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Abstract 

The prevalence of overweight and obesity continues to rise substantially across the world. It 

is the leading preventable cause of death worldwide and is associated with a large number of 

comorbidities that present a perpetual burden on healthcare costs. Much of the recent work 

to understand and address the problem of obesity has focused on the role of gastrointestinal 

hormones on the regulation of appetite, satiety, and food intake, and how interventions such 

as physical activity and exercise can affect the secretion of these hormones. However, the 

gastrointestinal system and the role of gastric emptying are often overlooked. The aim of this 

thesis was to enhance understanding of the physiology and regulation of gastric emptying 

and its interactions with carbohydrates. This will help in the development of novel non-

pharmacological dietary interventions or foods that can modulate appetite and energy intake. 

A series of studies on human volunteers are presented in this thesis. Firstly, the gastric 

emptying rate of different 6% simple sugar solutions (water control, fructose, glucose, 

sucrose, 50:50 fructose and glucose) and gut hormone responses of circulating acylated 

ghrelin, active glucagon like peptide-1 (GLP-1), glucose dependent insulinotropic 

polypeptide (GIP) and insulin were investigated. Hepatic metabolism and function in 

response to the different simple sugar solutions were also examined. The time of maximal 

gastric emptying rate (Tlag) differed significantly between between sucrose and glucose 

solutions. Differences in insulin and GIP responses between fructose containing solutions 

and glucose only solutions were also seen. No differences in hepatic metabolism measures 

or function were observed following the intake of 36 g of the various test sugars. However, 

lactate production was significantly greater for fructose containing solutions. Following on 

from these results, the effect of increased dietary fructose intake on gastric emptying rate of 

glucose and fructose was investigated. Three days supplementation with 120g/d fructose 

resulted in acceleration of gastric emptying rate of a fructose but not a glucose solution. No 

significant differences in the circulating concentration of gastrointestinal hormones, but 

subtle differences in responses over time were suggested which may explain the specific 

monosaccharide adaptations of gastric emptying. Further work is required to confirm this and 

to investigate the longevity and reversibility of the gastrointestinal adaptation and the 

mechanism involved. Lastly, several tagging single nucleotide polymorphisms (SNP) of the 

GLP-1 receptor gene were associated with gastric emptying rate. Further work is required on 

the regions identified to pinpoint the exact SNP or SNPs responsible.  
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1.1. OBESITY 

Overweight and obesity are defined by the World Health Organisation (WHO) as abnormal 

or excessive fat accumulation that may impair health (WHO, 2014). Classification of being 

overweight is commonly described as having a body mass index (BMI) ≥ 25 kg/m2 while 

that of obesity is ≥ 30 kg/m2. In 2008, an estimated world-wide population of 1.4 billion 

(35%) adults were classed as overweight, of which 500 million (11%) were deemed to be 

obese (WHO, 2014). Furthermore, more than 40 million children under the age of 5 were 

considered to be overweight or obese in 2012 (WHO, 2014). Obesity has, therefore, been an 

important topic and a concern in the health care science over the last few decades. It remains 

a growing epidemic in most countries around the world with global predictions of 3.3 billion 

adults being overweight of which 1.12 billion will be obese by 2030 (Kelly, Yang, Chen, 

Reynolds & He, 2008). Obesity is the leading preventable cause of death worldwide, 

contributing extensively to comorbidities such as heart disease, type II diabetes, certain types 

of cancer and other disorders (Mushref & Srinivasan, 2013). In its broadest sense, obesity 

can be considered the result of an imbalance of energy intake and energy expenditure where 

intake exceeds that of expenditure (Little, Horowitz & Feinle-Bisset, 2007). In substance the 

factors influencing food or energy intake and energy expenditure are multifactorial and 

complex with interaction between dietary environment, genetic, metabolic, behavioural and 

physiological factors all being implicated (Cheung & Mao, 2012; Castiglione, Read & 

French, 2002).  

To understand and tackle the rising problem of obesity, much research has been 

conducted in recent times on subjective feelings of appetite, food intake, and their effect on 

energy balance. The predominant focus of research in this area has been on the regulation of 

appetite and satiety by gut-derived hormones, and how interventions such as physical activity 

and exercise may affect these. Physical activity and exercise along with dietary restriction 

are often prescribed as effective non-surgical treatments and prevention strategies for 

reducing or controlling overweight and obesity. Pharmacological treatments are also utilised 

in the treatment of obesity but the side effects that can result from the use of existing 

pharmacological agents are far from desirable (Xia & Grant, 2013). For example, sibutramine 

use causes strain on the cardiovascular system through increased heart rate and blood 

pressure (Berkowitz, Wadden, Tershakovec & Cronquist, 2003) and orlistat is associated 

with gastrointestinal side effects and requires supplementation and monitoring of vitamin 



3 

 

levels (McDuffie, Calis, Booth, Uwaifo & Yanovski, 2002). Furthermore, in extreme cases 

where bariatric surgery is utilised to promote weight loss, deficiencies in macro- and 

micronutrients are common and drug absorption is compromised (Stein, Stier, Raab & 

Weiner, 2014). Therefore, there is still a need for the identification of better therapeutic 

intervention targets to prevent morbid fat accumulation in the normal population (Xia & 

Grant, 2013). In research for both the prevention and treatment of obesity, the gastrointestinal 

system and the role of gastric emptying in appetite and satiety are often overlooked. Gastric 

emptying is the process whereby food or foodstuffs are emptied from the stomach into the 

small intestine where it can then be absorbed. As such, gastric emptying rate is a limiting 

step in the absorption of nutrients in the gastrointestinal tract, and it seems pivotal that greater 

consideration should be given to its role in obesity. Greater understanding of the physiology 

and regulation of gastric emptying and its interactions with nutrients may lead to the 

development of new non-pharmacological dietary interventions or foods that can affect 

appetite and thereby modulate energy intake. 

 

1.2. ANATOMY AND FUNCTION OF THE GASTROINTESTINAL SYSTEM 

The gastrointestinal system is extensively connected anatomically and physiologically to the 

nervous, cardiovascular, endocrine and lymphoid systems. It consists of the gastrointestinal 

tract; which includes the mouth, pharynx, oesophagus, stomach, duodenum, small intestine, 

large intestine, and rectum, and incorporates a large heterogeneous collection of disparate 

organs including the salivary glands, liver, pancreas, and gallbladder (Vander Sherman & 

Luciano, 1994). The gastrointestinal tract acts as an interface between the external and 

internal milieu of the body (Sernka & Jacobson, 1983) and provides a natural modality for 

the supply of both the fuel and organic molecules essential for cellular life, function, growth 

and repair. This fundamental function of the gastrointestinal system, where macro- and 

micronutrients are extracted from the external environment in the form of food and drink, is 

achieved through four main processes; digestion, secretion, absorption and motility (Vander 

et al., 1994). Since the majority of digestion and virtually all absorption of nutrients occur in 

the small intestine, the entrance of ingested food and drink into the small intestine is an 

important consideration. The stomach, located between the oesophagus and the small 

intestine, thus plays an important regulatory role in this. 
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1.2.1. The stomach 

The stomach is a J-shaped sack like organ, which is divided into four anatomical regions 

based on its structure and function; the cardia, fundus, corpus, and pylorus (Martini & Nath, 

2009) (Figure 1). The cardia is the smallest region of the stomach sited within 3 cm beyond 

the lower oesophageal sphincter. Mucous glands are abundant in this region, the alkaline 

secretions of which coat the junction between the stomach and the oesophagus, protecting 

the latter from the gastric acid and enzymes. The fundus is the upper section of the stomach 

superior to the gastro-oesophageal opening. The corpus is the largest region of the stomach 

spanning between the fundus and the base of the ‘J’ curve. Gastric glands in the fundus and 

this central region contain parietal cells, which secrete hydrochloric acid and intrinsic factor, 

as well as chief cells, which secrete pepsinogen (McPhee & Hammar, 2010). Lastly, the most 

distal region of the stomach, the pylorus, is divided into the pyloric antrum and pyloric canal 

and forms the sharp curve of the ‘J’ shape. The hormone gastrin is secreted in this area from 

G-cells (Pocock, Richards & Richards, 2013). Mucus and bicarbonate are also secreted by 

mucous and epithelial cells throughout all regions combining with phospholipids and water 

to form a protective mucous gel layer for the epithelium (Pocock et al., 2013). A muscular 

sphincter known as the pyloric sphincter separates the stomach and the duodenum.  

The stomach has five major functions. 1) It acts as a temporary reservoir for ingested 

food and drink 2) It performs partial breakdown of food through mechanical action. 3) It 

permits partial breakdown of food by the chemical action of acid and enzymes. 4) It controls 

the rate at which food in the form of fluid chyme is delivered to the small intestine for further 

digestion and subsequent absorption. 5) It produces intrinsic factor, a glycoprotein required 

for the absorption of vitamin B12 in the small intestine (Martini & Nath, 2009; Hellstrom, 

Gryback & Jacobsson, 2006; Vander et al., 1994). 

 The wall of the stomach, like the rest of the digestive tract, consists of four distinct 

layers. The innermost, secondary, tertiary, and outermost layers being the mucosa, the 

submucosa, the muscularis externa and the serosa, respectively (Martini & Nath, 2009; 

Vander et al., 1994). The mucosa is a mucous membrane comprising of a simple columnar 

epithelium and a lamina propria composed of areolar tissue. Blood vessels, sensory nerve 

endings, lymphatic vessels, lymphoid tissue, secretory cells and a thin layer of smooth muscle 

fibres known as the muscularis mucosae are found in this lamina propria. The smooth muscle 

fibres in the muscularis mucosae of the stomach are orientated generally in three concentric 
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layers; the familiar inner circular and outer longitudinal layers found along the digestive tract 

plus an additional outer layer of circular muscle cells. Furthermore, the internal surface of 

the stomach in the fundus and body exhibit shallow depressions called gastric pits which lead 

to gastric glands that extend deep into this lamina propria. The submucosa, a layer of dense 

connective tissue, contains both large blood vessels and lymphatic vessels and is interlaced 

with sensory neurons, parasympathetic ganglionic neurons and sympathetic postganglionic 

fibres that form the submucosal (Meissner’s) plexus of the enteric nervous system. The 

muscularis externa is the primary muscular region of the stomach and is composed again of 

three layers of muscle; an inner oblique layer, a middle circular layer and an outer 

longitudinal layer. Sandwiched between the two latter layers lie a second network of sensory 

neurons, parasympathetic ganglionic neurons, interneurons and sympathetic postganglionic 

fibres, forming the myenteric (Auerbach’s) plexus of the enteric nervous system. Covering 

the muscularis externa is a serous membrane, the serosa.  

When the stomach is empty, the internal mucosa is folded in a series of vertical 

creases known as rugae, decreasing its volume to approximately 50 mL. These rugae flatten 

out as the stomach fills, allowing the volume of the stomach to increase. As a result, and due 

to plasticity of the smooth muscle fibres and activation of a vagal reflex causing inhibition 

of corpus and fundus smooth muscle tone (relaxation), the storage capacity of the stomach 

can increase to as much as 1.5 L with little change in intragastric pressure (Varon & Zuleta, 

2010; Martini & Nath, 2009; Vander et al., 1994; Sanford, 1992) and without causing much 

discomfort (la Roca-Chiapas & Cordova-Fraga, 2011). 
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Figure 1. Anatomic regions and structure of the stomach. 

 

1.3. GASTRIC EMPTYING 

A basic electrical rhythm exists in the stomach whereby peristaltic waves are generated by 

pacemaker cells located in the upper great curvature undergoing spontaneous depolarisation-

repolarisation cycles at a rate of three per minute (Hellstrom et al., 2006; Vander et al., 1994). 

These peristaltic waves propagate distally along the longitudinal smooth muscle of the body, 

antrum and pylorus (Davenport, 1982), but in the absence of any neural or humoral 

stimulation, are too weak to initiate an action potential (Vander et al., 1994). Upon entry of 

a meal into the stomach, distension of the wall triggers short and long reflexes through the 

intrinsic neurons of the myenteric plexus and vagal afferent neurons of the central nervous 

system, respectively, and acetylcholine and other neurocrine signals are released from the 

efferent pre- and postganglionic fibres (Sernka & Jacobson, 1983). This increases spike burst 
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activity, generating action potentials at the peaks of the wave cycle and causing contractions 

of the muscle layers. The arrival of a peristaltic wave causes the pyloric sphincter to close, 

constricting the lumen, such that with each muscular contraction of the antrum which forces 

the stomach’s contents towards the pylorus, only a small amount of digested chyme is 

released into the duodenum. The majority of contents are propelled backwards toward the 

body contributing to both mixing of contents with gastric juice and mechanical breakdown 

of food (Kelly, 1980). As the frequency of contraction is determined by the basic electrical 

rhythm, which remains relatively constant, the rate at which gastric contents (chyme) are 

emptied from the stomach is dependent on the tone of the pyloric sphincter (Sernka & 

Jacobson, 1983) and the force of contractions of the antral smooth muscle. This variation in 

the resistance of flow across the pylorus is influenced by neural and hormonal reflexes and 

signals (Vander et al., 1994; Sernka & Jacobson, 1983). Important distinctions, therefore, are 

also consequently observed for the emptying of liquids and solids.   

 

1.3.1. Liquids 

Ingested liquids distribute rapidly throughout the entire stomach (Hellstrom et al., 2006) and 

are generally emptied from the stomach in an exponential manner with an initial rapid 

emptying phase followed by a slower linear phase (Vist & Maughan, 1994; Rehrer, Beckers, 

Brouns, Tenhoor & Saris, 1989; Siegel, Urbain, Adler, Charkes, Maurer, Krevsky et al., 

1988; Hunt & Spurrell, 1951). This is the result of a low resistance to flow across the pylorus 

and the rate of emptying is largely determined by the pressure gradient between the stomach 

and the duodenum (Hellstrom et al., 2006; Kelly, 1980). Increases in intragastric pressure 

have been linearly related to increases in liquid emptying rate (Strunz & Grossman, 1978). 

As the slow sustained basal electrical rhythm contractions of the proximal stomach play a 

major role in the regulation of intragastric pressure, and therefore the gastro-duodenal 

gradient, the proximal stomach is suggested to have a predominant role in the rate of 

emptying of liquids (Kelly, 1980).  

 

1.3.2. Solids 

In contrast to the emptying of liquids, solids empty with an initial slow phase, known as the 

lag phase, followed by a more rapid linear phase (Siegel et al., 1988). This is due to a high 

resistance to flow across the pylorus that is determined by contractions of the distal antrum 
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and pylorus (Kelly, 1980). During the lag phase, the ingested solids are redistributed from 

the fundus and digested into particles of approximately 1-2 mm in size in order for passage 

through the pylorus (Hellstrom et al., 2006; Meyer, Mandiola, Shadchehr & Cohen, 1977). 

The rapid linear phase of the emptying of solids is similar to the emptying rate of liquids 

(Siegel et al., 1988), as the small digested particles become suspended in the liquid phase of 

the gastric content and thus empty from the stomach simultaneously (Kelly, 1980). As 

contractions of the antrum and pylorus determine the resistance of flow of solids and aid the 

digestion of solid food particles to reduce such resistance, the distal stomach is suggested to 

play a predominant role in the regulation of the emptying of solids (Kelly, 1980).  

 

1.4. MEASUREMENT OF GASTRIC EMPTYING 

A number of different methods are used for the assessment of gastric emptying in clinical 

and research settings; each having their own advantages and disadvantages. Standard terms 

and values used for the description and comparison of gastric emptying characteristics 

include total emptying time, “T½” which is the time taken for half of the meal volume to 

empty and “Tlag” which is the time at which the lag phase ends and emptying begins (Hunt 

& Spurrell, 1951). 

Scintigraphy, first described in 1966 by Griffith, Owen, Kirkman & Shields is 

considered as the ‘gold standard’ method in determining gastric emptying characteristics 

(Hellstrom et al., 2006). This method involves ingestion of a meal labelled with a 

radioisotope and repeated anterior and posterior imaging of the gastric area with an external 

gamma camera (Szarka & Camilleri, 2009; Beckers, Leiper & Davidson, 1992). Regions of 

interest are identified on all captured images for quantification of radioactivity and counts 

corrected for depth or distance from the camera, intragastric radioactivity and radioisotope 

decay (Szarka & Camilleri, 2009; Beckers et al., 1992). The advantage of scintigraphy is that 

both liquid and solid emptying can be assessed with the use of different radioisotope labels. 

The choice of radiolabel for the emptying of a solid meal requires careful consideration, 

however, as it needs to remain bound to the solid portion in the stomach, resisting dissociation 

and emptying with the faster liquid phase of the meal (Szarka & Camilleri, 2009). The first 

validated solid test meal used consisted of chicken liver labelled with 99mTc-sulphur colloid 

(99mTc-SC). Binding of 99mTc-SC intracellularly to Kupffer cells involved injecting the 

radioisotope into a live chicken, sacrificing the animal, then removing and cooking the liver. 
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More convenient and widely used solid meals at present consist of whole eggs mixed with 

99mTc-SC before cooking which results in fixing of the label to the egg white where it is 

bound to protein (Szarka & Camilleri, 2009). An obvious disadvantage of scintigraphy is that 

of radiation exposure. The radiation dose absorbed from exposure to the standardised amount 

of 0.5 mCi 99mTc-SC in eggs is 10 mrad (Siegel, Knight, Zelac, Stern & Malmud, 1983). This 

compares to approximately 12 mrad radiation exposure from a chest x-ray and yearly 

exposure to 300 mrad from background radiation (Kelsey, Mettler & Sullivan, 1996). This 

method, is thus, not recommended in pregnant women and children and repeated use in 

research study settings with multiple trials (Jackson, Leahy, McGowan, Bluck, Coward & 

Jebb, 2004). Further disadvantages include the cost (Rose, 1979), the use of complex 

equipment by a skilled operator, and the time required to record a single observation, which 

has potential to result in inaccuracies particularly in patients who have rapid emptying 

(Sheiner, 1975). 

The second most preferred method is the double sampling gastric aspiration technique 

of George (1968) as modified by Beckers, Rehrer, Brouns, Tenhoor & Saris, (1988). This 

method requires intubation of the stomach and the use of a non-absorbable dye, phenol red. 

The double sampling aspiration method of George (1968) advanced on early nasogastric 

methods of the serial test meal (Hunt & Spurrell, 1951) which was time consuming, requiring 

days to complete, and required daily repeated intubations to aspirate entire gastric contents 

at different time intervals. This current method where remaining gastric volumes are 

measured at regular intervals is based on the determination of dye concentration in small 

gastric samples aspirated before and after the addition of a known volume and concentration 

of dye to the gastric contents (Beckers et al., 1988; George, 1968). The modification of 

Beckers et al., (1988) allows the simultaneous determination of gastric secretion rate and 

volume that contribute to the total volume of gastric contents at any one point. This technique 

is reliable, can be highly accurate and has clinical applications (Sheiner, 1975; George, 1968). 

It is also relatively inexpensive compared to scintigraphy and can be used to measure gastric 

emptying characteristics even during exercise (Jeukendrup & Moseley, 2010; van 

Nieuwenhoven, Wagenmakers, Senden, Brouns & Brummer, 1999). Disadvantages, 

however, include the fact that the procedure is invasive and its use dependent on the ability 

of the person to swallow the tube. This can therefore limit subject recruitment. Furthermore, 

this technique can only be used for the assessment of liquid emptying, and possible 
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disturbances of normal physiology may be induced by intubation (Feinle, Kunz, Boesiger, 

Fried & Schwizer, 1999). 

With the advancement and development of imaging techniques, methods such as 

magnetic resonance imaging (MRI) and real-time ultrasonography have been used more 

recently for the assessment of gastric emptying. Both of these techniques negate the 

disadvantages of radiation exposure and invasiveness. Gadolinium tetraazacyclododecane 

tetraacetic acid (Gd-DOTA) is the label of choice in MRI assessment, as it has been shown 

as the most stable contrast agent in the acidic conditions of the gastric environment, to adhere 

well to both liquids and solids, and is not easily absorbed (de Zwart & de Roos, 2010). This 

method of imaging has been shown to be reproducible with high inter-observer agreement 

(Carbone, Tanganelli, Capodivento, Ricci & Volterrani, 2010) and has been validated against 

scintigraphy for the measurement of liquids and mixed liquid-solid meals with correlations 

of 0.917 and 0.988, respectively (Feinle et al., 1999). Scans are performed in 3D and image 

slices are processed for areas of interest and volume calculated by multiplying the sum of the 

areas by the slice thickness (Feinle et al., 1999). A limitation of MRI is that gastric secretions 

need to be estimated by taking into account relative signal intensities of ex-vivo imaging of 

the test meal at different dilutions with the addition of hydrochloric acid (Szarka & Camilleri, 

2009). A further drawback is that measurements are perfomed with the patient or volunteer 

in a right sided semi-supine position as the availability of seated MRI is uncommon (de Zwart 

& de Roos, 2010). 

The measurement of gastric emptying using real-time ultrasound was first described 

by Bateman & Whittingham in 1982. Similar to the deduction of volume in MRI, a series of 

cross-sectional images (90° to the long axis of the stomach) are obtained at regular intervals 

to produce a three-dimensional representation of the stomach (Bateman & Whittingham, 

1982). This technique is relatively inexpensive and the equipment is widely available (Szarka 

& Camilleri, 2009; Gentilcore, Hausken, Horowitz & Jones, 2006) and has been shown to 

hold good intra-observer and inter-observer agreement (Darwiche, Almer, Bjorgell, 

Cederholm & Nilsson, 1999) as well as correlate strongly with scintigraphy (Gentilcore et 

al., 2006). On the other hand, disadvantages of using ultrasound are that it is time consuming, 

requires a skilled operator and quality of images is impaired in people with a high body fat 

percentage and when there is excessive air in the stomach (Szarka & Camilleri, 2009; 
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Darwiche et al., 1999). Furthermore, it is not well suited for determining the emptying rate 

of solids.  

A couple of indirect methods of gastric emptying assessment are also utilised which 

are based on the premise that measurement of changes in the concentration of either a 

pharmacological tracer or isotopic tracer in blood samples indicates absorption and thus 

gastric emptying rate. One such method is the paracetamol absorption test. This method 

involves simultaneous ingestion of the pharmacological substance with the test meal in doses 

ranging from 20 mg/kg body weight to 1.5 g and the collection of repeated blood samples 

(Willems, Quatero & Numans, 2001). Paracetamol concentration in the blood samples are 

then determined by gas liquid chromatography, or more recently developed fluorescence or 

enzymatic immunoassays and colorimetric assays. It is therefore an invasive method but 

relatively easy and inexpensive (Naslund et al., 2000). Since the absorption of paracetamol 

in the stomach is neglible (Clements, Heading, Nimmo & Prescott, 1978) serum paracetamol 

concentrations have been stated to reflect gastric emptying rate (Clements et al., 1978; 

Heading, Nimmo, Prescott & Toothill, 1973). The validity of the paracetamol absorption test 

appears only to apply with liquid emptying however, thus limiting the ability to use this 

technique for the measurement of solid food emptying. A systematic review of thirteen 

studies concluded gastric emptying of liquids or the liquid phase of test meals measured by 

paracetamol absorption was well correlated with scintigraphy; eight studies had a good 

correlation (r > 0.6), two a moderate correlation (r = 0.45–0.6) and three no correlation (r < 

0.45) (Willems et al., 2001). However, the precision and reproducibility of the paracetamol 

absorption method can be questioned. Intrasubject variability for ten subjects measured on 

four separate occasions was reported by Petring & Flachs (1990) to be non-significant for all 

paracetamol absorption parameters. However, intrasubject coefficient of variations that can 

be calculated from the reported subject data are high with 15% for peak plasma concentration 

(Cmax), 44% for time of peak plasma concentration (Tmax), and 16% for 90 min area under 

curve (AUC). Furthermore, pharmokinetics of paracetamol absorption vary between and 

within individuals (Medhus, Lofthus, Bredesen & Husebye, 2001). 

 The deuterium tracer technique is a method used predominantly to measure ingested 

water uptake into the body pool but is also occasionally utilised as a proxy of gastric 

emptying assessment. This technique involves the ingestion of a test solution containing a 

trace amount (typically 5-12 g) of stable nonradioactive hydrogen isotope incorporated as 
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deuterium oxide (2H2O), also known as ‘heavy water’. Collection and analysis of blood 

samples for 2H accumulation then indicates the combination of absorption and gastric 

emptying rates (Lambert, Ball, Leiper & Maughan, 1999). Concentrations of 2H2O can then 

be analysed using a simple and inexpensive infrared spectrophotometry protocol (Lukaski & 

Johnson, 1985). Parameters of peak blood concentration (Cmax) and time to reach peak blood 

concentration (Tmax), as with the paracetamol absorption test, and accumulation rate are then 

utilised to indicate absorption and gastric emptying rates. A significant correlation of r = 0.63 

has been reported between gastric emptying rate of carbohydrate solutions measured by the 

double sampling gastric aspiration technique and the rate at which deuterium oxide 

accumulated in plasma (Murray, Bartoli, Eddy & Horn, 1997). However, only 40% of the 

variation in plasma deuterium oxide accumulation could be attributed to gastric emptying 

rate (Murray et al., 1997) and thus does not provide a valid assessment of gastric emptying 

rate alone. Other disadvantages of this technique are that it is invasive and can only be used 

for liquid or liquid phase emptying. 

An increasingly popular indirect method for the measurement of gastric emptying is 

the use of breath testing. This technique utilises the 13C- stable isotope as a marker and was 

first introduced by Ghoos, Maes, Geypens, Mys, Hiele, Rutgeerts et al. (1993). It is based on 

the principle of rapid intestinal absorption and prompt hepatic oxidation of the incorporated 

label to 13CO2, which subsequently appears in the breath, and assumes that these processes of 

absorption, oxidation and exhalation occur at a constant rate (Braden, 2009). Breath samples 

are collected at regular intervals and analysed for the ratio of 13CO2:
12CO2 using isotope ratio 

mass spectrometry or non-dispersive infra-red spectroscopy. The rate of isotopic enrichment 

of the breath is used to determine the rate of emptying of a meal (Sanaka & Nakada, 2010; 

Braden, 2009; Verbeke, 2009; Ghoos et al., 1993). Both liquid and solid emptying can be 

assessed separately by this method using different substrates; 13C-acetate for liquid and semi-

solid emptying and 13C-octanoate for solid emptying. The 13C-acetate breath test can also be 

used during exercise, though comparisons between exercise and rest conditions would be 

inaccurate due to alterations of absorption, oxidation and exhalation (van Nieuwenhoven et 

al., 1999). Breath testing has been validated against scintigraphy and gastric aspiration with 

significant correlation coefficients ranging from 0.76-0.95 and 0.82-0.94 reported for 

determined T½ and Tlag, respectively (Braden, Peterknecht, Piepho, Schneider, Caspary, 

Hamscho et al., 2004; van Nieuwenhoven et al., 1999; Pfaffenbach, Schaffstein, Adamek, 
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Lee & Wegener, 1996; Braden, Adams, Duan, Orth, Maul, Lembcke et al., 1995; Ghoos et 

al., 1993). Although correlated, the absolute T½ and Tlag values from the breath test are not 

directly comparable to those obtained using these alternative methods, however. This is 

because the terms T½ and Tlag in breath testing indicates the time in which half of the total 

cumulative recovered dose of substrate has been metabolised when time is infinite and the 

time in which 13CO2 excretion rate is at its maximum (Sanaka & Nakada, 2010; Ghoos et al., 

1993). Application of this method in the clinical and research setting is very suitable as it is 

non-invasive, non-radioactive, safe, simple and effective (Braden, 2009). 

 

1.5. FACTORS THAT AFFECT GASTRIC EMPTYING 

Numerous factors have been shown to independently influence the rate of gastric emptying. 

Increasing the ingested volume of a liquid or solid meal proportionately increases the initial 

rate of emptying (Sanford, 1992; Costill & Saltin, 1974; Hunt & Knox, 1968; Hunt & 

MacDonald, 1954). Similarly, increasing the weight of a solid meal independently of energy 

content, and thus perhaps simultaneously increasing the volume of an ingested meal, also 

increases the rate of emptying (Moore, Christian, Brown, Brophy, Datz, Taylor et al., 1984). 

With specific regards to liquids, the volume of fluid in the stomach appears to be the most 

important determinant of emptying rate (Noakes, Rehrer & Maughan, 1991). 

The energy content or density of an ingested solution or meal also affects the rate of 

emptying. Increasing the energy content and/or density of solutions (Vist & Maughan, 1994) 

and meals (Peracchi, Gebbia, Ogliari, Fraquelli, Vigano, Baldassarri et al., 2000; Hunt & 

Stubbs, 1975) slows gastric emptying. This is true regardless of the relative contributions of 

energy from fat, carbohydrate and protein (Hunt, 1980) which at isoenergetic amounts slow 

gastric emptying to the same degree (Hunt & Stubbs, 1975).  

Increasing the concentration of an energy source in a meal results in a concurrent 

increase in osmolality (Vist & Maughan, 1995). Osmolality of a solution or meal has also 

been shown to independently affect gastric emptying rate. Increases in osmolality result in 

slowing of gastric emptying rate (Vist & Maughan, 1995; Costill & Saltin, 1974; Hunt & 

Knox, 1968). Furthermore, the effect of osmolality on the slowing of gastric emptying has 

been shown to be more marked at higher carbohydrate solution concentrations (Vist & 

Maughan, 1995). The osmolality of contents in the upper small intestine also strongly 

influences the rate of emptying (Hunt, 1960). 
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 Other factors that have less extensively been shown to influence emptying include 

the pH of test meals, the temperature of drink solutions, body posture and blood glucose 

level. The greater the acidity of contents in the stomach the greater the slowing of emptying 

(Sanford, 1992; Hunt & Knox, 1972). Cold liquids at 4°C have been observed to empty more 

slowly compared to warm liquids at 37°C (Sanford, 1992), and lying in the supine position 

has also been reported to slow emptying compared with sitting or standing (Moore et al., 

1988). Physiological increases of blood glucose levels to 8 mmol/L is also indicated to slow 

gastric emptying whilst hypoglycaemia accelerates emptying (Schvarcz, Palmer, Aman, 

Horowitz, Stridberg & Berne, 1997). 

 

1.6. HORMONES INVOLVED IN THE REGULATION OF APPETITE AND 

FOOD INTAKE 

An extensive list of hormones with important sensing and signalling roles in the regulation 

of hunger, satiety and food intake are derived from the gastrointestinal tract; the largest 

endocrine organ in the body (Karra & Batterham, 2010; Neary & Batterham, 2009). Many of 

these gastrointestinal peptides interact with the central nervous system via the gut-brain axis, 

acting on appetite centres of the hypothalamus and brain stem. The majority of gut hormones 

exhibit inhibiting effects on satiety and satiation. Satiety is the inhibition of hunger and 

further eating resulting from food consumption, and is influenced by postingestive and 

postabsorptive factors that act in the postprandial period to influence the length of inter-meal 

interval and/or the amount consumed during a subsequent meal (Blundell, Hill & Rogers, 

1988). Satiation, on the other hand, is the short-term immediate process that controls meal 

size by terminating the period of eating and is primarily influenced by instant orosensory and 

cognitive influences, gastric distension and gut hormone secretion (Blundell et al., 1988). In 

addition, several hormones derived from the pancreas as well as adipose tissue have also been 

implicated to influence appetite. The major gut hormones involved in the regulation of 

appetite and food intake are discussed below. 

 

1.6.1. Ghrelin 

To date, ghrelin is the only gut hormone known to have orexigenic properties (Karra & 

Batterham, 2010; Huda, Wilding & Pinkney, 2006). Ghrelin is a 28 amino acid peptide 

produced and released from X/A-like cells of the gastric oxyntic glands of the fundus, and to 
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a lesser extent, the small intestine (Date, Kojima, Hosoda, Sawaguchi, Mondal, Suganuma et 

al., 2000; Kojima, Hosoda, Date, Nakazato, Matsuo & Kangawa, 1999). Initial discovery of 

this hormone revealed it as the natural ligand for the growth hormone secretagogue receptor 

(GHS-R) (Kojima et al., 1999), which are expressed predominantly in the pituitary and 

hypothalamus (Howard, Feighner, Cully, Arena, Liberator, Rosenblum et al., 1996). Ghrelin 

exists in two major molecular forms; acylated ghrelin, in which the third amino acid serine 

is covalently linked to a medium chain fatty acid octanoic acid, and des-acylated ghrelin, 

which has not undergone the post-translational modification to produce the former. The 

acylated form of ghrelin is considered as the biologically active peptide responsible for its 

orexigenic and growth hormone releasing actions (Huda et al., 2006; Kojima et al., 1999). 

Circulating ghrelin levels have been shown to increase with fasting and immediately prior to 

meals, before rapidly declining in concert with food consumption in both rodents and humans 

(Cummings, Frayo, Marmonier, Aubert & Chapelot, 2004; Cummings, Purnell, Frayo, 

Schmidova, Wisse & Weigle, 2001; Tschop, Smiley & Heiman, 2000; Wren, Small, Ward, 

Murphy, Dakin, Taheri et al., 2000). This pattern of release suggests a role of ghrelin in meal 

initiation (Moran, 2009; Cummings et al., 2004). The degree and length of postprandial 

ghrelin suppression is dose-dependent with energy intake or load with higher energy meals 

inducing greater suppression than that of less energy dense meals of similar volume 

(Callahan, Cummings, Pepe, Breen, Matthys & Weigle, 2004). Meals high in carbohydrates 

have also been shown to suppress ghrelin levels more than meals high in protein or fat 

(Erdmann, Topsch, Lippl, Gussmann & Schusdziarra, 2004). In addition, central and 

peripheral administration of exogenous ghrelin stimulates food intake in rats (Wren et al., 

2000), and peripheral administration in humans has been shown to increase appetite and food 

intake. Wren and colleagues (Wren, Seal, Cohen, Brynes, Frost, Murphy et al., 2001) 

reported that peripheral administration of ghrelin in man resulted in a 28% increase in energy 

consumption during an ad-libitum buffet meal that was coupled with concomitant increases 

in subjective hunger scores. Ghrelin has also been suggested to play a role in long-term body 

mass regulation (Cummings & Shannon, 2003).   

 

1.6.2. Glucagon like peptide-1 (GLP-1) 

GLP-1 is a 30 amino acid peptide secreted from L-cells in the intestinal mucosa. It is 

synthesised by post-translation processing of pre-proglucagon into two forms; GLP-11-37 and 
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GLP-11-36 amide, both of which demonstrate little biological activity (Chaudhri, Small & 

Bloom, 2006). Subsequent cleavage at the N-terminus produces the respective biologically 

active peptides GLP-17-37 and GLP-17-36 amide, with GLP-17-36 amide being the main circulating 

form (Orskov, Rabenhoj, Wettergren, Kofod & Holst, 1994). The half-life of GLP-17-36 amide 

is less than 2 min as it is rapidly degraded by dipeptidyl peptidase IV (DPP-IV) into 

biologically inactive GLP-19-36 (Delzenne, Blundell, Brouns, Cunningham, De Graaf, Erkner 

et al., 2010). Secretion of this hormone occurs in a biphasic manner in response to food 

ingestion. Circulating levels increase within 10 to 20 min of eating with the first peak in 

circulating concentration occuring approximately 30 min following meal ingestion, and 

release is proportional to energy intake (Huda et al., 2006). A second smaller peak occurs 

several hours later and is thought to arise in response to nutrient stimulation in the large 

intestine (Delzenne et al., 2010). As such, GLP-1 has been suggested to play a minor role in 

satiation (Blundell & Naslund, 1999) but likely to have a major role in satiety by either 

prolonging the interval between meals or by reducing subsequent meal size (Feinle, 

O’Donovan & Horowitz, 2002). The ingestion of carbohydrates produces a greater and more 

rapid secretory response than fats or proteins (Herrmann, Goke, Richter, Fehmann, Arnold 

& Goke, 1995; Elliott, Morgan, Tredger, Deacon, Wright & Marks, 1993). GLP-1 exerts its 

effects via GLP-1 receptors (GLP-1R) which are widely expressed throughout the central 

nervous system (CNS) and on peripheral tissues (Bullock, Heller & Habener, 1996). Both 

direct intracranial and peripheral administration in rodents have been shown to potently 

reduce food intake (Turton, O’Shea, Gunn, Beak, Edwards, Meeran et al., 1996). In humans, 

a meta-analysis by Verdich and colleagues, (Verdich, Flint, Gutzwiller, Naslund, Beglinger, 

Hellstrom et al., 2001) concluded that peripheral administration of GLP-1 reduces energy 

intake dose dependently by 11.7%. GLP-1 is also known as an incretin hormone, whereby 

approximately 50% of the glucose-stimulated rise in postprandial insulin concentration is 

attributed to this hormone whilst inhibiting glucagon secretion (Feinle et al., 2002).  

 

1.6.3. Glucose dependent insulinotropic polypeptide (GIP) 

GIP, also known as gastric inhibitory peptide, is released from K-cells in the mucosa of the 

duodenum and proximal jejunum (Feinle et al., 2002). It is released in response to 

carbohydrate, fat and protein intake (Herrmann et al., 1995). Similar to GLP-1, it is an 

incretin hormone, enhancing postprandial glucose-stimulated insulin release. Evidence for 
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the involvement of GIP in the regulation of appetite and food intake is limited and unknown, 

however (Chaudhri et al., 2006). It has been shown not to affect food intake in rodents when 

administered intracranially or peripherally (Garlicki, Konturek, Majka, Kwiecien & 

Konturek, 1990; Lorenz, Kreieksheimer & Smith, 1979) and no relationship has been found 

with its effect on appetite in humans (Lavin, Wittert, Andrews, Yeap, Wishart, Morris et al., 

1998). Despite this, a role of GIP in appetite regulation and food intake mediated via its 

incretin effects or other interactions with other gut hormone pathways is perhaps not yet 

totally dismissible. 

 

1.6.4. Peptide tyrosin tyrosin (PYY) 

Peptide tyrosine tyrosine, commonly abbreviated to peptide YY, is a 36 amino acid peptide. 

Like GLP-1, it is synthesised and released from the L-cells of the intestinal muscosa. Two 

main forms of PYY have been described; PYY1-36 and its truncated bioactive 34 amino acid 

product PYY3-36 formed through enzymatic cleavage by DPP-IV (Mentlein, Gallwitz & 

Schmidt, 1993). This latter truncated hormone is the predominant circulating form of the 

peptide in both fasted and fed states (Batterham, Heffron, Kapoor, Chivers, Chandarana, 

Herzog et al., 2006; Korner, Inabnet, Conwell, Taveras, Daud, Olivero-Rivera et al., 2006). 

PYY3-36 exerts its effects via the neuropeptide Y2 receptor (NPY2R) which are widely 

present in the CNS and hypothalamus (Karra & Batterham, 2010; Cummings & Overduin, 

2007) and gastrointestinal tract (Mo & Wang, 1994). Circulating concentrations of PYY are 

suppressed in the fasted state and increase within 30 min in response to nutrient ingestion, 

typically peaking between 1-2 h postprandially before maintaining a plateau for several hours 

(Adrian, Savage, Sagor, Allen, Bacaresehamilton, Tatemoto et al, 1985). Release of PYY is 

dose-dependently related to energy intake and also varies with food consistency and 

maconutrient intake (Huda et al., 2006). Fat particularly stimulates PYY release compared 

with carbohydrate and protein meals of similar energy content (Adrian et al., 1985; Taylor, 

1985). Peripheral administration of PYY3-36 has been shown to reduce food intake in rodents 

and humans (Batterham, ffytche, Rosenthal, Zelaya, Barker, Withers et al., 2007; Sloth, 

Davidsen, Holst, Flint & Astrup, 2007; le Roux, Batterham, Aylwin, Patterson, Borg, Wynne 

et al., 2006; Chelikani, Haver & Reidelberger, 2004; Batterham, Cowley, Small, Herzog, 

Cohen, Dakin et al., 2002). In healthy normal weight humans, this administration led to a 

33% reduction in energy intake, a shortening in the duration of food intake and a decrease in 
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hunger ratings that persisted for up to 12 hours post infusion (Batterham et al., 2002). Others 

have also shown that bolus doses or slow intravenous infusions of PYY reduce the size of 

meals eaten and increases the between-meal interval length (Chelikani, Haver & 

Reidelberger, 2005; Moran, Smedh, Kinzig, Scott, Knipp & Ladenheim, 2005).  Intra-

cerebral administration in rodents in particular areas of the brain have also been shown to 

reduce food intake (Batterham et al., 2002). A role in long term body weight regulation has 

also been implicated for PYY3-36 (Karra & Batterham, 2010).  

 

1.6.5. Pancreatic polypeptide (PP) 

A member of the PP-fold peptide family along with PYY and neuropeptide Y, PP is a 36 

amino acid produced and secreted by F-cells predominantly found in the peripheries of the 

pancreatic islets of Langerhans and to a lesser extent in the colon (Ekblad & Sundler, 2002). 

The actions of PP are mediated by Y4 and Y5 receptors for which the hormone has greatest 

affinity (Larhammar, 1996). The major sites of action of PP are believed to be the 

hypothalamus and the brain stem, which are regions where the blood brain barrier are absent 

(Karra & Batterham, 2010; Huda et al., 2006). As with GLP-1, circulating levels of PP 

increase following nutrient ingestion in a biphasic manner proportional to the energy load 

and remain elevated up to 6 hours postprandially (Track, McLeod & Mee, 1980). 

Administration of PP centrally has been reported to increase food intake in rodents (Asakawa, 

Inui, Yuzuriha, Ueno, Katsura, Fujimiya et al., 2003). In addition, peripheral administration 

of PP has been shown to reduce food intake in normal weight and genetically obese (ob/ob) 

rodents (Liu, Semjonou, Murphy, Ghatei & Bloom, 2008; Neary, McGowan, Monteiro, 

Jesudason, Ghatei & Bloom, 2008; Asakawa, Uemoto, Ueno, Katagi, Fujimiya, Fujino et al., 

2006; Asakawa et al., 2003) and in humans (Batterham, le Roux, Cohen, Park, Ellis, 

Patterson et al., 2003). The authors of this latter study observed a reduction in food intake by 

22% during an ad libitum buffet meal.  

 

1.6.6. Cholecystokinin (CCK) 

Cholecystokinin was the first gut hormone shown to exhibit influences on appetite (Gibbs, 

Young & Smith, 1973). Multiple molecular forms of this hormone with amino acids ranging 

from 8 to 58 exist. The most widely studied and considered forms of CCK in relation to 

appetite and food intake regulation are CCK-8 and -33 (Delzenne et al., 2010). CCK is 
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synthesised and released mainly from I-cells of the intestinal mucosa in the duodenum and 

proximal jejunum (Delzenne et al., 2010; Moran, 2009; Huda et al., 2006). It is also produced 

by neurons in the GI tract and is widely distributed in the brain, where it functions as a 

neurotransmitter (Barden, Merand, Rouleau, Moore, Dockray & Dupont, 1981; Hutchison, 

Dimaline & Dockray, 1981). CCK acts on both CCK-1 and CCK-2 receptors, which were 

formerly known as CCK-A and -B, respectively for its localisation to the ‘alimentary’ and 

‘brain’ (Neary & Batterham, 2009). Appetite regulatory effects are attributed to CCK-1 

receptor mediation (Asin, Bednarz, Nikkel, Gore & Nadzan, 1992), which are expressed on 

the gallbladder, pancreas, stomach, pyloric sphincter, vagal afferent fibres and the 

dorsomedial hypothalamus (Delzenne et al., 2010; Neary & Batterham, 2009; Chaudhri et 

al., 2006;  Moran, 2000).  CCK is secreted most greatly in response to fat, followed by protein 

then carbohydrate (Mo & Wang, 1994; Liddle, Goldfine, Rosen, Taplitz & Williams, 1985). 

Levels of circulating CCK rise over 10-30 min following meal initiation and declines 

gradually to baseline values in 3-5 h (Liddle et al., 1985). Intravenous infusion of small doses 

of CCK-8 in humans has been shown to reduce food intake and increase satiety (Stacher, 

Steinringer, Schmierer, Schneider & Winklehner, 1982; Kissileff, Pisunyer, Thornton & 

Smith, 1981). Furthermore, central administration in rodents has also largely been shown to 

decrease feeding (Huda et al., 2006). 

 

1.6.7. Oxyntomodulin 

Similar to GLP-1, oxyntomodulin (OXM) is produced by post-translation processing of pre-

proglucagon. The 37 amino acid peptide is released by the same intestinal L-cells that release 

GLP-1 and PYY in response to food ingestion in proportion to energy intake (Lequellec, 

Kervran, Blache, Ciurana & Bataille, 1992; Ghatei, Uttenthal, Christofides, Bryant & Bloom, 

1983). As with CCK, release of OXM is predominantly stimulated by fatty acids in the gut 

lumen (Read, McFarlane, Kinsman, Bates, Blackhall, Farrar et al., 1984). OXM is also found 

expressed in the CNS and pancreas (Huda et al., 2006). Central as well as peripheral 

administration of OXM in rats has been shown to reduce food intake (Dakin, Small, 

Batterham, Neary, Cohen, Patterson et al., 2004; Dakin, Gunn, Small, Edwards, Hay, Smith 

et al., 2001). The same outcome has also been shown in humans. Intravenous infusion in 

normal weight humans resulted in a 19% reduction in immediate energy intake as well as 

inhibiting food intake over the subsequent 12 h (Cohen, Ellis, le Roux, Batterham, Park, 
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Patterson et al., 2003). In addition, OXM has been shown to suppress circulating ghrelin 

concentrations by approximately 15% and 44% in rats and humans, respectively (Dakin et 

al., 2004; Cohen et al., 2003). The effects of OXM appear to be mediated via the GLP-1R 

(Baggio, Huang, Brown & Drucker, 2004). However, as it’s affinity to the receptor is much 

weaker than GLP-1, other receptors or even a unique receptor to OXM yet to have been 

identified may be involved (Fehmann, Jiang, Schweinfurth, Wheeler, Boyd & Goke, 1994). 

 

1.6.8. Amylin 

Amylin is a 37 amino acid peptide that is co-released with insulin at a molar ratio of 100:1 

(insulin:amylin) from pancreatic beta cells in response to food ingestion (Neary & Batterham, 

2009; Butler, Chou, Carter, Wang, Bu, Chang et al., 1990). Concentrations rise rapidly before 

peaking within 1 h and remain elevated for up to 4 h postprandially (Koda, Fineman, Rink, 

Dailey, Muchmore & Linarelli, 1992). It’s anorectic effects of decreasing meal size have 

been demonstrated in rodents through both central and peripheral administration (Lutz, 

Geary, Szabady, Delprete & Scharrer, 1995). Studies in diabetic and non-diabetic obese 

humans have also implicated a role of amylin in reducing free-choice food intake by using 

pramlintide, a synthetic amylin analogue, (Chapman, Parker, Doran, Feinle-Bisset, Wishart, 

Strobel et al., 2005). Receptors to which amylin binds have been described within the CNS 

which include the hypothalamus and area postrema of the brainstem (Lutz, Mollet, Rushing, 

Riediger & Scharrer, 2001). 

 

1.6.9. Other important hormones in the regulation of appetite  

Leptin is a peptide hormone produced and secreted predominantly from white adipose tissue 

(Zhang, Proenca, Maffei, Barone, Leopold & Friedman, 1994), now known to be an 

important active endocrine organ, as well as from the gastric epithelium although in smaller 

amounts (Bado, Levasseur, Attoub, Kermorgant, Laigneau, Bortoluzzi et al., 1998). Leptin, 

a product of the ob gene, has several actions, including roles in energy homeostasis and 

neuroendocrine and immune functions (Stanley, Wynne, McGowan & Bloom, 2005). 

Concentrations of leptin are strongly correlated with mass of adipose tissue (Maffei, Halaas, 

Ravussin, Pratley, Lee, Zhang et al., 1995) and are relatively insensitive to food intake 

(Stanley et al., 2005). Early studies such as that by Ahima and colleagues (Ahima, 

Prabakaran, Mantzoros, Qu, Lowell & Maratos-Flier et al., 996) have reported that both 
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central and peripheral administration of leptin reduces food intake spontaneously and 

following fasting. Leptin is thus considered to exert a long term regulatory role in appetite 

and food intake (Hellstrom, Geliebter, Naslund, Schmidt, Yahav, Hashim et al., 2004).   

Adiponectin is also, but solely, produced and secreted from adipose tissue. In contrast 

to leptin, levels of adiponectin are negatively correlated to BMI (Matsubara, Maruoka & 

Katayose, 2002). Circulating concentrations of adiponectin are also not affected by food 

intake (Hotta, Funahashi, Arita, Takahashi, Matsuda, Okamoto et al., 2000) and it is 

considered as a long term regulator of food intake (Hellstrom et al., 2004). 

Insulin is produced and secreted from beta cells of the pancreatic islets of Langerhans. 

Similar to leptin, it is positively correlated with long term energy balance (Woods, Decke & 

Vasselli, 1974; Bagdade, Bierman & Porte, 1967). Circulating concentrations of insulin 

increase rapidly after a meal (Polonsky, Given & Vancauter, 1988), particularly in response 

to carbohydrates. The role of insulin in the regulation of appetite remains unclear, however. 

Studies in animals have indicated euglycaemic hyperglycaemia decreases food intake (Air, 

Strowski, Benoit, Conarello, Salituro, Guan et al., 2002; Woods, Stein, McKay & Porte, 

1984; Nicolaidis & Rowland, 1976) whilst a study in healthy humans have shown 

physiological concentrations of insulin are unlikely to play a role in satiation and short term 

appetite control (Chapman, Goble, Wittert, Morley & Horowitz, 1998). Indirect mechanisms 

in which blood insulin concentrations influence appetite by acting in synergy with other 

hormones or factors such as blood glucose concentration remains a plausible premise (Feinle 

et al., 2002). 

 

1.7. SUMMARY TABLE  OF HORMONES WITH A ROLE IN GASTRIC 

EMPTYING 

As previously mentioned, the process of gastric emptying is stimulated and affected by 

humoral activity and signals. The majority of aforementioned gut hormones implicated in the 

regulation of appetite, food intake and energy balance have also been shown to exert effects 

on gastric emptying (Hellstrom et al., 2006; Mo & Wang, 1994). The effect of these 

hormones and several others known to influence gastric emptying are summarised in Table 

1. 

 



 

 

Table 1. Major hormones involved in the regulation of appetite, food intake, and gastric emptying 

Hormone Primary synthesis and 

secretion site 
Function in appetite 

and food intake 
Target organs in 

appetite control 
Function on gastric 

emptying 
Gastric emptying 

reference(s) 

Ghrelin (acylated) Gastric fundus (X/A-like 

cells) 

Small intestine 

 

Initiates meal intake 

Increases appetite and food 

intake 

Long term regulation of 

body weight 

Vagus 

Brainstem 

Hypothalamus 

Promotes gastric emptying Levin et al., 2006 

Murray et al., 2005 

Asakawa et al., 2001 

Glucagon-like  

peptide-1 

Distal small intestine (L-

cells) 

Reduces energy intake 

Increases satiety Increases 

satiation 

Vagus 

Brainstem 

Hypothalamus 

Strongly inhibits gastric 

emptying (‘ileal brake’) 

Wettergren et al., 1993 

Wishart et al., 1998 

Glucose dependent 

insulinotropic 

polypeptide 

Duodenum and proximal 

jejunum (K-cells) 

 

Unclear 

 

 

? Equivocal (promotes or no 

effect) 

Edholm et al., 2010 

Meier et al., 2004 

Peptide YY (3-36) Distal small intestine (L-

cells) 

Reduces food intake 

Increases satiety 

Increases satiation 

Vagus 

Brainstem 

Hypothalamus 

Strongly inhibits gastric 

emptying (‘ileal brake’) 

Chen et al., 1996 

Taylor, 1993 

Savage et al., 1987 

Pancreatic polypeptide Pancreatic islets of 

Langerhans (F-cells) 

Reduces food intake 

Increases satiety 

Increases satiation 

Vagus 

Brainstem 

Equivocal effect on gastric 

emptying 

Adrian et al., 1981 

Batterham et al., 2003 

Kojima et al., 2007 

Cholecystokinin Duodenum and proximal 

jejunum (I-cells 

 

Reduces food intake 

Increases satiation 

Vagus nerve 

Brainstem 

Hypothalamus 

Inhibits gastric emptying Kelly, 1980 

Oxyntomodulin Distal small intestine (L-

cells) 

Reduces food intake 

Increases satiety 

Increases satiation 

Hypothalamus Inhibits gastric emptying Schjoldager et al., 1989 

Amylin Pancreatic islets of 

Langerhans (beta  cells) 

Increases satiety 

Increases satiation 

Brainstem 

Hypothalamus 

Inhibits gastric emptying Young et al., 1996 

Gastrin Gastric antrum (G-cells) No known effect ? Inhibits gastric emptying Kelly, 1980 

Secretin Duodenum (S-cells) No known effect ? Inhibits gastric emptying Valenzuela et al., 1981 

Somatostatin Pancreas and intestines (D-

cells) 

No known effect in humans ? Inhibits gastric emptying Reichlin, 1983 

Motilin Duodenum and jejunum 

(M-cells) 

No known effect ? Promotes gastric emptying Schmid et al., 1991 

Christofides et al., 1979 
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1.8. ROLE OF GENETICS IN OBESITY AND GASTRIC EMPTYING  

With recent developments and advances in human gene mapping and enhanced molecular 

techniques, it has become much easier for geneticists to investigate associations or linkage 

between genetic variation and obesity or appetite. There are two main methods of approach 

in such studies. One is the candidate gene approach where genes with potential association 

or involvement in a disease trait are selected and a small number of variants within the 

gene investigated for association (Sudbery & Sudbery, 2009). Although this approach 

offers high statistical power, it is however limited by current knowledge of biology and 

disease mechanisms (Amos, Driscoll & Hoffman, 2011; Sudbery & Sudbery, 2009). The 

second, which has become increasingly utilised, is the genome wide association study 

approach in which a large number of single nucleotide polymorphisms (SNP) that span 

across the human genome are scanned. Tagging SNPs, which are the minimum number of 

SNPs required to capture the common haplotype variation present, are often used to 

identify loci in which a causative variant resides (Xia & Grant, 2013).  

Research into the genetics of obesity has predominantly focussed on monogenic or 

syndromic obesity in the past (Walley, Blakemore & Froguel, 2006). Following the 

discovery of the mouse obesity ob/ob gene and its human homologue product leptin (Zhang 

et al., 1994), rare mutations in genes within the leptin-melanocortin pathway have been 

identified to cause monogenic forms of obesity. These include the genes that encode leptin 

(Mammes, Betoulle, Aubert, Herbeth, Siest & Fumeron, 2000; Li, Reed, Lee, Xu, Kilker, 

Sodam et al., 1999; Montague, Farooqi, Whitehead, Soos, Rau, Wareham et al., 1997), 

leptin receptor (LEPR) (Clement, Vaisse, Lahlou, Cabrol, Pelloux, Cassuto et al., 1998), 

alpha-melanocortin 4 receptor (MC4R) (Vaisse, Clement, Durand, Hercberg, Guy-Grand 

& Froguel, 2000; Yeo, Farooqi, Aminian, Halsall, Stanhope & O’Rahilly, 1998) pro-

opiomelanocortin (POMC) (Krude, Bibermann, Luck, Horn, Brabent & Gruters, 1998), 

and prohormone convertase-1 (Jackson, Creemers, Phagi, Raffin-Sanson, Sanders, 

Montague et al., 1997). A number of rare syndromes caused by both autosomal and x-

linked genetic defects or abnormalities are also characterised by obesity and are associated 

with signs of hypothalamic dysfunction that result in hyperphagia (Bell, Walley & Froguel, 

2005). Examples of these include Prader Willi Syndrome, which is usually caused by a 

paternally inherited deletion at the chromosome region 15q11.2-q12, 

Pseudohypoparathyroidism type 1A syndrome, which is caused by a maternally inherited 

mutation in the GNAS1 gene that encodes the alpha-subunit of the Gs protein, and Bardet-

Biedl syndrome, an autosomal recessive condition where any number of mutations at 
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various loci occur (Beales, Elcioglu, Woolf, Parker & Flinter, 1999). More recently, 

however, with the advances in genomic research and the epidemic increase in obesity, 

greater emphasis has been placed on the genetics of common, non-syndromic obesity. It is 

widely accepted that common obesity contains a polygenetic component that enhances 

susceptibility to severe weight gain and development of obesity in today’s ‘obesegenic 

environment’ (Cheung & Mao, 2012; Bell et al., 2005; Friedman, 2003). This 

predisposition is theorised in the ‘thrifty gene hypothesis’ (Neel, 1962) to have previously 

been advantageous in past populations who experienced regular periods of starvation (Bell 

et al., 2005). Furthermore, despite exposure to the same obesegenic environments 

considerable individual variation in body mass exists among populations (Farooqi, 2011). 

The earliest evidence of a genetic component to common obesity came from twin studies. 

Stunkard, Foch & Hrubec (1986) reported high body mass (BM) and BMI heritability 

estimates of 78% and 77%, respectively at age 20 y, which then increased to 81% and 84% 

respectively at 25-year follow up with monozygotic and dizygotic twins. These heritability 

estimates were additionally supported with significant positive correlations between BM 

classes of adoptees and BMI of biological parents but not adoptive parents (Stunkard, 

Sorensen, Hanis, Teasdale, Chakraborty, Schull et al., 1986), and also BM of adult adoptee 

siblings (Sorensen, Price, Stunkard & Schulsinger, 1989). Further studies on monozygotic 

and dizygotic twins showed correlations in BM were approximately 0.7 and 0.2, 

respectively, regardless of whether they were raised apart or together (Stunkard, Harris, 

Pedersen, & McClearn, 1990). Agreements in fat mass have also been reported to range 

from 70-90% in monozygotic twins and 35-45% in dizygotic twins (Xia & Grant, 2013; 

Bell et al., 2005; Farooqi & O’Rahilly, 2005; Hebebrand, Friedel, Schauble, Geller & 

Hinney, 2003).  

An increasing number of genetic variants within the genes coding for 

gastrointestinal hormones and their receptors are being associated with obesity phenotypes 

and appetite and food intake regulation. Two hormones with the largest amount of evidence 

in support for an influence of genetics are ghrelin and PYY. Several SNPs within the 

ghrelin gene have been associated with obesity. For example, the -501A/C SNP in the 

promoter region of the gene has been associated with BMI and waist circumference 

(Vartiainen, Kesaniemi & Ukkola, 2006). However, it had not been associated with fasting 

ghrelin concentrations (den Hoed, Smeets, Veldhorst, Nieuwenhuizen, Bouwman, 

Heidema et al., 2008; Vartiainen et al., 2006). On the other hand the variant 152G>A 

(G346A) which causes an amino acid change Arg51Gln has been shown associate with 

lower fasting plasma ghrelin levels (Poykko, Kellokoski, Horkkp, Kauma, Kesaniemi & 
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Ukkola, 2003; Ukkola, Ravussin, Jacobson, Snyder, Chagnon, Sjostrom et al., 2001) and 

also later onset of obesity (Ukkola et al., 2001). In addition, another variant 214C>A 

(C408A) that causes a Leu72Met amino acid change has also been associated with earlier 

onset of obesity (Ukkola et al., 2001). A number of SNPs and haplotypes within the GHS-

R gene have also been reported to be associated and involved with the pathogenesis of 

obesity with increased risk of obesity ranging between 41% and 56% with the presence of 

the minor allele for the SNPs (Baessler, Hasinoff, Fischer, Reinhard, Sonnenberg, Olivier 

et al., 2005). Fasting plasma PYY concentrations have been shown to be lower with the 

uncommon SNP at A726C and Glu62Pro amino acid change in the PYY gene. Functional 

analysis in mice revealed the minor allele variant 62Pro resulted in greater food intake 

(Ahituv, Kavaslar, Schackwitz, Ustaszewska, Collier, Hebert et al., 2006). In addition, the 

215G>C SNP causing an Arg72Thr change results in higher fasting PYY levels by 20% 

and lower risk of overweight and obesity (Torekov, Larsen, Glumer, Borch-Johnsen, 

Jorgenson, Holst et al., 2005). Other variants in the genes for PYY (Shih, Wang, Chiron, 

Wen, Nievergelt, Mahata, Khandrika et al., 2009; Siddiq, Gueorguiev, Samson, Hercberg, 

Heude, Levy-Marchal et al., 2007; Ma, Tataranni, Hanson, Infante, Kobes, Bogardus & 

Baier, 2005), NPY2R (Siddiq et al., 2007; Ma et al., 2005; Hung, Pirie, Luan, Lank, 

Motala, Yeo et al., 2004), CCK (de Krom, van der Schouw, Hendriks, Ophoff, van Gils, 

Stolk et al., 2007), CCK-1 receptor (Funakoshi, Miyasaka, Matsumoto, Yamamori, 

Takiguchi, Kataoka et al., 2000), and GLP-1R (Li, Tiwari, Lin, Allison, Chung, Leibel, et 

al., 2014) have also been reported to be associated with obesity phenotype measures.  

Despite advances and an increasing number of associations between genetic 

variants and obesity susceptibility being identified, the combined results of all these 

linkage, candidate gene and genome wide association study approaches have explained 

only a small amount of the variance in BMI, suggesting there are still many genetic findings 

to be made (Xia & Grant, 2013). As many of the gastrointestinal hormones involved in 

appetite regulation also play a role in the regulation of gastric emptying, it is possible that 

genetic variations in gut hormones previously associated with obesity may be mediated 

through their effects on gastric emptying rate. In addition, other genetic variations not yet 

discovered or investigated, may explain the inter-individual variation in gastric emptying 

rate since part of the variability in postprandial responses of gut hormones has previously 

been shown to be explained by genetic variation (den Hoed et al., 2008). These authors 

have shown acylated ghrelin response, PYY response and perceived hunger to be 

associated with SNPs in the genes coding for PYY and LEPR, ghrelin and ghrelin receptor, 

and neuropeptide Y and ghrelin receptor, respectively (den Hoed et al., 2008).  
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1.9. DIET, GASTRIC EMPTYING, APPETITE AND FOOD INTAKE 

The increasing prevalence of overweight and obesity, resulting from a consequence of 

positive energy balance where energy intake exceeds expenditure, continues to present a 

substantial burden on healthcare costs across the world. As a result, much research has 

focussed on the role of gut-derived hormones in regulating subjective feelings of appetite 

and satiety, and how interventions may affect the secretion of these hormones. As 

highlighted, the majority of these hormones have concomitant influences on gastric 

emptying. There appears, therefore, to be an intrinsic link between the regulation of gastric 

emptying and the regulation of appetite, with the former having been suggested as a 

possible important determinant of the latter (Delzenne et al., 2010). This integrated 

mechanism is highly favourable and realistic particularly as gastric distension is a potent 

satiety signal (Sanford, 1992). As different foods or macronutrients differentially affect the 

response profile of various hormones, an understanding of the regulation of gastric 

emptying and the relative roles of each associated hormone would potentially facilitate the 

development of dietary interventions aimed at suppressing or stimulating the secretion of 

specific hormones and ultimately modulating subjective feelings of appetite and energy 

intake.    

 

1.9.1. Carbohydrates, appetite and food intake  

Carbohydrates are an essential component of our diet, providing the majority of our dietary 

energy intake. Whether ingested orally or administered directly into the stomach or small 

intestine, carbohydrates reduce subsequent food intake (Feinle et al., 2002). Mechanisms 

that mediate this effect include gut hormone secretion in response to interaction with 

nutrient receptors in the gastrointestinal tract and also acute changes in blood glucose 

concentration which affect gastrointestinal function (Feinle et al., 2002). Different types of 

carbohydrate exist in our food and drink. Some of these are in the form of simple sugars, 

the most common being the monosaccharides glucose and fructose, and the disaccharide 

sucrose (table sugar) which is composed of one glucose molecule and one fructose 

molecule. It has been suggested that different types of carbohydrate or sugars may vary in 

their effects on food intake (Feinle et al., 2002). Recent research interests in carbohydrates 

and satiety have focused on fructose and its possible role in the pathogenesis of obesity and 

the metabolic syndrome.  
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1.9.1.1. Hepatic metabolism of fructose 

Much of the attention on fructose has revolved around its central metabolic differences to 

glucose. Fructose and glucose are both hexose sugars with identical chemical formula 

C6H12O6. The chemical structure of fructose differs from glucose, however, as it has a keto 

group in position two of its carbon chain instead of an aldehyde group at position one 

(Tappy & Le, 2010). Although fructose metabolism is closely tied to that of glucose 

metabolism and they converge within the glycolytic pathway (Feinman & Fine, 2013), 

there are some fundamental differences in how they are metabolised in the liver.  

The metabolism of glucose involves an initial step of phosphorylation by 

glucokinase into glucose-6-phosphate before isomerization to fructose-6-phosphate. 

Glucokinase has a high Michaelis constant (Km) to glucose such that the rate of glucose 

phosphorylation varies in concordance with changes in portal glucose concentration 

(Tappy & Le, 2010). The enzyme phosphofructokinase then catalyzes the conversion of 

fructose-6-phosphate to fructose-1,6-diphosphate, a step that is regulated by negative 

feedback by adenosine triphosphate (ATP) and citrate. Fructose-1,6-diphosphate is then 

split into the interconvertable triose phosphates glyceraldehyde-3-phosphate and 

dihydroxyacetone-phosphate of which the former is converted to pyruvate in the 

mitochondria and enters the Krebs cycle as acetyl-coA (Elliott, Keim, Stern, Teff & Havel, 

2002). 

Fructose on the other hand is initially rapidly phosphorylated into fructose-1-

phospate catalysed by fructokinase which has a low Km to fructose that results in efficient 

enzyme activity even at low concentrations of fructose.  Fructose-1-phospate is then 

cleaved into the triose phosphates glyceraldehyde and dihydroxyacetone-phosphate by the 

action of aldolase B (Elliott et al., 2002; Mayes, 1993; Hallfrisch, 1990). These steps are 

not under negative feedback control and fructose metabolism is thus considered to bypass 

the major control point by which carbon from glucose enters glycolysis (Elliott et al., 

2002). The unregulated production of triose phosphates then serves several pathways. 

Subsequent phosphorylation of both trioses to form glyceraldehyde-3-phosphate enables 

the production of pyruvate and subsequently acetyl-coA in the mitochondria for oxidisation 

in the Krebs cycle according to energy demands. However, as the synthesis of trioses 

exceeds the capacity of the liver to oxidise them, an amount of citrate is exported back into 

the cytosol for the formation of long chain fatty acids (Mayes, 1993). In addition, about a 

quarter of the triose phosphates that yield pyruvate are subsequently converted into lactate 

that is then released into the systemic circulation (Sun & Empie, 2012; Tappy & Le, 2010). 

Furthermore, a substantial amount of approximately 30-57% undergoes gluconeogenesis 
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for conversion to glucose (Sun & Empie, 2012; Delarue, Normand, Pachiaudi, Beylot, 

Lamisse & Rue, 1993) and at least 15% is estimated to convert to glycogen (Tappy & Le, 

2010). Lastly, a small amount of approximately 1% serves as the backbone for 

triacylglycerol synthesis through de novo lipogenesis (Sun & Empie, 2012; Tappy & Le, 

2010). Another unique feature of fructose metabolism is the production of uric acid. The 

depletion of ATP in the efficient phosphorylation of fructose upon entering the hepatocyte 

results in increased degradation of nucleotides to uric acid. An increased concentration of 

uric acid has been shown to be an independent risk factor for obesity, renal disease and 

cardiovascular diseases (Johnson, Segal, Sutin, Nakagawa, Feig, Kang et al., 2007). 

 

1.10. OBJECTIVES OF THIS THESIS 

The aims of this thesis were to determine some of the hormonal and genetic influences on 

gastric emptying characteristics in humans and to investigate the instrinsic link between 

the regulation of gastric emptying and the regulation of appetite and food intake with 

particular focus on dietary sugar and fructose ingestion. 

 

This was achieved through the following research study objectives: 

1. To investigate the gastric emptying characteristics, circulating gut hormone 

profiles and appetite responses to different oral carbohydrate solutions in 

humans. 

2. To investigate the effect of increased dietary consumption of fructose on gastric 

emptying, circulating gut hormone profiles and appetite responses in humans. 

3. To investigate the influence of gastric emptying rate on the hepatic metabolism 

of fructose  

4. To investigate the influence of GLP-1R genetic variation on gastric emptying 

rate of a glucose solution in humans. 
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2. GENERAL METHODS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

 

2.1. PRELIMINARY/FAMILIARISATION VISITS 

All participants reported to the laboratory for a preliminary familiarisation visit before each 

study. Height was measured to the nearest 0.1 cm using a wall mounted stadiometer and 

BM was measured to the nearest 0.01 kg using electronic scales (GFK 150; Adam 

Equipment Co. Ltd., Milton Keynes, UK). Body fat percentage was estimated using a hand-

held bioelectrical impedance device (Omron BF306; Kyoto, Japan). In addition, 

participants were familiarised with the gastric emptying breath sampling technique and the 

appetite assessment both detailed below to be used during the experimental trials. 

Furthermore, participants who had not previously participated in any studies involving 

fructose consumption completed a fructose tolerance test before further participation by 

consuming a 600 mL solution containing 36 g of fructose. This procedure was used to 

ensure that no adverse effects would be experienced due to unknown malabsorption during 

experimental trials. 

 

2.2. PRE-TRIAL STANDARDISATION  

In the 24 h preceding each experimental trial, participants were asked to refrain from 

alcohol and caffeine ingestion as well as the performance of strenuous physical activity. 

Participants were also asked to attend the laboratory in the morning following an overnight 

fast from 2100 h, with the exception of drinking 500 mL of water approximately 90 min 

prior to arrival at the laboratory. This was in an effort to ensure euhydration upon arrival 

and a consistent level of hydration status. All studies involving multiple experimental trials 

were conducted in a randomised single-blind crossover fashion and all experimental trials 

commenced between 0730 and 1030 h.  

 

2.3. GASTRIC EMPTYING MEASUREMENT AND ANALYSIS 

Gastric emptying characteristics were assessed in these studies using the non-invasive 13C 

breath test method. This method was utilised due to its suitability for repeated testing, its 

non-invasiveness and its sufficiently high validity and reliability when compared with other 

methods. Test drink solutions ingested in all studies contained 100 mg of [13C]sodium 

acetate (1-13C, 99%) (Cambridge Isotope Laboratories Inc., Andover MA, USA). Prior to 

ingestion of the test solution, a basal end-expiratory breath sample was collected. Further 

end-expiratory breath samples were collected at 10 min intervals for a total of 60 min 

following drink ingestion. On each occasion, breath samples were collected into a 100 mL 

foil bag by exhalation through a one-way valve mouthpiece (Wagner Analyzen-Technik, 

Bremen, Germany). Bags were then sealed with a plastic stopper and stored for later 
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analysis. A 1 h sampling period is deemed sufficient particularly when utilising the 

parameter Tlag as it occurs within 1 h post- ingestion (van Nieuwenhoven et al., 1999; 

Braden et al., 1995) due to the rapidity of liquid emptying compared to semi-solid or solid 

food ingestion which are normally assessed over a 4 h period. Furthermore, a small 

investigation conducted in our laboratory with eleven participants shows that the results 

from sampling every 10 min for a period of 1 h correlate moderately (T½; r = 0.40, P = 

0.143) and very strongly (Tlag; r = 0.85, P < 0.01) with the results from sampling for a 

period of 4 h. Previous studies have also used a sampling period of 60 min (Jeukendrup & 

Moseley, 2010; van Nieuwenhoven et al., 1999) and some even less with 45 min (Psichas, 

Little, Lal & McLaughlin, 2012; Little, Gopinath, Patel, McGlone, Lassman, D’Amato et 

al., 2010; Little, Gupta, Case, Thompson & McLaughlin, 2009).  

Breath samples were analysed by non-dispersive IR spectroscopy (IRIS, Wagner 

Analyzen-Technik, Bremen, Germany) for the ratio of 13CO2:
12CO2. The difference in the 

ratio of 13CO2:
12CO2  from baseline breath to post-ingestion breath samples are expressed 

as delta over baseline (DOB).  Half emptying time (T½) and time of maximum emptying 

rate (Tlag) were calculated using the manufacturer’s integrated software evaluation based 

on the equations of Ghoos et al. (1993). For determination of the recovery of 13C tracer in 

breath over time, each participant’s own physiologic production of CO2 was taken into 

account and assumed to be 300 mmol per m2 body surface area per hour (Braden, 2009). 

Body surface area was calculated according to the height-weight equation of Haycock, 

Schwartz & Wisotsky (1978) defined as body surface area (m2) = (W0.5378 x H0.3964) x 

0.024265, where W is participant’s BM (kg) and H is participant’s height (cm). 

 

2.4. APPETITE ASSESSMENT 

Appetite was assessed using 100 mm visual analogue scales (VAS). Ratings of hunger, 

fullness, prospective food consumption (Flint, Raben, Blundell & Astrup, 2000) as well as 

ratings of bloatedness and nausea were collected at baseline and at 10 min intervals 

following drink ingestion for 60 min. The VAS was composed of questions asking “how 

hungry do you feel,” “how full do you feel,” “how much do you think you can eat,” “how 

bloated do you feel,” and “how nauseous do you feel?” Respectively, horizontal lines 

100 mm in length were anchored with “I am not hungry at all- I have never been more 

hungry”, “not at all full- totally full”, “nothing at all- a lot”, “not at all bloated- very 

bloated” and “not at all nauseous- very nauseous” (Flint et al., 2000).  
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2.5. BLOOD SAMPLE PREPARATION AND ANALYSIS 

Blood samples were collected in the studies reported in chapters 3 and 5 of this thesis by 

syringe into serum separator vacutainers (Becton Dickinson, Plymouth, UK) following 

withdrawal of 4-5 mL of blood to clear the catheter extension and 50 µl of DPP-IV inhibitor 

(Merck Millipore Limited, UK) and 50 µl of Pefabloc (Roche Diagnostics Limited, UK) 

immediately added to prevent the degradation of active GLP-1 by DPP-IV and acylated 

ghrelin by protease (10 µl/mL of whole blood of both inhibitors as recommended by the 

manufacturers). Samples were then kept on ice until centrifugation. All blood samples were 

collected with the participant in a semi-supine position and cannulas were kept patent by 

flushing with nonheparinized saline (0.9% sodium chloride; Becton Dickinson, New 

Jersey, USA). Blood samples were centrifuged (Z400K, Hermle, Germany) at 1500 g for 

15 min at 4ºC. One serum aliquot was stored at 4ºC for later analysis for osmolality and 

the rest immediately stored at -80ºC for later biochemical analysis.  

Serum glucose concentration were determined using the glucose oxidase phenol 4-

aminoantipyrine peroxidase (GOD-PAP) method on a clinical chemistry analyser 

(Daytona; Randox Laboratories Ltd, UK) and serum fructose concentration were 

determined using a colorimetric assay (EnzyChromTM EFRU-100; BioAssay Systems, CA, 

USA). Mean intra-assay coefficient of variation (CV) for glucose was 1.3% and for 

fructose 5.1%. Concentrations of serum L-lactate and triglycerides, were also determined 

on the clinical chemistry analyser to assess hepatic metabolism of fructose. Mean intra-

assay CVs were 7.0% and 6.0%, respectively. Concentrations of insulin, active GLP-1, 

total GIP, and acylated ghrelin were determined using a human gut hormone multiplex 

assay (Milliplex MAP, Merck Millipore Ltd, UK). Mean intra-assay CVs were 8.1%, 

20.8%, 4.8% and 5.5%, and mean inter-assay CVs were 5.7%, 9.6%, 8.7% and 17.3%, 

respectively. 

 

2.6. OTHER ANALYSIS 

All test drink and urine samples were stored at 4 ºC until analysis of osmolality by freezing 

point depression (Gonotec Osmomat 030 Cryoscopic Osmometer; Gonotec, Berlin, 

Germany).  

 

2.7. PARTICIPANT CRITERIA AND ETHICAL APPROVAL 

All participants were non-smokers, had no history of gastrointestinal symptoms or disease, 

were not taking any medication with any known effect on gastrointestinal function and had 

no other medical conditions as assessed by a medical screening questionnaire. Verbal and 
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written explanations of the experimental procedures were given prior to participation and 

all participants provided written informed consent. All studies were conducted according 

to the guidelines laid down in the Declaration of Helsinki and all procedures were granted 

approval by the Ethical Advisory Committee of Manchester Metropolitan University’s 

Faculty of Science and Engineering (Appendix 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

 

 

 

 

 

 

 

 

 

 

3. THE EFFECT OF DIFFERENT 

SIMPLE SUGARS ON GASTRIC 

EMPTYING RATE, 

GASTROINTESTINAL 

HORMONES, AND HEPATIC 

METABOLISM AND FUNCTION1 

 

 

 

 

 

 

                                                 

 

1
Some of the data from this study contained within this chapter was presented as a poster communication and 

the abstract published in “Yau, A., McLaughlin, J., Maughan, R.J., Gilmore, W. & Evans, G.H. (2013). The 

influence of simple sugars on gut hormone response and gastric emptying rate. International Journal of Sport 

Nutrition and Exercise Metabolism, 23, S13.” 
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3.1. INTRODUCTION 

High quantities of the monosaccharide fructose are found naturally in foods and beverages 

(e.g. fruits), but its broadened use as an added ingredient, either as sucrose or high fructose 

corn syrup (mixture of fructose and glucose typically at 55:45 ratio) (HFCS), in soft drinks 

and other sweetened beverages has greatly increased its dietary consumption (Johnson & 

Murray 2010; Lindqvist, Baelemans & Erlanson-Albertsson, 2008). Excessive intake of 

fructose and over-consumption of sugary beverages have been suggested to contribute to 

the development of the metabolic syndrome and the epidemic-like increase in obesity 

through altering feeding patterns and the promotion of weight gain (Lindqvist et al., 2008). 

The physiological mechanism as to how this may occur, however, is incomplete and 

whether certain sugars are more harmful than others still requires much elucidation. The 

effect of these different carbohydrate types on gastric emptying (the rate at which 

food/drink is emptied from the stomach), and the response of various appetite hormones 

are an important consideration.  

Research comparing the rate of gastric emptying between solutions of the common 

sugars glucose (monosaccharide), fructose (monosaccharide), and sucrose (disaccharide of 

glucose and fructose) are few and equivocal. Several studies have reported that fructose 

empties faster from the stomach than does glucose at the same concentration (Horowitz, 

Cunningham, Wishart, Jones & Read, 1996; Sole & Noakes, 1989; Moran & McHugh, 

1981; Elias, Gibson, Greenwood, Hunt & Tripp, 1968), whereas others have found no 

differences (McGlone, Little & Thompson, 2008; Shi, Bartoli, Horn & Murray, 2000). 

Fructose (Elias et al., 1968) and glucose (Murray, Eddy, Bartoli & Paul, 1994) have also 

independently been reported to empty faster and slower than sucrose, respectively. 

Similarly, a combined fructose and glucose solution has been reported to empty faster than 

an equimolar glucose only solution (Jeukendrup & Moseley, 2010), but others reported no 

difference (Shi et al., 2000).  

A small compilation of parallel research investigating the effects of these different 

oral carbohydrate solutions on various peripheral hormones that influence appetite also 

exists. Previous research has shown fructose stimulates GLP-17-36 (Kong, Chapman, Goble, 

Wishart, Wittert, Morris et al., 1999), insulin (Bray, 2010; Teff, Grudziak, Townsend, 

Dunn, Grant, Adams et al., 2009; Bowen, Noakes & Clifton, 2007; Kong et al., 1999) and 

leptin (Bray, 2010) secretion, and suppresses ghrelin (Teff, Elliott, Tschop, Kieffer, Radar, 

Heiman et al., 2004) to a lesser degree than comparable amounts of glucose. On the other 

hand, others have also shown no differences in GLP-17-36 and ghrelin responses between 

ingestion of glucose and of fructose (Bowen et al., 2007) and no difference in plasma 
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insulin, leptin and ghrelin levels following oral intakes of similar carbohydrates HFCS 

(55% fructose: 45% glucose) and sucrose (Melanson, Zukley, Lowndes, Nguyen, 

Angelopoulos & Rippe, 2007). Furthermore, two weeks of glucose, sucrose and fructose 

consumption has also been shown to decrease circulating levels of PYY, with the latter 

monosaccharide also increasing fasting ghrelin and insulin within the same time-frame in 

rats (Lindqvist et al., 2008). No study has concurrently investigated or compared the gastric 

emptying of all three of these sugars plus a glucose-fructose mixture, while also studying 

at the same time the circulatory responses of the most important panel of appetite hormones 

promoted by carbohydrate ingestion in humans. Moreover, the human studies 

aforementioned have all involved the ingestion of large and untypical amounts of glucose 

and fructose ranging from 50 g to approximately 135 g (30% of estimated energy 

requirements).  In addition, studies that have measured ghrelin have consistently examined 

total ghrelin and not the active form acylated ghrelin (Lindqvist, et al., 2008; Bowen et al., 

2007; Teff et al., 2004).  

The consumption of fructose is also progressively being linked with non-alcoholic 

fatty liver disease (NAFLD) through its unfavourable hepatic metabolism (Vos & Lavine, 

2013; Tappy & Le, 2012; Yilmaz, 2012). NAFLD is an increasingly prevalent chronic liver 

disease that is characterised by elevated intrahepatic fat and mitochondrial dysfunction 

(Ferder, Ferder & Inserra, 2010). As mentioned in chapter one, high fructose ingestion is 

considered to favour lipogenesis and triglyceride synthesis by serving as a relatively 

unregulated source of acetyl coA and glycerol-3-phosphate for hepatic lipogenesis (Bray, 

Nielsen & Popkin, 2004; Elliott et al., 2002). There is strong evidence in humans that short 

to moderate-term overfeeding with large amounts of fructose results in larger increases in 

fasting and postprandial plasma triglyceride concentrations than glucose (Stanhope, 

Bremer, Medici, Nakajima, Ito, Nakano et al., 2011; Ngo Sock, Le, Ith, Kreis, Boesch & 

Tappy, 2010;  Stanhope, Schwarz, Keim, Griffen, Bremer, Graham et al., 2009; Teff et al., 

2009; Stanhope, Griffen, Bair, Swarbrick, Keim & Havel, 2008; Teff et al., 2004; Bantle, 

Raatz, Thomas & Gerogopoulos, 2000). There is also evidence to show short to moderate-

term overfeeding with fructose suppresses non-esterified fatty acid (NEFA) (Le, Faeh, 

Stettler, Ith, Kreis, Vennathen,  et al., 2006; Teff et al., 2004), and ß-hydroxybutyrate (Ngo 

Sock et al., 2010; Le et al., 2006) concentrations, indicating decreased lipolysis and 

metabolism of NEFA, respectively. In some cases, however, the effects of fructose on these  

measures have been shown to be comparable to glucose (Ngo Sock et al., 2010; Teff et al., 

2009; Teff et al., 2004) or have not been compared at all (Le et al., 2006). In addition, a 

marker of liver damage such as circulating alanine aminotransferase (ALT) has been 
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reported in a recent meta-analysis to increase following excess intake of fructose but was 

no different in comparison to glucose (Chiu, Sievenpiper, de Souza, Cozma, Mirrahimi, 

Carleton et al., 2014).  

There is, however, comparatively little data on the effect of a single acute bolus of 

different carbohydrates on markers of hepatic metabolism and function. The 

aforementioned studies have investigated the effects of increased fructose consumption for 

1 day to 10 weeks. One recent study that has compared the effect of a single mixed glucose 

and fructose solution (45:55 g), to mimic HFCS, reported lactate and NEFA responses were 

significantly greater than that elicited by 100 g of glucose alone (Bidwell, Homstrup, Doyle 

& Fairchild, 2010). The authors found no difference in triglyceride response, however. On 

the other hand, another study by Parks, Skokan, Timlin & Dingfelder (2008) showed acute 

ingestion of either a 50:50 or a 25:75 solution containing 42.7 g glucose: 42.7 g fructose 

and 21.3 g glucose: 64.1 g fructose, respectively, resulted in significantly greater serum 

triglyceride concentrations than 85 g glucose alone.  Studies that have compared the acute 

effects of HFCS and sucrose have unsurprisingly found similar responses as they contain 

very similar amounts of glucose and fructose. Consumption of 68 g HFCS (39 g fructose 

and 29 g glucose) (Le, Frye, Rivard, Cheng, McFann, Segal et al., 2012) and at equivalent 

proportions for 25% of energy intake (Stanhope et al., 2008) showed no difference in 

postprandial triglyceride levels compared to intakes of matched amounts of sucrose. No 

difference in lactate response was also reported (Le et al., 2012).  

Moreover, all of the dietary intervention and acute ingestion studies investigating 

the effects of fructose on hepatic metabolism and function have involved feeding of very 

high doses of sugars or fructose ranging from acute boluses of 68 g or above to 

approximately 188 g per day (30% energy requirements of guideline daily amount for 

average men). The effect of a much smaller amount reflective of a typical serving is 

unknown. 

 

Therefore, the aims of this study were to examine the effect of different isoenergetic oral 

carbohydrate solutions on:  

1) Gastric emptying rate, 

2) Circulating gut hormone responses,  

3) Hepatic metabolic responses and function, and  

4) Subjective feelings of appetite and satiety. 
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3.2. METHODS 

3.2.1. Participants 

Seven healthy male volunteers (mean ± S.D, age 25 ± 4 y, height 179 ± 8 cm, BM 82 ± 12 

kg, BMI 26 ± 4 kg.m-2, and estimated body fat percentage 21 ± 7%) participated in the 

present investigation.  

 

3.2.2. Experimental trials 

Participants reported to the laboratory on five occasions, each separated by a minimum of 

6 d. In addition to the pre-trial conditions outlined in general methods, participants were 

also asked to record their food and drink intake as well as physical activity during the 24 h 

prior to their first experimental visit and asked to replicate these for their subsequent visits. 

 Upon arrival at the laboratory, participants were asked to completely empty their 

bladder into a container from which a 5 mL urine sample was retained for later analysis of 

osmolality. Body mass was subsequently recorded. Following this a 21 gauge intravenous 

cannula (Venflon; Becton Dickinson, Plymouth, UK) was inserted into an antecubital vein 

and a catheter extension (Vygon, Ecouen, France) attached. A baseline blood sample was 

then obtained using the procedure outlined in general methods.  Participants then ingested 

595 mL of one of the following test drink solutions within two min; water (W), 6% glucose 

(GLU), 6% fructose (FRU), 6% sucrose (SUC) or 6% combined glucose and fructose 

(50:50; GLU+FRU). All carbohydrate solutions were equicaloric, respectively consisting 

of 39.6 g glucose monohydrate, 36 g fructose, 36 g sucrose, and 19.8 g glucose 

monohydrate + 18 g fructose, dissolved in commercially available natural mineral water 

(Evian, Danone Ltd, France) to a volume of 600 mL.  Glucose and fructose were purchased 

from MyProtein (www.myprotein.com) and sucrose from a local supermarket (Granulated 

Sugar; Silverspoon, UK). Participants were given a maximum of two min to consume the 

test solution and instructed to consume it as quickly as they were able to. Drink solutions 

were given at room temperature and a 5 mL sample of the drink was retained for later 

analysis of osmolality. Participants remained in a semi-supine position throughout the 

drink ingestion and 60 min sampling procedure. Further blood samples were obtained at 

10, 20, 30 and 60 min post-drink ingestion and gastric emptying rate and appetite was 

assessed for the duration of study as described in general methods. Following all sample 

collections at 60 min, the cannula was removed and participants were asked again to 

completely empty their bladder into a container and a 5 mL urine sample was again retained 

for later analysis. 
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3.2.3. Biochemical analysis 

In addition to the blood sample analysis described in general methods, ALT, NEFA and D-

3 Hydroxybutyrate (Ranbut) were also determined on the clinical chemistry analyser to 

assess hepatic metabolism and function. The NEFA assay was performed separately from 

the other analytes due to interference with the triglyceride assay. Gut hormone analysis was 

performed in single analysis with the exception of 16 randomly selected samples which 

were performed in duplicate. Corresponding intra-assay coefficient of variations (CV) for 

ghrelin, GIP, GLP-1 and insulin were 6%, 4.8%, 24% and 11.8%, respectively. Inter-assay 

CVs for ghrelin, GIP, GLP-1 and insulin were 17.9%, 4.2%, 5.1% and 3.8%, respectively. 

Lactate, triglyceride, ALT, D-3 Hydroxybutyrate, and NEFA analysis was performed in 

duplicate and intra-assay CVs 12.5%, 10.4%, 9.5%, 4.9% and 3.8%, respectively. Glucose 

analysis was performed in single analysis as well as fructose, where the CV of a preliminary 

assay was 2.5%. 

 

3.2.4. Statistical analysis 

Area under curve for gastric emptying DOB and gut hormone data were calculated using 

polynomial curves of best fit and mathematical integration, and the trapezoid method, 

respectively. Differences in pre-trial BM, pre-trial urine osmolality, drink osmolality, 

gastric emptying T½ and Tlag, gastric emptying DOB AUC, and gut hormone concentration 

AUC were examined using one-way repeated analysis of variance (ANOVA). Significant 

F-tests were followed by Bonferroni adjusted pairwise comparisons. Two-way repeated 

ANOVA were used to examine differences in gastric emptying DOB values, urine 

osmolality, serum osmolality, blood glucose and fructose concentrations, gut hormone 

concentrations, and subjective appetite VAS scores. Significant F-tests were followed with 

the appropriate paired Student’s t-tests or one-way repeated ANOVA and Bonferroni 

adjusted pairwise comparisons. Sphericity for repeated measures was assessed, and where 

appropriate, Greenhouse-Geisser corrections were applied for epsilon < 0.75, and the 

Huynh-Feldt correction adopted for less severe asphericity. All data were analysed using 

SPSS Statistics for Windows version 19 (IBM, New York, US). Statistical significance was 

accepted at the 5% level and results presented as means ± standard deviation (SD). 

 

3.3. RESULTS 

3.3.1. Body mass and hydration status 

Body mass was stable over the duration of the study. Hydration status based on urine 

osmolality and serum osmolality was also consistent prior to each trial. Data are presented 



40 

 

in Table 2. Urine output 60 min post-drink ingestion was not different between trials (W, 

613 ± 268 mL; FRU, 411 ± 254 mL; GLU, 639 ± 226 mL; SUC, 577 ± 400 mL; GLU+FRU, 

596 ± 331 mL; P = 0.231). Two-way ANOVA and post hoc analyses revealed urine 

osmolality significantly decreased by 300 ± 201 mOsmol/kg, 209 ± 174 mOsmol/kg, 239 

± 197 mOsmol/kg, 399 ± 209 mOsmol/kg post-trial for W (P < 0.01), FRU (P < 0.05), 

GLU (P < 0.05) and SUC (P < 0.01) respectively. However, there was no significant 

decrease for GLU+FRU (170 ± 298 mOsmol/kg; P = 0.221).  

 

Table 2. Pre-trial body mass and hydration markers (n 7). 

 W FRU GLU SUC GLU+FRU P-value 

Body mass 

(kg) 

81.52 ± 12.03 81.80 ± 12.31 81.84 ± 11.77 81.93 ± 12.06 81.54 ± 12.42 0.638 

Urine 

osmolality 

(mOsmol/kg) 

461 ± 232 431 ± 174 375 ± 224 593 ± 309 465 ± 260 0.504 

Serum 

osmolality 

(mOsmol/kg) 

292 ± 4 293 ± 4 292 ± 1 291 ± 4 292 ± 3 0.729 

 

Two-way ANOVA for serum osmolality revealed no main effect of trial (P = 0.271), no 

main effect of time (P = 0.358), but a significant interaction effect (P < 0.05). Post hoc 

analyses indicated a significant decrease over time for W (P < 0.05), though the location 

of this difference could not be determined. A significant difference between trials at 30 min 

was also indicated (P < 0.05) but again the difference could not be located.  

 

3.3.2. Drink osmolality 

Osmolality of the drink solutions were 13 ± 1 mOsmol/kg, 368 ± 4 mOsmol/kg, 370 ± 6 

mOsmol/kg, 204 ± 1 mOsmol/kg and 369 ± 4 mOsmol/kg for W, FRU, GLU, SUC and 

GLU+FRU, respectively. Mean water osmolality was significantly lower than all other 

solutions (P < 0.001) and SUC was significantly lower than GLU, FRU, and GLU+FRU 

(P < 0.001). 

 

3.3.3. Gastric emptying 

No significant differences were found between trials for gastric emptying T½ (P = 0.136). 

There was, however, considerable inter-individual and between-trial variation in T½. One-

way ANOVA and post hoc analyses revealed Tlag was significantly greater for GLU when 

compared with SUC (51 ± 26 min vs. 25 ± 18 min; P < 0.05) (Figure 2). Two-way ANOVA 
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for delta over baseline (DOB) data showed no main effect of trial (P = 0.250), but a 

significant main effect of time (P < 0.001), and a significant interaction effect (P < 0.01). 

Post hoc analyses revealed a significantly greater DOB for SUC compared to GLU at 10 

min post drink ingestion (P < 0.05) (Figure 3a). No statistical differences in mean AUC 

over the 60 min post drink ingestion were demonstrated (P = 0.209) (Figure 3b). Gastric 

emptying DOB results are also expressed as a percentage of maximum (Figure 4). Two-

way ANOVA showed no main effect of trial (P = 0.224), a significant main effect of time 

(P < 0.001) and significant interaction effect (P < 0.001). Post hoc analysis revealed 

percentage of maximum DOB for SUC was significantly higher than W (P < 0.01), FRU 

(P < 0.05) and GLU (P < 0.05) at 10 min. Furthermore, at 50 min, GLU was significantly 

greater than W (P < 0.05) and at 60 min GLU was significantly greater than W (P < 0.01), 

SUC (P < 0.05) and GLU+FRU (P < 0.05). 

 

 

 

Figure 2. Gastric emptying T½ and Tlag for ingestion of 595 mL water, 6% fructose, 6% 

glucose, 6% sucrose and 6% combined glucose and fructose solutions. *Significantly 

higher than sucrose (P < 0.01). Values are mean ± SD (n 7). 
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Figure 3. Gastric emptying. (A) Delta over baseline over (DOB) 60 min post ingestion of 

595 mL water, 6% fructose, 6% glucose, 6% sucrose and 6% combined glucose and 

fructose solutions. (B) Area under curve. *Sucrose significantly higher than glucose (P < 

0.05). Values are mean ± SD (n 7). 
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Figure 4. Gastric emptying delta over baseline (DOB) normalised as percentage of 

maximum over 60 min post ingestion of 595 mL water, 6% fructose, 6% glucose, 6% 

sucrose and 6% combined glucose and fructose solutions. *Sucrose significantly higher 

than water, fructose and glucose (P < 0.05). †Combined significantly higher than water (P 

< 0.05). ‡Glucose significantly higher than water (P < 0.05). #Glucose significantly higher 

than water, sucrose and combined (P < 0.05). Values are mean ± SD (n 7). 
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3.3.4.2. GIP 

Baseline GIP concentrations were not significantly different between trials (W, 8.81 ± 3.33 

pg/mL; FRU, 9.31 ± 5.26 pg/mL; GLU, 12.67 ± 7.71 pg/mL; SUC, 12.12 ± 8.82 pg/mL; 

GLU+FRU, 13.15 ± 7.20 pg/mL; P = 0.266). Two-way ANOVA revealed significant 

effects of trial (P < 0.001), time (P < 0.001) and interaction (P < 0.001). Concentrations 

increased significantly higher than baseline over time for GLU (P < 0.001), SUC (P < 0.01) 

and GLU+FRU (P < 0.05) but not for W (P = 0.716) or FRU (P = 0.278). Significant 

differences between GIP response occurred at 10, 20, 30 and 60 min post ingestion with 

the response being greatest for GLU (Figure 6a). Area under curve values for the trials 

were also significantly different (P < 0.001; Figure 6b). 

3.3.4.3. GLP-1 

There were no significant differences in baseline concentrations between trials (W, 3.59 ± 

9.50 pg/mL; FRU, 3.59 ± 9.50 pg/mL; GLU, 9.31 ± 16.23 pg/mL; SUC, 13.14 ± 16.54 

pg/mL; GLU+FRU, 24.53 ± 27.53 pg/mL; P = 0.175). Two-way ANOVA showed a strong 

trend to significance for trial (P = 0.053), a significant effect of time (P < 0.05) and an 

interaction effect (P = 0.0003). Post hoc analyses indicated GLP-1 concentration increased 

then significantly decreased from 30 min to 60 min for FRU (P < 0.05). A significant 

response was also indicated for GLU (P < 0.05) but differences in time points could not be 

located. Responses to SUC and GLU+FRU were tending to statistical significance (P = 

0.057 and P = 0.082, respectively). Post hoc analysis between trials indicated a significant 

difference between trials at 10 min (P < 0.05) and 30 min (P < 0.05), though differences 

could not be pinpointed (Figure 7a). Area under curve values between trials were also 

tending to significance (P = 0.064; Figure 7b).   

3.3.4.4. Insulin 

Insulin concentrations at baseline were not significantly different between trials (W, 191.37 

± 88.46 pg/mL; FRU, 192.07 ± 102.33 pg/mL; GLU, 216.92 ± 163.10 pg/mL; SUC, 172.44 

± 103.44 pg/mL; GLU+FRU, 177.67 ± 89.36 pg/mL; P = 0.493). Two-way ANOVA 

showed significant effects of trial (P < 0.05), time (P < 0.05) and interaction (P < 0.001). 

Post hoc analyses indicated significant changes over time for all carbohydrate trials though 

differences in time points could only be located for GLU and SUC. Insulin concentrations 

significantly increased at 10 min from baseline for both GLU and SUC then decreased 

significantly for GLU only. Significant differences between trials at 10 (P < 0.01), 20 (P < 

0.05) and 30 min (P < 0.05) as well as AUC (P < 0.05) were also indicated, but differences 

could not be identified (Figure 8a and 8b).  
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Figure 5. Gut hormone ghrelin (A) Response over 60 min post ingestion of 595 mL water, 

6% fructose, 6% glucose, 6% sucrose and 6% combined glucose and fructose solutions. 

(B) Area under curve. *Fructose significantly lower than water (P < 0.05). Values are mean 

± SD (n 7). 
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Figure 6. Gut hormone GIP. (A) Response over 60 min post ingestion of 595 mL water, 

6% fructose, 6% glucose, 6% sucrose and 6% combined glucose and fructose solutions. 

*Glucose, sucrose and combined significantly higher than water (P < 0.001); †Glucose and 

sucrose significantly higher than water and fructose (P < 0.01); #Glucose, sucrose and 

combined significantly higher than water and fructose. Glucose also significantly higher 

than sucrose (P < 0.001); ‡Glucose significantly higher than fructose, sucrose and 

combined (P < 0.01). (B) Area under curve. §Significantly greater than water and fructose 

(P < 0.001). Values are mean ± SD (n 7). 
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Figure 7. Gut hormone GLP-1 (A) Response over 60 min post ingestion of 595 mL water, 

6% fructose, 6% glucose, 6% sucrose and 6% combined glucose and fructose solutions. 

(B) Area under curve. Values are mean ± SD (n 7). 
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Figure 8. Hormone insulin (A) Response over 60 min post ingestion of 595 mL water, 6% 

fructose, 6% glucose, 6% sucrose and 6% combined glucose and fructose solutions. (B) 

Area under curve. Values are mean ± SD (n 7). 
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3.3.5. Blood glucose and fructose 

Significant effects of trial (P < 0.001), time (P < 0.001) and interaction (P < 0.001) were 

seen for serum glucose concentration. Significant increases from baseline to 30 min post 

drink ingestion were followed by significant decreases at 60 min post ingestion for trials 

GLU (P < 0.001), SUC (P < 0.001) and GLU+FRU (P < 0.001). No change over time 

existed for W (P = 0.323) and no differences over time were located for FRU (P = 0.007).  

There were no differences in baseline serum glucose concentrations between trials (P = 

0.288), nor at 60 min post ingestion (P = 0.241). However, differences in serum glucose 

response between trials were found at 10, 20 and 30 min (P < 0.01) (Figure 9a). These 

differences were also reflected in significant differences between AUC values (W, 301.44 

± 17.21 mmol/L 1h; FRU, 324.01 ± 9.84 mmol/L 1h; GLU, 403.24 ± 66.34 mmol/L 1h; 

SUC, 388.28 ± 18.13 mmol/L 1h; GLU+FRU, 373.73 ± 47.24 mmol/L 1h; P < 0.001) 

(Figure 9b). 

Significant effects of trial (P < 0.001), time (P < 0.01) and interaction (P < 0.001) 

were also seen for serum fructose concentration. Fructose concentration significantly 

decreased at 30 min post drink ingestion compared to baseline for W, whilst in contrast, it 

significantly increased over time for FRU (P < 0.001), SUC (P < 0.01) and GLU+FRU (P 

< 0.05). No significant change occurred with GLU (P = 0.234). There were no differences 

in baseline serum fructose concentrations between trials (P = 0.828). Differences in 

response between trials existed at 10, 20, 30 and 60 min (P < 0.001) (Figure 10a). Mean 

AUC were significantly different with 2387.65 ± 1556.989 µmol/L 1h, 18885.35 ± 

5798.358 µmol/L 1h, 3221.957 ± 2188.823 µmol/L 1h, 13352.59 ± 5931.096 µmol/L 1h 

and 12019.24 ± 5010.242 µmol/L 1h for W, FRU, GLU, SUC and GLU+FRU, respectively 

(P < 0.001) (Figure 10b).  

 

3.3.6. Appetite and satiety 

Hunger and prospective food consumption ratings tended to decrease at 10 min post drink 

ingestion and then generally recovered or increased thereafter for all trials. Fullness rating 

tended to increase or was unchanged 10 min following drink ingestion and then generally 

decreased thereafter. No significant differences were found for hunger (trial P = 0.337, 

time P = 0.091, interaction P = 0.492) or fullness (trial P = 0.455, time P = 0.106, 

interaction P = 0.288). A main effect of trial (P = 0.652) and interaction effect (P = 0.430) 

were also not present for prospective food consumption. A significant main effect of time 

(P < 0.05) was present, however. Post hoc analyses indicated a significant difference over 

time for GLU (P < 0.05), but differences in time-points could not be further located.  
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Figure 9. Serum glucose concentration. (A) Response over 60 min post ingestion of 595 mL 

water, 6% fructose, 6% glucose, 6% sucrose and 6% combined glucose and fructose 

solutions. *Glucose, sucrose and combined significantly higher than water (P < 0.05); 

†Sucrose significantly higher than fructose (P < 0.05); #Glucose, sucrose and combined 

significantly higher than water and fructose (P < 0.05); +All carbohydrate trials 

significantly higher than water (P < 0.05). (B) Area under curve. §Significantly greater 

than water; ‡Significantly greater than fructose (P < 0.01). Values are mean ± SD (n 7). 
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Figure 10. Serum fructose concentration. (A) Response over 60 min post ingestion of 

595 mL water, 6% fructose, 6% glucose, 6% sucrose and 6% combined glucose and 

fructose solutions. *Sucrose significantly higher than water and glucose (P < 0.01); 

†Fructose significantly higher than water and glucose, combined significantly higher than 

water (P < 0.05); #Fructose and sucrose significantly higher than water and glucose (P < 

0.001); ‡Fructose significantly higher than combined (P < 0.001). (B) Area under curve. 

§Significantly greater than water and glucose (P < 0.001). Values are mean ± SD (n 7). 
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3.3.7. Hepatic metabolism 

3.3.7.1. Lactate 

Two-way repeated ANOVA revealed significant main effects of trial (P < 0.001), time (P 

< 0.001) and interaction (P < 0.001). Serum lactate significantly increased over time in all 

four carbohydrate trials, whilst no difference was seen for W (P = 0.447) (Figure 11a). 

Lactate concentration following GLU ingestion increased most slowly with concentrations 

only reaching significant increases by the end of the trial in comparison to baseline and 20 

min values. For FRU, however, significant increases were seen earlier on with values at 

20, 30 and 60 min being greater than baseline (P < 0.01) and 10 min (P < 0.05). The 

increase in lactate following SUC ingestion was even more rapid, with significant increases 

from baseline seen from 10 min onwards (P < 0.05). However, the increase in lactate in the 

GLU+FRU trial was slightly slower than SUC and became significantly higher than 

baseline at 30 min post ingestion and thereafter (P < 0.05). Differences between trials at 

time-points were also seen. At 20 min, lactate was significantly higher in the SUC trial 

compared with W (P < 0.05), GLU (P < 0.05) and FRU (P < 0.05). At 30 min, in both FRU 

and SUC trials, lactate levels were significantly higher than in W (P < 0.01) and GLU (P 

< 0.01). Furthermore, at 60 min, lactate levels in all four carbohydrate trials were 

significantly higher than in W (GLU, P < 0.05; FRU, P < 0.001; SUC, P < 0.05; 

GLU+FRU, P < 0.05) with concentration in the FRU trial being significantly higher than 

in the GLU trial (P < 0.01). AUC values were significantly greater in the FRU (P < 0.01) 

and SUC trials (P < 0.05) compared with W, and also FRU (P < 0.01) and SUC (P < 0.01) 

compared with GLU (Figure 11b).  

3.3.7.2. Triglycerides 

Triglyceride response was very limited over the one-hour test period of this study. Two-

way repeated ANOVA showed no effect of trial (P = 0.425) and time (P = 0.254) but a 

significant interaction effect (P = 0.032). Post-hoc analysis showed no differences between 

trials at time-points although there was a trend of difference at 10 min (P = 0.099; Figure 

12a). A significant difference over time for W trial was indicated (P = 0.039) though 

pairwise comparisons did not locate any differences. Trends over time were also seen for 

GLU (P = 0.053), SUC (P = 0.092) and GLU+FRU (P = 0.073) trials. Changes in 

triglyceride concentration for FRU were not significantly different (P = 0.279). No 

differences were observed with AUC values (P = 0.439; Figure 12b).   
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Figure 11. Serum lactate concentration. (A) Response over 60 min and (B) Area under 

curve post ingestion of 595 mL water, 6% fructose, 6% glucose, 6% sucrose and 6% 

combined glucose and fructose solutions.*Sucrose significantly greater than water, glucose 

and fructose (P < 0.05). †Fructose and sucrose significantly greater than water and glucose 

(P < 0.01). #All carbohydrate trials significantly greater than water (P < 0.05). ‡Fructose 

significantly greater than glucose (P < 0.01). Values are mean ± SD (n 7). 
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Figure 12. Serum triglyceride concentration. (A) Response over 60 min and (B) Area 

under curve post ingestion of 595 mL water, 6% fructose, 6% glucose, 6% sucrose and 

6% combined glucose and fructose solutions. Values are mean ± SD (n 7). 
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3.3.7.3. D-3 Hydroxybutyrate (Ranbut) 

No effect of trial (P = 0.220) or interaction (P = 0.891) and only a slight trend for an effect 

of time (P = 0.098) was seen for circulating D-3 hydroxybutyrate levels (Figure 13a). No 

differences between trials in AUC levels were seen (P = 0.179; Figure 13b).  

 

 

 

Figure 13. Serum D-3 hydroxybutyrate concentration. (A) Response over 60 min and (B) 

Area under curve post ingestion of 595 mL water, 6% fructose, 6% glucose, 6% sucrose 

and 6% combined glucose and fructose solutions. Values are mean ± SD (n 7). 
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3.3.7.4. ALT 

As with D-3 hydroxybutyrate, serum ALT responses were not significantly different 

between trials but again there was a slight trend for an effect of time (trial P = 0.493, time 

P = 0.084, interaction P = 0.504; Figure 14a). No differences in AUC values were observed 

(P = 0.510; Figure 14b). 

 

 

 

 

Figure 14. Serum alanine aminotransferase concentration (ALT). (A) Response over 60 

min and (B) Area under curve post ingestion of 595 mL water, 6% fructose, 6% glucose, 

6% sucrose and 6% combined glucose and fructose solutions. Values are mean ± SD (n 7). 
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3.3.7.5. NEFA 

Two-way repeated ANOVA revealed no main effect of trial (P = 0.411), a significant effect 

of time (P < 0.01) and no interaction effect (P = 0.431) (Figure 15a). Post-hoc tests showed 

non-esterified fatty acid concentration decreased significantly over time for W (P < 0.01), 

GLU (P < 0.001) and GLU+FRU (P < 0.001) trials. For W, concentration at 20 and 30 min 

were significantly lower than baseline (P < 0.05). For GLU, concentrations from 20 min 

onwards were all significantly lower than both baseline and at 10 min (P < 0.01 and P < 

0.05, respectively), and at 60 min concentrations were further lower than 30 min levels (P 

< 0.05). Similarly, for GLU+FRU trial, concentrations at 20, 30 and 60 min were all 

significantly lower than baseline (P < 0.05, P < 0.001 and P < 0.01, respectively). Levels 

at 30 and 60 min were also significantly lower than at 10 min (P < 0.05 and P < 0.01) and 

the level at 60 min lower than that at 20 min (P < 0.01). No differences in AUC were 

observed (P = 0.370; Figure 15b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

 

 

 

 

 

Figure 15. Serum non-esterified fatty acid (NEFA) concentration. (A) Response over 60 

min and (B) Area under curve post ingestion of 595 mL water, 6% fructose, 6% glucose, 

6% sucrose and 6% combined glucose and fructose solutions. Values are mean ± SD 

(n 7). 
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3.4. DISCUSSION 

No significant differences in gastric emptying rate were found except for a higher Tlag for 

GLU compared with SUC, suggesting that gastric emptying of an isoenergetic glucose is 

slower than a sucrose solution. However, there was considerable inter-individual and 

between-trial variation in T½, which may be partially explained by differences in gut 

hormone responses. Given that no subsequent effects were found for subjective appetite 

scores, this perhaps demonstrates a greater role of the investigated gut hormones in the 

regulation of gastric emptying than the direct regulation of appetite when ingesting fluids 

of this nature. The lack of statistical significance in gastric emptying data may have resulted 

from interactions of a large number of comparisons and a relatively small sample size. 

Statistical significance may be reached upon a decrease and/or increase of either of these 

factors, respectively. Having a much larger sample size may also reduce the impact or 

influence of the very large inter-individual variation seen particularly with the rate of 

emptying of glucose alone but also the other glucose containing solutions. This inter-

individual variation may be a result of gastrointestinal adaptation to differing amounts of 

glucose in the diet or genetics, which will be investigated further.   

A third possibility involves a very small doubt in the reliability of the breath test 

data. During data and sample collection from laboratory trials, an unforeseen complication 

with the breath sample analyser meant that breath samples were stored for a much longer 

period of time than anticipated before analysis. This led to very low concentrations of total 

CO2 in the samples at the time of analysis. However, a small investigation (Appendix 2) 

on the effect of sample storage time length and decreased CO2 concentration on the 

reproducibility and reliability of analysis revealed that the results of the current study can 

be accepted with a high degree of accuracy and certainty.  

 As expected, water, a non-nutrient liquid with the lowest osmolality, was observed 

to empty more quickly than any of the carbohydrate solutions. With the four carbohydrate 

solutions, fructose emptied arithmetically the fastest, followed by combined, then sucrose 

and lastly glucose. These results support the fructose, glucose and sucrose results reported 

by Elias et al. (1968) and Horowitz et al. (1996), and the combined glucose and fructose, 

and glucose results of Jeukendrup & Moseley (2010). The variation between the four 

carbohydrate solutions, however, cannot be attributed to the common variables such as 

volume, osmolality, and energy content. All ingested solutions were of identical volume 

and energy content, whilst FRU, GLU+FRU and GLU also all had the same osmolality. 

Sucrose, due to its disaccharide form has a lower osmolality, yet it did not have the second 

fastest T½ emptying rate after water. This is consistent with the fact that the effect of 
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osmolality is less marked at lower concentrations of carbohydrate (Vist & Maughan, 1995). 

Sucrose did however have the lowest Tlag of all solutions, indicating an initial quick 

emptying rate before a slowing of emptying following intestinal sensing of its constituent 

monosaccharides after hydrolysis by sucrase located bound to the brush border of the 

intestinal mucosa (Miller & Crane, 1961). 

 This slowing of emptying is supported by GLP-1 hormone response to sucrose. The 

highest peak concentration observed was in response to SUC ingestion at approximately 

20 min. Breath DOB data for sucrose shows a gradual decline in emptying from 

approximately 20 min. This provides evidence for the ‘ileal brake’ effect of GLP-1 also 

shown by Kong et al. (1999) and in conjunction with the different rates of emptying 

observed with different carbohydrate solutions indicates a sensing mechanism more 

interactive than purely osmoreceptors and energy nutrient sensors in the gastrointestinal 

tract.  

 The ingestion of fructose alone and the presence of fructose with glucose 

accelerated the emptying rate of a solution. As all four carbohydrates produced similar 

ghrelin suppression responses, it is unlikely that this increased rate of emptying with 

fructose was due to this orexigenic hormone. There were significant and marked 

differences between carbohydrates with GIP and GLP-1 response, respectively however. 

Fructose induced a GIP response significantly lower than the other carbohydrate solutions, 

which is comparable to the effects of water. On the other hand, whilst total GLP-1 response 

was not significantly lower for FRU compared to the other carbohydrates as might have 

been expected based on previous literature (Kong et al., 1999), noticeable differences in 

the pattern of response can be observed and may account for the accelerated emptying of 

FRU. Peak GLP-1 response for FRU was lower and occurred later in the trial at 

approximately 30 min compared to the other trials. Thus, a delay in the rise of GLP-1 and 

a reduced response would result in a less pronounced and delayed ‘ileal brake’ effect.  

 The ingestion of GLU and the ingestion of FRU resulted in respective increases in 

blood glucose concentration and blood fructose concentration in a dose-dependent manner. 

The blood glucose response to different carbohydrates was mirrored by both insulin and 

GIP responses. Interestingly, the pattern of response for GLP-1 did not also follow. In 

contrast to a widely held thought that GLP-1 plays a more potent role in glucose stimulated 

insulin release, the results of this study suggest a predominant role of the incretin GIP 

instead. 

Serum lactate production significantly increased as a result of acute fructose 

ingestion and was significantly greater than the increase seen with glucose ingestion. This 
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increase occurred even with a relatively small amount of fructose of 18g within the SUC 

and GLU+FRU trials. Interestingly, SUC and GLU+FRU had a slightly greater and similar 

AUC, respectively, than FRU alone despite containing half of the amount of fructose in 

comparison. This is likely due to the different fates of fructose upon its metabolism. The 

presence of glucose in the ingested solutions may have led to preferential oxidation of 

glucose within the Krebs cycle as well as conversion to glycogen and thus limiting this 

pathway for fructose oxidation and resulting in greater lactate production. It is unlikely that 

this was due to reduced insulin action which is reported to result in less pyruvate entering 

the mitochondria for oxidation and thus cause a corresponding increase of anaerobic 

metabolism to lactate (Mueller, Stanhope, Gregoire, Evans & Havel, 2000) as insulin 

secretion following both sucrose and combined trials were pronounced in comparison to 

fructose. Another possible theory is related to the fact that fructose absorption is augmented 

when ingested with glucose (Truswell, Seach & Thorburn, 1988). However, it is unlikely 

that the observed results were due to greater or more efficient absorption of fructose when 

co-ingested with glucose, as serum fructose concentration was much greater following 

single 36 g fructose ingestion compared to the dual fructose-glucose solutions.  

 Triglyceride concentration was unchanged and was not significantly different 

between trials suggesting the acute ingestion of simple sugars in typical amounts does not 

result in immediate increased rates of de novo lipogenesis. It may be however that the 60 

min sampling period was not long enough to detect any changes as triglyceride 

concentrations have been shown to be significantly elevated 2-3 hours after fructose 

ingestion (El-Sayed, MacLaren & Rattu, 1997; Bohannon, Karam & Forsham, 1980). In 

addition, whilst statistically significant decreases in NEFA concentration for W, GLU and 

GLU+FRU trials were observed, no differences in NEFA nor D-3-hydroxybutyrate 

concentration suppression was seen between carbohydrate trials indicating the ingestion of 

the different sugars resulted in similar reductions in lipolysis and NEFA metabolism. This 

is consistent with the studies by Ngo Sock et al. (2010), Teff et al. (2009) and Teff et al. 

(2004). For the trials involving glucose ingestion this is consistent with the elevation and 

action of insulin. However, this is unlikely to be the mechanism for reduced NEFA 

concentrations following fructose ingestion as insulin secretion is relatively unchanged. 

The mechanism in relation to this therefore seems unclear. Lastly, ingestion of single 

boluses of simple sugars in typical amounts had no effect on hepatic function, which 

suggests the deleterious effects of sugar consumption on hepatic function seen by Chiu et 

al. (2014) may not be due to additive effects of repeated single ingestions. 
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 In conclusion, the results of this study did not show a statistically significant effect 

of carbohydrate type on gastric emptying rate apart from a significantly higher Tlag for GLU 

compared to SUC. Variation in emptying rates between the carbohydrates can be seen, 

however. No effect of carbohydrate type was also seen for hunger and appetite perceptions. 

The different carbohydrate types induced marked and significantly different hormone 

responses, however. Differences in the pattern of response of GLP-1 may be responsible 

for the observed variation in gastric emptying rate whilst differences in the pattern of 

response of GIP appears to have a greater incretin role. Ingestion of a single acute simple 

sugar solution containing typical amounts of sugar does not result in significantly increased 

triglyceride synthesis nor decreased hepatic function over the postprandial period 

investigated. Furthermore, no differences between sugars in these smaller quantities 

utilised were seen for lipolysis and NEFA metabolism suppression but fructose ingestion 

results in significantly increased lactate production which is augmented with glucose co-

ingestion.     
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4. THE EFFECT OF SHORT-TERM 

DIETARY SUPPLEMENTATION 

WITH FRUCTOSE ON GASTRIC 

EMPTYING OF GLUCOSE AND 

FRUCTOSE2 

 

 

 

 

 

 

                                                 

 

2 The data from this study contained within this chapter has been accepted for publication in “Yau, A.M.W., 

McLaughlin, J., Maughan, R.J., Gilmore, W., & Evans, G.H. (In Press). Short-term dietary supplementation 

with fructose accelerates gastric emptying of a fructose but not a glucose solution. Nutrition, 

http://dx.doi.org/10.1016/j.nut.2014.03.023”. A copy of the accepted manuscript can be found at the back of 

this thesis. Some preliminary data from a number of participants was also presented as a poster 

communication and the abstract published in “Yau, A., McLaughlin, J., Maughan, R.J., Gilmore, W. & 

Evans, G.H. (2012). The effect of short-term dietary supplementation of fructose on gastric emptying of 

glucose and fructose. Proceedings of the Nutrition Society, 71 (OCE2), E133.” 
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4.1. INTRODUCTION 

A small compilation of research indicates that gastric emptying in humans may be 

influenced by patterns of previous dietary nutrient intake. Furthermore, there is evidence 

to suggest that these adaptive changes are macronutrient-specific specific (Castiglione et 

al., 2002; Cunningham, Horowitz & Read, 1991) and rapid, with adaptations occurring in 

as little as three days (Clegg, McKenna, McClean, Davison, Trinick, Duly et al., 2011; 

Cunningham et al., 1991). A high fat diet for 14 d has been shown to accelerate gastric 

emptying of a high fat test meal (Cunningham, Daly, Horowitz & Read, 1991) but not a 

high-carbohydrate meal (Castiglione et al., 2002). More recently, this adaptive response of 

the gastrointestinal system to the ingestion of a high-fat meal has been reported to occur 

following only 3 d of high fat diet (Clegg et al., 2011). Similarly, short-term dietary 

supplementation with 400 g glucose per day for 3 d in healthy subjects has been shown to 

accelerate gastric emptying of hyperosmotic glucose solutions, but not a protein solution 

(Cunningham et al., 1991). The specificity of these effects of a high-glucose diet has not 

been extended to different monosaccharides, however. The emptying of a hyperosmotic 

fructose solution was equally accelerated following short-term supplementation with 

glucose solutions (Horowitz et al., 1996). Whether these effects are replicated in response 

to short-term dietary supplementation with fructose is unknown. The aim of this study was 

to investigate the effect of 3 d dietary fructose supplementation on the rate of gastric 

emptying of glucose and the rate of gastric emptying of fructose solutions as well as the 

accompanying subjective feelings of appetite. 

 

4.2. METHODS 

4.2.1. Participants 

Ten healthy men completed this study (mean ± SD, age 27 ± 6 years, height 179.9 ± 9.2 

cm, BM 81 ± 11 kg, BMI 25 ± 3 kg.m-2, and estimated body fat percentage 21 ± 8%). 

Written informed consent was obtained from all participants. 

 

4.2.2. Experimental trials 

Participants reported to the laboratory on four occasions to complete four experimental 

trials; fructose with supplementation (FS), fructose with water control (FC), glucose with 

supplementation (GS) and glucose with water control (GC). Experimental trials were 

conducted in a single-blind, randomised crossover fashion and each separated by a 

minimum period of 7 d. In addition to the pre-trial conditions outlined in general methods, 

each experimental trial was preceded by a 3 d dietary and activity maintenance period 
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where participants were asked to record their diet and activity in their first trial and then 

replicate them in the remaining three trials. The purpose of this was to ensure 

standardisation and consistency of macronutrient intake and metabolic status leading up to 

each trial within participants. In addition to their normal dietary intake, participants were 

asked to consume either four 500 mL bottles of water or four 500 mL solutions each 

containing 30 g fructose per day over the 3 d. Participants were instructed to consume these 

drinks evenly throughout the day in between meals.   

Upon arrival at the laboratory, participants were asked to completely empty their 

bladder into a container from which a 5 mL urine sample was retained for later analysis of 

osmolality. Body mass was subsequently recorded. Participants then ingested 595 mL of a 

fructose solution (36 g dissolved in water to a volume of 600 mL) or an equicaloric glucose 

monohydrate solution (39.6 g dissolved in water to a volume of 600 mL). Both glucose and 

fructose were purchased from MyProtein (www.myprotein.com) and water purchased from 

a local supermarket (Evian, Danone Ltd, France). Participants were given a maximum of 2 

min to consume the test solution and instructed to consume it as quickly as they were able 

to. Test drink solutions were freshly prepared on the morning of the test and were given at 

room temperature. A 5 mL sample of the drink was retained for later analysis of osmolality. 

Participants remained seated throughout the drink ingestion and 60 min sampling 

procedure. Gastric emptying rate and appetite was assessed for the 60 min duration of the 

study as described in general methods. Following all sample collections at 60 min, 

participants were asked again to completely empty their bladder into a container and a 5 

mL urine sample was again retained for later analysis. 

 

4.2.3. Statistical analysis 

Differences in pre-ingestion BM, pre-ingestion urine osmolality and drink osmolality were 

examined using one-way repeated ANOVA. Two-way repeated ANOVA were used to 

examine differences in gastric emptying DOB values, and subjective appetite VAS scores. 

Sphericity for repeated measures was assessed, and where appropriate, Greenhouse-

Geisser corrections were applied for epsilon < 0.75, and the Huynh-Feldt correction 

adopted for less severe asphericity. Significant F-tests were followed by repeated one-way 

ANOVA and bonferroni adjusted pairwise comparisons as appropriate. Gastric emptying 

T½ and Tlag data were examined with paired Student’s t-Tests to test the hypothesis of 

interest (i.e. effect of supplementation on gastric emptying rate of fructose and of glucose). 

Paired Student’s t-tests were also used to directly compare gastric emptying T½ and Tlag of 

fructose and glucose control and supplementation trials. All data were analysed using SPSS 
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Statistics for Windows version 19 (IBM, New York, US). Statistical significance was 

accepted at the 5% level and results presented as means and standard deviations. 

 

4.3. RESULTS 

4.3.1. Body mass, hydration status and drink osmolality 

Body mass remained stable over the duration of the study (Table 3). Furthermore, the 

constancy of pre-ingestion urine osmolality indicated that hydration status prior to each 

experimental trial was also consistent (Table 3). Drink osmolalities were 368 ± 3, 368 ± 3, 

370 ± 4 and 369 ± 3 mOsmol.kg-1 (P = 0.490) for FC, FS, GC and GS, respectively.  

 

Table 3. Pre-trial body mass and hydration marker (n 10). 

 Fructose  Glucose  

P-value  Control Supplement Control Supplement 

Body mass (kg) 80.91 ± 11.48 81.23 ± 11.53 81.80 ± 11.70 81.03 ± 11.38 0.589 

Urine osmolality 

(mOsmol/kg) 

423 ± 259 489 ± 265  425 ± 230 452 ± 270 0.613 

 

4.3.2. Gastric emptying 

Gastric emptying T½ for fructose was accelerated after the period of dietary 

supplementation with fructose than when the control water was consumed (FC, 58 ± 14 

min vs. FS, 48 ± 6 min; P = 0.037). In contrast, gastric emptying T½ for glucose did not 

change with fructose supplementation (GC, 78 ± 27 min vs. GS, 85 ± 31 min; P = 0.273). 

The same pattern was also observed for Tlag. Dietary fructose supplementation accelerated 

fructose Tlag (FC, 38 ± 9 min vs. FS, 33 ± 6 min; P = 0.042) whilst glucose Tlag remained 

unchanged (GC, 44 ± 14 min vs. GS, 45 ± 14 min; P = 0.757). Breath DOB values for 

fructose (Figure 16) revealed no main effect of trial (P = 0.441), a significant main effect 

of time (P < 0.001) and an interaction effect tending to significance (P = 0.088). Breath 

DOB for glucose (Figure 17) showed no main effect of trial (P = 0.868), a significant main 

effect of time (P < 0.001) and no interaction effect (P = 0.680). Direct comparison between 

FC and GC emptying revealed fructose T½ was significantly shorter than glucose (P = 

0.039). No difference in Tlag was seen, however (P = 0.242). Direct comparison between 

FS and GS revealed fructose T½ (P = 0.007) and Tlag (P = 0.033) were significantly shorter 

than that of glucose. 
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4.3.3. Appetite ratings 

Hunger ratings for fructose trials remained relatively constant from baseline and over the 

60 min duration after drink ingestion. No main effect of supplementation (P = 0.820), time 

(P = 0.160) or interaction (P = 0.364) was present. Ingestion of a glucose solution, on the 

other hand, resulted in a slight suppression of hunger within 10 min before a steady rise 

back to baseline values within 60 min. No statistically significant main effect of 

supplementation (P = 0.861), time (P = 0.07) or interaction effect (P = 0.562) were 

identified (Figure 18).   

Ingestion of a fructose solution did not affect ratings of fullness over the 60 min 

(FC, P = 0.130; FS, P = 0.137).  Prior fructose supplementation also did not affect ratings 

of fullness when compared with its control as no main effect of supplementation (P = 

0.135) and no interaction effect (P = 0.706) were found. Ratings of fullness following 

glucose ingestion were also not different between control and supplementation trials. No 

main effect of supplementation (P = 0.575) or interaction (P = 0.285) was present, though 

a biphasic increase then decrease in fullness following glucose ingestion with prior 

supplementation was observed compared to the single increase then decrease seen with no 

supplementation (Figure 19). A significant main effect of time was indicated (P = 0.004), 

though post-hoc analysis did not identify the location. 

 Prospective food consumption decreased slightly within 10 min of ingestion of a 

fructose solution. For the control trial, this steadily increased back to pre-ingestion value 

within 60 min. For the supplementation trial, an increase above pre-ingestion values was 

seen at 50 and 60 min. A main effect of time (P = 0.011), but no significant effects of trial 

(P = 0.344) or interaction (P = 0.205), was found. Significant differences between ratings 

over time were not located with post-hoc analysis. A similar decrease followed by a gradual 

increase back to baseline scores was also seen for the ingestion of glucose for both control 

and supplementation conditions. Again, no effect of trial (P = 0.898) nor interaction (P = 

0.142) was shown, but there was an effect of time (P = 0.048).  
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Figure 16. Gastric emptying breath delta over baseline (DOB) for 60 min following 595 

mL 6% fructose solution ingestion. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10). 

 

 

Figure 17. Gastric emptying breath delta over baseline (DOB) for 60 min following 595 

mL 6% glucose solution ingestion. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10). 
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Figure 18. Subjective feeling of hunger assessed by 100-mm visual analogue scale (VAS) 

for 60 min following ingestion of 595 mL of a 6% fructose solution. Treatments were 

control without fructose supplementation and with 3 d supplementation of 120 g of fructose 

per day. Values are means ± SD (n 10). 

 

 

Figure 19. Subjective feeling of fullness assessed by 100-mm visual analogue scale (VAS) 

for 60 min following ingestion of 595 mL of a 6% glucose solution. Treatments were 

control without fructose supplementation and with 3 d supplementation of 120 g of fructose 

per day. Values are means ± SD (n 10). 
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4.4. DISCUSSION 

The results of this study show that a 3-d period of dietary supplementation with 120 g 

fructose consumed throughout the day results in an acceleration of gastric emptying of a 

fructose solution but not of a glucose solution. This study thus shows a monosaccharide-

specific adaptation to increased fructose in the diet in contrast to the glucose 

supplementation results of Horowitz et al. (1996). Furthermore, the results of this present 

study demonstrate an adaptation of gastric emptying rate to a much smaller amount of 

additional carbohydrate consumption than that utilised in previous studies, and highlight 

the pertinent potential negative effects of an increase in dietary fructose consumption. An 

amount of 30 g of fructose is on average less than the amount that would be found in a 

typical 500 mL serving of commercially-available soft drinks which contain 11.0-12.5% 

high fructose corn syrup (55% fructose) in some countries such as the US. The fructose 

content in the majority of these soft drinks thus range from a little over 30 g to 34 g. 

Although the dose of fructose ingested in this study (120g/day) is four times the amount of 

this typical single serving, data shows that it is not an unrealistic amount. Estimated daily 

mean, 90th and 95th percentile fructose intakes from NHANES data are reported 

respectively as 63 g, 103 g and 118 g for males aged 23-50 y and 75 g, 117 g and 134 g for 

males aged 19-22 y (Marriott, Cole & Lee, 2009). 

The increased rate of gastric emptying following fructose supplementation is highly 

indicative of a short-term reduction in gastric emptying inhibition resulting from small 

intestinal feedback. This may have been due to several possible adaptations. One possible 

mechanism is a decreased sensitivity to fructose by specific receptors in the small intestine. 

However, the existence of fructose-selective receptors has not been reported and is perhaps 

rather unlikely. Another possible mechanism is an enhanced absorption capacity of the 

small intestine for fructose, resulting in decreased intestinal exposure time and length, may 

have occurred. The length of intestine exposed to nutrients has been shown to be an 

important determinant of the extent of feedback inhibition of gastric emptying (Lin, Doty, 

Reedy & Meyer, 1990; 1989). Alternatively, and/or in combination with this, the adaptation 

of enhanced absorption leading to augmented transporter activation may be responsible. 

This latter explanation seems more plausible in the light of the current study’s 

monosaccharide-specific results due to the different transport pathways of fructose and 

glucose. Glucose is actively transported across the brush border membrane of the intestine 

by sodium-dependent glucose transporter 1 (SGLT1) and across the basolateral membrane 

by the GLUT2 hexose transporter (Levin, 1994). Fructose, however, is absorbed through 

facilitated transport by a sodium-independent transport system, believed to primarily be 
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the GLUT5 transporter, and across the basolateral membrane also by GLUT2 (Jones, Butler 

& Brooks, 2011; Levin, 1994). The different yet inter-related monosaccharide effects of 

the present study and that of Horowitz et al. (1996) are consistent with an upregulation of 

GLUT5 activity in response to dietary fructose supplementation and an upregulation of 

both glucose and fructose transport pathways (possibly involving GLUT2) following 

increased dietary glucose exposure. In any case, as nutrient transporters appear to have a 

role in nutrient sensing and gut hormone secretion (Raybould, 2008; Gribble, Williams, 

Simpson & Reimann, 2003), this may have led to changes in either the secretion of or 

sensitivity to gut hormones such as GLP-1 or ghrelin, both of which are known to affect 

the rate of gastric emptying. Previous work investigating the effect of acute ingestion of 

fructose on gastrointestinal response is limited and with specific regards to GLP-1 and 

ghrelin is conflicting. Some have reported fructose to stimulate GLP-1 (Kong et al., 1999), 

insulin (Bowen et al., 2007; Teff et al., 2004; Kong et al., 1999), and leptin (Teff et al., 

2004) secretion, and suppress ghrelin (Teff et al., 2004) to a lesser degree than comparable 

amounts of glucose. Others, including the data presented in chapter 3 of this thesis, have 

seen similar GLP-1 and ghrelin responses (Bowen et al., 2007). No data is currently 

available on repeated ingestion or the effects of short-term increases or habitually high 

intakes of fructose in humans. Further work investigating whether any changes in gut 

hormone responses occur with fructose supplementation is required to elucidate the 

mechanism of gastrointestinal adaptation observed in this present study. 

 The ingestion of a single bolus of fructose results in markedly lower plasma glucose 

and insulin responses compared to the response following an isoenergetic amount of 

glucose or sucrose (Kong et al., 1999; Horowitz et al., 1996; Bohannon et al., 1980; Crapo, 

Kolterman & Olefsky, 1980). Whilst this may be beneficial in the short-term postprandial 

maintenance and control of blood glucose levels in diabetics, this also has negative appetite 

regulation and metabolic consequences irrespective of insulin status. Decreased insulin 

secretion and production results in decreased circulating levels of leptin, the long term 

regulator of food intake, and reduced suppression of the orexigenic hormone ghrelin (Teff 

et al., 2004). Glucagon suppression is also significantly lower following fructose ingestion 

leading to greater glycogenolysis and lipolysis and increased plasma triglyceride 

concentrations (Bohannon et al., 1980). Furthermore, the complete metabolism of fructose 

in hepatocytes results in an unregulated source of substrates for augmented de novo 

lipogenesis (Stanhope et al., 2009; Elliott et al., 2002) and also increased uric acid 

concentration (Johnson et al., 2007). Accelerated gastric emptying of fructose would 

therefore lead to more rapid rises in plasma fructose and may result in both larger and 
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earlier peaks of plasma triglycerides and uric acid, both of which are strong independent 

contributors to the development of diabetes, cardiovascular disease, and obesity (Johnson 

et al., 2007; Elliott et al., 2002). 

 Although no significant changes to appetite ratings were observed in this present 

study, this is likely due to the fact that ingestion of liquids generally provides a smaller 

satiation effect than does ingestion of isoenergetic solids (Martens & Westerterp-

Plantenga, 2012; Pan & Hu, 2011). The effect of increased fructose ingestion on 

gastrointestinal adaptation and appetite should also be investigated in solid foods. 

 In conclusion, the results of present study reveal that three consecutive days of 

dietary supplementation with 120 g fructose per day accelerates gastric emptying of a 

fructose solution but not of a glucose solution. These monosaccharide-specific results are 

in contrast to previous research with glucose supplementation, and indicate a potential 

deleterious adaptation by which repeated dietary fructose loads may contribute to the 

development of obesity and the metabolic syndrome. The mechanisms and implications of 

this observed gastrointestinal adaptation to increased dietary fructose should be further 

investigated. 
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5. THE EFFECT OF SHORT-TERM 

DIETARY SUPPLEMENTATION 

WITH FRUCTOSE ON GASTRIC 

EMPTYING OF GLUCOSE AND 

FRUCTOSE AND ASSOCIATED 

GUT HORMONE AND 

TRIGLYCERIDE RESPONSES3 

 

 

 

 

 

 

                                                 

 

3 Some of the data from this study contained within this chapter was presented as a poster communication 

and the abstract published in “Yau, A., McLaughlin, J., Maughan, R.J., Gilmore, W. & Evans, G.H. (2014). 

The effect of short-term dietary supplementation with fructose on gastric emptying of glucose and fructose 

and associated gut hormone responses. International Journal of Sport Nutrition and Exercise Metabolism, 

24, S5.”  
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5.1. INTRODUCTION 

It was previously shown in Chapter 4 that 3 d of dietary supplementation with fructose 

results in a monosaccharide specific acceleration of gastric emptying rate. As discussed, 

one potential mechanism for this adaptation is a change in gut hormone response. 

Furthermore, alterations in the secretion of gut hormones may have important implications 

in the regulation of energy intake as well as gastrointestinal function (Little et al., 2007).  

A small number of previous studies that have investigated the effects of previous dietary 

intake on gut hormone responses have shown changes in the secretion of gut hormones 

such as CCK, GLP-1, PYY and ghrelin. The majority of the work to date has been 

conducted on the effects of a high fat diet, however, and few have simultaneously measured 

gastric emptying rate.  

Following the observations by Cunningham et al. (1991) where emptying rate of a 

fatty meal was accelerated as a result of a high fat diet for two weeks, investigations on 

CCK responses were conducted. Studies by French, Murray, Rumsey, Fadzlin & Read 

(1995) and Spannagel, Nakano, Tawil, Chey, Liddle & Green (1996) in humans and rats, 

respectively, were the earliest of investigations to report an increase in postprandial CCK 

concentration following a high-fat diet. Gastric emptying was not assessed in this study, 

however, and though a discrepancy exists in the effects of a high fat diet on gastric 

emptying rate, other data suggests that moderations of gut hormone response following a 

high fat diet is associated and may be consistent with the observed adaptations in gastric 

emptying rate. Notably, eight weeks of a high fat diet in rats resulted in slower gastric 

emptying which was associated with lower plasma ghrelin concentration and higher CCK 

and leptin responses (Li, Ma & Wang, 2011). Fasting levels of CCK have also been shown 

to be altered in humans following a high fat diet. Increased fasting levels of CCK but not 

PYY nor ghrelin has been reported to result after 21 d of a high fat diet compared with an 

isoenergetic low fat diet (Little, Feltrin, Horowitz, Meyer, Wishart, Chapman et al., 2008). 

The effect of a high fat diet has also been shown by others to suppress ghrelin response to 

a greater extent in rats (Beck, Musse & Stricker-Krongrad, 2002; Lee, Wang, Englander, 

Kojima & Greeley, 2002) and humans (Robertson, Henderson, Vist & Rumsey, 2004), 

reduce fasting and postprandial PYY concentrations in mice (le Roux et al. 2006), and 

increase fasting levels and postprandial GLP-1 secretion in dogs (van Citters, Kabir, Kim, 

Mittelman, Dea, Brubaker et al., 2002) but not humans (Boyd, O’Donovan, Doran, 

Wishart, Chapman, Horowitz et al., 2003). Acceleration of gastric emptying of a protein 

containing meal following a high protein diet for two weeks has also been shown to result 
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in significantly lower postprandial CCK in rats compared to those fed a low or medium 

protein diet (Shi , Leray, Scarpignato, Bentouimou, desVarannes, Cherbut et al., 1997).  

With regards to increased dietary intake of carbohydrates and moderation of gut 

hormone responses, very few studies are currently present in the literature. Of those 

available, high glucose intake for 4-7 d resulted in accelerated gastric emptying of glucose 

and fructose but differential gut hormones responses (Horowitz et al., 1996). Greater GIP 

responses were observed following the glucose supplemented diet for both carbohydrates. 

However, insulin response was greater in the glucose load but unchanged in the fructose 

load in the glucose supplemented trials (Horowitz et al., 1996). Furthermore, glycaemic 

response was lower for a glucose load but not a fructose load following glucose 

supplementation (Horowitz et al., 1996). The only two studies to our knowledge that have 

investigated the effects of increased fructose consumption on gut hormones showed that 

two weeks of a high fructose diet in rats increased fasting ghrelin levels by 40% (Lindqvist 

et al., 2008), and four weeks of a high fructose diet in healthy men increased fasting leptin 

concentrations within the first week (Le et al., 2006). The effect of increased fructose 

consumption on moderations of postprandial gut hormone responses in relation to 

adaptations of gastric emptying rate is therefore unknown.  

In addition, chapter 3 showed little differential effects on hepatic metabolism and 

function besides lactate production following the acute ingestion of different simple sugars 

in amounts reflective of a typical serving. As previously mentioned, increased fructose 

ingestion for 1 d to 6 weeks has been shown to result in increased fasting and postprandial 

plasma triglyceride concentrations when compared to glucose ingestion (Stanhope et al., 

2011; Ngo Sock et al., 2010; Stanhope et al., 2009; Teff et al., 2009; Stanhope et al., 2008; 

Teff et al., 2004; Bantle et al., 2000). The effect of a relatively shorter period of increased 

fructose intake is unknown. Therefore, the aim of this study was to investigate the 

associated gut hormone responses and hepatic lipogenesis effects of a short-term increase 

in dietary fructose ingestion.  

 

5.2. METHODS 

5.2.1. Participants 

Ten healthy men completed this study (mean ± SD, age 26 ± 7 y, height 179.0 ± 6.3 cm, 

BM 81 ± 11 kg, BMI 25 ± 3 kg.m-2, and estimated body fat percentage 23 ± 8%).  
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5.2.2. Experimental trials 

As with the study in chapter 4, participants reported to the laboratory on four occasions to 

complete four experimental trials; fructose with supplementation (FS), fructose with water 

control (FC), glucose with supplementation (GS) and glucose with water control (GC). 

Experimental trials were separated by a minimum period of 7 d. In addition to the pre-trial 

conditions outlined in general methods, each experimental trial was preceded by a 3 d 

dietary and activity maintenance period where participants were asked to record their diet 

and activity in their first trial and then replicate them in the remaining three trials. In 

addition to their normal dietary intake, participants were asked to consume either four 500 

mL bottles of water or four 500 mL solutions each containing 30 g fructose per day over 

the 3 d. Participants were instructed to consume these drinks evenly throughout the day in 

between meals.   

Upon arrival at the laboratory, participants were asked to completely empty their 

bladder into a container from which a 5 mL urine sample was retained for later analysis of 

osmolality. Body mass was subsequently recorded. Following this either a 21 gauge or 22 

gauge intravenous cannula (Venflon; Becton Dickinson, Plymouth, UK) was inserted into 

an antecubital vein and a catheter extension (Vygon, Ecouen, France) attached. A baseline 

blood sample was then obtained using the procedure outlined in general methods. 

Participants then ingested 595 mL of a fructose solution (36 g dissolved in water to a 

volume of 600 mL) or an equicaloric glucose monohydrate solution (39.6 g dissolved in 

water to a volume of 600 mL). Both glucose and fructose were purchased from MyProtein 

(www.myprotein.com) and water was purchased from a local supermarket (Evian, Danone 

Ltd, France). Participants were given a maximum of 2 min to consume the test solution and 

instructed to consume it as quickly as they were able to. Drink solutions were prepared 

fresh in the morning prior to the trial and given at room temperature and a 5 mL sample of 

the drink was retained for later analysis of osmolality. Participants remained seated 

throughout the drink ingestion and 60 min sampling procedure. Further blood samples were 

obtained at 10, 20, 30, 45 and 60 min post-drink ingestion and gastric emptying rate and 

appetite was assessed for the duration of study as described in general methods. Following 

all sample collections at 60 min, the cannula was removed and participants were asked 

again to completely empty their bladder into a container and a 5 mL urine sample was again 

retained for later analysis. 

 



77 

 

5.2.3. Biochemical analysis 

In addition to the blood sample analysis described in general methods, the adipokine leptin 

was also determined using the human gut hormone multiplex assay (Milliplex MAP, Merck 

Millipore Ltd, UK). Gut hormone analysis was performed in duplicate for 88% of the 

samples. Intra-assay CVs for ghrelin, GIP, GLP-1, insulin and leptin were 5.0%, 4.8%, 

17.6%, 4.4% and 3.7%, respectively. Inter-assay CVs for ghrelin, GIP, GLP-1, insulin and 

leptin were 16.6%, 13.2%, 14.0%, 7.5% and 7.1%, respectively. Glucose, lactate and 

triglyceride analysis was performed in duplicate for all samples. Intra-assay CVs were 

1.3%, 1.4% and 1.5%, respectively. Intra-assay CV for fructose analysis with 26 samples 

analysed in duplicate was 5.1%. 

 

5.2.4. Statistical analysis 

Differences in pre-ingestion BM, pre-ingestion urine osmolality, drink osmolality, and gut 

hormone concentration AUC were examined using one-way repeated ANOVA. Significant 

F-tests were followed by Bonferroni adjusted pairwise comparisons. Two-way repeated 

ANOVA were used to examine differences in gastric emptying DOB values, urine 

osmolality, serum osmolality, blood glucose and fructose concentrations, gut hormone 

concentrations, and subjective appetite VAS scores. Significant F-tests were followed with 

the appropriate paired Student’s t-Tests or one-way repeated ANOVA and Bonferroni 

adjusted pairwise comparisons. Sphericity for repeated measures was assessed, and where 

appropriate, Greenhouse-Geisser corrections were applied for epsilon < 0.75, and the 

Huynh-Feldt correction adopted for less severe asphericity. Gastric emptying T½ and Tlag 

data were examined with paired Student’s t-Tests to test the hypothesis of interest (i.e. 

effect of supplementation on gastric emptying rate of fructose and of glucose). Paired 

Student’s t-tests were also used to directly compare gastric emptying T½ and Tlag of fructose 

and glucose control and supplementation trials. All data were analysed using SPSS 

Statistics for Windows version 19 (IBM, New York, US). Statistical significance was 

accepted at the 5% level and results presented as means and SD. 

 

5.3. RESULTS 

5.3.1. Body mass, hydration status and drink osmolality 

Body mass remained stable over the duration of the study (Table 4). Pre-ingestion urine 

osmolality were generally lower in each respective supplement trial but differences over 

the course of the study did not reach statistical significance (Table 4). Drink osmolalities 

were 368 ± 3, 367 ± 4, 371 ± 3 and 370 ± 4 mOsmol/kg (P = 0.010) for FC, FS, GC and 
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GS, respectively. No significantly different pairwise comparisons were located following 

the significant F-test. 

 

Table 4. Pre-trial body mass and hydration marker (n 10). 

 Fructose  Glucose  

P-value  Control Supplement Control Supplement 

Body mass (kg) 80.87 ± 11.15 81.13 ± 11.04 81.48 ± 11.46 80.95 ± 10.80 0.338 

Urine osmolality 

(mOsmol/kg) 

560 ± 262 397 ± 271  504 ± 266 356 ± 193 0.067 

 

 

5.3.2. Gastric emptying 

Gastric emptying T½ for fructose was accelerated after the period of dietary 

supplementation with fructose than when the control water was consumed (FC, 59 ± 13 

min vs. FS, 51 ± 10 min; P = 0.004). In contrast, gastric emptying T½ for glucose did not 

significantly change with fructose supplementation (GC, 75 ± 18 min vs. GS, 68 ± 16 min; 

P = 0.245). The same pattern was also observed for Tlag. Dietary fructose supplementation 

accelerated fructose Tlag (FC, 37 ± 3 min vs. FS, 32 ± 7 min; P = 0.026) whilst glucose Tlag 

remained unchanged (GC, 38 ± 7 min vs. GS, 40 ± 7 min; P = 0.679). Breath DOB values 

for fructose (Figure 20) revealed no main effect of trial (P = 0.912), a significant main 

effect of time (P < 0.001) and no interaction effect (P = 0.376). Breath DOB for glucose 

(Figure 21) showed no main effect of trial (P = 0.537), a significant main effect of time (P 

< 0.001) and no interaction effect (P = 0.282). Direct comparison between FC and GC 

revealed a trend of a shorter gastric emptying T½ for fructose (P = 0.088). Tlag was not 

different, however (P = 0.696). Direct comparison between FS and GS revealed fructose 

T½ (P = 0.016) and Tlag (P = 0.035) were significantly shorter than glucose.  
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Figure 20. Gastric emptying breath delta over baseline (DOB) for 60 min following 595 

mL 6% fructose solution ingestion. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10). 

 

 

Figure 21. Gastric emptying breath delta over baseline (DOB) for 60 min following 595 

mL 6% glucose solution ingestion. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10). 
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5.3.3. Gut hormones 

5.3.3.1. Ghrelin 

Baseline ghrelin concentrations were not different between all four trials (FC, 156.65 ± 

77.25 pg/mL; FS, 174.64 ± 82.47 pg/mL; GC, 172.06 ± 68.19 pg/mL; GS 184.05 ± 71.00 

pg/mL;  P = 0.131) though there was a pattern for higher baseline levels following 

supplementation compared to each respective control trial. For fructose, this tended to 

significance (P = 0.089). Two way ANOVA revealed no main effect of trial (P = 0.261), 

a significant effect of time (P < 0.001) and an interaction effect (P = 0.018) for all four 

trials. Analysis of fructose ingestion (Figure 22a) revealed no main effect of 

supplementation (P = 0.264) but a significant effect of time (P < 0.001) and a trend of an 

interaction (P = 0.065). Post-hoc analysis revealed that ghrelin concentration significantly 

decreased between 10 min to 60 min in the control trial whilst the decrease in the 

supplement trial decreased from baseline values from 20 min post ingestion.  A trend of 

significantly lower ghrelin was also indicated for supplementation compared to control at 

45 min post ingestion (P = 0.063). Area under curve was not different (P = 0.800; Figure 

22b). Analysis of glucose ingestion (Figure 23a) revealed a trend of a supplementation 

effect (P = 0.080), a significant effect of time (P < 0.001) and no interaction effect (P = 

0.276). Post-hoc analysis showed ghrelin concentration significantly decreased from 

baseline levels at 20-60 min post ingestion in both trials and ghrelin concentration was 

significantly higher in the supplement trial compared to control at 10 min post ingestion (P 

= 0.019). Area under curve was not different (P = 0.288; Figure 23b). 

 

5.3.3.2. GIP 

Baseline GIP concentrations were not significantly different between all four trials (FC, 

10.78 ± 12.44 pg/mL; FS, 8.26 ± 4.13 pg/mL; GC, 9.31 ± 8.18 pg/mL; GS, 12.47 ± 15.20 

pg/mL; P = 0.545). Two way ANOVA for all four trials revealed a significant trial effect 

(P = 0.001), a significant main effect of time (P = 0.005) and a significant interaction effect 

(P < 0.001). Analysis for fructose ingestion (Figure 24a) showed no effect of 

supplementation (P = 0.760), time (P = 0.121) or interaction (P = 0.368). Area under curve 

was also not different (P = 0.964; Figure 24b). Analysis of glucose ingestion (Figure 25a) 

revealed a trend of a supplementation effect (P = 0.076), a significant effect of time (P < 

0.001) but no interaction effect (P = 0.707). GIP concentration for GC significantly 

increased from baseline values rapidly at 10 min then decreased from 20 min but remained 

significantly higher than baseline at 60 min. On the other hand, GIP concentration for GS 
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significantly increased from baseline at 30 min and remained higher than baseline at 60 

min but not significantly. Despite this, GIP concentration was significantly higher at 60 

min compared to control (P = 0.049). There was also a trend for greater AUC for 

supplement compared to control (P = 0.072; Figure 25b). Responses for both glucose 

ingestion trials were significantly greater than both fructose ingestion trials at all post 

ingestion time-points (P < 0.01). 
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Figure 22. Gut hormone ghrelin (A) Response over 60 min post ingestion of 595 mL 6% 

fructose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. *Significant 

decrease from 10 min for control trial (P < 0.05). #Significant decrease from baseline for 

supplement trial (P < 0.01). Values are mean ± SD (n 10). 
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Figure 23. Gut hormone ghrelin (A) Response over 60 min post ingestion of 595 mL 6% 

glucose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. *Significantly 

greater than control trial (P < 0.05). #Significant decrease from baseline for both trials (P 

< 0.05). Values are mean ± SD (n 10). 
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5.3.3.3. GLP-1 

Baseline GLP-1 concentrations were not significantly different between all four trials (FC, 

22.09 ± 29.52 pg/mL; FS, 23.81 ± 27.72 pg/mL; GC, 19.83 ± 23.10 pg/mL; GS, 23.68 ± 

22.59 pg/mL; P = 0.947). Two way ANOVA for all four trials revealed no main effect of 

trial (P = 0.881), a significant effect of time (P < 0.001) but no interaction effect (P = 

0.126). Analysis for fructose ingestion (Figure 26a) showed no main effect of 

supplementation (P = 0.685), a significant effect of time (P = 0.035) and no interaction 

effect (P = 0.392). Post-hoc analysis showed GLP-1 concentration increased significantly 

at 20 min from baseline values then decreased significantly at 60 min during the control 

trial. No difference in AUC was observed (P = 0.670; Figure 26b). Analysis for glucose 

ingestion (Figure 27a) showed no main effect of supplementation (P = 0.774), a significant 

effect of time (P < 0.001) but no interaction effect (P = 0.857). Post hoc analysis revealed 

GLP-1 concentration increased significantly from baseline at 20 min then decreased 

significantly in the control trial. GLP-1 in the supplement trial however, increased within 

the first 10 min post ingestion albeit insignificantly, but subsequently decreased 

significantly to below baseline levels. No difference in AUC was observed (P = 0.365; 

Figure 27b). 
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Figure 24. Gut hormone GIP (A) Response over 60 min post ingestion of 595 mL 6% 

fructose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10). 
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Figure 25. Gut hormone GIP (A) Response over 60 min post ingestion of 595 mL 6% 

glucose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. *Significant 

increase from baseline for control trial (P < 0.01). †Significant increase from baseline for 

supplement trial (P < 0.05). #Significant decrease from 20 min for both trials. ‡Supplement 

significantly higher than control (P < 0.05). Values are mean ± SD (n 10). 
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Figure 26. Gut hormone GLP-1 (A) Response over 60 min post ingestion of 595 mL 6% 

fructose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 days supplementation of 120 g fructose per day. *Significant 

increase from baseline for control trial (P < 0.05). #Significant decrease from 20 min for 

control trial (P < 0.05). Values are mean ± SD (n 10). 
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Figure 27. Gut hormone GLP-1 (A) Response over 60 min post ingestion of 595 mL 6% 

glucose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 days supplementation of 120 g fructose per day. *Significant 

increase from baseline for control trial (P < 0.01). †Significant decrease from 10 min for 

supplement trial (P < 0.05). #Significant decrease from 20 min for control trial (P < 0.01). 

Values are mean ± SD (n 10). 
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5.3.3.4. Insulin 

Baseline insulin concentrations were not different between all four trials (FC, 483.05 ± 

383.64 pg/mL; FS, 396.53 ± 93.16 pg/mL; GC, 396.20 ± 180.37 pg/mL; GS, 425.87 ± 

260.60 pg/mL; P = 0.750). Two way ANOVA for all four trials showed a main effect of 

trial (P < 0.001), a main effect of time (P < 0.001) and an interaction effect (P < 0.001). 

Analysis for fructose ingestion (Figure 28a) showed no main effect of supplementation (P 

= 0.341), a significant effect of time (P < 0.001) and no interaction effect (P = 0.778). 

Post-hoc analysis showed a small but significant increase in insulin from baseline levels 

for both control and supplement trials. No difference in AUC was observed (P = 0.323; 

Figure 28b). Analysis for glucose ingestion (Figure 29a) also showed no main effect of 

supplementation (P = 0.975), an effect of time (P < 0.001) and no interaction effect (P = 

0.844). Post-hoc analysis showed insulin concentrations significantly increased from 

baseline values at 30 min then significantly decreased thereafter for both trials at 60 min 

though not back to baseline levels. No difference in AUC was observed (P = 0.669; Figure 

29b).   

 

5.3.3.5. Leptin 

Baseline leptin concentrations were not different between all four trials (FC, 3542.36 ± 

2525.04 pg/mL; FS, 3371.53 ± 1934.44 pg/mL; GC, 3857.64 ± 2711.35 pg/mL; GS, 

3687.42 ± 2767.98 pg/mL; P = 0.484).  Two way ANOVA for all four trials showed no 

effects of trial (P = 0.352), time (P = 0.245) and interaction (P = 0.15). Analysis for 

fructose ingestion (Figure 30a) showed no effect of supplementation (P = 0.305), time (P 

= 0.100) nor interaction (P = 0.466). No difference in AUC resulted (P = 0.381; Figure 

30b). Analysis for glucose ingestion (Figure 31a) also showed the same, no effect of 

supplementation (P = 0.934), time (P = 0.378) nor interaction (P = 0.294). Again, no 

difference in AUC resulted (P = 0.974; Figure 31b). 
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Figure 28. Gut hormone insulin (A) Response over 60 min post ingestion of 595 mL 6% 

fructose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. *Significant 

increase from baseline for control trial (P < 0.001). #Significant increase from baseline for 

supplement trial (P < 0.01). Values are mean ± SD (n 10).  
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Figure 29. Gut hormone insulin (A) Response over 60 min post ingestion of 595 mL 6% 

glucose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. *Significant 

increase from baseline for both trials (P < 0.05). #Significant decrease from 30 min for 

both trials (P < 0.05). Values are mean ± SD (n 10).  
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Figure 30. Gut hormone leptin (A) Response over 60 min post ingestion of 595 mL 6% 

fructose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10).  
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Figure 31. Gut hormone leptin (A) Response over 60 min post ingestion of 595 mL 6% 

glucose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10).  
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5.3.4. Blood glucose and fructose 

Baseline serum glucose concentrations were 5.21 ± 0.46, 5.28 ± 0.30, 5.21 ± 0.40 and 5.11 

± 0.25 mmol/L for FC, FS, GC and GS, respectively (P = 0.591). Two way ANOVA for 

all four trials revealed a significant main effect of trial (P < 0.001), a significant effect of 

time (P = 0.001) and an interaction effect (P < 0.001). Analysis for fructose ingestion 

(Figure 32a) revealed no effect of supplementation (P = 0.880), a significant effect of time 

(P = 0.024) and no interaction effect (P = 0.928). Although changes in concentration were 

small, post-hoc analysis showed serum glucose concentration significantly increased at 30 

min from baseline concentrations then decreased significantly at 60 min for the control 

trial. Similar response levels over time for the supplement trial were not significantly 

different (P = 0.174). No difference in AUC was observed (P = 0.955; Figure 32b). 

Analysis for glucose ingestion (Figure 33a) showed no effect of supplementation (P = 

0.428), a significant effect of time (P < 0.001) and no interaction effect (P = 0.658). Post-

hoc analysis revealed serum glucose concentrations significantly increased from baseline, 

peaking at 30 min, and then decreased significantly to near baseline levels at 60 min for 

both control and supplementation trials. The rise in concentration at 20 min and peak at 30 

min was slightly blunted in the supplementation trial compared to control, but differences 

were not significant. No difference in AUC existed (P = 0.502; Figure 33b).     

 Baseline serum fructose concentrations were 137.0 ± 48.8, 115.8 ± 39.6, 129.8 ± 

36.6 and 139.4 ± 38.4 µmol/L for FC, FS, GC and GS, respectively (P = 0.163). Two way 

ANOVA for all four trials revealed significant trial, time and interactions effects (all P < 

0.001). Analysis for fructose ingestion (Figure 34a) showed no main effect of 

supplementation (P = 0.948), a significant effect of time (P < 0.001) and a significant 

interaction (P = 0.011). Post-hoc analysis revealed serum fructose concentrations increased 

rapidly and significantly from baseline concentrations within the first 10 min for both 

control and supplementation trials. Concentrations peaked at 30 min for both trials, with 

the supplementation trial peak being slightly higher, before both then decreasing slightly 

by 60 min to similar concentrations. No differences in AUC were seen (P = 0.588; Figure 

34b). Analysis for glucose ingestion (Figure 35a) showed no main effect of 

supplementation (P = 0.547), no effect of time (P = 0.172) but a significant interaction 

effect (P = 0.036). Post-hoc analysis revealed serum fructose concentrations did not change 

over time in the control trial (P = 0.645) but were significantly lower at 45 min compared 

to baseline (P = 0.041) and 20 min (P = 0.017) in the supplement trial. No difference in 

AUC was observed (P = 0.828; Figure 35b).  
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Figure 32. Serum glucose (A) Response over 60 min post ingestion of 595 mL 6% fructose 

solution (B) Area under curve. Treatments were control without fructose supplementation 

and with 3 d supplementation of 120 g fructose per day. *Significant increase from baseline 

for control trial (P < 0.05). #Significant decrease from 20 min for control trial (P < 0.05). 

Values are mean ± SD (n 10). 
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Figure 33. Serum glucose (A) Response over 60 min post ingestion of 595 mL 6% glucose 

solution (B) Area under curve. Treatments were control without fructose supplementation 

and with 3 d supplementation of 120 g fructose per day. *Significant increase from baseline 

for both trials (P < 0.05). #Significant decrease from 20 min for both trials (P < 0.05). 

Values are mean ± SD (n 10). 
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Figure 34. Serum fructose (A) Response over 60 min post ingestion of 595 mL 6% fructose 

solution (B) Area under curve. Treatments were control without fructose supplementation 

and with 3 d supplementation of 120 g fructose per day. *Significant increase from baseline 

for both trials (P < 0.01). Values are mean ± SD (n 10). 
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Figure 35. Serum fructose (A) Response over 60 min post ingestion of 595 mL 6% glucose 

solution (B) Area under curve. Treatments were control without fructose supplementation 

and with 3 d supplementation of 120 g fructose per day. *Significant decrease from 

baseline for supplement trial (P < 0.05). Values are mean ± SD (n 10). 
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5.3.5. Serum lactate and triglycerides 

Baseline serum lactate concentrations were 1.12 ± 0.41, 1.11 ± 0.30, 1.08 ± 0.39 and 1.00 

± 0.30 mmol/L for FC, FS, GC and GS, respectively (P = 0.686). Two way ANOVA for 

all four trials revealed a significant main effect of trial (P < 0.001), a significant effect of 

time (P < 0.001) and an interaction effect (P < 0.001). Analysis for fructose ingestion 

(Figure 36a) revealed no effect of supplementation (P = 0.511), a significant effect of time 

(P < 0.001) and no interaction effect (P = 0.457). Lactate concentrations increased 

significantly from baseline values from as early as 10 min for both control and 

supplementation trials. Mean maximum percent increases were 140% and 124% for FC 

and FS respectively. No difference in AUC was observed (P = 0.455; Figure 36b). Analysis 

for glucose ingestion (Figure 37a) showed no effect of supplementation (P = 0.198), a 

significant effect of time (P < 0.001) and no interaction effect (P = 0.621). Lactate 

concentrations increased significantly from baseline values from 45 min onwards for both 

trials. Mean maximum percent increases were 44% and 39% for GC and GS respectively. 

No difference in AUC was observed (P = 0.208; Figure 37b). 

Baseline triglyceride concentrations were 1.03 ± 0.53, 1.12 ± 0.44, 0.92 ± 0.40 and 

1.25 ± 0.45 mmol/L for FC, FS, GC and GS, respectively (P = 0.082) with a trend of GS 

being greater than GC (P = 0.086). Two way ANOVA for all four trials revealed no 

significant main effect of trial (P = 0.256), no significant effect of time (P = 0.695) but an 

interaction effect (P = 0.003). Analysis for fructose ingestion (Figure 38a) revealed no 

effect of supplementation (P = 0.944), a trend for an effect of time (P = 0.069) and no 

interaction effect (P = 0.726). No difference in AUC was seen (P = 0.448; Figure 38b). 

Analysis for glucose ingestion (Figure 39a) showed a significant main effect of 

supplementation (P = 0.021), but no significant effect of time (P = 0.287) and no 

interaction effect (P = 0.596).  Triglyceride concentration was significantly greater for GS 

compared to GC at all time points (P < 0.05) except at 60 min where it was strongly tending 

to significance (P = 0.051). AUC for GS was also significantly greater than GC (P = 0.029; 

Figure 39b). 
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Figure 36. Serum lactate (A) Response over 60 min post ingestion of 595 mL 6% fructose 

solution (B) Area under curve. Treatments were control without fructose supplementation 

and with 3 d supplementation of 120 g fructose per day. *Significant increase from baseline 

for both trials (P < 0.05). Values are mean ± SD (n 10). 
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Figure 37. Serum lactate (A) Response over 60 min post ingestion of 595 mL 6% glucose 

solution (B) Area under curve. Treatments were control without fructose supplementation 

and with 3 d supplementation of 120 g fructose per day. *Significant increase from baseline 

for both trials (P < 0.05). Values are mean ± SD (n 10). 
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Figure 38. Serum triglycerides (A) Response over 60 min post ingestion of 595 mL 6% 

fructose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10). 
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Figure 39. Serum triglycerides (A) Response over 60 min post ingestion of 595 mL 6% 

glucose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. *Significantly 

higher than control trial (P < 0.05). #Trend higher than control (P = 0.51). Values are mean 

± SD (n 10). 
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5.3.6. Appetite and satiety 

5.3.6.1. Fructose ingestion 

Subjective feeling of hunger for fructose ingestion (Figure 40) showed a trend of 

supplement effect (P = 0.09) with a slight suppression of hunger for the supplement trial 

compared to control from 10 min to 40 min. No main effect of time (P = 0.106) nor 

interaction (P = 0.477) was present, however. Complementary to the trend in a main effect 

of supplementation, AUC for hunger also tended to be lower for supplement compared to 

control (FC, 4032 ± 1365 mm2  vs. FS, 3569 ± 1733 mm2; P = 0.095).  

 Feeling of fullness remained relatively low and unchanged throughout the 60 min 

period though a more gradual decrease over time after an initial slight increase can be seen 

for the control trial (Figure 41). No effect of supplementation (P = 0.231), time (P = 0.144) 

or interaction (P = 0.236) was found. No difference in AUC was also seen (FC, 1015 ± 

953 mm2 vs. FS, 1213 ± 1028 mm2; P = 0.155). 

 Differences were seen with ratings of prospective food consumption, however 

(Figure 42). A main effect of supplementation (P = 0.027) was evident with no main effect 

of time (P = 0.101) and interaction (P = 0.205). Post-hoc analysis revealed ratings were 

temporarily significantly lower for FS compared with FC from 30 to 50 min. This resulted 

in a significantly lower AUC than control (FC, 4022 ± 1325 mm2 vs. FS, 3768 ± 1498 

mm2; P = 0.02).  

 

Figure 40. Subjective feeling of hunger (A) Response over 60 min post ingestion of 595 

mL 6% fructose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10). 
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Figure 41. Subjective feeling of fullness (A) Response over 60 min post ingestion of 595 

mL 6% fructose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10). 

 

 

Figure 42. Subjective feeling of prospective food consumption (A) Response over 60 min 

post ingestion of 595 mL 6% fructose solution (B) Area under curve. Treatments were 

control without fructose supplementation and with 3 d supplementation of 120 g fructose 

per day. *Significantly different at time-point (P < 0.05). Values are mean ± SD (n 10).  
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5.3.6.2. Glucose ingestion 

Subjective feeling of hunger for glucose ingestion was relatively unchanged over the test 

duration although a drift of increased hunger in the latter half of the hour can be seen for 

the supplementation trial (Figure 43). No main effect of supplementation (P = 0.231), time 

(P = 0.410) or interaction (P = 0.237) was found. No difference in AUC was also observed 

(P = 0.466).  

A slight increase in fullness was seen in the first 10 min following drink ingestion 

after which a gradual decrease back to fasted ratings resulted (Figure 44). A trend of a main 

effect of supplementation was shown for feeling of fullness (P = 0.083). No main effect of 

time (P = 0.235) nor interaction (P = 0.523) was seen, however. There was also no 

difference in AUC (P = 0.107). 

Prospective food consumption also did not change much during the trials (Figure 

45). No effect of supplementation (P = 0.550), time (P = 0.370) or interaction (P = 0.661) 

was observed. No difference in AUC was also seen (P = 0.753).      

 

 

Figure 43. Subjective feeling of hunger (A) Response over 60 min post ingestion of 595 

mL 6% glucose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10). 
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Figure 44. Subjective feeling of fullness (A) Response over 60 min post ingestion of 595 

mL 6% glucose solution (B) Area under curve. Treatments were control without fructose 

supplementation and with 3 d supplementation of 120 g fructose per day. Values are mean 

± SD (n 10). 

 

 

Figure 45. Subjective feeling of prospective food consumption (A) Response over 60 min 

post ingestion of 595 mL 6% glucose solution (B) Area under curve. Treatments were 

control without fructose supplementation and with 3 d supplementation of 120 g fructose 

per. Values are mean ± SD (n 10). 
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5.4.  DISCUSSION 

The gastric emptying results of this study are in concordance with that of previous 

observations in chapter 4 and strengthen the reliability of the data. Once again a 

monosaccharide specific adaptation in gastric emptying rate was shown following short-

term dietary supplementation of fructose. Gastric emptying of a fructose solution was 

accelerated whilst emptying of a glucose solution was unchanged. These results may be 

explained by subtle changes and differences in gut hormone responses seen in this present 

study.  

 Supplementation of the diet with fructose resulted in a delay in the postprandial 

suppression of ghrelin following the ingestion of fructose and a greater ghrelin 

concentration at 10 min with the ingestion of glucose. Furthermore, fasting ghrelin levels 

were slightly elevated by 7-11% after three days of supplementation. This is in agreement 

relatively with the results of Lindqvist et al. (2008) who reported a 40% increase in fasting 

ghrelin concentrations following two weeks high fructose diet in rats. As ghrelin has been 

shown to promote gastric emptying rate (Levin, Edholm, Schmidt, Gryback, Jacobsson 

Degerblad et al., 2006; Murray, Martin, Patterson, Taylor, Ghatei & Kamm et al., 2005; 

Asakawa, Inui, Kaga, Yuzuriha, Nagata, Ueno et al., 2001), both of the former postprandial 

observations would suggest a slight initial acceleration of emptying for both fructose and 

glucose ingestion. Hence, this does not explain the specific acceleration of fructose 

emptying. However, the differences in the other hormone responses to counter the changes 

in ghrelin response may. One potential explanation is that there was no difference in GIP 

response for fructose ingestion whilst there was a trend for significantly greater GIP 

response for glucose ingestion following supplementation. This difference in 

supplementation effect may have been due to the fact that GIP secretion is comparatively 

limited in response to fructose ingestion (chapter 3). These results contrast those of 

Horowitz et al. (1996) who showed GIP response increased for both glucose and fructose 

ingestion following dietary glucose supplementation. However, whether these GIP results 

in the present study indicate a potential mechanism for the specific acceleration of fructose 

but not glucose emptying is questionable as the influence of GIP on gastric emptying rate 

is unclear with mixed results. Pharmacological doses of GIP in healthy men have been 

shown to have no effect on gastric emptying rate (Meier, Goetze, Anstipp, Hagemann, 

Holst, Schmidt et al., 2004) as well as moderately accelerate emptying (Edholm, 

Degerblad, Gryback, Hilsted, Holst, Jacobsson et al., 2010). It may therefore be the 

differences in GLP-1 response observed that hold the key to the present emptying results. 

The ingestion of fructose following supplementation resulted in the attenuation of GLP-1 
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secretion compared to the control trial. GLP-1 levels significantly increased then decreased 

in the fructose control trial whilst no significant changes over time was seen for the 

supplemented trial. As GLP-1 is known to strongly inhibit gastric emptying and has been 

termed as an ‘ileal brake’ (Wishart, Horowitz, Morris, Jones & Nauck, 1998; Wettergren, 

Schjoldager, Mortensen, Myhre, Christiansen & Holst, 1993), this would suggest a reduced 

ileal brake effect and a resultant faster emptying. This was not seen with the ingestion of 

glucose however. Postprandial GLP-1 response similarly increased then decreased 

following glucose ingestion and in fact was slightly higher during the supplemented trial. 

Thus taken altogether, it seems that attenuation in GLP-1 secretion combined with an 

attenuation of ghrelin suppression may be responsible for the accelerated emptying of a 

fructose solution. On the other hand, a slightly greater GLP-1 response and/or a greater 

GIP or possibly other gut hormones not measured in this study likely countered the 

attenuation of ghrelin suppression to result in no significant changes in gastric emptying of 

a glucose solution.  

It has previously been shown that changes in CCK and ghrelin concentrations 

following high protein or high fat diets have been associated with complementary changes 

in mRNA levels (Lee et al., 2002; Liddle, Morita, Conrad & Williams, 1988). It is unknown 

whether the changes in serum concentrations of gut hormones in this present study were 

simply changes in hormone release or whether the three days of increased dietary fructose 

load led to up- or down-regulation of genes and associated changes in mRNA levels. This 

should be investigated further. As for the mechanism of altered hormone release and 

intestinal feedback, changes in sensitivity or stimulation to the presence of fructose may 

have occurred as a result of the increased fructose consumption. This may have been 

through increased expression of gut sweet taste receptor T1R2/T1R3 which has been 

detected in the intestinal tract and enteroendocrine cells (Bezencon, le Coutre & Damak, 

2007; Dyer, Salmon, Zibrik & Shirazi-Beechy, 2005) and has been shown to be involved 

in the secretion of gut hormones including GLP-1 and PYY (Gerspach, Steinert, 

Schonenberger, Graber-Maier & Beglinger, 2011). Alternatively, as discussed in chapter 

4, enhanced absorption as a result of GLUT5 upregulation and consequently greater 

transporter activity may be involved in the mediation of gut hormone release. 

 Three days of fructose supplementation did not result in a change in leptin 

concentration in this study. This is most likely due to the fact that no change in BM, and 

thus assumed no change in body fat/adiposity, occurred over this short supplementation 

period where only an extra 1440 kcal was consumed over the three days. This result is in 

contrast to the results of Le et al. (2006) who reported a significant increase in leptin levels 
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within one week of a high fructose diet. The longer supplementation period with an 

approximate mean extra 2898 kcal consumption may have accounted for this difference 

though the authors of that study also reported no change in body weight and body fat 

percentage, however.  

 The rate of gastric emptying is logically theorised to have an important impact on 

both the magnitude of glycaemic and insulinaemic response. Serum glucose response to 

fructose ingestion was not different after supplementation despite the faster emptying rate, 

however. This suggests that the capacity to metabolise fructose into glucose is not altered 

and is further supported with the observation that there were no differences in lactate 

concentration, suggesting that lactate production was also unaltered. Alternatively, greater 

uptake of glucose by cells may have occurred, though this may be unlikely as no differences 

were also seen for insulin secretion for either fructose or glucose ingestion despite slight 

variations in incretin hormone responses. The faster gastric emptying of fructose did result 

in a slightly higher, albeit insignificant, peak serum fructose concentration at 30 min, 

however. The implications of this, if any, are unknown at this stage.  

 Interestingly, triglyceride concentration was significantly elevated at baseline and 

remained elevated at pre-prandial levels at all postprandial time-points for glucose 

ingestion following supplementation but no difference was found between the fructose 

ingestion trials. Taking the glucose ingestion results alone extends the observations of 

Stanhope et al. (2011), Stanhope et al., (2009), Stanhope et al., (2008), Teff et al. (2009), 

Teff et al., (2004), Ngo Sock et al. (2010) and Bantle et al., (2000) in that increased fructose 

intake for even three days is enough to cause significant increases in fasting triglycerides. 

These levels were still a way from dyslipidaemia values, however. It is uncertain as to why 

no differences were also evident between the two fructose trials at baseline. 

 The accelerated emptying of fructose resulted in a trend of greater hunger 

suppression. It is unlikely that this was due to the hormones studied in the present study as 

greater ghrelin and lower GLP-1 concentrations are inconsistent with the observed hunger 

effects. A greater length of exposure of the intestine to fructose may have resulted in greater 

release of other hormones known to decrease appetite, such as PYY. In line with the lesser 

feelings of hunger, lower prospective food consumption was also observed with fructose 

ingestion following supplementation. The satiety effects of fructose ingestion was therefore 

greater following increased dietary intake of fructose. The absence of differences in 

glucose appetite measures suggests gastric emptying is an important modulatory process 

linked to appetite. Whether these changes in subjective feelings of appetite translate to 

changes in food intake need to be investigated further.  
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 In conclusion, the results of this study show that 3 d of dietary supplementation 

with 120 g fructose per day results in accelerated emptying of a fructose solution but not a 

glucose solution which can be partly explained by moderations of gut hormone secretion. 

Furthermore, increased fructose ingestion for even a short period of 3 d appears to result in 

unfavourable changes to serum triglyceride concentration. However, the accelerated 

emptying rate of fructose ingestion did not result in greater appetite sensations, which may 

be contrary to beliefs that high fructose intake increases food ingestion. The adaptability 

of the gut and the effects on food intake should be further investigated.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



112 

 

 

 

 

 

 

 

 

 

 

 

6. THE EFFECT OF GLP-1 

RECEPTOR GENETIC 

VARIATION ON GASTRIC 

EMPTYING RATE4 

 

 

 

 

 

 

 

 

 

 

 

                                                 

 

4 Some of the data from this study contained within this chapter was presented as an oral communication and 

the abstract published in “Yau, A., McLaughlin, J., Maughan, R.J., Gilmore, W., Ashworth, J.J. & Evans, 

G.H. (2014). The influence of glucagon-like-peptide-1 receptor single nucleotide polymorphisms on gastric 

emptying rate in Caucasian men- a pilot study. Proceedings of the Physiological Society, 31, C45.” 
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6.1. INTRODUCTION 

Whilst an influence or role of genetics in obesity has been given much attention and is 

established to increase susceptibility of excess weight accumulation and obesity, research 

on the potential influence of genetics on gastric emptying rate is scarce. A recent study by 

Acosta and colleagues (Acosta, Camilleri, Shin, Carlson, Burton, O’Neill et al., 2014) has 

reported a common genetic variant rs17782313 in the MC4R gene to be associated with 

reduced gastric emptying rate and satiation. This variant had previously been found to be 

strongly associated with common obesity (Vogel, Boes, Reinehr, Roth, Scherag, Scherag 

et al., 2011; Loos, Lindgren, Li, Wheeler, Zhao, Prokopenko et al., 2008). In addition a 

study by Cremonini and colleagues (Cremonini, Camilleri, McKinzie, Carlson, Camilleri, 

Burton et al., 2005) has shown an association between the 779T>C polymorphism in the 

CCK gene and slower gastric emptying rate.  On the other hand, a study by Jones, Payton, 

Oilier, Dockray & Thompson (2010) found no effect of common genetic polymorphisms 

of the CCK or CCK-1 receptor genes on gastric emptying rate following analysis of 25 

participants homozygous for four different haplotype block variants identified from 520 

individuals.   

Given the influence of GLP-1 on gastric emptying rate and the large variation in 

gastric emptying rate of a glucose solution as well as the large differences in GLP-1 

hormone responses to carbohydrate ingestion observed earlier in this thesis, genetic 

variation within a gene related to the action of GLP-1 presents a plausible area of 

investigation. The gastrointestinal hormone GLP-1 exerts its effects via a G-protein 

coupled receptor called the GLP-1R. Stimulation of the receptor by GLP-1 triggers cAMP 

production as the primary signal transduction pathway (Mayo, Miller, Bataille, Dalle, 

Goke, Thorens et al., 2003). The GLP-1R recognises GLP-1 specifically despite the 

hormone having strong sequence homology to other hormones within the glucagon-related 

family of peptides, and furthermore, does not bind to a number of other related peptides, 

including secretin (Fehmann et al., 1994). 

Genetic polymorphisms of the GLP-1R gene have previously been investigated in 

relation to insulin secretion (Sathananthan, Man, Michelotto, Zinsmeister, Camilleri, 

Giesler et al., 2010) and the pathogenesis of diabetes (Beinborn, Worrall, McBride & 

Kopin, 2005; Tokuyama, Matsui, Egashira, Nozaki, Ishizuka & Kanatsuka, 2004; 

Tanizawa, Riggs, Elbein, Whelan, Doniskeller & Permutt, 1994). Only one study has 

previously investigated the influence of GLP-1R genetic variation on gastric emptying rate. 

Genetic variation in the GLP-1R gene has been shown to influence gastric emptying rate 

in mice (Kumar, Byerley, Volaufova, Drucker, Churchill, Li et al., 2008). The presence of 
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a nonsynonymous cysteine to tyrosine substitution at amino acid 416 of the GLP-1R gene 

found in CAST strain mice was associated with reduced GLP-1R expression and 

significantly faster gastric emptying rate by 20% compared to B6 strain mice. This was 

also seen for the congenic strains where gastric emptying rate was significantly higher in 

B6.CAST-17 congenic mice compared to homozygous B6 controls. Furthermore, 

administration of a GLP-1R antagonist extendin-(9-36) resulted in no increase in gastric 

emptying rate compared to a 10% increase in the homozygous B6 control mice. The GLP-

1R gene is therefore a plausible candidate gene for a genetic association study on gastric 

emptying rate in humans. The human GLP-1R gene consists of 13 exons interrupted by 12 

introns (Wilmen, Walkenbach, Fuller, Lankat-Buttgereit, Goke & Goke, 1998) and is 

situated on chromosome 6, band p21.1 (Stoffel, Espinosa, Lebeau & Bell, 1993). Figure 

46 depicts the genomic organisation of the GLP-1R gene. A major transcription start point 

and a minor transcription start point 42 base pair (bp) and 360 bp upstream of the translation 

initiation site, respectively has been reported (Lankat-Buttgereit & Goke, 1997). Three 

putative Sp1 binding sites have also been located in the proximal 5’ flanking sequence at -

108, -173 and -389 bp from the translation initiation codon (Lankat-Buttgereit & Goke, 

1997). The receptor is 463 amino acids in length and is highly conserved between species, 

with 90% being identical to rat GLP-1R (Dillon, Tanizawa, Wheeler, Leng, Ligon, Rabin 

et al., 1993) and approximately 95% homology with mice GLP-1R.  

  The primary aim of this study was to investigate the influence of genetic variation 

in the GLP-1R gene on gastric emptying rate of a glucose solution in humans. Secondary 

aims of this study were to determine whether BMI or body fat percentage may be 

influenced by GLP-1R genetic variation and whether these variables are associated with 

gastric emptying rate. 

 

6.2. METHODS 

6.2.1. Participants 

Fifty healthy UK Caucasian male volunteers aged between 18-35 y (mean ± S.D, age 23 ± 

5 y, height  178.1 ± 6.9 cm, BM  75.49 ± 11.16 kg, BMI 23.78 ± 3.25 kg.m-2, and estimated 

body fat percentage 18.9 ± 6.3%) participated in the present investigation.  

 

6.2.2. Experimental trial 

Participants reported to the laboratory for one experimental trial. In addition to the pre-trial 

conditions outlined in general methods, participants were also asked to record their food 
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and drink intake as well as physical activity during the 24 h prior to their experimental 

visit. 

Upon arrival at the laboratory, participants were asked to completely empty their 

bladder into a container from which a 5 mL urine sample was retained for later analysis of 

osmolality. Body mass was subsequently recorded. Following this a single 4 mL blood 

sample was obtained by venepuncture of an antecubital vein into an EDTA vacutainer 

(Beckton Dickinson, UK). Once this procedure was completed, participants were seated 

and then ingested 595 mL of a 6% glucose solution consisting of 39.6 g glucose 

monohydrate (MyProtein.com) dissolved in commercially available natural mineral water 

(Evian, Danone Ltd, France). Participants were given a maximum of 2 min to consume the 

test solution and instructed to consume it as quickly as they were able to. The drink solution 

was prepared fresh in the morning prior to the trial and given at room temperature. A 5 mL 

sample of the drink was retained for later analysis of osmolality. Participants remained 

seated throughout the 60 min post ingestion sampling period where gastric emptying rate 

and appetite ratings of hunger, fullness and prospective food consumption were assessed 

as described in general methods. Following all sample collections at 60 min, participants 

were asked again to completely empty their bladder into a container and a 5 mL sample 

was retained for later analysis. 

 

6.2.3. Genotyping 

Genomic DNA was extracted from 3 mL of whole blood before a second set of genomic 

DNA was extracted from an additional 300 µl of blood. Both extractions were performed 

using Flexigene DNA Kit (Qiagen, West Sussex, UK) according to the manufacturer’s 

instructions except for the final step of resuspension in 300 µl and 50 µl of water, for the 

two extractions respectively. The second extraction was performed as a precaution due to 

the first set of samples having initially been resuspended and normalised in rehydration 

buffer as according to the manufacturer’s protocol instead of water as required. In an 

attempt to rectify this, the normalised samples were left uncapped in a cupboard at room 

temperature for a number of weeks and those with very high volumes in a water bath at 

50ºC for half a day in an attempt to evaporate as much of the fluid as possible. The samples 

were subsequently re-precipitated and re-purified by repetition of the appropriate steps in 

the protocol and resuspended in water. Due to approximately 50% of the samples not 

appearing to have re-precipitated sufficiently and as a result of the above conditions the 

samples were subjected to, the quality and extent of DNA fragmentation was unknown. 

Both sets of extracted DNA were quanitified using a NanoDrop 2000 (Thermo Scientific, 
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Loughborough, UK) and normalised to a concentration of 40 ng/µl and stored at -20ºC 

before working concentrations of 20 ng/µl were prepared in 96 well plate format prior to 

use.  

Twenty-eight tag SNPs in the GLP-1R locus incorporating 10,000 bp upstream and 

downstream of the major transcription initiation site and the last exon, respectively, (Chr6: 

39114595. . 39173498) were selected from HapMap (www.hapmap.org -HapMap Data 

release 27 / phase II+III, Feb09, on NCBI B36 assembly, dbSNP b126). The Tagger 

algorithm for multi-marker tagging with r2 > 0.8 and minor allele frequency > 0.1 was used 

(de Bakker, Yelensky, Pe’er, Gabriel, Daly & Altshuler, 2005). Furthermore, three 

additional nonsynonymous SNPs were selected based on previous literature. One of two 

SNPs found to be associated with insulin secretion in response to exogenous infusion of 

GLP-1 by Sathananthan et al. (2010) and not already in the generated list of 28 tag SNPs 

was genotyped. The other two additional SNPs genotyped were two in very close proximity 

(two amino acids upstream and three amino acids downstream) to the equivalent locus of 

the SNP found in mice to be associated with gastric emptying rate (Kumar et al., 2008). 

All 31 SNPs (Table 5 and Figure 46) were genotyped using Sequenom MassARRAY 

iPLEX GOLD analysis. Forward and reverse primers as well as extension probes were 

designed using Sequenom Assay Design Suite (v1.0) which produced two appropriate 

assay plexes; plex one containing 24 SNPs and plex two containing 7 SNPs (Table 5). 

Primers were purchased from Metabion International AG (Martinsreid, Germany).  

Briefly, an initial locus-specific amplification was performed using polymerase 

chain reaction (PCR; GeneAmp PCR System 9700, Applied Biosystems) carried out in a 

total volume of 5 µl containing 40 ng of DNA and final concentrations of 1.25x buffer, 1.0 

mM MgCl2, 500 µM dNTP mix, 100 nM of each forward and reverse primers, 0.1 U/µL 

Hotstart Taq. PCR conditions consisted of an initial denaturing step at 94°C for 5 min, 

followed by 40 cycles of denaturing at 94°C for 20 sec, annealing at 56°C for 30 sec and 

extension at 72°C for 1 min and then a final extension step at 72°C for 3 min. 

Unincorporated dNTPs within the PCR products were then dephosphorylated  by treatment 

with Shrimp Alkaline Phosphatase (SAP) through the addition of 2 µl SAP mixture 

composed of 0.17 µl 10x hME buffer, 0.3 µl SAP enzyme 1.7 U/µl and water, and 

incubated for 40 min at 37°C and 5 min at 85°C. A single base extension step was then 

performed with the addition of 2 µl reaction mix containing a concentration of 50 µM of 

each ddNTP, 3.3 µM:6.6 µM extension probe from low:high mass (2.8 µM:5.6 µM for 

plex 2), 1.0x buffer and 1.25 U Thermo Sequenase enzyme. Probe extension conditions 

consisted of a two-step 200 short cycle program involving initial denaturing at 94°C for 30 
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sec, 40 cycles of denaturing at 94°C for 5 sec, annealing at 52°C for 5 sec and extension at 

80°C for 5 sec where the annealing and extension steps also cycled 5 times, before a final 

extension at 72°C for 3 min. Resulting products were diluted with 20 µl water and desalted 

with 6 mg resin by gentle inversion for 10 min before centrifugation at 4000 rpm for 5 min. 

Products were subsequently nano-dispensed (Samsung Sequenom MassARRAY 

Nanodispenser) onto a 384-element SpectroCHIP II bioarray and analysed by MALDI-

TOF mass spectrometry. 

 

6.2.4. Data analysis 

Genotype results were visually checked and where required, when no automated genotype 

calling successfully took place, appropriate manual genotype assignment was made upon 

spectrum inspection. Where genotype results were available for both sets of extraction 

samples, concordance between the two extractions enabled further verification of results. 

 Differences in gastric emptying T½ and Tlag, BMI and body fat percentage were 

examined by genotype and phenotype. Normality tests indicated that the majority of data 

were not normally distributed. Furthermore, as group sizes were unequal, non-parametric 

statistical analysis comprising of Kruskal-Wallace and Mann-Whitney U tests were 

utilised, respectively. Where appropriate, post-hoc tests of Mann-Whitney U with 

Bonferroni correction were applied. Pearson’s product moment correlations were used to 

investigate relationships between gastric emptying rate and BMI and body fat percentage. 

All data was analysed using SPSS Statistics for Windows version 19 (IBM, New York, 

US). Statistical significance was accepted at the 5% level and results presented as median 

and quartiles unless stated otherwise. 
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Table 5. List of SNPs analysed and primers used. Unshaded SNPs and primers in plex 1. Shaded primers in plex 2. 
 SNP ID Pos. from major 

transcription site (bp) 
Forward primer Reverse primer Extension probe 

1 rs7738586 -9,033 ACGTTGGATGACACCCAGACTGACGTTATC ACGTTGGATGTTGTGCAAAAGCAGCCCAAG TCAAAGTGATTGTCACCATAAG 

2 rs9380825 -5,610 ACGTTGGATGTGAGCCAGGAAGTGATGTTC ACGTTGGATGTCTCATCCAGGCAGCAAGTA cccCTGCACCAGAGCCCCT 

3 rs9296274 -1,455 ACGTTGGATGTTTGGATATCGTGGCTGGAG ACGTTGGATGTGCCTGGGTCTTCTAGCTTC gggtGTGGAAATCTTGGACCA 

4 rs926674 2,930 ACGTTGGATGACTCACACATACCTGGGAAC ACGTTGGATGATACAGACAGGTAGTCTGAG tagcAGGGAGTAGGCTATATGA 

5 rs2268657 3,969 ACGTTGGATGGTTCTGCCGTCCATAAAATG ACGTTGGATGTACAGGGCTTGAGAAGTCAC ggaagTGGGCATATCATTCTTCTCA 

6 rs13202369 6,125 ACGTTGGATGTGATCCACCAGGACTTGCTC ACGTTGGATGTAACAGCTGCAAAGGTGTTG gacaTCCTCAGCTGTGGCTAAT 

7 rs3799707 6,937 ACGTTGGATGTTTGGTTGCTGTGTCAGAGG ACGTTGGATGGCACTCACTTACAGATGCAC AGATGCACTCAACACA(Inosine)C 

8 rs10305432 7,057 ACGTTGGATGTCTTTGTAGCCCTGAACGCC ACGTTGGATGAGTCCTTCAGATCAGTGACC CCGCACACCTTGCGA 

9 rs9283907 10,130 ACGTTGGATGGCTCCTATCATCACACCTTG ACGTTGGATGCCAGAGCATAACCTCATGCC aagaA(Inosine)CAACTGGCCCAGAA 

10 rs742764 13,261 ACGTTGGATGTCTCAGCTTCTGCATCTGTA ACGTTGGATGTGTGGAGAGCTGCTCATGAA ggagcGCTGCTCATGAATCCATTA 

11 rs2254336 16,262 ACGTTGGATGCTGGTCTAAAAGGAGTACAC ACGTTGGATGAAGGTAGGAGCTGGGTATTC ggAGGCTGCATACGACCA 

12 rs910163 16,847 ACGTTGGATGTGAGCCTCAGCCCAGAATAG ACGTTGGATGCAGGGATAGCCCTCAGAATG tATGGGGAGGAAGGGG 

13 rs3765467* 17,022 ACGTTGGATGAACCCCGCCTCAACTCACTC ACGTTGGATGTGCAGAAGGACAACTCCAGC AACTCACTCT(Inosine)TCCCCT 

14 rs6923761 17,499 ACGTTGGATGTTCTCTGCTCTGGTTATCGC ACGTTGGATGGAGTTAGGATGAAGCAGCCC GGGCCACCTTACCTGAAGC 

15 rs7766663 19,209 ACGTTGGATGAGCAATAGGTCTGCATGTGG ACGTTGGATGCTGGTCTCCAATCTCTGGC CCTAGCTAATTGAGAGGC 

16 rs932443 25,761 ACGTTGGATGGTGAATGAAGGAGTGGCAAG ACGTTGGATGTCCTCCCTAATCTGCCATTG ggattGTGTGGAACAGGAAAACTC 

17 rs2268646 26,943 ACGTTGGATGCCAACTGTGTCAGAGTCCTA ACGTTGGATGGTGATGCCAGGAGGCCTTG cccaTTCCACTTGCACATGAA 

18 rs2300614 32,400 ACGTTGGATGTCCAAACCTAGGGCAGGTTC ACGTTGGATGCCCTGCTAAAATTCTTATTTC TCTTTCTGATCTTCAGTGTT 

19 rs2268641 33,693 ACGTTGGATGCTGGGTCCTCTAAGACCTGT ACGTTGGATGCAAAGAGTGGCCCATAAATG ggggAAGACCTGTCCCAGGA 

20 rs2268640 33,811 ACGTTGGATGTGCACTTCCTCGTTTGCATC ACGTTGGATGTCCTCCTCCACTGCCATATC CACTGCCATATCCTCAAAATGA 

21 rs2268639 34,049 ACGTTGGATGGATAGAGAAGTGAGAAACGG ACGTTGGATGATGAGGAGCAGAGGCCTGTA ggcaCTGCTGCCACCTTGTCATCT 

22 rs2206942 34,866 ACGTTGGATGAATTGGGAAGCTCATTCACC ACGTTGGATGGGCAAGTCATTTTGCCTCCC ggcGCTCATTCACCTTCATTTAC 

23 rs2894420 36,523 ACGTTGGATGAACAGGGATCCTGGCTGAC ACGTTGGATGAGTGAGGGCTTCTCAACTG CACTGCAGTGTCTCTCT 

24 rs199796313† 37,124 ACGTTGGATGTCCTTTTCCCATGGAAGGTC ACGTTGGATGTGGATGTGCAAGTGCTCAAG GGTCCAGCTGGAATTT 

25 rs200691429† 37,140 ACGTTGGATGAAGGTCCAGCTGGAATTTCG ACGTTGGATGTGGATGTGCAAGTGCTCAAG gGGAAGAGCTGGGAGC 

26 rs4714211 39,117 ACGTTGGATGAAGGCACCCCTTATTTGCTG ACGTTGGATGACTTGCACCAGCACTGTTTC ccccTTTGCTGTCTCTTCGT 

27 rs10305525 39,577 ACGTTGGATGAATGGCACTGCACTCTTTCC ACGTTGGATGCATTGCATTCAATAGTTCCC aATTCAATAGTTCCCAGACCT 

28 rs9296291 40,356 ACGTTGGATGGATGGTGAAAGTGTCATCTC ACGTTGGATGAAGACAAGGATGAATGAAG gTGAATGAAGTACCAGTGT 

29 rs9968886 43,905 ACGTTGGATGACAGTGAGGTTTTCCCCATC ACGTTGGATGTCATGTAGTCCAGCTTGTGC GCTTGTGCTGCTAGTT 

30 rs2143733 44,923 ACGTTGGATGCATCTAATCGATGGGTAGC ACGTTGGATGCAGAACCCTTCTGAACCTTC GAAATTGAATTTACAGCTTTAATAAA 

31 rs9296292 46,417 ACGTTGGATGTCACAATATGTTTGGCACTG ACGTTGGATGGCTTTGTTTTGCAGAGCTTG TGGCACTGCCAAACT 

 *Additional missense SNP associated with insulin secretion in response to exogenous infusion of GLP-1 by Sathananthan et al. (2010) 

†Additional missense SNPs in close proximity to equivalent SNP associated with gastric emptying rate in mice (Kumar et al., 2008). 
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Figure 46. Schematic representation of the genomic organisation of the GLP-1R gene and SNPs genotyped



120 

 

6.3. RESULTS 

6.3.1. Participant exclusion 

One participant was excluded from analysis due to an abnormally high T½ gastric emptying 

result affected by what appeared to be an inadequate end-expiratory sample at 30 min. A 

second participant was excluded from further analysis due to multiple genotype failures. 

Forty-eight participants were therefore included in the analysis (mean ± SD age 23 ± 5 y, 

height 178.2 ± 6.9 cm, BM 75.82 ± 11.24 kg, BMI 23.9 ± 3.3 kg.m-2, estimated body fat 

percentage 19.0 ± 6.2%).  

 

6.3.2. Hydration status and drink osmolality 

The majority of participants were well hydrated according to their pre-trial urine 

osmolality. Five participants were classified as hypohydrated indicated by a urine 

osmolality > 900 mOsmol/kg. However, these participants were not excluded from analysis 

due to the absent effect of hypohydration on gastric emptying rate (Ryan, Lambert, Shi, 

Chang, Summers & Gisolfi, 1998). Mean ± SD pre-trial urine osmolality was 489 ± 280 

mOsmol/kg. Mean ± SD drink osmolality was 371 ± 3 mOsmol/kg. 

 

6.3.3. SNP genotyping 

Twenty-seven out of the 31 SNPs were successfully analysed for variants. No variants 

occurred amongst the participants for three SNPs, Tag SNP 3 within the promoter region 

(rs9296274) and SNPs 24 (rs199796313) and 25 (rs200691429), two of the three additional 

missense SNPs selected. Genotyping failed in all participants for SNP 13 (rs3765467), one 

of the three additional missense SNPs. The occasional failure to successfully genotype one 

participant occurred in five SNPs, reducing the total participant number (n) to 47 instead 

of 48. Frequencies of each genotype are shown in Table 6. All SNPs except SNP 4 

(rs926674; P = 0.012) were in Hardy-Weinberg equilibrium. 
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Table 6. SNP genotype frequencies 

6.3.4. Gastric emptying 

Mean ± SD gastric emptying rate for all participants was 68 ± 16 min and 41 ± 8 min for 

T½ and Tlag, respectively. Median (quartiles) gastric emptying rate for all participants was 

63 (55-78) min and 40 (36-44) min for T½ and Tlag, respectively. 

6.3.4.1. By genotype 

Results for Tlag according to genotype are shown in Table 7. Results for T½ according to 

genotype are shown in Table 8. Non-parametric statistical analysis revealed significant 

differences in median gastric emptying Tlag for SNP 10 rs742764 (Figure 55) and SNP 11 

rs2254336 (Figure 56). For SNP 10 rs742764, gastric emptying Tlag was significantly faster 

in genotype CC compared to genotype TT (P = 0.006) and TC (P = 0.006) by 15%. Half 

emptying time was also close to significance with differences of 18% (P = 0.061). For SNP 

11 rs2254336, gastric emptying Tlag was significantly slower in genotype AA compared to 

 
  Genotype Frequencies 

  

SNP ID 

Homozygous minor 

allele 

 
Heterozygous 

 Homozygous major 

allele 

  

Genotype n Genotype n Genotype n Total 

1 rs7738586 AA 0  CA 10  CC 38  48 

2 rs9380825 AA 5  AG 28  GG 15  48 

3 rs9296274 -- --  -- --  GG 48  48 

4 rs926674 TT 3  TC 6  CC 39  48 

5 rs2268657 GG 9  AG 27  AA 11  47 

6 rs13202369 GG 2  AG 21  AA 25  48 

7 rs3799707 TT 3  GT 19  GG 26  48 

8 rs10305432 CC 3  CT 19  TT 26  48 

9 rs9283907 AA 1  AG 9  GG 38  48 

10 rs742764 CC 8  TC 25  TT 14  47 

11 rs2254336 TT 9  TA 23  AA 16  48 

12 rs910163 CC 3  TC 18  TT 27  48 

13 rs3765467*           

14 rs6923761 AA 7  GA 28  GG 13  48 

15 rs7766663 GG 10  GT 23  TT 15  48 

16 rs932443 GG 5  AG 21  AA 22  48 

17 rs2268646 AA 0  AG 10  GG 38  48 

18 rs2300614 TT 5  CT 21  CC 22  48 

19 rs2268641 AA 4  AG 21  GG 22  47 

20 rs2268640 CC 3  TC 18  TT 27  48 

21 rs2268639 TT 3  TA 22  AA 22  48 

22 rs2206942 AA 6  AG 24  GG 18  48 

23 rs2894420 AA 9  AG 27  GG 11  47 

24 rs199796313† -- --  -- --  CC 48  48 

25 rs200691429† -- --  -- --  GG 48  48 

26 rs4714211 GG 7  AG 27  AA 13  47 

27 rs10305525 AA 0  CA 9  CC 39  48 

28 rs9296291 CC 3  TC 17  TT 28  48 

29 rs9968886 AA 0  GA 12  GG 36  48 

30 rs2143733 GG 7  GT 27  TT 14  48 

31 rs9296292 CC 4  CT 20  TT 24  48 

*Additional missense SNP associated with insulin secretion in response to exogenous infusion of 

GLP-1 by Sathananthan et al. (2010). †Additional missense SNPs in close proximity to equivalent 

SNP associated with gastric emptying rate in mice (Kumar et al., 2008). 

Pink highlighted SNPs, no variants present. Red highlighted SNP failed to genotype. 
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genotype TT (P = 0.04) and TA (P = 0.036) by 19% and 10%, respectively. Half emptying 

time showed a slight trend to be slower than both other groups by 20% and 15% but this 

did not reach statistical significance (P = 0.138). No significant differences in gastric 

emptying rate were seen between genotypes in all other SNPs (Figure 47 to Figure 54 and 

Figure 57 to Figure 73) although T½ tended toward significance for SNP 9 rs9283907 (P = 

0.054) and Tlag tended to significance for SNP 5 rs2268657 (P = 0.087) and SNP 15 

rs7766663 (P = 0.076). 
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Table 7. Gastric emptying Tlag results according to genotype. Values are minutes. 

  

SNP ID 

Homozygous Minor Allele          Heterozygous Homozygous Major Allele 

Genotype Mean SD Median Quartiles  Genotype Mean SD Median Quartiles  Genotype Mean SD Median Quartiles P-value 

1 rs7738586 --- -- -- -- --  CA 40 9 37 34-41  CC 42 8 40 37-45 0.274 

2 rs9380825 AA 43 8 42 61-80  AG 42 9 41 37-45  GG 39 7 37 36-40 0.349 

4 rs926674 TT 39 5 37 37-41  TC 38 3 38 36-40  CC 42 9 41 36-46 0.448 

5 rs2268657 GG 43 9 42 37-44  AG 42 9 38 37-46  AA 36 5 37 34-39 0.087 

6 rs13202369 GG 34 8 34 31-36  AG 42 9 41 37-49  AA 41 8 39 36-42 0.295 

7 rs3799707 TT 38 8 42 36-43  GT 40 9 40 35-43  GG 42 8 40 37-45 0.696 

8 rs10305432 CC 36 2 36 35-37  CT 42 9 41 39-43  TT 41 9 40 35-46 0.267 

9 rs9283907 AA 29 -- 29 29-29  AG 39 8 37 35-41  GG 42 8 41 37-44 0.158 

10 rs742764 CC 34 4 35* 30-36  TC 43 9 41 39-45  TT 42 7 41 37-46 0.008 

11 rs2254336 TT 38 11 36 34-41  TA 40 8 39 35-42  AA 45 7 43† 39-49 0.031 

12 rs910163 CC 38 3 37 37-39  TC 42 8 40 36-45  TT 41 9 41 36-44 0.788 

14 rs6923761 AA 44 8 43 41-48  GA 41 8 40 37-43  GG 40 10 37 34-41 0.222  

15 rs7766663 GG 37 8 36 31-40  GT 42 8 40 38-44  TT 43 8 42 37-48 0.076  

16 rs932443 GG 38 3 37 36-41  AG 42 10 40 38-45  AA 41 8 41 35-44 0.634  

17 rs2268646 -- -- -- -- --  AG 43 8 40 37-48  GG 41 8 40 35-43 0.493  

18 rs2300614 TT 36 4 36 35-37  CT 41 8 40 37-44  CC 42 9 42 36-46 0.210  

19 rs2268641 AA 38 2 37 37-38  AG 41 8 40 35-44  GG 41 9 41 35-44 0.724  

20 rs2268640 CC 38 3 37 37-39  TC 41 9 40 34-45  TT 41 8 41 37-44 0.741  

21 rs2268639 TT 38 3 37 37-39  TA 41 8 40 35-44  AA 41 8 41 36-44 0.816  

22 rs2206942 AA 44 9 39 37-51  AG 41 7 40 36-43  GG 41 10 41 32-46 0.878  

23 rs2894420 AA 44 11 43 39-49  AG 39 6 39 36-42  GG 42 9 37 36-48 0.470  

26 rs4714211 GG 37 9 36 33-39  AG 42 8 40 37-45  AA 43 9 41 37-44 0.244  

27 rs10305525 -- -- -- -- --  CA 39 7 37 36-41  CC 42 9 40 36-45 0.369  

28 rs9296291 CC 38 3 37 37-39  TC 42 9 40 35-45  TT 41 9 41 37-43 0.812  

29 rs9968886 -- -- -- -- --  GA 41 9 37 36-45  GG 41 8 41 36-43 0.543  

30 rs2143733 GG 42 11 37 37-48  GT 40 7 39 35-43  TT 43 9 42 39-48 0.549  

31 rs9296292 CC 36 5 37 34-38  CT 41 9 39 34-44  TT 43 8 41 38-45 0.166 

Reported P-values are for median data. *Significantly faster than other two genotypes (P < 0.01). †Significantly slower than other two genotypes (P 

< 0.05).  
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Table 8. Gastric emptying T½ results according to genotype. Values are minutes. 

 

 

  

SNP ID 

Homozygous Minor Allele  Heterozygous  Homozygous Major Allele  

Genotype Mean SD Median Quartiles  Genotype Mean SD Median Quartiles  Genotype Mean SD Median Quartiles P-value 

1 rs7738586 --- -- -- -- --  CA 66 15 62 56-72  CC 68 17 64 55-79 0.919 

2 rs9380825 AA 70 13 71 61-80  AG 69 18 64 56-80  GG 65 15 60 55-70 0.650 

4 rs926674 TT 59 6 59 56-62  TC 64 12 60 55-71  CC 69 17 64 56-82 0.569 

5 rs2268657 GG 73 14 72 59-83  AG 68 17 61 56-73  AA 62 14 59 53-67 0.203 

6 rs13202369 GG 70 32 70 58-81  AG 68 17 62 54-77  AA 68 16 64 56-73 0.935 

7 rs3799707 TT 62 9 61 57-66  GT 67 20 59 54-83  GG 69 14 66 59-78 0.452 

8 rs10305432 CC 65 16 59 56-71  CT 68 17 65 57-75  TT 68 16 62 55-80 0.852 

9 rs9283907 AA 41 -- 41 41-41  AG 62 18 56 54-62  GG 70 15 67 59-82 0.054 

10 rs742764 CC 57 12 54 53-59  TC 71 18 66 56-80  TT 70 14 66 59-81 0.061 

11 rs2254336 TT 63 17 59 53-68  TA 66 16 62 54-75  AA 73 16 71 62-85 0.138 

12 rs910163 CC 57 4 59 56-60  TC 71 19 66 54-82  TT 67 15 62 57-73 0.431 

14 rs6923761 AA 74 12 72 66-81  GA 66 15 62 56-74  GG 68 22 59 54-83 0.297  

15 rs7766663 GG 63 19 57 53-66  GT 67 17 62 54-79  TT 72 14 71 61-81 0.168  

16 rs932443 GG 65 12 60 59-68  AG 71 19 65 54-83  AA 66 15 62 57-72 0.820  

17 rs2268646 -- -- -- -- --  AG 71 17 67 57-87  GG 67 16 63 54-76 0.485  

18 rs2300614 TT 56 3 54 53-59  CT 70 19 65 54-83  CC 69 15 66 58-73 0.120  

19 rs2268641 AA 57 4 57 54-59  AG 69 17 65 54-80  GG 68 16 63 58-73 0.283  

20 rs2268640 CC 57 4 59 56-60  TC 70 19 66 54-82  TT 68 15 62 57-73 0.453  

21 rs2268639 TT 57 4 59 56-60  TA 68 18 65 55-79  AA 68 15 63 56-73 0.475  

22 rs2206942 AA 72 23 60 57-86  AG 68 15 65 55-78  GG 67 17 63 55-73 0.959  

23 rs2894420 AA 76 16 72 64-92  AG 64 12 62 55-72  GG 69 22 59 54-81 0.187  

26 rs4714211 GG 61 18 54 54-60  AG 68 16 64 56-75  AA 71 16 68 59-89 0.233  

27 rs10305525 -- -- -- -- --  CA 64 18 59 55-68  CC 69 16 64 55-79 0.412  

28 rs9296291 CC 57 4 59 56-60  TC 71 19 66 54-83  TT 67 16 62 56-72 0.386  

29 rs9968886 -- -- -- -- --  GA 69 19 61 56-92  GG 68 16 65 54-74 0.934  

30 rs2143733 GG 66 20 59 55-77  GT 68 17 64 55-79  TT 69 15 65 59-73 0.791  

31 rs9296292 CC 55 6 56 52-59  CT 68 19 65 54-81  TT 70 15 66 60-77 0.125 

Reported P-values are for median data.    
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Figure 47. Gastric emptying rate boxplot for SNP 1 rs7738586 according to genotype 

 

 

Figure 48. Gastric emptying rate boxplot for SNP 2 rs9380825 according to genotype 
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Figure 49. Gastric emptying rate boxplot for SNP 4 rs926674 according to genotype 

 

 

Figure 50. Gastric emptying rate boxplot for SNP 5 rs2268657 according to genotype 
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Figure 51. Gastric emptying rate boxplot for SNP 6 rs13202369 according to genotype 

 

 

Figure 52. Gastric emptying rate boxplot for SNP 7 rs3799707 according to genotype 
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Figure 53. Gastric emptying rate boxplot for SNP 8 rs10305432 according to genotype 

 

 

Figure 54. Gastric emptying rate boxplot for SNP 9 rs9283907 according to genotype 
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Figure 55. Gastric emptying rate boxplot for SNP 10 rs742764 according to genotype. 

†CC significantly faster than TT (P < 0.01) and TC (P < 0.01). 

 

Figure 56. Gastric emptying rate boxplot for SNP 11 rs2254336 according to genotype. 

†AA significantly slower than TT (P < 0.05) and TA (P < 0.05). 

† 

† 
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Figure 57. Gastric emptying rate boxplot for SNP 12 rs910163 according to genotype 

 

 

Figure 58. Gastric emptying rate boxplot for SNP 14 rs6923761 according to genotype 
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Figure 59. Gastric emptying rate boxplot for SNP 15 rs7766663 according to genotype 

 

 

Figure 60. Gastric emptying rate boxplot for SNP 16 rs932443 according to genotype 
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Figure 61. Gastric emptying rate boxplot for SNP 17 rs2268646 according to genotype 

 

 

Figure 62. Gastric emptying rate boxplot for SNP 18 rs2300614 according to genotype 
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Figure 63. Gastric emptying rate boxplot for SNP 19 rs2268641 according to genotype 

 

 

Figure 64. Gastric emptying rate boxplot for SNP 20 rs2268640 according to genotype 
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Figure 65. Gastric emptying rate boxplot for SNP 21 rs2268639 according to genotype 

 

 

Figure 66. Gastric emptying rate boxplot for SNP 22 rs2206942 according to genotype 
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Figure 67. Gastric emptying rate boxplot for SNP 23 rs2894420 according to genotype 

 

 

Figure 68. Gastric emptying rate boxplot for SNP 26 rs4714211 according to genotype 
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Figure 69. Gastric emptying rate boxplot for SNP 27 rs10305525 according to genotype 

 

 

Figure 70. Gastric emptying rate boxplot for SNP 28 rs9296291 according to genotype 
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Figure 71. Gastric emptying rate boxplot for SNP 29 rs9968886 according to genotype 

 

 

Figure 72. Gastric emptying rate boxplot for SNP 30 rs2143733 according to genotype 
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Figure 73. Gastric emptying rate boxplot for SNP 31 rs9296292 according to genotype 

 

6.3.4.2. By phenotype 

Results for Tlag and T½ according to phenotype are shown in Table 9 and Table 10, 

respectively. Non-parametric statistical analysis revealed a significant effect of the minor 

allele on median gastric emptying T½ for SNP 9 rs9283907, where participants with one or 

two A alleles had significantly faster T½ than participants homozygous for the allele G by 

18% (Table 10; P = 0.033). A significant effect of the minor allele on median gastric 

emptying Tlag was also seen for SNP 5 rs2268657 and SNP 11 rs2254336. Participants with 

one or two G alleles had significantly slower Tlag than participants homozygous for the 

allele A by 11% (Table 9; P = 0.028), and participants with one or two T alleles had 

significantly faster Tlag than participants homozygous for the allele A by 13% (Table 9; P 

= 0.012), respectively. No significant differences in gastric emptying rate were seen 

between phenotypes in all other SNPs though T½ tended toward significance for SNP 11 

rs2254336 (P = 0.055) and SNP 15 rs7766663 (P = 0.097). 
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Table 9. Gastric emptying Tlag results according to phenotype. Values are minutes. 

Reported P-values are for median data. *Significantly faster emptying rate compared to other phenotype (P < 0.05). 

 

  

SNP ID 

Homozygote Major Allele  Heterozygote/homozygote minor allele   

Phenotype n Mean SD Median Quartiles  Phenotype n Mean SD Median Quartiles P-value 

1 rs7738586 CC 38 42 8 40 37-45  A 10 40 9 37 34-41 0.274 

2 rs9380825 GG 15 39 7 37 36-40  A 33 42 9 41 37-44 0.157  

4 rs926674 CC 39 42 9 41 36-46  T 9 38 3 37 36-40 0.239  

5 rs2268657 AA 11 36 5 37* 34-39  G 36 42 8 41 37-45 0.028  

6 rs13202369 AA 25 41 8 39 36-42  G 23 42 9 41 36-48 0.627  

7 rs3799707 GG 26 42 8 40 37-45  T 22 40 9 40 34-43 0.396  

8 rs10305432 TT 26 41 9 40 35-46  C 22 41 8 41 37-42 0.844  

9 rs9283907 GG 38 42 8 41 37-44  A 10 38 8 36 33-41 0.137  

10 rs742764 TT 14 42 7 41 37-46  C 33 41 9 40 35-43 0.492  

11 rs2254336 AA 16 45 7 43 39-49  T 32 39 8 39* 34-41 0.012  

12 rs910163 TT 27 41 9 41 36-44  C 21 41 8 39 36-44 0.950  

14 rs6923761 GG 13 40 10 37 34-41  A 35 42 8 40 37-44 0.197   

15 rs7766663 TT 15 43 8 42 37-48  G 33 40 9 39 35-42 0.136   

16 rs932443 AA 22 41 8 41 35-44  G 26 41 9 40 36-44 0.983   

17 rs2268646 GG 38 41 8 40 35-43  A 10 43 8 40 37-48 0.493   

18 rs2300614 CC 22 42 9 42 36-46  T 26 40 8 39 35-42 0.330   

19 rs2268641 GG 22 41 9 41 35-44  A 25 41 8 39 36-42 0.856   

20 rs2268640 TT 27 41 8 41 37-44  C 21 41 8 39 35-44 0.546   

21 rs2268639 AA 22 41 8 41 36-44  T 25 40 8 39 35-42 0.701   

22 rs2206942 GG 18 41 10 41 32-46  A 30 41 8 40 36-44 0.806   

23 rs2894420 GG 11 42 9 37 36-48  A 36 40 8 40 36-43 0.930   

26 rs4714211 AA 13 43 9 41 37-44  G 34 41 8 40 35-44 0.497   

27 rs10305525 CC 39 42 9 40 36-45  A 9 39 7 37 36-41 0.369   

28 rs9296291 TT 28 41 9 41 37-43  C 20 41 8 40 35-44 0.908   

29 rs9968886 GG 36 41 8 41 36-43  A 12 41 9 37 36-45 0.543   

30 rs2143733 TT 14 43 9 42 39-48  G 34 40 8 39 35-44 0.276   

31 rs9296292 TT 24 43 8 41 38-45  C 24 40 8 38 34-43 0.107 
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Table 10. Gastric emptying T½ according to phenotype. Values are minutes. 

Reported P-values are for median data. *Significantly faster emptying rate compared to other phenotype (P < 0.05). 

 

  

SNP ID 

Homozygote Major Allele  Heterozygote/homozygote minor allele   

Phenotype n Mean SD Median Quartiles  Phenotype n Mean SD Median Quartiles P-value 

1 rs7738586 CC 38 68 17 64 55-79  A 10 66 15 62 56-72 0.919 

2 rs9380825 GG 15 65 15 60 55-70  A 33 69 17 64 56-80 0.367  

4 rs926674 CC 39 69 17 64 56-82  T 9 62 10 59 54-65 0.355  

5 rs2268657 AA 11 62 14 59 53-67  G 36 69 16 64 56-78 0.119  

6 rs13202369 AA 25 68 16 64 56-73  G 23 68 17 62 54-80 0.757  

7 rs3799707 GG 26 69 14 66 59-78  T 22 66 19 60 54-76 0.218  

8 rs10305432 TT 26 68 16 62 55-80  C 22 68 17 65 55-76 0.836  

9 rs9283907 GG 38 70 15 67 59-82  A 10 60 18 55* 53-61 0.033  

10 rs742764 TT 14 70 14 66 59-81  C 33 67 18 62 54-77 0.478  

11 rs2254336 AA 16 73 16 71 62-85  T 32 65 16 60 54-74 0.055  

12 rs910163 TT 27 67 15 62 57-73  C 21 69 18 64 54-80 0.950  

14 rs6923761 GG 13 68 22 59 54-83  A 35 68 14 64 57-75 0.516   

15 rs7766663 TT 15 72 14 71 61-81  G 33 66 17 61 54-77 0.097   

16 rs932443 AA 22 66 15 62 57-72  G 26 70 18 65 54-82 0.702   

17 rs2268646 GG 38 67 16 63 54-76  A 10 71 17 67 57-87 0.485   

18 rs2300614 CC 22 69 15 66 58-73  T 26 67 18 62 54-79 0.521   

19 rs2268641 GG 22 68 16 63 58-73  A 25 67 17 62 54-77 0.733   

20 rs2268640 TT 27 68 15 62 57-73  C 21 68 18 64 54-80 0.755   

21 rs2268639 AA 22 68 18 65 55-79  T 25 67 17 62 54-77 0.806   

22 rs2206942 GG 18 67 17 63 55-73  A 30 69 17 63 55-79 0.774   

23 rs2894420 GG 11 69 22 59 54-81  A 36 67 14 64 56-74 0.715   

26 rs4714211 AA 13 71 16 68 59-89  G 34 66 17 62 54-73 0.385   

27 rs10305525 CC 39 69 16 64 55-79  A 9 64 18 59 55-68 0.412   

28 rs9296291 TT 28 67 16 62 56-72  C 20 69 18 65 54-81 0.875   

29 rs9968886 GG 36 68 16 65 54-74  A 12 69 19 61 56-92 0.934   

30 rs2143733 TT 14 69 15 65 59-73  G 34 68 17 63 54-79 0.691   

31 rs9296292 TT 24 70 15 66 60-77  C 24 66 18 60 54-78 0.239 
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6.3.4.3. Correlations 

No correlations were found between gastric emptying rate Tlag and BMI (r = 0.062, P = 

0.674; Figure 74) or percentage body fat (r = -0.004, P = 0.980; Figure 75). In addition, no 

correlations were found between gastric emptying rate T½ and BMI (r =-0.054, P =0.716; 

Figure 76) or percentage body fat (r = -0.079, P = 0.593; Figure 77). Furthermore, no 

correlations were found between gastric emptying rate Tlag and BM (r = 0.071, P = 0.630; 

Figure 78) or T½ and BM (r = -0.03, P = 0.669; Figure 79). 

 

 

 

Figure 74.Correlation graph between gastric emptying Tlag and body mass index (BMI). 
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Figure 75. Correlation graph between gastric emptying Tlag and body fat percentage 

 

 

Figure 76. Correlation graph between gastric emptying T½ and body mass index (BMI) 
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Figure 77. Correlation graph between gastric emptying T½ and body fat percentage 

 

 

Figure 78. Correlation graph between gastric emptying Tlag and body mass 
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Figure 79. Correlation graph between gastric emptying T½ and body mass 

 

 

6.3.5. BMI 

Mean ± SD BMI for all participants was 23.9 ± 3.3 kg.m-2. Median (quartiles) BMI for all 

participants was 23.1 (21.6-25.3) kg.m-2. No effect of genotype on BMI were found for all 

SNPs although SNP 15 tended to significance (P = 0.091). Results by genotype are 

presented in Table 11. Analysis by phenotype however, revealed significant differences in 

BMI for SNP 12 rs910163 (P = 0.039) and SNP 15 rs7766663 (P = 0.028) (Table 12). 

Median BMI was significantly higher in participants with one or two minor alleles 

compared to homozygotes of the major allele for both SNPs. 

 

6.3.6. Body fat percentage 

Mean ± SD body fat for all participants was 19.0 ± 6.2%. Median (quartiles) body fat for 

all participants was 18.3 (14.1-22.2)%. No effect of genotype nor phenotype was seen for 

any SNPs although SNP 28 tended to significance for phenotype (P = 0.061). Results by 

genotype are presented in Table 13 and results by phenotype are presented in Table 14. 
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Table 11. Body mass index according to genotype. Values are kg.m-2. 

  

SNP ID 

Homozygous Minor Allele  Heterozygous  Homozygous Major Allele  

Genotype Mean SD Median Quartiles  Genotype Mean SD Median Quartiles  Genotype Mean SD Median Quartiles P-value 

1 rs7738586 --- -- -- -- --  CA 22.7 2.5 21.9 21.2-23.6  CC 24.2 3.4 23.6 22.0-25.3 0.141 

2 rs9380825 AA 25.5 4.5 25.3 21.5-29.9  AG 23.8 2.8 23.1 21.9-24.8  GG 23.6 3.7 22.9 21.2-25.7 0.751 

4 rs926674 TT 21.2 3.9 20.8 19.2-23.1  TC 23.7 1.6 20.5 18.1-26.4  CC 24.1 3.4 22.8 21.7-26.2 0.463 

5 rs2268657 GG 24.0 3.5 24.4 21.5-25.3  AG 23.8 3.0 22.8 21.8-24.6  AA 24.0 4.3 24.0 20.8-26.4 0.994 

6 rs13202369 GG 23.7 4.3 23.7 22.1-25.2  AG 24.9 3.8 23.2 22.4-27.6  AA 23.0 2.6 22.8 21.1-25.1 0.319 

7 rs3799707 TT 25.6 4.7 26.3 23.4-28.1  GT 24.0 2.7 23.7 22.2-25.1  GG 23.6 3.6 22.8 21.5-25.2 0.635 

8 rs10305432 CC 22.3 2.6 20.8 20.8-23.1  CT 24.4 3.9 22.8 21.6-26.8  TT 23.7 2.9 23.3 22.0-25.1 0.565 

9 rs9283907 AA 22.8 -- 22.8 22.8-22.8  AG 23.8 3.0 24.0 22.4-25.1  GG 23.9 3.4 22.9 21.5-25.3 0.830 

10 rs742764 CC 23.9 3.3 23.2 21.1-25.6  TC 23.9 3.1 23.7 21.7-25.3  TT 23.9 4.0 22.7 21.6-24.9 0.833 

11 rs2254336 TT 24.2 3.1 23.7 21.7-26.0  TA 24.0 3.5 23.7 21.8-25.2  AA 23.6 3.2 22.6 21.6-24.7 0.755 

12 rs910163 CC 25.5 4.8 25.3 23.1-27.8  TC 24.6 3.2 24.3 22.7-26.4  TT 23.2 3.1 22.2 21.3-24.2 0.117 

14 rs6923761 AA 21.9 1.7 21.9 21.0-22.8  GA 24.2 3.6 23.5 21.7-25.7  GG 24.2 3.0 23.7 22.4-26.0 0.150  

15 rs7766663 GG 24.6 3.3 24.5 21.6-26.2  GT 24.5 3.7 24.0 22.2-26.0  TT 22.4 2.2 22.1 21.1-23.3 0.091  

16 rs932443 GG 24.6 4.0 25.3 20.8-26.0  AG 24.4 3.7 23.7 21.7-26.3  AA 23.2 2.6 22.6 21.7-24.3 0.405  

17 rs2268646 -- -- -- -- --  AG 23.0 2.3 22.8 21.8-23.8  GG 24.1 3.5 23.6 21.6-25.8 0.431  

18 rs2300614 TT 25.3 3.5 25.3 23.7-26.3  CT 23.7 3.2 22.8 21.5-24.7  CC 23.7 3.4 22.6 21.6-25.3 0.504  

19 rs2268641 AA 25.1 4.0 24.7 23.2-26.6  AG 23.6 3.2 23.2 21.2-24.7  GG 24.0 3.4 22.6 21.8-26.2 0.729  

20 rs2268640 CC 25.5 4.8 25.3 23.1-27.8  TC 24.1 3.4 23.7 21.7-25.3  TT 23.6 3.1 22.8 21.7-24.7 0.608  

21 rs2268639 TT 25.5 4.8 25.3 23.1-27.8  TA 23.6 3.1 23.0 21.7-24.7  AA 24.0 3.5 22.9 21.6-26.2 0.783  

22 rs2206942 AA 25.1 3.6 24.3 22.8-27.6  AG 24.0 3.6 23.7 21.5-25.2  GG 23.3 2.8 22.3 21.6-24.3 0.431  

23 rs2894420 AA 22.9 2.5 22.1 21.7-24.4  AG 24.0 3.7 22.8 21.5-25.2  GG 24.4 3.0 23.7 22.5-25.7 0.548  

26 rs4714211 GG 23.5 3.5 22.4 21.0-24.5  AG 24.3 3.1 23.7 22.4-25.7  AA 23.4 3.8 22.2 20.6-25.1 0.342  

27 rs10305525 -- -- -- -- --  CA 24.7 3.8 23.2 22.6-26.0  CC 23.7 3.2 22.9 21.5-25.2 0.420  

28 rs9296291 CC 25.5 4.8 25.3 23.1-27.8  TC 24.3 3.4 23.7 22.4-25.3  TT 23.5 3.1 22.6 21.6-24.6 0.420  

29 rs9968886 -- -- -- --   GA 23.5 2.1 23.1 22.5-24.3  GG 24.0 3.6 23.2 21.4-25.5 0.886  

30 rs2143733 GG 23.7 3.3 22.9 21.7-24.3  GT 24.3 3.5 23.7 22.2-25.7  TT 23.2 3.0 22.0 21.6-24.3 0.429  

31 rs9296292 CC 24.3 4.6 23.1 20.8-26.6  CT 24.0 3.2 23.4 22.3-25.2  TT 23.7 3.3 22.6 21.6-25.3 0.760 

Reported P-values are for median data.    
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Table 12. Body mass index according to phenotype. Values are kg.m-2. 

Reported P-values are for median data. *Significantly faster emptying rate compared to other phenotype (P < 0.05). 

 

  

SNP ID 

Homozygote Major Allele  Heterozygote/homozygote minor allele   

Phenotype n Mean SD Median Quartiles  Phenotype n Mean SD Median Quartiles P-value 

1 rs7738586 CC 38 24.2 3.4 23.6 22.0-25.3  A 10 22.7 2.5 21.9 21.2-23.6 0.141 

2 rs9380825 GG 15 23.6 3.7 22.9 21.2-25.7  A 33 24.0 3.1 23.5 21.7-25.1 0.648  

4 rs926674 CC 39 24.1 3.4 22.8 21.7-26.2  T 9 22.9 2.6 23.7 20.8-24.7 0.663  

5 rs2268657 AA 11 24.0 4.3 24.0 20.8-26.4  G 36 23.9 3.0 23.0 21.7-25.1 1.000  

6 rs13202369 AA 25 23.0 2.6 22.8 21.1-25.1  G 23 24.8 3.7 23.2 22.2-27.1 0.151  

7 rs3799707 GG 26 23.6 3.6 22.8 21.5-25.2  T 22 24.2 2.9 23.9 22.2-25.3 0.385  

8 rs10305432 TT 26 23.7 2.9 23.3 22.0-25.1  C 22 24.1 3.8 22.8 21.5-25.8 0.852  

9 rs9283907 GG 38 23.9 3.4 22.9 21.5-25.3  A 10 23.7 2.9 23.8 22.5-25.0 0.612  

10 rs742764 TT 14 23.9 4.0 22.7 21.6-24.9  C 33 23.9 3.1 23.7 21.6-25.3 0.577  

11 rs2254336 AA 16 23.6 3.2 22.6 21.6-24.7  T 32 24.0 3.4 23.7 21.7-25.5 0.470  

12 rs910163 TT 27 23.2 3.1 22.2 21.3-24.2  C 21 24.7 3.4 24.6* 22.6-26.7 0.039  

14 rs6923761 GG 13 24.2 3.0 23.7 22.4-26.0  A 35 23.8 3.4 22.9 21.6-25.1 0.539   

15 rs7766663 TT 15 22.4 2.2 22.1 21.1-23.3  G 33 24.5 3.5 24.0* 22.1-26.3 0.028   

16 rs932443 AA 22 23.2 2.6 22.6 21.7-24.3  G 26 24.5 3.7 23.9 21.6-26.2 0.179   

17 rs2268646 GG 38 24.1 3.5 23.6 21.6-25.8  A 10 23.0 2.3 22.8 21.8-23.8 0.431   

18 rs2300614 CC 22 23.7 3.4 22.6 21.6-25.3  T 26 24.0 3.3 23.7 21.7-25.3 0.521   

19 rs2268641 GG 22 24.0 3.4 22.6 21.8-26.2  A 25 23.8 3.3 23.7 21.2-25.1 1.000   

20 rs2268640 TT 27 23.6 3.1 22.8 21.7-24.7  C 21 24.3 3.5 23.7 21.5-25.3 0.377   

21 rs2268639 AA 22 24.0 3.5 22.9 21.6-26.2  T 25 23.8 3.3 23.2 21.5-25.1 0.915   

22 rs2206942 GG 18 23.3 2.8 22.3 21.6-24.3  A 30 24.2 3.6 23.7 21.7-25.3 0.277   

23 rs2894420 GG 11 24.4 3.0 23.7 22.5-25.7  A 36 23.7 3.4 22.8 21.5-25.2 0.393   

26 rs4714211 AA 13 23.4 3.8 22.2 20.6-25.1  G 34 24.1 3.1 23.6 22.1-25.3 0.274   

27 rs10305525 CC 39 23.7 3.2 22.9 21.5-25.2  A 9 24.7 3.8 23.2 22.6-26.0 0.420   

28 rs9296291 TT 28 23.5 3.1 22.6 21.6-24.6  C 20 24.5 3.5 24.2 22.1-25.9 0.202   

29 rs9968886 GG 36 24.0 3.6 23.2 21.4-25.5  A 12 23.5 2.1 23.1 22.5-24.3 0.886   

30 rs2143733 TT 14 23.2 3.0 22.0 21.6-24.3  G 34 24.2 3.4 23.6 22.1-25.3 0.229   

31 rs9296292 TT 24 23.7 3.3 22.6 21.6-25.3  C 24 24.1 3.4 23.4 22.0-25.3 0.496 
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Table 13. Body fat percentage according to genotype. 

 

 

  

SNP ID 

Homozygous Minor Allele  Heterozygous  Homozygous Major Allele  

Genotype Mean SD Median Quartiles  Genotype Mean SD Median Quartiles  Genotype Mean SD Median Quartiles P-value 

1 rs7738586 --- -- -- -- --  CA 18.1 7.4 16.2 12.3-22.2  CC 19.2 5.9 18.4 15.0-22.1 0.517 

2 rs9380825 AA 18.9 8.7 15.5 12.1-26.8  AG 19.2 6.1 18.7 14.1-22.2  GG 18.6 5.9 17.5 15.3-21.5 0.912 

4 rs926674 TT 17.6 3.9 15.4 15.3-18.8  TC 22.7 5.9 20.5 18.1-26.4  CC 18.5 6.3 18.0 13.8-22.2 0.282 

5 rs2268657 GG 17.7 7.1 14.9 14.2-18.7  AG 19.4 6.2 18.6 13.8-22.3  AA 19.4 6.3 17.5 15.3-22.7 0.630 

6 rs13202369 GG 15.7 2.6 15.7 14.7-16.6  AG 20.3 6.0 19.6 16.9-23.2  AA 18.1 6.4 15.5 13.8-22.1 0.295 

7 rs3799707 TT 21.1 8.7 21.6 16.9-25.6  GT 19.3 6.3 18.7 14.6-22.3  GG 18.5 6.1 17.7 14.0-21.8 0.811 

8 rs10305432 CC 20.8 9.6 15.4 15.3-23.7  CT 18.9 6.2 18.6 13.8-22.7  TT 18.8 6.1 18.1 14.3-22.1 0.953 

9 rs9283907 AA 10.0 - 10.0 10.0-10.0  AG 20.9 4.1 21.9 17.5-22.1  GG 18.8 6.5 18.0 13.8-22.1 0.102 

10 rs742764 CC 20.8 7.6 20.6 15.4-24.3  TC 18.5 5.9 17.5 13.7-22.1  TT 19.2 6.2 18.7 14.6-22.1 0.670 

11 rs2254336 TT 20.8 8.1 21.6 15.2-27.8  TA 18.1 4.9 17.9 14.6-19.5  AA 19.3 6.9 18.7 13.4-23.6 0.767 

12 rs910163 CC 20.5 9.0 15.4 15.3-23.2  TC 20.0 5.4 19.3 17.6-22.9  TT 18.2 6.6 16.9 13.3-21.3 0.407 

14 rs6923761 AA 17.5 5.7 14.9 14.2-20.6  GA 18.7 6.0 18.0 13.8-22.0  GG 20.4 7.0 19.6 15.4-24.3 0.557  

15 rs7766663 GG 21.9 7.1 21.9 16.5-26.9  GT 18.6 5.7 17.9 14.0-22.0  TT 17.7 6.1 16.1 13.0-20.1 0.245  

16 rs932443 GG 24.2 8.3 27.8 15.4-30.9  AG 18.7 5.5 18.6 13.8-22.1  AA 18.1 6.1 17.2 13.9-21.7 0.265  

17 rs2268646 -- -- -- -- --  AG 17.9 6.0 18.1 13.1-19.2  GG 19.3 6.3 18.3 14.3-23.0 0.603  

18 rs2300614 TT 21.0 6.4 21.6 15.4-22.1  CT 19.1 6.3 18.6 13.8-22.1  CC 18.4 6.3 17.1 13.9-22.1 0.658  

19 rs2268641 AA 19.8 7.5 16.5 15.4-20.9  AG 19.5 6.2 18.9 13.8-22.1  GG 18.5 6.4 17.8 13.9-22.3 0.794  

20 rs2268640 CC 20.5 9.0 15.4 15.3-23.2  TC 20.5 6.2 20.8 16.1-24.0  TT 17.8 5.9 17.5 13.3-20.1 0.274  

21 rs2268639 TT 20.5 9.0 15.4 15.3-23.2  TA 19.1 6.4 18.9 13.8-22.1  AA 18.8 6.1 17.8 14.0-22.3 0.941  

22 rs2206942 AA 20.9 6.0 19.9 16.3-23.5  AG 19.8 6.6 18.8 15.1-23.3  GG 17.3 5.6 15.9 13.8-20.9 0.247  

23 rs2894420 AA 17.8 5.3 17.5 14.5-21.6  AG 18.8 6.8 17.9 13.8-22.7  GG 20.7 5.8 20.9 17.2-23.2 0.406  

26 rs4714211 GG 18.2 6.7 15.4 14.5-20.9  AG 19.3 6.1 18.6 14.0-23.8  AA 17.9 5.5 18.0 14.5-19.3 0.827  

27 rs10305525 -- -- -- -- --  CA 19.6 7.0 18.9 18.0-20.9  CC 18.8 6.1 17.5 14.0-22.3 0.653  

28 rs9296291 CC 20.5 9.0 15.4 15.3-23.2  TC 20.9 6.2 21.9 17.9-24.3  TT 17.7 5.8 17.2 13.5-19.7 0.163  

29 rs9968886 -- -- -- --   GA 18.3 6.4 18.1 14.9-19.7  GG 19.2 6.2 18.3 14.1-22.7 0.703  

30 rs2143733 GG 18.7 5.9 16.1 15.3-19.9  GT 19.8 6.8 18.8 14.6-25.6  TT 17.5 5.1 15.9 13.9-20.9 0.601  

31 rs9296292 CC 18.8 8.1 15.3 14.9-19.3  CT 20.0 6.3 20.3 15.2-23.5  TT 18.2 6.0 17.5 13.5-19.9 0.497 

Reported P-values are for median data.    



148 

 

Table 14. Body fat percentage according to phenotype. 

 

  

SNP ID 

Homozygote Major Allele  Heterozygote/homozygote minor allele   

Phenotype n Mean SD Median Quartiles  Phenotype n Mean SD Median Quartiles P-value 

1 rs7738586 CC 38 19.2 5.9 18.4 15.0-22.1  A 10 18.1 7.4 16.2 12.3-22.2 0.517 

2 rs9380825 GG 15 18.6 5.9 17.5 15.3-21.5  A 33 19.2 6.4 18.7 13.8-22.5 0.876  

4 rs926674 CC 39 18.5 6.3 18.0 13.8-22.2  T 9 21.0 5.7 18.8 17.5-22.1 0.224  

5 rs2268657 AA 11 19.4 6.3 17.5 15.3-22.7  G 36 19.0 6.3 18.7 13.8-22.2 0.841  

6 rs13202369 AA 25 18.1 6.4 15.5 13.8-22.1  G 23 19.9 5.9 18.9 16.5-22.9 0.265  

7 rs3799707 GG 26 18.5 6.1 17.7 14.0-21.8  T 22 19.5 6.4 18.7 14.4-22.4 0.576  

8 rs10305432 TT 26 18.8 6.1 18.1 14.3-22.1  C 22 19.2 6.5 18.3 14.2-22.9 0.868  

9 rs9283907 GG 38 18.8 6.5 18.0 13.8-22.1  A 10 19.8 5.2 21.8 17.1-22.1 0.446  

10 rs742764 TT 14 19.2 6.2 18.7 14.6-22.1  C 33 19.0 6.3 17.9 13.8-22.1 0.871  

11 rs2254336 AA 16 19.3 6.9 18.7 13.4-23.6  T 32 18.9 5.9 18.0 14.7-22.1 0.948  

12 rs910163 TT 27 18.2 6.6 16.9 13.3-21.3  C 21 20.0 5.7 18.9 15.5-23.2 0.183  

14 rs6923761 GG 13 20.4 7.0 19.6 15.4-24.3  A 35 18.5 5.9 17.9 13.8-22.0 0.318   

15 rs7766663 TT 15 17.7 6.1 16.1 13.0-20.1  G 33 19.6 6.3 18.6 15.2-23.2 0.322   

16 rs932443 AA 22 18.1 6.1 17.2 13.9-21.7  G 26 19.8 6.3 18.7 15.3-23.8 0.362   

17 rs2268646 GG 38 19.3 6.3 18.3 14.3-23.0  A 10 17.9 6.0 18.1 13.1-19.2 0.603   

18 rs2300614 CC 22 18.4 6.3 17.1 13.9-22.1  T 26 19.5 6.2 18.7 15.3-22.1 0.548   

19 rs2268641 GG 22 18.5 6.4 17.8 13.9-22.3  A 25 19.6 6.2 18.8 15.2-22.1 0.502   

20 rs2268640 TT 27 17.8 5.9 17.5 13.3-20.1  C 21 20.5 6.4 19.6 15.4-24.3 0.112   

21 rs2268639 AA 22 18.8 6.1 17.8 14.0-22.3  T 25 19.3 6.5 18.8 14.2-22.1 0.773   

22 rs2206942 GG 18 17.3 5.6 15.9 13.8-20.9  A 30 20.0 6.4 18.9 15.4-23.8 0.115   

23 rs2894420 GG 11 20.7 5.8 20.9 17.2-23.2  A 36 18.6 6.4 17.7 13.8-22.2 0.187   

26 rs4714211 AA 13 17.9 5.5 18.0 14.5-19.3  G 34 19.0 6.2 18.3 13.9-22.9 0.634   

27 rs10305525 CC 39 18.8 6.1 17.5 14.0-22.3  A 9 19.6 7.0 18.9 18.0-20.9 0.653   

28 rs9296291 TT 28 17.7 5.8 17.2 13.5-19.7  C 20 20.8 6.4 20.8 15.5-24.9 0.061   

29 rs9968886 GG 36 19.2 6.2 18.3 14.1-22.7  A 12 18.3 6.4 18.1 14.9-19.7 0.703   

30 rs2143733 TT 14 17.5 5.1 15.9 13.9-20.9  G 34 19.6 6.6 18.8 15.3-23.8 0.335   

31 rs9296292 TT 24 18.2 6.0 17.5 13.5-19.9  C 24 19.8 6.5 19.3 15.0-23.5 0.312 

Reported P-values are for median data. 
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6.4. DISCUSSION 

The results of this study showed several Tag SNPs of the GLP-1R gene are significantly 

associated with gastric emptying rate of a glucose solution in Caucasian men. Two 

neighbouring SNPs 10 and 11, rs742764 and rs2254336, were found to be significantly 

associated with gastric emptying rate by genotype. In addition SNP 5 rs2268657, SNP 9 

rs9283907 and SNP 15 rs7766663 tended to significance. Furthermore, three SNPs, 5, 9 

and 11, rs2268657, rs9283907 and rs2254336, respectively, were found to be 

significantly associated with gastric emptying rate by phenotype. SNP 15 rs7766663 also 

tended to significance. Thus, significant associations between genetic variation and 

gastric emptying rate were found for four Tag SNPs; 5, 9, 10 and 11 by one or more 

measures of genetic association. The former SNP is situated in intron 1 and the latter three 

situated in intron 3. SNP 11 had a significant association by both genotype and phenotype, 

SNP 10 had a significant association by genotype, and SNPs 9 and 5 had a tendency of 

genotype association and a significant association by phenotype. A tendency of 

significance by genotype and phenotype was also found for SNP 15 which is situated in 

intron 5.  

 The aforementioned Tag SNPs identified to be associated with gastric emptying 

rate signify a region(s) where a causative variant is most likely to reside (Xia & Grant, 

2013). As three of the associated SNPs are neighbouring SNPs, this presents a genomic 

region that warrants further investigation with particularly high interest. Approximately 

3000 bp exist between the locations of SNP 9 and 10 and similarly between SNP 10 and 

11. Spanning the whole 6132 bp ‘hot spot’ region between SNP 9 and 11, a total of 129 

SNPs have been sequenced to date. No known functional SNPs within the GLP-1R gene 

have currently been identified within this particular region or within introns 1, 3 or 5. 

However, it is widely known that SNPs in regulatory elements residing within intronic 

regions can alter silencing, enhancer, or splicing events.  Further work by in silico analysis 

or multi-array analysis of all 129 known SNPs within this region to narrow down on the 

precise SNP or SNPs responsible for the observed differences in gastric emptying rate 

should therefore be conducted. The genetic variants surrounding SNP 5 in intron 1 should 

also be further investigated as SNPs within intron 1 of several genes have been shown to 

influence gene transcription events.  

 Variants in the proximity of SNP 15 also provide a directive area of further 

research in gastric emptying regulation as it tended toward significance but was also 

significantly associated with BMI by phenotype. This association may signal a link 

between gastric emptying rate and BMI but further participants are required to confirm 
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these concurrent associations. Indeed, further potential ‘links’ or associations may also 

be identified with a much larger sample size which will increase the power of future 

studies. The limitation in sample size and the fact that all participants were healthy and 

predominantly classed as normal weight according to BMI and had normal body fat 

percentage, with a few exceptions, may explain the lack of correlation between gastric 

emptying rate and BMI and body fat percentage seen in this study.  

  The two additional missense SNPs in close proximity to the locus of the variant 

seen in the mice model by Kumar et al., (2008) did not show any variants in the sample 

population of this present study. It may be that the variant is rare or non-existent in the 

Caucasian population. The minor allele frequency (MAF) for these two missense SNPs 

are unknown. The other additional missense SNP selected for its previous association 

with insulin secretion (Sathananthan et al., 2010) also showed no variants in this 

participant group. This was mostly likely due to its small MAF of 0.0646 indicating the 

SNP is somewhat rare. Tag SNPs 6 rs13202369 (intron 1) and 14 rs6923761 (exon 5) 

have previously been reported to alter insulin secretion responses to intravenous GLP-1 

(Sathananthan et al., 2010; Vella et al., 2009). These were not found to be associated with 

gastric emptying rate in this study, however.  

 In conclusion, the results of this targeted gene study to investigate the potential 

influence of GLP-1R genetic variation on gastric emptying rate in humans revealed 

several Tag SNPs to be associated with gastric emptying rate of a glucose solution in 

healthy Caucasian men. This suggests that genetic variation within the GLP-1R gene may 

influence gastric emptying rate in humans. Further work should be undertaken to identify 

the precise SNP or SNPs responsible and functional analysis conducted. Furthermore, this 

association study should be repeated with a larger population sample to independently 

confirm the detected associations between GLP-1R genetic variation and gastric 

emptying rate.  
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The growing prevalence of overweight and obesity is a major health concern 

worldwide. In an attempt to understand and tackle the rising problem of obesity, much 

research has been conducted on subjective feelings of appetite, gut hormone secretion and 

food intake, and how interventions such as physical activity and exercise may affect these. 

The gastrointestinal system, in particular the role of gastric emptying, in appetite and 

satiety is often overlooked. Greater understanding of the physiology of gastric emptying 

and its interactions with nutrients could help in the development of dietary interventions 

that can affect appetite and modulate energy intake. The aims of this thesis were to 

determine some of the hormonal and genetic influences on gastric emptying 

characteristics and to investigate the intrinsic link between the regulation of gastric 

emptying and the regulation of appetite with particular focus on dietary carbohydrates 

and fructose ingestion. The results of the studies presented in this thesis centre around 

four main themes that are discussed below.   

 

7.1. GASTRIC EMPTYING RATE OF DIFFERENT CARBOHYDRATE 

SOLUTIONS 

The effect of different carbohydrate solutions on gastric emptying rate is an important 

consideration in the pathophysiology of obesity and metabolic syndrome resulting from 

fructose and sugary drink overconsumption. Previous investigations comparing the 

gastric emptying rate of different carbohydrate solutions have shown inconsistent results. 

Several studies have previously reported a monosaccharide fructose solution to empty 

faster than an isoenergetic glucose solution (Horowitz et al., 1996; Sole & Noakes, 1989; 

Moran & McHugh, 1981; Elias et al., 1968) and a sucrose solution (Elias et al., 1968). In 

turn, glucose has been reported to empty faster than sucrose (Murray et al., 1994) though 

a combined mixture of fructose and glucose has been shown to empty faster than glucose 

(Jeukendrup & Moseley, 2010). On the other hand, some studies have reported no 

difference in emptying rate between fructose and glucose (McGlone et al., 2008, Shi et 

al., 2000) and no difference between sucrose, combined fructose and glucose and glucose 

alone (Shi et al., 2000).   

The study presented in chapter 3 of this thesis was designed to investigate the 

gastric emptying rate of a number of different commonly ingested carbohydrate solutions; 

glucose, fructose, sucrose and combined glucose and fructose solution. There appeared 

to be a faster emptying of sucrose than glucose as reflected by the longer Tlag for glucose 

than sucrose. Another interesting observation is the large inter individual variation in rates 

of gastric emptying, which may have a genetic basis, as will be discussed below.  
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In addition, it is clear from the studies reported in chapters 4 and 5 of this thesis 

that a fructose solution empties from the stomach at a faster rate than a glucose solution. 

Although these two studies were not designed to directly compare the emptying rate of 

glucose to fructose, the available data shows the emptying rate of fructose is significantly 

faster than glucose both before and after increased dietary fructose supplementation. The 

faster emptying rate of fructose or fructose containing solutions compared to glucose seen 

throughout this thesis may suggest a mechanistic link between the argued development 

of fructose associated obesity and metabolic syndrome. Further work to investigate this 

is required.  

The variation and differences in gastric emptying rate between the different types 

of carbohydrate observed in this thesis cannot be attributed to volume, osmolality or 

energy content. Carbohydrate solutions in the studies presented in chapters 3, 4 and 5 

were of equal volume, energy content, and with the exception of sucrose in chapter 3, 

equal osmolality. Sucrose with its lower osmolality due to its disaccharide form did not 

empty the quickest, however. This suggests an interactive sensing mechanism relating to 

the carbohydrate molecule itself rather than solely osmoreceptors or energy nutrient 

sensors in the gastrointestinal tract. Differences in transporter activation and absorption 

may play a role but further work is required to explore this possibility. 

   

7.2. HORMONAL AND METABOLIC RESPONSES TO DIFFERENT 

CARBOHYDRATE SOLUTIONS 

Gastric emptying is regulated by a complex interaction of neuronal and hormonal input. 

Many of these hormones produced and secreted by the gastrointestinal tract have 

simultaneous effects on appetite regulation. Previous investigations have shown fructose 

ingestion stimulates GLP-1 (Kong et al., 1999), insulin (Teff et al., 2009; Bowen et al., 

2007; Kong et al., 1999) and leptin (Bray, 2010) secretion, and suppresses ghrelin 

secretion (Teff et al., 2004) to a lesser extent than isoenergetic amounts of glucose. The 

difference in GLP-1 and ghrelin responses have not consistently been shown, however. 

No difference in the responses of these two gut hormones was reported by Bowen et al. 

(2007). Furthermore, a previous investigation has found no difference in plasma insulin, 

leptin and ghrelin between the similar carbohydrates HFCS and sucrose (Melanson et al., 

2007). However, these studies have all involved the ingestion of very large and unrealistic 

amounts of glucose, fructose and other sugars. In addition, the studies that have measured 

ghrelin have consistently examined total ghrelin and not the active form acylated ghrelin. 
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 Due to its differential handling by the liver compared to glucose, the consumption 

of large amounts of fructose in the diet is also suggested to contribute to the development 

of NAFLD. Previous investigations have shown that short to moderate term overfeeding 

with fructose results in increased fasting and postprandial plasma triglyceride 

concentrations (Stanhope et al., 2011; Ngo Sock et al., 2010; Stanhope et al., 2009; Teff 

et al., 2009; Stanhope et al., 2008; Teff et al., 2004; Bantle et al., 2000), and decreased 

lipolysis and metabolism of NEFA (Ngo Sock et al., 2010; Le et al., 2006; Teff et al., 

2004) compared with glucose. Previous studies that have investigated the effect of 

ingestion of a single acute bolus solution of carbohydrate have reported increased blood 

lactate and NEFA concentrations for mixed glucose and fructose solution compared with 

glucose alone (Bidwell et al., 2010) but inconsistent triglyceride responses. One study 

showed no difference (Bidwell et al., 2010) and another showed fructose-containing 

solutions resulted in greater triglyceride response compared with glucose alone (Parks et 

al., 2008). Furthermore, studies that have compared the acute effects of HFCS and sucrose 

have found no differences in postprandial triglyceride or lactate responses (Le et al., 2012; 

Stanhope et al., 2008). However, all of these studies have again used untypical amounts 

of carbohydrate ingestion ranging from 50 g to approximately 135 g (30% of estimated 

energy requirements). A typical 330 mL serving of some commercially-available soft 

drinks contain approximately 35 g to 37 g of sugar. The studies presented in chapters 3 

and 5 of this thesis were designed to investigate gastrointestinal hormone responses and 

hepatic metabolism of more typical amounts of carbohydrate ingestion. These studies 

were also designed to measure gastrointestinal hormones and metabolic responses 

concurrently with gastric emptying rate in order to give light on the mechanisms and 

effects of the regulation of gastric emptying rate to the ingestion of different 

carbohydrates. From the data presented in these chapters, it was observed that the 

ingestion of a single acute bolus solution of fructose in typical amounts induce 

significantly lower GIP and reduced insulin responses compared to all other carbohydrate 

solutions. Furthermore, for all carbohydrate solutions the responses of GIP mirrored that 

of insulin more closely than the responses of GLP-1 with insulin, suggesting a 

predominant role of the incretin GIP in glucose stimulated insulin release rather than the 

incretin GLP-1. No differences in overall GLP-1 secretion or ghrelin suppression were 

seen but the pattern of GLP-1 response differed with peak GLP-1 concentration occurring 

later during fructose ingestion compared to other carbohydrate solutions. This suggests 

the faster emptying rate of fructose may be attributable to delayed GLP-1 secretion. 

However, further work is required.   
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The ingestion of a single acute bolus of fructose or glucose following increased 

dietary fructose consumption of 120 g/d for a period of three consecutive days lead to 

some subtle changes in the profile of postprandial gastrointestinal hormone responses. 

During fructose and glucose ingestion, ghrelin concentration was slightly higher at 

baseline and within the first 30 min for each respective supplement trial compared with 

control. GIP and GLP-1 responses were also slightly elevated during glucose ingestion 

but unchanged and slightly suppressed for fructose ingestion. These slight alterations in 

hormones known to influence gastric emptying rate may explain the changes in gastric 

emptying rate observed.  

It can also be seen from the data presented in chapters 3 and 5 that the acute 

ingestion of a typical amount of fructose alone or in combination with free or bound 

glucose results in significant production of lactate and is significantly greater than when 

glucose is ingested alone. It does not result in significant increases in one-hour 

postprandial triglyceride, nor differences between carbohydrates in NEFA or D-3-

hydroxybutyrate concentration, however, suggesting that acute fructose ingestion in 

typical amounts does not cause an increase in de novo lipogenesis and results in similar 

reductions in lipolysis and NEFA metabolism to other carbohydrate solutions. On the 

other hand, the data indicates that increased dietary fructose consumption of 120 g/d for 

even a period of three consecutive days may lead to deleterious increases in triglyceride 

concentration but to levels below that of dyslipidaemia.   

 

7.3. EFFECT OF DIETARY SUPPLEMENTATION OF FRUCTOSE ON 

GASTRIC EMPTYING RATE 

Increased dietary consumption of fructose is argued to play a role in the pathogenesis of 

obesity and metabolic syndrome by altering feeding patterns and promoting weight gain. 

As gastric distension stimulates satiation and satiety (Geliebter et al., 1988), the effect of 

increased fructose ingestion on gastric emptying rate is an important area to study. 

Previous investigations have indicated that gastric emptying in humans may be influenced 

by patterns of previous dietary intake. In addition, there is evidence to suggest that these 

adaptive changes are macronutrient specific and rapid, with adaptation occurring in a few 

days. For example, a high fat diet for 14 d has been shown to accelerate gastric emptying 

of a high fat meal (Cunningham et al., 1991) but not a high carbohydrate meal 

(Castiglione et al., 2002). This has also been reported following only 3 d of a high fat diet 

(Clegg et al., 2011). Increased ingestion of glucose by 400 g per day for 3 d has also been 

shown to accelerate gastric emptying of a hyperosmotic glucose solution but not a protein 
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solution (Cunningham et al., 1991). The effects of glucose supplementation have not been 

reported to be monosaccharide specific however as the emptying of a hyperosmotic 

fructose solution was also equally accelerated (Horowitz et al., 1996).   

 The study reported in chapter 4 of thesis was designed to investigate the effect of 

dietary supplementation of fructose for 3 d on gastric emptying rate of fructose and 

glucose. This study was then repeated with the addition of acquiring gut hormone 

response data and is presented in chapter 5 of this thesis. Data from these two studies 

indicate that short-term supplementation of the diet with 120 g fructose per day for 3 d 

results in significantly accelerated gastric emptying rate of a 6% fructose solution but not 

a 6% glucose solution. These data therefore show a monosaccharide specific adaptation 

of the gut to increased fructose in the diet. The data also demonstrates an adaptation of 

gastric emptying rate to a much smaller amount of additional carbohydrate consumption 

compared to amounts utilised in previous studies. Although the supplementation dose of 

fructose (120 g/d) ingested in the studies presented in this thesis is four times the amount 

of this typical single serving, data shows that it is not an unrealistic amount. Estimated 

daily mean, 90th and 95th percentile fructose intakes from NHANES data are reported 

respectively as 63 g, 103 g and 118 g for males aged 23-50 y and 75 g, 117 g and 134 g 

for males aged 19-22 y (Marriott et al., 2009). The effect of a longer period of high 

fructose intake on gastric emptying rate of different carbohydrates is unknown and 

whether adaptations revert back within the same time frame should be investigated 

further.    

 

7.4. INFLUENCE OF GENETICS ON GASTRIC EMPTYING RATE 

A role of genetics in the susceptibility of excess weight accumulation and obesity has 

been given much attention and has been established. Research on the influence of genetic 

variation on gastric emptying rate has been scarce, however. Previous investigations have 

reported common genetic variants in the MC4R gene (Acosta et al., 2014) and the CCK 

gene (Cremonini et al., 2005) to be associated with gastric emptying rate in humans. One 

study conversely found no association of genetic variants of the CCK or CCK-1 receptor 

genes on gastric emptying rate (Jones et al., 2010).   

 The studies in chapters 3, 4 and 5 of this thesis showed large variation in gastric 

emptying rate, particularly for a glucose solution. As GLP-1 is known to be potently 

released in response to glucose ingestion and is also known to slow gastric emptying, the 

GLP-1R was selected as a candidate gene for investigation. In addition, a previous 

investigation had reported an influence of GLP-1R genetic variation on gastric emptying 
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rate in mice (Kumar et al., 2008). The study in Chapter 6 of this thesis was therefore 

designed to investigate the influence of genetic variation in the GLP-1R gene on gastric 

emptying rate in humans.  

 Several Tag SNPs within the GLP-1R gene were significantly associated with 

gastric emptying rate of a glucose solution in Caucasian men. The Tag SNPs identified 

signify a region(s) where a causative variant is most likely to reside (Xia & Grant, 2013) 

and where further work such as in silico analysis and functional analysis is required to 

establish the precise SNP or SNPs responsible for the observed differences in gastric 

emptying rate. In addition, several of these SNPs were neighbouring SNPs, indicating a 

‘hot spot’ genomic region that warrants further investigation with particular high interest. 

Furthermore, this association study should be repeated with a larger population sample to 

independently confirm the detected associations between GLP-1R genetic variation and 

gastric emptying rate. 

 

7.5. LIMITATIONS OF METHODOLOGY 

A limitation of the studies in this thesis is the small sample size. In particular, the study 

reported in chapter 3 of this thesis included data from seven participants only. As 

discussed, the combined interaction of a relatively small sample size, the large inter-

individual variation for gastric emptying rate of glucose containing solutions and the 

number of conditions for comparison were likely responsible for the lack of statistical 

difference of gastric emptying rate between conditions. In addition, the genetics study 

reported in chapter 6 of this thesis had a sample size of forty-eight participants. Although 

ideal sample sizes for gene candidate studies enter into triple and quadruple figures 

(Zondervan & Cardon, 2007), the results of the study reported in this thesis nevertheless 

indicated several significant associations between several Tag SNPs and gastric emptying 

parameters. The study in chapter 6 of this thesis would therefore require replication with 

a much larger cohort to confirm the associations.  

All studies were conducted with healthy individuals with a normal BMI and only 

a handful had a BMI indicative for being just above ‘obese’. Thus, the results of these 

studies may not be applicable to the clinical obese or morbidly obese population. 

Furthermore, whether differences in gastric emptying characteristics, gastrointestinal 

hormone secretion and hepatic fructose metabolism, as well as genetic associations exist 

between normal weight and obese populations remain to be elucidated. 

 Another methodological limitation is that measurements of appetite were 

collected using VAS scales. Whilst VAS scales are a valid, reliable and reproducible 
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indicator and predictor of appetite and feeding behaviour (Flint et al., 2000; Stubbs, 

Hughes, Johnstone, Rowley, Reid, Elia et al., 2000), they are often a poor proxy of actual 

energy intake (Stubbs et al. 2000). Measurement of subsequent energy intake, perhaps 

via an ad libitum meal, would provide more translational and nutritional information on 

the effects of various carbohydrates solutions and fructose supplementation.  

 A further methodological limitation is that the control trials in the 

supplementation studies described in chapters 4 and 5 did not involve the ingestion of 

placebo sweetened supplement drinks. Although this would have been unlikely to 

consciously or subconsciously affect gastric emptying rate or hormone responses of the 

test solutions, it may potentially affect adherence to ingestion of the same diet during the 

dietary maintenance periods. In addition, with respect to the dietary intake during the 

maintenance period, the diet was not prescribed nor provided and it was entrusted to the 

participants that they had ingested the exact same foods and diet prior to each 

experimental trial as they were instructed to.       

 Gastric emptying was assessed in this thesis using the 13C breath test. Although 

this method has been validated and correlated strongly with the gold standard method 

scintigraphy and gastric aspiration (Braden et al., 2004; van Nieuwenhoven et al., 1999; 

Pfaffenbach et al., 1996; Braden et al., 1995; Ghoos et al., 1993) this method is an indirect 

assessment of gastric emptying rate. However, this simple, non-radioactive and non-

invasive technique allows commensurate application for the assessment of gastric 

emptying of solid food in future studies to follow on from the present studies on liquid 

solutions conducted within this thesis.  

      

7.6. CONCLUSIONS 

 

The experimental studies described within this thesis have extended knowledge on the 

effects of carbohydrate ingestion on gastric emptying rate and gut hormone responses and 

the influence of genetics on gastric emptying rate in humans. The main conclusions that 

can be drawn from this work are: 

 

1) Six percent carbohydrate solutions of equal energy content and volume empty 

from the stomach at varying rates with fructose alone emptying faster compared 

to glucose alone. Furthermore, a sensing mechanism independent of osmolality 

may be responsible for this observation.  
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2) Ingestion of different carbohydrate solutions induce different 

gastrointestinal/appetite hormone responses. Ingestion of a 6% fructose solution 

results in markedly reduced and virtually absent GIP and insulin secretion 

responses compared with ingestion of a 6% glucose solution. Overall acylated 

ghrelin and active GLP-1 responses do not differ between carbohydrates, 

however.  

 

3) Ingestion of an acute bolus of fructose or fructose-containing solution at typical 

amounts results in significant production of lactate compared to the ingestion of 

an isoenergetic solution of glucose. It does not cause immediate increases in 

serum triglyceride, nor differences between carbohydrates in NEFA or D-3-

hydroxybutyrate concentration, however, suggesting that ingestion of fructose in 

typical amounts does not cause an increase in de novo lipogenesis and results in 

similar reductions in lipolysis and NEFA metabolism to other carbohydrate 

solutions. Increased dietary fructose consumption of 120 g/d for even a period of 

three consecutive days may, on the other hand, have deleterious effects on 

triglyceride concentration. 

 

4) Gastric emptying is a highly adaptable process that is influenced by previous 

dietary intake. A short-term increase in fructose ingestion for only three 

consecutive days accelerates gastric emptying rate of a fructose solution but not a 

glucose solution. This monosaccharide adaptation may be unique to fructose. The 

mechanism of adaptation requires further investigation but may be due to subtle 

differences in gastrointestinal hormone response changes.   

 

5) Gastric emptying rate of a glucose solution varies prominently between 

individuals and genetic variation of the GLP-1R may explain some of this 

variation in gastric emptying rate. 
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APPENDIX 1: ETHICAL APPROVAL LETTERS 

Study 1 (Chapter 3) 
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Study 2 (Chapter 4) 
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Study 3 (Chapter 5) 
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Study 4 (Chapter 6) 
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APPENDIX 2: STABILITY OF C13 BREATH SAMPLES STORED OVER TIME 

AND EFFECT ON THE RELIABILITY OF GASTRIC EMPTYING RESULTS 

 

During the study reported in chapter 3 of this thesis, an unforeseen technical problem with 

the computer associated with the IRIS analyser resulted. Analysis of many collected 

breath samples were thus delayed by approximately six weeks and were stored for much 

longer than anticipated. Previously obtained samples were analysed within two weeks of 

collection. Consequent analysis of the samples that had been stored for an extended period 

of time showed that the concentration levels of CO2 had dramatically decreased and in 

many cases were below 0.5%. No documented guidelines or published studies are 

available with regards to the length of sample storage time and the reliability of gastric 

emptying results. A small study was therefore conducted to investigate the effect of 

sample storage time length on CO2 concentration reduction and the reliability of gastric 

emptying results. 

 

Methods 

Five healthy volunteers consumed 600 mL of a 6% sucrose solution containing 100 mg 

sodium acetate within 2 min. Breath samples were collected at baseline (0 min) and every 

10 min following drink ingestion for 1 h. It was ensured that the volume of breath sample 

collected in each foil bag was sufficient for at least two analyses. All samples were 

analysed in the afternoon of the day of collection and a subsequent analyses was repeated 

on each set of samples following either 4 d, 1 week, 2 weeks, 4 weeks or 6 weeks of 

storage. 

 

Results  

All five sets of samples were successfully analysed twice. Results for gastric emptying 

T½ are shown in Figure A1 and results for gastric emptying Tlag shown in Figure A2. 

Results were either no different or minimal. The largest differences between analyses 

were seen for the set of samples re-analysed at 1-week with differences in 6 min and 4 

min for T½ and Tlag, respectively. This was likely due to the originally higher values for 

gastric emptying rate indicating very delayed emptying. Over 6 weeks, the CO2% of 

samples dropped to an average of 0.95% and the average decrease in samples was 3.71%. 

A curvilinear relationship between the decrease in CO2% and number of days was 

established and can be seen in Figure A3. Significant strong correlations between analysis 
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one and two results were seen for both T½ (r = 0.999; P < 0.001) and Tlag (r = 0.999; P < 

0.001) (Figure A4). 

 

Figure A1. Gastric emptying T½ results for each set of samples analysed on the day of 

sample collection and re-analysed following different lengths of storage time 

 

 

Figure A2. Gastric emptying Tlag results for each set of samples analysed on the day of 

sample collection and re-analysed following different lengths of storage time. 
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Figure A3. Average decrease in CO2% following different lengths of storage time over 6 

weeks 

 

 

Figure A4. Correlations for T½ and Tlag between first and second analysis 

 

Conclusions 

Results from this investigation show that breath samples stored and analysed up to 6 

weeks post collection remain suitable for analysis and gastric emptying results remain 

highly reliable despite the concentration of CO2 decreasing over time. 
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