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Abstract 

Once learned, simple arithmetic facts are thought to be represented in a 
dedicated long term memory store, known as an arithmetic retrieval network. 
Although the existence of this network is generally agreed upon, the 
organisation and accessibility of it is not. The aim of the current study was thus 
to test the effect of operation type, presentation format and problem-size on the 
processing of simple arithmetic. In two separate experiments participants were 
presented with a series of single digit addition, multiplication and ‘wrong’ 
problems. In experiment one they indicated which operation sign was used in 
each problem and in experiment two they indicated what the correct answer to 
each problem should be. In both experiments, the participants responded to 
large multiplication problems more slowly than addition and small multiplication 
problems, but more quickly than wrong problems. Participants were equally fast 
in responding to small multiplication and addition problems in experiment one 
but faster to respond to small multiplication problems than addition problems in 
experiment two. In addition to this, there was an operand-order effect in 
experiment two but not experiment one. The results challenge two main 
assumptions of the identical elements model but lend support to the interacting 
neighbours model. A new model is proposed to account for some of the short 
comings of previous models.  
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Introduction 

Simple arithmetic problems can be defined as single- digit equations with only 
two operands, each of which are no larger than 10. Many models of arithmetic 
agree on the assumption that, once learned, certain simple arithmetic 
equations become stored in an arithmetic retrieval network (Ashcraft, 1992; 
Campbell, 1996; Rickard, Healy, & Bourne, 1994; Verguts & Fias, 2005). 
However, there is little agreement on how this retrieval network is accessed, 
how it operates or how it is organised. The aim of the current study is thus to 
investigate the effect of the operation type, presentation format and problem-
size on the direct retrieval of simple arithmetic equations from memory. In 
doing so, this could give important insight into how simple arithmetic is 
processed, which could lead to more valid ways of testing arithmetic in future 
studies, and eventually help the education sector develop more appropriate 
methods of teaching arithmetic in schools.  

Overview of the theories 

 Associative models of simple arithmetic (Ashcraft, 1992; Campbell, 1996; 
Rickard, et al., 1994; Verguts & Fias, 2005) assume that, within the memory 
network, there are memory nodes representing mathematical problem sets, 
such as |4x2| (with | representing the start and end of the problem set/memory 
representation) and memory nodes representing the answers to those 
problems, such as |8| (these will be referred to as problem nodes and answer 
nodes, respectively). During retrieval the problem node becomes activated, 
which triggers the activation of the associated answer node. According to the 
identical elements (IE) model (Rickard et al., 1994), the only way any of these 
problem nodes can become activated is if the three key elements of 
information in a presented problem match that of the problem node. These 
elements include the two operands (the two digits on either side of the 
operation sign) and the operation type (whether it is addition, multiplication, 
division or subtraction). For multiplication problem nodes, the order in which 
the operands are presented does not matter. However, for division problems, 
there are two separate problem nodes for possible order, and thus the order 
in which these problems are presented is essential for the arithmetic retrieval 
of division problems (see Figure 1) (Rickard, et al., 1994). 
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Figure 1. A model to exemplify the process of arithmetic fact retrieval for 
simple multiplication and division problems (Rickard, et al., 1994).  

 

In contrast to the identical elements model (Rickard, et al., 1994), as well as 
other models of arithmetic (Ashcraft, 1992; Campbell, 1996), the interacting 
neighbours (IN) model (Verguts & Fias, 2005) assumes that the retrieval 
network only stores multiplication facts. Because of this, the operation sign is 
unnecessary for the activation of the problems nodes. A further assumption of 
this model is that before the problem node can be accessed, activation must 
pass through two input nodes (one for each operand), which are arranged in a 
preferred operand-order. If this preferred order is organised in a min-max 
fashion, the presentation of a problem, such as |2x6|, will allow for an easy 
access of that problem node. However, if the node is presented as |6x2|, the 
operand-order must be mentally switched round before the corresponding 
problem node can become activated. Another assumption of this model is 
that, before a holistic answer node is activated, separate decade and unit 
output nodes are activated. The final assumption is that when the correct 
problem node becomes activated, neighbouring nodes also become activated. 
If the value in the decade output node of the neighbouring problem is different 
to the target answer, retrieval is delayed (see Figure 2).  
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Figure 2. A model to exemplify the retrieval process of multiplication 
fact retrieval, as assumed by the interacting neighbours model (Verguts 
& Fias, 2005), with grey representing the activation of neighbouring 
nodes. 

 

The problem-size effect  

The main assumption that distinguishes the IN model from other models of 
arithmetic is its explanation of the problem-size effect. This refers to a large 
response time (RT) for large multiplication problems and a smaller RT for 
small problems, defined as problems with a product of above 25 and below 
25, respectively (Zhou & Dong, 2003). The majority of arithmetic processing 
models agree with the early theory that the problem-size effect occurs 
because small problems are retrieved and large problems are calculated 
(LeFevre et al., 1996). However, research by Brauwer, Verguts and Fias 
(2006) has demonstrated that the problem-size effect can decrease with 
practice, which may suggest that it is possible to develop new memory nodes 
for larger problems and thus that the use of computation for larger problems is 
not necessarily the case. The IN model (Verguts & Fias, 2005) assumes an 
alternative account of the problem-size effect. According to this model, large 
multiplication problems are retrieved directly from memory and the problem-
size effect is caused by a larger amount of inconsistent neighbours (output 
nodes with a different value to the target answer) for larger problems 
compared to smaller problems. 

Evidence to support this model can be found in research by Domahs et al. 
(2007), which showed that the correlation between problem-size and accuracy 
in a multiplication task vanished when the amount of neighbourhood 
consistencies was included in the analysis. However, it is important to note 
that neighbourhood consistency also correlates with problem-size, which may 
mean that both correlations in this study tested the relationship between 
problem-size and RT but in an alternative way. More useful support for this 
theory can be found in research by Campbell, Dowd, Frick, McCallum and 
Metcalfe (2011), which showed that learning a novel set of equations, 
whereby neighbourhood consistency was not correlated with problem-size, 
was harder when the equations had more inconsistent neighbours. This 
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suggests that interference between inconsistent neighbours inhibited learning 
and that this was not due to the size of the problem.  

Still, the theory that the problem-size effect is caused by the use of 
computation for larger problems, as opposed to retrieval for small problems 
should not be ruled out completely. Self-report studies have shown that 
people do rely more on procedural methods to solve maths equations that are 
large and retrieval when they are small (LeFevre et al., 1996; LeFevre, 
Sadesky, & Bisanz, 1996) and, although the validity of self-report methods 
have been criticised (Kirk & Ashcraft, 2001), there is recent fMRI evidence to 
confirm these findings. For example, Jost, Khader, Burke, Bien, and Rösler 
(2009) found increased activation in the cingulate gyrus for large multiplication 
problems relative to small ones, suggesting that small and large problems are 
processed differently in the brain. Furthermore, an EEG study by Jost, 
Hennighausen, and Rösler (2004), revealed more activity in the intraparietal 
sulcus (IPS). This, together with research showing that the IPS is a region of 
the brain involved in processing numerosity, which is needed for calculation 
(Dormal, Andres, & Pesenti, 2012) further supports the theory that large 
problems are calculated. 

There is also behavioural research to support the theory that larger 
multiplication problems are calculated. For example, it has been shown that 
more interference occurs as a result of practicing small multiplication 
problems and answering addition problems, than between practicing large 
multiplication problems and answering addition problems (Campbell & Timm, 
2000). This indicates that the retrieval network is specific to small 
multiplication problems, and thus that larger multiplication problems must be 
calculated. It is important to note however, that this evidence is based on the 
assumption that multiplication and addition facts share the same retrieval 
network, a theory that has also been argued by the IN model (Verguts & Fias, 
2005) and one that will be discussed in the following section.  

A multiplication-specific network 

Firstly, there is evidence to suggest a multiplication specific network. For 
example, research by  Zhou (2011), has found there to be more neural activity 
in the left anterior region of the brain in response to multiplication problems, 
as opposed to addition problems. This, together with the finding that the left 
anterior regions are involved in arithmetic fact retrieval (Emerson & Cantlon, 
2012), suggests that multiplication problems may be processed within the 
retrieval network, whereas addition problems are processed elsewhere in the 
brain.  

However, an alternative research study has also indicated the involvement of 
left anterior regions of the brain during the processing of addition problems 
(Cho, Ryali, Geary, & Menon, 2011), suggesting that it is possible to store and 
retrieve addition problems directly from memory. One explanation for this is 
that, because the subjects in this study were children, the arithmetic retrieval 
networks had not yet developed in to the multiplication-specific network 
proposed by the IN model. Indeed, a later fMRI study by Zhou et al. (2007) 
indirectly indicated a dissociation in regional activity for processing simple 
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multiplication and addition problems in adults. Specifically, multiplication 
problems elicited more activity in language related areas, whereas addition 
problems elicited more right hemisphere activation in the IPS. Furthermore, 
Foyal and Thevenot (2012) and Sohn and Carlson (1998) found that priming 
participants with the operation sign helped them produce the answers to 
addition problems but not multiplication problems, indicating the pre-activation 
of an abstract procedural method for addition problems but not multiplication, 
suggesting that addition problems must be calculated. However, this does not 
explain why alternative research has shown an interference effect between 
practicing multiplication problems and answering addition problems (Campbell 
& Phenix, 2009; Campbell & Thompson, 2012). 

It is thus clear that there remains a lack of consensus regarding whether or 
not the retrieval network is specific to multiplication facts and because of this, 
confusion also remains over the cause of the problem-size effect. Another, 
more indirect way of investigating whether or not the network is specific to 
multiplication facts is by looking at whether the operation sign is an essential 
element in arithmetic retrieval. If the network is specific to multiplication, the 
operation sign should not be needed to retrieve multiplication facts. This leads 
the reader to the next section in the literature review, which will discuss the 
assumption of the IE model that the operation sign is needed for the retrieval 
of arithmetic facts (Rickard & Bourne, 1996).  

Identical elements  

As outlined earlier, the identical elements model suggests that all three 
elements of an arithmetic problem must be present if the corresponding 
answer of that problem is to be retrieved from memory. Early evidence to 
support this theory can be found in a study by Rickard and Bourne (1996), 
which showed that practicing answering multiplication equations did not 
facilitate the test performance on the corresponding multiplication problem. 
For example |3x4=12| during practice did not facilitate test performance for 
|12/4=3|. Furthermore, Galen and Reitsma (2010) found that test performance 
on a simple answer production test was not improved when participants 
practiced arithmetic equations with a missing essential element, suggesting 
that the absence of a key element made retrieval impossible during practice. 

In contrast to this, previous research has demonstrated cross-operational 
facilitation effects, even when the operation sign at practice was different to 
that at test (Campbell & Phenix, 2009; LeFevre & Morris, 1999; Mauro, 
LeFevre, & Morris, 2003). This suggests that the three elements needed to 
activate a problem node can include the operands and the answer, rather 
than the two operands and the operation. However, there is a problem with 
this suggestion. The participants in the study by LeFevre and Morris (1999) 
reported recasting the division problems into their multiplication counterparts 
during practice, so |24/4| was practiced as |4x6=24|. This suggests that the 
practice-test facilitation effect was actually caused by practicing the same 
operation type, rather than a different operation type. This confirms the theory 
that there are three key elements essential to the retrieval of arithmetic facts 
(Rickard, et al., 1994). That being said, it does not give a full account of how 
the retrieval network is accessed, as it ignores the possibility of a third 
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element; the physical order in which the operands of the problem are 
presented, another assumption of the IN model (Verguts & Fias, 2005). 

Operand-order effect 

Support for this theory can be derived from research by Zhang, Si, and Zhu 
(2012), which showed different RTs in a simple arithmetic task depending on 
the order in which the operands in a problems were presented. Further 
support for this can be found in a study by  Zhou, Zhao, Chen, and Zhou 
(2012), who measured the neural activity elicited by eyemovements of 
participants whilst they completed a simple arithmetic task. They found that, 
when problems were presented with the larger operand first, participants 
looked to the left operand during the visual processing stage but to the right 
operand during the retrieval stage, suggesting that the smaller operand was 
required to access the arithmetic retrieval network.  

In spite of this, the theory of an operand-order organisation of the retrieval 
network should not be ruled out completely, as there is evidence of an 
operand-order effect in a Western population. For example, Arbuthnott and 
Campbell (1996) found, in a Canadian sample, that the interference was 
larger when the operand value and order of the problems at practice matched 
that at test, as opposed to when they just matched the operand value. 
Another study, also using a Canadian sample, found an operand-order effect 
for auditory stimuli (Kiefer & Dehaene, 1997). However, it is important to note 
that the researchers interpreted this as evidence to suggest that there is an 
essential operand-order organisation of the retrieval network, and thus that 
problems that do not match the order and cannot be automatically switched to 
match, must be calculated. This disagrees somewhat with the IN model 
(Verguts & Fias, 2005), which assumes only a preferred operand-order 
organisation of the network. More importantly, there is also evidence to 
challenge the operand-order effect altogether. For example, Robert and 
Campbell (2008) found no RT difference depending on the order in which the 
operands were presented and Rickard and Bourne (1996) found that 
problems presented in a specific operand-order facilitated test performance 
for the same problems presented in the opposite order, suggesting a common 
memory node for both multiplication facts. Zhou et al. (2007) have also 
provided evidence to suggest that the operand–order effect was a product of 
learning the multiplication Table in only one order, a method unique to the 
Chinese education system. 

Conclusions  

It is clear that there remains a lack of consensus regarding many of the 
assumptions and theories about the arithmetic retrieval network. There is 
strong, contrasting evidence to support each account of the problem-size 
effect, resulting in a conflict that is yet to be resolved. This is also true to the 
debate regarding whether or not the operation sign is essential for arithmetic 
fact retrieval. The research directly used to support the IE model leans 
towards the conclusion that the operation sign is needed for arithmetic fact 
retrieval. However, the research indicating that the retrieval network is specific 
to multiplication facts suggests otherwise. Finally, although evidence of an 
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operand order effect is lacking, this may be attributed to the lack of research 
in Western samples. It thus calls for further investigation in to the operand-
order effect in a Western sample. 

The present study  

Experiment one  

The first experiment tested participants’ speed and accuracy in indicating the 
missing operation sign in a series of mathematical equations, as indicated by 
a blank space between the two operands. For example |2  4=8|. This tested 
their ability to check the answer they retrieved/calculated against that in the 
example and then recall which operation type they used to do this. The main 
aim of this experiment was to test whether the lack of operation sign caused 
participants to use direct retrieval or calculation. If they use calculation, 
addition will be faster than multiplication because it presumably takes less 
time to transform (add together) two numbers into an answer for addition than 
it does to add together several times for multiplication problems. This effect 
should remain when large problems are removed but it should be smaller, as 
less calculation is needed to work out small multiplication problems than large 
ones. If there an effect of operand-order it should only be in the multiplication 
condition and it should be large because to transform |2x9| takes nine steps (2 
x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2) whereas |9x2| takes only two (9 x 9). 

Experiment two 

The second experiment tested participants’ speed and accuracy in retrieving 
the correct answer to simple arithmetic equations. For this experiment 
participants were presented visually with a simple arithmetic equation 
whereby the product was replaced with a blank space, for example |2x4=   |. 
This was to indicate that the aim of the task was to indicate the product of the 
equation. It is assumed that for this task, the presence of the operation sign 
allowed for direct fact retrieval. The aim of this task was thus to test the effect 
the operation type and problem-size had on retrieval. Based on the 
assumption that the retrieval network is specific to multiplication facts, 
participants should be quicker and more accurate in response to small 
multiplication problems than addition problems. Based on the theory of a 
neighbourhood-consistency effect, participants should be faster to respond to 
small multiplication problems than they are to large ones but wrong problems 
should take longer than any other problem type. Finally, based on the 
assumption of a network organised in terms of operand-order, there will be an 
effect of operand-order, but it is likely to be small.   

Experiment three  

The final experiment merged experiment one and two together to compare the 
performance in each task. The aim of this was to directly test the effect of 
including the operation sign on the processing of simple arithmetic. In 
accordance with the IE model, responses to small multiplication problems 
should be faster and more accurate overall in task two than in task one. 
Based on the assumption of a multiplication-specific network, addition and 
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wrong problems should be responded to just as slowly in the second task as 
they were in the first. If there is an effect of operand-order it should be larger 
in task one than in task two, due to the differential use of calculation and 
retrieval.  

Experiment one 

Method 

Design 

A 2 x 3 within-subjects ANOVA, with operand-order (left bigger vs right bigger) 
and operation (addition vs. multiplication vs. wrong) as independent variables 
and response time the dependent variable design was used for the RT data. 
Due to the lack of normality in the distribution of the data, A Friedman’s test, 
with operation (addition vs. multiplication vs. wrong) as the independent 
variable and accuracy as the dependent variable, was used for the accuracy 
data. To control for the problem-size effect (Brauwer, et al., 2006; Domahs, 
Delazer, & Nuerk, 2006; Jost, et al., 2004; LeFevre, Sadesky, et al., 1996; 
Smedt, Holloway, & Ansari, 2011), these analyses were then repeated with 
large multiplication problems excluded (suggested by Zhou and Dong in 2003 
to be equations with a sum of 25 or more). Large addition problems were not 
controlled for because research suggests that there is no difference in 
processing large and small addition problems (Zhou, et al., 2006; Xilin & 
Dong, 2003). Two additional 2 x 2 repeated measures ANOVAs with 
operation (addition vs. multiplication) and order (left bigger vs. right bigger) 
were carried out on the RT data, one of which included large problems and 
one that excluded large problems. 

Participants  

Thirty-six undergraduate psychology students (seven males and twenty nine 
females) from Liverpool Hope University participated in this experiment. 
Thirteen of the students participated in partial fulfilment of their first year 
psychology course and received course credits for their participation. No 
participants reported any eyesight or learning disabilities that could have 
caused distress or interfered with their ability to take part in the study. During 
data collection, six of the participants dropped out of the study for various 
reasons. This left a sample of 30 students, 13 of which were male and 17 of 
which were female. Participants ranged in age from 18 to 23 years (Mean = 
20.04, SD = 1.96).  

Materials and apparatus  

Participants received an information sheet stating the aims and instructions of 
the experiment (appendix A). They also received a consent form (appendix C) 
and a short questionnaire (appendix D). TrueBasic was used for the 
programming of the experiments and SPSS was used to analyse the data. 
Both programs were executed on an Asus (model K54C) laptop, (screen 
resolution 1024x768). Participants’ responses were inputted into the 
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application program via the laptop keyboard. Latencies and errors were 
recorded automatically by the program installed on the laptop.  

Stimuli and procedure 

Stimuli included 240 arithmetic problem sets (80 addition problems, 80 
multiplication and 80 wrong problems), the operands used in these problems 
ranged from 1-9. All the numbers were presented visually in Arabic form only. 
Cross modalities of numbers were avoided due to the fact that they are 
processed differently (Priftis, Albanese, Meneghello, & Pitteri, 2013). Each 
presented problem contained the answer but not the operation sign, so 
|2x3=6| was presented as |2  3=6|. Every problem was presented once for 
each possible operand-order combination. All conditions were randomised 
across trials and tie problems containing numbers of two were removed due 
to an incompatibility with the program.  

Participants were fully informed of the aims of the experiment and were given 
instructions on how to complete the trials. The experiment took place in a 
quiet, single study booth without the presence of the researcher. Pressing the 
spacebar started the experiment. Once the experiment started, participants 
were required to press a key on the keyboard to indicate which operation sign 
they thought the arithmetic problem used. If it was addition they pressed A, if 
it was multiplication they pressed X and if it was neither they pressed W. Each 
trial occurred immediately after the other with no break in between. The 
participants were asked to complete the trials as quickly and accurately as 
possible. Timing began with stimulus onset and ended when a key was 
pressed. The participants were thanked for their participation at the end.  

Results 

Analysis one (large problems included) 

Overall differences  

This experiment tested the effect of operation type, problem-size and 
operand-order on the RT and accuracy in a simple arithmetic task. The data 
were pre-processed so that all responses with an RT of less than 200ms were 
removed, all problems with a RT of more than three standard deviations 
above the means were removed, it was transformed in to logarithms and all 
trials with errors were removed. Errors were computed by calculating the 
percentage of correct answers in each task and then converting it to a decimal 
Figure. This data were also pre-processed so that all responses with a RT of 
less than 200ms were removed and responses with a RT of more than three 
standard deviations above the means were removed. The overall means and 
standard deviations for RTs and accuracy after pre-processing are presented 
in Table1.  
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Table 1. The overall means and standard deviations for RTs (in seconds) 
and accuracy in all conditions.  

 
Response time  Accuracy 

Left  Right  Left  Right 

Operation M SD  M SD  M SD  M SD 

Add 2.45 0.70  2.43 0.75  0.95 0.06  0.96 0.05 

Multiply 2.99 1.16  2.98 1.20  0.95 0.06  0.93 0.06 

Wrong 3.27 1.13  3.22 0.16  0.91 0.10  0.92 0.09 

Note. M: Mean, SD: Standard deviation 

 

Differences in reaction time  

A 2 x 3 repeated measures ANOVA, with operand-order (left bigger vs. right 
bigger) and operation (addition vs. multiplication vs. wrong) as the 
independent variables and RT as the dependent variable, was carried out on 
the data. The results revealed a significant main effect of operation (F(1, 
29) = 45.8, p < .001, ηρ²= .6). There was no significant main effect of 
operand-order and there was no interaction between operand-order and 
operation. Post-hoc comparisons with adjustments for multiple comparisons 
(Bonferroni) revealed a significant difference between addition and 
multiplication (p < .01, effect size r = .27), multiplication and wrong problems 
(p < .01, effect size r = .11) and between addition and wrong problems (p< 
.01, effect size r = .39) (see Table 2 for means and standard deviations). 
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Table 2. The mean values and standard deviations for RTs (in seconds) 
and accuracy for each operation type. 

 Response time  Accuracy 

Operation M SD  M SD 

Add 2.44 0.72  0.95 0.05 

Multiply 2.98 1.17  0.94 0.06 

Wrong 3.24 1.13  0.92 0.09 

Note. M: Mean, SD: Standard deviation 

Differences in accuracy  

A Kolmogorov-smirnov test for normality revealed that the accuracy data were 
significantly skewed and thus that the data violated the normal distribution 
assumption needed to run an ANOVA. As a result, a Friedman’s test, with 
addition, multiplication and wrong operation types as the three independent 
variables and accuracy as the dependent variable was run on the data. This 
revealed a significant main effect of operation type (p<.05). To test this 
further, post-hoc comparisons were run (Wilcoxon’s signed ranked test). The 
only significant difference was between addition and wrong problems 
(Z(29)=2.50, p=.01) (see Table 2 for means and standard deviations). A 
separate Wilcoxon’s test was then carried out to test the difference between 
left-bigger and right-bigger operands. This revealed no significant difference. 
It should be mentioned here that, due to the post-hoc nature of nonparametric 
tests, the accuracy results reported here should be interpreted as exploratory 
rather than definite.  
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Analysis two (large problems excluded) 

Overall differences  

This analysis was exactly the same as the first analysis but problems with a 
result superior to 25 were excluded. The overall means and standard 
deviations of each conditions are presented in Table 3.  

 

Table 3. The mean values and standard deviations for the RTs (in 
seconds) and accuracy percentages for each possible operand-order 
combination for each operation type. 

Note. M: Mean, SD: Standard deviation 

Differences in reaction times  

A 2 x 3 repeated measures ANOVA, with operand order (left bigger vs. right 
bigger) and operation type (addition vs. multiplication vs. wrong) as the 
independent variables and RT as the dependent variable, was run on the 
data. The only significant main effect observed was for operation type (F(1, 
29)=48.15, p<.05, ηρ²=.62). Post-hoc comparisons with an adjusted p-value to 
account for multiple comparisons (Bonferonni) revealed a significant 
difference between multiplication and wrong problems (p<.001, effect size r= 
.31), and between addition and wrong problems (p<.001, effect size r=.31) 
(see Table 4 for means and standard deviations).  

 

 

 
Response time  Accuracy 

Left  Right  Left  Right 

Operation M SD  M SD  M SD  M SD 

Add 2.45 0.70  2.42 0.75  0.96 0.05  0.96 0.05 

Multiply 2.44 0.83  2.40 0.81  0.95 0.05  0.93 0.07 

Wrong 3.00 0.98  2.94 0.89  0.91 0.11  0.92 0.11 
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Table 4. The main values and standard deviations for the RTs (in 
seconds) and accuracy data for each operation type. 

 Response time  Accuracy 

Operation M SD  M SD 

Add 2.44 0.70  0.96 0.05 

Multiply 2.42 0.78  0.95 0.06 

Wrong 2.97 0.90  0.91 0.10 

Note. M: Mean, SD: Standard deviation 

Analysis three (wrong problems excluded)  

Overall differences  

This analysis was exactly the same as the first analysis but wrong problems 
were excluded. The overall means and standard deviations of each conditions 
are presented in Table 5.  

 

Table 5. The overall mean response times (in seconds) for each 
condition.  

Operand order 

Response times 

Addition  Multiplication 

M SD  M SD 

Left bigger 1.45 0.70  3.00 1.16 

Right bigger 2.43 0.75  3.00 2.00 

Note. M: Mean, SD: Standard deviation 
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Inferential statistics  

A 2 x 3 repeated measures ANOVA with order (left bigger vs. right bigger) and 
operation type (addition vs. multiplication) revealed no significant effect of 
operand-order or interaction between operation type and operand-order.  

Analysis four (large and wrong problems excluded)  

Overall differences  

This analysis was exactly the same as the second analysis but wrong 
problems were also excluded. The overall means and standard deviations of 
each condition are presented in Table 6. 

Table 6. The mean values (in seconds) with standard deviations for all 
conditions.  

Operand order 

Response times 

Addition  Multiplication 

M SD  M SD 

Left bigger 2.47 0.70  2.45 0.84 

Right bigger 2.45 0.75  2.41 0.82 

Note. M: Mean, SD: Standard deviation. 

 

Inferential statistics  

A 2 x 3 repeated measures ANOVA with order (left bigger vs. right bigger) and 
operation type (addition vs. multiplication) revealed no significant effect of 
operand-order or interaction between operation type and operand-order.  

Discussion  

The main aim of this experiment was to see if the lack of operation sign 
caused participants to calculate the answers (and check them against the 
example) or whether the participants retrieved the facts from memory (and 
checked them against the example). Due to the lack of statistical power of 
nonparametric tests and lack of space, this discussion will focus on the RT 
data only. In confirmation of the first hypothesis, the results showed that 
multiplication problems were responded to with the same accuracy but 
significantly more slowly than addition problems. However, contrary to the 



                            Page 21 of 45 

 

second hypothesis, the RTs for multiplication were reduced to the same 
speed as addition when large problems were removed from the analysis, 
meaning that in this case we must accept the null hypothesis. An unpredicted 
finding was that responses to wrong problems were significantly slower than 
any other operation type regardless of whether large problems were included 
and there was no effect of operand-order.  

The problem-size effect 

Identical elements  

The different response times depending on the inclusion of large multiplication 
problems demonstrates a commonly reported problem-size effect (Brauwer, et 
al., 2006; Domahs, et al., 2006; Jost, et al., 2004; Smedt, et al., 2011; Zhou, 
et al., 2006). As problem-size is related to working memory (WM) capacity 
(Imbo & Vandierendonck, 2006), and WM is relied upon when calculating 
equations (Fürst & Hitch, 2000), it may be suggested that the current problem-
size effect was caused by the differential strains calculating small and large 
problems placed on WM (to calculate 9 x 4 you would need four calculations; 
9 + 9 + 9 + 9 but for 9 x 2 you would need only one; 9 + 9). This leaves open 
the possibility that a lack of operation sign in the current study made retrieval 
impossible, and thus may potentially lend support to the IE model (Rickard & 
Bourne, 1996; Rickard, et al., 1994). 

Calculation vs. retrieval 

However, if the lack of operation sign caused all problems to be calculated, 
we would also expect larger RTs for small multiplication problems in relation 
to addition problems, as more transformational steps are required to calculate 
multiplication problems (9 x 8 takes 8 transformational steps, whereas     9 + 8 
takes just one). Therefore, as there were no RT differences between addition 
and small multiplication problems, we can infer that calculation was not used 
for all the problems and thus that the problem-size effect was not caused by 
calculation. This conclusion leaves us with the question of what did cause the 
current problem-size effect. Based on previous research, which has 
demonstrated that small and large multiplication problems are processed 
differently in the brain, it may be suggested that the current problem-size 
effect was instead caused by the use of retrieval for small multiplication 
problems and calculation for large problems (Campbell & Timm, 2000; Jost, et 
al., 2004; Jost, et al., 2009; LeFevre, et al., 1996; LeFevre, Sadesky, et al., 
1996) (see Figure 3 for an example). 

Although this is the most straightforward explanation of the current results, its 
simplicity may also mean inaccuracy. This is highlighted in the study by 
Brauwer, et al. (2006), which was concluded in the introduction to suggest 
that it is possible to develop new memory nodes for larger multiplication 
problems. Furthermore, the fact that there was a RT difference between large 
multiplication problems and wrong problems, together with the suggestion that 
it is highly unlikely that the participants had the wrong problems stored in 
LTM, suggests that this may have been caused by the differential use of 
retrieval for large multiplication and calculation for wrong problems. If the 
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difference between small and large multiplication problems was due to 
retrieval vs. calculation, we would thus expect the size of the difference to be 
comparable the difference between large multiplication and wrong problems 
(11%). Therefore, the finding of a 27% difference in RT for small and large 
multiplication problems, suggests that the problem-size effect was caused by 
something other than the alternative use of retrieval and calculation to 
complete the task. This calls for an alternative explanation of the problem-size 
effect.  

 

Figure 3. This Figure exemplifies how the retrieval network may have 
been operating when participants processed small (top) and large 
(bottom) multiplication facts. The black represented an oversimplified 
structure of the network and the blue represents the flow of activity.  

Neighbourhood interference 

Instead it may be that all multiplication problems were retrieved but that the 
higher amount of inconsistent neighbours for larger multiplication problems 
(Campbell, et al., 2011; Domahs, et al., 2006), resulted in the activation of 
more competing output nodes, which caused more interference when 
checking the answer against the example, and thus a delayed response (see 
Figure 4 for an example).  
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Figure 4. This Figure exemplifies the retrieval process of large 
multiplication facts. The black represented an oversimplified structure 
of the network, the blue represents the flow of activity and the grey 
represents the automatic activation of neighbouring nodes. 

 

If this was the case, it challenges previous research by Jost, et al. (2009), 
discussed earlier, which suggests that a dissociated neural activity in 
response to large and small multiplication problems  indicates the use of 
retrieval for small problems and calculation for large problems. It thus calls for 
an alternative explanation of why participants in this study showed dissociated 
neural activity in response to large and small multiplication problems Instead, 
it may be that the area showing increased activity in response to larger 
multiplication problems (the cingulate gyrus) was a result of a higher need to 
inhibit more inconsistent neighbours for larger problems. This is consistent 
with research showing that there is more activation in the cingulate gyrus 
during the inhibition of unwanted responses (Ansari, Fugelsang, Dhital, & 
Venkatraman, 2006; Menon, Adleman, White, Glover, & Reiss, 2001). In 
support of this, a later study found activity within the left angular gyrus, an 
area associated with arithmetic retrieval (Grabner, Ansari, Koschutnig, 
Reishofer, & Ebner, 2011; Grabner, Ansari, Koschutnig, Reishofer, & Neuper, 
2009), in response to large multiplication problems, which confirms the theory 
that they are directly retrieved from memory, and thus supports the 
assumption of the IN model that the problem-size effect is caused by 
neighbourhood-inconsistency.  

A shared network for multiplication and addition facts  

The second important finding in this experiment was that multiplication 
problems were responded to equally as fast as addition problems. This does 
not support the second hypothesis, which was that there should still be a 
small difference between addition and multiplication problems when larger 
problems are excluded. As the data so far provides evidence to suggest that 
multiplication problems are retrieved directly from memory, the comparable 
RT between addition and multiplication problems suggests that addition 
problems were also retrieved directly from memory. These findings are 
consistent with previous research evidence used to support the theory of a 

63

 

 63 
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shared multiplication and addition network (Campbell & Phenix, 2009; 
Campbell & Thompson, 2012; Cho, et al., 2011). As a result, they challenge 
the assumption of the IN model that the network is specific to multiplication 
facts (Verguts & Fias, 2005), and that the dissociated neural activity 
previously reported in response to addition and multiplication facts found by  
Zhou et al. (2007) may have been a result of different processing at the 
encoding stage, rather than the differential use of retrieval and calculation 
strategies.  

Conclusions 

Based on the conclusions made so far in this discussion, it appears 
reasonable to suggest the that participants completed the task by retrieving 
addition and multiplication facts from an interrelated memory network and 
then recalling which route in the network arrived at the matching answer. This 
challenges the theory proposed by the IE model that the lack of operation sign 
makes direct fact retrieval impossible, as well as the assumption of the IN 
model that the retrieval network is specific to multiplication facts. However, the 
current findings do lend support to the assumption of the IN model that the 
problem-size effect is caused by more inconsistent neighbours for larger 
multiplication problems. One problem with the current study is that there was 
no operand-order effect, suggested to affect direct fact retrieval. Although it is 
possible the IN model was wrong in assuming that the retrieval network was 
organised in this way, it could be that the lack of operation sign caused the 
equations to be processed differently by the retrieval network, and thus over 
looks an aspect of the model, which is of interest in the current paper. This will 
therefore be explored further in the following study.  

Experiment two 

Method 

Design, participants, materials and stimuli  

The experimental design, participants, materials and stimuli in this experiment 
were the same as in experiment one, with some exceptions. Firstly, all trials 
included an operation sign, one of which included a novel operation sign to 
represent ‘wrong’ as the operation type which looked like this: . Secondly, 
the trials included three different choices of answers, for example |2x4=  | was 
displayed in the centre of the screen and |8   6   12| was displayed beneath it. 
Thirdly, a different participant information form was used to explain the aims 
and instructions of the task (appendix B).  

Procedure 

To control for the effect of fatigue or loss of concentration, this study took 
place at least three days after experiment one. Participants were fully 
informed of the aims of the experiment and were given instructions on how to 
complete the trials. The experiment took place in a quiet, single study booth 
without the presence of the researcher. Firstly the participants were given a 
practice trial. For this, participants were required to press X A or W on the 
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keyboard to indicate whether each symbol presented was multiplication, 
addition or wrong. This was so that they could familiarise themselves with the 
novel operation sign before the start of the task. Next, participants started the 
experiment. For this, participants were required to press a key on the 
keyboard to indicate which of the three options given was the correct answer 
to the equation, if they thought it was the option on the left they were required 
to press J, if it was in the middle they were required to press K and if they 
thought it was the option on the right they pressed L. However, if the problem 
included an operation sign that was neither addition or multiplication they 
were required to press a key on the keyboard (J, K or L) to indicate which 
option they thought was the wrong answer (out of two possible right answers 
and one wrong answer). Each trial occurred immediately after the previous, 
with no break in between. The participants were asked to complete the trials 
as quickly and accurately as they could. Timing began with stimulus onset 
and ended when a keyboard key was pressed. When the experiment was 
over participants were thanked for their participation. 

Results 

Analysis one (large problems included) 

Overall differences 

The data was preprocessed in the same way as experiment one. The overall 
mean and standard deviations for RTs and accuracy after pre-processing are 
presented in Table 7. 

Table 7. The means and standard deviations (in seconds) for all 
conditions when large problems were included. 

 
Response time  Accuracy 

Left  Right  Left  Right 

Operation M SD  M SD  M SD  M SD 

Add 2.24 0.66  2.28 0.60  0.93 0.06  0.94 0.06 

Multiply 2.67 1.05  2.7 0.94  0.94 0.06  0.95 0.04 

Wrong 4.65 2.05  4.25 1.8  0.82 0.23  0.82 0.24 

Note. M: Mean, SD: Standard deviation. 
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Differences in reaction time  

A 2 x 3 repeated measure ANOVA, with operand-order (left bigger vs. right 
bigger) and operation (addition vs. multiplication vs. wrong) as the 
independent variables and RT as the dependent variable, was carried out on 
the on the data. The results revealed a significant effect of operation (F(1, 
29) = 215.06, p < .001, ηρ²= .88). Post-hoc comparisons with corrections for 
multiple comparisons (Bonferroni) revealed a significant difference between 
addition and multiplication (p< .001, effect size r = .26), between multiplication 
and wrong (p< .001, effect size r = .54), and between addition and wrong 
problems (p< .001, effect size r = .65) (see Table 8 for means and standard 
deviations). However, there was no main effect of operand-order or interaction 
between operand-order and operation type.  

 

Table 8. The mean RTs and accuracy percentages (with standard 
deviations) for each operation type for analysis 1. 

 Response time  Accuracy 

Operation M SD  M SD 

Add 2.26 0.60  0.94 0.50 

Multiply 2.69 0.97  0.95 0.40 

Wrong 4.45 1.69  0.82 0.20 

Note. M: Mean, SD: Standard deviation. 

 

Differences in accuracy  

As the data was not normally distributed (as assessed using a Kolmogorov-
Smirnov test for normality), a Friedman’s test was run with addition, 
multiplication and wrong as the three independent variables and accuracy as 
the dependent variable. This revealed a main effect of operation type (p<.05). 
post-hoc comparisons (Wilcoxon tests) revealed a significant difference 
between addition and wrong problems (p> .001) and between multiplication 
and wrong problems (p<.001). A separate Wilcoxon’s Test assessing the 
difference between problems with a left bigger operand and a right bigger 
operand showed no effect.  
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Analysis two (Large problems excluded) 

Overall differences  

This analysis was the same as analysis one but with large problems excluded. 
The overall means and standard deviations for each condition are presented 
in Table 9. 

Table 9. The mean RTs and accuracy percentages with standard 
deviations (in seconds) for each possible operand-order for each 
operation in analysis two.  

 
Response time  Accuracy 

Left  Right  Left  Right 

Operation M SD  M SD  M SD  M SD 

Add 2.24 0.66  2.28 0.6  0.93 0.06  0.94 0.06 

Multiply 2.1 0.65  2.2 0.8  0.94 0.06  0.95 0.05 

Wrong 4.31 2.18  3.93 1.66  0.83 0.24  0.83 0.24 

Note. M: Mean, SD: Standard deviation 

 

Differences in RT  

A 2 x 3 ANOVA with operand-order (left bigger vs. right bigger) and operation 
type (addition vs. multiplication vs. wrong) and RT as the dependent variable 
was carried out on the data. This revealed a significant main effect of 
operation only (F(2, 28)= 132.35, p<.00.1, ηρ²=.82). Post-hoc comparisons 
revealed a significant difference between addition and multiplication (p<.05, 
effect size r=0.08), multiplication and wrong (p<.001, effect size r=0.60) and 
addition and wrong problems (p<.001, effect size r= .58) (see Table 10 for 
means and standard deviations).  
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Table 10. The mean values (with standard deviations) for the reaction 
times and accuracy in each condition when large problems are 
excluded. 

 Response time  Accuracy 

Operation M SD  M SD 

Add 2.26 0.61  0.94 0.05 

Multiply 2.15 0.7  0.95 0.05 

Wrong 4.12 1.7  0.82 0.24 

Note. M: Mean, SD: Standard deviation.  

Differences in accuracy  

 

As the data was not normally distributed, a Friedman’s test with addition and 
multiplication as the three independent variables was carried out on the 
accuracy data. This revealed a significant main effect of operation (p<.001). 
Post-hoc comparisons (Wilcoxon’s test) revealed a significant difference 
between multiplication and wrong problems only (p<.001) (see Table 10 for 
means and standard deviations).  

 

Analysis three (large problems included, wrong problems excluded) 

Overall differences  

As can be seen from the means, the differences between left bigger and right 
bigger wrong problems were in the opposite direction to addition and 
multiplication, suggesting that it may have confounded the experiment. As the 
aim of the experiment was to test an operand-order effect for addition and 
multiplication problems, wrong problems were thus excluded from the 
experiment. The overall means are presented in Table 11. 
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Table 11. The mean values (in seconds) for each operand-order 
combination for each operation type. 

Inferential statistics  

A 2 x 2 repeated measures ANOVA with operation (addition vs. multiplication) 
and operand-order (left bigger vs right bigger) revealed a significant main 
effect of operation (F(1, 29), =20.72, p<.001). The effect of this difference was 
small (effect size r= 0.28) (see Table 12 for means) and of operand-order 
(F(1, 29)=4.262, p<.05), also with a small effect size (effect size r = 0.7) (see 
Table 13 for means and standard deviations).  

Table 12. The mean values (in seconds) for each operation type with 
wrong problems excluded. 

Operation 
Response times 

M SD 

Add 2.26 0.6 

Multiply 2.7 0.9 

Note. M: Mean, SD: Standard deviation. 

Operand order 

Response times 

Operation type 

Addition  Multiplication 

M SD  M SD 

Left bigger 2.24 0.66  2.1 0.65 

Right bigger 2.28 0.6  2.2 0.8 

Note. M: Mean, SD: Standard deviation 
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Table 13. Means values with standard deviations (in seconds) for each 
operand-order combination with wrong problems excluded. 

 Response times 

Operand order M SD 

Left bigger 2.39 0.76 

Right bigger 2.5 0.73 

Note. M: Mean, SD: Standard deviation. 

 

Analysis four (large and wrong problems excluded) 

Overall differences  

The overall means for all conditions are presented in Table 14. 

Table 14. The mean values (in seconds) with standard deviations) for all 
conditions. 

 

Response times 

Addition  Multiplication 

Operand order M SD  M SD 

Left bigger 2.24 0.66  2.1 0.65 

Right bigger 2.28 0.6  2.2 0.8 

Note. M: Mean, SD: Standard deviation 
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Inferential statistics 

A 2 x 2 repeated measures ANOVA with operation (addition vs. multiplication) 
and operand-order (left bigger vs right bigger) revealed a significant main 
effect of operation (F(1, 29), =6.6, p<.05) with a small (effect size r= 0.08) 
(see Table 15 for means) and of operand-order (F(1, 29)=4.7, p<.05) with a 
small effect (effect size r=0.04) (see Table 16 for means). 

Table 15. The mean values (in seconds) with standard deviations for 
each operation type. 

 Response times 

Operation M SD 

Add 2.26 0.61 

Multiply 2.15 0.7 

Note. M: Mean, SD: Standard deviation 

 

Table 16. The mean values (in seconds) with standard deviations for 
each operand-order problem with wrong and large problems excluded. 

 Response time 

            Operand order M SD 

            Left bigger 2.2 0.63 

            Right bigger 2.24 0.14 

Note. M: Mean, SD: Standard deviation. 
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Discussion  

Overview of the results 

Based on the assumption that the inclusion of the operation sign allowed for 
direct retrieval, the main aim of this experiment was to see which types of 
arithmetic facts are stored in the retrieval network. As with experiment one, 
the results showed that multiplication problems were responded to with the 
same accuracy but significantly more slowly than addition problems when 
large problems were included but not when they were excluded, 
demonstrating a problem-size effect, which allows us to reject the null for the 
second hypothesis for this study. Because this has already been discussed in 
experiment one, it will not be talked about here. Instead, the current study will 
focus on explaining the finding that addition problems were responded to 
more slowly that multiplication problems, and the finding of an operand-order 
effect. Due to the lack of statistical power of nonparametric tests and the lack 
of space, this discussion will focus on the RT data only. But please keep in 
mind that the accuracy data mainly supported the RT data. 

Multiplication-specific network  

The finding that addition problems were answered more slowly than small 
multiplication problems confirms the first hypothesis of this experiment, which 
was that the arithmetic retrieval network may be specific to multiplication 
problems (we can therefore reject the null hypothesis). In doing so, it supports 
the assumption of the IN model (Verguts & Fias, 2005), as well as previous 
research (Butterworth, Zorzi, Girelli, & Jonckheere, 2001; Foyal & Thevenot, 
2012; Sohn & Carlson, 1998) that the retrieval network may be specific to 
multiplication facts. However, if this is correct, it contradicts the findings of 
experiment one, as well as previous research that suggests there is a shared 
memory network for both multiplication and addition problems (Campbell & 
Phenix, 2009; Campbell & Thompson, 2012; Cho, et al., 2011). As a result, 
confusion remains over whether or not there is a multiplication-specific 
retrieval network or whether it is shared by simple addition problems. This 
conflict may be resolved by a closer look at the results of the current study. 
The difference between small multiplication and addition problems was small 
(8%). If the increased RT was caused by the use of calculation, we would 
expect the difference between addition and small multiplication problems to 
be larger than it was, as it is likely that calculation takes much longer than 
direct retrieval. As a result of this, it may be concluded that both addition and 
multiplication problems were directly retrieved from memory, and thus 
supports the conclusion made in experiment one that there is a shared 
network for multiplication and addition facts. 

The operand-order effect 

In support of the final hypothesis, and the focus of this section of the 
discussion, there was an operand-order effect for multiplication and addition 
problems, even when large problems were included in the analysis. However, 
it was in the opposite direction to expected, with right-bigger problems being 
answered more slowly than left-bigger problems. Consistent with the 
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hypothesis proposed by Kiefer and Dehaene (1997), the operand-order effect 
shown here may appear to have been caused by the use of calculation for 
problems presented in an order that did not match that originally stored in 
memory. This is because there are more transformational steps required for 
equations with a bigger right operand as opposed to the reverse (3x9 requires 
nine transformational steps; 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 whereas 9x3 
takes just three steps; 9 + 9 + 9). However, if this was the case we would 
expect at least a moderate effect of operand-order. In fact, the size of the 
difference should have been comparable to the difference between large 
multiplication and wrong problems (60%), concluded in experiment one to 
indicate the alternative use of retrieval and calculation. Therefore, as there 
was only a small difference (8%) in RT between left-bigger and right-bigger 
problems, it seems highly unlikely that an unmatched operand-order elicited 
the use of calculation to produce the answer. It seems more likely that, as 
hypothesised, the order in which the operands were presented affected direct 
arithmetic fact retrieval. This converges with previous findings (Arbuthnott & 
Campbell, 1996; Kiefer & Dehaene, 1997) to support the assumption of the IN 
model that there is a preferred operand-order of the retrieval network (Verguts 
& Fias, 2005). It also indicates that the operand-order effect is not specific to 
the Chinese population and thus increases the population validity of the IN 
model (Verguts & Fias, 2005), and opens up a new factor of the model that 
has been dismissed in recent years (Robert & Campbell, 2008) to 
investigation in future studies.  

This leaves the question of why Rickard and Bourne (1996) found no such 
effect. They showed that test performance was facilitated when the problems 
tested were presented in a different order to that practiced. In this study, it 
may be that problems presented with an operand-order that did not match the 
original order stored in the network were switched at every encounter during 
practice, meaning that the participants practiced switching the operands 
several times. As a result, this may have become an automatic process at the 
test phase, resulting in no extra time spent manipulating the order of the 
operands during test, and thus no operand-order effect. This leads to the 
conclusion that the operand-order effect may be caused by the extra time 
spent actively manipulating the operand-order to match that stored in 
memory.  

This may also account for why Kiefer and Dehaene (1997) found an operand-
order effect for acoustically presented stimuli but not visually presented 
stimuli. Because children are explicitly taught to switch the operands round for 
visually presented equations but not acoustically presented equations (Kiefer 
& Dehaene, 1997), it suggests the switching process was automatic for 
visually presented equations, resulting in no operand-order effect. The finding 
that the order-effect was in the opposite direction to expected (English 
schools teach multiplication with the left right operand bigger, such as 2x3, 
2x4, 2x5 etc) may be accounted for by the lack of mathematical expertise 
reported by the participants, suggesting that memories from larger times 
Tables (7s, 8s and 9s) had weakened and were thus more easily retrieved by 
switching the operands in to a fact from a smaller times Table so that that they 
could retrieve the answer (3x6 means they have to retrieve an equation from 
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the six times Tables, whereas 6x3 means they can retrieve an equation from 
the two times Tables, which they do have stored in memory). 

Conclusions 

The current results suggest that there is a shared network for multiplication 
and addition facts, but that the retrieval of these facts are somehow slower for 
addition problems that they are for small multiplication problems, an effect that 
was not found in experiment one, and one that will be explained in the final 
discussion. Although this challenges the assumption of the IN model that 
there is a multiplication specific network, the results of a small operand-order 
effect do support the IN model, in that of a preferred-operand-order 
organisation of the retrieval network. However, it is important to note that the 
small effect also means that this finding should be taken with caution, as it 
may be the case that a type I error occurred, in which case it would criticise 
the validity of the IN model. However, it is most likely that the small effect was 
caused by the limited amount of trials for each problem type, resulting in a 
lack of statistical power. This calls for future research investigating the 
operand-order effect in a Western sample and with more trials.  

Experiment three 

Method 

Participants, stimuli, material and procedure 

The participants were exactly the same as experiment one and two. The 
stimuli, materials and procedure, in the checking task were the same as 
experiment one, which tested participants’ speed and accuracy in indicating 
the missing operation sign in a series of mathematical equations, as indicated 
by a blank space between the two operands. The stimuli, materials and 
procedure used in the computing task were the same as experiment two, 
which tested participants’ speed and accuracy in indicating the missing 
answers in a series of mathematical equations. 

Design  

The design was a 2 x 3 repeated measures ANOVA with Task (checking vs 
computing) and operation (add vs multiply vs wrong) as the independent 
variables and RT as the dependent variable. As the accuracy data was not 
normally distributed, the design for this analysis was a Friedman’s test with 
addition, multiplication and wrong as the independent variables, and accuracy 
as the dependent variable.  

Results 

Overall results  

The data were preprocessed in the same way as the previous experiment. 
The descriptive statistics are presented in Table 17.  
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Table 17. The mean RTs and accuracy percentages (in seconds) for each 
operation type in each task. 

Note. M: Mean, SD: Standard deviation. 

Differences in response times  

A 2 x 3 ANOVA with task (Checking vs. retrieving) and operation (addition vs. 
multiplication vs. wrong) and as the independent variables, was carried out on 
the RT data. There was no main effect of task. However, there was a main 
effect of operation type (F(2, 28)= 142.8, p<.001, Ƞρ² = .83) (see Table 18 for 
means and standard deviations). There was also a significant interaction 
between task and operation type (F(2, 28)=55.1,p<.001, Ƞρ²= .66) (see Table 
17 for means and standard deviations). Post-hoc comparisons with a 
corrected p-value to control for multiple comparisons (Bonferroni) revealed a 
significant difference between addition and wrong problems (p<.001, effect 
size r .54=) and between multiplication and wrong problems (p<.001, effect 
size r =.55).  

 

 

 

 

 

 

 

 
Response time  Accuracy 

Task 1  Task 2  Task 1  Task 2 

Operation M SD  M SD  M SD  M SD 

Add 2.44 0.7  2.26 0.61  0.96 0.05  0.94 0.05 

Multiply 2.42 0.8  2.15 0.71  0.95 0.06  0.95 0.05 

Wrong 2.97 0.91  4.12 1.7  0.91 0.01  0.83 0.02 
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Table 18. The overall mean RTs (in seconds) with for each operation 
type.  

Differences in accuracy  

A Wilcoxon’s signed ranks test with task one and task two as the independent 
variables and accuracy as the dependent variable, revealed no significant 
overall difference in accuracy between the tasks and so this was not analysed 
further.  

Discussion 

Overview of the results  

The aim of experiment three was to directly test the effect of including/not 
including the operation sign on processing simple addition and small simple 
multiplication problems. It did this by comparing the performance in task one, 
whereby the operation sign was not presented with the equation, with task 
two, whereby the operation sign was presented with the equation. As 
experiment three links in directly with experiment one and two, what follows is 
a brief discussion and then a more general discussion of all three 
experiments.  

The organisation of the network  

In support of the first hypothesis proposed for experiment three, multiplication 
problems were responded to more quickly in the checking task than in the 
computing task. However, in challenge to the second hypothesis, addition 
problems were also responded to more quickly in the computing task than the 
checking task. Consistent with the identical elements model (Rickard, et al., 
1994), and research to support it (Galen & Reitsma, 2010; Rickard & Bourne, 
1996), it may be suggested that the longer RT in task one was caused by the 
fact that the missing operation sign made retrieval impossible, resulting in the 

Operation 
Response time 

M SD 

Add 2.35 0.57 

Multiply 2.28 0.65 

Wrong 3.54 1.18 

Note. M: Mean, SD: Standard deviation. 
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use of a lengthy calculation process to complete the task. However, if all 
problems were calculated in task one, it does not explain why addition and 
small multiplication problems were responded to equally as fast as one 
another. If both were calculated, multiplication should have taken longer than 
addition due to the fact that several sub-calculations are required to calculate 
multiplication problems and only one is required to calculate an addition. It 
also contradicts previous findings that show that the retrieval of arithmetic 
facts can occur (Galfano, Penolazzi, Vervaeck, Angrilli, & Umiltá, 2009), or at 
least be anticipated, without the presentation of the operation sign (Zhou, 
2011). This casts doubt upon the assumption of the IE model that the 
operation sign is essential for arithmetic fact retrieval (Rickard & Bourne, 
1994) and calls for an alternative explanation of why the participants in the 
current study responded more slowly in the checking task than in the 
computing task in the current study. Instead, it may be that multiplication and 
addition problems were retrieved in both tasks but that the lack of the 
operation sign some how delayed this process in the checking task. An 
explanation of how the retrieval network is organised and how it may have 
operated in each task is as follows; There are two routes in the retrieval 
network, one for retrieving multiplication and one for retrieving addition facts. 
In task two, the presentation of the operation sign acted as an indicator of 
which route to activate, resulting in a speedy retrieval of multiplication and 
addition facts (see Figure 5). 

 

Figure 5. An oversimplified version of the model to exemplify the 
structure of the network (in black) and the retrieval process during task 
two (in blue). 

However, in task one, this indicator was missing. As a result, the network had 
no indication of which route should be activated and therefore, against the 
natural operation of the network, both routes became activated 
simultaneously. This allowed addition and multiplication problems to be 
simultaneously activated and checked against the answers in the experiment. 
As a result, it caused an added strain to the retrieval process, resulting in a 
delay in response to multiplication and addition problems in task one 
compared to task two (see Figure 6).  
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Figure 6. This Figure exemplifies how the retrieval network may operate 
when the operation sign is missing.  

General Discussion 

Although the problem-size effect was the same in each experiment, there 
were some contrasting findings between experiment one and two, which 
results in difficulty making a conclusion of the exact organisation of the 
retrieval network. The following discussion will discuss the results in relation 
to previous research and the model proposed in the previous discussion 
(Figure 6). 

A multiplication-specific network 

One of the main conflicting findings between experiment one and two was 
that, in experiment one, there were no differences in RT between addition and 
small multiplication problems, suggesting a shared retrieval network for 
addition and multiplication facts. However, in experiment two, small 
multiplication problems were responded to more quickly than addition 
problems, suggesting a multiplication-specific network, a conflict of which 
resembles the conflicting findings in the current literature (Campbell & Phenix, 
2009; Campbell & Thompson, 2012; Cho, et al., 2011; Zhou, 2011). To 
account for the finding that addition problems were responded to more slowly 
than small multiplication problems within experiment two, it may be suggested 
that the multiplication route is dominant in the network, and thus that when 
switching between the retrieval of alternative problem types, as was done in 
experiment two, the addition route became weakened and retrieval more 
difficult. This hypothesis is consistent with previous research, which has 
shown that practicing multiplication equations causes problems for the 
retrieval of addition facts (Arbuthnott & Campbell, 1996; Campbell & Phenix, 
2009; Campbell & Thompson, 2012) and thus challenges the assumption of 
the IN model that there is a multiplication-specific retrieval network (Verguts & 
Fias, 2005). 

However, if the multiplication route is dominant in the network, it would 
suggest that the lack of operation sign in task one would have activated 
multiplication retrieval by default. This leaves the problem of explaining why 
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addition equations were retrieved just as quickly as multiplication equations in 
task one. It may be that, as the network received the knowledge that the 
operation sign was going to be missing and that it had to decide which route 
should become activated, this elicited an overall increased amount of 
inhibition to the multiplication route, so that this default setting was altered to 
allow for a better chance at completing the task. As a result, the task started 
with an overall equal amount of activation for each route. This hypothesis may 
be used to explain why Foyal and Thevenot (2012) found the pre-presentation 
of the addition sign to facilitate arithmetic performance. Rather than it causing 
the pre-activation of procedural methods for addition problems, it may have 
acted as an indicator for the inhibition of the more dominant multiplication 
route, which allowed for an easier retrieval of addition facts.  

An operand-order effect  

Another contradictory finding between experiment one and two was that there 
was an operand-order effect for multiplication and addition problems in 
experiment two but not experiment one. As the existence of this effect was 
concluded earlier to suggest a preferred-operand-order organisation of the 
retrieval network, it causes confusion as to why no such effect was found in 
experiment one, which also tested direct retrieval. To account for this, it may 
be that the operand-order switching process, discussed earlier in experiment 
two, was affected by the presentation of the operation sign.  

 

 

Figure 7. A Figure showing the Hebb-learning process of arithmetic 
facts.  

Instead, the process may have been a result of Hebb learning. According to 
this principle, and explained in an oversimplified way; the neurons that code 
for the operation sign and the two operands fire separately at first but, as 
these stimuli are seen repeatedly together, the neurons that become active in 
response to each of the stimulus do so in synchrony, which eventually creates 
a new single memory chunk (Hebb, 1949) (Figure 7). Accordingly, it may be 
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that the operand-order effect in experiment two was caused by the fact that 
participants coded |3x2| as a single memory chunk, which made it impossible 
to automatically switch the order of the operands. In experiment one, the lack 
of an essential element of this memory chunk meant that the participants 
coded the operands separately, allowing for automatic switching. This may 
also be extended to account for the unexpected finding that wrong problems 
were retrieved more slowly and less accurately in experiment two compared 
to experiment one. It may be that during visual encoding, the wrong sign 
acted as a substitute for the operation sign within the holistic memory node. 
As a result it may have wrongly activated the retrieval of arithmetic facts from 
memory, causing an added delay on top of the lengthy calculation process 
that followed.  

Conclusions  

It appears plausible to suggest that there is an effect of operation type, 
operand-order and problem-size on the processing of simple arithmetic. In 
challenge to the IN model, it is likely that the arithmetic retrieval network is not 
specific to multiplication facts but that is also represents simple addition facts, 
albeit to a weaker extent. However, in support of the IN model, the theory that 
the problem-size effect was caused by an increased amount of inconsistent 
neighbours for large problems was confirmed by the findings in both 
experiment one and two. The results showing an operand-order effect also 
lend support to IN model, as they suggest that there is some sort of operand-
order organisation of the retrieval network and that this is not unique to the 
Chinese population. More importantly, this effect only occurred when the 
operation sign was presented within the equations. This is an important 
finding, as it suggests that any tasks that include presenting the operation 
sign separately from the equation, as many of the studies reported within this 
paper did, are highly unlikely to find an effect of operand-order. This may be 
why the research to support this effect is so limited and calls future research 
using a more appropriate task to test for an operand-order effect in a Western 
sample. Finally, although this shows that there was an effect of the presence 
of the operation sign on processing arithmetic, it is most likely that this merely 
slows the retrieval process rather than makes it impossible, it thus fails to 
directly support the IE model yet agrees with the idea that the operation sign 
does affect arithmetic retrieval somehow. It may therefore be concluded that 
the current findings lend more support towards the IN model and thus that this 
model better explains the cognitive processes of arithmetic fact retrieval. As a 
result, it should be investigated further in future studies so that our 
understanding of these processes can be developed. 

Limitations 

There are some limitations to the current study. Firstly, the participants 
reported varying skills in mathematics, which was reflected in the large 
standard deviations around the means. This may be problematic, as previous 
research has shown that individual math skill and practice affects the type of 
strategy used to produce the answers to maths sums (Bailey, Littlefield, & 
Geary, 2012; Imbo & Vandierendonck, 2007). Because of this, that large 
multiplication problems are retrieved directly from memory may be 
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questioned, as the higher skilled participants may have used calculation for 
large problems, whereas others used retrieval. It may also be that the 
simultaneous activation of both routes during task one may have been faster 
for those with higher expertise. This calls for future research comparing the 
effects of mathematical expertise on each task. A further problem with this 
study is the small effect of operand-order. Although this has been explained 
and accounted for in relation to previous theories, the results showing an 
operand-order effect should be taken with caution and needs to be tested 
further with a larger sample to ensure that this result was not only significant 
due to a statistical error. Finally, the model proposed to account for the 
increase RT in the checking task vs. the computing task was based on the 
assumption that the network operated in a feed forward process and thus that 
participants could not retrieve arithmetic facts by looking at the answer and 
then searching backwards. Rickard (2005) has suggested that arithmetic facts 
can be also be retrieved by means of factoring. Although it is unlikely that this 
was the case in experiment one because addition problems cannot be 
factored, it may explain why multiplication problems were responded to more 
quickly than addition problems in experiment two. Future research could 
repeat this experiment using an eye tracker to ensure that this was not the 
case for the current study. 
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