Accepted Manuscript g -

A parallel meshless dynamic cloud method on graphic processing units il
for unsteady compressible flows past moving boundaries e

and
Z.H. Ma, H. Wang, S.H. Pu engineering
PII: S0045-7825(14)00435-6 s’
DOI: http://dx.doi.org/10.1016/j.cma.2014.11.010

Reference: CMA 10459
To appear in: Comput. Methods Appl. Mech. Engrg.

Received date: 12 February 2014
Revised date: 5 November 2014
Accepted date: 7 November 2014

Please cite this article as: Z.H. Ma, H. Wang, S.H. Pu, A parallel meshless dynamic cloud
method on graphic processing units for unsteady compressible flows past moving boundaries,
Comput. Methods Appl. Mech. Engrg. (2014), http://dx.doi.org/10.1016/j.cma.2014.11.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cma.2014.11.010

A parallel meshless dynamic cloud method on graphic processing
units for unsteady compressible flows past moving boundaries

Z.H. M&* H. Wangd, S. H. PG4

aCentre for Mathematical Modelling and Flow Analysis, SdrafdComputing, Mathematics and Digital Technology,
Manchester Metropolitan University, Manchester M1 5GDjt& Kingdom
bDepartment of Marine Technology, Norwegian UniversityciéBce and Technology, Trondheim, NO-7491, Norway
¢Chengdu Aircraft Desigg- Research Institute, Chengdu 610041, P.R. China
dDepartment of Aerodynamics, Nanjing University of Aerditaé Astronautics, Nanjing 210016, P.R. China

Abstract

This paper presents affert to implement a recently proposed meshless dynamic cioettiod
[Hong Wang et al. A study of gridless method with dynamic dewf points for solving un-
steady CFD problems in aerodynamiést. J. Numer. Meth. Fluid2010; 64: 98-118] on
modern high-performance graphic processing units (GPlUtk)thve compute unified device ar-
chitecture (CUDA) programming model. Within the framewaoifithe meshless method, clouds
of points used as basic computational stencils are diséibin the whole flow domain. The spa-
tial derivatives of the governing equations are discrdtlsgethe moving-least square scheme on
every cloud of points. Roe’s approximate Riemann solved@psed to compute the convective
flux. A dual-time stepping approach, which iterates in pbglsand pseudo temporal spaces, is
employed to obtain the time-accurate solution. Simulatibateady compressible flows over a
fixed aerofoil is firstly carried out to verify the GPU implentation of the method. Then itis ex-
tended to compute unsteady flows past oscillatory aerofilenerical outcomes are compared
with experimental an@dr other reference results to validate the method. Sigmifiparformance
speedup of more than an order of magnitude is verified by theenigal results. Systematic anal-
ysis shows that GPU is more enerdiia@ent than CPU for solving aerodynamic problems. This
demonstrates the potential of the proposed method to soidedtructure interaction problems.

Keywords: aerodynamics, oscillatory aerofoil, CUDA, graph mapping

*Corresponding author. Tek44 (0)161-247-1574
Email addressesz.ma@mmu. ac.uk (Z. H. Ma),hong . wang@ntnu.no (H. Wang),nuaapu@yahoo. com. cn
(S. H. Pu)

Preprint submitted to Elsevier November 13, 2014

1. Introduction

Unsteady flows over moving boundaries are frequently enteoed in many scientific fields
such as aerodynamics, hydrodynamics and biological fluithohics etc. These complicated
problems play an important role in fundamental researchiadastrial applications, however
they have proved extremely challenging to theoretical eeérpental and numerical investiga-
tions. When dealing with them by a computational fluid dynangicFD) method, the motion
of boundaries need to be handled appropriately with a ralwsterical algorithm. Meanwhile,
the simulation itself is very time-consuming due to inteestomputing. A persistent objective
of CFD is to devise accurate anétieient numerical methods to solve these complicated flow
problems.

During the past several decades, a new kind of numericatitigpnamed meshless (or grid-
less, meshfree, particle) method has gradually attractwe emd more attentions of researchers
in CFD. A distinctive feature of meshless methods is thaneativities between points are not
necessary to be considered, since they do not adopt traalitgiructuredinstructured mesh
topologies but employs flexible clouds of points, which aasibally composed of a centre point
and several satellites, to discretise the flow domain. Thivateves of a mathematical function
in a cloud of points can be computed by the least-square dityvadial basis function or other
effective strategies. In the area of aerodynamics, meshlewdsehave been successfully ap-
plied to solve steady compressible flovis 2, 3, 4, 5, 6, 7]. Considering unsteady flows, Wang
et al. [B] proposed a meshless dynamic cloud method to deal with rgdvamindaries. A very
simple but &ective algebraic mapping strategy was used in their worldjosa the distribution
of meshless points. Solid boundary penetration inducedhsramumerical methods was avoided
by the dynamic cloud method even for cases with relativalgdalisplacements, such as & 30
pitch motion of an aerofoil (see figures 3 and 4 8f)[This method has also been extended to
drag reduction design for an aerofoil with active flow cohf@).

Until now, these aforementioned research works of meshiesisods for steady and unsteady
flows past fixed solid bodies have mostly been carried out s@tfal computing on a single core
of the CPU. On the other hand, Ortega et 400, [L1] paid attention to the parallelisation of the
finite point method on multi-core CPUs with the OpenMP prograng model. They observed
unsatisfactory scalability problems and pointed out titirable speedups on multi-core CPUs

will drop once the number of processor cores is over 4 due gchtgh cache miss rate and
2

limited memory bandwidth of CPU. Therefore, they suggetbagse much higher-performance
hardware platformsi[1].

Nowadays, computer science is embracing a new and fastogenglterritorial namely GPU
computing technology, in which the graphic hardware caiveleTera-scale single- and double-
precision floating-point operations per second in very megears. This provides tremendous
power to scientific computing and it is extremely attractivethe CFD community, in which
high dficiencyperformance is always a requirement of numerical methadsémy complicated
problems. For important GPU implementations of mesh meth@@&ders may refer to the works
of Karatarakis et al. 2] and Papadrakakis et al.13] for solid mechanics problems; Bard
and Dorelli [L4], Liang et al. [L5], Corrigan et al. 16], Asouti et al. [L7] and Kampolis et al.
[18] for fluid mechanics problems. In these works, the stragetpeutilise the GPU to solve
complicated problems in solid or fluid mechanics are exglaiim detail. Specific techniques to
prevent thread race conditions or to improve memory perémee are also provided. All of them
reported impressive speedups of the fundamental mesh baseerical solvers, this triggered
off our intention to investigate the possibility of realisifgtmeshless method for CFD on GPUs
in the first place. Initial success of such kind of attemptdive steady compressible flows with
a meshless method on GPUs was reported in our recent W6k These inspiring works for
flows over fixed objects encourage us to further develop GBddaumerical methods to solve
more challenging unsteady compressible flows past movingdbaries. This study exhibits such
kind of an dfort to accelerate the meshless dynamic method, which etfjey®bustness to deal
with rigid andor flexible boundaries, on modern graphic hardware.

The rest of the paper is organised as follows. Key aspectseofitimerical method includ-
ing the governing equations, meshless discretisation, tdua stepping scheme and dynamic
cloud technique are described in Sect®rThe implementation of the meshless dynamic cloud
method on the GPU is discussed in SecBoMumerical examples of steady and unsteady flows
are given in Sectiod. The obtained results are compared to the experimeribanther avail-
able reference solutions to verify the accuracy of the preseethod. Systematic performance
benchmarks of the method on CPU and GPU with up to one mill@ntp are also carried out.
Not only the running time costs are compared but also theggreeamsumptions are investigated.

The major contributions of the work may contain the follog/iphases:

e To the best of our knowledge, we are the first to present a GREdoaumerical method
3

for simulating unsteady compressible flows past moving daues.

e The performance of meshless dynamic cloud method is s'fadgssproved by more
than an order of magnitude, and the GPU based computing ohisthaore energyfécient
than the CPU.

e This work demonstrates the potential of the present GPUdgerithm for solving more

complicated fluid-structure interaction problems.

2. Numerical method

2.1. Governing equations

In a two-dimensional Cartesian coordinate system, therkageations in an arbitrary La-

grangian and Eulerian form can be expressed as

U B N
ot ox dy
whereU is a vector of conservative variablésandF are the flux terms, they are defined as

0 1)

p p(U=X%) p(V—yo)
u u(u-—x)+ u(v—
=l E- pu(u=Xx) p’ F_ pu(v—¥yi) @
PV oV (U—X) pV(V=y) +p
08 p& (U—X) + pu pe (V—y) + pv

in which, p is the densityp is the pressurej andv are the components of (fluid) velocity vector
V alongx andy axes respectively; andy; represent the components of velocity vedfpalong

x andy axes of discrete points. The total energy per volymeés given by

pa= Pk 2o+) ©

=51

wherey is the ratio of specific heat cieients ¢ = 1.4 for air).

2.2. Spatial and temporal discretisation

For any cloudC; in the flow domain, the Euler equatiory @re required to be satisfied
0E OF
=45 = 4
C+(3X+BY)C. 0 ®
4

au
ot

For simplicity, we use the subscripto represent the clou@; in the following. With a moving
least square curve fitl] 3, 5], Eq. (4) can be written as

oy,

M;
E+Z[(aijEij+ﬁijFij>—(aijEi+ﬁijFi)]=0 5)
=1

where the subscripj indicates the midpoint between the ceritesd a satellitg. Introducing a
parameter = /a2 + 82 and a vectoi7 = («/1,8/4), Eq. 6) can be expressed as

oy,

Mi
E+JZ:;(G” —Gi)/lij =0 (6)

The flux functionG is evaluated by Roe’s approximate Riemann soh&r2(]
1
G= > [G(UL) + G(UR) - |AI(Ur — UL)] (7)

In order to improve the accuracy, the data is reconstrucyea piecewise linear interpolation
scheme and van Leer’s limiter is used to prevent spurioufiaitans caused by the interpolation
[19]. The semi-discrete form of Eq6) can be written as

d—t'+Ri=o (8)

whereR represents the residual vector. In order to obtain the isolub second-order time
differential scheme is used

3UM — 4un 4 Ut

7 +Ri (U =0 9)

A dual time-stepping approaci21] is employed to solve Eq.9], the derivative of pseudo time

is denoted as L . .
duy . UM —4U! + U

dr 2At

usingU* as the approximation fdg™?, the unsteady residual is defined as

+Ri(UY) =0 (10)

3U7 — 4Un + Ut

R/ (U) = L

+Ri (U)) (11)

The solution to Eq.X0) is the steady state of pseudo tie

*

U:
-+RI(U) =0 (12)
dr

An explicit multi-stage Runge-Kutta schem21] is applied to march Eq.1@) from pseudo time

level nAT to level (1 + 1)Ar,

uo = ;)" (13a)
Ui(l) _ Ui(O) — mATR! (Ui(O)) (13b)

(13c)
Ui(m) _ Ui(m_l) — amATIR’ (Ui(’“)) (13d)

(13e)
UP = UPY - aparRy (UPY) (13f)
U™ =uP (139)

More details of the dual time-stepping method can be fourtdérwork of Jamesorgf] .

2.3. Dynamic cloud technique

Figure 1: Determination of the mapping ¢beients &° = SP/S, aiQ = SiQ/S).

As is known, the computational domain is usually defined bysptal boundaries (e.g. solid
walls) and artificial boundaries (e.g. far-field boundafimsexternal flows). In order to adjust
the distribution of discrete points to accommodate the omotif moving boundaries, a simple
Delaunay graph mapping approach proposed by Liu e23].i§ employed in the present work.

In order to generate the Delaunay graph to overlay the whale domain, we first need to
select some representative (or all) boundary points. HEsigilien set of boundary points, there

exists a unique triangulation known as the Delaunay catej22]. Since the Delaunay graph
6

covers the whole solution domain, every discrete point ealotated in a triangle element of the
graph. Such triangle is named the host element for the panat,it can be used to redistribute
the nodes inside it. The essential idea to manipulate thiéigosf a single point is shown in
Figure 1, where a poinP lies inside a Delaunay graph eleménwith three vertices notated
asE;, E; andE;. The verticesE;, E; and E; are basically chosen from the boundary points
{EB} = {EY} U{E')} (the superscriptv stands for solid wall and indicates far field boundary) in

a computational domain. The coordinates?afan be expressed as

w

3
X =>ax, Y= avy (14)
i=1

i=1
where &, Y;,) are the Cartesian coordinates of vergxlf S is the area of, andS;(i = 1, 2, 3)
are the areas of the sub-triangles shown in Figuteena; = Sj/S(i = 1,2, 3). For pointP, the

areas are given by

Xp Yp 1 Xp Yp 1 X Yp 1 Xe, Yg, 1
S1 = E Xg, VY& 1, SZ = E Xg; YE, 1, SS = E Xe, YE, 1, S= E Xg, VYE, 1
Xe; Ve, 1 Xe, Vg 1 Xe, Ye, 1 Xe; Ve, 1

(15)

In the generated Delaunay graph, the far field boundary ponay stay stationary, while
the solid wall points representing the geometrical configan are allowed to move in the flow
field. Hence, the Delaunay graph will also m@eform. After movingdeforming the graph, a
new set of coordinates is obtained for the vertices of eagpltgelement. It is requested that the
distribution of the point in a graph element keeps the arga cadficientsa; as constants during
graph movement?]. Therefore, the new coordinates of pofitan be determined as

3 3
X, =y %, v =) ay, (16)
i=1 i=1
where Q(’Ei , y’Ei) are the new coordinates for graph element nodal pointsthieravords, the area
ratio codficientsa; can be used to relocate the poihin the domain 22].

Such kind of procedure is illustrated in Figitewvhere poinP is mapped to poin®’ after the
movement of graph element. Since the distribution of thesetpis controlled by the constant
area ratio cofficients throughout the graph movement, this is very usefldep the relative

position of a point between its each surrounding node. Ei@ushows the relocation of five
7

neighbouring nodes in three adjacent graph elements. Téat@/eepositions betweeR; and its
surrounding points can be maintained if the amplitude gbplgraovement is not extremely large.

Consequently, if these five nodes form a meshless point ¢foti@ly, it can be used throughout

the graph movement without frequently changing its membees.

(J:Elv yEl) (IrEl s y’El)

(@5, U,)

= (@ YE)
($E27 yEQ) ('T/Ep y/EZ)

(a) before movement (b) after movement

Figure 2: Relocation of a poirR in a Delaunay element during the graph movement. The new aieaccaficients

& = S//S’ are equal to the original values = S;/S.

B B A
C I
C E
D E
D

(a) before movement (b) after movement

Figure 3: Relocation of five points in neighbouring Delauefgments during the graph movement.

The basic steps of the dynamic cloud method are listed asfsl!

Input the cloud of points.
Generate a Delaunay grah= UKK:1 Ty for the boundary pointg=B}.

For each internal field poir, search the host elemenRf inside which it lies.

Compute the mapping cﬁimientsa1.'° for point P.

a > v nhpoRE

Moving the Delaunay graph.

6. Relocating the points in the graph.

The information for step 2, 3 and 4 only needs to be computed and stored in the computer
memory before the flow simulation starts.

Examples are given here to illustrate the procedure of imphging dynamic cloud for a
NACAO0012 aerofoil and a NACA64A010 aerofoil with pitch matis, respectively. We first need
to input the cloud of points for the aerofoil, then generabeunay grapks of boundary points
{EB} as shown in Figurd and6. If we rotate the aerofoil about its quarter for’3the coordinates
of aerofoil surface points are updated &gy(, yew,). Substitute the new coordinates to B
then the coordinates of all the internal field points will helated as illustrated in Figuteand
7. The advantage of this approach is that intensive iteratiequested by other methods like
spring-analogy technique are avoided since it only needssimple linear algebraic operations.
Moreover, it can fectively handle cases with relatively large displacemueiitisout penetrating
solid boundaries as shown in Figlsend7. Meanwhile, solid boundary penetration may occur
when other strategies such as spring analogy are utilisadjtst the clouds of points for these

cases (see Figure 3 d]).

Figure 4: Global and close-up views of a Delaunay graph fangles NACA0012 aerofoil.

3. Implementation on the GPU

3.1. The procedure

As is well known, a GPU computing program usually needs thd @Rnput the information
from the hard drive (or elsewhere) and pre-process the d@adata is then sent from the CPU
to the GPU. The complete or partial computing taskffsl@aded to the GPU. Once the task is
finished, the result is transferred back to the CPU. This igdipeocedure for a GPU based CFD

program is illustrated in Figur@.

(a) Initial cloud (b) Mapped cloud (30pitch) (c) Trailing edge close-up view

Figure 5: Dynamic cloud for a single NACA0012 aerofoil withighi motion.

Figure 6: Global and close-up views of a Delaunay graph fangles NACA64A010 aerofoil.

(a) Initial cloud (b) Mapped cloud (30pitch) (c) Trailing edge close-up view

Figure 7: Dynamic cloud for a single NACA64A010 aerofoil wiitich motion.

10

CPU GPU

GPU data

Input Data

‘ Preprocess CPU data ‘
‘ Upload
Ye&s p++
Boundary conditions
Download
CPU data

‘ Postprocess GPU data ‘

Figure 8: A general procedure of GPU computing program. The 8Pésponsible to inpfautput the data, the GPU is

recruited to tackle the computing intensive task.

11

Our original single-core CPU based meshless solver foreadst flows was exclusively
coded in Fortran 90. It does not adopt any third-party nuca¢tibraries. The main pro-
gram written in Fortran 90 is presented in Listibig The most time-consuming portion is the
flow solver (the function ALEsolver), whose major steps are shown in Listtha§Ve use CUDA
C [23] to re-program this part of the code. Other portions of tHeesdncluding data inpyout-
put and flow field initialisation are kept the same as showniguie 8 and Listingl. The

CUDA code for the flow solver is presented in Listi8g

Listing 1: The Fortran main program

1 program main
2 call InputData(CPU_data)
3 call FlowInit(CPU_data)
4 call DelaunayGraphGen(CPU_data)
5
6 ! solve the ALE equation on GPU
7 call ALE_solver_GPU(CPU_data)
8
9 call ResultOutput(CPU_data)
10 end program main
Listing 2: Fortran code for the ALE solver
1 subroutine ALE_solver_CPU(CPU_data)
2 physical_time: do i=0,TotalTimeStep
3 call MoveSolidBound(CPU_data)
4 call RelocatePointInGraph(CPU_data)
5
6 ! pseudo time iteration
7 pseudo_time: do it=1,InerItMax
8 do im=1,NRK
9 call residual (CPU_data)
10 call advance(CPU_data)
11 enddo
12
13 call FlowUpdate(CPU_data)
14 enddo pseudo_time
15 enddo physical_time
16 end subroutine ALE_solver()

Listing 3: CUDA code for the ALE solver

1 #ifdef __cplusplus
extern "C"
#endif

12

4 void ALE_solver_GPU(CPU_data)

5 {

6 //upload data from CPU to GPU;

7 cudaMemcpy (CPU_data, GPU_data, data_size, cudaMemcpyHostToDevice);
8

9

//physical time

10 for(int i=0;i<TotalTimeStep;i++){

11 Cuda_MoveSolidBound<<<block,grid>>>(GPU_data) ;

12 Cuda_RelocatePointInGraph<<<block,grid>>>(GPU_data) ;
13

14 //pseudo time iteration

15 for(int it=1;it<=InerItMax;it++){

16 for(int im=1;im<=NRK;im++){//Runge-Kutta stepping
17 CUDA_residual<<<block,grid>>(GPU_data) ;

18 CUDA_advance<<<block,grid>>>(GPU_data) ;

19 }

20 CUDA_FlowUpdate<<<block,grid>>>(GPU_data)

21 }

22 ¥

23

24 //offload data from GPU to CPU;

25 cudaMemcpy (GPU_data, CPU_data, data_size, cudaMemcpyDeviceToHost);
26}

3.2. Hierarchy of CUDA thread and memory

Different with MPI1 or OpenMP, which provides coarse-grain peliam, CUDA dfers fine-
grain parallelism as thousands (or even many more) of ligight threads can be launched on
the graphic hardware. Each thread can be properly used tovithaa computational stencil (a
mesh cell for structurgdnstructured grid methods, or a cloud of points for meshiesthods).

It can access the data stored in the memory and carry outralgaiperations on the data, etc.
CUDA uses grid and blocks to manage these threads, and évendthas a unique index.

Figure9 presents a simple layout of the CUDA thread and memory hibyarThe CPU is
usually considered as the host, and the GPU is called thealeVihe data stored in the host
memory is firstly copied to the global memory of the device. tba device, every thread can
access the global memory. All the threads in the same blookacaess the shared memory
belonging to this block, each thread can have its own prikegésters. Proper use of shared
memory will greatly benefit the program performance esplgaidnen there are a lot of data reuse

[23)]. It works well for structured grid methods, which can addrenemory with regular patterns.

13

However, for indirect addressing model based applicatsuth as unstructured grid methods,
it is difficult to utilise the shared memory due to the irregular menaagess pattern. As the
meshless solver indirectly addresses the data, we do npt Huoshared memory in the current
work. Using constant memory provided on GPUs may reduceettpgired memory bandwidth
[23]. In the present work, we use constant memory to store impbparameters such as the ratio
of specific heat caéicientsy. Adequate threads can be created on the device to accomaplish
one-to-one mapping of the CFD grid. A CUDA grid can have ughte¢ dimensions to manage
the thread blocks and map the corresponding CFD grid.

In the present work, Both the thread block and grid are setetore-dimensional. The
number of threadh; in a block is usually set as times of 32, which is the size of gpwaccording
to the CUDA C programming guideg]. If the total number of meshless clouds of pointdis
in the whole flow field, then the number of thread blodlgscan be chosen as an integer number
no less thaN;/N;. Accordingly, the blocksize is set & and the gridsize i#\, for the CUDA
kernel functions shown in Listing. The parameteK; can be tuned in order to obtain the optimal

performance.

| Global, constant and texture memory |
Device
¥ B
T~
_— ~

Host memory |

Host

Figure 9: CUDA memory and thread hierarchy. A one-to-one mappfrthe CFD grid can be established if adequate

threads are created on the CUDA device.

3.3. Data structure

Fortran derived types were used in our original program tmpsulate data associated with
the same cloud of points. This made the program quite coacideeadable. Although structure
of arrays (SoA) is more coalesced in computer memory thaayarof structure (AoS), com-

14

pletely substituting AoS with SoA brings penalties to co@bubging and development of an
existing large program composed of thousands of lines ar ew@e. In case researchers prefer
not to re-design their programs from scratches but just wanbtain satisfactory performance
speedup* 10x) by using GPUs, AoS can still be used if this does not harm ¢éiifopmance too
much.

For the current study, the strategy to manage the data on @&P$fown in FigurelO(a)
Arrays of GC++ structure are used to store the information of each cloudoaitp, which
include the number of points in the cloud, serial index anshgetric scalar cdécients of every
satellite. Flow variables ayak their gradients can be encapsulated in@+&- structure of point.
Attentions need to be paid to thesgd2 + structures, they should be compatible with the Fortran
derived types, which means the variables in/@+ structure must be in the same sequence as
those in a Fortran derived type. Otherwise, the data passedd Fortran subroutine to aC++
function will possibly be corrupted by readjfigiting a false address in the memory.

Figure 10(b) presents a mapping of the CUDA threads to all the computalistencils, in
which every CUDA thread is responsible to deal with a coresiing cloud of points. To access
a piece of data stored in the GPU global memory from a singéathin a block, the global index
of the thread needs to computed (page 28f). In most cases, the number of threads in a block

needs to be tuned to optimise the performance of a GPU program

3.4. CUDA thread race conditions

Attention needs to be paid to the underlying numerical metlben we try to port the CPU
functions to the GPU. Some well-founded computer algoritiman not be directly converted to
CUDA kernel functions if they are not inherent parallel. Apiyal problem is the racing of
CUDA threads, in which no less than two threads attempt tesscthe same memory location
concurrently and at least one access is write. This may pedoexpected result24].

To reveal this kind of problem, here we choose the Laplacatimuas an example. If the
Laplace equation is solved on a uniform structured grid WithGauss-Seidel iteration method,
the value at a CFD grid poirRc can be obtained through averaging its four closest neigisbou
as shown in Figurdl (left part). However, direct converting this function to DM is not
favourable. When a thread is trying to update the value.atith a write operation, other four
threads may read this piece of memory at the same time. Coesty there is a conflict

between the write and read operations, and this will leadhtorgoredictable result. Hence, the
15

Meshless points in the domain A typical cloud of points C/C++ struct Cloud

(a) Encapsulation of clouds of points i@+ structure

— WEEN - BRRN - BN
4 A A A
v LA AN A
Globd threads @* +1 |[i+2]| oo oo oo |[N-a |[Ne3 N2][N
— i i
2

1 1 1
1 1 1 |
RYRION I

1 1
Block 0 Block j Block J — 1

. CIC++ Struct of CloudPoint t Memory readiwrite T Thread index transform
(b) GPU global memory and thread hierarchy

Figure 10: Data arrangement for clouds of points in the GPU mgniar readwrite the GPU global memory, a global

index needs to be calculated by using the local thread indexblock and the number of threads in a block.

16

algorithm needs to be replaced with a chequerboard Gaudst&eration (right part of Figure
11) or other methods. The example is given here to emphasismtieatance of the concept of

parallelism for GPU computing, which we should bear in mimetghout the work.

Serial CPU function CUDA kernel function
void GS(float *A, const int I, 1 __global__ void GS_RED_CUDA(float *A,
const int J) 2 const int I, const int J, const int RED)
{ 3 {
for(int j=0;j<J;j++) 4 int i=blockIdx.x*blockDim.x+threadIdx.x;
for(int i=0;i<I;i++){ 5 int j=blockIdx.y*blockDim.y+threadIdx.y;
int C = j*I+i; //Center point 6 int C = j*I+i; //Center point
int L = C-1; //Left point 7 int L = C-1; //Left point
int R = C+1; //Right point 8 int R = C+1; //Right point
int D = C-I; //Lower point 9 int D = C-I; //Lower point
int U = C+I; //Upper point 10 int U = C+I; //Upper point
A[CI=(A[L]+A[RI+A[D]+A[U]) /4; 11 if (i<I-1&&j<J-1&&(i+j)%2==RED)
} 12 A[C]=(A[L]+A[R]+A[D]+A[U])/4;
} 13 ¥

Figure 11: A five-point Gauss-Seidel iteration method, $&fsaparallel. Chequerboard GS iteration is used on the GPU

to prevent thread racing problem, which will cause conflietherite operations.

pRight AON
.® T
-7 pMid 2O
()g N
pLeft T
(@) Pmig and the pairPieq—Prignt (b) a solution point and its satellites

Figure 12: Two strategies to loop over all the solutions moin the flow field. Left: loop over every point pair; Right:
loop over every solution point, aided with a small loop ovsrsiirrounding nodes (satellites).

Listing 4: A Fortran subroutine to compute spatial derivegifio/ox . Point-pair loop, please refer to Figutg(a)

1 subroutine FlowDerivativeCPU(CPU_data)
2 integer::pmid,pLeft,pRight

3

4 do pmid=1,PmidTotal

17

pLeft=Left (pmid)

pRight=Right (pmid)

dRhodx (pLeft)=dRhodx (pLeft)+alphaLeft (pmid)*rho(Right)

dRhodx (pRight)=dRhodx (pRight)+alphaRight (pmid) *rho (Left)
end do

end subroutine FlowDerivativeCPU

Listing 5: A thread-racing GPU kernel function fép/0x. Point-pair loop, please refer to Figutg(a)

© 00 N o b W N P

e
N P O

Listing 6:

0 N o g M~ wWw N P

__global_
{
//indez midpoint

void FlowDerivativeGPU_A(GPU_data)

int pmid=blockDim.x*blockIdx.x+threadIdx.x;

//derivative of density

pLeft=Left [pmid]

pRight=Right [pmid]

dRhodx [pLeft]+=alphaleft [pmid]*rho [pRight] ;
dRhodx [pRight]+=alphaRight [pmid] *rho [pLeft];
}

[

A thread-racing-free GPU kernel function #r/dx. Hierarchy loop, please refer to Figut2(b)

__global__ void FlowDerivativeGPU_B(GPU_data) { //index meshless cloud int

i=blockDim.x*blockIdx.x+threadIdx.x;

//derivative of density
for(int j=0;j<M;j++){

dRhodx [i]+=alpha[j]*Rho[C[i] [j1];
}

Similarly, all the GPU kernel functions developed for thestmess dynamic cloud method

must preclude thread race conditions. When computing $piidvatives of a mathematical
function or the convective fluxes on the CPU, we can loop overyepair of pointsPies; and
Pright @s shown in Figurd2(a) This method can be simply named point-pair loop (PPL). The
corresponding Fortran code is shown in Listiag Directly porting this code to the GPU will

lead to a thread-racing kernel function as shown in Lisfing

To prevent race conditions, we may choose to have a hierdodpy (HL), which has an

outer loop for every solution point and an inner small loop ife surrounding nodes within

the same point cloud. The hierarchy loop shown in Fighiéb) can successfully prohibit race

18

conditions and is suitable for parallel computing. The esponding thread-racing-free GPU
kernel function is shown in Listing. The hierarchy loop used in the present work is very
similar to the redundant computation technique proposeddsyigan et al. (Section 3.2 o1 §]).

On the CPU, the performance of PPL is much better than HL. Gdmishe seen from Table
which lists the running time costs of the HL-based and PPdetidunctions for computing the
derivativedp/dx on a single CPU core. Compared to PPL, HL needs extra 39.323% CPU

time. However, HL is parallel friendly while PPL will causace conditions on the GPU.

Table 1: CPU run time costs of the functions for computipgox with hierarchy loop (HL) and point-pair loop (PPL).
Both functions are executed 50000 times on a single CPU canap@red to PPL, HL needs extra 39.292.3% CPU
time.

Case Number of points HL cost(s) PPL cost(s) /PIRL

1 3142 3.62 2.60 139.2%
2 5557 6.55 462 141.8%
3 8993 11.19 7.59 147.4%
4 15198 17.64 1158 152.3%

3.5. Hardware and software platform

All the following numerical simulations presented in thigper are performed on a Linux
workstation equipped with a Intel Xeon E5645 CPU (12M ca@¥) GHz, 6 cores) and 24GB
RAM. The maximum power consumption of the CPU is 80w, so thisoughly 13.33w for a
single core. Two NVIDIA graphics cards Quadro 2000 and T€2875 are installed on the
workstation. The specifications of the two graphic cardsliated in Table2. The operating
system is Ubuntu 10.10 64-bit. We use PGI Fortran and NVC®@mapile Fortran and CUDA C
codes respectively. The optimisation level for each coenpdl set to-03 without debugging and
profiling options. Two librariesstdc++ (C++ run time library) andibcudart (CUDA run time
library) need to be linked to the object files in the final adskmy stage in order to guarantee the

executable program be generated successfully.

19

4. Numerical results

In order to verify our method on the GPU, we start with comgitde steady flows over
a fixed NACA0012 aerofoil. Then we extend the method to umistdbows past oscillatory
NACAO0012 and NACA64A010 aerofoils. No-penetration cortitis adopted on the aerofoil
surface and non-reflection condition is applied on the fldfboundary. Two important param-
etersspeedu@mndenergy consumption ratiwill be used in the following sections to indicate the
performance of GPUs regarding the computing speed andyeagitjency. Speedujs defined
as the ratio of CPU running time to GPU running tinemergy consumption ratis calculated by
dividing the GPU energy consumption with the CPU energy aomstion. We need to point out
that the energy consumption is obtained through multigjytime processor’s maximum power
consumption with its running time. Throughout our work, tBBU program is executed on
a single core, therefore the actual CPU energy consumpidivided by the number of cores

inside it .

4.1. Steady flows over a NACA0012 aerofoil

The flow condition for this case i§l,, = 0.8 with angle of attackr = 1.25°. The number
of points distributed in the domain is®57. This is a classical test to benchmark the numerical
method’s capability to capture shock waves correctly migarthe position and strength. On the
upper surface of the aerofoil, a strong shock appears ngéahord length. On the lower surface,
a weak shock forms around37¥5 chord length. These shock waves are clearly shown in the
right part of Figurel3. The pressure cdigcients around the aerofoil surface are depicted in the
left part of the figure, in which the solid line is the presemrkvcomputed on Tesla C2075, the
square dot is Pulliam and Steger’s res@h][A cell-centred finite volume method with the JST
(Jameson-Schmidt-Turkel) schen&§]is also utilised to solve this problem and the solution is
represented by the cross. Obviously, the present reseagvell with the other solutions. The
CPU and GPU running time costs for this case are presenteabieJ. It is clearly shown that
we achieve speedups of.86 and 3292 on Quadro 2000 and Tesla C2075 cards respectively. At
the same time, it is easy to find that Quadro and Tesla are abima energy #icient of a Intel
Xeon E5645 core as indicated in TalBle

In order to investigate the performance of these two GPUswdifeerent number of points
are used, we carry out a systematic benchmark of the mestdbss. The number of points

20

distributed in the domain varies from two thousands to orlkani The meshless cloud with one
million points occupies about 220MB memory on the GPUs. &foee, the Quadro 2000 card
has the capacity to handle about four million points and #&arC2075 card can handle about
25 million points. For cases with even more points, multitGRrategy needs to be considered.
However this is beyond the scope of the current paper. Welanaing to investigate this issue
in our future work.

Figure 14 shows the running time speedups of the two GPUs. Quadro 2988 g good
speedup rising from.8 to more than 13 when the number of points is increased, @gygrcon-
sumption ratio decreases from.248% to 3484% (the lowest value is 3B3%). On Tesla C2075,
at the same time, the running time speedup gradually rises &6 to 56 with a corresponding
energy consumption ratio dropping from.89% to 3049%.

15 -
Present

FVM x
Pulliam

0.5 |

1.5 1 1 1 I 1
0 0.25 0.5 0.75 1

x/c

Figure 13: Transonic steady flows over the NACA0012 aerdwilM., = 0.8, « = 1.25°. Left: the pressure céig-
cients around the aerofoil computed by the meshless solveesia T2075 GPU, finite volume method (with the JST
scheme 26]) and Pulliam and Steger’s resug]. Right: pressure contours in the flow field computed by thesgmé

method. The number of points distributed in the domain &55.

4.2. Unsteady flows over an oscillatory NACA0012 aerofoil

A standard AGARD test case of an oscillating NACA0012 adtagoconsidered here. For

this case, the aerofoil rotates about its quarter chord thighnstantaneous angle of attack given

21

Table 2: Specifications of Intel Xeon E5645 CPU, NVIDIA Qua@000 and Tesla C2075 graphic cards. Throughout
our work, the running time and energy consumption of the CP&rttefa single core.

Intel Xeon E5645 Quadro 2000 Tesla C2075

Clock Rate 2.4 GHz 1.25 GHz 1.15GHz
Global memory 24 GB 1GB 6 GB
Shared memory - 48 KB 48 KB
Registers per block - 32768 32768
Number of multiprocessor 1 4 14

Cores per multiprocessor 6 48 32

Total number of cores 6 192 448
Compute capability - 2.1 2.0

Max power consumption 80w 62w 225w
Max power consumption per core 13.33 w 0.32w 0.50 w

Table 3: CPU and GPU running time costs of the meshless solvestéady flows over the NACA0012 aerofoil for

Msw = 0.8, @ = 1.25°. The running time and energy consumption of the CPU refer tmglesicore. (The number

of points distributed in the domain is 557. The number of Runge-Kutta iterations is fixed toQ for comparison
purpose.)

Device Intel Xeon E5645 Nvidia Quadro 2000 Nvidia Tesla G207
Wall time(s) 465.80 42.89 14.15
Speedup - 10.86 32.92
Energy consumption 100% 42.74% 51.28%

22

Tesla C2075 —+—
Quadro 2000 ——

0.8

Tesla C2075 —+—
Quadro 2000 —<—

Speedup
w
(=)

Energy consumption ratio

!
|

10 i 0.2

. . . . 0L . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Number of points (x10°)

Number of points (x10°)

Figure 14: Systematic benchmark of the meshless solver fadysfemvs on two CUDA supported graphic cards. Left:
running time analysis; Right: energy consumption analygiee8up is defined as the ratio of CPU running time to GPU
running time. The running time and energy consumption of the @®&r to a single core. The running time cost for
numerical simulations can be dramatically reduced by more thawder of magnitude on GPUs, which are also more
energy dicient.

by

a (t) = am + ag Sin(wt) a7

wherean, is the mean angle of attacky is the pitching range and@ is the angular frequency.

The angular frequenay is related to the reduced frequency given by

Kk = wC/2U (18)

wherec is the chord length of the aerofoil ahdl, is the free-stream speed of the flow. The case
is solved with the following conditiondvl,, = 0.755,a, = 0.016°, ag = 2.51°, k = 0.0814. The
computational domain is discretised by557 points, among which 337 nodes are distributed
on the aerofoil. Prior to performing the unsteady simulatia steady flow solution is firstly
computed with the specified flow conditiods, = 0.755 andy, = 0.016°. The simulation of
the unsteady flow field is initiated once the steady solutamverges. The unsteady computation
is carried out using 64 real-time steps in every oscillaperiod. Within each real-time step, it
takes about 500 to 600 iterations to reduce the residual g than four orders of magnitude.
For this case, we compute ten oscillation periods in total.

Instantaneous lift cdicient C. and moment cdécient Cy versus angle of attack during

the oscillatory motion are presented in Figd&e and they agree well with Landon’s experiment
23

0.02
0.25 |
0.01
= L =
S 0 3 0
—0.01
—0.25 -
~0.02
Present Present
Experiment Experiment @
Batina x Batina x
Kirshman = Kirshman ~ »
05 h L o003 . . . h ,
-3 -2 —1 0 1 2 3 -3 -2 —1 0 1 2 3

(%)

(a) Lift coefficient

o)

(b) Moment coéicient

Figure 15: Comparison of lift and moment ¢beients with Landon’s experimen27] (black dot), Batina’s numerical

result 8] (red cross) and Kirshman'’s computatid®] (green star) for the oscillatory NACA0012 aerofoil.

0.2

0.1

Re(Cpy)
-

—0.1

0.3

Experiment @ L] Experiment @
Present Present
Kirshman -------- Kirshman --------
02 . . . h . 03 . . . ! .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z/c z/c

(a) Real component of first mode

Figure 16: Fourier decomposition of the surface pressuricaats for an oscillatory NACA0012 aerofoil (black dot is

Landon’s result27], dashed line is Kirshman'’s solutio29)).

24

(b) Imaginary component of first mode

0.4 ¢ 0.02 -

0.2 0.01 |-

Cum
°

o2 | —0.01

—0.4 L L L L L L L L \ —0.02
5 50 0

(a) Lift coefficient (b) Moment coéicient

Figure 17: Time history of the computed lift and momentf&oeents for NACA0012 aerofoil.

[27], Batina’s computationZ8] and Kirshman’s simulation29]. Figure 16 illustrates the first
Fourier mode of the surface pressurefticgent, where the real component is depicted in the left
part and the imaginary component is shown in the part. Appitrehe present result is in a good
agreement with the experimer27 and Kirshman’s computatior2p]. Figure17 shows the time
history of the lift and moment cdigcients for ten oscillation cycles. The periodic phenomenon
is well established from the second cycle as shown in thedigur

We list the running time costs for fiierent compute hardwares in Taldlelt takes the CPU
30.41 seconds to compute a real time step. This is shortene®®sgconds by the Quadro
2000 graphic card with a speedup ofi®. The Tesla GPU achieves a speedup 082%s it
only spends D2 seconds. More than fives hours’ CPU time can be dramatiealuced to less
than eleven minutes by Tesla C2075 for the total ten cycleshawn in Figure21. The energy

consumption ratio of Quadro card is.28% and it is 560% for Tesla card.

4.3. Unsteady flows over an oscillatory NACA64A010 aerofoil

Another standard AGARD test case of an oscillating NACA648@erofoil is considered.
For this test, the aerofoil rotates about its quarter chatt the instantaneous angle of attack
indicated by the same equatidlif. The angular frequeney is related to the reduced frequency
« defined by Eq. 18). This case is simulated with the following conditiond;,, = 0.796, an
= 0.0°, ap = 1.01°, k = 0.202. There are 4006 points in the flow domain and 200 nodes are

25

Table 4: Pseudo time iteration costs of the meshless solvaniieady flows over the NACA0012 aerofoil. The running
time and energy consumption of the CPU refer to a single cotee (ilimber of points distributed in the domain j§57.

The maximum number of sub iterations is 1000.)

Device Intel Xeon E5645 Nvidia Quadro 2000 Nvidia Tesla G207
Wall time(s) 30.41 3.22 1.02
Speedup - 9.44 29.81
Energy consumption 100% 49.26% 56.50%

distributed on the aerofoil surface. Once the steady swlutonverges foM., = 0.796 andyp,

= 0.0°, the unsteady computation is started and kept for ten atioifi periods. Each period is
divided by 64 chunks. For this case, it takes about 150 pstodoiterations for each real-time
step to reduce the residual by four orders of magnitude.

Instantaneous lift cacientC. and moment cdécient Cy versus angle of attack during
the oscillatory motion are presented in Figli& The present computed lift cfiwient agrees
well with Davis’ experiment 30], Hsu & Jameson’s inviscid solutior8], 32 and Liu & and
Ji's viscous result3d3]. Inspecting the moment céiient, it's not dificult to find that there is a
relative big discrepancy between the experiment and afitingerical computations. Our resultis
in a good agreement with Hsu & Jameson'’s solution, but applgideoth of the inviscid solutions
over predict the amplitude of moment ¢beient. While Liu & Ji's viscous result is closer to the
experiment regarding the minimum and maximum momenffaents. The real and imaginary
components of the first Fourier mode for the surface presagficients are depicted in Figure
19. Apparently, our computation is in a satisfactory agreemeéth the experiment and other
numerical solutions. Time history of the lift and moment @@éents is shown in Figur0, the
periodic phenomenon is well established from the thirdeycl

The pseudo-time iteration costs are listecbinQuadro 2000 performs relatively well as it
spends (588 seconds to compute a real-time step, which gives a spedd®48 compared to
the CPU. While it is very interesting to note that Tesla C20vigles a 23 7x speedup, it takes
this device only 208 seconds to complete a real-time step. Almost one holtd ®ork can
be finished within three minutes as shown in Figite Both Quadro 2000 and Tesla C2075 are

more energy ficient than the CPU for this case.

26

0.15
0.1
0.05
S 0 3
—-0.05
-0 Present
Experiment .
Liu
Hsu *
—0.15 ,
—1.5 —~1 —0.5 0 0.5 1 1.5
a(®)

(a) Lift coefficient

0.015

Present
Experiment .
Liu x
0.01 | flsu =
0.005 +
0 r
—0.005 +
—0.01
—0.015 L . . s . g
—1.5 -1 —0.5 0 0.5 1 1.5
a(®)

(b) Moment coéicient

Figure 18: Comparison of lift and moment ¢beients with Davis's experimen8(] (black dot), Liu & Ji’'s numerical

result B3] (red cross) and Hsu & Jameson’s computati®h B2 (green star) for the oscillatory NACA64A010 aerofoil.

0.2

0.1

Im(C,,)

0.2

0.1

—0.1 —0.1
Present Present,
Experiment @ Experiment [
Liu Liu
02))) Wang Gang -) 02))) Wang Gang -)
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z/c z/c

(a) Real component of first mode

Figure 19: Fourier decomposition of the surface pressuréicmats for an oscillatory NACA64A010 aerofoil (black

dot is Davis’s experimen8[J], red cross is Liu and Ji's numerical resu83, green dashed line is Wang et al's compu-

tation [34]).

27

(b) Imaginary component of first mode

0.12 |

0.08 H

0.04 0.005 |-

C

—0.04 + —0.005

008 ¢ —0.01

—0.12 |

0 20 40 60 80 100 120 140 160 180
t

(a) Lift coefficient

0.015 -

0.01 |

—0.015
0

20 40 60 80 100 120 140 160 180
t

(b) Moment coéicient

Figure 20: Time history of the computed lift and momentfGoeents for NACAG64A010 aerofoil.

Table 5: Pseudo time iteration costs of the meshless solvemfsteady flows over the NACA64A010 aerofoil. The

running time and energy consumption of the CPU refer to a scwle. (The number of points distributed in the domain

is 4,006. The maximum number of sub iterations is 1000.)

Device Intel Xeon E5645 Nvidia Quadro 2000 Nvidia Tesla G207
Wall time(s) 4.985 0.588 0.208
Speedup - 8.48 23.97
Energy consumption 100% 54.94% 70.42%

28

360

Intel Xeon E5645 xxxxsd
S Quadro 2000
K Tesla C2075 m—
Doato
300 r K
s
[99%s%
losesest
—
o 240 (939593
2 B
3 (o893
g R
3
= [RXXS
= 5o
180 + %50
g KA
= [RXXY
2 o5
= Koo
=
S 120 | 555
= B
(95936
R
[oSo%e%
lesesed
60 | 55
B 9.44x S
R (R
K R
K 29.81x gd 8.48x
0 £ £ 23.97%
NACA0012 NACAG64A010

Figure 21: Total running time cost of ten oscillation cycles RACA0012 and NACA64A010 aerofoils. The running

time of the CPU refers to a single core.

5. Conclusions

The original single-core CPU based meshless dynamic clattiad is successfully ported
to many-core programmable CUDA supported GPU#CHG structures compatible with For-
tran derived types are utilised to enclose data for meslalesgls of points, which are stored
in the global memory of GPUs. Numerical simulation of steadynpressible flows is firstly
conducted to verify the underlying method. It is furtheremded to compute unsteady com-
pressible flows over oscillatory aerofoils. The results\alédated through detailed comparison
with experiments and other reference solutions. Systenaatalysis reveals that the meshless
dynamic method is successfully accelerated by more tharrger of magnitude, and it takes
the GPU less energy to complete the same task compared tdPthe@ur next step’s work will
focus on fluid-structure interaction problems such as adyefing flutter prediction. We will
also try to solve multi-objective optimisation problems ¥arious real-word design problems by

the present method coupled with evolutionary algorithms.

References

[1] J. T. Batina, A gridless EulgXavier-Stokes solution algorithm for complex-aircraft Bpgtions, in: 31st

Aerospace Sciences Meeting & Exhibit, 1993, AIAA Paper 833

29

(2]

K]

4

(5]

(6]

(7]

(8]

E]

(10]

[11]

(12]

(13]

(14]

(15]

[16]

(17]

R. Lohner, C. Sacco, E.fate, S. Idelsohn, A finite point method for compressible flaernational Journal for
Numerical Methods in Engineering 53 (8) (2002) 1765 — 17%#&8.: 10.1002/nme . 334.

Z. Ma, H. Chen, C. Zhou, A study of point moving adaptivitygridless method, Computer Methods in Applied
Mechanics and Engineering 197 (21-24) (2008) 1926-1837:10.1016/j.cma.2007.12.012.

K. Morinishi, An implicit gridless type solver for the N&r-Stokes equations, Computational Fluid Dynamics
Journal Special Issue (2001) 551-560.

N. Munikrishna, N. Balakrishnan, Turbulent flow compitat on a hybrid cartesian point distribution using mesh-
less solver LSFD-U, Computers & Fluids 40 (2011) 118—-188i:10.1016/j.compfluid.2010.08.017.

D. Sridar, N. Balakrishnan, An upwind finite ftiérence scheme for meshless solvers, Journal of Computational
Physics 189 (1) (2003) 1-280i:10.1016/50021-9991(03)00197-9.

E. Ortega, E. @ate, S. Idelsohn, A finite point method for adaptive threaeatisional compressible flow calcula-
tions, International Journal for Numerical Methods in FRBD (9) (2009) 937 — 97Hoi:10.1002/£1d.1892.

H. Wang, H.-Q. Chen, J. Periaux, A study of gridless metivitti dynamic clouds of points for solving unsteady
CFD problems in aerodynamics, International Journal for NizakMethods in Fluids 64 (1) (2010) 98-118.
doi:10.1002/£1d.2145.

H. Wang, J. Leskinen, D.-S. Lee, J. Periaux, Active flomtrol of airfoil using mesfmeshless methods coupled
to hierarchical genetic algorithms for drag reduction deskengineering Computations 30 (4) (2013) 562 — 580.
doi:10.1108/02644401311329370.

E. Ortega, E. @ate, S. Idelsohn, R. Flores, A meshless finite point methothfee-dimensional analysis of com-
pressible flow problems involving moving boundaries and adiéytinternational Journal for Numerical Methods
in Fluids 73 (2013) 323—-343101:10.1002/£1d.3799.

E. Ortega, E. Oate, S. ldelsohn, R. Flores, Comparatigeuracy and performance assessment of
the finite point method in compressible flow problems, ComputersFlgids 89 (0) (2014) 53 — 65.
doi:http://dx.doi.org/10.1016/j.compfluid.2013.10.024.

A. Karatarakis, P. Karakitsios, M. Papadrakakis, GPtteterated computation of the isogeometric anal-
ysis stifness matrix, Computer Methods in Applied Mechanics and Emeging 269 (2014) 334-355.
doi:10.1016/j.cma.2013.11.008.

M. Papadrakakis, G. Stavroulakis, A. Karatarakis, Avrera in scientific computing: Domain decomposition
methods in hybrid CPU-gpu architectures, Computer MethoAppiied Mechanics and Engineering 200 (13-16)
(2011) 1490-1508d0i :10.1016/j . cma.2011.01.013.

C. M. Bard, J. C. Dorelli, A simple GPU-accelerated twoensional muscl-hancock solver for ideal magneto-
hydrodynamics, Journal of Computational Physics 259 (2044}460.doi:10.1016/j.jcp.2013.12.006.

S. Liang, W. Liu, L. Yuan, Solving seven-equation modai ¢ompressible two-phase flow using multiple GPUs,
Computers & Fluids(in pressioi:10.1016/j.compfluid.2014.04.021.

A. Corrigan, F. F. Camelli, R. Lhner, J. Wallin, Runningatructured grid-based CFD solvers on mod-
ern graphics hardware, International Journal for Numeriithods in Fluids 66 (2) (2011) 221-229.
doi:10.1002/£1d.2254.

V. G. Asouti, X. S. Trompoukis, I. C. Kampolis, K. C. Giarkaglou, Unsteady CFD computations using vertex-

centered finite volumes for unstructured grids on Graphicgeédsing Units, International Journal for Numerical

30

(18]

(19]

(20]

[21]

(22]

(23]

[24]

(25]

(26]

(27]
(28]

(29]

(30]
(31]

(32]

(33]

(34]

Methods in Fluids 67 (2) (2011) 232—24@0i:10.1002/£1d.2352.

I. Kampolis, X. Trompoukis, V. Asouti, K. GiannakoglouFD-based analysis and two-level aerodynamic opti-
mization on graphics processing units, Computer Methods pliég Mechanics and Engineering 199 (2010) 712
—722.d0i:10.1016/j.cma.2009.11.001.

Z. Ma, H. Wang, S. Pu, GPU computing of compressible flonbfms by a meshless method with space-filling
curves, Journal of Computational Physics 263 (2014) 113-d43b:10.1016/j.jcp.2014.01.023.

P. Roe, Approximate Riemann solvers, parameter vectord,difference schemes, Journal of Computational
Physics 43 (2) (1981) 357 — 37@0i:10.1016/0021-9991(81)90128-5.

A. Jameson, Time dependent calculations using multigvith applications to unsteady flows past airfoils and
wings, in: AIAA 10th Computational Fluid Dyanmics Conferen&891, AIAA 91-1956.

X. Liu, N. Qin, H. Xia, Fast dynamic grid deformation baseddelaunay graph mapping, Journal of Computational
Physics 211 (2) (2006) 405-4280i:10.1016/j . jcp.2005.05.025.

NVIDIA, CUDA C programming guidé2012).

URL http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

J. Balfour,CUDA threads and atomi¢2011).

URL http://mc.stanford.edu/cgi-bin/images/3/34/Darve_cme343_cuda_3.pdf

T. Pulliam, J. Steger, Recent improvementsfticeency, accuracy, and convergence for implicit approximase f
torization algorithms, in: AIAA 23rd Aerospace Sciences hiteg Vol. 85, 1985, p. 0360.

A. Jameson, W. Schmidt, E. Turkel, et al., Numerical sohsiof the Euler equations by finite volume methods
using Runge-Kutta time-stepping schemes, AIAA paper 81 (L23%9.

R. Landon, NACAO0012 oscillatory and transient pitapiffech. rep., AGARD Report 702 (1982).

J. T. Batina, Unsteady euler airfoil solutions usingtiactured dynamic meshes, AIAA Journal 28 (1990) 1381—
1388.

D. Kirshman, F. Liu, Flutter prediction by an euler metrmadnon-moving cartesian grids with gridless boundary
conditions, Computers & Fluids 35 (6) (2006) 571 — 586i:10.1016/j.compfluid.2005.04.004.

S. Davis, NACA 64A010 (NASA AMES Model) oscillatory ihing, Tech. rep., AGARD-R-702 (1982).

J. M. Hsu, A. Jameson, An implicit-explicit hybrid schenoe €alculating complex unsteady flows, in: 40th AIAA
Aerospace Sciences Meeting and exhibit, 2002.

J. M.-J. Hsu, An implicit-explicit flow solver for complaxsteady flows, Ph.D. thesis, STANFORD UNIVERSITY
(2004).

F. Liu, S. Ji, Unsteady flow calculations with a multigi¢hvier-Stokes method, AIAA JOURNAL 34 (1996)
2047-2053.

G. WANG, Y. dan SUN, Z. yin YE, Gridless solution method favo-dimensional unsteady flow, Chinese Journal
of Aeronautics 18 (1) (2005) 8 — 1doi:http://dx.doi.org/10.1016/S1000-9361(11)60275-6.

31

