angle are associated with CNTF G6-A, it is 

somewhat surprising that this association is not continuous with VL ACSA, PCSA or volume.  

Whilst it is probable that inter-individual variability in VL muscle and fascicle length may 

explain the lack of association between CNTF, VL PCSA and volume, the reason underlying 

the lack of association between VL ACSA and CNTF is less clear.  Nonetheless, muscle 

fascicle gearing is the process by which muscle fibre shortening and lengthening velocities 

are limited to maintain the functional capacity of the muscle through a range of joint 

angles, contraction intensities and speeds, and is largely determined by fibre pennation 
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angle and muscle thickness (Wakeling et al., 2011).  Considering the findings of the current 

chapter and those of Chapter 5, it is evident that GG homozygotes have smaller VL 

pennation angles and muscle thickness, which may subsequently confer an advantage 

during muscle shortening contractions for force production as a consequence of allowing 

for a greater gearing ratio (Wakeling et al., 2011).  This is consistent with previous research 

that reported lower concentric MVC torque for AA homozygotes in comparison to G-allele 

carriers (Roth et al., 2001; De Mars et al., 2007), and might identify the CNTF G6-A G-allele 

or GG genotype as influential for muscle power production.  However, whilst this cannot 

be confirmed using the data from the current chapter, subsequent chapters of this thesis 

investigate genotype associations with muscle strength and simultaneous measures of 

muscle morphology (Chapter 7 and Chapter 8).  Furthermore, due to the low frequency of 

AA homozygotes within Caucasian populations, and the relatively low sample sizes of 

studies investigating an association of CNTF with human skeletal muscle to date, a general 

consensus on the impact of CNTF G6-A polymorphism has yet to be reached and 

researchers are therefore encouraged to complete future studies on thousands, rather 

than hundreds of participants where possible. 

 

ACTN3 is expressed in type II muscle fibres only (North & Beggs, 1996), and as these fibres 

have a greater CSA than type I fibres (Bottinelli et al., 1996) the common R577X 

polymorphism of the ACTN3 gene was investigated for associations with muscle size 

phenotypes.  The data indicate that ACTN3 was associated with VL PCSA only, with R-allele 

carriers exhibiting the largest values (Figure 6.3).  Considering VL PCSA is dependent on 

muscle volume and fascicle length, genotype differences in either one or both of these 
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phenotypes could underlie, or contribute to the observed association.  In the previous 

chapter, however, no significant association between VL fascicle length and ACTN3 was 

observed, despite the values demonstrating the same trend as those observed for VL PCSA 

(Chapter 5).  Furthermore, in the current chapter VL muscle volume and ACTN3 genotype 

were not associated, although again the same trend in values (RX > RR > XX) was observed 

(Table 6.1).  Contrastingly, a recent study reported that quadriceps femoris volume was 

greater for R-allele carriers compared to XX homozygotes (Erskine et al., 2013).  Differences 

in the muscles investigated (VL compared to quadriceps femoris) may explain these 

contrasting results.  It is probable that the influence of ACTN3 genotype on individual 

muscle volume, such as the VL of the current study, is only modest and could be attributed 

to a greater proportion of type II fibres in the muscles of R-allele carriers (Vincent et al., 

2007).  However, when multiple phenotypes, each experiencing a modest influence of 

ACTN3, are investigated in combination, such as quadriceps femoris muscle volume or in 

the calculation of muscle PCSA, a detectable genotype association may be apparent.  

Although the size of the current sample (n = 120) is larger than that of some previous 

studies investigating ACTN3 in relation to skeletal muscle phenotypes (Erskine et al., 2013; 

Gavin & Williams, 2010; Garatachea et al., 2012), and a priori statistical power was ≥80% 

for all of the phenotypes studied (Chapter 2), it is possible that the influence of ACTN3 on 

muscle volume (and/or fascicle length) is so modest that the current chapter was 

underpowered to detect such an association.  Adopting a polygenic approach to 

investigations of muscle size would account for a greater proportion of the inter-individual 

variability in muscle size than is possible when investigating individual polymorphisms, and 

may therefore be more appropriate in such instances (see Chapter 8). 
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ACE is responsible for the conversion of angiotensin I to angiotensin II, which is a known 

muscle growth factor (Geisterfer et al., 1988) and stimulant for growth hormone release 

(Messerli et al., 1977).  Extensive research on the ACE I/D polymorphism to date has 

identified the overrepresentation of the D-allele among power/strength athletes in 

comparison to endurance athletes (Nazarov et al., 2001).  As muscle size is one of the main 

determinants of muscle strength, ACE genotype was analysed in what the author believes 

is the first study to investigate this polymorphism for potential associations with a plethora 

of muscle size and mass measurements.  In the current chapter, however no associations 

between ACE genotype and any of the muscle size phenotypes measured were observed, 

which is comparable to previous findings from studies investigating just single measures of 

muscle size (Erskine et al., 2013; Thomis et al., 2004; Frederiksen et al., 2003).  Crucially, 

like the participants sampled in the current chapter, the aforementioned studies all 

recruited untrained participants.  Together these findings indicate that ACE I/D genotype 

does not influence muscle size in this population, however the influence of ACE genotype 

on muscle size in response to strength training in this population remains unclear (Erskine 

et al., 2013; Thomis et al., 2004; Frederiksen et al., 2003).  Knowledge of ACE genotype in 

response to training may benefit future practitioners prescribing exercise training for the 

treatment and prevention of muscle wasting disorders.  Similarly, athletes following 

structured resistance training programmes are likely to benefit from programmes tailored 

to their individual genotype, although more research on the influence of ACE in response 

to training is required if the application of such information is to be successful.  Additionally, 

there are substantial ethical concerns surrounding the application of sensitive genetic 
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information and these should be carefully considered prior to using the data in such a way 

(Wackerhage et al., 2009). 

 

No associations between the PTK2 rs7843014 or rs7460 polymorphisms and any of the 

muscle size or mass phenotypes were observed in the untrained and apparently healthy 

male population of this chapter.  PTK2 is the gene encoding FAK, which is primarily involved 

in the formation and turnover of muscle costameres (Quach & Rando, 2006).  Costameres 

overlie the Z-lines and M-lines of skeletal muscle sarcomeres and are responsible for the 

lateral transmission of force from the muscle contractile proteins to the extracellular matrix 

during muscle contraction (Bloch & Gonzalez-Serratos, 2003), and previous research has 

demonstrated an increase in FAK expression following muscle hypertrophy (Flück et al., 

1999).  It is unclear if a causal relationship between increased FAK expression and muscle 

hypertrophy exists, as the current chapter did not investigate the association between 

PTK2 and muscle size following exercise training.  Furthermore, as PTK2 genotype is 

associated with specific force in untrained individuals, it is probable that individuals able to 

produce greater specific force have a greater number of costameres per fibre rather than 

a greater number of fibres or increased fibre CSA.  However, as there exists only one study 

to date that has investigated the association between PTK2 genotype and muscle specific 

force, the subsequent chapter will investigate a potential association between the PTK2 

genotype and this phenotype.  

 

6.5 Conclusion 
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This study has identified novel associations between polymorphisms in ACTN3 and VL PCSA; 

CNTF and VL muscle thickness; and TRHR and appendicular lean mass.  Furthermore, the 

lack of association between ACE I/D genotype and any of the muscle size phenotypes is in 

agreement with previous research and serves to strengthen the case that muscle size is 

independent of ACE genotype in untrained populations.  Finally, the observation of no 

association between two polymorphisms in the PTK2 gene demonstrates that in untrained 

males, PTK2 does not influence VL muscle size or measures of lean mass.  Consequently, 

there exists a clear genetic influence on some of these skeletal muscle size and mass 

phenotypes, providing evidence therefore, to suggest variability in muscle size may 

underlie some of the aforementioned genotype associations with muscle functional 

phenotypes. 
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7.1 Introduction 

Muscle strength, here defined as muscle voluntary contraction (MVC) torque, is the term 

used to express the ability of a muscle or groups of muscles to overcome an external load.  

Muscle strength is essential to complete activities of daily living (Beunen & Thomis, 2004; 

Thompson et al., 2004), and enhanced muscle strength is associated with strength and 

power performance (Abe et al., 2000; Hakkinen & Keskinen, 1989; Fukunaga et al., 2001).  

Muscle tissue is extremely plastic and adapts to different loading patterns accordingly, 

consequently, increases in muscle strength are commonly associated with muscle 

hypertrophy following exercise training and vice versa following detraining and disuse 

(Larsson et al., 1979; Atha, 1981; Jones & Rutherford, 1987; Gallagher et al., 2005; de Boer 

et al., 2008; MacDougall et al., 1980). 

 

Measurement of muscle strength is typically undertaken using isokinetic dynamometry to 

ascertain isometric, concentric or eccentric strength, however a number of surrogate 

measures of strength exist.  Reports of one repetition maximum, for example, are often 

used to represent muscle strength (McCall et al., 1996; McBride et al., 2003) and whilst 

such gross measurements of strength are accepted within the literature; unlike the 

measurement of specific force (fascicle force/physiological cross-sectional area), they do 

not take into account the previously identified inter-individual variability in the 

determinants of muscle strength (Chapter 4).  Nonetheless, it is evident that inter-

individual variability persists in the measurement of specific force and it is probable that 

some of the observed inter-individual variability in these muscle strength phenotypes may 

be explained by genetic differences.  Accordingly, previous research has demonstrated the 

heritability of maximal isometric and isokinetic knee extension torque ranges from 31% to 
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75% (Tiainen et al., 2004; Thomis et al., 1997; Huygens et al., 2004).  Furthermore, when 

investigating the genetic influence on muscle strength it would be useful to obtain both 

gross measurements of strength such as MVC torque, and more stringent measurements 

of specific force, to isolate the potential influence of genetic polymorphisms on the 

determinants of strength, which may also direct future research in this field.    

 

To date, a number of genes have been investigated for associations with skeletal muscle 

strength phenotypes (Hughes et al., 2011; Bray et al., 2009), including polymorphisms in 

the angiotensin I-converting enzyme (ACE)(Williams et al., 2005; Thomis et al., 2004), 

alpha-actinin-3 (ACTN3)(Clarkson et al., 2005; Walsh et al., 2008; Ahmetov et al., 2013), 

ciliary neurotrophic factor (CNTF)(Roth et al., 2001; De Mars et al., 2007; Walsh et al., 2009) 

and protein tyrosine kinase 2 (PTK2)(Erskine et al., 2012) genes.  However, before a 

consensus on the genotype associations with muscle strength phenotypes in an untrained 

population can be reached, it is evident that further research is necessary.  Furthermore, 

polymorphisms in the collagen type V alpha 1 (COL5A1)(Collins & Posthumus, 2011), 

thyrotropin-releasing hormone (TRHR)(Chapter 6)(Liu et al., 2009; Lunardi et al., 2013) and 

titin (TTN)(Chapter 5) genes have been associated with one or more of the determinants 

of muscle strength, thus it is reasonable to assume that they might also associate with a 

muscle strength phenotype.   

 

The aim of this chapter, therefore, was to investigate the individual influence of 

polymorphisms in the ACE, ACTN3, CNTF, COL5A1, PTK2, TRHR and TTN genes on the 

muscle strength phenotypes in an untrained population. 
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7.2 Methods 

Detailed descriptions of participant recruitment, assessment of skeletal muscle properties, 

and the genotyping of ACE (rs4341), ACTN3 (rs1815739), CNTF (rs1800169), COL5A1 

(rs12722), PTK2 (rs7843014 and rs7460), TRHR (rs7832552) and TTN (rs10497520) 

polymorphisms are included in Chapter 2 (section 2.1, 2.2 and 2.4, respectively), thus only 

a brief description of these methods is detailed below. 

 

7.2.1 Participants 

Untrained Caucasian males [n = 120, age 20.6 (2.3) yr, stature 1.79 (0.06) m and mass 75.1 

(10.1) kg; mean (SD)] volunteered to participate in this study.  All participants met the 

inclusion criteria (described in Chapter 2.1) and provided written informed consent prior 

to involvement. 

 

7.2.2 Skeletal muscle properties 

Isometric maximal voluntary knee extension (MVCKE) and flexion (MVCKF) torque was 

measured at three knee joint angles to identify the optimal angle of peak torque 

production.  Agonist muscle activation (Eq 1) and antagonist muscle co-activation during 

MVCKE was determined to enable the calculation of net MVCKE torque (Eq 2).  Measurement 

of vastus lateralis (VL) anatomical cross-sectional area (ACSA), by contour matching a series 

of transverse plane scans, was used in the estimation of VL muscle volume (Eq 3).  VL 

fascicle length, pennation angle (B-mode ultrasonography) and patellar tendon moment 

arm length (single energy DXA scan) were measured and used in the calculation of 

physiological cross-sectional area (PCSA; Eq 4), fascicle force (Eq 6) and tendon force (Eq 
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5), respectively.  Ultimately, VL specific force was calculated by dividing VL fascicle force by 

VL PCSA (Eq 7). 

   

7.2.3 Genotyping 

Genotyping was completed using the fluorophore-based detection technique of TaqMan® 

real-time PCR.  Genomic DNA amplification of fragments overlapping polymorphisms in the 

ACE (rs4341), ACTN3 (rs1815739), CNTF (rs1800169), COL5A1 (rs12722), PTK2 (rs7843014 

and rs7460), TRHR (rs7832552) and TTN (rs10497520) genes was completed for all 

participants. 

 

7.2.4 Statistical analysis 

The frequency of each polymorphism was assessed for compliance with Hardy-Weinberg 

equilibrium using X2 tests.  A one-way analysis of variance (ANOVA) was conducted to 

determine any significant differences in physical characteristics (stature, mass, BMI and 

age) between genotype.  When genotype groups were combined, an independent samples 

t-test was used to identify any differences in physical characteristics.  Pearson’s correlation 

coefficient was used to identify the variables that made a meaningful contribution to the 

variability within muscle strength phenotypes (MVCKE torque, net MVCKE torque and VL 

specific force). ANOVA, and where appropriate analysis of covariance (ANCOVA), were 

conducted to identify any genotype differences in muscle strength phenotypes.  

Additionally, any genotype effects on muscle strength phenotypes were also assessed for 

linear trend using ANOVA or ANCOVA.  In instances when too few participants represented 

one genotype group, this group was combined with the heterozygous group and an 

independent samples t-test was used to identify any differences between muscle strength 
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phenotypes.  All significant associations identified in the main ANOVA or ANCOVA analyses 

were subject to post-hoc pairwise comparisons using the Benjamini-Hochberg correction.  

In instances where a tendency between genotype groups was observed, such that P > 0.05 

but < 0.15, the two groups with similar means were combined and the analysis re-run using 

an independent samples t-test.  To identify any TTN genotype differences in optimal angle 

for MVCKE torque production an independent samples t-test was completed between the 

CC and CT individuals as no TT homozygotes were present in the current sample.  

Furthermore, the extent of linkage disequilibrium between PTK2 rs7843014 and rs7460 

was determined using CubeX online software (http://www.oege.org/software/cubex) to 

estimate haplotype frequencies, and in the calculation of D’ and R2 as the difference 

between the observed and expected haplotype frequencies (Gaunt et al., 2007).  All 

statistical analyses were performed using SPSS version 19.0 and statistical significance was 

accepted when P ≤ 0.05.  Data are presented as means (SD). 

 

7.3 Results 

Genotype frequencies for polymorphisms in the ACE, ACTN3, CNTF, COL5A1, PTK2, TRHR 

and TTN genes are presented in Table 7.1 and were all in Hardy-Weinberg equilibrium (P ≥ 

0.436).  No differences between any genotypes for any polymorphism were observed for 

stature (P ≥ 0.196), mass (P ≥ 0.091), BMI (P ≥ 0.140) or age (P ≥ 0.455; Table 7.1).  Pearson’s 

correlation coefficients revealed significant moderate correlations between muscle volume 

(r ≥ 0.343, P = 0.0005), PCSA (r ≥ 0.417, P ≤ 0.0005) and all muscle strength phenotypes.  

Consequently, muscle volume and PCSA were included as covariates in analyses of MVCKE 

torque and net MVCKE torque but not specific force, as both factors are already accounted 

for during the calculation of muscle specific force. Additionally, stature (r ≥ 0.265, P ≤ 0.04), 
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mass (r ≥ 0.412, P = 0.0005) and BMI (r ≥ 0.312, P ≤ 0.001) were moderately correlated with 

MVCKE torque and net MVCKE torque and were included as covariates in subsequent 

analyses. 

Table 7.1. Genotype and allele frequencies, and muscle strength characteristics for single 

nucleotide polymorphisms (SNPs) in the ACE, ACTN3, CNTF, COL5A1, PTK2, TRHR and TTN 

genes.  *Denotes significant difference between AA homozygotes and C-allele carriers for 

PTK2 rs7843014, and between TT homozygotes and A-allele carriers for PTK2 rs7460 (P < 

0.05). 

 

SNP Genotype Frequency (%) MVCKE 

torque (N∙m) 

Net MVCKE 

torque (N∙m) 

Specific 

Force 

(N∙cm-2) 

Number Genotype Minor Allele 

A
C

E 
rs

4
3

4
1 II (n = 32) 26.7  252 (42.7) 266 (61.3) 22.0 (2.8) 

ID (n = 54) 45.0 0.492 251 (49.4) 275 (53.3) 21.7 (2.6) 

DD (n = 34) 28.3  248 (43.9) 273 (46.0) 20.8 (2.5) 

A
C

TN
3

 
rs

1
8

1
5

7
3

9 RR (n = 44) 36.6  252 (42.0) 273 (43.6) 21.5 (2.5) 

RX (n = 57) 47.5 0.396 250 (51.2) 269 (64.0) 21.7 (2.6) 

XX (n = 19) 15.9  249 (39.2) 278 (38.7) 21.4 (2.8) 

C
N

TF
 

rs
1

8
0

0
1

6
9 AA (n = 2) 1.7  281 (18.6) 301 (9.47) 20.3 (0.7) 

AG (n = 33) 27.5 0.154 249 (32.0) 269 (39.1) 21.8 (2.6) 

GG (n = 85) 70.8  250 (50.6) 272 (58.6) 21.5 (2.6) 

C
O

L5
A

1
 

rs
1

2
7

2
2 

CC (n = 19) 15.8  250 (39.5) 276 (48.9) 20.3 (3.1) 

CT (n = 61) 50.8 0.413 243 (40.5) 262 (51.9) 19.9 (2.6) 

TT (n = 40) 33.4  263 (53.9) 286 (55.5) 20.7 (4.7) 

P
TK

2
 

rs
7

8
4

3
0

1
4 AA (n = 42) 35.0  260 (50.9) 286  (53.0) 22.3 (2.6)* 

AC (n = 52) 43.3 0.433 250 (43.0) 272 (56.1) 21.1 (2.6) 

CC (n = 26) 21.7  243 (44.7) 257 (46.2) 21.1 (2.6) 

P
TK

2
 

rs
7

4
6

0 AA (n = 34) 28.3  243 (45.9) 259 (46.9) 21.1 (2.6) 

AT (n = 54) 45.0 0.492 250 (42.0) 267 (53.8) 21.3 (2.5) 

TT (n = 32) 26.7  253 (51.7) 276 (57.8) 22.4 (2.8)* 

TR
H

R
 

rs
7

8
3

2
5

5
2 CC (n = 53)  44.2  255 (48.1) 277 (50.8) 20.6 (4.4) 

CT (n = 58) 48.3 0.317 247 (43.9) 268 (57.6) 20.0 (2.7) 

TT (n = 9) 7.5  246 (47.0) 263 (40.2) 19.3 (1.6) 

TT
N

 
rs

1
0

4
9

7
5

2
0 CC (n = 95) 79.2  252 (46.7) 272 (55.4) 20.3 (3.6) 

CT (n = 25) 20.8 0.104 246 (43.1) 272 (45.9) 20.0 (3.2) 

TT (n = 0) 0.0  - - - 
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Analysis of VL specific force identified non-significant tendencies between genotype groups 

for PTK2 rs7843014 (F = 2.881, P = 0.060) and rs7460 (F = 2.466, P = 0.089).  Following 

combination of AC and CC PTK2 rs7843014 genotypes, the VL specific force produced by 

AA homozygotes was significantly higher than that of the C-allele carriers (8.3%, t = 2.410, 

P = 0.017; Figure 7.1).  Similarly, when the AA and AT PTK2 rs7460 genotypes were pooled, 

TT homozygotes produced significantly higher VL specific force compared to A-allele 

carriers (5.4%, t = 2.205, P = 0.029; Figure 7.1).  Due to the significant associations of both 

PTK2 SNPs with VL specific force, linkage disequilibrium between them was calculated as 

D = 0.894 and R2 = 0.591.  Furthermore, the individual contributions of the PTK2 rs7843014 

and rs7460 SNPs to the inter-individual variability in VL specific force were 3.5% (R2 = 0.035, 

P = 0.041) and 3.3% (R2 = 0.033, P = 0.048) respectively.  The combined influence of these 

PTK2 SNPs on the inter-individual variability in specific force was 3.8%, but this was non-

significant (R2 = 0.038, P = 0.107). 
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Figure 7.1.  VL specific force according to genotype of the PTK2 gene rs7843014 and rs7460 

SNPs.  Preferential (black bars) rs7460 TT homozygotes were significantly different from 

non-preferential (white bars) A-allele carriers (*P = 0.029).  Preferential rs7843014 AA 

homozygotes were significantly different to non-preferential C-allele carriers (‡P = 0.017).   

Data presented are means (SD). 

 

A non-significant tendency between genotype groups of PTK2 rs7843014 (F = -2.871, P = 

0.094) was observed for net MVCKE torque.  Furthermore, linear trend analysis revealed a 

significant effect of PTK2 rs7843014 (P = 0.041, ηp
2 = 0.042) on net MVCKE torque, but not 

rs7460.  Subsequently, the analysis was re-run with the rs7843014 CC and AC genotype 

groups pooled, however, no significant differences in net MVCKE torque were observed 

between genotype groups (t = 1.531, P = 0.128).  No significant differences in net MVCKE 

torque were observed between genotype groups for PTK2 rs7460 (F = 1.305, P = 0.275), 

nor were any significant linear trend effects of rs7460 on net MVCKE torque apparent (P = 

0.120, ηp
2 = 0.022).  No significant differences in MVCKE torque were observed between 

genotype groups for either PTK2 polymorphism (F ≤ 2.276, P ≥ 0.107).  
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No significant differences in MVCKE torque, net MVCKE torque or VL specific force were 

observed between genotype groups for ACE (F ≤ 2.13, P ≥ 0.123), ACTN3 (F ≤ 0.21, P ≥ 

0.815), CNTF (F ≤ 0.46, P ≥ 0.631), COL5A1 (F ≤ 2.643, P ≥ 0.075), TRHR (F ≤ 0.768, P ≥ 0.466) 

or TTN (F ≤ 0.312, P ≥ 0.578).  Furthermore, no differences in optimal angle of peak MVCKE 

torque production were observed between TTN genotype groups (P ≥ 0.762).  There were 

no significant linear trend effects on MVCKE torque, net MVCKE torque or VL specific force 

for ACE (P ≥ 0.451, ηp
2 ≥ 0.009), ACTN3 (P ≥ 0.641, ηp

2 ≥ 0.021), COL5A1 (P ≥ 0.323, ηp
2 ≤ 

0.043) or TRHR (P ≥ 0.219, ηp
2 ≥ 0.009).  

 

7.4 Discussion 

The current chapter aimed to identify associations between polymorphisms in the ACE, 

ACTN3, CNTF, COL5A1, PTK2, TRHR and TTN genes and muscle strength phenotypes in an 

untrained, apparently healthy population.  A significant genotype-phenotype association 

was identified between both PTK2 SNPs and VL specific force only, no other significant 

associations were observed.  Genotype and allele frequencies for SNPs in the current 

chapter (Table 7.1) were similar to previous reports in Caucasian populations (Williams et 

al., 2005; North et al., 1999; De Mars et al., 2007; Posthumus et al., 2011; Erskine et al., 

2012)(allele frequency data compared to CEU HapMap where available).  Values of mean 

MVCKE torque, net MVCKE torque and VL specific force in the current sample (250 N∙m, 274 

N∙m and 21.4 N∙cm-2, respectively) were in accordance with previous reports (245-269 N∙m, 

285 N∙m, 20.0-23.9 N∙cm-2, respectively) in comparable samples (Erskine et al., 2009; 

Erskine et al., 2012; Kellis & Baltzopoulos, 1997; Gorgey et al., 2006; Narici et al., 1992). 
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PTK2 is the gene encoding focal adhesion kinase (FAK), a protein integral for the formation 

and turnover of muscle costameres (Quach & Rando, 2006).  During muscle contraction, 

muscle costamere complexes are involved in transmitting force laterally from the muscle 

contractile elements to the extracellular matrix (ECM)(Bloch & Gonzalez-Serratos, 2003).  

Altering the ability of the muscle to transmit force laterally, therefore, may translate into 

an increase or decrease in the production of maximal joint torque and/or muscle specific 

force. In the current study, polymorphisms in the PTK2 gene were associated with VL 

specific force but not MVCKE torque or net MVCKE torque in untrained, apparently healthy 

males.  Individuals homozygous for the rs7843014 A-allele had greater VL specific force 

than their C-allele counterparts, and individuals homozygous for the rs7460 T-allele 

demonstrated greater VL specific force than A-allele carriers (Figure 7.1).  Similarly, a 

previous report on the influence of PTK2 rs7843104 and rs7460 on muscle strength also 

reported a significant association between quadriceps femoris muscle specific force and A-

allele (rs7843104) and T-allele (rs7460) homozygotes in a smaller Caucasian cohort (Erskine 

et al., 2012).  Together these findings demonstrate a probable influence of PTK2 on muscle 

specific force, although as both of these studies have investigated knee extensor muscles, 

future research should attempt to replicate these findings in other muscle groups.  A 

plausible explanation for the findings of the current chapter may be that AA (rs7843104) 

and TT (rs7460) homozygotes experience altered PTK2 expression compared to their C-

allele (rs7843104) and A-allele (rs7460) carrying counterparts respectively.  Interestingly, a 

recent study reported a possible association between the CC (rs7843104) and TT (rs7460) 

genotype and lower gene expression in Spanish Caucasians (Garatachea et al., 2014).  

Furthermore, FAK-null cells have previously been shown to form stronger adhesions, 

possess enhanced contractile properties and migrate slower than their wild-type 
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counterparts (Ilic et al., 1995; Chen et al., 2002; Ren et al., 2000).  Although it is unlikely 

that either the rs7843104 or rs7460 polymorphisms would result in changes to the amino 

acid sequence of FAK that would elicit comparable effects to those of FAK-null cells.  

However, potential alterations to the magnitude, location and timing of gene expression, 

or mRNA stability as a consequence of one or both of these SNPs cannot be discounted 

(Erskine et al., 2012; Tabor et al., 2002).  

  

Although speculative at this stage, the association between the TT (rs7460) genotype and 

enhanced VL specific force in the current study may be attributed to an increased muscle 

costamere density as a consequence of lower gene expression as observed by Garatachea 

et al. (2014).  Understanding the association between the AA (rs7843014) genotype and 

enhanced specific force in the current study, however, appears more complex as it was the 

CC (rs7843014) genotype that was previously associated with a lower gene expression and 

might therefore be expected to have increased costamere density and thus muscle specific 

force.  It is possible that because these two SNPs are in linkage disequilibrium, only one 

locus is functionally important for VL muscle specific force.  In the current study, the 

individual and combined contributions of these two SNPs to the inter-individual variability 

in VL specific force was ~3.5%.  Of the rs7843014 and rs7460 polymorphisms, it is the A-

allele of the former that corresponds to the T-allele of the latter, and the non-random 

association of these SNPs might suggest that rs7843014 merely acts as a marker for the 

functional rs7460 SNP.   

 

Although it remains unclear how an increased costamere density corresponds to an 

increase in specific force, it could be achieved by 1) having a greater number of costameres 
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per muscle fibre and/or, 2) having a greater number of smaller fibres per muscle and thus 

a higher fibre perimeter-to-area ratio (Erskine et al., 2012).  Considering smaller muscle 

fibres, such as type I fibres, typically produce a lower fibre specific force than their larger, 

type II counterparts (Bottinelli et al., 1996; Widrick et al., 2002), it seems unlikely that 

having a greater number of smaller fibres would correspond to a greater muscle specific 

force without considerable genotype differences in muscle size or architecture.  The 

findings of Chapters 5 and 6, however, revealed no significant PTK2 genotype associations 

with any muscle architectural or size phenotypes, thus suggesting that an increased 

costamere density is not achieved by a greater number of smaller muscle fibres, rather by 

a greater number of costameres per fibre.  Researchers are encouraged, however, to 

investigate PTK2 genotype differences in muscle costamere density following direct 

measurement to confirm or refute this hypothesis. 

 

For the remaining polymorphisms investigated in the current study, no genotype 

associations were observed with any of the muscle strength phenotypes.  The lack of 

association between COL5A1 and muscle strength was somewhat unsurprising considering 

no associations between this SNP and muscle architecture were observed in Chapter 5.  

Previous research has reported a link between COL5A1 rs12722 and collagen fibril 

formation and diameter (Beighton et al., 1998), and as collagen is the primary structural 

protein in muscle connective tissue, the underlying muscle architecture may be influenced 

by differences in collagen fibril diameter, which could ultimately impact on the production 

of muscle strength and/or specific force.  However, when considering the findings of the 

current thesis, it is possible that the consequences of COL5A1 rs12722 on muscle 

architecture and strength are negligible.  Future research may instead consider 
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investigating alternative collagen type V polymorphisms, such as collagen type V alpha 2 

(COL5A2), and/or mutations in the more abundant collagen type I, such as collagen type I 

alpha 1 (COL1A1) to ascertain any influence on phenotypes linked with strength and its 

determinants. 

 

Similarly to COL5A1, the lack of associations between ACE I/D, ACTN3 R577X and the 

muscle strength phenotypes were also somewhat unsurprising considering ACE did not 

significantly associate with muscle size in previous chapters (Chapters 5 and 6), and ACTN3 

was significantly associated with only VL PCSA in Chapter 6.  These findings are consistent 

with previous reports in untrained populations spanning ~20-90 yr and incorporating a 

range of muscle strength measurements (Garatachea et al., 2012; McCauley et al., 2009; 

Gavin & Williams, 2010; Erskine et al., 2013; Thomis et al., 2004; Delmonico et al., 2007; 

Pereira et al., 2013), although a number of contrasting reports do exist (Erskine et al., 2013; 

Walsh et al., 2008; Williams et al., 2005).  Nonetheless, the findings of the current study 

add to the growing body of literature suggesting the inter-individual variability in muscle 

strength of untrained individuals is independent of ACE I/D and ACTN3 R577X genotype 

when each polymorphism is considered individually.  Recently, however, three studies have 

investigated the combined influence of ACE and ACTN3 on muscle strength phenotypes 

and reported contrasting findings (Erskine et al., 2013; Garatachea et al., 2012; Pereira et 

al., 2013). Whilst Erskine et al. (2013) observed significant differences between the optimal 

and suboptimal combined ACE and ACTN3 genotype for maximal leg strength and power, 

no significant associations between the combined ACE and ACTN3 genotype and baseline 

muscle strength and strength endurance were reported by either Garatachea et al. (2012) 

or Pereira et al. (2013).  Although all three studies were in agreement over the ‘optimal’ 
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combined ACE and ACTN3 profile (DD and RR/RX, respectively), considerable differences in 

the mean age of the sample populations and the muscle strength phenotypes being 

assessed in each of these studies may explain this discrepancy, especially considering 

significant differences in the muscle specific force of recreationally active elderly (~74 yr) 

and young (~25 yr) males has previously been reported (Morse et al., 2005b).  

Consequently, there remains a requirement to conduct further polygenic investigations of 

muscle strength to elucidate the combined influence of these polymorphisms on such 

phenotypes (see Chapter 8). 

 

CNTF is part of the interleukin-6 cytokine family and has previously been associated with 

MVC concentric torque in untrained populations (Roth et al., 2001; De Mars et al., 2007).  

Although only isometric torque and specific force were measured in the current study, no 

differences in these phenotypes according to CNTF genotype were observed.  Nonetheless, 

it is possible that through previously observed associations with muscle architecture 

(Chapter 5) and pennation angle (Chapter 6), that CNTF is influential for concentric 

contractions, but negligible during isometric contractions.  This hypothesis is consistent 

with De Mars et al. (2007), who found no significant effects of CNTF genotype on isometric 

MVCKE strength in untrained Caucasian males.  It is possible that genotype-dependent 

effects on both muscle thickness and fascicle length contribute to maintaining the 

functional capacity, and thus force production, of a muscle throughout a joint range of 

motion and at varying intensities as a consequence of fascicle gearing (Wakeling et al., 

2011).  Further research is, however, necessary to investigate muscle isokinetic strength, 

size and architecture simultaneously to confirm these speculations.  Additionally, due to 

inter-muscular differences in pennation angle and joint articulation, future research should 
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investigate these phenotypes in a variety of muscles to ascertain the extent, if any, of CNTF 

genotype on muscle concentric strength and its determinants. 

 

TRHR is involved in the secretion of thyroid-stimulating hormone (TSH), via the binding of 

thyrotropin-releasing hormone (TRH) to the receptor (Salvatore et al., 2014).  A mutation 

in this gene causes hypothyroidism, a condition associated with muscle weakness 

(Salvatore et al., 2014).  Additionally, the TRHR rs7832552 polymorphism has previously 

been significantly associated with various indices of lean mass in four independent samples 

(Liu et al., 2009; Lunardi et al., 2013)(Chapter 6).  Furthermore, as lean mass correlates (r = 

0.30-0.79) with muscle strength (Maughan et al., 1983; Reed et al., 1991), TRHR rs7832552 

was an ideal candidate for investigating associations with muscle strength.  No significant 

associations, however, between TRHR and muscle strength (isometric MVCKE torque, net 

MVCKE torque or VL specific force) were observed in the current chapter despite the TRHR 

genotype explaining ~6% of the inter-individual variability in leg lean mass of the current 

sample population (Chapter 6).  Similarly, Lunardi et al. (2013) did not find any significant 

associations between isokinetic MVCKE torque and TRHR in their older female cohort.  Thus, 

it is possible that the influence of TRHR on muscle strength is so modest that it remained 

undetected during the current assessment of the VL muscle, and previous assessment of 

the quadriceps femoris (Lunardi et al., 2013).  Accordingly, no associations between TRHR 

genotype and VL muscle size (ACSA, PCSA or volume) were observed in the previous 

chapter (Chapter 6).  Assessments of muscle strength using multiple muscle groups, such 

as a maximal squat, may be necessary to ascertain if TRHR genotype contributes to muscle 

strength in an untrained population. 
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TTN is a template for myofibrillar protein assembly in the muscle sarcomere and is 

associated with resting sarcomere length in rat cardiac and skeletal muscle (Greaser et al., 

2008; Greaser & Pleitner, 2014) and fascicle length in the human VL muscle (Chapter 5).  

Those individuals with shorter fascicles, therefore, may be expected to have larger 

pennation angles and thus produce greater force (Van Eijden et al., 1997; Blazevich, 2006).  

In the current chapter, however, there was no association between TTN genotype and any 

of the muscle strength phenotypes.  Furthermore, no TTN genotype group differences in 

pennation angle were observed in Chapter 5.  Despite the lack of association with muscle 

strength phenotypes, genotype differences in fascicle length may influence the length-

tension relationship of the muscle, such that those with longer fascicles (CC) would 

generate peak torque at greater knee joint angles (i.e. in the direction of full flexion), 

whereas those individuals with shorter fascicle lengths would generate peak torque at 

smaller knee joint angles (i.e. in the direction of full extension).  No differences in the 

optimal angle of peak MVCKE torque production, however, were observed between CC and 

CT genotype groups, although as the current sample did not contain any TT homozygotes, 

future research is warranted to confirm the current observations.   

 

7.5 Conclusions 

This chapter has identified a significant association between polymorphisms in the PTK2 

gene and VL muscle specific force, which is consistent with previous research conducted 

on the quadriceps femoris muscle group (Erskine et al., 2012).  The lack of association 

between muscle strength phenotypes and COL5A1 genotype suggests that this 

polymorphism does not influence muscle strength, and researchers are encouraged to 

perform similar investigations on more abundant skeletal muscle collagens such as, 
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collagen type I and collagen type III, in the future.  Additionally, no association between 

ACE I/D and ACTN3 R577X and any muscle strength phenotypes were observed, which adds 

to the growing body of research suggesting muscle strength in untrained populations is 

independent of ACE I/D or ACTN3 R577X genotype (Garatachea et al., 2012; McCauley et 

al., 2009; Gavin & Williams, 2010; Erskine et al., 2013; Thomis et al., 2004; Delmonico et 

al., 2007; Pereira et al., 2013).  Furthermore, it would appear that despite polymorphisms 

within CNTF, TRHR and TTN contributing to the inter-individual variability in some of the 

determinants of muscle strength and specific force, they do not significantly influence 

muscle strength.  Consequently, the extent and source of the genetic contribution to 

muscle strength remains unclear and it seems appropriate to adopt a polygenic approach 

when investigating this area in future.  
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8.1 Introduction 

Muscle strength is a polygenic trait dependent on many genetic variants, each making a 

small contribution to the observed inter-individual variability.  Previous research has 

highlighted that elite strength/power-trained athletes carry more of the favourable genetic 

variants for successful strength/power production than elite endurance athletes and non-

athletes (Ruiz et al., 2010).  In addition, a recent study explained between 3-9% of the inter-

individual variability in untrained isokinetic knee extensor strength, endurance and rectus 

femoris diameter by investigating the combined influence of multiple genetic 

polymorphisms (Thomaes et al., 2013).  Specifically, Thomaes et al (2013) reported the 

polygenic contribution to muscle strength and size in an untrained population, however, it 

should be noted that the authors selected the number of polymorphisms that were 

included in each phenotype-specific polygenic investigation.  Consequently, it is likely that 

this manipulation inflated the probability of identifying significant polygenic-phenotype 

associations than if all selected polymorphisms had been included for each phenotype. 

 

The multifactorial muscle strength phenotype is determined by a number of factors such 

as muscle architecture (Aagaard et al., 2001), size (Maughan et al., 1983), activation and 

co-activation capacity (Reeves et al., 2004a), tendon moment arm length (Tsaopoulos et 

al., 2006) and fibre type composition (Bottinelli et al., 1996).  Each of these factors is 

independently influenced to some extent by genetic factors (Abe et al., 2000; Chan et al., 

2008; Erskine et al., 2013; MacArthur et al., 2008; Karasik & Kiel, 2008; Thomis et al., 1997), 

therefore it is reasonable to assume that those genetic variants influencing muscle 

architecture or size, for example, may also confer a slight advantage/disadvantage for 
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muscle strength production.  Despite the absence of many significant associations between 

a number of genetic polymorphisms and muscle architectural, size and strength 

phenotypes in the earlier chapters of the current thesis (Chapter 5, 6 and 7), it is possible 

that by quantifying the cumulative effect of these genetic polymorphisms on skeletal 

muscle phenotypes, a greater proportion of the inter-individual variability in these 

phenotypes will be accounted for than when each polymorphism was investigated 

independently (Akey et al., 2001).  By adopting a polygenic approach, in which the 

cumulative effect of several non-significant tendencies (and some significant associations) 

between the genotypes and phenotypes of the previous chapters (Chapter 5, 6 and 7), the 

statistical power of the analysis is likely to increase, which may increase the potential for 

associations to approach statistical significance. 

 

Furthermore, when investigating individual genotype-phenotype associations 

independently, potential gene-gene interactions are not accounted for.  For example, 

Erskine et al. (2013) recently reported a significant combined effect of the ‘optimal’ 

angiotensin I-converting enzyme (ACE; DD/ID) and -actinin-3 (ACTN3; RR/RX) genotypes 

on knee extensor strength and power in untrained males.  This suggests that the influence 

of ACE genotype on untrained muscle strength and power is only significant when 

considered alongside the optimal ACTN3 genotype.  Contrastingly, there exist a number of 

other studies that report no significant combined effect of the ‘optimal’ ACE and ACTN3 

genotypes for muscle strength/power in untrained populations (Garatachea et al., 2012; 

McCauley et al., 2009).  Thus, further research into the combined effect of multiple genetic 

polymorphisms is warranted, but there exists a possibility that the  
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optimal genotypes of two or more of the genetic polymorphisms under investigation in  

the previous chapters (Chapter 5, 6 and 7) interact to alter muscle strength or size 

phenotypes to a greater extent than when investigated individually.  The aim of the current 

chapter, therefore, was to investigate the combined influence of eight common 

polymorphisms, located within genes previously associated with skeletal muscle 

phenotypes (Table 8.1), on skeletal muscle size and strength phenotypes. 

 

8.2 Methods 

Detailed descriptions of participant recruitment, assessment of skeletal muscle properties, 

and the genotyping of ACE (rs4341), ACTN3 (rs1815739), CNTF (rs1800169), COL5A1 

(rs12722), PTK2 (rs7843014 and rs7460), TRHR (rs7832552) and TTN (rs10497520) 

polymorphisms are included in Chapter 2 (section 2.1, 2.2 and 2.4, respectively), thus only 

a brief description of these methods is detailed below. 

 

8.2.1 Participants 

Untrained Caucasian males [n = 120, age 20.6 (2.3) yr, stature 1.79 (0.06) m and mass 75.1 

(10.1) kg; mean (SD)] volunteered to participate in this study.  All participants met the 

inclusion criteria (described in Chapter 2.1) and provided written informed consent prior 

to involvement. 

 

8.2.2 Skeletal muscle properties 

Maximal voluntary knee extension (MVCKE) and flexion (MVCKF) torque was measured at 

three knee joint angles to identify the optimal angle of peak torque production.  Agonist 

muscle activation (Eq 1) and antagonist muscle co-activation during MVCKE was determined 
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to enable the calculation of net MVCKE torque (Eq 2).  Measurement of vastus lateralis (VL) 

anatomical cross-sectional area (ACSA), by contour matching a series of transverse plane 

scans, was used in the estimation of VL muscle volume (Eq 3).  VL fascicle length, pennation 

angle and patellar tendon moment arm length were measured and used in the calculation 

of physiological cross-sectional area (PCSA; Eq 4), fascicle force (Eq 6) and tendon force (Eq 

5), respectively.  Ultimately, VL specific force was calculated by dividing VL fascicle force by 

VL PCSA (Eq 7).  Finally, dual energy x-ray absorptiometry (DXA) was used to quantify 

appendicular (TALM), arm (ALM) and leg lean mass (LLM), all of which were analysed 

excluding bone mineral content. 

   

8.2.3 Genotyping 

Genotyping was completed using the fluorophore-based detection technique of TaqMan® 

real-time PCR.  Genomic DNA amplification of fragments overlapping polymorphisms in the 

ACE, ACTN3, CNTF, COL5A1, PTK2, TRHR and TTN genes was completed for all participants. 

 

8.2.4 Data analysis 

The combined impact of all eight polymorphisms on muscle strength (MVCKE torque, net 

MVCKE torque and specific force) and size (VL ACSA, PCSA, volume, TALM, ALM, LLM and all 

measurements relative to body mass) phenotypes was assessed using a ‘favourable’ allele 

count (FAC) and total genotype score (TGS) for both strength (FACSTRENGTH and TGSSTRENGTH) 

and size (FACSIZE and TGSSIZE).  For each approach, the ‘favourable’ allele and genotype for 

muscle strength and size phenotypes was identified using previous literature and data from 

the current thesis (Table 8.2 and 8.3).   
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8.2.4.1‘Favourable’ allele count  

Following identification of the ‘favourable’ allele for each polymorphism, participants were 

categorised into one of five groups (0-3, 4-6, 7-10, 11-13, 14-16) based on the number of 

‘favourable’ alleles they possessed.  A one-way analysis of variance (ANOVA) was used to 

assess linear trend effects between FACSTRENGTH and muscle strength phenotypes, and 

FACSIZE and muscle size phenotypes.  Additionally, ANOVA was used to identify any group 

differences in muscle strength and size phenotypes for FACSTRENGTH and FACSIZE, respectively. 

 

8.2.4.2 Total genotype score  

To determine TGS, each genotype within each polymorphism was allocated a ‘genotype 

score’ (GS) of 0, 1 or 2.  Allocation of genotype scores was based on the assumption that 

allele effects were co-dominant, and homozygotes deemed to have the favourable 

genotype for the phenotypes of interest (muscle strength or size) were allocated a GS of 2, 

heterozygotes scored 1 and the non-favourable homozygotes scored 0.  Combination of 

each GS and transformation of the total score (Eq 8) allowed the combined influence of all 

eight gene variants on both muscle strength and size phenotypes to be quantified (Williams 

& Folland, 2008).   

 

Equation 8: TGS = (100/16) * (GSACE + GSACTN3 + GSCOL5A1 + GSCNTF + GSPTK2a + GSPTK2b + GSTRHR + GSTTN) 

(Eq 8) 

In this instance, GSPTK2a equates to the rs7843014 polymorphism and GSPTK2b equates to the 

rs7460 polymorphism.  Two TGS were calculated in the current chapter, one to represent 

the optimal profile for muscle strength phenotypes (TGSSTRENGTH) and another to reflect the 

optimal profile for muscle size phenotypes (TGSSIZE).  A TGSSTRENGTH of 100 is  
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representative of a polygenic profile hypothesized to demonstrate the highest MVCKE 

torque, net MVCKE torque and specific force, whereas a TGSSTRENGTH of 0 reflects a polygenic 

profile hypothesized to demonstrate the lowest MVCKE torque, net MVCKE torque and 

specific force.  Similarly, a TGSSIZE of 100 represents a polygenic profile which is 

hypothesized to demonstrate the greatest VL ACSA, PCSA, volume, TALM, ALM and LLM, 

and vice versa for a TGSSIZE of 0.  

 

8.2.4.3 Statistical analysis 

The frequency of each polymorphism was assessed for compliance with Hardy-Weinberg 

equilibrium using X2 tests.  Pearson’s correlation coefficients were conducted to ascertain 

whether an association existed between TGSSTRENGTH and MVCKE torque, net MVCKE torque 

and specific force, and between TGSSIZE and VL ACSA, PCSA, volume, TALM, ALM, LLM and 

all size measurements relative to body mass.  As the FACSTRENGTH and FACSIZE data did not 

meet the assumptions of parametricity, the non-parametric Kruskal-Wallis test was 

conducted to identify any differences between FACSTRENGTH and MVCKE torque, net MVCKE 

torque and specific force, and between FACSIZE and VL ACSA, PCSA, volume, TALM, ALM and 

LLM, and all size phenotypes relative to body mass.  Spearman’s rank correlation coefficient 

was used to identify any linear associations between FACSTRENGTH, FACSIZE and their 

respective phenotypes.  All statistical analyses were performed using SPSS version 19.0 and 

statistical significance was accepted when P ≤ 0.05.    
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8.3 Results 

Genotype frequencies for polymorphisms in ACE, ACTN3, CNTF, COL5A1, PTK2, TRHR and 

TTN were all in Hardy-Weinberg equilibrium (P ≥ 0.436).   

 

8.3.1 Favourable allele count 

No significant differences between FACSTRENGTH groups were observed for MVCKE torque (P 

= 0.715), net MVCKE torque (P = 0.843) or specific force (P = 0.468; Figure 8.1).  Similarly, no 

significant linear trends were evident between FACSTRENGTH groups for any of the muscle 

strength phenotypes (r ≤ 0.087, P ≥ 0.345).   

 

Furthermore, no significant differences were observed between FACSIZE groups and VL 

ACSA (P = 0.292), PCSA (P = 0.727), volume (P = 0.572), TALM (P = 0.596), ALM (P = 0.556) 

or LLM (P = 0.642; Figures 8.2).  Additionally, no linear trend effects were observed 

between FACSIZE groups for any of the muscle size phenotypes (r ≤ 0.101, P ≥ 0.271).  No 

significant differences were observed between FACSIZE groups and any muscle size relative 

to body mass phenotypes (P ≥ 0.162), nor were any linear trend effects observed (r ≤ 0.073, 

P ≥ 0.430). 

 

8.3.2. Total genotype score 

None of the participants in the current chapter had the minimal (0) or maximal (100) 

TGSSTRENGTH or TGSSIZE.  Scores ranged from 13-81 for TGSSTRENGTH and 6-81 for TGSSIZE.  No 

significant correlations between the TGSSTRENGTH and MVCKE torque (r = 0.040, P = 0.331), 

net MVCKE torque (r = 0.055, P = 0.274), or specific force (r = 0.071, P = 0.220) were 

observed.  Similarly, no significant correlations were identified between the TGSSIZE and  
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Figure 8.1. Favourable allele count (FACSTRENGTH; grey bars), MVCKE torque (black squares 
with solid line) and net MVCKE torque (black circles with dashed line) (A); FACSTRENGTH (grey 
bars) and vastus lateralis specific force (B).  Data are presented as means (SD). 
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Figure 8.2. Favourable allele count (FACSIZE; grey bars) and, vastus lateralis (VL) anatomical 
cross-sectional area (A); FACSIZE and VL physiological cross-sectional area (B); and FACSIZE 
and VL muscle volume (C).  Data are presented as means (SD). 
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VL ACSA (r = 0.059, P = 0.263), PCSA (r = 0.020, P = 0.415), muscle volume (r = 0.033, P = 

0.360), or any measure of lean mass (r ≤ 0.089, P ≥ 0.166).  Furthermore, there was a 

tendency for a weak correlation between TGSSIZE and VL PCSA relative to body mass (r = 

0.150, P = 0.051), although no significant correlations were observed between the TGSSIZE 

and any of the other muscle size relative to body mass phenotypes (r ≤ 0.085, P ≥ 0.178). 

 

8.4 Discussion 

The current chapter aimed to identify the combined influence of polymorphisms within 

ACE, ACTN3, CNTF, COL5A1, PTK2, TRHR and TTN for associations with skeletal muscle 

strength and size phenotypes in an untrained, apparently healthy population.  No 

significant associations were apparent between either of the calculated favourable allele 

counts (FACSTRENGTH or FACSIZE) and their respective muscle strength and size phenotypes.  

Similarly neither of the polygenic profiles (TGSSTRENGTH or TGSSIZE), including all eight of the 

aforementioned polymorphisms, were significantly associated with any of the muscle 

strength or size phenotypes. 

 

Interestingly none of the participants in the current chapter possessed as few as one or 

none of the favourable alleles, or as many as 14, 15 or all of the favourable alleles.  The 

average number of favourable alleles in possession was eight for muscle strength and seven 

for muscle size phenotypes.  It is possible that those individuals possessing 14 or more 

favourable alleles are predisposed to athletic success, whereas those individuals in 

possession of one or fewer favourable alleles may be predisposed to skeletal muscle 

disorders, and consequently it is possible that those individuals at the extremes of this 

range did not meet the criteria of being untrained and healthy for inclusion within the 
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current research.  For instance, CNTF deficiency has been observed in individuals with early 

onset multiple sclerosis (Giess et al., 2002), whereas mutations in COL5A1 have been linked 

to the development of Ehlers-Danlos syndrome (Voermans et al., 2008).  Furthermore, an 

overrepresentation of ACE ‘D’ and ACTN3 ‘R’ alleles in elite strength/power trained athletes 

has been observed independently in a number of different athlete groups (Druzhevskaya 

et al., 2008; Nazarov et al., 2001; Roth et al., 2008).  This suggests, therefore, that the FAC 

and TGS observed in the current chapter may be accurate representations of an untrained 

and apparently healthy population. 

 

Although no significant associations between the polygenic profile and muscle strength 

phenotypes were observed in the current study, these findings are in agreement with a 

recent study on a population of untrained, elderly males (Thomaes et al., 2013).  This recent 

study reported no significant associations between isometric MVCKE strength and FAC 

based on four different polymorphisms to the eight used to calculate FACSTRENGTH in the 

current chapter.  Together these findings might reflect the highly polygenic nature of 

isometric MVCKE strength, which in the current investigation and that of Thomaes et al. 

(2013) may have been inadequately captured by including too few contributory 

polymorphisms in the FAC and TGS models.  Despite observing few significant associations 

between muscle strength phenotypes and the polymorphisms in the previous chapter 

independently (Chapter 7), all eight of these polymorphisms exist within genes encoding 

proteins involved in skeletal muscle function (Table 8.1).  A potential polygenic influence 

of these polymorphisms on skeletal muscle strength phenotypes, therefore, would seem 

reasonable.  Furthermore, it appears probable that as new polymorphisms influencing 

muscle strength are discovered, and more are included within polygenic profiles, the 
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cumulative effect of these insignificant associations may begin to approach statistical 

significance, however, as this happens the probability of an individual possessing the 

optimal TGS (i.e. 100) will decrease accordingly (Williams & Folland, 2008).  An alternative 

explanation for the lack of associations between the polygenic profiles and muscle strength 

phenotypes is that other yet undiscovered polymorphisms contribute substantially to 

skeletal muscle strength in an untrained population.  To ascertain which of these 

hypotheses is correct, future research is warranted to continue identifying new 

polymorphisms using genome-wide association studies and candidate gene approaches 

before more extensive polygenic profiles can be investigated.   

 

In contrast with previous literature, the current chapter observed no associations between 

either of the polygenic profiles and any muscle size phenotypes, although a tendency 

between TGSSIZE and VL PCSA relative to body mass was evident.  A recent study reported 

a significant positive correlation between rectus femoris diameter and FAC based on five 

different polymorphisms to those included in the current chapter (Thomaes et al., 2013).  

Evident methodological differences exist between the current chapter and that of the 

earlier study, particularly in the assessment of muscle size and the muscle of interest, which 

may explain this discrepancy.  However, it is possible that the polymorphisms included in 

the polygenic profile of the earlier study are more influential for muscle size than those 

included in the current chapter.  Nonetheless, this does not exclude the possibility of 

potential gene-gene interactions between these two sets of polymorphisms, and additional 

polymorphisms, from associations with muscle size phenotypes.  Consequently, it is 

evident that there is a requirement for future research to investigate the polygenic 

influence on skeletal muscle phenotypes, in particular muscle size. 
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It is important to note that polygenic profiling using the models chosen in the current 

chapter is not without its limitations.  Perhaps most notably is the identification of the 

favourable allele, and therefore the allocations of scores to each genotype.  Due to the 

paucity of research available on some polymorphisms, scores were sometimes based on 

the associations and non-significant tendencies apparent within the data of the previous 

chapters (Chapter 5, 6 and 7).  However, in instances where an extensive body of literature 

existed and multiple independent replications had occurred, or when the findings of the 

current thesis were comparable to those of previous research, identification of the 

favourable allele, and thus allocation of genotype scores was perhaps more justified.    

Allocation of genotype scores was based on the assumption that allele effects were co-

dominant and the difference between each possible genotype score was therefore equal.  

Several authors, however, have suggested weighting the genotype scores, and 

polymorphisms, according to their influence on the phenotype (Williams & Folland, 2008; 

Hughes et al., 2011).  Although a recent attempt to use this approach has been documented 

within the literature (Massidda et al., 2013), research on the discrete contribution of each 

polymorphism to the phenotype is lacking.  Until more research identifying the 

deterministic power of polymorphisms is undertaken, adopting this approach would be 

premature. 

 

8.5 Conclusion 

In conclusion, there was no significant polygenic influence of ACE, ACTN3, CNTF, COL5A1, 

PTK2, TRHR and TTN on muscle strength and size phenotypes in an untrained, apparently 

healthy population when applying the mathematical and statistical models used in the 
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current chapter.  However, previous studies using the same or similar models have 

identified significant polygenic profiles, and have included some of the same 

polymorphisms to those of the current chapter (Thomaes et al., 2013; Ben‐Zaken et al., 

2013).  Future research including greater combinations of polymorphisms is therefore 

necessary to identify potential gene-gene interactions relevant for muscle strength and 

size.  Furthermore, although there are several limitations of polygenic profiling, researchers 

should be encouraged to continue developing the existing polygenic approaches and 

models to eventually incorporate accurate genotype and polymorphism weightings that 

will allow more valid estimations of the polygenic influence on skeletal muscle phenotypes. 



 

 
 

Chapter 9 

General discussion 
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9.1 Overview 

Skeletal muscle strength is a key determinant of an individual’s ability to perform activities 

of daily living and achieve peak physical performance (Thompson et al., 2004; Beunen & 

Thomis, 2004).  Following a review of the existing literature in Chapter 1, it is evident that 

muscle strength is multifactorial and is influenced by both intrinsic and extrinsic factors.  

An interesting recurrent observation is the considerable differences that exist between 

individuals in their muscle strength, and in their responses to such extrinsic factors.  

Furthermore, previous research investigating phenotypes related to skeletal muscle 

structure and function has identified a genetic influence on muscle strength and some of 

its determinants, which may partly explain the inter-individual variability evident in muscle 

strength.  Consequently, the overall aim of the work presented in the current thesis was to 

investigate some of the genetic contribution to the inter-individual variability within 

skeletal muscle strength and some of its determinants, which may have identified novel 

genes or gene variants as targets for new treatments or interventions for sarcopenia and/or 

cachexia, for example, in future.  More specifically, the objectives were: 

 

1. To investigate the extent of inter-individual variability within skeletal muscle 

strength and some of its determinants in healthy, untrained males. 

2. To determine whether eight gene polymorphisms in seven separate genes (ACE, 

ACTN3, CNTF, COL5A1, PTK2, TRHR and TTN) are associated with skeletal muscle 

strength and/or some of its determinants in healthy, untrained males. 

3. To investigate whether polygenic profiles comprising these eight gene 

polymorphisms are associated with skeletal muscle strength and/or some of its 

determinants in healthy, untrained males. 



Chapter 9   General discussion                                                                              
 
 

 190 

 

9.2 Main findings and implications for future research 

The main findings of the current thesis are discussed in the subsequent sections of this 

chapter.  Briefly, the data confirm the extent of inter-individual variability previously 

observed in human muscle specific force and isometric maximal voluntary contraction 

(MVC) torque; and thereby demonstrate that the calculation of vastus lateralis (VL) specific 

force explains little of the inter-individual variability observed in isometric MVC torque 

(Chapter 4).  Additionally, by establishing normative data inclusive of the inter-individual 

variability in some of the determinants of muscle strength, the first study objective was 

achieved (Chapter 4).  Completion of the second study objective revealed a number of 

associations between some of the polymorphisms and skeletal muscle phenotypes of 

interest.  Most notably, A-allele carriers of the ciliary neurotrophic factor (CNTF) rs1800169 

polymorphism demonstrated greater VL pennation angle (Chapter 5) and muscle thickness 

(Chapter 6) than GG homozygotes, despite CNTF genotype not associating with other VL 

muscle size phenotypes (Chapter 6), VL fascicle length (Chapter 5), isometric MVCKE torque 

or VL specific force (Chapter 7).  The significance of titin (TTN) genotype for VL fascicle 

length was established for the first time in human skeletal muscle in Chapter 5, although 

this association did not appear to influence the optimal angle for peak torque production 

(Chapter 7).  Within the protein tyrosine kinase 2 (PTK2) gene, both the rs7843014 and 

rs7460 polymorphisms were associated with VL specific force, thus confirming the 

observations of a previous smaller cohort study (Erskine et al., 2012), and provides the first 

independent replication of an association between PTK2 and muscle specific force (Chapter 

7).  Similarly, the association between thyrotropin-releasing hormone receptor (TRHR) 

genotype and measures of appendicular lean mass indicates the first independent 
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replication of these data in a young, Caucasian male population (Chapter 6).  Furthermore, 

despite TRHR associating with appendicular lean mass, no genotype associations with 

measures of VL muscle size were evident (Chapter 6).  Finally, incorporating all eight of the 

aforementioned polymorphisms into a polygenic profile revealed no significant polygenic 

influence on muscle strength or size phenotypes in the untrained Caucasian population of 

the current thesis (Chapter 8). 

 

9.2.1 Inter-individual variability 

Prior to investigating the genetic influence on muscle strength and/or its determinants it 

was important to identify the extent of inter-individual variability within each of these 

phenotypes for a relatively large, homogeneous sample using the methods of the current 

study.  Although Erskine et al. (2009) have previously reported the inter-individual 

variability of isometric MVCKE torque [coefficient of variation (CV) = 17.8%] and quadriceps 

femoris specific force (CV = 16.2%), this was conducted using a slightly different method, 

using gold standard equipment (specifically MRI to determine VL muscle volume), and a 

smaller cohort than that of the current study (n = 27 vs. 73 in Chapter 4).  Throughout the 

current thesis, MRI was not available for assessing VL muscle volume or patellar tendon 

moment arm length in all individuals.  Thus, Chapter 3 was conducted to assess the 

reliability of an alternative method of measuring muscle specific force, more specifically to 

identify the reliability of using ultrasound to assess VL anatomical cross-sectional area 

(ACSA) for subsequent use in the estimation of VL muscle volume.  Triangulation of multiple 

statistical tests (coefficient of variation, intra-class correlation coefficient and ratio limits 

of agreement) demonstrated very good agreement between the repeated measurements 

of VL muscle volume and specific force, amongst other measurements of muscle function 
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and morphology.  Furthermore, the values of muscle function and morphology, specifically 

muscle size, obtained in Chapter 3 were comparable with those data obtained by previous 

research utilising gold standard techniques to measure VL muscle volume (Erskine et al., 

2009), VL muscle architecture (Erskine et al., 2009; Reeves et al., 2004b) and quadriceps 

femoris muscle function (Erskine et al., 2009; Reeves et al., 2009).  This suggests therefore, 

that the methods used to measure VL muscle size reported in Chapter 3 are reliable enough 

to allow for the accurate quantification of inter-individual variability in VL ACSA, 

physiological cross-sectional area (PCSA) and muscle volume.  Consequently, these 

methods were utilised throughout the subsequent chapters (Chapters 4-8). 

 

Muscle size is generally considered to be the greatest determinant of muscle strength 

(Maughan et al., 1983; Knuttgen, 1976), with approximately 50% of the inter-individual 

variability in MVCKE torque previously attributed to differences in quadriceps femoris ACSA 

(Maughan et al., 1983; Maughan et al., 1984; Kanehisa et al., 1994).  In pennate-fibred 

muscles, such as the constituents of the quadriceps femoris, however, ACSA 

underestimates the PCSA, and it is the PCSA that is understood to be the primary 

determinant of maximal muscle force production (Powell et al., 1984).  Measurements of 

muscle architecture, activation capacity and co-activation during maximal voluntary 

contractions, and tendon moment arm length at the optimum joint angle allows for the 

calculation of muscle specific force, as described in Chapter 4.  Despite accounting for 

potential differences within each of these determinants when calculating muscle specific 

force, inter-individual variability in specific force is evident (Maughan et al., 1983; Erskine 

et al., 2009; Narici et al., 1992; Chow et al., 1999; Gorgey et al., 2006; Reeves et al., 2004c).  

However, due to a variety of methodological inconsistencies between previous reports of 
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VL or quadriceps femoris specific force, there was a requirement to establish a normative 

set of data on the inter-individual variability in specific force, which was achieved in 

Chapter 4 on a relatively large, homogeneous sample.  Additionally, because some of the 

measurements necessary for the calculation of muscle specific force could be identified as 

more or less stringent than other measurements, for example PCSA compared to ACSA, it 

was also appropriate to establish normative data on each of the determinants of VL specific 

force.  By establishing a normative set of data on the inter-individual variability in the 

determinants of muscle specific force, it was apparent that the use of more stringent 

measures of muscle strength and size did not consistently equate to reduced inter-

individual variability within these measurements.  For instance, the inter-individual 

variability in the more stringent measurement of VL fascicle force was approximately 5% 

less than that identified in isometric MVCKE torque, whereas the inter-individual variability 

in the more stringent measurement of VL PCSA was approximately 3% greater than that in 

ACSA.   Despite this, a somewhat stronger correlation was observed between the more 

stringent measurements of VL fascicle force and VL PCSA (r2 = 0.68) than that between 

isometric MVCKE torque and VL ACSA (r2 = 0.57), albeit these correlation coefficients were 

not significantly different.  As specific force is ultimately calculated using the more stringent 

measurements (VL fascicle force/ VL PCSA; Eq 7), it was expected that the inter-individual 

variability in VL specific force would be lower than that in isometric MVCKE torque.  

Although the inter-individual variability in VL specific force (13.5%) was lower than that in 

isometric MVCKE torque (18.9%), accounting for all of the aforementioned determinants 

did not appreciably reduce this variability.  Thus, it is probable that differences in the 

intrinsic force-generating capacity of individual fibres exist which contribute to the 

observed inter-individual variability in VL specific force.  For example, differences in fibre 
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type composition are influenced to some extent by genetic factors (Simoneau & Bouchard, 

1995) and may contribute to the observed inter-individual variability in VL specific force.  

Only one previous study investigating the genetic influence on muscle specific force exists 

(Erskine et al., 2012), and there are currently no studies reporting the polygenic influence 

on muscle specific force to the author’s knowledge.  Subsequently, the aim of Chapters 5-

8 was to identify if any associations between eight common gene polymorphisms and 

skeletal muscle architectural, size and strength phenotypes were apparent.   

 

9.2.2 Ciliary neurotrophic factor 

The rationale for including each of the eight gene polymorphisms was established in 

Chapter 1 following a review of existing literature; there was evidence to suggest that each 

of the selected polymorphisms may be associated with skeletal muscle strength and/or 

some of its determinants.  For instance, an association between muscle fibre number 

and/or volume (Peroulakis & Forger, 2000; Bengston et al., 1996; Forger et al., 1995) and 

CNTF has been demonstrated previously, which may indicate a link between CNTF and both 

muscle architecture and size.  Accordingly, an association between CNTF and VL fibre 

pennation angle was observed in Chapter 5, with A-allele carriers demonstrating larger 

pennation angles than GG homozygotes.  Similarly, A-allele carriers were also identified as 

having thicker VL muscles than their GG counterparts, a complementary finding 

considering the muscle size dependence of pennation angle in pennate muscles such as the 

VL (Kawakami et al., 2006).  

 

Previous research has demonstrated a link between CNTF and a reduction in fibre 

degeneration, an increased fibre number (Peroulakis & Forger, 2000) and an increased fibre 



Chapter 9   General discussion                                                                              
 
 

 195 

cross-sectional area (CSA) (Guillet et al., 1999).  It is reasonable to assume, therefore that 

those individuals able to produce the functioning CNTF protein, GG homozygotes, would 

exhibit the greatest muscle thickness and thus larger pennation angles, whereas in the 

current investigation it is the A-allele carriers who exhibit the greatest muscle thickness 

(Chapter 6) and larger pennation angles (Chapter 5).  Furthermore, as both VL muscle 

thickness and pennation angle were associated with CNTF, it is somewhat surprising that 

this association was not continuous with other measures of muscle size (VL ACSA, PCSA and 

volume).  Whilst it is probable that the inter-individual variability in VL muscle and fascicle 

length (Chapter 4) may explain the lack of association between CNTF, VL PCSA and volume, 

the reason underlying the lack of association between CNTF and VL ACSA is less clear.  

 

Increases in fibre number (hyperplasia) and/or fibre CSA (hypertrophy) offer potential 

explanations as to how CNTF influences VL muscle thickness and pennation angle.  

However, as VL muscle fibre number and fibre CSA were not assessed in the present work, 

the mechanism by which CNTF influences muscle thickness and pennation angle remains 

unclear.  Evidence exists to suggest that, although CNTF genotype remains stable 

throughout an individual’s lifetime, muscle fibre number is determined before birth 

(Alberts et al., 2008; Rehfeldt et al., 1999) and hyperplasia does not occur thereafter 

(MacDougall et al., 1984; McCall et al., 1996).  Furthermore as muscle fibre hypertrophy is 

extensively reported in response to functional overload (McCall et al., 1996; MacDougall et 

al., 1980; Widrick et al., 2002), it appears reasonable to assume that the association 

observed between CNTF genotype and VL muscle thickness in Chapter 6 was more likely 

due to fibre hypertrophy rather than hyperplasia, however, future research measuring the 

differences in fibre CSA is necessary to confirm this hypothesis.   
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As stated previously, the association between muscle size and muscle strength is well 

established (Maughan et al., 1983; Knuttgen, 1976).  Furthermore, moderate pennation 

angles (<25)(Blazevich, 2006), reportedly increase force production by allowing a greater 

quantity of contractile material to attach to the tendon or aponeurosis, therefore, 

increasing PCSA for any given muscle volume; and secondly by allowing fibres to function 

closer to their optimum length (Blazevich, 2006).  Consequently, due to the 

aforementioned associations with VL muscle thickness and pennation angle, an association 

between CNTF and muscle strength phenotypes was investigated in Chapter 7.  Consistent 

with some previous research, no significant association between CNTF and isometric MVCKE 

torque was observed (De Mars et al., 2007).  Contrastingly, however, other literature has 

demonstrated that CNTF is associated with knee extension concentric torque (Roth et al., 

2001; De Mars et al., 2007), which considering the data from Chapter 5 and 6, could be the 

consequence of allowing for a greater fascicle gearing ratio (Wakeling et al., 2011).   

 

Muscle fascicle gearing is the process by which muscle fibre shortening and lengthening 

velocities are limited to maintain sarcomere length close to its optimum throughout the 

joint range of motion, and different contraction intensities and speeds (Wakeling et al., 

2011).  Greater fascicle gearing ratios, determined by smaller pennation angles and muscle 

thickness, are therefore likely to confer an advantage for force production during muscle 

shortening contractions.  Accordingly, lower concentric MVCKE torques have been observed 

by AA homozygotes compared to G-allele carriers (Roth et al., 2001; De Mars et al., 2007), 

which might identify the CNTF G-allele or GG genotype as influential for muscle power 
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production, although this remains speculative at this stage and warrants further 

investigation.   

 

9.2.3 Titin  

TTN, a template for myofibrillar protein assembly in the muscle sarcomere, was associated 

with VL fascicle length but not pennation angle (Chapter 5), or any muscle strength 

phenotypes (Chapter 7).  The mechanism(s) responsible for the association between TTN 

and VL fascicle length observed in Chapter 5 is unclear, however, the author has speculated 

that the presence of the T-allele, associated with shorter VL fascicles, may affect TTN 

splicing which may increase the expression of a smaller TTN isoform within the fascicles of 

heterozygotes.  Earlier studies in rat cardiac muscle have demonstrated a link between TTN 

and alternative isoform splicing (Greaser et al., 2005), and more recently, TTN has been 

associated with both cardiac and skeletal muscle sarcomere length (Greaser et al., 2008; 

Greaser & Pleitner, 2014).  Furthermore, considering the observed association between 

TTN genotype and VL fascicle length, it is possible that other skeletal muscle phenotypes, 

such as joint range of motion and/or maximum velocity of shortening, may be influenced 

by TTN genotype and more research is warranted to investigate these potential 

associations. 

 

Evidence exists to suggest that within pennate muscles, those individuals with shorter 

muscle fascicles have correspondingly larger pennation angles and are more suited to 

producing higher forces and/or working over a smaller range of motion (Blazevich, 2006; 

Van Eijden et al., 1997).  Therefore, the lack of association between TTN and VL fascicle 

pennation angle might explain the lack of association between TTN and muscle strength 
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observed in Chapter 7.  It is pertinent to state that the current sample comprised no TT 

homozygotes, and although this is reflective of the low frequency of the T-allele within a 

Caucasian population (CEU HapMap), may indicate that an association between TTN and 

either VL fascicle pennation angle or muscle strength cannot be ruled out.  Future research 

is warranted to investigate these potential associations on larger sample sizes comprising 

meaningful genotype group sizes.  More specifically, based on the T-allele frequency 

observed in the current thesis, future studies would require ~1800 participants to obtain a 

TT homozygous group of ~20 individuals.  Despite this, the genotype differences observed 

in VL fascicle length may influence the length-tension relationship of the VL muscle.  For 

instance, CC homozygotes, which in Chapter 5 possessed longer VL fascicles, would in 

theory experience a rightward shift in their length-tension relationship and would 

therefore generate peak torque at greater knee joint angles than T-allele carriers with 

shorter fascicles.  In Chapter 7, however, no significant differences in the optimal angle of 

peak MVCKE torque production were observed between CC and CT genotype groups, 

although again as the current sample did not contain any TT homozygotes it is necessary 

for further research to replicate these findings independently. 

 

9.2.4 Alpha-actinin-3 

No associations between ACTN3 genotype and VL muscle fascicle length or pennation angle 

(Chapter 5) were apparent in the current thesis.  This is the first study to the author’s 

knowledge to investigate ACTN3 in relation to muscle architecture, however, previous 

research has identified differences in sarcomere Z-disc width according to the quantity of 

-actinin proteins present within the sarcomere (Luther et al., 2003; Luther, 2009).  Thus, 

ACTN3 was selected as an appropriate candidate gene for such an investigation.  Since 
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there are no substantial deleterious consequences of lacking the ACTN3 protein on muscle 

structure (North et al., 1999), probably due to a compensatory upregulation of the -

actinin-2 isoform (Mills et al., 2001), there appears to be no influence of ACTN3 on VL 

muscle architecture in untrained, healthy males.  

 

Additionally, associations between ACTN3 and VL muscle volume, PCSA, ACSA, thickness 

and measures of lean body mass were investigated in Chapter 6.  As type II fibres are known 

to have larger fibre CSAs than type I fibres (Bottinelli et al., 1996) and RR homozygotes, 

who are able to produce the fully-functioning ACTN3 protein, have been reported to 

possess a greater percentage of type II fibres, R-allele carriers were expected to have a 

greater muscle size than XX homozygotes.  The findings of Chapter 6, however, 

demonstrated a significant association between ACTN3 genotype and VL PCSA only, and 

this was regardless of the lack of genotype group differences observed in VL fascicle length 

and muscle volume, the determinants of VL PCSA.  Previous research, has demonstrated 

significant associations between ACTN3 and quadriceps femoris muscle volume (Erskine et 

al., 2013) and thigh muscle CSA (Zempo et al., 2010).  Together, these findings might 

suggest the influence of ACTN3 on measures of individual muscle size, such as the VL of the 

current thesis, is only modest.  However when multiple phenotypes, each experiencing a 

modest influence of ACTN3, are investigated in combination, such as the quadriceps 

femoris muscle volume, thigh muscle CSA or in the calculation of muscle PCSA, a detectable 

genotype association is apparent. 

 

Considering PCSA is understood to be the primary determinant of maximal muscle force 

production in pennate muscles, such as the VL (Powell et al., 1984), an association between 
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ACTN3 and VL muscle strength could be expected.  However, no associations between 

ACTN3 genotype groups and any VL muscle strength phenotypes were observed in the 

current thesis, which is consistent with previous reports in untrained populations (Gavin & 

Williams, 2010; McCauley et al., 2009; Santiago et al., 2010), although a number of 

contradictory reports do exist (Garatachea et al., 2012; Pereira et al., 2013).  It is possible 

that other factors, such as tendon moment arm length, voluntary activation capacity and 

antagonist co-activation, which contribute to the inter-individual variability in isometric 

MVCKE torque and net torque (Reeves et al., 2004c), may explain the lack of association 

between ACTN3 genotype and these muscle strength phenotypes.  However, when all of 

these additional variables were accounted for in the calculation of VL muscle specific force, 

no discernible contribution of ACTN3 genotype to the phenotype was observed.  Following 

these independent replications in untrained populations, each reporting no influence of 

ACTN3 on muscle strength, it appears that muscle strength within this population may be 

independent of ACTN3 genotype.  This is unlike in athletic populations, where extensive 

reports have associated the ACTN3 R-allele with increased muscle strength and/or power 

(Eynon et al., 2013), and may indicate a genotype interaction with exercise training 

(Clarkson et al., 2005), which should be investigated further. 

   

9.2.5 Thyrotropin-releasing hormone receptor 

Thyrotropin-releasing hormone (TRHR) was investigated for associations with skeletal 

muscle mass, size (both Chapter 6) and strength (Chapter 7), having previously been 

associated with measures of lean mass and strength following the use of genome-wide 

association studies (GWAS)(Liu et al., 2009).  In Chapter 6, TRHR rs7832552 was significantly 

associated with measures of appendicular lean mass but not total body lean mass or any 



Chapter 9   General discussion                                                                              
 
 

 201 

muscle size phenotypes.  Individuals homozygous for the T-allele possessed the greatest 

leg, arm and total appendicular lean mass, with a linear trend observed such that CC 

homozygotes possessed the smallest leg, arm and total appendicular lean mass.  Whilst it 

is well established that the binding of thyrotropin-releasing hormone to TRHR regulates the 

secretion of thyroid-stimulating hormone, the underlying mechanism(s) responsible for the 

observed association between TRHR and appendicular lean mass remains unclear and 

warrants further research.  

 

Liu et al. (2009) suggested the rs7832552 polymorphism as being influential for lean body 

mass in their GWAS, and identified the T-allele as being associated with increased lean 

mass, thus demonstrating the findings of Chapter 6 are in agreement with Liu et al. (2009).  

Furthermore, a recent independent replication of this earlier investigation observed no 

significant associations between TRHR rs7832552 and any measure of appendicular lean 

mass (Lunardi et al., 2013).  This discrepancy may be explained by differences in sample 

population, with young males being recruited in the current thesis compared to older 

females in the recent investigation (Lunardi et al., 2013), as females are known to have 

fewer muscle fibres and smaller fibre CSAs than males (Henriksson-Larsen et al., 1985; Sale 

et al., 1987).  Nonetheless, these contrasting findings highlight the necessity for future 

research to attempt independent replications to identify the extent of the influence of 

TRHR on indices of lean mass, specifically in a female population and in individuals of all 

ages. 

 

Lean mass is known to correlate with muscle strength (r = 0.30-0.79)(Maughan et al., 1983; 

Reed et al., 1991), therefore an association between TRHR and the muscle strength 
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phenotypes measured in Chapter 7 was expected.  No association, however, was observed 

between TRHR and isometric MVCKE torque, net MVCKE torque or VL specific force, which 

is comparable with a previous report investigating TRHR rs7832552 genotype and isokinetic 

MVCKE torque (Lunardi et al., 2013).  It is possible that the influence of TRHR on muscle 

strength is so modest that it remained undetected during the current assessment of the 

knee extensors.  Similarly, a modest influence of TRHR on muscle size might also explain 

the lack of associations observed between TRHR and VL muscle volume, PCSA, ACSA and 

thickness in Chapter 6.  Therefore, assessing multiple muscles when investigating 

genotype-associations with muscle size, such as the entire quadriceps femoris, and 

strength, such as during a maximal back squat, may be necessary to ascertain if TRHR 

contributes to muscle size and strength in an untrained male population. 

 

9.2.6 Protein tyrosine kinase 2 

PTK2 was investigated for associations with VL muscle architecture (Chapter 5), VL muscle 

size, lean mass (both Chapter 6), and muscle strength (Chapter 7).  No significant 

associations between PTK2 and VL muscle architecture, muscle size or lean mass were 

observed, despite both rs7843014 and rs7460 being significantly associated with VL muscle 

specific force in Chapter 7 and in a previous report (Erskine et al., 2012).  As PTK2 encodes 

focal adhesion kinase (FAK), a protein integral for the formation and turnover of muscle 

costameres (Quach & Rando, 2006), which have a major role in effective lateral force 

transmission, expecting an association between polymorphisms within this gene and VL 

specific force was justified. 
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In Chapter 7, it was the A-allele (rs7843014) and T-allele (rs7460) homozygotes that 

demonstrated greater VL specific force than their C-allele and A-allele carrying 

counterparts respectively.  Although the mechanism underlying this significant association 

between PTK2 and VL specific force is unclear, FAK-null cells demonstrate enhanced 

contractile properties, form stronger adhesions and migrate at a slower rate than their 

wild-type counterparts (Ilic et al., 1995; Chen et al., 2002; Ren et al., 2000).   Although it is 

unlikely that either the rs7843014 or rs7460 polymorphisms would elicit comparable 

effects to the FAK-null cells, the AA and TT genotypes might alter the magnitude, location 

and timing of gene expression and subsequent differences in FAK expression might 

contribute to this observed association.  A recent study reported a possible association 

between the CC (rs7843014) and TT (rs7460) genotype and lower gene expression 

(Garatachea et al., 2014).  Therefore, the association between the TT (rs7460) genotype 

and increased VL specific force observed in Chapter 7 could be attributed to an increased 

costamere density as a consequence of a lower gene expression.  The association between 

the AA (rs7843014) genotype, associated with higher gene expression according to 

Garatachea et al. (2014), and increased VL specific force, however, is more complex.  A 

plausible explanation is the rs7843014 polymorphism is non-functional and is acting as a 

marker for the functional rs7460 polymorphism due to linkage disequilibrium. 

 

Nonetheless the data presented in Chapter 7 are in agreement with those of Erskine et al. 

(2012) who also reported increased muscle specific force production by AA and TT 

homozygotes, therefore Chapter 7 provides the first independent replication of the 

findings from this previous smaller cohort study and together these suggest that PTK2 

genotype does influence muscle specific force.  There is a requirement, however, for future 
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research to extend these observations to different muscles and population samples to 

ascertain if the findings of Chapter 7 and Erskine et al. (2012) are specific to the quadriceps 

of untrained Caucasian males or if these findings can be replicated, for example, in the 

upper limb, females and/or other ethnic groups. 

  

9.2.7 Angiotensin I-converting enzyme 

Investigations of angiotensin I-converting enzyme (ACE) genotype are reported in Chapter 

6 and 7.  ACE genotype has previously been associated with strength (DD genotype) and 

endurance (II genotype) performance (Nazarov et al., 2001; Woods et al., 2001), and 

cardiac and skeletal muscle hypertrophy (Montgomery et al., 1997; Folland et al., 2000), 

due to its role in catalysing the production of angiotensin II within the renin-angiotensin 

system (Rigat et al., 1990), and was therefore considered an appropriate candidate gene.  

The data indicated there were no significant associations between ACE genotype and any 

of the measured muscle size or strength phenotypes in untrained, healthy males.  These 

data are comparable to previous research that reported no association between ACE 

genotype and measures of handgrip and elbow flexion strength (Garatachea et al., 2012; 

Thomis et al., 2004) and lower limb muscle power (Pereira et al., 2013; Erskine et al., 2013) 

in untrained populations.  Additionally, the current data offer an independent replication 

in a relatively large cohort, which confirms two earlier investigations also reporting that 

knee extensor muscle strength and size is independent of ACE genotype (Erskine et al., 

2013; McCauley et al., 2009).   Thus, suggesting that the influence of ACE genotype on 

untrained muscle strength and size is minimal, however, the influence of ACE genotype on 

these phenotypes in response to strength training in an untrained population is less clear 
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and should be investigated further (Erskine et al., 2013; Thomis et al., 2004; Frederiksen et 

al., 2003). 

 

9.2.8 Collagen type V alpha 1 

The results from investigations into the influence of collagen type V alpha 1 (COL5A1) on 

muscle architectural and strength phenotypes are presented in Chapters 5 and 7.  COL5A1 

encodes the 1 chain of collagen type V, which associates with collagen types I and III in 

skeletal muscle ECM (Collins & Posthumus, 2011); and tissues relatively abundant in 

collagen type V have been characterised by small collagen fibril diameters (Birk et al., 

1990).  Thus, any differences in collagen fibril diameter could have implications for the 

precise arrangement of muscle fibres, and subsequently force transmission during 

contraction.  No significant associations between COL5A1 genotype and VL fascicle length 

or pennation angle were observed in the untrained, healthy male population of the current 

thesis (Chapter 5).  Consequently, it was somewhat unsurprising that COL5A1 genotype did 

not associate with any of the muscle strength phenotypes of Chapter 7.  These results 

suggest that COL5A1 genotype does not contribute to the inter-individual variability 

observed in the muscle architectural and strength phenotypes (Chapter 4).  Despite this, 

there have been over 79 polymorphisms identified within the COL5A1 3’-UTR gene and 

further research should investigate potential associations between these polymorphisms 

and skeletal muscle properties to elucidate if COL5A1 makes a discernible contribution to 

the variability within skeletal muscle properties.  

 

9.2.9 Polygenic Profiling 
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Polygenic profiling was conducted to ascertain the combined influence of all eight of the 

aforementioned gene polymorphisms on muscle size and strength phenotypes, however 

no significant associations between either of the muscle strength polygenic profiles and 

related phenotypes, or either of the muscle size polygenic profiles and related phenotypes 

were observed in Chapter 8.  Few previous studies have investigated the polygenic 

influence on muscle strength and size phenotypes using profiles comparable to those used 

in Chapter 8.  Thomaes et al. (2013) did, however, adopt a polygenic profile comparable to 

the favourable allele count used in Chapter 8, albeit using four different polymorphisms, 

and observed no significant polygenic influence on isometric MVCKE torque.  It is possible 

that the highly polygenic nature of muscle strength was inadequately captured by the 

polygenic profiles of both Chapter 8 and Thomaes et al. (2013) by including too few 

contributory polymorphisms.  Contrastingly, Thomaes et al. (2013) did observe a significant 

polygenic influence on muscle size when incorporating five polymorphisms different to 

those included in Chapter 8 in their muscle size polygenic profile, which might suggest the 

polymorphisms selected by Thomaes et al. (2013) are more influential for muscle size than 

those included in the current thesis.   

 

Despite observing few significant associations between muscle size and strength 

phenotypes in Chapters 6 and 7, it was appropriate to include all eight polymorphisms in 

each polygenic profile, as they all exist within genes encoding proteins involved in skeletal 

muscle function.  However, it seems probable that as new polymorphisms are identified as 

influential for muscle size or strength, and are thus included in polygenic profiles in future, 

the cumulative effect of such modest independent associations observed in Chapters 6 and 

7 may approach significance, but as this happens the likelihood of an individual possessing 
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the optimal polygenic profile will reduce accordingly.  Furthermore, a potential limitation 

of the polygenic profiling in Chapter 8 was the allocation of genotype scores, as this was 

often based on the non-significant tendencies apparent in Chapters 5, 6 and 7, due to the 

lack of research concerning some of the polymorphisms being investigated.  Additionally, 

genotype scores were allocated assuming allele effects were co-dominant, whereas some 

authors have suggested adopting a weighted scoring approach, in which genotypes and 

polymorphisms are given a weighted score according to their influence on the phenotype 

of interest.  However, as research is lacking on the discrete contributions of the 

polymorphisms investigated in the current thesis, adopting such an approach in Chapter 8 

would have been premature.  Thus, it is evident that more research to uncover new 

polymorphisms for potential associations with the phenotypes investigated in Chapters 6, 

7 and 8 is necessary.  Perhaps more importantly, there is also a requirement for future 

studies to identify the deterministic power of newly discovered and existing 

polymorphisms associated with skeletal muscle strength and size phenotypes to allow 

existing polygenic profiles to continue to be used and developed that will allow for valid 

estimations of the polygenic influence on skeletal muscle phenotypes. 

 

9.3 Methodological considerations and limitations  

One of the implications of the findings presented in the current thesis is their potential 

association with the development of treatments for sarcopenia and/or cachexia, by 

identifying possible new target genes and thus generating new directions for future 

research.  With this in mind, and considering that sarcopenia affects the lower body to a 

greater extent than the upper body (Lynch et al., 1999; Candow & Chilibeck, 2005), the 

quadriceps femoris was the muscle group chosen within the current thesis.  This large anti-
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gravity muscle group of the upper leg is essential for ambulation, jumping and squatting, 

functioning primarily as the knee extensor.  Whilst it is relatively simple to assess whole 

quadriceps femoris function, via use of an isokinetic dynamometer as described in Chapter 

2, detailed assessment of the morphological characteristics of each constituent is less 

simple (Blazevich, 2006).  Consequently, the vastus lateralis was chosen as a representative 

of the quadriceps femoris for more detailed assessment, as is consistent with previous 

research (Alexander & Vernon, 1975; Wickiewicz et al., 1983; Scott et al., 1993; Trappe et 

al., 2001; Reeves et al., 2004b).  Additionally, due the large CSA of the VL, its pennate 

fascicle arrangement and lateral location on the thigh, many gold-standard techniques (or 

acceptable alternatives) have been previously validated for completing assessments on this 

muscle (Erskine et al., 2009; Reeves et al., 2004b).  However, due to differences in muscle 

CSA, fascicle arrangement and function between muscles of the upper and lower body, and 

indeed between muscles of the lower body, more research is required to ascertain if the 

potential implications of the current thesis in directing developments for sarcopenia and/or 

cachexia are comparable between muscle groups. 

 

During assessments of quadriceps femoris function and morphology, the right leg of each 

participant was chosen for analysis, which is consistent with some previous research 

(Morse et al., 2007; Kent-Braun et al., 2000; Kellis & Baltzopoulos, 1997) but in contrast to 

others who opted to assess the dominant or non-dominant limbs of participants (Narici et 

al., 1996; De Vito et al., 2003; Folland & Williams, 2007a).  Differences in MVC torque 

(Fousekis et al., 2010), muscle architecture (Kearns et al., 2001) and muscle size (McCreesh 

& Egan, 2011) have previously been observed between the dominant and non-dominant 

limb of trained participants and demonstrates the importance of accurately identifying the 
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dominant limb for assessments within this population.  In untrained or sedentary 

participants, however, no significant bilateral difference in MVC torque (Lindle et al., 1997; 

Hageman et al., 1988; Häkkinen et al., 1998), architecture (Kearns et al., 2001), CSA and 

EMG (Häkkinen et al., 1996) have been observed, which suggests that the decision to assess 

only the right leg in the participants of the current thesis was not disadvantageous.  

Nonetheless, although no significant differences between limbs were observed in the 

aforementioned investigations, small non-significant differences were evident (4-9%), 

which may have influenced the results of Chapters 4-8.  For instance, if small non-significant 

differences were evident between the limbs of participants in the current thesis, assuming 

that the dominant limb of each participant was marginally stronger and bigger, 

measurements of MVC torque and ACSA may have been underestimated in participants 

whose left leg was their dominant limb.  Underestimating the MVC torque and ACSA in 

some participants may have subsequently increased the inter-individual variability within 

VL muscle volume and PCSA above what might otherwise be expected had the dominant 

limb of each participant been assessed.  However, as differences in MVC torque and ACSA 

are accounted for in the calculation of specific force, this is unlikely to have been affected.  

Nonetheless, it is recommended that future research complete assessments of muscle 

function or morphology on the dominant limb. 

 

It is acknowledged that variations in MVC torque occur according to circadian rhythm 

(Reilly & Waterhouse, 2009; Drust et al., 2005; Guette et al., 2005), and whilst it was 

possible to standardise the time of day at which participants were tested in Chapter 3, it 

was not logistically possible to standardise this for the 120 participants in the remaining 

chapters.  Subsequently, an attempt to reduce the impact of time of day variations on the 
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measurements of muscle strength and its determinants was made by limiting data 

collection to between 0900-1600 hours for all participants.  This timeframe has previously 

been associated with less than ~5% change in MVC torque production (Guette et al., 2005), 

which when considering previous data, is small enough to allow for the detection of any 

genotype differences in MVC torque (Erskine et al., 2013).  Furthermore, evidence exists to 

suggest muscle activation capacity and co-activation do not vary according to the time of 

day (Guette et al., 2005).  Moreover, as these latter measurements were both used in 

subsequent calculations of fascicle force and specific force in Chapters 7 and 8, the 

variability within them as a consequence of time of day is likely to be small. 

 

Consistent with apparent common practice within the field of functional muscle 

physiology, one familiarisation session was completed for each participant prior to data 

collection in the current thesis (Maganaris et al., 1998; Bamman et al., 2000; Morse et al., 

2007; Impellizzeri et al., 2008).  The purpose of this session was to familiarise participants 

with the isokinetic dynamometer test protocol to reduce the effects of learning during 

subsequent data collection.  Despite evidence demonstrating one familiarisation session is 

sufficient prior to assessing maximal muscle strength in previously untrained individuals, 

contrasting reports exist that suggest the completion of two (Oliveira et al., 2013) or three 

(Tracy et al., 1999; Tihanyi et al., 2007) familiarisation sessions is necessary to fully 

habituate an individual to maximal muscle strength testing protocols, and thus reduce the 

occurrence of systematic bias in the measurement.  According to these latter studies, 

insufficient familiarisation may have occurred in the current thesis, which would likely 

underestimate – and increase the inter-individual variability within – the true MVC of 

participants, in addition to their VL specific force.  However, when comparing both the MVC 
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torque and specific force values obtained in Chapters 4 and 7 to existing literature, this 

seems unlikely (Erskine et al., 2009; Kellis & Baltzopoulos, 1997; Gorgey et al., 2006; Narici 

et al., 1992).  On the other hand, completing too many familiarisation sessions may 

overestimate true MVC torque as a consequence of participants experiencing a training 

effect (Sale, 1988).  Thus, these complexities and the existing contrasting reports highlight 

the current lack of agreement surrounding the correct approach to familiarisation prior to 

assessments of maximal muscle strength, and warrants further investigation.  

 

9.4 Conclusion 

The current thesis extended the growing body of literature demonstrating there is a genetic 

influence on human skeletal muscle phenotypes, in particular muscle architecture, size and 

strength.  Investigations into the genetic influence on muscle architecture revealed two 

novel associations.  Firstly, VL muscle fascicle length was associated with TTN, which could 

be as a consequence of genotype-dependent TTN isoform splicing, although further 

research to elucidate this is required.  Secondly, CNTF was associated with VL fascicle 

pennation angle, which, in addition to being associated with VL muscle thickness, might 

indicate a possible role of CNTF genotype in muscle fascicle gearing and thus power 

production, rather than maximal isometric torque that was measured in the current thesis.   

 

Furthermore, the work presented in the current thesis included the first independent 

replications, to the author’s knowledge, of associations between VL muscle specific force 

and PTK2, and appendicular lean mass and TRHR rs7832552.  The former of these two 

associations provides independent confirmation that PTK2 rs7843014 and rs7460 are 

influential for VL specific force production, possibly due to genotype-dependent 
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differences in gene expression affecting the adhesion strength and migration rate of FAK 

within the skeletal muscle costameres.  The latter of these associations extends the findings 

of an initial GWAS by identifying the TRHR rs7832552 TT genotype as beneficial for 

appendicular lean mass.  In addition, the non-associations between COL5A1 and both VL 

muscle architectural and muscle strength phenotypes represent the first investigations of 

this polymorphism with such phenotypes, although no association was observed in the 

current thesis.  Despite observing some individual candidate gene associations with skeletal 

muscle phenotypes, polygenic profiling revealed no significant polygenic influence on any 

muscle or strength phenotypes.   

 

Nonetheless, the work presented here has applications for improving physical 

performance, in addition to enhancing our understanding of skeletal muscle disorders, 

which may have implications for how individuals exercise and how skeletal muscle 

disorders are treated and/or prevented in future.  

 

9.5 Directions for future research 

Throughout the current thesis specific areas for future research have already been 

highlighted; thus broader directions for future research are discussed here, which are 

based on both the findings of the current thesis and the movement of the field of sport and 

exercise genetics since the commencement of this thesis.   

 

Within the studies documented in Chapters 5, 6, 7 and 8, eight polymorphisms from seven 

candidate genes (ACE, ACTN3, CNTF, COL5A1, PTK2, TRHR and TTN) were selected to try to 

capture the genetic variability within several functional and morphological skeletal muscle 
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phenotypes.  Despite the findings of the current thesis identifying novel associations with 

muscle architecture and providing the first independent replications of two previously 

reported associations within untrained Caucasian males, a number of other genes have 

been identified as potential candidates for associations with skeletal muscle phenotypes 

(Hubal et al., 2010; Li et al., 2014; Zarebska et al., 2014).  For example, 5,10-

methylenetetrahydrofolate reductase (MTHFR) was recently indirectly associated with 

muscle strength in a case-control study of Russian and Polish elite athletes (Zarebska et al., 

2014).  A finding that has yet to be replicated independently or investigated further using 

direct measurements of skeletal muscle strength (and related phenotypes), such as those 

employed in the methods of the current thesis.  Therefore, to improve the strength of new 

and existing associations in future, researchers are encouraged to 1) continue identifying 

new candidate genes for potential associations with skeletal muscle properties; 2) conduct 

genetic association studies with direct measurement of skeletal muscle phenotypes using 

thousands of individuals situated at all locations along the muscle-strength continuum, 

and; 3) perform independent replications of reported associations in similar and different 

populations to those previously investigated.   

 

In the current thesis, the findings demonstrated the somewhat unpredictable nature of 

candidate gene associations.  For instance, ACTN3 genotype was associated with VL PCSA 

but not ACSA or muscle volume, and PTK2 genotype was associated with VL specific force 

but no other measures of muscle strength.  Thus, when investigating the genetic influence 

on these, and other skeletal muscle functional and morphological phenotypes, the findings 

of the current thesis demonstrate the necessity to include broad, and where possible, 

stringent measurements of the phenotype.  Future candidate gene association studies are 
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therefore encouraged to incorporate multiple phenotype assessments in order to capture 

potential genotype-phenotype associations that may otherwise remain undetected if only 

one measurement was used.   

 

It is well established that both skeletal muscle size and strength are polygenic phenotypes, 

and although the work presented in Chapter 8 did not reveal any significant polygenic 

associations with these phenotypes, it is pertinent to state that only eight polymorphisms 

were included in these polygenic profiles.  Researchers are therefore encouraged to 

investigate the polygenic influence of these, and other phenotypes, using combinations of 

the polymorphisms reported in the current thesis and those reported elsewhere.   

Additionally, polygenic profiling in sport and exercise genetics remains a relatively new 

approach, being first reported less than 7 years ago (Williams & Folland, 2008), thus future 

research is warranted to continue to develop the application of polygenic profiling within 

sport and exercise genetics, but more specifically for skeletal muscle phenotypes.  

Furthermore, as more polymorphisms are identified as significant for skeletal muscle size 

and strength; extensive independent replications are conducted to support the genotype 

scoring process and improvements are made to existing polygenic profiling approaches, 

more valid estimations of the polygenic influence on these and other related phenotypes 

can be completed in future. 
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Department of Exercise and Sport Science 
 

Sport and Exercise Science 
 

Informed Consent Form 
   

(Both the investigator and  
participant should retain a copy of this form) 

 
 

 
Name of Participant:     
 
Principal Investigator:  Georgina Stebbings 
 
Project Title:  Genetic influence on skeletal muscle architecture and strength. 
 

Ethics Committee Approval Number: 01.06.11(i)  
 

Participant Statement 
 
I have read the participant information sheet for this study and understand what is involved in taking 
part. Any questions I have about the study, or my participation in it, have been answered to my 
satisfaction. I understand that I do not have to take part and that I may decide to withdraw from the 
study at any point without giving a reason. Any concerns I have raised regarding this study have been 
answered and I understand that any further concerns that arise during the time of the study will be 
addressed by the investigator. I therefore agree to participate in the study. 
 
It has been made clear to me that, should I feel that my rights are being infringed or that my 
interests are otherwise being ignored, neglected or denied, I should inform the The University 
Secretary and Clerk to the Board of Governors, Manchester Metropolitan University, Ormond 
Building, Manchester, M15 6BX. Tel: 0161 247 3400 who will undertake to investigate my 
complaint. 
 
 
Signed (Participant)    Date 
 
 
Signed (Investigator)   Date 
 
 
 
Parental or guardian consent for research involving children. 
  
I confirm that the details of this study have been fully explained and described in writing to (insert 
name) and have been understood by him/her and I therefore consent to his/her participation in this 
study. 
 
 
Signed :     Date :
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Pre-Test Medical Questionnaire & Physical Activity Assessment 
Department of Exercise and Sport Science 
MMU Cheshire 
 
 
Name: ……………………………………………………………………………………………………………………. 
 
Date of Birth: ……..……/……….…/…………  Age: ……….…………. Gender: …………………… 
 
Please answer the following questions by putting a circle round the appropriate 
response or filling in the blank. 
 

1. What is your ethnic group? (last 3 generations of your family history)  
White / Mixed heritage / Asian / Black / Chinese 

 

2. Smoking Habits  

Are you currently a smoker?       Yes / No 

 If yes, how many do you smoke …….......... per day 

  

Are you a previous smoker?       Yes / No 

 If yes, how long is it since you stopped …........... years 

 

3. Do you drink alcohol?       Yes / No 

If you answered Yes, do you usually have?  

An occasional drink / a drink every day / more than one drink a day? 

 

4. Have you had to consult your doctor within the last 6 months?    Yes / No 

If you answered Yes, please give details…………………………...…………………..………..…. 

………………………………………………………………………………… …………………………………..…… 

 

5. Are you presently taking any form of medication?    Yes / No 

If you answered Yes, please give details………………………………………………………........ 

……………………………………………………….. …….……………………………………………………..…… 

  

6. As far as you are aware, do you have or have you ever had: 

a. Diabetes Yes / No b. Asthma Yes / No 
c. Epilepsy Yes / No d. Bronchitis Yes / No 
e. Any form of heart 
complaint  

Yes / No f. Raynaud’s Disease Yes / No 
g. Marfan’s Syndrome Yes / No h. Aneurysm/embolism Yes / No 
I.  Anaemia  Yes / No   

 

Any other medical condition or illness?     Yes / No 
If you answered Yes, please give details …………………………………………………………… 
…………………………………………………………………………………………………………………………. 
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7.  Is there a history of heart disease in your family?    Yes / No 

 

8.  Do you currently have any form of muscle or joint injury?   Yes / No  

 If you answered Yes, please give details………………….………………………….…............... 

 …………………………………………………………………………………..…………………………………..…… 

 

9.  Have you suspended your normal training in the last 2 weeks?    Yes / No 

 If the answer is Yes please give details……………………………………………………………..... 

 …………………………………………………………………………………….………………………………..…… 

 

10. Please read the following questions. As far as you are aware: 

 a)  Do you have any known serious infection?    Yes / No 

 b) Have you had jaundice within the previous year?   Yes / No 

 c) Have you ever had any form of hepatitis?    Yes / No 

 d) Are you HIV antibody positive     Yes / No 

 e) Have you had unprotected sexual intercourse with any person from  

   a HIV high-risk population?      Yes / No 

 f)  Have you ever been involved in intravenous drug use?  Yes / No 

 g) Are you haemophiliac?      Yes / No 

 

11. What is your main occupation? ………………………………………………………………………… 

 

12. At work I sit: 

Never / Seldom / Sometimes / Often / Always 

 

13. At work I stand: 

Never / Seldom / Sometimes / Often / Always 

 

14. At work I walk: 

Never / Seldom / Sometimes / Often / Always 

 

15. At work I lift heady loads: 

Never / Seldom / Sometimes / Often / Always 

 

16. After work I am tired: 

Very Often / Often / Sometimes / Seldom / Never 

 

17. At work I sweat: 

Very Often / Often / Sometimes / Seldom / Never 
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18. In comparison to others my own age I think my work is: 

Much Heavier / Heavier / Same / Lighter / Much Lighter 

 

19. Do you play sport or exercise?     Yes / No 

 

20. If yes, which sport do you play most frequently? ……………………………………………… 

 

a. How many hours per week?  

Less than 1 / 1-2 / 2-3 / 3-4 / More than 4 

 

b. How many months per year? 

 Less than 1 / 1-3 / 4-6 / 7-9 / More than 9 

 

21. If you play a second sport/exercise, which is it? ……………………………………………….  

 

a. How many hours per week?  

Less than 1 / 1-2 / 2-3 / 3-4 / More than 4 

 

b. How many months per year? 

 Less than 1 / 1-3 / 4-6 / 7-9 / More than 9 

 

22. In comparison with others of my own age I think my physical activity during 
leisure time is: 

Much more / More / Same / Less / Much Less 

 

23. During leisure time I sweat: 

Very Often / Often / Sometimes / Seldom / Never 

 

24. During leisure time I play sport: 

Very Often / Often / Sometimes / Seldom / Never 

 

25. During leisure time I watch TV: 

Very Often / Often / Sometimes / Seldom / Never 

 

26. During leisure time I walk: 

Very Often / Often / Sometimes / Seldom / Never 

 

27. During leisure time I cycle: 

Very Often / Often / Sometimes / Seldom / Never 
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28. How many minutes do you walk and/or cycle per day to and from work, school 
and/or shopping? 

Less than 5 / 5-15 / 15-30 / 30-45 / More than 45 

 

29. Have you participated in any form of exercise testing before?  Yes / No 

If the answer is Yes, have you ever needed to terminate a test prior to  

completion, for health and safety reasons?      Yes / No  

 If the answer is Yes please give details………………………………..……………………………… 

 …………………………………………………………...…………………………………………….……………….
 ……………………………………………………………….……………………………………………………..…… 

30. As far as you are aware, is there anything that might prevent you from 

 successfully completing the tests that have been outlined to you?  
 Yes / No 

 ……………………………………………………………….……………………………………………………..……
 ……………………………………………………………….……………………………………………………..…… 

 
 
Thank you for completing this questionnaire.  All information will be kept confidential.



 

 
 

Publications 
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VARIABILITY AND DISTRIBUTION OF MUSCLE STRENGTH AND ITS DETERMINANTS 

IN HUMANS 

 

ABSTRACT 

 

Introduction: Inter-individual variability in measurements of muscle strength and its 

determinants was identified to: 1) produce a normative data set describing the normal range 

and 2) determine whether some measurements are more informative than others when 

evaluating inter-individual differences.  

 

Methods: Functional and morphological characteristics of the vastus lateralis were 

measured in 73 healthy, untrained adult men.  

 

Results: Inter-individual variability (coefficient of variation) was greater for isometric 

maximal voluntary contraction (MVC) torque (18.9%) compared with fascicle force (14.6%, 

P = 0.025) and physiological cross-sectional area (PCSA, 17.2%) compared with 

anatomical cross-sectional area (ACSA, 13.0%, P < 0.0005).  The relationship between 

ACSA and isometric MVC torque (r2 = 0.56) was weaker than that between PCSA and 

fascicle force (r2 = 0.68). 

 

Conclusions: These results provide a normative data set on inter-individual variability in a 

variety of muscle strength-related measurements and illustrate the benefit of using more 

stringent measures of muscle properties.   

 

 

Keywords: Inter-individual variation, vastus lateralis, muscle strength, muscle size, force 
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INTRODUCTION 

Human skeletal muscle is a highly adaptive tissue that responds to changes in functional 

loading, and consequently muscle strength (here defined as maximal isometric joint torque) 

is known to vary between individuals.  Much of the variability among untrained, 

asymptomatic individuals of a similar age has been attributed to differences in the structural 

and neural determinants of muscle strength.1,2   

 

Muscle size is generally considered to be the greatest determinant of muscle strength,1,3 and 

measurements of muscle thickness have revealed inter-individual variability in appendicular 

muscle size ranging from 9-18%.1  Assessments of muscle thickness, however, are relatively 

simple and may actually underestimate the true contractile area of the muscle that contributes 

to force production.2-4  Physiological cross-sectional area (PCSA) on the other hand, 

provides a more accurate assessment of muscle contractile area than measurements of 

muscle thickness or anatomical cross-sectional area (ACSA) by accounting for inter-

individual differences in muscle architecture and muscle length.  Taking account of such 

differences by using PCSA could reduce the inter-individual variability compared with 

ACSA, which represents only an estimate of true contractile area in pennate muscles.2  

However, as PCSA is affected directly by muscle length while ASCA is not, it could 

alternatively be that PCSA may demonstrate greater inter-individual variability than ACSA.  

Thus, the relationships between PCSA, ACSA, muscle length, and muscle architecture are 

complex, and it is difficult to predict realistically whether the inter-individual variability in 

PCSA and ACSA in a population will be similar or different in magnitude. 

 

The importance of measuring agonist and antagonist muscle activation during assessments 

of in vivo maximal isometric strength has been highlighted previously.5,6 While reports of 
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voluntary activation capacity in untrained individuals are somewhat contradictory,7-10  

sensitive use of the interpolated twitch technique suggests that untrained individuals 

probably cannot activate 100% of their motor units.11  All else being equal, individuals with 

greater observed maximal voluntary contraction (MVC) torque are likely to have greater 

voluntary activation capacity.  Therefore, accounting for inter-individual differences in 

voluntary activation capacity is likely to increase the calculated joint torque relatively more 

in weaker muscles, bringing the values closer to the mean in a population.  This should have 

the net effect of reducing inter-individual variability in calculated maximal joint torque 

compared to that in observed MVC torque.  Furthermore, antagonist muscle co-activation of 

the hamstrings during knee extension MVCs has been reported to range between 15-30% in 

healthy, untrained, adults.12-14  Once again, all else being equal, individuals with greater 

observed MVC torque are likely to have lower antagonist co-activation, whereas those with 

lower observed MVC torque are likely to have higher antagonist co-activation.  

Consequently, accounting for inter-individual differences in antagonist co-activation should 

increase the calculated maximal joint torque relatively more in the weaker muscles, thus 

bringing those values closer to the mean in a population and reducing inter-individual 

variability. 

 

A tendon moment arm functions as a lever of effective force transmission during muscle 

contraction15 and is therefore central to accurate measurement of muscle force from torque.  

Bone geometry has been suggested as the primary determinant of tendon moment arm length 

and, as this is known to differ between individuals, is probably also the main source of inter-

individual variability in moment arm length.5,15,16 Therefore, assuming all else is equal, 

individuals with longer tendon moment arms would produce greater isometric MVC torque 

than those with shorter tendon moment arms.  One would also expect individuals with larger 
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bone geometry and longer moment arms to generally possess larger, stronger muscles.  

Therefore, individuals capable of producing values of MVC torque above the observed mean 

value in a population are likely to have MVC torque further inflated by a longer moment 

arm, and those below the mean further reduced by the shorter moment arm, which would 

exaggerate the deviation of observed MVC torque values from the mean in a population.  

Consequently, controlling for moment arm length when calculating tendon force (and 

subsequently muscle force) should result in reduction in the distribution of observed force 

values and thus reduction in inter-individual variability in muscle force compared with 

observed isometric MVC torque.   

 

Muscle specific force reflects the intrinsic strength of a muscle and is estimated by 

accounting for all of the aforementioned determinants of strength.  As such, it could be 

expected that reports of specific force within the literature would be relatively homogenous.  

However, measurements of human muscle specific force in vivo are widespread, ranging 

from 6-86 N∙cm-2.6,17-22 Differences in sample selection and/or inconsistencies in 

measurements could contribute to such widespread values.  Unsurprisingly, when only those 

studies that accounted for all of the necessary factors were considered, the range of values 

for in vivo specific force of the vastus lateralis (VL) was noticeably reduced to 20-30 N∙cm-

2.6,18-20 

 

Consequently, the aim of the study was three-fold; firstly to develop a normative set of data 

on the inter-individual variability in measurements of muscle strength and its determinants 

in a relatively large, homogenous sample.  Secondly, to demonstrate the extent of the 

differences in the inter-individual variability between the less stringent measurements of 

strength and its determinants (isometric MVC torque and ACSA) compared with the more 
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stringent measurements (specific force, fascicle force, and PCSA).  The final aim was to 

ascertain the strength of the relationship between the different measurements of muscle 

strength and size.  We hypothesized that a stronger relationship would exist between PCSA 

and VL fascicle force than between ACSA and isometric MVC torque, because greater 

physiological variability is accounted for in the more stringent measurements of muscle size 

and strength. 

 

MATERIALS AND METHODS 

Subjects.  Participants were healthy, untrained, Caucasian men [n = 73, age 20.6 (2.5) yr, 

height 178.2 (6.7) cm, mass 76.0 (9.8) kg; mean (SD)], and all gave written consent to 

participate in this study prior to involvement.  Participants were excluded from the study if 

they suffered from a known musculoskeletal or neurological disorder, were aged less than 

18 years or more than 39 years, had a body mass index below 18.5 or above 30 kg∙m-2, or if 

they had undertaken any structured resistance training in the preceding 12 months.  

Additionally, a questionnaire designed to assess habitual activity levels23 was used to ensure 

that only untrained participants, those undertaking less than 3 hours of low-to-moderate 

habitual physical activity per week, took part in the study.  All experimental procedures were 

conducted in accordance with the guidelines in the Declaration of Helsinki and approved by 

the Ethics Committee of Manchester Metropolitan University.   

 

Knee extension and flexion strength.  Maximum voluntary isometric knee extension 

(MVCKE) and flexion torque was measured using an isokinetic dynamometer (Cybex Norm, 

Cybex International Inc., NY, USA) with participants seated at 85° hip flexion.  A minimum 

of 2 MVCs were performed at knee joint angles of 70°, 80°, and 90° of flexion on the right 

leg only.  A third MVC attempt was performed if the second MVC was more than 10% 
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higher than the first.18  This range of knee joint angles has been shown previously to include 

the optimum angle for a comparable sample population.18  Knee joint center of rotation was 

aligned visually with the dynamometer axis of rotation, and participants were strapped into 

the dynamometer across the hips, shoulders, and right thigh to limit any extraneous 

movement.  Participants were instructed to maintain each MVC for approximately 3 s until 

they received a verbal signal to relax.  Maximal isometric knee extension and flexion torque 

were assessed at all knee joint angles in a randomized order, and a 2-min rest period was 

given between contractions.  The knee joint angle at which peak MVC torque occurred was 

considered the optimal angle and was used for subsequent measurements.  

 

Co-activation.  The level of antagonist muscle co-activation during knee extension MVC 

was determined through assessment of electromyographic (EMG) activity of the biceps 

femoris, as this muscle has previously been found to be representative of the entire knee 

flexor muscle group.24  Two self-adhesive Ag-AgCl electrodes were placed over the long 

head of the BF in a bipolar configuration with an inter-electrode distance of 20 mm.  In an 

attempt to reduce skin impedance to less than 5,000 Ω prior to electrode placement, the skin 

was shaved, abraded, and cleansed with an alcohol wipe.  Electrodes were positioned in the 

mid-sagittal plane over the distal third of the muscle to minimize cross-talk from neighboring 

muscles, and a reference electrode was positioned over the lateral tibial condyle.  

Preamplified raw EMG activity was filtered using band pass filters set at 10 and 500 Hz.  

The root mean square of the EMG activity was calculated over 1 s, corresponding to peak 

knee extension MVC torque at each joint angle.  Additionally, EMG activity of the biceps 

femoris was measured during knee flexion MVCs at the same joint angles.25 Assuming a 

linear relationship between torque and EMG activity,6 the torque produced by the knee 

flexors during knee extension MVC was estimated as co-activation torque. 
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Voluntary activation capacity.  To assess voluntary activation capacity a supramaximal 

doublet (50-μs pulse width and 50-ms interstimulus gap) generated by an external 

stimulation device (DS7, Digitimer stimulator, Welwyn, Garden City, UK) was 

administered to the quadriceps femoris via 2 self-adhesive electrodes (7.5 x 12.5 cm; Tyco 

Galvanic Pad, Uni-Patch, MN, USA) positioned over distal (anode) and proximal (cathode) 

regions of the thigh.  To ascertain maximal twitch torque stimulation intensity, single 

twitches were delivered to the participant at rest, and current intensity was increased using 

approximately 50 mA increments until no further increase in twitch torque was observed.  

This current intensity was defined as the supramaximal stimulation intensity.  Consequently, 

quadriceps femoris voluntary activation capacity was calculated as: 

Activation (%) = (1 – t/T) x 100  

where, t is the interpolated doublet amplitude, and T is the potentiated doublet amplitude.26  

Additionally, net knee extension torque was calculated by adding co-activation torque to the 

sum of MVCKE torque and superimposed stimulation torque.  Signals of torque, electrical 

stimuli and EMG activity were displayed on a computer screen (Macintosh, iMac, Apple 

Computer, Cupertino, USA), interfaced with an acquisition system (AcqKnowledge, Biopac 

Systems, Santa Barbara, USA) to enable analogue-to-digital conversion at a 2,000 Hz 

sampling frequency. 

 

Muscle architecture.  Muscle architecture of the VL muscle was assessed in vivo during 

MVCKE at the pre-determined optimum joint angle using B-mode ultrasonography (AU5, 

Esaota, Italy).  With the participant seated on the dynamometer as described previously, the 

origin and insertion and the medial and lateral borders of the VL muscle were identified at 

rest. VL muscle length was measured, and an external echo-absorptive reference marker was 
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placed at 50% of muscle length.  Scans were obtained using a 40-mm, 7.5-MHz linear-array 

probe coated in water-soluble transmission gel to increase acoustic contact.  The probe was 

positioned perpendicular to the skin surface over the echo-absorptive marker in the mid-

sagittal plane of the VL muscle.  The external reference marker was visible on the scanned 

image; thus, any movement of the probe in relation to the marker during each MVC trial 

would be identified.   If movement of the probe were apparent, the trial was omitted and an 

additional trial would take place.  An external voltage trigger enabled synchronization of the 

ultrasound scans with the acquisition system to allow for the ultrasound image corresponding 

to peak MVCKE torque to be exported for subsequent analysis.  All ultrasound scans were 

recorded in audio video interleave (AVI) format at a sampling frequency of 25 Hz, and single 

images were captured using frame-capture software (Adobe Premiere Elements version 10, 

Adobe Systems).  Measurement of VL muscle fiber pennation angle (θ) and fascicle length 

(Lf) was completed on single images using digitizing software (NIH ImageJ, version 1.44o, 

National Institutes of Health, Bethesda, USA).6  θ was measured as the angle of fascicular 

insertion into the deep aponeurosis.  Identification of Lf was achieved by measuring the 

distance from fascicular origin to insertion on the aponeuroses.27  Often the VL muscle 

fascicles extended beyond the scanning window; therefore estimation of Lf was necessary 

by extrapolating the deep and superficial aponeuroses and fascicle.  θ and Lf were measured 

on a minimum of 3 fascicles for every ultrasound image, and an average of these 

measurements was taken as the θ and Lf. 

 

Muscle volume.  VL muscle ACSA was measured using previously validated methods 

with B-mode ultrasonography.4  A series of transverse plane scans were taken at the level of 

50% of VL muscle length with the use of external reference markers to identify sections 

from the medial to lateral edge of the VL.  Care was taken to ensure minimal pressure was 
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applied to the VL during scanning to avoid compression of the muscle.  A recording of the 

scans was saved in AVI format, and single scans were captured using frame-capture software 

(Adobe Premiere Elements version 10, Adobe Systems) and used for subsequent analysis.  

Single scans were fitted using contour matching, and ACSA was measured using digitizing 

software (NIH ImageJ, version 1.44o, National Institutes of Health, Bethesda, USA).  The 

mean of 3 measurements was taken and used to estimate VL muscle volume using previously 

applied methods based on a series of regression derived constants(Morse et al., 2007) along 

with VL muscle length.  Muscle PCSA was calculated subsequently by dividing muscle 

volume by Lf obtained at the optimum knee joint angle. 

  

Tendon moment arm length.  Moment arm length of the patellar tendon was measured 

to calculate patellar tendon forces using a dual energy X-ray absorptiometry (DEXA) 

scanner (Hologic Discovery, Vertec Scientific Ltd, UK).  Sagittal plane scans were obtained 

with the participant at rest and with the knee joint positioned at the previously determined 

optimum angle using a 22.3 x 13.7 cm field of view.  Scans were exported to a dicom file 

viewer (OsiriX 5.0.2, Pixmeo Sarl, Geneva, Switzerland), and the perpendicular distance 

between the tibiofemoral contact point and the axis of the patellar tendon was measured as 

the patellar tendon moment arm length.15  Patellar tendon force was calculated by dividing 

net torque at the optimum knee joint angle by patellar tendon moment arm length. 

 

Specific force.  The contribution of the VL muscle to patellar tendon force was calculated 

by estimating the relative PCSA of the VL in relation to the quadriceps femoris muscle using 

previously reported data.19  Subsequently, fascicle force of the VL was estimated by dividing 

VL muscle force by the cosine of the θ obtained at the optimum joint angle during MVC.  
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Finally, VL muscle specific force was calculated by dividing VL fascicle force by VL 

PCSA.6 

 

Statistics.  Coefficients of variation (CV) were calculated to identify the extent of inter-

individual variability in all functional and morphological characteristics of the VL using 

Microsoft Excel.  To determine any differences in inter-individual variability between 

isometric MVCKE torque, VL fascicle force, VL ACSA, and VL PCSA, a Friedman ANOVA 

was conducted using corrected percentage distribution data, which breached the parametric 

assumption of normal distribution following correction (Statistical Package for Social 

Sciences 19.0, SPSS Inc., Chicago, Il, USA).  The Wilcoxon signed-rank test was used to 

perform appropriate post-hoc analyses where necessary.  Regression analyses were 

conducted to determine the relation between isometric MVCKE torque and VL ACSA and 

VL fascicle force and VL PCSA.  The use of the Fisher Z-transformation enabled the 

difference between these correlations to be analyzed.  Reliability of the architectural 

measurements was determined by calculation of ratio limits of agreement (LoA)29 and CVs 

on data collected during pilot testing on 2 separate occasions separated by 1 day for 8 

participants.  Data are displayed as means (SD), and statistical significance was set at P ≤ 

0.05. 

 
 

RESULTS 

Descriptive data on the functional and morphological characteristics of the VL are presented 

with CVs in Table 1.  Notably, the CVs of VL specific force and VL ACSA were lower than 

those for isometric MVCKE torque and VL PCSA, respectively. The Shapiro-Wilk test 

revealed that the data were distributed normally (P = 0.063-0.706). Calculation of ratio LoA 

and CVs were used to determine the repeatability of architectural measurements on 2 



Appendix 2   Publications                                                                              
 

 233 

occasions by the same investigator on 8 participants (Table 2).  There was no significant 

difference between day 1 and day 2; all limits of agreement were less than 10%, and most 

were less than 6%, which showed very good reliability.  

 

< INSERT TABLE 1 NEAR HERE > 

 

<INSERT TABLE 2 NEAR HERE > 

 

The mean knee joint angle at which maximal MVCKE torque was determined was 80º.  

Histograms showing the percentage deviation from the mean value for isometric MVCKE 

torque, VL fascicle force, VL ACSA, and VL PCSA can be seen in Figure 1.  Output from 

a Friedman ANOVA revealed a significant difference (P < 0.0005) in corrected distribution 

data.  Post-hoc analyses identified a significant difference in the percentage distribution 

between isometric MVCKE torque and VL fascicle force (P = 0.025) and between VL ACSA 

and VL PCSA (P < 0.0005). 

 

< INSERT FIGURE 1 NEAR HERE > 

 

A regression analysis revealed a significant relationship between VL ACSA and isometric 

MVCKE torque (r2 = 0.57; P < 0.0005, Figure 2A).  Additionally, there was a significant 

relationship between VL PCSA and VL fascicle force (r2 = 0.68; P < 0.0005, Figure 2B).  

However, the relationship between VL PCSA and VL fascicle force was not significantly 

different from the relationship between VL ASCA and isometric MVCKE torque (P = 0.359).  

The relation between stature and both PCSA and ACSA was assessed using regression 
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analyses and revealed a stronger significant relationship between PCSA and stature (r2 = 

0.674, P < 0.0005) when compared with ACSA and stature (r2 = 0.217, P = 0.001).   

 

< INSERT FIGURE 2 NEAR HERE > 

 

DISCUSSION 

One of the aims of this study was to develop a normative set of data on the inter-individual 

variability in measurements of muscle strength and its determinants in a relatively large, 

homogenous sample.  This was achieved for 73 asymptomatic young men using a range of 

measurements related to muscle size and strength.  This not only applies to mean values, but 

in particular to inter-individual variability.  Table 1 presents those data and includes CVs 

ranging from 5.7% (agonist activation capacity) to 20.2% (muscle volume).  These data are 

useful for researchers who investigate the causes of inter-individual variability in these 

parameters, such as various genetic and environmental factors.  

  

Inter-individual variability in the measurement of isometric MVCKE torque is associated 

with the variability of its determinants.  We hypothesised that accounting for these 

determinants in the calculation of specific force would result in a reduction in inter-

individual variability compared to that present in the measurement of isometric MVCKE 

torque.  Inter-individual variability in specific force (13.5%) is comparable with previous 

reports in healthy, untrained adults (16.2%).18,30   Despite this, we can only accept partially 

the hypothesis, as the inter-individual variability in specific force was only 4% less than the 

inter-individual variability in isometric MVCKE torque.   Nevertheless, the difference in 

inter-individual variability between specific force and isometric MVCKE torque is slightly 

more than that reported previously (3%) in the only other study to our knowledge that 
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investigated inter-individual variability in specific force in vivo in a smaller (n = 27), but 

comparable sample.18   

 

Differences in the inter-individual variability of isometric MVCKE torque, tendon force and 

specific force are dependent on the differing extent to which the physiological determinants 

are accounted for.  For example, gross measurements of strength such as isometric MVCKE 

torque are likely to be more susceptible to this inherent variation, because they are influenced 

by the inter-individual variability in agonist and antagonist muscle activity.31  In contrast, 

specific force may provide a more accurate representation of the contractile properties of the 

muscle while accounting for inter-individual variability in neural properties, tendon moment 

arm length, and muscle architecture.  Unsurprisingly, we found that the inter-individual 

variation in isometric MVCKE torque was greater than that for specific force and all of its 

determinants (with the exception of muscle volume).  However, the inter-individual 

variation observed in agonist activation and antagonist co-activation was relatively small 

(5.7% and 6.8%, respectively).  We found that muscle activation in untrained, young males 

is relatively complete and likely contributes to a lower degree of inter-individual variability 

in the measurement of isometric MVCKE torque than in some other populations.  It could be 

expected that within a more heterogeneous population where activation levels show greater 

variability greater inter-individual variability in isometric MVCKE torque would also be 

observed. 

 

A significant relationship was observed between isometric MVCKE torque and ACSA (r2 = 

0.57), which is comparable to that reported previously in the plantar flexors and dorsiflexors 

(r2 = 0.59-0.62).32  As expected, this relationship was weaker than that between VL fascicle 

force and PCSA (r2 = 0.68), although this difference was not significant statistically.  The 



Appendix 2   Publications                                                                              
 

 236 

high inter-individual variability in isometric MVCKE torque and ACSA is likely to contribute 

to this tendency for a difference.  Inter-individual variability in VL ACSA was found to be 

13%, which is comparable to previous reports of approximately 14% in muscle thickness of 

the rectus femoris and vastus intermedius in untrained men.1  In comparison, the inter-

individual variation of VL PCSA we found was greater than for VL ACSA.  A plausible 

explanation for the greater inter-individual variability in VL PCSA compared with VL 

ACSA could be the consequence of the inter-individual variability observed in θ and Lf.  The 

source of inter-individual variation in these measures of muscle size and architecture could 

be differences in body size.33,34  Both PCSA and ACSA are related to body mass, whereas 

only PCSA is related to stature, given that Lf is proportional to femur length.  This is 

substantiated in this study, which revealed a stronger relationship between VL PCSA and 

stature than between VL ACSA and stature. 

 

The lower inter-individual variability observed in VL fascicle force compared to that in 

isometric MVCKE torque could be attributed to architectural and structural factors.  By 

accounting for inter-individual variability in tendon moment arm length it is possible to 

account for differences in bone geometry (and hence body size) within a population; this has 

been suggested previously to be the key determinant of tendon moment arm length.35  For 

example, for any given VL fascicle force, the 8.8% inter-individual variability in moment 

arm length we observed would result in an isometric MVCKE torque difference of 23 N∙m.  

It should be noted that much of the reported variation in bone geometry, however, has been 

between different ethnic populations36 and genders35, whereas we sampled only Caucasian 

men.  Nonetheless, the inter-individual variation in tendon moment arm length made a 

contribution to the inter-individual variability observed in the estimation of VL specific 

force.  
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Despite the obvious sources of variation in the measurement of isometric MVCKE torque and 

its determinants, the calculation of specific force failed to reduce this to the extent envisaged 

initially.  It is possible that differences in the intrinsic force-generating capacity of individual 

fibers exist which contribute to the observed inter-individual variability.18  One plausible 

explanation is inter-individual differences in fiber-type composition of the VL,37-39 as type I 

fibers are reported to have lower specific tension than type II fibers.40-41 Additionally, inter-

individual variability in VL specific force may be explained by the presence of intramuscular 

fat and connective tissue.14,42,43  Variation in intra-muscular non-contractile material has 

been observed previously in a sample of young adults,14 and although we did not measure 

this, it could contribute to some of the unexplained inter-individual variability in specific 

force.  Failure to account for the presence of intra-muscular non-contractile material would 

result in an overestimation of muscle PCSA and thus underestimate muscle specific 

force.18,43  On the other hand, it has been suggested that increased connective tissue content 

may be associated with improved lateral force transmission from the muscle fiber to the 

tendon, the consequence of which would be an increase in muscle specific force.44  

Furthermore, myofilament-packing density is known to influence cross-bridge interaction of 

actin and myosin filaments and consequently may also contribute to the inter-individual 

variability in specific force we observed.45  Data on inter-individual variability in human 

skeletal myofilament-packing density is lacking, although reports from training studies have 

found no change in pre- and post-training packing densities.46,47  Nonetheless, more research 

is needed to establish if myofilament packing density varies in untrained adults.  One way 

in which fiber type composition and intramuscular values of collagen and adipose tissue 

could be accounted for is through biopsy, however, the estimate of whole muscle properties 

based on biopsies may be limited.48 
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The assessment of muscle specific force includes a number of assumptions or surrogate 

measures where direct measurement is not possible. For example, previous studies have 

adopted estimates of fascicle length based on previously published values of muscle length.49  

Similarly, where MRI is not available to measure muscle volume directly, estimates have 

been made based on single measures of ACSA multiplied by limb length.29  Indeed the 

measurement of moment arm during MVC requires X-ray fluoroscopy to account for 

deformation and extension of the moment arm through contraction; in contrast, moment arm 

is often estimated based on external anthropometric measures.50  In our study, direct 

measurement of moment arm length during MVC was not possible, and force was estimated 

from resting measures of moment arm length. Furthermore, muscle volume was estimated 

based on a single measure of ACSA.  Although both of these methods have been 

demonstrated to be valid surrogates in the calculation of specific force,28,51-53 direct 

measurement may have improved the validity of the measures. 

 

One of the applications of these data is in research into genetic factors that may be associated 

with specific force, by seeking to minimize unexplained inter-individual variability in 

associated strength measurements.  By 2007, 22 genetic polymorphisms associated 

specifically with a muscle strength-related phenotype had been reported, however this 

number will have increased in subsequent years.54  Using more stringent measurements of 

muscle strength and size that reduce confounding variability, as demonstrated here, would 

increase the likelihood of identifying small associations between individual genetic 

polymorphisms and strength-related phenotypes.   
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In conclusion, we confirmed the extent of the inter-individual variability previously reported 

in human muscle specific force and isometric MVC torque.  Furthermore, establishing the 

inter-individual variability in the factors involved in the determination of muscle strength 

provides normative data on a relatively large sample of healthy, untrained men that had 

previously remained unreported.   These results substantiate previous findings that 

calculation of inter-individual variability in human knee extension specific force explained 

little of the inter-individual variability observed in MVC torque.  Thus, factors other than 

muscle fiber architecture, moment arm length, and agonist muscle activation and antagonist 

muscle co-activation appear to contribute to the observed variation.   
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ABBREVIATIONS 

ACSA, Anatomical cross-sectional area  

AVI, audio video interleave 

CV, Coefficients of variation 

EMG, Electromyography 

Lf, Fascicle length  

LoA, Limits of agreement 

MVC, Maximal voluntary contraction 

MVCKE, Maximal voluntary knee extension contraction torque 

PCSA, Physiological cross-sectional area 

VL, Vastus lateralis 

θ, Pennation angle 
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TABLES 

Table 1. Functional and morphological characteristics of the vastus lateralis.  

Variable Mean (SD) Range CV (%) 

Isometric  MVCKE torque (N∙m) 259 (49) 168 – 363  18.9 

Activation capacity (%) 89.5 (5.1) 80.1 – 98.5 5.7 

Antagonist co-activation (%) 13.9 (0.96) 8.0 – 24.8  6.8 

Net KE torque (N∙m) 282 (50) 146 – 339  17.9 

Muscle volume (cm3) 561 (115) 424 – 816  20.2 

ACSA (cm2) 21.3 (2.8) 14.1 – 28.6  13.0 

Fascicle length (cm) 8.0 (1.3) 6.3 – 11.5 16.6 

Pennation angle (°) 14.6 (2.4) 9.0 – 21.4 16.7 

PCSA (cm2) 65.7 (11.0) 43.3 – 114.5  17.2 

Moment arm (cm) 4.4 (0.38) 3.5 – 5.3  8.8 

Patellar tendon force (N) 6,430 (1,113) 4624 – 8270  17.3 

VL fascicle force (N) 1,458 (213) 1079 – 1812 14.6 

Specific force (N∙cm-2) 23.8 (3.5) 17.7 – 27.9  13.5 

ACSA, anatomical cross-sectional area; CV, coefficient of variation MVCKE, 

maximal voluntary knee extension contraction; PCSA, physiological cross-

sectional area; VL, vastus lateralis. 
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Table 2. Inter-day measurement reliability.  

Variable CV (%) LoA (%) Mean (SD) 

Muscle volume (cm3) 2.5 5.3 523 (14) 

Pennation angle (°) 2.1 2.6 14.5 (2.4) 

Fascicle length (cm) 2.5 4.5 7.8 (0.6) 

Moment arm length (cm) 1.8 2.5 4.5 (0.2) 

Specific force (N∙cm-2) 5.6 9.9 20.2 (3.3) 
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FIGURES 

 

Figure 1. Frequency distributions around the mean (displayed as %) for: A) MVCKE torque, 

B) VL fascicle force, C) VL ACSA, and D) VL PCSA.  Significant differences were apparent 

between MVCKE torque and VL fascicle force (P = 0.025) and ASCA and PCSA (P < 

0.0005).  

 

Figure 2. A) The relationship between VL ACSA and isometric MVCKE torque (P < 0.0005); 

B) The relationship between VL PCSA and VL fascicle force (P < 0.0005).    
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BASES Conference 2013, University of Central Lancashire, 3-5 September 2013 
‘New Directions in Sport and Exercise Sciences’ 

 

ABSTRACT SUBMISSION 

Variability and distribution of muscle strength and its determinants in humans 

G. Stebbings, C. Morse, A. Williams & S. Day 

Manchester Metropolitan University 

 

Background:  Much of the variability in muscle strength among similarly aged, untrained, 

asymptomatic individuals has been attributed to differences in the structural and neural 

determinants of muscle strength (Maughan et al., 1983: Journal of Physiology, 338(1), 37-

49; Erskine et al., 2009: European Journal of Applied Physiology, 106(6), 827-838).  

Measurements employed to investigate muscle strength and its determinants can range from 

simple measures, for example maximal voluntary contraction (MVC) torque and anatomical 

cross-sectional area (ACSA), to more stringent measurements of specific force and 

physiological cross sectional area (PCSA).  However, it is unknown if some of these 

measurements are more informative than others when evaluating inter-individual 

differences.   

Purpose:  The purpose of this investigation was to identify inter-individual variability in 

measurements of muscle strength and its determinants to produce a normative set of data 

describing the normal range, and to establish which measurements – if any – are more 

informative than others in evaluations of inter-individual differences.   

Methods:  Healthy, untrained adult males (n = 73, age 20.6 ± 2.5 yr, height 178.2 ± 6.7 cm, 

mass 76.0 ± 9.8 kg; mean ± s) gave informed consent to participate in this investigation.  

Knee extension and flexion MVC torque was measured on an isokinetic dynamometer at 

70°, 80° and 90° of knee flexion.  The knee joint angle at which peak MVC torque occurred 

was taken as the optimum angle and used for subsequent measurements of in vivo muscle 

architecture.  Pennation angle and fascicle length of the right vastus lateralis (VL) were 

measured during MVC using B-mode ultrasonography at 50% muscle length in the mid-

sagittal plane.  VL ACSA was measured in vivo at rest, using previously validated 

ultrasonography techniques (Reeves et al., 2004: European Journal of Applied Physiology, 

91, 116-118) and used to estimate muscle volume with muscle length and a series of 

regression derived constants (Morse et al., 2007: European Journal of Applied Physiology, 

100, 267-274). VL PCSA was calculated by dividing muscle volume by fascicle length.  

Dual energy X-ray absorptiometry was used to measure patella tendon moment arm length 

and was subsequently used in the calculation of patella tendon force, by dividing net joint 

torque by moment arm length.  VL muscle force was calculated from tendon force by 

estimating VL PCSA relative to the entire quadriceps femoris, and VL muscle force was 

divided by the cosine of the pennation angle to estimate VL fascicle force.  VL specific force 

was calculated by dividing VL fascicle force by PCSA.  The Ethics committee of Manchester 

Metropolitan University approved all experimental procedures. 

Results: Inter-individual variability was 4.3% greater in MVC torque compared with 

fascicle force (CVs = 18.9% and 14.6%, respectively, P = 0.025, ES = 0.624), and 4.2% 

greater in PSCA compared with ACSA (CVs = 17.2% and 13.0%, respectively, P < 0.0005, 

ES = 0.867).  A stronger relationship was observed between PCSA and fascicle force (r2 = 

0.68, P < 0.0005) than between ACSA and MVC torque (r2 = 0.57, P < 0.0005).   

Discussion:  These findings confirm the extent of the inter-individual variability previously 

reported in human muscle specific force and MVC torque (Erskine et al., 2009).  

Furthermore, establishing the inter-individual variability in the factors involved in the 

determination of muscle strength provides normative data on a relatively large sample of 
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untrained, asymptomatic males that had previously remained unreported, and illustrates the 

benefit of using more stringent measurements of muscle properties.  These outcomes may 

be used to inform future investigations assessing the genetic contribution to inter-individual 

variability. 
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Proceedings of the 19th Annual Congress of the European College of Sport Science, 2014, 
Amsterdam: Netherlands 
 
ASSOCIATION OF ACTN3, CNTF AND PTK2 WITH SKELETAL MUSCLE PHENOTYPES IN UNTRAINED 
MALES 
Stebbings, GK, Morse, CI, Williams, AG, Day, SH 
Manchester Metropolitan University, UK 
 
Introduction 
The ability to perform physical activities requires muscle strength, which is known to vary inter-
individually (Stebbings et al., 2013). The genetic contribution to this inter-individual variation is yet 
to be confirmed, despite a number of associations between single-nucleotide polymorphisms 
(SNPs) and skeletal muscle phenotypes, most notably with elite athlete status. We aimed to 
establish if SNPs in the ACTN3, CNTF and PTK2 genes were associated with maximal voluntary 
contraction (MVC) torque and specific force in untrained men.  
 
Method 
Vastus lateralis (VL) skeletal muscle phenotypes were measured in untrained Caucasian men (n = 
100). Knee extension (KE) and flexion (KF) isometric MVC torque was measured in the right leg using 
isokinetic dynamometry, and VL muscle architecture, size and length were measured using B-mode 
ultrasonography. These data were used to calculate VL specific force. DNA was isolated from whole 
blood and participants were genotyped for ACTN3 R577X (rs1815739), CNTF G-6A (rs1800169) and 
PTK2 A/C (rs7843014) SNPs using real-time PCR. 
  
Results 
Genotype frequencies were all in Hardy-Weinberg equilibrium. There were no differences in 
specific force between the genotypes of ACTN3, CNTF (P ≥ 0.074) or PTK2 (P = 0.051) although this 
did approach significance. When combining PTK2 AC and CC genotypes, VL specific force was 7.5% 
higher for homozygous AA individuals (20.9 ± 2.9 N∙cm-2) than C-allele carriers (19.4 ± 2.5 N∙cm-2; P 
= 0.008). No differences between ACTN3, CNTF or PTK2 genotypes were observed for KE MVC (P ≥ 
0.690) or KF MVC (P ≥ 0.446).   
 
Discussion 
The lack of association between isometric MVC and ACTN3, CNTF or PTK2 genotype is similar to 
previous reports in untrained men (Erskine et al., 2012; De Mars et al., 2007; McCauley et al., 2009), 
suggesting minimal importance of these particular polymorphisms on MVC in an untrained 
population. The greater muscle specific force observed in homozygous A-allele individuals 
compared to C-allele carriers of the PTK2 SNP is consistent with previous work from our lab and 
suggests that AA individuals are more effective at lateral force transmission through the impact of 
PTK2 on the expression of focal adhesion kinase (Erskine et al., 2012). Specific force is a true 
reflection of intrinsic muscle strength in athletes and in disease conditions, so PTK2 (rs7843014) 
should be investigated in relevant cohorts. 
 
References  
Stebbings GK, Morse CI, Williams AG, Day SH. (2013). Muscle Nerve (DOI:10.1002/mus.24075). 
McCauley T, Mastana S, Folland, J. (2007). Eur J Appl Physiol, 109, 269-277. 
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