
Novel Photovoltaic Solar Power 
Generating Diode 

BY 

ZIAD YOUEL BANYAMIN 

A thesis submitted in partial fulfilment of the requirements of  

Manchester Metropolitan University for the Degree of Doctor of Philosophy 

 

 

 

 

 

 

Manchester Metropolitan University, 

Manchester, UK 

Faculty of Science and Engineering 

School of Engineering 

(Surface Engineering Group) 

December 2014 

 

Ph.D. Thesis         2014 



 



i 

 

TABLE OF CONTENTS ................................................................................... I 

LIST OF FIGURES ........................................................................................ VII 

LIST OF TABLES ........................................................................................... XI 

LIST OF EQUATIONS ................................................................................ XVII 

DECLARATION ........................................................................................... XIV 

ABSTRACT .................................................................................................. XV 

ACKNOWLEDGMENT ................................................................................ XVI 

1 INTRODUCTION .......................................................................................... 1 

1.1 Background ......................................................................................... 1 

1.2 History of solar cells ............................................................................ 3 

1.3 Recent development in solar cells ....................................................... 9 

1.4 Aim and objective .............................................................................. 11 

1.5 Structure of thesis ............................................................................. 12 

2 SEMICONDUCTORS AND TCO THIN FILMS ........................................... 14 

2.1 Introduction ....................................................................................... 15 

2.2 Concept of the semiconductor ........................................................... 18 

2.3 Optical properties of semiconductors ................................................ 20 

2.4 Electrical properties of semiconductors ............................................. 24 

2.5 Dopant effect on semiconductors ...................................................... 27 

Table of Contents 



ii 

 

2.5.1 Fluorine doped tin oxide ............................................................. 28 

2.5.2 Antimony doped tin oxide ........................................................... 30 

2.5.3 Copper aluminium oxide ............................................................ 30 

2.6 Trends in the development of TCO materials .................................... 32 

2.7 Industrial applications of TCOs.......................................................... 36 

2.8 TCO deposition approach ................................................................. 37 

2.9 Summary and outlook ....................................................................... 38 

3 P-N DIODE ................................................................................................. 40 

3.1 History of p-n junctions ...................................................................... 41 

3.2 p-n junction device theory ................................................................. 42 

4 PHYSICAL VAPOUR DEPOSITION .......................................................... 50 

4.1 Fundamentals of PVD process .......................................................... 51 

4.2 Vacuum evaporation ......................................................................... 54 

4.3 Glow discharge plasma ..................................................................... 56 

4.4 Ion plating .......................................................................................... 61 

4.5 Sputter deposition process ................................................................ 62 

4.5.1 Magnetron sputtering deposition ................................................ 64 

4.5.2 Unbalanced magnetron sputtering ............................................. 68 

4.5.3 Closed-field unbalanced magnetron sputtering .......................... 70 

4.6 Reactive sputter deposition ............................................................... 74 

4.7 Plasma characteristics ...................................................................... 78 



iii 

 

4.8 Film growth and formation ................................................................. 82 

4.9 Structure zone models ...................................................................... 85 

4.10 Summary and outlook ....................................................................... 89 

5 POWDER TARGETS ................................................................................. 91 

5.1 Introduction ....................................................................................... 92 

5.2 Discharge stability ............................................................................. 93 

5.2.1 Pulsed-DC reactive sputtering of dielectric powder targets ........ 96 

5.2.2 Pulsing parameters and discharge behaviour ............................ 98 

5.3 Target to substrate distance comparison ........................................ 107 

5.4 Effect of pulse frequency and duty cycle parameters on electrical 

property of FTO ......................................................................................... 110 

5.5 Crystallographic analysis of powder targets .................................... 112 

5.5.1 Target composition Vs sample composition ............................. 116 

5.5.2 Target composition Vs discharge voltage of CAO target .......... 118 

5.5.3 Hysteresis studies of copper aluminium powder targets .......... 121 

5.5.4 Hysteresis study of titanium dioxide ......................................... 127 

5.6 Effect of base pressure on target voltage of titanium target ............ 130 

5.7 Effect of oxygen flow rate on titanium target discharge voltage ...... 132 

5.8 Deposition rate in a titanium/oxygen system ................................... 133 

5.9 Summary and outlook ..................................................................... 134 

6 ANALYTICAL TECHNIQUES .................................................................. 137 

6.1 Introduction ..................................................................................... 138 



iv 

 

6.2 Analysis of electrical properties ....................................................... 138 

6.2.1 Hall effect measurement system .............................................. 142 

6.2.2 Van der Pauw technique .......................................................... 142 

6.3 Analysis of optical properties ........................................................... 145 

6.4 Structural analysis ........................................................................... 149 

6.4.1 Scanning electron microscopy ................................................. 149 

6.4.2 X-ray diffraction ........................................................................ 151 

6.5 Summary and outlook ..................................................................... 158 

7 EXPERIMENTAL DETAILS ..................................................................... 159 

7.1 Introduction ..................................................................................... 160 

7.2 Preparation of the powder targets ................................................... 160 

7.3 Deposition techniques ..................................................................... 168 

7.3.1 Substrate cleaning ................................................................... 168 

7.3.2 Sputtering equipment ............................................................... 168 

7.3.3 Deposition conditions ............................................................... 170 

7.4 Fabrication of p-n junction diodes .................................................... 173 

7.5 Summary and outlook ..................................................................... 176 

8 CHARACTERISATION OF THIN FILMS ................................................. 178 

8.1 Fluorine doped tin oxide .................................................................. 179 

8.1.1 Introduction .............................................................................. 179 

8.1.2 Elemental analysis of SnO2:F thin films ................................... 179 



v 

 

8.1.3 Structural properties of SnO2:F thin films ................................. 181 

8.1.4 Electrical properties of SnO2:F thin films .................................. 185 

8.1.5 Optical properties of SnO2:F thin films ..................................... 188 

8.1.6 Morphological properties of SnO2:F thin films .......................... 192 

8.1.7 Conclusions ............................................................................. 193 

8.2 Antimony doped tin oxide ................................................................ 194 

8.2.1 Introduction .............................................................................. 194 

8.2.2 Electrical properties of antimony doped tin oxide ..................... 196 

8.2.3 Optical properties of ATO thin films .......................................... 199 

8.2.4 Structural properties of ATO thin films ..................................... 200 

8.2.5 Conclusion ............................................................................... 202 

8.3 Copper aluminium oxide .................................................................. 203 

8.3.1 Introduction .............................................................................. 203 

8.3.2 Elemental analysis of the CAO thin films ................................. 204 

8.3.3 Deposition growth rate ............................................................. 206 

8.3.4 Structural properties of CAO thin films ..................................... 208 

8.3.5 Electrical properties of CAO thin films ...................................... 213 

8.3.6 Optical properties of CAO thin films ......................................... 219 

8.3.7 Conclusion ............................................................................... 224 

8.4 Photovoltaic response of p-n junction .............................................. 225 

8.4.1 Conclusion ............................................................................... 233 



vi 

 

9 OVERALL CONCLUSIONS ..................................................................... 235 

10 RECOMMENDATIONS FOR FUTURE WORK ...................................... 240 

APPENDIX: A PUBLICATIONS AND CONFERENCE CONTRIBUTIONS 242 

 



vii 

 

List of Figures 

Figure ‎1.1:1 Simple schematic layout of a conventional p-n junction diode solar cell depicting the 

creation of an electron-hole pair. ..................................................................................................... 2 

Figure ‎1.2:1 First photovoltaic design setup by Becquerel in 1839 [1]. ..................................................... 3 

Figure ‎1.2:2 Device configuration used by Adam and Day (1876) for the investigation of the 

photoelectric effects in Selenium [3]. ............................................................................................... 4 

Figure ‎1.2:3 Se thin film device demonstration by Frits (1883) [3]. ........................................................... 5 

Figure ‎1.2:4 Copper-cuprous oxide photovoltaic cell made by Grondahl (1930) [3]. ................................ 6 

Figure ‎1.2:5 Thallous sulphide photovoltaic device structure developed in 1930's [3]. ............................. 6 

Figure ‎1.2:6 First semiconductor p-n junction constructed using recrystallised Si melts, developed in 

1941 [3]. .......................................................................................................................................... 7 

Figure ‎1.2:7 Silicon structure solar cell developed in 1970 [3]. ................................................................. 8 

Figure ‎1.2:8 Thin film stack cell using two p-n junctions connected using tunnelling junction [3]. ............. 8 

Figure ‎1.3:1 The evolution of the PV- market over the last two-decades [9]. ............................................ 9 

Figure ‎3.2:1 The band diagram of a p-n junction at thermal equilibrium [100]. ....................................... 43 

Figure ‎3.2:2 Sharing of valence electrons in outer shell between atoms. ............................................... 44 

Figure ‎3.2:3 Formation of energy bands [20]. ......................................................................................... 45 

Figure ‎3.2:4 Top two band structures in a metal, a semiconductor and an insulator [20]. ...................... 45 

Figure ‎3.2:5 Current-Voltage characteristic graph of a typical p-n junction solar cell. ............................. 47 

Figure ‎3.2:6 p-n junction under forward and reverse bias [100]. ............................................................. 49 

Figure ‎4.1:1 (a) Pathway of a scattered particle between collisions and (b) Boltzmann distribution of 

mean particle velocities. ................................................................................................................ 53 

Figure ‎4.2:1 Schematic representation of vacuum evaporation system [104]. ........................................ 56 

Figure ‎4.3:1 Schematic representation of ionisation and formation of the glow discharge plasma ......... 58 

Figure ‎4.3:2 Formation of visible glow discharge plasma in an magnetron sputtering process. ............. 59 

Figure ‎4.4:1 Schematic representation of an ion plating process [112]. ................................................. 62 

Figure ‎4.5:1 Schematic representation for the propagation momentum and particle movement of the Ar 

ion hitting the target surface. ......................................................................................................... 63 

Figure ‎4.5:2 Schematic of DC-sputtering system .................................................................................... 64 

Figure ‎4.5:3 Representation of plasma in unbalanced and conventional magnetrons [85]. .................... 70 

Figure ‎4.5:4 Dual Magnetron Configurations [85] ................................................................................... 71 

Figure ‎4.5:5 Measured magnetic field Bn, at 1 cm from the above the copper backing plate surface. .... 73 

Figure ‎4.5:6 (a) typical configuration of a complete magnetron sputtering system (b) typical discharge in 

a magnetron sputtering system. .................................................................................................... 74 

Figure ‎4.6:1 Hysteresis characteristics of the discharge voltage (top) and the total pressure (bottom) as 

a function of the reactive gas flow. ................................................................................................ 77 

Figure ‎4.7:1 The formation of the plasma sheath during (a) initial ni and ne and electric potential, (b) 

densities (ni, ne) electric field and potential during  post formation of sheath [121]. ....................... 79 

Figure ‎4.7:2 Typical I-V characteristic of a Langmuir probe. ................................................................... 81 

file:///G:/Novel%20Photovoltaic%20Solar%20Power%20Generating%20Diode.docx%23_Toc406581905


viii 

 

Figure ‎4.8:1 Three fundamental modes of thin films growth processes. ................................................. 83 

Figure ‎4.9:1 Structure zone model relating to evaporated films, after Movchan and Demchishin [106]. . 86 

Figure ‎4.9:2. Structure zone model of sputter deposited materials ......................................................... 86 

Figure ‎4.9:3 Novel SZM of the CFUBMS system, relating coating structure to the homologous 

temperature, ion-to-atom ratio and bias voltage [133]. .................................................................. 88 

Figure ‎5.2:1 Effect of tamping of the powder target, (a) target tamped with very light steel rod, (b) target 

tamped with 1 kg steel rod. ........................................................................................................... 94 

Figure ‎5.2:2 Discharge voltage stability as function of deposition period of loosely packed powder 

targets sputtered in argon and oxygen atmosphere. ..................................................................... 95 

Figure ‎5.2:3 Copper aluminium powder target surface state after being sputtered with 550 W. ............. 96 

Figure ‎5.2:4 Schematic of an asymmetric bipolar-pulse DC waveform to power dielectric surface ........ 97 

Figure ‎5.2:5 power supply trials conducted using different pulse frequency, pulse off time and duty cycle 

on FTO powder target. .................................................................................................................. 99 

Figure ‎5.2:6 SEM fracture sections showing the effect of pulse frequency on structure and deposition 

thickness of the FTO thin films. ..................................................................................................... 99 

Figure ‎5.2:7 Effect of pulse frequency on FTO powder target voltage waveform 90% duty cycle using 

constant power mode at 400 W of sputtering power, in 10 sccm of Ar and 4.5 sccm of O2, coating 

pressure of 0.55 Pa. .................................................................................................................... 100 

Figure ‎5.2:8 Effect of pulse frequency on the deposition rate of a FTO powder target (duty cycle = 90%).

 .................................................................................................................................................... 101 

Figure ‎5.2:9 Effect of duty cycle on the FTO target voltage using 50, 70 and 90% duty cycle at 200 kHz 

pulse frequency. .......................................................................................................................... 102 

Figure ‎5.2:10 Effect of pulse time on the growth thickness of the FTO thin films using sputtering power 

of 400 W, sputtering period of 20 minutes using a variety of pulse frequency and a verity of pulse 

off time in 10 sccm of Ar and 4.5 sccm of O2, coating pressure of 0.55 Pa. ................................ 103 

Figure ‎5.2:11 Effect of sputtering power on the FTO target voltage using a 90% duty cycle and 200 kHz 

pulse frequency in 20 sccm of Ar chamber pressure of 0.55 Pa. ................................................ 104 

Figure ‎5.2:12 Average target voltage of FTO powder target conditioning measured across a period of 2 

hours. .......................................................................................................................................... 105 

Figure ‎5.2:13 Chamber pressure variations during the FTO powder target-conditioning period of 2 hours.

 .................................................................................................................................................... 106 

Figure ‎5.2:14 Effect of oxygen flow on the SnO2 target voltage. ........................................................... 107 

Figure ‎5.3:1. The effect of target-to-substrate separation (dt-s) on the thickness of the coatings. ......... 109 

Figure ‎5.3:2 The effect of the target-to-substrate distance on the electrical resistivity of the FTO 

coatings. ...................................................................................................................................... 109 

Figure ‎5.4:1 The effect of the pulse frequency of (a-b) 300 kHz (c-d) 200 kHz and duty cycle 50, 70, 90 

% on electrical property of FTO thin films. ................................................................................... 112 

Figure ‎5.5:1 X-ray diffraction pattern for the powder targets used in this project .................................. 116 

Figure ‎5.5:2 Average target voltage of a copper/aluminium target as a function of Cu at.% concentration 

deposited in oxygen environment. ............................................................................................... 119 

Figure ‎5.5:3 Deposition rate and the average target voltage as a function of oxygen partial pressure 

using a Cu:Al powder target. ....................................................................................................... 121 

file:///G:/Novel%20Photovoltaic%20Solar%20Power%20Generating%20Diode.docx%23_Toc406581921


ix 

 

Figure ‎5.5:4 hysteresis analysis of pure metal powder target of (a-b) Al (c-d) Cu and (e-f) Cu:Al blended 

powder target. ............................................................................................................................. 127 

Figure ‎5.5:5 Hysteresis study of Ti metal base powder. ....................................................................... 130 

Figure ‎5.6:1 Effect of chamber pressure on target voltage for titanium powder. ................................... 131 

Figure ‎5.7:2 Effect of frequency on time averaged target voltage for titanium powder target. .............. 132 

Figure ‎5.7:1 Target voltage Of Ti target at different oxygen flow rates. ................................................ 133 

Figure ‎5.8:1 Deposition rate of a titanium target at different oxygen flow rates. ................................... 134 

Figure ‎6.2:1 Schematic of the Hall effect. ............................................................................................. 140 

Figure ‎6.2:2: Ohmic contact placement on TCO thin film...................................................................... 142 

Figure ‎6.3:1. The instrumental setup for measuring the Transmission, absorption and the reflection of 

the coating ................................................................................................................................... 146 

Figure ‎6.4:1 Schematic representation of X-ray diffraction operating in the     θ-2θ mode.................... 152 

Figure ‎6.4:2 GIXRD device setup ......................................................................................................... 155 

Figure ‎7.4:1 Schematic fabrication process of p-n junction solar diode ................................................ 174 

Figure ‎7.4:2 Cross section schematic diagram of multi p-n heterojunction diode configuration. ........... 175 

Figure ‎7.4:3 (a) The mask design and (b) the corresponding copper metal contact for the n-type FTO 

thin film. ....................................................................................................................................... 175 

Figure ‎8.1:1 EDS analysis of fluorine and oxygen atomic content in the FTO films as a function of 

fluorine atomic content in the target. ........................................................................................... 180 

Figure ‎8.1:2 XRD diffraction pattern for (a) all FTO diffraction patterns (b) diffraction pattern of SnO2, 

SnO2:F1 and SnO2:F4. ................................................................................................................ 183 

Figure ‎8.1:3 Average grain size as a function of fluorine atomic content in the FTO thin films. ............ 185 

Figure ‎8.1:4 Variation of (a) resistivity in logarithmic scale, (b) mobility and (c) absolute carrier 

concentration of FTO thin films as a function of fluorine atomic content. .................................... 188 

Figure ‎8.1:5 The optical transmittance of FTO thin films as a function of fluorine atomic content. The 

insert shows the variation in optical band-gap and the average transmittance across the 

300≤λ≤900‎nm‎with‎change‎in‎fluorine concentration in thin film. ................................................ 191 

Figure ‎8.1:6. The direct allowed transition of FTO thin films as a function of fluorine atomic content. .. 191 

Figure ‎8.1:7. (a) Surface and (b) Cross-sectional SEM morphologies of SnO2:F2 thin film. ................. 193 

Figure ‎8.2:1 Discharge of power–current curve for a working pressure 0.5 Pa for a ATO powder target.

 .................................................................................................................................................... 195 

Figure ‎8.2:2 Variation of the electrical (a) resistivity, (b) hall mobility and  (c) carrier concentration of 

SnO2:Sb thin films with varying target power. .............................................................................. 198 

Figure ‎8.2:3 Optical transmittance of ATO thin films as a function of the discharge power. ................. 199 

Figure ‎8.2:4 The XRD pattern for ATO thin films as function of discharge power. ................................ 201 

Figure ‎8.2:5 Average grain size for the ATO thin films as a function of the discharge sputtering power.

 .................................................................................................................................................... 202 

Figure ‎8.3:1 The effect of pulse frequency on the atomic ratio of a CuAlO2 thin films. ......................... 206 

Figure ‎8.3:2 Deposition rate of Cu-Al-O thin film as a function of various pulse frequency and discharge 

sputter powers. ............................................................................................................................ 207 

Figure ‎8.3:3 Effect of the oxygen flow rate on the film thickness of the CuAlO2 coatings. .................... 208 

file:///G:/Novel%20Photovoltaic%20Solar%20Power%20Generating%20Diode.docx%23_Toc406581952


x 

 

Figure ‎8.3:4 XRD pattern of the CAO thin films deposited using various discharge power (a) 250 W and 

(b) 350 W using various pulse frequency of DC, 100, 225 and 350 kHz. .................................... 212 

Figure ‎8.3:5 Effect of Cu-to-Al ratio on the electrical resistivity of the CAO thin film. ............................ 214 

Figure ‎8.3:6 Electrical properties (a) resistivity, (b) Hall mobility and (c) carrier concentration of CAO thin 

films using various pulse frequency and discharge sputtering power. ......................................... 217 

Figure ‎8.3:7 Effect of the oxygen flow rate on the CAO thin films. ........................................................ 218 

Figure ‎8.3:8 Optical transmittance of CAO thin films grown using (a) 350 W (b) 250 W sputter discharge 

power (c) average transmittance across 350-900 nm at various pulsed frequency and discharge 

sputter power............................................................................................................................... 221 

Figure ‎8.3:9 The direct optical band-gap of CAO thin films as a function of discharge power at (a) 350 W 

and (b) 250 W with varying pulse frequencies ............................................................................. 223 

Figure ‎8.4:1 The equivalent electrical circuit of a real pn-junction solar cell. ........................................ 230 

Figure ‎8.4:2: Electrical I-V characterisation of the p-n heterojunction device in dark and under 

illumination. ................................................................................................................................. 231 

Figure ‎8.4:3 I-V curve and the parameters used to calculate the device performance. ........................ 231 

Figure ‎8.4:4 n-FTO Ag electrical contacts (a) Mask design (b) complete Ag contact design, (c) problems 

encountered after FTO deposition onto the Ag contacts ............................................................. 233 

 

 



xi 

 

List of Tables 

Table ‎1.3:1 PV world production in terms of technology (MW) [9]. ......................................................... 10 

Table ‎2.6:1 TCO compounds and dopants [11]. ..................................................................................... 32 

Table ‎5.3:1 Comparison experiments using different separation distances. ......................................... 108 

Table ‎5.5:1 The Compositional analysis of (a) SnO2 and (b) SnF2 powder targets prior to blending. ... 117 

Table ‎5.5:2 Compositional analysis of the powder targets and subsequent tin oxide and fluorine doped 

tin oxide. ...................................................................................................................................... 118 

Table ‎5.5:3 Experimental parameters during the hysteresis study of Cu-Al powder target. .................. 122 

Table ‎5.5:4 Power supply experiment conditions during the Ti hysteresis study. ................................. 128 

Table ‎5.7:1 Experimental parameters of oxygen partial pressure affect on target voltage. .................. 132 

Table ‎7.2:1 Atomic percent ratio of the dopants for the SnO2:F and Cu:Al powder targets. ................. 161 

Table ‎7.2:2 Calculation for mass % of elements in SnO2:F3 powder target .......................................... 164 

Table ‎7.2:3 The total mass of the blended powder targets (a) fluorine doped ting oxide, (b) copper 

aluminium oxide and (c) titanium and antimony doped tin oxide. ................................................ 166 

Table ‎7.2:4 Purity, particle size and hazard of the powder targets. ...................................................... 167 

Table ‎7.3:1 Deposition conditions and corresponding deposition rates of CuAlO2 thin films. ............... 171 

Table ‎7.3:2 Standard deposition parameter for (a) antimony doped tin oxide powder target and (b) 

titanium metal base powder target. ............................................................................................. 172 

Table ‎7.3:3 Standard deposition parameters for Cu and Ag targets. .................................................... 173 

Table ‎8.1:1 Compositional analysis of the powder targets and subsequent tin oxide and fluorine doped 

tin oxide. ...................................................................................................................................... 179 

Table ‎8.1:2 Diffraction‎angle‎(2θ),‎the‎miller‎indices‎(hkl), grain size (D) and the texture coefficient (P) of 

FTO thin films. ............................................................................................................................. 184 

Table ‎8.3:1 Composition analysis of CAO thin films produced using different powder targets. ............ 204 

Table ‎8.3:2 Composition of Cu-Al-O thin film deposited using various discharge sputtering power. .... 205 

Table ‎8.3:3 Effect of pulse frequency on the composition ratio of CuAlO2 thin films sputtered at 350 W.

 .................................................................................................................................................... 206 

Table ‎8.3:4 Dependence of CuAlO2 thickness on the O2 flow rate. ...................................................... 208 

Table ‎8.3:5 The grain size of the as-deposited CAO thin films. ............................................................ 213 

Table ‎8.3:6 Average optical transmittance and energy band-gap of CAO thin films grown using various 

pulse frequency and discharge sputtering power ........................................................................ 224 

Table ‎8.4:1 Photovoltaic parameters of n-FTO/p-CAO p-n junction solar cell device ........................... 228 

 

 

file:///G:/Novel%20Photovoltaic%20Solar%20Power%20Generating%20Diode.docx%23_Toc406583078
file:///G:/Novel%20Photovoltaic%20Solar%20Power%20Generating%20Diode.docx%23_Toc406583078


 

xii 
 

List of Equations 

   
  

 
          Eq. ‎2.2:1 ................................................................................................................ 18 

               Eq. ‎2.2:2 ................................................................................................................... 19 

           Eq. ‎2.3:1............................................................................................................................ 20 

  
   

 
    Eq. ‎2.3:2 .................................................................................................................................. 21 

     
             Eq. ‎2.3:3 .................................................................................................................... 21 

     
                     Eq. ‎2.3:4 ....................................................................................................... 21 

               Eq. ‎2.3:5 ......................................................................................................................... 21 

                              Eq. ‎2.3:6 ........................................................................................ 22 

                           Eq. ‎2.3:7 ........................................................................................... 23 

         
   

     
      Eq. ‎2.3:8 ................................................................................................................. 23 

            
   

    Eq. ‎2.3:9 ............................................................................................................. 23 

          Eq. ‎2.4:1 .............................................................................................................................. 25 

            Eq. ‎4.1:1 .......................................................................................................................... 52 

 2                 Eq. ‎4.1:2 ................................................................................................................. 53 

         2           Eq. ‎4.1:3 .......................................................................................................... 53 

          2       Eq. ‎4.3:1 ............................................................................................................ 57 

                Eq. ‎4.3:2 ............................................................................................................... 58 

               Eq. ‎4.3:3 ..................................................................................................................... 58 

           Eq. ‎4.5:1 ........................................................................................................................... 66 

           Eq. ‎4.5:2 .......................................................................................................................... 66 

           Eq. ‎6.2:1 .............................................................................................................................. 139 

     
   

 
     Eq. ‎6.2:2 ...................................................................................................................... 139 

            Eq. ‎6.2:3 ........................................................................................................................ 139 

             Eq. ‎6.2:4 ...................................................................................................................... 140 

            Eq. ‎6.2:5 ......................................................................................................................... 141 

           Eq. ‎6.2:6 ........................................................................................................................... 141 

            Eq. ‎6.2:7 ....................................................................................................................... 141 

             Eq. ‎6.2:8 ......................................................................................................................... 143 

              Eq. ‎6.2:9 ........................................................................................................................ 143 

                         Eq. ‎6.2:10 .................................................................................................. 144 

         Eq. ‎6.2:11 ............................................................................................................................. 144 

               Eq. ‎6.2:12 .................................................................................................................... 144 

          Eq. ‎6.2:13 ............................................................................................................................ 145 

           Eq. ‎6.3:1 ...................................................................................................................... 145 

                       Eq. ‎6.3:2 .............................................................................................. 147 

                      Eq. ‎6.3:3 .................................................................................................. 147 



 

xiii 
 

                      Eq. ‎6.3:4 .............................................................................................. 148 

           Eq. ‎6.4:1 ...................................................................................................................... 151 

   2              Eq. ‎6.4:2 ................................................................................................................ 152 

             θ    Eq. ‎6.4:3 .............................................................................................................. 153 

                                           Eq. ‎6.4:4 ...................................................................... 157 

                                                       Eq. ‎6.4:5 ............................................... 157 

                      Eq. ‎6.4:6 ............................................................................................................ 157 

              
  2     

     Eq. ‎6.4:7 .................................................................................................... 157 

                        2             Eq. ‎7.2:1 .................................................................... 162 

                  Eq. ‎7.2:2 ................................................................................................................ 162 

 2                Eq. ‎7.2:3 ................................................................................................................ 162 

                          Eq. ‎7.2:4 ............................................................................................ 163 

              Eq. ‎7.2:5 ....................................................................................................................... 165 

                   Eq. ‎7.2:6 .......................................................................................................... 165 

                    Eq. ‎7.2:7 ....................................................................................................... 165 

                    Eq. ‎7.2:8 ......................................................................................................... 165 

                                                                           2))  Eq. ‎7.3:1 ...................... 169 

        
      

       
  

 

 
            

   
      Eq. ‎8.1:1 ................................................................................... 183 

            Eq. ‎8.1:2 ............................................................................................................................ 189 

            
        Eq. ‎8.1:3 .......................................................................................................... 189 

                             Eq. ‎8.4:1 ....................................................................................... 227 

  
  

    
                    Eq. ‎8.4:2 ............................................................................................. 228 

 

 

 

 

 

 

 

 



 

xiv 
 

Declaration  

This is to certify that the material contained in this thesis has been produced 

by the author, has not been accepted in substance for any other degree and 

is not currently submitted in candidature for any other academic award. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

ABSTRACT 

Thin film solar cells are based on semiconductor materials which are 

configured together to form a single p-n junction. The p-n junction diode is 

effectively a simple device that has the capacity to absorb part of the sunlight 

spectrum and deliver the absorbed photon energy to carriers of electrical 

current known as electrons and holes. A simple p-n junction solar cell device 

consists of a p-n junction, a metallic grid and a back contact. The aim of this 

project was to develop and fabricate a p-n heterojunction diode that is robust, 

developed with low cost and suitable for large surface area. The device 

attains a heterojunction configuration, consisting of two thin films, each 

exhibiting different semiconducting behaviour, namely n-type and p-type 

semiconductors that are brought together to form a p-n junction diode device.  

The initial stage of this research was to make and characterise a range of 

oxide coating compositions that can be sputtered from blends of loosely 

packed powder targets, using the pulsed DC magnetron sputtering technique. 

These compositions include fluorine doped tin oxide, antimony doped tin 

oxide and titanium oxide. The different coatings should be transparent 

conductive oxides (TCO) that exhibit an n-type semiconductor material 

characteristic.  

The second objective was to characterise and develop a p-type 

semiconductor namely copper aluminium oxide to investigate the optimum 

compositional ratio and the effect of deposition power on the structure of the 

thin films. The thin films were characterised in terms of their structural, 
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morphological, optical (transmission and band-gap) and electrical (resistivity, 

mobility and carrier concentration) conditions.  

The collection of the charge carriers generated from the incident light was 

achieved through metal ohmic contacts. This was deposited onto both sides 

of the device using copper and the silver grids/contacts that are deposited 

onto the n-type layer and the p-type layers, respectively. The design layout of 

the grid was optimised in order to increase the device efficiency.  

The final part of this project was to construct the p-n junction device, test the 

electrical (current-voltage characteristics) performance and investigate the 

rectifying behaviour and the formation of the p-n junction. 
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1.1  Background 

There has been vast progress in the manufacturing scale to generate 

electricity through the use of solar power technology. An example of solar 

power technology is thin film solar cells, also known as photovoltaic cells, 

which convert the solar energy into electrical energy. Thin film solar cells are 

based on semiconductor materials which are configured together to form a 

single p-n junction. 

The p-n junction diode is effectively a simple device that has the capacity to 

absorb part of the sunlight spectrum and deliver the absorbed photon energy 

to carriers of electrical current known as electrons and holes. The p-n junction 

separates and conducts the current carriers through two regions known as the 

n-region and the p-region. The n-region consists of atoms that are capable of 

easily donating an electron, while the p-region contains atoms that are 

capable of binding an electron. These atoms or dopants are termed donors 

and accepters, respectively. A simple p-n junction solar cell device consists of 

a p-n junction, a metallic grid and a back contact. As light shines onto the top 

surface of the device, it passes through the metallic grid, which forms one part 

of the electrical contacts and falls onto the semiconductor, thus absorbed and 

1 
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converted to electrical energy. The other electrical contact, is formed by a 

metallic layer deposited at the back of the solar cell. A simple schematic 

layout for a p-n junction solar cell device showing the creation of electron-hole 

pair is depicted on Figure1.1:1.  

 

Figure ‎1.1:1 Simple schematic layout of a conventional p-n junction diode 

solar cell depicting the creation of an electron-hole pair. 

Thin film solar cells are deposited onto a variety of substrates including 

transparent, opaque, and flexible substrates using different deposition 

technology including physical vapour deposition (PVD), chemical vapour 

technology (CVD), spray pyrolysis etc.  

The subject of this chapter is a historical overview of solar cell technology. A 

road map of this technology, describing important findings of some of the 

pioneer scientists in the field is presented in order to understand the important 

evolution of thin film solar cells. 
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1.2  History of solar cells 

The word photovoltaic describes a way of providing an electric direct current 

(DC) by the influence of light or similar radiation. In 1839, the French physicist 

Alexandre-Edmond Becquerel (1820-1891) was the first person to study the 

photovoltaic effect and was able to generate electricity by illuminating one 

electrode (usually he used platinum but he also managed a get a response by 

using silver electrodes) that was coated with a light sensitive material, such as 

silver-chloride (AgCl) or silver bromine (AgBr). The electrodes were inserted 

into an acidic solution [1]. This configuration is shown in Figure 1.2:1. 

 

Figure ‎1.2:1 First photovoltaic design setup by Becquerel in 1839 [1].  

The next generation of photoconductive materials was introduced by Adam 

and Day in 1876. The object of their experiments, was to examine the electric 

conductivity of selenium when kept in the dark and also to determine whether 

light could actually generate an electric current in the selenium [2]. The results 

were positive and were able to demonstrate the photovoltaic effect in a solid 

state system. The device configuration is shown in Figure ‎1.2:2  [3]. 
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Figure ‎1.2:2 Device configuration used by Adam and Day (1876) for the 

investigation of the photoelectric effects in Selenium [3]. 

Seven years later, the first thin film selenium (Se) solar cell was fabricated by 

Frits in 1883 [4]. Frits was able to adhere a thin layer of Se to one plate but 

not to the other. He used a thin leaf of gold, which he pressed onto the Se thin 

layer, thereby making the first thin film device. He was the first person to 

recognise the potential of photovoltaic devices and noted that these devices 

can be manufactured‎at‎a‎low‎cost.‎He‎also‎suggested‎that,‎“if‎the‎current‎is‎

not wanted immediately,‎ it‎can‎either‎be‎‘stored’‎where‎produced (in storage 

batteries) or transmitted to a distance (and there used, or stored)”.‎ 

The thin film gave an efficiency of 1%, owing to the electrical properties of Se. 

The device is demonstrated in Figure1.2:3. The results of this experiment 

paved the way for the study of solar cells during the 19th century.  

The photovoltaic field saw a very slow growth, and the most efficient materials 

used as an absorbing layer were either Se, Cu2O or Ti2S which were adhered 

onto a metal contact, a design very similar to Frits layout. 
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Figure ‎1.2:3 Se thin film device demonstration by Frits (1883) [3]. 

Another novel finding was made in 1930 by Grondahl who was able to 

develop rectifiers and photovoltaic cells using III-V semiconductors and their 

alloys [5]. The copper-cuprous oxide layers were grown on copper substrates. 

The rectifying action of the copper-cuprous junction was discovered and 

applied to solar cell technology [5]. The cell structure was based on sputtering 

a thin grid contact of lead (Pb) onto the illuminated side of the cell. Figure 

1.2:4 outlines the Grondahl initial cell layout [5]. The use of materials from 

groups III-V pioneered band-gap engineering for use in photovoltaic cell 

technology. 

The work of Grondahl on selenium brought great interest especially from 

Bergman  who in 1931, managed to produce a more effective and efficient 

selenium device that was suitable for photovoltaic solar cell technology [5]. 
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         Figure ‎1.2:4 Copper-cuprous oxide photovoltaic cell made by Grondahl (1930) 

[3]. 

In 1939, Nix et. al, managed to get similar results by using thallous sulphide 

with a similar device structure to that of Grondahl. The device structure is 

shown in Figure 1.2:5 [3]. 

 

 

Figure ‎1.2:5 Thallous sulphide photovoltaic device structure developed in 

1930's [3]. 

In 1941, there was another interesting finding made by Russel Ohl in the Bell 

Laboratories. He was able to create the first semiconductor p-n junction solar 

cell [6]. The p-n junction layout is shown in Figure 1.2:6  
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Figure ‎1.2:6 First semiconductor p-n junction constructed using recrystallised 

Si melts, developed in 1941 [3]. 

The cell was formed using a high purity silicon (99% pure) ingot which is 

provided with a conductive terminal (low resistance conductive terminals 

which are secured on both sides of the silicon ingot). Circuit connections are 

then secured to the terminals using soldering or friction contacts. The ingot is 

made by fusing metallic silicon in powdered form in a silica (SiO2) crucible in 

an electric furnace which is then slowly solidified [6]. Investigation of the 

properties‎of‎the‎junction‎led‎to‎the‎understanding‎of‎the‎role‎of‎the‎‘p’‎and‎the‎

‘n’‎type‎dopants‎in‎controlling‎semiconductor properties and hence creating a 

microelectronic revolution [3, 7]. 

In the late 1970s, solar cell design changed to that shown in Figure 1.2:7. In 

1975, the top surface of the design was changed to a crystallographic 

textured surface in order to reduce light reflection. The design incorporated 

other features which were adapted from the field of microelectronics [8].  

 

 

Electric contacts rear (-) and top (+) 

contact 
n-type 

grown junction 

p-type 



 

8 | P a g e  

 

Figure ‎1.2:7 Silicon structure solar cell developed in 1970 [3]. 

Different device configurations have been implemented in order to incorporate 

the stacking of multi-junction thin films, such as the double and triple device 

setup, to allow for each layer to collect a small portion of photon energy 

(energy‎suitable‎ for‎ the‎material’s‎band-gap), resulting in an increase in the 

cell efficiency. Figure 1.2:8 outlines the structure of such technology. 

 

 

 

 

 

 

 

 

 Figure ‎1.2:8 The structure of a multi-junction solar cell [3]. 
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1.3 Recent development in solar cells 

The average energy consumption the world uses today is 10 TW per year and 

it will escalate to 30 TW per year by 2050. Global warming issues that the 

world faces today has pushed the need to create 20 TW of non-CO2 

producing energy to supply the advancing world. The major market segment 

served by PV cell comprises consumer applications, remote industrial 

systems, developing countries and grid-connected systems. 

The PV industry is flourishing in countries such as Japan, China, Taiwan, 

Germany and the United states. The evolution of the PV-market around the 

world is shown below [9]. 

 

Figure ‎1.3:1 The evolution of the PV- market over the last two-decades [9]. 

 

With the increase in demand for PV cells, raw materials such as silicon cannot 

supply the demand because of an expected Si shortage. Therefore, the need 

for the thin-film solar cells to expand into the world PV market is required. In 
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terms of PV production, almost 80% of world production is based on 

crystalline silicon (c-Si) and polycrystalline silicon (pc-Si) wafer technology. 

Other PV technologies including cadmium telluride (CdTe), copper indium 

gallium selenide (CIGS) and amorphous silicon (a-Si) are in the beginning 

stages of large-scale production and will expand soon.  It is expected that 

thin-film PV technology will play a huge part in the PV industry in the future. 

The world production for PV cell technologies is presented below,  

Table ‎1.3:1 PV world production in terms of technology (MW) [9]. 

 

 

 

 

 

 

 

 

 

 

 

Technology World production (MW) Cell efficiency 
(%) 

c-Si (wafer) 8.678 22 

CdTe 1.017 7.3 

CIGS 166 10.2 

a-Si 796 13.7 
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1.4  Aim and objective  

The aim of this project was to develop and fabricate a p-n heterojunction 

diode that is robust, developed with low cost and suitable for large surface 

area. The device attains a heterojunction configuration, consisting of two thin 

films, each exhibiting different semiconducting behaviour, namely n-type and 

p-type semiconductors that are brought together to form a p-n junction diode 

device.  

The initial stage of this research was to make and characterise a range of 

oxide coating compositions that can be sputtered from blends of loosely 

packed powder targets, using the pulsed DC magnetron sputtering technique 

(described in detail in Chapter 5). These compositions include fluorine doped 

tin oxide, antimony doped tin oxide and titanium dioxide. The different 

coatings should be transparent conductive oxides (TCO) that exhibit an n-type 

semiconductor material characteristic.  

The second objective was to characterise and develop a p-type 

semiconductor namely copper aluminium oxide to investigate the optimum 

compositional ratio and the effect of deposition power on the structure of the 

thin films. The thin films were characterised in terms of their structural, 

morphological, optical (transmission and band-gap) and electrical (resistivity, 

mobility and carrier concentration) conditions.  

The collection of the charge carriers generated from the incident light was 

achieved through metal ohmic contacts, which are deposited onto both sides 

of the device using copper and the silver grids/contacts that were deposited 
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onto the n-type layer and the p-type layers, respectively. The design layout of 

the grid was optimised in order to increase the device efficiency.  

The final part of this thesis reports on the construction the p-n junction device 

and the electrical verification (current-voltage characteristics) showed the 

rectification and the formation of the p-n junction.  

 

1.5  Structure of thesis  

This thesis has been divided into a number of chapters, a review is detailed 

below; 

Chapter 2: an overview of semiconductor thin films is presented, and the 

understanding behind the optical and electrical properties and the effect of 

dopant behaviour is given. It also presents the trends and the commercial 

availability of TCOs. 

Chapter 3: presents the historical and also the device theory of p-n junctions 

and answers the question of what happens when light shines on to a junction. 

Chapter 4: reviews physical vapour deposition processes and gives a 

description of glow discharge plasmas and the growth and formation of thin 

films. It also provides an overview of the sputtering technique and gives 

project descriptive overview of the rig used during the development of thin 

films in this thesis. 

Chapter 5: reviews the characterisation of the single and compound powder 

targets. It presents the effect of the pulse frequency, duty cycle, discharge 

power, gas partial pressure on the target discharge voltage.  
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Chapter 6:  describes the surface and the film analytical techniques used 

during this project for characterising the thin films, including the scanning 

electron microscopy (SEM), X-ray diffraction (XRD), optical spectrometry and 

Hall-effect measurements.  

Chapter 7: describes the experimental process of the rig used during this 

project, and presents the sample preparation and experimental parameters of 

each thin film developed.  

Chapter 8: presents the results and the discussion of the thin films developed 

during this project. It also presents the electrical characteristics of the p-n 

junction device. 

Chapter 9: presents the overall conclusions of this thesis 

Chapter 10: outlines the future work that might be undertaken to further 

improve the developed p-n junction solar generating device.  
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2  

SEMICONDUCTORS AND TCO 

THIN FILMS 

 

The coexistence of optical transparency and electrical conduction can be 

achieved in different types of materials. Once those two entities are optimised 

in a thin film, it is referred to as a transparent conductive oxide (TCO). These 

properties depend on the nature and the atomic arrangements of the metal 

cations in the crystalline structures and on the presence of intrinsic or 

intentionally doped defects. The most utilised TCOs are multi-component 

oxides with ZnO, SnO2 or In2O3 as the host material, which is deposited. For 

recent applications, Sn doped In2O3, (ITO) F doped SnO2 (FTO) and 

aluminium doped zinc oxide (AZO) are the most utilised.  
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2.1  Introduction  

Metallic oxide thin films have been the centre of attention in technological 

industries for many years. These thin films are produced via a variety of 

techniques to make transparent conductive oxides (TCOs). They can be 

thought of as conjugate property materials that are comprised of two 

properties that strongly coincide with one another, one is conductivity and the 

other is the loss of the refractive index or/and the excitation coefficient. For 

instance, metals are highly conductive and opaque; meanwhile, glass is highly 

transparent and insulating. The challenge is to decouple these two properties, 

through the understanding of the structure and property relationships that 

enable the material to retain its transparency while becoming conductive. 

In 1907, Badeker discovered the first TCO materials when he sputter 

deposited the first thin film made from CdO which went under incomplete 

thermal oxidisation during the post-deposition in air [10]. The electrical 

properties of the developed TCO changed with time, owing to the oxygen 

deficiency that lend free carriers to associated metal defect energy levels near 

the bottom of the metal like conduction band of the oxide (discussed later in 

Chapter 3). The general finding was that it is possible to produce n-type 

conductivity by using reduced metal oxide materials. This finding led to other 

TCO thin films being produced via different deposition techniques and based 

on oxides of two or three metallic elements that exhibit good optical 

transparency and electrical resistivity.  

There are a number of applications that TCO thin films are utilised for 

including, transparent electrodes for flat panel displays, transparent 
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electrodes for photovoltaic cells, light emitting diodes, transparent transistors 

and semiconductor lasers. The most popular TCOs are aluminium doped zinc 

oxide (AZO) [11], indium doped tin oxide (ITO) [12] and fluorine doped tin 

oxide (FTO) [13] . Typical electrical resistivity values for TCOs are as low as 

10-4 Ω∙cm with optical transparency greater than 80% in the visible light 

spectrum [14]. The optical transparency is attributed to the wide band gap Eg 

≥ 3.0 eV corresponding to the wavelengths which are shorter than the visible 

range  (380 nm to 750 nm). Therefore, any photons with an energy that is 

lower than the band gap are not absorbed by these materials, but are 

transmitted instead.  

One of the ways to enhance the electrical and optical properties of any 

intrinsic material is to create electron degeneracy either by exploiting the 

deviation of the stoichiometry (such as through structural defects), or 

introducing native donors (such as oxygen) or introducing donor elements into 

the oxide matrix. An example of donor impurities in oxides includes fluorine in 

tin oxide, tin or antimony in indium oxide. However, it is important to 

understand, that there is a limitation of how many impurity atoms can be 

introduced to the metal oxide [15]. This will increase the carrier concentration 

and affects the coulombs charge between the free electrons and the ionised 

donor centres from which they are generated and can therefore provide a 

scattering to the doped material, hence degrading the optical properties of the 

thin film [16]. 

The TCO thin films developed in this research will be tuned to utilise the 

electromagnetic radiation in the visible range only. The optical and the 

electrical behaviour of the developed TCO thin films must be considered and 
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careful balance between the two required properties of transmission and 

resistivity is required. In order to achieve a TCO material with such 

characteristics, the composition should either be non-stoichiometric or should 

be doped with other elements. The cost and the availability of other elements 

should be considered together with its stability in use.   

The usefulness of TCO thin films depends on a number of factors such as the 

opto-electrical properties, environmental stability, surface adhesion and 

suitability for the substrate. By considering all the above factors, the 

functionality of the TCO can be maximised. It is also important to consider the 

economical means when developing a TCO by choosing the raw material and 

the deposition method for growing the films.  

The most utilised TCO, especially in electronic and photovoltaic applications 

is ITO owing to its great opto-electrical properties (electrical resistivity, ρ=10-4 

Ω·cm, optical band-gap, Eg 3 eV, Transmission >90% at 100 nm thick film 

and sheet resistance 10 Ω). With the high price and the scarcity of indium, 

there is much interest in finding an alternative TCO. Currently, the best 

candidate that is inexpensive and nontoxic is AZO which can have a low 

electrical resistivity in the order of ρ=10-4 Ω·cm and an optical transparency 

higher than 85% [17-18]. 

During this chapter, the concept of n-type and p-type semiconductors is given. 

In addition, the optical behaviour, electrical behaviour and the affect of 

dopants on n-type TCO is studied. The trends, commercial development and 

availability of TCO thin films are presented.  



 

18 | P a g e  

2.2  Concept of the semiconductor  

A semiconductor is a transitional staged material between an insulator and a 

conductor material [15]. It attains the optical behaviour of an insulator (such 

as glass) and related dielectric materials that accommodate and guide light 

waves, and electrical properties (such as metal conductors) that do not allow 

light to travel through. 

The flow of the electrical current depends on the electrons, which act as 

charge carriers. The electrons that are responsible for carrying the electrical 

current are called conduction electrons. In general, the majority of the 

electrons are attached to single atoms and cannot move freely. However, 

some electrons are loosely bound and can be released to become a 

conduction electron, leaving positive charged atoms (ions) behind and the net 

charge zero. The valence electrons are responsible for moving the positive 

charges from one atom to the other and therefore creating a path through 

which electrical current can travel.  

There is an energy gap, Eg, which separates the conduction electrons from 

the valence electrons, and in semiconductors, this energy gap is in the order 

of 1eV. In some semiconductors, this energy gap can capture the 

electromagnetic radiation from sunlight, which carries its energy via particles 

called photons, which have a wavelength,  , of less than the gap wavelength 

, g. A photon also exhibits a wavelike character and its energy, Eλ, can be 

determined across a wavelength, λ, by [15], 

   
  

 
           Eq. ‎2.2:1 
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Where h is Planck’s‎constant‎and, c, is the speed of light, ν, is the frequency,   

ω=2πν and  = π/2 is the reduced Planck’s constant. The generation of 

electron-hole pairs is only possible with photons that have greater energy than 

the band-gap (Eg). Therefore, to design an efficient solar cell, it is important to 

consider this physical mechanism.  

In a semiconductor, the outermost shell of a single atom is fully occupied by 

the valence electrons and there is no possibility of accepting an electron of 

the same energy level. As the atoms in a semiconductor crystal are joined 

together, their outer shells begin to interact with one another forming a slight 

gap in the valence energy. The electrons are able to exchange places within 

this valence energy band but since there are no holes available, no charge 

flow is possible. Generating holes is only possible, if the electrons can be 

promoted to a higher energy band, also termed the conduction band, which is 

initially empty. The electrical conductivity of a semiconductor is governed by 

the electrons’ concentration in the conduction band and holes’ concentration 

in the valence band, and can be summed by the following equation [15], 

                Eq. ‎2.2:2 

Where q is the elementary charge, n is electron concentration, p hole 

concentration,  n and  p are the mobility of the electron and hole, respectively.  

 

 

 



 

20 | P a g e  

2.3  Optical properties of semiconductors 

 
To develop TCO thin film coatings, it is important to study the optical 

properties and how they behave in the visible range of the spectrum in terms 

of the interaction of the electromagnetic radiation with the electrons of the 

material.  In the ideal world, a TCO thin film coating should absorb 100% of 

the photon energy across the whole spectrum range. However, this is not 

possible, due to reflection and interference effects such as scattering and 

surface imperfections arising from porosity, pinholes and microcracks, which 

affect the transmission. In the ultra-violet (UV) range, the transmission is 

limited due to the band gap as photons with higher energy than the band-gap 

are absorbed and at the near-infra-red (NIR) a second transmission exists 

due to the free-carrier plasma resonance frequency. 

The electromagnetic radiation propagates differently in TCO thin films 

compared to free space due to the charge occupancy found in thin films. This 

intolerance has an affect on the intensity and the wave velocity of the 

radiation described by the complex index of refraction, N, derived by Heavens 

[19],  

            Eq. ‎2.3:1  

 

Where, n, is the real refractive index, and, k, is the imaginary portion of the 

complex index of refraction, also known as the extinction coefficient. A value 

that is usually associated with the extinction coefficient is the absorption 

coefficient, presented by,  , and given by the following equation [20],  
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     Eq. ‎2.3:2 

The electric field of the propagating wave in the x direction travelling through 

space is expressed as follows [20], 

     
  

     
 

     Eq. ‎2.3:3  

Where,  o, is the amplitude of the field, and,  , is the wavelength. During the 

propagation through space, the index of refraction is unity and the wave 

velocity is equal to the speed of light, c. However, as the wave propagates 

through a medium, these quantities change to, n, and, c/n, respectively.  As 

the wave propagates through the material, absorption processes takes place, 

so a real function is added to Eq. 2.3:3 to represent the damping effect or the 

attenuation of the wave [20], 

      
 
    

    
     

      Eq. ‎2.3:4 

 

The second expression in Eq.2.3:4 contains n and represents the propagation 

without absorption. All materials exhibit a varying complex index of refraction 

N, for example, the extinction coefficient, k, of a glass substrate is vanishingly 

small compared to its refractive index, n. On the other hand, for highly 

absorbing material such as metals, n, is usually small compared to, k. The 

imaginary phase, i, of Eq 2.3:4 can be eliminated by multiplying by the 

complex conjugate. The attenuation of a beam of light in an absorbing 

material can then be calculated as follows [21],  

                Eq. ‎2.3:5 
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Where, I, is the emergent intensity, Io, is the incident intensity,  , is the 

absorption coefficient given in Eq 2.3:5 and, d, is the thickness of the material.  

The intrinsic optical properties of the TCO’s including the transmission (T), 

Reflection (R) and absorption (A) are influenced by the refraction index (n), 

optical band-gap (Eg) and the extinction coefficient (k). The intrinsic properties 

are strongly dependent on the chemical composition and the structure of the 

thin film. The geometric features that influence the optical properties of the 

TCO thin film are; film thickness, thickness uniformity, film roughness and film 

defects [22]. 

It is possible to deposit TCO thin films onto different substrates, including 

glass, polymers and ceramics [23]. However, TCO are usually deposited onto 

glass substrates, which have a refractive index (nsub) of 1.45 for silica base 

glass and 1.6 for other various types [24]. Depending on the film thickness 

and the wavelength of the light, if the film thickness is greater than 100 nm 

then interference bands can occur and this will cause the transmission to 

have maximum and minimum values. 

The refractive index, n, of most TCO thin films in the visible range of the 

spectrum is between 1.8 to 2.8 and using the equation below, it is estimated 

the minimum transmission, Tmin, is between 0.5-0.8 [24], 

 

     
       

              
  

     Eq. ‎2.3:6 
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The optical band gap (Eg) of the TCO thin film is estimated from the 

transmittance (T%) and the reflection (R%) spectra. The optical absorption 

coefficient, α, data can be initially calculated from the following equation,  

 

      
       

      
    Eq. ‎2.3:7 

 

And 

  
 

 
    

   

     
       Eq. ‎2.3:8 

 

Tcorr (%), is the transmittance corrected for the reflection losses at the air-film 

and film-substrate interface, d is the thickness of the film measured in 

nanometres. The optical band gap (Eg) can then be obtained from the 

following equation, 

 

            
 

      Eq. ‎2.3:9 

 

A is a constant, n=0.5 for direct and n=2 for indirect allowed transitions. Data 

is plotted graphically for      n/2 against   , which‎is‎of‎the‎form‎‘y‎=‎mx‎+‎c’‎

and then a linear fit of the data to Eq.2.3:9 will give the allowed transition and 

optical absorption edge, Eg [25]. 
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During the study of the developed TCO thin film, the total transmission, total 

reflection and band gap measurements were considered. These parameters 

significantly depend on the film thickness, the refractive indices of the 

substrate and the film as well as the dopant percentage level. A USB2000+ 

spectrometer sourced from Ocean Optics was used to determine the 

transmission and the reflection of the TCO thin film coatings. 

 

2.4  Electrical properties of semiconductors 

TCO semiconductors are comprised of a wide band-gap (Eg>3 eV) that has a 

typical conductivity in the range of 1×102 to 1×106 S [24]. Typical TCO 

materials are known to exhibit an n-type conductivity, such materials include 

In2O3, SnO2, CdO, ZnO [26-27]. Some p-type materials have been developed, 

such as CuAlO2 [28], AgGaO2 [29], however, their properties remain inferior to 

that of the n-type TCO materials. The conductivity of a TCO material can be 

enhanced by co-doping the intrinsic material.  

The n-type conductivity that is present in indium tin oxide (ITO) or fluorine 

doped tin oxide (FTO) is related to the presence of the shallow donors that 

are located close to the conduction band that are introduced by the chemical 

doping [12]. At room temperature, the excess electron undergoes 

thermalisation into the conduction band. Further doping the intrinsic material, 

will result in the increase in the donor electrons, which form a current carrying 

degenerate gas that gives rise to the electrical conductivity. 
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The conductivity in a semiconductor is the result of the energy absorption that 

comes from the light directed onto the semiconductor, which causes the 

carriers to transit from the valence and conduction bands.  

High conductivity in semiconductors is achieved through the overlap of the    

s-orbital band electron states between large radii metal ions, especially when 

the counter anion state is small (such as oxygen). Research has shown that 

the electron conductivity in indium oxide is attributed to the 5s-orbital overlap. 

Moreover, recent studies on zinc oxides which has a 4s-orbital, confirmed that 

the extent of this s-orbital overlap is the driving factor to higher conductivity in 

semiconductors [30]. If the overlap between the s-orbitals is sustained in the 

conduction band, free carrier mobility populates the conduction band.  

The electrical conductivity in TCO semiconductor depends on two factors: the 

carrier density in the conduction band and the carrier mobility. This is 

illustrated by σ=μne, where,  , is the electron mobility, n, is the electron 

density, e, is the electron charge [31], 

 

  
  

  
    Eq. ‎2.4:1 

 

Where, , is the mean time between collision and, m*, is the effective mass of 

an electron. Eq.2.4:1 presents the relationship between the scattering time 

and mobility. It is assumed that after each scattering time, the carrier motion is 

randomised, so it has a zero average velocity, after which it accelerates 

uniformly in the electric field until scattered again. 
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In intrinsic materials, the electrical conductivity can be enhanced by 

populating the area close to the conduction band with shallow donors and 

impurity states using donor centres such as metallic interstitials or oxygen 

vacancies. Kilic and Zunger studied the electron energy band structure using 

the ab initio density functional theory (DFT) calculations to study the effect of 

dopants on the band structure of SnO2 [32]. The interstitial state of Sn 

populating the conduction band, and the O2 vacancies dominating the defect 

structure of SnO2, due to the multivalence of Sn, was investigated. The study 

showed that the defect structure of the SnO2 provides a theory for the 

coexistence of conductivity with transparency which produce shallow donor 

levels (introducing impurities in a semiconductor which are used to set off free 

electrons in the conduction band), turning the material into an extrinsic 

semiconductor [32].  

TCO thin films with relatively high carrier concentrations have limited electrical 

conductivity, i.e. high carrier density limits the carrier transport due to the 

coulomb interaction between the electrons and the dopant. This attraction is 

also known as the ionised impurity scattering effect. Increasing the dopant 

concentration above a saturation limit will dramatically reduce the carrier 

mobility and therefore limit the conductivity and the resistivity and reduce the 

optical transmission near the infrared edge [33]. All the recently developed 

TCOs from doped or undoped compounds suffer from these limitations. 

Research conducted by Bellingham et al. reported the electrical resistivity and 

mobility of TCOs including indium tin oxide (ITO) and tin oxide (SnO2) have a 

limited mobility and resistivity above a carrier concentration of 1×1020 cm-3 

due to the ionised impurity scattering constraint [16]. Ellmer and Mientus 
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studied the effect of the deposition technique on the electrical properties of 

ZnO and found that resistivity and the mobility were nearly independent of the 

deposition technique used and were limited to 2 × 10-4 Ω·cm and 50 cm2/Vs 

[34]. 

2.5  Dopant effect on semiconductors 

Doping is a process whereby an insulating material becomes a semiconductor 

by introducing foreign impurities into the crystal lattice. The energy levels of 

the electrons orbiting the dopant atom are different to that of the metal oxide. 

The dopant can either donate electrons (free carriers) to the conduction band 

of the metal oxide creating an n-type semiconductor or accept electrons from 

the valence band of the metal oxide creating a p-type semiconductor. For a 

metal oxide, the conduction band consists of unfilled metal cation energy 

levels, while the valence band consists of oxygen anion energy levels. If the 

introduced dopant has an energy level that is just below the conduction band 

minimum (CBM), this means a small energy is required to free the dopant 

electrons into the conduction band and therefore allowing free carriers to 

populate the conduction and therefore increasing the electrical conductivity. 

Semiconductors that are manufactured that way are called n-type because 

the free carriers are of negative charge (electrons). An example of an n-type 

semiconductor is zinc oxide doped with aluminium. The energy level of 

aluminium lies very close to the CBM of zinc oxide, therefore promoting free 

carriers in the conduction band and effectively enhancing the electrical 

properties of the semiconductor. By introducing the defect levels near to the 

bottom of the conduction band, increases the band-gap energy, leading to a 

blue-shift in the high energy absorption edge which is also known as the 
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Burstein-Moss effect [35]. This shift correlates with the magnitude of the 

carrier density. 

An alternative method to make a semiconductor is by introducing a dopant 

that has empty energy levels just above the valence band maximum (VBM) of 

the metal oxide. This promotes the electrons in the valence band to hop onto 

these new levels, leaving a population of positive charge (holes) to conduct in 

the valence band. Dopants that act in such way are termed accepters. 

Semiconductors manufactured in such a way are called p-type because the 

conduction can only take place when holes move in response to an applied 

field. An example of a p-type semiconductor is the delafossite oxide copper 

aluminium oxide CuAlO2.  

2.5.1  Fluorine doped tin oxide 

Un-doped tin oxide (SnO2), is a wide band-gap semiconductor (Eg > 3 eV) 

that‎exhibits‎high‎optical‎transparency‎(T‎≥‎85‎%)‎and‎an‎n-type character due 

to oxygen vacancies [36]. The electrical conductivity of the material can be 

largely enhanced by doping with foreign impurities. The most favoured 

dopants are antimony which substitutes the tin cations or by fluorine via 

substituting the oxygen atoms [36]. 

Fluorine doped tin oxide (FTO) exhibits good visible transparency owing to its 

wide band-gap, while retaining a low electrical resistivity due to the high 

carrier concentration (Nd) caused by the oxygen vacancies and the 

substitutional fluorine dopant [37]. FTO is mechanically, chemically and 

electrochemically stable [38], and it is utilised in numerous technologies 

including; thin film solar cells [39], dielectric layers in low emissivity coatings 
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for windows [40], in gas sensors applications [41] and in liquid crystal displays 

[42]. There are a number of methods/techniques to grow SnO2 (either doped 

or undoped) films, including chemical vapour deposition [43], pulsed laser 

deposition [44], DC reactive sputtering [45] and spray pyrolysis [46].   

Some techniques require a high substrate temperature to deposit the film, 

which can often cause the formation of intermediate semiconductor oxide 

layers at the film boundary [47]. Any post-treatment of the films, such as 

annealing, also poses additional operational costs and reduced throughput. A 

few attempts have been made to sputter FTO from solid targets using 

techniques such as RF magnetron sputtering [48]. More recent work deals 

with DC reactive magnetron sputtering using a metallic tin target and various 

plasma atmospheres such as Ar/O2/CF4 [45], Ar/O2/Freon [49].  

This project presents a unique alternative way to deposit FTO by mid-

frequency (100-350 kHz) pulsed DC magnetron sputtering (explained in 

Chapter 4) from loosely packed (as opposed to sintered or pressed) blended 

powder targets. Thin films have been produced at a low deposition 

temperature (~170°C process heating and no post deposition treatment) and 

a relatively high deposition rate of 27 nm·min-1. This technique has further 

advantages over conventional DC or RF sputtering from solid metallic or 

ceramic targets such as employing a closed field unbalanced magnetron 

configuration and pulsed sputtering to enhance the sputtering rate, benefit 

from low deposition temperatures, suppress arcs and produce dense 

homogenised films [50]. The powder target is loosely packed (as opposed to 

sintered or pressed), so target cracking is avoided and, most importantly, the 

target composition can be readily varied. The powder target approach is a 
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cheap and efficient means of investigating and optimising the properties of 

multi-component materials, compared to using metallic or ceramic targets 

[51]. 

2.5.2  Antimony doped tin oxide 

Transparent conductive oxide (TCO) thin films and their remarkable 

applications as electrodes is dependent on the material used to make a 

sweeping strides. However, the availability of the raw materials and the 

economics of the deposition method are big significant factors in choosing the 

appropriate TCO material. The recent and the scarcity of the high price of 

ITO, the most popular TCO material has pushed research and development to 

find a substitute [52].  

Research has shown that fluorine and antimony are the most favourite 

element to compensate the electrical properties of the tin oxide thin films 

without degrading the optical properties. ATO is a TCO which has been the 

focus of R&D studies due to its technological importance in the field of energy 

saving and energy generation [23, 53], and also because of its environmental 

stability [54] and its electrochemical stability [53], as well as its low cost and 

easy fabrication [55]. 

2.5.3  Copper aluminium oxide 

In general, TCOs are n-type semiconductors, which are doped intrinsically via 

native donors such as oxygen atoms or interstitially via metal atoms in order 

to achieve high opto-electrical properties. Some of the materials that combine 

the above stated conditions include indium tin oxide (ITO), fluorine doped tin 

oxide (FTO), and aluminium doped zinc oxide (AZO) [56-58]. These materials 
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have a limited electrical conductivity because at certain carrier density 

threshold, the Coulomb interaction between the accessible free electrons and 

the ionized donors provide a scattering effect in the doped material; this in 

turn reduces the mobility. Metal oxides with high carrier concentration can 

absorb part of the incident radiation via the electron gas interaction that takes 

place around the electron plasma frequency, which increases with the 

increase in the carrier concentration [50]. Literature suggests that when the 

carrier density is > 2 × 1023 cm-3, the transparency of the TCO films is 

degraded in the visible spectrum due to a shift in the plasma frequency from 

absorbing infrared wavelength, to visible light. Generally, the deposition of a 

conductive p-type TCO is difficult due to the electronic structure of the oxide. 

More recently, research has taken a great depth to generate p-type TCO films 

that retain similar opto-electrical behaviour of an n-type semiconductor. In 

order to achieve a p-type conductivity, materials are required to have a defect 

energy that lies close to the valence band of the metal oxide [59]. Electron 

promotion to these defect levels, promotes hole generation in the valence 

band edge, hence increasing the electrical conductivity. 

Research has recently investigated different deposition techniques to grow 

the CuAlO2 coatings, including sputtering [18, 51, 60], pulsed laser deposition 

[61-63] and plasma-enhanced chemical vapour deposition (PECVD) [64]. 

Among these techniques, reactive sputtering is one of the main techniques 

used to develop binary compounds thin films due to its process reliability, 

strong adhesion between film and substrate [65], working pressure [60], 

sputtering power [66] elemental content [67] and substrate temperature [68]. 
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2.6  Trends in the development of TCO materials 

The development of a novel TCO material is dictated by low resistivity and 

high transmittance in the visible spectrum. There are two strategies that can 

be used to obtain the desired TCO thin film. The first is to dope the TCO 

compounds with other elements, which will increase the electron density [56]. 

Table 2.6:1 outlines different TCOs and their possible dopants. 

Table ‎2.6:1 TCO compounds and dopants [11]. 

TCO Dopant 

SnO2 Sb, F, As, Ta, Nb 

ZnO Al, Ga, B, In, Y, Sc, F, V, Si, Ge, 

Ti, Zr, Hf, Mg, As, H 

In2O3 Sn, Mo, Ta, W, Zr, F, Ge, Nb, 

Hf, Mg 

 

T.Minami produced and characterised more than 20 different TCO 

compounds and dopants, and found that ITO (indium tin oxide) performed 

best in terms of low resistivity and high transmittance in the visible region. It 

was also noted that doping the TCOs with low metallic ion concentration can 

generate shallow donor levels, forming a carrier population at room 

temperature [56]. Doping indium oxide (In2O3) with tin (Sn) can increase the 

electrical conductivity because Sn+4 ions substitute for In+3 ions and this 

provides more electrons as the Sn+4 acts as a one-electron donor [69]. Doping 

zinc oxide with other impurities such as aluminium, gallium or indium from 

group 3 and tin or germanium from group 4 is also possible. However, doping 

zinc oxide with aluminium produced relatively high conductivity [70].  
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Other examples that have been reported include the deposition (including 

magnetron sputtering and chemical vapour deposition) of aluminium zinc 

oxide doped with germanium, AZO:Ge (GZO), tin oxide doped with fluorine, 

SnO2:F (FTO) and tin oxide doped with antimony, SnO2:Sb (ATO) [69, 71]. 

When doping SnO2 with F, the O-2 ion is replaced with a F- ion, creating a new 

donor level, therefore increasing the mobility and carrier concentration, and 

effectively reducing the resistivity [72-73]. The fluorine doping level should be 

carefully determined and not exceed the maximum limit, as doing so will 

increase the F- carrier scattering and effectively deteriorate the electrical 

properties of FTO. Doping SnO2 with Sb will introduce Sb+5 ions that act as 

donor levels. If the doping saturation limit is exceeded, it will effectively 

increase the resistivity because the Sb+3 substitutes the Sn+4 ions leading to 

an increase in the accepter level that compensates the donors, resulting in 

resistivity retardation [74]. The best electrical properties for doped zinc oxide 

were achieved by Agura et al. They deposited AZO solid films and reported a 

low resistivity of 8.5X10-5 Ω∙cm [75] and Park et al when depositing GZO and 

achieving a resistivity of 8.1X10-5 Ω∙cm [76]. 

For an effective TCO, the lowest conduction band should be wide enough so 

that when doping occurs, the carriers will be highly mobile. A second condition 

which must be satisfied is that the TCO material must accommodate the 

dopant and populate the conduction band in such a way that the mobility or 

the transmittance are not degraded [30, 77]. 

In n-type semiconductors, the electrons are the majority carriers and therefore 

the‎ carrier‎ density‎ ‘n’‎ is‎ denoted‎ by‎ ‘Nd’.‎ Since‎ the‎ majority‎ of‎ the‎ TCO‎
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materials are n-type semiconductors, the majority of the electron density is in 

the conduction band. 

Research carried out on TCO materials to study the electron mobility in the 

conduction band, showed that the electrons are connected by an electronic 

structure and that the mobility of the electron is proportional to the band gap 

size [77]. 

The conductivity of a TCO material is limited by two factors, the carrier density 

and the electron mobility. If the TCO material has a large electron density, the 

carrier transport of the electrons is limited because of the Coulomb interaction 

between the electrons and the dopants. Increasing the dopant level in the 

TCO material will result in a decrease of the carrier mobility and at some 

stage the conductivity cannot be increased any further. This will have a 

negative impact on the optical transmittance window near the infrared 

spectrum.  

Another effect that reduces the electron mobility in a TCO material is the 

scattering effect, which is due to the ionised dopant levels that are distributed 

evenly in the semiconductor. Increasing the dopant concentration level will 

considerably increase the scattering of the ionised dopant atoms. All the TCO 

materials suffer from such a problem. 

Another effect associated with increasing the dopant level, is the clustering of 

the doped ions which can limit the conductivity due to the increase in the 

average scattering time, τ, [78-79]. 
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During this investigation, it was important to study and characterise the 

resistivity of the coating against the mobility and the carrier concentration at 

different experimental conditions in order to find the optimum process 

conditions that gave the least resistivity at the maximum possible 

transparency. The carrier concentration and the mobility should be in the 

range of 1X1019 to 1X1021 cm-3 and 10 to 50 cm2/Vs, respectively, in order to 

be able to optimise the resistivity. 

The trend in p-type semiconductor materials has an interesting future 

especially in the field of transparent electronics. However, it is proving to be 

difficult to deposit p-type semiconductors that attain the required properties. 

The poor electrical conductivity and mobility of carriers arises from the fact 

that the positions of the oxygen 2p levels are lower than the valence orbit of 

the metallic atoms, creating a deep accepter level. The holes are therefore 

restricted and would require high energy to overcome the barrier height in 

order to move freely within the crystal lattice, therefore this behaviour results 

in poor hole mobility and high electrical resistivity [28].  

However, this situation was improved by Kawazoe in 1997 who reported a P-

type TCO using CuAlO2  with a wide bandgap of 3.5 eV, electrical conductivity 

of 10.52 Ω·cm and electrical mobility of 10.4 cm2/Vs at room temperature [62]. 

With the emphasis on the production of p-type thin films, more recent work 

was carried by Alkoy et al who reported CuAlO2 p-type thin films with 

resistivity of 5–10 Ω·cm [51] and by Ping et al. who reported p-type properties 

with an electrical resistivity of 1.9 kΩ·cm [66].  
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2.7  Industrial applications of TCOs 

 TCOs thin films are used in many applications, the largest three in terms of 

surface area covered includes electronics [80], photovoltaic technologies [81] 

and architectural glass [82]. In the electronics industry, the TCOs are used as 

transparent electrodes in LCDs (liquid crystal displays of a flat panel display). 

The optical transparency allows for the backlighting to pass through and at the 

same time, the electrical property allows the voltage to be applied to the 

various pixels. The most favourable TCO in the electronic industries is ITO 

due to excellent opto-electrical properties.  

TCO thin films play an important role in photovoltaic cells. They are used as a 

transparent electrode owing to excellent optoelectrical and environmental 

properties. 

TCO thin films are generally applied as part of a multi-layer stack in 

architectural glass. Low-E windows use the transparency of the TCO in order 

to transmit the light through in the visible spectrum, but filters the infrared 

spectrum, therefore minimising heat transmission. This property will minimise 

air conditioning cost during summer and the heat cost during winter. 

The majority of solar cell technologies use TCO thin films as the transparent 

electrode. The major advantages of using a TCO is; compatibility with the 

other layers in the solar cell and environmental stability. Usually, fluorine 

doped tin oxide is used as a TCO layer due to its cheap cost and 

environmental stability [83]. 

Other applications that TCOs are used in include; transparent heating 

elements that can be act as defrosters in vehicular windscreens; shielding to 
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decrease the electromagnetic radiation on sensitive electronic devices; 

applied to surfaces in clean rooms used for electronics assembly to prevent 

static discharge build-up [84].  

2.8  TCO deposition approach  

TCOs are deposited on transparent or non-transparent substrates with an 

average thickness range between 10 nm to 1 μm via a vast range of 

deposition technologies, below are the most utilised in industry; 

Magnetron sputtering is a form of physical vapour deposition that is widely 

used to make uniform coatings on glass, polymers, metals, and other 

substrates (described in later section). There are a number of techniques, 

such as direct current (DC) sputtering, radio frequency (RF) sputtering and 

reactive sputtering [85] . Essentially, plasma is initiated in a low pressure of an 

inert or a reactive gas, and the energetic ions in the plasma sputter the atoms 

off the raw material (known as the target) which are deposited as a uniform 

film on the surface of the substrate. This deposition technique appears to be 

the most popular technique in film deposition due to its cost effectiveness and 

the capability for deposition on large surface area substrates, therefore from a 

practical point of view, the fabrication of TCO films is done in this manner [85]. 

TCOs that have fabricated using this technique include n-type; ITO [86-87], 

ZnO [88-89], FTO [90-91], p-type; CuAlO2 [51, 67], NiCo2O4 [92], NiO [93].  

Pulsed laser deposition (PLD) is a PVD technique that is used to grow a 

variety of oxide films, including TCO’s [94]. PLD is a process that requires 

medium to high vacuum conditions. A reactive gas is added to the chamber to 

create oxides films. During a typical PLD process, a laser beam is focused 
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onto a target surface such as an oxide powder or a metal target, and it ablates 

target material off the target. The substrate is heated to a high temperature 

(typically ~ 400-700 ◦C). Typical TCO fabricated using this technology include; 

ZnO:F [94], ITO [95], TiO2 [96], and p-type TCOs NiO:Li [97]. 

Other techniques such as sol gel, spray coating, chemical vapour deposition 

and spray pyrolysis are also used to deposit TCO thin films. These techniques 

do not require the need for a vacuum environment, however instead they 

require high deposition temperatures. Sol gel, involves immersion of the 

substrate in a chemical solution, then the withdrawal at a controlled rate and 

seemingly controlled heat treatment. Alternatively, the chemical solution can 

be flame sprayed onto the substrate. Chemical vapour deposition (CVD) uses 

high temperature substrate holders to decompose the evaporated vapour 

from the precursor to make the thin film with the right compositional ratio. 

Spray pyrolysis uses the same principles of CVD, the only difference is the 

fluid containing the precursors is sprayed onto the hot substrate. 

 

2.9  Summary and outlook 

The subject of transparent conductive oxides films has gained a very 

important role in the field of optoelectronics, smart windows, and solar cell 

technologies, due to their unique combination of optical and electrical 

properties. An example for TCO application is in energy savings especially in 

buildings, as TCOs have low infrared emmitance and can therefore be used to 

improve the thermal properties of modern buildings. Other applications rely on 

the optical and electrical properties such as in p-n junction power diodes, in 
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which the n-type TCO allows the light to penetrate to the p-type layer, and 

concurrently collecting the charge carriers.  ITO is currently the most utilised 

TCO in the opto-electronic industry however; the scarcity and the high price of 

indium drives the research to search for alternative TCOs to replace ITO and 

to understand the physics and chemistry of TCO materials.  The physical 

effect on the optical transparency and the electrical conductivity, in particular 

the effect of oxygen vacancies and effect of dopants in the formation of 

shallow donor levels is well established.  In summary, the AZO, FTO and 

GZO coatings are the present TCOs that have close electrical conductivity to 

that of the ITO and high optical transparency in the UV-VIS-NIR range. 
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A p-n diode is a semiconductor device that is based on a p-n junction 

configuration that generates the electrical energy by absorbing energy from 

sunlight and converting it to a direct current that flows in one direction. The 

device consists of two regions, namely the n-region and the p-region. The n-

type and the p-type regions are created by varying the doping level within a 

single semiconductor crystal or using two materials. The physical principles 

underlying the operation of the p-n junction diode are the subject of this 

chapter. 
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3.1 History of p-n junctions 

In March 1940 at the Bell Telephone Laboratories, an important finding was 

observed by Ohl when he observed the photovoltaic effect when a flashlight 

was shone onto a silicon rod and recorded a voltage reading of almost 0.5 V 

[6]. This was by far the best result anyone had gained in the photovoltaic field. 

During that period, crystals had different purities and therefore a natural p-n 

junction was formed unintentionally.  

During‎Ohl’s‎ electrical‎ tests‎ on‎much‎ purified‎ silicon rods, he noted that at 

some parts of the rod, the rectification properties were opposite to what he 

expected. Ohl and the research group decided that the two-types of silicon 

needed to be named differently as they both exhibit different behaviour. They 

named them p-type (positive) and n-type (negative). This is because the 

bottom part of the slab gave a negative voltage while the top part gave a 

positive voltage when light was shone onto it. The mid-section, which 

exhibited high resistance, was termed a p-n junction.   

The unusual behaviour of silicon was further investigated by another solid 

state physicist named William Shockley who was very interested in the p-n 

junction barrier of the silicon. He was interested in using this technology in 

amplifying a signal, which he termed a “solid‎state‎valve”.‎Shockley‎recorded‎

the first signal amplification and his work led to the first point-contact transistor 

which Bell Labs claimed in 1947 and this caused Shockley to further 

investigate the matter and manage to control the flow of electrons between 

the surrounding n-type regions. He managed to create the first p-n junction 

transistor in January 1948 [98]. 
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3.2  p-n junction device theory 

Figure ‎3.2:1 outlines how a p-n junction is formed by bringing together the p-

type and the n-type regions and also outlines the energy levels and a junction 

barrier [99]. When a p-type and n-type materials are placed in contact with 

each other, the junction behaves very differently than either type of material 

alone, and it is termed the p-n junction, as shown in Figure ‎3.2:1 (a-b). When 

the p-n junction is formed, some of the electrons in the n-region diffuse across 

the junction and combine with the holes to form negative ions. A hole can be 

treated as a particle with a positive mass and a positive charge that is exactly 

equal in absolute value to an electron, this is depicted by the yellow and the 

red circles in Figure ‎3.2:1 (b) . The n-region contains positive donors and a 

large amount of electrons, while the p-region contains negative accepters and 

positive holes. The n-region contains more free electrons, which diffuse to the 

p-region while the holes in the p-region migrate to the n-region. The flow of 

carrier from one region of higher concentration to lower concentration results 

in a diffusion current.  

If these particles had no charge, the diffusion process would stop once their 

concentration becomes equal and no electric field would exists because there 

will be no electrostatic attraction between them. However due to their opposite 

charge and the distance between them, an electric field is established and the 

drift current causes the carriers to flow in the opposite direction to that of the 

diffusion current.  

While in thermal equilibrium no external voltage is applied between the n-type 

and p-type material, there is an internal potential, which is caused by the work 



 

43 | P a g e  

function difference between the n-type and p-type semiconductors. This 

potential equals the built-in potential, eVD. 

 

Figure ‎3.2:1 The band diagram of a p-n junction at thermal equilibrium [100]. 

 

Ec= Energy at the bottom edge of the conduction band (J) 

EF= Fermi Energy (J) 

EV= Energy at the top of the valence band (J) 

eVD= charge built in potential  
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Bringing together a large number of atoms (in the order of 1020 atoms or 

more) will produce molecular orbitals, which are proportional to the number of 

atoms. This will make the energy difference between them very small. The 

band that contains the valence electrons is termed the valence band and the 

next permitted band is termed the conduction band [101].  

The energy band structure is a series of a forbidden and allowed energy 

bands. The allowed energy bands associated with different atomic orbital can 

overlap to produce a single large energy band. The space between the 

allowed bands is called the forbidden energy gap because the electrons 

cannot have these energies.  

The band structure determines the electrical and optical behaviour of the 

material. A typical structure of the outer shell of electrons in a solid is shown 

in Figure ‎3.2:2. A common characteristic of a solid is that they contain only a 

few electrons in the outer shell, the bond between these electrons and the 

nucleus is relatively weak, so for example, when Al atoms are brought 

together in a block of metal, the valence electrons leave the atoms to become 

part of a common electron cloud. With this arrangement, the valence 

electrons have high mobility and are therefore able to conduct electricity.  

 

Figure ‎3.2:2 Sharing of valence electrons in outer shell between atoms. 

Valence electron 
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The locations of the allowed and forbidden gaps in the atom are shown in 

Figure ‎3.2:3. 

 

Figure ‎3.2:3 Formation of energy bands [20]. 

For an electron to pass from one energy band to the next, it requires energy 

that is sufficient enough to excite it to the next energy state, provided the 

nearby states are not full, or else the electron will not respond.  

The band diagram model is a useful model in describing the difference 

between metal, semiconductor and insulator materials. The following diagram 

outlines this, 

 

 Figure ‎3.2:4 Top two band structures in a metal, a semiconductor and an 
insulator [20]. 
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field and can move easily from the valence band to the conduction band 

producing an electric current. This implies that a metal structure has a very 

large free carrier density. 

In a semiconductor material such as silicon, the valence band is 1 eV (10-19 J) 

[102] below the conduction band, so an electron can be emitted by a small 

amount of energy (thermal, photoemission, field or secondary emission) to 

break its bonds and become an unlocalised free electron. This minimum 

required amount of energy is called the work function, e∅. 

In an insulator material, the valence band is filled and the electrons have no 

contribution towards the current flow unless it can cross the band gap of 

magnitude 5X10-19 J (~5 eV) [102], this is a large gap for an electron to cross 

without external assistance. This leaves the conduction band in an empty 

state, which can be seen in Figure ‎3.2:4. 

Every photon that has energy above the band gap energy is absorbed by the 

p-n junction material. However, photons with lower energy than the band gap 

energy causes a mismatch between the specific band gap absorption 

spectrum and the solar spectrum, this leaves the photon not being absorbed, 

hence its energy not being used. 

The photon excites the electron in the valence band and promotes the 

electron into the conduction band. However, the excited electron quickly 

losses energy due to the lattice of the material in the form of heat; this 

process is termed thermalisation. The kinetic energy gained by the 

thermalised electron is determined by the temperature of the lattice and since 
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the thermal energy is not used as electrical current, therefore it is a significant 

loss process.  

The excited electron can either be extracted as electrical current or 

recombined back with the valence hole and give energy in terms of light 

(luminescence). At this point, no current can be extracted because all the 

electrons are radiated to the valence band and also the energy of the electron 

at that point is much lower than that of the excited electron.  

Electrical current can only flow if the built-in voltage is lower than the open 

circuit voltage (VOC) and operating the cell at its maximum efficiency i.e. at its 

maximum power point (MPP) induces losses which are termed the fill factor 

(FF) loss, which is attained from the current-voltage characteristics. A typical 

I-V characteristic of a p-n junction diode is shown in the figure below, which 

outlines the important points mentioned earlier; 
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Figure ‎3.2:5 Current-Voltage characteristic graph of a typical p-n junction solar 

cell. 
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There are two ways of applying a voltage (bias) across a p-n junction, either 

from the p-region to the n-region or vice versa, this is called forward bias and 

reverse bias respectively.  

In a forward bias arrangement (applying positive bias voltage to the p-region), 

the charge carriers are pushed to the depletion region and recombined 

continuously allowing current to flow. In a reverse bias arrangement (applying 

positive bias voltage to the n-region), the charge carriers are exhausted and 

the depletion region is polarised and hence, no current can flow, this is shown 

in Figure ‎3.2:6. 
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Figure ‎3.2:6 p-n junction under forward and reverse bias [100]. 
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Physical vapour deposition (PVD) is a generic term given to a group of 

atomistic deposition processes in which the atoms or molecules of a material 

are physically vaporised from a liquid or a solid and then transported to the 

substrate surface via a vapour through a vacuum or a plasma environment. 

The main categories of PVD processes are vacuum evaporation, sputter 

deposition and ion plating. PVD process can be used to deposit films of 

elements, alloys and compounds using reactive deposition processes. PVD  

processes are used to deposit multilayer thin films, on substrates of different 

shapes and complexity or in a range of size from very small to very large 

glass substrates such as 6 m × 3 m architectural glass.  

In this chapter, an emphasis on the PVD processes is considered along with 

characteristics and structural formation of thin films. 

 

PHYSICAL VAPOUR DEPOSITION 

 

4  
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4.1  Fundamentals of PVD process 

Historically, most solid and ceramic materials were produced by melting and 

solidification technologies. Surface engineering became a valuable 

technology for conceiving both surface and bulk properties simultaneously. 

PVD technologies advanced and new techniques were introduced, which 

promoted the production of a diversity of materials. This is a key motivation for 

industrial application such as the energy, microelectronics and 

optoelectronics, etc [103]. Some of the key and motivation parameters include 

[104],  

 Wide range of coating thickness from few nano meters to tens of 

micrometers is achievable.  

 Multi-layered coatings can be deposited in a single deposition run. 

 Layer uniformity and reproducibility of coatings is high. 

 Substrate deposition temperature can be between room temperature to 

350°C. 

 Deposition parameters varied to achieve the desired coating properties. 

 The substrates can range in size from very small to very large such as the 

18 m2 glass panels used for architectural glass. 

 Typical PVD deposition rates are 10 to 100 Å (1–10 nm) per second. 
 

 

In PVD processes, the flux of atoms that forms a coating can be generated 

from a solid source of the required material (in the form of a target plate or 

placed in a crucible) using thermal energy (also known as evaporation) or 

using kinetic energy from ions (known as sputtering). In a reactive deposition 

process, the coating is formed by the reaction of the coating atoms 
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(deposition material) with the gaseous environment, e.g. nitrogen or oxygen. 

The nucleation and growth modes of the condensing thin films determine its 

microstructure and crystallography.   

PVD is the most commonly used deposition process for metals and metal 

oxide in semiconductor processing by using thermal evaporation energy or 

kinetic sputtering energy of ions to remove the material from the 

target/crucible source and transported in the form of a vapour through a 

vacuum or low-pressure gaseous (plasma) environment to the substrate.  

Varying the parameters of a PVD process can have great influence on the 

properties of the coated surface, this includes; 

 Specific resistance 

 Temperature of coefficient resistance (TCR)   

 Adhesion  

 Structure  

 Composition  

 Density  

 Refractive index 

Since PVD processes are vacuum processes, it is important to understand the 

fundamental concept of vacuum physics like pressure and mean-free-path. 

The pressure can be described as gas particles with concentration, n, per unit 

volume, mass m, and mean velocity  colliding with the container wall [104], 

  
    

 
     Eq. ‎4.1:1 
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The average velocity of the gas molecule, depend on two factors, the 

molecular mass, m*, and the temperature, T. Assuming the particle 

distribution follows that of Boltzmann distribution (see Figure ‎4.1:1) [104],  

      
   

    
   

      Eq. ‎4.1:2 

Where, k, is the Boltzmann constant.  

 

      (a)            (b) 

Figure ‎4.1:1 (a) Pathway of a scattered particle between collisions and (b) 

Boltzmann distribution of mean particle velocities. 

The mean-free-path of molecules between collisions is therefore [104], 

  
  

        
     Eq. ‎4.1:3 

Where, NA, is Avogadro's number and σ is the collision cross section 

It is imperative that the mean free path of the particle to be larger than the 

distance between the target and the substrate in order to obtain coatings with 

chemical compositions that closely match the composition of the target. The 

chemical composition of the deposited coating depends on the purity of the 

target and the gas type used in the vacuum chamber. 
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4.2  Vacuum evaporation 

Vacuum evaporation is a PVD process, which works by the principle of 

thermal vaporisation of the source material in a vacuum environment until a 

sufficient vapour pressure for net evaporation of the source material has 

reached. The vaporised material reaches the substrate in a line-of-sight 

configuration with little or no collision with gas molecules in the space 

between the source material and the substrate. The vacuum chamber is 

evacuated to a typical pressure of 10-2 to 10-4 Pa in order to create a large  

mean-free-path bigger than 5 m [105], for the vapour particles to prevent 

reaction of the source material with the residual gas and prevent 

contamination from the deposition system [106]. 

The key feature of this process is that the source material is heated to very 

high temperatures using a heated source such as resistive heater or e-beam 

evaporation gun, while the substrate temperature can be freely changed in 

order to influence the structure of the coating. The resistive heater is usually 

tungsten wire wrapped around a ceramic ingot. The drawback of using a 

resistive heater of the vapour source is the evaporation of the actual heater, 

which can lead to contamination in the coating. In addition, this process does 

not allow for the evaporation of high melting temperature materials such W, 

Mo and Ta. To ensure an even coating, the substrate holder is moved in a 

concentric motion to ensure constant layer thickness is achieved across the 

substrate. 

The e-beam is used to achieve efficient local heating of the source material. 

Typical deposition rates vary from 100 nm/min to 5 μm/min [107]. The core 



 

55 | P a g e  

parameter to achieve good coatings is to keep the residual gas pressure 

approximately 10-2 Pa in order to stop any collisions between the vaporised 

particles and the gas particles. The evaporation rate is controlled by varying 

the electron density of the e-beam. The disadvantage of using e-beam is the 

ability to bubble the source material, which can lead to the danger of 

splattering of the source material onto the substrate surface [107]. 

The vacuum evaporation process is generally used for the deposition of 

metallic coatings. However, it is also possible for deposition in reactive and 

non- reactive atmospheres of alloys, ceramics and chemical compounds. 

Alloys are difficult to evaporate because not all elements have the same 

evaporation temperature. This makes other PVD techniques such as 

sputtering, a more favourable technique for alloy deposition. The evaporation 

of chemical compound can produce dissociation (i.e. the breaking of the 

chemical compound to simpler components); therefore sputtering can be a 

better PVD process to use. Reactive evaporation is possible via the use of 

reactive gas such as oxygen or nitrogen, which can lead to metal oxide or 

nitrides. Sputtering can provide better process control and is therefore often 

used in preference [104].  

The vacuum deposition process is used to form a variety of coatings such as; 

mirror coatings, decorative coatings, packaging materials, wear resistant 

coatings, corrosion resistive coatings, etc [106]. 

In order to improve the structure and properties of the coatings, energetic 

bombardment from a glow discharge plasma is used. As mentioned earlier, 

ion plating and sputtering are other forms of PVD processes, but it is 
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important to describe in the next section the glow discharge plasma more 

clearly in order to give better understanding for the reader.  

 

Figure ‎4.2:1 Schematic representation of vacuum evaporation system [104]. 

 

4.3  Glow discharge plasma 

The term plasma is defined as a partially ionised gas, which contain ions, 

electrons and atoms that is produced by applying an external electric field 

[108]. Gas discharges were studied over a century ago by Irvine Langmuir as 

a result of developing a small area plasma probe [109]. Traditionally 

discharges were utilised in switching equipment such as gas valves and 

lighting. 

Glow discharge plasma utilised in deposition processes consists of a low 

pressure (typically in the range of 0.1 to 70 pa) partially ionised gas that 

contains the same number of electrons as the number of ions, also refered to 

as quasineutral [110]. The kinetic energy transfer between the electron and 
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the heavy particles such as an ion or an atom or even a molecule during an 

elastic collision is proportional to the mass difference between the electrons 

and the heavy particles, therefore it is attributed to have a small value (10-5) 

[111].  

At low-pressure atmospheres, the electrons can gain high kinetic energy to 

have a high probability to produce sufficient ionisation or excitation during the 

collision with other heavy particles. The production of these excited species 

and their interaction on the growth of the deposited film has made glow 

discharge plasma treatments become the main process in material 

processing. A few examples of systems that employ glow discharge plasma 

include; sputter deposition, Ion plating and plasma assisted chemical vapour 

deposition. 

 The discharge in a deposition system, such as magnetron system is created 

by applying a negative voltage to the magnetron target, which is in a vacuum 

chamber backfilled with a low pressure of discharge gas such as argon. This 

causes electrons that are close to the target surface to accelerate away from 

the surface, causing the electron to have sufficient kinetic energy to ionise the 

gas atoms. This can be described by the equation below; 

               2        Eq. ‎4.3:1 

Collisions of particles with insufficient energy for ionisation will cause the gas 

atoms to release energy in terms of light (emitting a photon), this gives the 

characteristic glow of the discharge plasma, as can be seen from the equation 

below;  
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                                 Eq. ‎4.3:2 

This leads to;  

                           Eq. ‎4.3:3 

The process of ionisation and the glowing of the plasma are visualised in the 

following Figure ‎4.3:1 and Figure ‎4.3:2. 

 

Figure ‎4.3:1 Schematic representation of ionisation and formation of the glow 
discharge plasma  
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Figure ‎4.3:2 Formation of visible glow discharge plasma in an magnetron 
sputtering process. 

 

In a low pressure plasma (0.1 Pa), the mean free path of the electron is high. 

This allows the electron to obtain high kinetic energy as it travels for longer 

periods of time, so the collisions between the electron and the gas particles 

are not sufficient to allow thermal equilibrium to be established so the 

temperature Telectron≫ ion≫ gas, this type of plasma is referred to as a cold 

plasma [110]. 

In a high pressure plasma, thermal equilibrium is achieved as the rate of the 

collisions between electrons and ions is increased. This type of plasma is 

referred to as a hot plasma where Telectron  gas [110]. 

Glow discharge plasmas are utilised in many PVD technologies including DC 

sputtering, RF sputtering and ion plating. During a plasma discharge, three 

regions can be identified; 
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 Townsend discharge 

 Breakdown discharge  

 Glow discharge 

At low voltage, the electrical field generated is very low, due to the low 

amount of current being drawn. The electrons will have no energy to cause 

ionisation of the gas particles, hence few ions will be present, this is termed 

the Townsend discharge.  

As the voltage is further increased, the electrons gain sufficient energy to 

cause ionisation of the gas particles, which increases the current. This region 

is termed the breakdown discharge. Further increase in the voltage creates 

more charged particles (positive ions) which will have enough kinetic energy 

to strike the cathode surface and as a result, more secondary electrons are 

emitted away from the cathode surface and collide with other gas particles, as 

a result, a self-sustaining discharge is created. 

By further increasing the voltage, the bombardment of the ions will cover the 

whole cathode surface and the current intensity becomes uniform at constant 

pressure. This region is termed abnormal glow discharge, which is the point at 

which sputtering is normally carried out. As the voltage is further increased, 

more ions collide with the cathode surface and a layer of ions will cover the 

surface and breakdown can occur in the form of an arc.  
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4.4  Ion plating 

Ion plating is another group of PVD process in which the discharge is carried 

out in a mixture of the evaporated flux and an inert working gas (usually 

argon) pressure in the range of 0.1-1 Pa, with the substrate holder biased 

negatively relative to the plasma potential in order to sustain the plasma 

discharge. The glow discharge plasma is kept close to the surface of the 

substrate by applying a high negative potential (-2 to 5 kV) to the substrate 

holder using either a DC or RF power supply. The high energetic ions from 

the discharge bombard the surface prior and during the deposition [112].   

The source material is vaporised in the similar way to the vacuum evaporation 

process, however, the evaporated atoms pass through the plasma discharge 

and get ionised from the plasma and bombard the surface at higher energies. 

Prior to deposition, the substrate surface is bombarded by high-energy gas 

ions which sputter away any impurities on an atomic scale, which can then 

improve the adhesion and lower impurity content of the films onto the 

substrate. However, the disadvantage of ion bombardment is that it can 

decrease the deposition rate as some of the deposited particles are sputtered 

off, it can also cause the increase in the substrate temperature due to the high 

energetic ion bombardment, which is undesired for applications such as 

microelectronics components [112]. A schematic representation of the ion 

plating process is shown in Figure ‎4.4:1. 
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Figure ‎4.4:1 Schematic representation of an ion plating process [112]. 

 

4.5  Sputter deposition process  

Sputtering is plasma based PVD process in which noble gas ions such as 

argon (Ar+) are attracted towards the target surface and cause the removal of 

particles from the target surface. The removed particles then travel through 

the plasma and collide with the gas atoms. This results in their arrival of the 

substrate surface from various directions where they condense to form a 

coating. The condensation rate of the sputtered particles at any sputtering 

power is controlled by the target-substrate distance. The average distance 

between the target and the substrate is typically 5-35 cm [104]. 

In a typical sputtering process, the chamber is evacuated to a high vacuum,    

(typically 10-3 Pa) and backfilled by inert gas such as argon to 1 Pa of 

pressure. The gas atoms are then partially ionised by the electric discharge 
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and are ready to bombard the target surface. A schematic representation for 

the propagation momentum and particle movement of the Ar ion hitting the 

target surface is shown in Figure ‎4.5:1. 

 

Figure ‎4.5:1 Schematic representation for the propagation momentum and 

particle movement of the Ar ion hitting the target surface. 

Sputtering equipment is widely available for the different sputtering processes. 

Ion beam sputtering ablates the material from the target using an ion beam, 

which then condense onto the substrate surface. Glow discharge plasma 

sputtering is the most commonly used from the sputtering processes systems.  

The most common system used in plasma sputtering is either DC sputtering 

or RF sputtering [104].  In a DC system, the target holder is generally cooled 

using a water cooling facility in order to minimise radiant heat from the target 

surface and also to prevent any diffusion which could change the composition 

in the target surface when alloy targets are used. This can act as an 

advantage over the thermal evaporation process [106].  
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Figure ‎4.5:2 Schematic of DC-sputtering system 

 

4.5.1  Magnetron sputtering deposition 

Magnetron sputtering is a technique, which has evolved over the past 3-4 

decades to an industrial standard used to deposit commercially important 

coatings. The main advantages offered by this technique are the high quality 

of the coatings produced and the versatility of the technique, compared to 

other PVD techniques. Magnetron sputtering has a great impact on 

manufacturing areas including [108], 
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As in a conventional sputtering system, in a typical magnetron configuration, 

the pressure in the vacuum chamber is reduced to typically 10-4 Pa after 

which argon gas (typically 0.2 Pa) is introduced into the chamber. Discharge 

plasma is induced by applying a negative voltage (typically 200 V to 1 kV) to 

the target. The primary electrons found close to the target are accelerated 

away from the negatively charged target.  When the applied target voltage is 

large enough, the electrons gain enough energy to begin to ionise the argon 

neutrals, which are then accelerated to a negatively biased target plate 

causing the bombardment and the sputtering of atoms from target surface, 

which condense as a thin film on a substrate surface. The bombardment of 

the target by the ions also causes the ejection of secondary electrons from the 

target surface into the dense plasma, which is important in maintaining the 

plasma. The number of electrons that are emitted per incoming ion is called 

secondary electron emission yield, isee. This parameter depends greatly on 

the condition of the target surface and on the ion energy. These secondary 

electrons are again repelled away from the target surface and may also ionise 

the argon atom. One ion creates enough secondary electrons to ensure one 

ionisation, the discharge achieves a breakdown and it becomes self-

sustaining. Some of the electrons do not have the sufficient energy to create 

argon ions, because the transferred energy is less than the ionisation energy, 

however, the argon neutral do get excited, but then lose their energy and go 

back to their ground state by emitting a photon, which is observed during a 

typical glow discharge of a plasma.  

The initial sputtering process was limited by its low deposition rate, high 

substrate heating temperature and low ionisation efficiency in the plasma 
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[113]. These limitations were overcome with the development of the 

magnetron configuration and later the unbalanced magnetron configuration in 

the late 1980s and its further improvement in the 1990s into a multi-source 

closed-field system [85]. 

The magnetic field in a magnetron is, therefore, employed in order to increase 

the deposition rate, this is done by configuring the magnets in such a way that 

one pole is placed in the centre of the target axis and the other pole is formed 

by placing other magnets around the outer edge of the target in a ring shape. 

By employing such a configuration, provides a magnetic field, B, which is 

applied to the discharge in addition to the electric field, E, the secondary 

electrons are trapped near the target surface and are governed by the Lorentz 

force, F. 

                Eq. ‎4.5:1 

Where, q, and, v, are the electron charge and velocity respectively and, B, is 

the magnetic strength of the magnetic field. If the force (electric field) applied 

on the charge particle is perpendicular to a magnetic field, the charged 

particle will change its path to that around the magnetic field line. The orbit 

radius of the charge particle can be determined by,  

            Eq. ‎4.5:2 

Where, m, is the mass of the charged particle, v⊥, is the component of the 

velocity that is perpendicular to the magnetic field. It can be observed from the 

above equation, that heavy charged particles have a larger circular radius 

orbit. Therefore, a magnetic field can significantly influence the charged 

particle within a plasma and the degree of the influence is governed by the 
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mass of the charged particle. In a plasma atmosphere, the effect of the 

electron is normally considered, and the ion ignored. 

The electric field causes the electrons to travel in the direction perpendicular 

to both the magnetic and the electric field, this is called the E × B or Hall drift. 

The combination of the Hall drift and confinement of the electron significantly 

increases the mean free path of the electron in comparison to other 

conventional glow discharges. This increases the probability of an electron to 

atom collision, hence, increasing the ionisation efficiency. The result is a 

dense plasma and high sputtering rate at the target and high deposition rate 

at the substrate region.   

In a typical magnetron configuration, the magnets are placed beneath the 

target in a north-south polarity arrangement in a balanced array (explained in 

the next section) and the field lines travel from the north to the south pole 

through the target to form a closed loop region. This configuration forces the 

electron to spiral along the magnetic field lines very close to the target surface 

and undergo many collisions before being lost to ground. The secondary 

electrons produced from the target are attracted by the field lines and 

confined close to target surface. This increases the ionisation rate in the 

plasma and creates a dense plasma in front of the target surface. This allows 

for more ions from the plasma to bombard the target surface with full 

discharge potential.  

The implementation of magnets allow for sputtering and deposition at lower 

discharge voltages (-200 to -1000 V) in comparison to basic sputtering (-3000 

V). Also reduced pressure of up to 100 times less in comparison to basic 
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sputtering allows for the sputtered species to have very little gas scatter, 

therefore increasing the deposition rate and increasing the coating flux and 

energy of the sputtered species [114].   

The dense plasma of a conventional magnetron system is located very close 

to the target surface (60 mm). If the substrate is not located within the short 

distance, then the growing coating cannot benefit from the ion bombardment, 

which is proven to improve the physical and chemical properties of the grown 

coating [115]. This problem was tackled by the use of unbalanced 

magnetrons, which is explained in the next section. 

 

4.5.2  Unbalanced magnetron sputtering 

Window and Savvides were the first in appreciating the effect of altering the 

magnetic field in a conventional magnetron system. They managed to change 

the balanced magnetic array to the unbalanced magnetic array.  

In a conventional balanced magnetron, the strength of the inner and the outer 

arrays are approximately equal and the magnetic flux is closely confined to 

the‎target‎region;‎this‎is‎termed‎‘balanced’‎magnetic‎array.‎ 

The design of the Window and Savvides was based on increasing the 

magnetic strength of either the inner array or the outer array and therefore the 

magnetic flux was no longer confined near the target region. This new design 

was termed an unbalanced array. Window and Savvides proposed two types 

of systems and termed them Type-I and Type-II [116]. Figure ‎4.5:3 outlines 

the differences in the balanced system and the unbalanced Type-I and Type-II 

systems. 
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In a typical Type-I system, the inner or central pole is made stronger than the 

outer pole which can be seen in Figure ‎4.5:3. This allows the plasma density 

to decrease near to the substrate region, as some of the magnetic field lines 

do not close in on themselves. As a results, the plasma flux travel to the 

chamber walls, giving a low ion current at the substrate.  

In an unbalanced magnetron, the Type-II configuration is typically used, this 

can be seen in Figure ‎4.5:3, whereby, strong magnets are utilised on the 

outer side, which forces the plasma to expand away from the target surface 

towards the substrate surface. This will trap the secondary electrons that have 

escaped from the target surface and will eventually collide with the neutral gas 

atoms causing an ionisation effect to take place. The collision increases the 

number of ions and electrons in the region near the substrate. The increase in 

the plasma density near to the substrate will cause an ion current to be 

transported to the substrate surface without the need for biasing the substrate 

(referred to as self-biasing). 

Unbalanced magnetrons have been routinely used by researchers and it was 

possible to produce substrate ion currents of 5 mA cm-2, this is an order of 

magnitude higher than conventional magnetrons [117]. It was also found that 

the ion current produced is directly proportional to the target current and also 

directly proportional to the deposition rate, meaning constant ion-to-atom ratio 

[118]. A schematic representation of the plasma in conventional and 

unbalanced magnetrons is shown in Figure ‎4.5:3. 
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Figure ‎4.5:3 Representation of plasma in unbalanced and conventional 

magnetrons [85]. 

4.5.3  Closed-field unbalanced magnetron sputtering 

To coat complex components, multiple magnetrons are required and any two 

magnetrons can be arranged in two different ways – same magnetic polarity 

(known as the mirrored configuration) or opposite polarity (known as the 

closed field configuration). Closed field unbalanced magnetron systems 

consist of multiple cascaded magnetrons, that consist of strong magnets 

which are configured to have opposite magnetic polarity to the neighbouring 

magnetrons. This design was introduced to overcome the problem of 

uniformly coating complex designs, which the single unbalanced magnetrons 

did not provide. The configuration can be seen from Figure ‎4.5:4. The 

mirrored configuration provide a weak plasma flux because secondary 

electrons are directed more towards the chamber walls hence providing a 

lower plasma density at the substrate.  
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Figure ‎4.5:4 Dual magnetron configurations [85] 

 

In the closed field arrangements, the field lines are closed due to the opposite 

polarity configurations, hence the secondary electrons are trapped within the 

plasma flux and this provides a higher plasma density near the substrate 

region, hence increasing the ion current drawn at the substrate. A study was 

carried by Kelly et al and it was shown that using the closed field configuration 

(c) Mirrored field configuration 
(Vertically opposed) top view 

Top view 

Rotating 
Substrate 

Holder 

(a) Closed field configuration 
(co-planar), side view  

Side view 

Substrate  

S

 

  

N

 

  

S 

Target 

N S N 

Target 

N S N 

Target 

(b) Closed field configuration 
(Vertically opposed) top view 

Top view 

Rotating 
Substrate 

Holder 

S

 
  

N

 
  

S 

Target 

N S N 

Target 

N S N 

Target 



 

72 | P a g e  

provided an ion-to-atom ratio of 2 to 3 times greater than using the mirrored 

configuration [117]. 

The use of such multiple design configurations was first recognised by Teer 

Coatings Ltd in the early 1990s and were able to patent this configuration for 

commercial use [119].  

With advancement in the design concept of closed field magnetrons, the use 

of rare-earth magnets (magnetic strength of up to 1 kilo Gauss) instead of the 

conventional ferrite magnets (with a magnetic strength of 300 to 500 Gauss) 

has been utilised. The change in the magnetic strength produced an 

improvement in the ion current density at the substrate surface, this was 

investigated by measuring the current-voltage characteristic of different Teer 

Coating magnetrons systems, which was presented by Kelly et al [85].  

In this project, a closed field unbalanced magnetron sputtering system was 

used. The magnetic field of the system used was measured with a Gauss 

probe. The circular magnetron was unbalanced with the strength of the outer 

north ring stronger than that of the inner south pole. A dummy magnetron 

containing only the outer ring of south magnets was installed directly above 

the unbalanced magnetron to form closed magnetic field lines between the 

unbalanced magnetron and the substrate holder. High strength rare earth 

magnets were used for both magnetrons with a magnetic strength of 1.5 kG 

measured at 1cm above the copper housing of the magnets. The schematic 

layout of the unbalanced closed field magnetron system used in this project is 

shown along with the magnetron configuration in Figure ‎4.5:6 (a) and (b).  
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Figure ‎4.5:5 Measured magnetic field Bn, at 1 cm from the above the copper 

backing plate surface. 
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(b) 

Figure ‎4.5:6 (a) typical configuration of a complete magnetron sputtering 

system (b) typical discharge in a magnetron sputtering system. 

 

4.6  Reactive sputter deposition 

Reactive sputter deposition is the physical sputtering of a metal, compound or 

alloy in a mixture of a reactive gas atmosphere in order to deposit a 

compound coating that is composed of the sputtered material and the reactive 

gas. The target can be of a pure metal (or metal alloy) or powder form target.  

The advantages of using reactive sputtering are (i) insulating materials can be 

deposited via DC or Pulsed DC power supplies, (ii) possibility to use easy to 

fabricate targets to sputter compounds, (iii) films with sub-stoichiometry can 

be deposited. However, the relationship between the film properties and the 

gas injection rate is non-linear [113].This is because the sticking probability of 

the reactive gas species onto the coating depends on many factors including 

the growth rate, target composition and temperature of deposition [120]. Other 

factors such as controlling the gas injection rate when chemical reactions 
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occur at the target surface, or at the substrate surface in order for reactive 

sputtering to be effectively used on a production basis [120].  

A typical reactive sputter deposition system can be composed of a pure metal 

target such as Ti or Al or Sn sputtered in an inert gas such as Ar with typical 

pressure of 0.1-10 Pa, this yields a metallic coating. By introducing a reactive 

gas such as O or N, the reactive species will combine with the target atoms to 

form a compound coating. The partial pressure of the reactive gas will govern 

the reactivity of the species, so the coatings stoichiometry is controlled by the 

reactive gas partial pressure. However, high levels of the reactive gas species 

will introduce the formation of compounds on the target surface. This 

compound formation will persist as the reactive gas partial pressure is 

reduced until the metal target surface is exposed via the physical sputtering, 

this phenomena is known as the hysteresis effect.  

The hysteresis behaviour can be graphically represented, by monitoring the 

discharge voltage at the target and the partial pressure of the reactive gas 

during the discharge, as a function of the reactive gas flow. The discharge 

voltage is the most obvious parameter to measure because it is closely 

related to the target surface condition.  

A schematic illustration of typical hysteresis behaviour for a reactive 

magnetron sputtering is shown in Figure ‎4.6:1. There are three modes that 

can be observed in a hysteresis modes, (1) metallic, (2) transition and (3) 

oxide, also referred to as poisoned. When the target is sputtered in pure 

argon mode, there is a constant flux of material being deposited on the 

substrate. At low partial flow of the reactive gas (interval A-B), no influence is 
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observed on the discharge voltage nor on the partial pressure, due to the 

reactive gas being gettered by the sputtered metal, i.e. the reactive gas 

introduced to the chamber is mainly absorbed by the deposited material. At 

point B the partial pressure of the reactive gas is equal to the gettering rate of 

the sputtered metal. A further increase in the reactive gas results in a critical 

point where a sudden change is observed: (1) increase in the chamber 

pressure, (2) a change in the target voltage, depending on the secondary 

electron coefficient of the target material. A further increase in the reactive 

gas flow (interval C-D) corresponds to a linear increase in the chamber 

pressure and a relatively constant value in the target voltage. Such behaviour 

is typical in the reactive mode of sputtering. As the reactive gas flow is step 

increased, it crosses a critical point of which there is not enough deposited 

material to react and consume the reactive gas. The excess reactive gas 

reacts with the target surface and forms a compound layer and raises the 

partial pressure. The formed compound layer will have different secondary 

electron emission rate and is more than likely to cause a change in the 

discharge voltage. With any further increase in the reactive gas flow, the 

chamber pressure increases linearly, as it is not possible to consume more 

oxygen in the deposition process. As the flow of the reactive gas is reduced 

again (interval D-E), the chamber pressure is also observed to decrease, but 

the return to a metallic mode (interval E-C) is delayed. This is because the 

chamber pressure remains high until the compound layer on the surface of 

the sputtered target is fully removed (point F). This results in the increase in 

the consumption of the reactive gas and the partial pressure of the reactive 

gas decreases to a background level. Further increase in the oxygen gas flow 
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will shift the metallic mode critical point to a poisoned mode as now only the 

compound material formed on the target surface is sputtered.  

Another factor influenced by the change in the reactive gas flow is the sputter 

yield. As the sputter yield of a metallic material is higher than that of a 

compound material. The transition between a metallic to a poisoned mode 

drastically reduces the deposition rate due to the formation of an oxide layer 

on top of the metallic surface. The drastic drop in the deposition rate lowers 

the critical point to which metallic mode occurs during the decrease of the 

reactive gas flow rate. As the reactive gas flow is further reduced, the 

compound layer is then sputtered away and the metallic surface is exposed.  

 

(a) 

 

(b)  

Figure ‎4.6:1 Hysteresis characteristics of the discharge voltage (top) and the 

total pressure (bottom) as a function of the reactive gas flow.  
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4.7  Plasma characteristics 

In a glow discharge plasma, the electrons have a tendency to reach the 

plasma boundaries quicker than the heavier particles (ions). This is because 

the mass of the electron m is lighter than the mass of the ion, M, (m/M << 1

and therefore the thermal velocity (eTe/m)1/2 of the electron is 100 times the 

magnitude of the ion thermal velocity (eTe/M)1/2 [121]. This results in the 

plasma gaining a higher positive charge, which then restricts the losses of any 

more electrons. This leads to a stable state to which the loss rate of electrons 

is the same as the loss rate of ions. This leads to a plasma characteristic 

termed quasi-neutral (ni   ne). When the plasma bulk is quasi-neutral, the 

plasma boundaries (sheaths) appear where the plasma meet a solid surface 

such as a chamber walls, electrodes, substrate or probes. The actual 

structure of the sheath is greatly dependent on the potential difference 

between the solid surface and the plasma potential. Figure ‎4.7:1 describes 

the electric potential, , of a DC diode set-up of a bulk plasma with length, l, 

at which ni = ne that is confined in between a cathode and a grounded wall. 

Where, ne, is defined as the amount of free electrons (that are not bound to an 

atom) available per a given volume, measured in cm-3 and, ni, is the amount 

of available ions per given volume. Since the ion density, ni, is equal to the 

electron density, ne, the net charge density  = e(ni – ne) is equal to zero, 

where, e, is the un-signed charge on an electron (1.602 × 10-19 
C) and the 

electric potential and electrical field, Ex, is zero in all the region This is the 

floating potential, Vf, which occurs at a negative potential of -20 to -30 V in 

magnetron systems. Because the fast moving electrons are not confined, they 

are quickly lost to the surrounding walls, this is illustrated in Figure ‎4.7:1. 
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Figure ‎4.7:1 The formation of the plasma sheath during (a) initial ni and ne and 

electric potential, (b) densities (ni, ne) electric field and potential during  post 

formation of sheath [121]. 

However, after a short timescale, some electrons near the walls are lost, 

leading to a mismatch between the ion to electron densities ni>>ne. This leads 

to the formation of a thin positive ion sheath near each wall, this is graphically 

represented in Figure ‎4.7:1 (b). This forms a positive net charge density 

leading to positive potential, Φx, within the confined plasma and a sharp fall 

near the grounded anode. The ions from the plasma that enter the sheath are 

quickly accelerated to the walls. Conversely, the electrons in the plasma are 

confined and kept from entering the sheath, as the electric field within the 
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travelling to the walls back to the plasma. In order to confine most of the 

electrons within the plasma, the plasma potential must be high enough to 

keep the lost rate of the ions the same as that of electrons [121]. 

The plasma potential is measured by inserting a metal probe that is biased 

negatively or positively into the discharge, to draw electron or ion current. This 

technique is one of the oldest and still used tool to diagnose the plasma. 

These probes were introduced in 1926 by Langmuir and were extensively 

used by Mott-smith and Langmuir and are usually called the Langmuir probes. 

A typical current-voltage plot is shown in Figure ‎4.7:2 [122]. The probe is 

biased to a certain voltage, VB, with respect to ground and the plasma is at a 

potential, Φp, with same ground reference. As the, VB, increases in the 

positive direction, and becomes equal to the plasma potential, p, the ratio of 

the different charge species changes from the ion saturation to the electron 

saturation, which is associated with the positive current flowing from the probe 

into the plasma. As the bias voltage across the probe is increased above the 

plasma potential, the current saturates at the electron saturation current. The 

point where the current net flow is zero, is called the floating potential, p. In a 

magnetron sputtering system, the floating potential is of a negative bias, 

usually between -20 to -30 V. If the bias voltage is more negative, the plasma 

potential VB < Φp, the current is increasingly ion current, which saturates 

depending on the probe collection area of the probe. It is worth to note that 

the saturation of the ion current is much smaller than the saturation of the 

electron current due to the large ion mass in comparison to the electron mass.  
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Figure ‎4.7:2 Typical I-V characteristic of a Langmuir probe. 

Another important parameter used to characterise the plasma is the Debye 
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4.8  Film growth and formation 

The initial stage of thin film growth begins when the substrate is exposed to 

the incident vapour molecules, at which, a uniform delivery of atoms begin to 

impinge on the substrate surface. As the deposited atoms condense onto the 

substrate, they bond together and become adatoms then diffuse across the 

surface as their lattice energy is lost and are trapped onto the surface and 

interact‎among‎each‎other‎ to‎form‎ ‘clusters’.‎As‎ the‎ impingement‎rate‎of‎ the‎

mobile adatoms increases, the clusters begin to be more stable and grow in 

size and become thermodynamically stable. This stage is termed the 

‘nucleation‎stage’.‎ 

Clusters can grow in parallel by surface diffusion or perpendicularly by direct 

impingement of atoms onto the substrate surface. If the size of the clusters 

grow quicker parallel to the substrate, they begin to merge to‎form‎‘islands’‎by‎

a phenomenon‎ termed‎ ‘coalescence’.‎ This‎ phenomenon‎ was‎ observed‎ in‎

1976 by Vook et al where coalescence growth of an Ag film on NaCl substrate 

was studied and monocrystalline and polycrystalline structures were observed 

[124]. 

The coalescence behaviour is best achieved when the substrate is at a high 

temperature, because the adatoms attain more thermodynamic energy to 

bond with neighbouring particles, hence accelerating the rate at which the 

islands bond together. As the deposition continues, different facets are formed 

with different orientations and geometry.  
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The coalescence of the adatoms continues and islands begin to form, leaving 

empty gaps and holes in between, and after some time, the empty gaps are 

filled and the film develops into a continuous network.  

Depending on the thermodynamic stability of the target and the substrate 

surface used, the initial film growth can be characterised as follows [125]; 

a) Island growth ( also known as  Vomer-Weber growth) 

b) Layer growth ( also known as Frank-van der Merwe growth) 

c) Mixed growth (Also known as Stranski-Krastanov growth) 

The initial three modes of thin film growth are represented schematically in the 

Figure ‎4.8:1, 
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Figure ‎4.8:1 Three fundamental modes of thin films growth processes.  
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accumulate together and coalesce to form the coating. This can lead to the 

formation of porous coatings. If the adherence between the adatoms and the 

substrate is greater, the coatings will grow layer by layer and the coating will 

be dense and free from defects. The third type of growth is the Stranski-

Krastanov growth which combines the island and the layer growth.   

If the orientation geometry of the different islands are similar throughout the 

thin film and are grown on a single crystal substrate using optimum deposition 

conditions, the thin film will have a structure of grains growing parallel to each 

other connected via small angle grain boundaries. This type of film is termed 

an epitaxial single crystal film [125]. The word epitaxy describes the formation 

of extended single crystals on top of crystalline substrate which was first 

discovered over a century ago and was first seen in literature in 1928 by L. 

Royer [126]. 

The surface morphology of a thin film can either be a smooth surface or a 

rough surface. This depends on the crystallographic growth rate, as some 

crystals will grow faster than others, and also depends on the substrate 

surface, as some parts of the substrate might be rough due to scratches or 

particle contamination.  

The structure of a deposited thin film depends greatly on the sputtered 

material, the substrate chemistry and morphology, the preparation of the 

substrate surface, the deposition process and the deposition parameters. The 

surface roughness and the mobility of the adatoms can be used to determine 

the morphology of the coating.  
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Rough surfaces exhibit peaks and valleys, the peaks accumulate particles 

from different directions. If the mobility of the sputtered particles is low, then 

the peak will accumulate more adatoms and will geometrically shadow the 

valleys and also disturb the line-of-sight of the impinging atoms, therefore 

growing faster than the valleys [127]. 

 

4.9  Structure zone models  

In order to study the characteristics and the behaviour of a deposited coating, 

it is important to understand the type of structure that may form to explain why 

some materials behave differently than others.  

The relationship between adatoms energy and mobility and the resultant 

structure that forms has been studied by many researchers and is often 

expressed in the form of a structure zone model (SZM) which describes the 

different structures as a function of particular deposition parameters. The 

earliest study of zone models was first conducted in 1969 by Movchan and  

Demchishin (MD) who managed to deposit very thick coatings (circa 0.3-2 

mm) by evaporating metals (Ti, Ni, W, Fe) and oxides (ZrO2 and Al2O3) and 

managed to model three zone (zones 1, 2, 3) which are shown in Figure 

‎4.9:1. 
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Figure ‎4.9:1 Structure zone model relating to evaporated films, after Movchan 

and Demchishin [106]. 

It is noticed from Figure ‎4.9:1 that the substrate temperature can greatly 

influence the structure of the coating (note in this figure the substrate 

temperature is expressed as a proportion of the melting temperature of the 

coating material).  

In 1974, further work was conducted by Thornton, who investigated DC 

sputtered thick metal coatings (20-250 μm) at very high rates and managed to 

identify four zones (1, T, 2 and 3) which are shown in Figure ‎4.9:2 [128]. 

Thornton determined that pressure is a decisive operating parameter during 

sputtering, as it governs the mean free path of the sputtered atoms, hence 

effecting the surface energy distribution of the adatoms. 

 

  Figure ‎4.9:2 Structure zone model of sputter deposited materials  

 Metal Oxides 

Zone 1 <0.3  Tm <0.26 Tm 

Zone 2 0.3 - 0.45 Tm 0.26- 0.45 Tm 

Zone 3 > 0.45 Tm > 0.45 Tm 
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The MD and the Thornton model both include the Zone 1 structures for low 

temperature deposition. At low substrate temperatures, the sputtered atoms 

do not have enough energy to overcome the geometrical shadowing of the 

peaks and cannot diffuse into the valleys. As the argon pressure is increased, 

more collisions occur, further reducing the adatoms energy, which decreases 

the surface mobility and extends the Zone 1 region. The term used to 

describe‎the‎type‎of‎structure‎is‎‘Porous‎columnar’.‎ 

Thornton introduced Zone-T, which is the transition stage between Zone 1 to 

Zone 2 where the structure continues to grow due to the nucleation of the 

grains during sputtering deposition. The surface morphology of the Zone-T 

region is a densely packed fibrous grains and it is formed due to the energy of 

the bombardment sputtered atoms at low gas pressure. These energetic 

atoms have enough energy to overcome the geometrical shadowing and fill in 

the valleys [127].  

In the Zone 2 region, the structure results from controlled surface diffusion 

growth. This enables the intercolumnar boundaries to become denser and the 

basic morphology of the intercolumnar structure to remain the same. This 

allows for the grains to increase in size and the surface features become 

smoother.‎The‎structure‎is‎described‎as‎‘dense‎columnar’. 

In Zone 3, the substrate temperature is higher and allows the boundaries to 

sweep across to form mobile boundaries, which increase the bulk diffusion 

allowing recrystallisation and grain growth. This type of structure is termed 

‘fully‎dense equiaxed‎grain‎structures’. 
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Using physical vapour deposition processes at high biasing conditions, it was 

possible to replicate the re-crystallised grain structure that Thornton achieved 

[129-130]. Ross et al used the RF sputtering process to sputter amorphous 

hydrogenated silicon and demonstrated that argon ion bombardment is most 

effective during a high negative substrate bias at low gas pressure. He 

suggested that the biasing voltage should be added to the structure zone 

model instead of pressure [131]. Fountzoulas and Nowak [132] proposed 

another version of the SZM model by adding the ion energy as a parameter to 

the model. 

Kelly and Arnell used the closed field unbalanced magnetron sputtering 

(CFUBMS) process to study the zone structures of aluminium, zirconium and 

tungsten coatings. Using this process suppressed the formation of porous 

structures and promoted the formation of fully dense structures at relatively 

low substrate temperatures. They developed a novel three-dimensional SZM 

to relate the homologous temperature, ion-to-atom ratio and the ion energy 

(represented by the biasing voltage). The novel 3-D SZM can be seen in 

Figure ‎4.9:3 [133]. 

 

Figure ‎4.9:3 Novel SZM of the CFUBMS system, relating coating structure to 

the homologous temperature, ion-to-atom ratio and bias voltage [133]. 
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The film structure of transparent conductive oxides influences the optical and 

the electrical behaviour, so it is important for the thin film to be of Zone 2 or 

Zone 3 structure in order to obtain good electrical and optical properties that 

will meet the needs of this project.  

 

4.10  Summary and outlook  

In this chapter, a concise overview of the basic concept of glow discharge, 

plasmas characteristics, along with characteristics and structural formations of 

thin films were introduced. The three types of plasma discharge were 

discussed and found that abnormal discharge is the point at which sputtering 

normally is carried out. Basic plasma characteristics were also reviewed and 

outlined the plasma sheath and the Debye length characteristics are very 

important characters in plasma physics and that the plasma is quasi-neutral 

except in the sheaths to electrodes or surfaces where the potential changes 

over several Debye lengths. The film structure of a deposited thin film 

depends greatly on the sputtered material, the substrate chemistry and 

morphology, the preparation of the substrate surface, the deposition process 

and the deposition parameters, it is important to create TCO that exhibit a film 

structure of zone 2 or zone 3.  

PVD technology is primarily used for deposition of metal, metal-oxides and 

also some dielectrics materials. Key engineering and recent developments in 

magnetron sputtering, including the closed field unbalanced magnetron 

sputtering system made it possible to coat different types of materials such as 

metallic, ceramic and even insulating materials using high deposition rates 



 

90 | P a g e  

and good crystalline coatings. It also prompts the possibility of depositing onto 

substrates of complex geometry with a single to multi-layers along with 

competitive qualities 
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In the magnetron sputtering process, mainly solid or ceramic targets are used 

to sputter deposit thin films. Depending on the desired thin film, different 

targets such as pure elemental or compound targets are utilised to produce 

metallic or compound thin films. Alloy targets can also be used to sputter 

deposit thin films of different compounds. For research purposes, utilising 

such targets can be a costly process as solid targets can be expensive and 

several solid targets are required to investigate composition effect on thin 

films properties. Meanwhile, ceramic targets are fragile and crack under high 

deposition power, therefore capping the deposition rates, also sintering is 

required, therefore increasing process cost and lead-time. 

In this chapter, the fabrication and operation of powder targets is examined 

including target discharge characteristics, hysteresis studies, compositional 

analysis and experimental parameters such as chamber pressure, sputtering 

power, pulsing frequency and duty cycles are carried out in order to optimise 

the deposition process and produce the desired thin films.  

 

5  

POWDER TARGETS  
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5.1  Introduction  

In industry, the compositional ratio of the compound target is well defined in 

order to deposit optimised thin films. However producing a multi-compound 

material in a research laboratory can be an expensive approach requiring the 

purchase of several new alloy targets. 

An alternative approach is using powder form materials that can easily be 

mixed and spread across a recessed plate to make a sputter target. Using 

blended powder targets offers a relatively cheap and highly versatile means of 

screening multi-component coating materials, compared to using solid targets. 

With solid targets, only a small area of the target (25-35%) is utilised during 

sputtering, which is the race-track area. 

Blended powder targets have been used before to deposit different coatings 

such as doped zinc oxide coatings [88, 134-135], indium tin oxide (ITO) 

coatings [12], copper aluminium oxide coatings [51], and chromium boride-

based coatings [136-137]. 

Sintered blended powder targets are not uncommon and have been reported 

by other researchers [138-140]. The blended powder target used in this 

project were all un-sintered. This decreases the process cost and decreases 

the lead-time for thin film production. The blending of the materials together to 

form the powder target is easier than sintering the target and it can always be 

re-spread to remove any racetrack, therefore increasing the utilisation of the 

target. Furthermore, the composition of the targets is easily varied and 

therefore it is a cheap means of assessing the effect of the target composition 

in order to optimise thin film properties.  
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5.2  Discharge stability  

There are several parameters used to characterise and monitor the process 

stability during powder sputtering. These parameters include the discharge 

current, discharge voltage, reactive gas partial pressure, system pressure, 

deposition rate, film properties and light emitted from the plasma. It enables 

the investigation of the behaviour of the target during sputter deposition, and 

can give an indication to when the target is heated or when the target surface 

is oxidised, which can limit the deposition rate and influence the chemical 

composition of the sputtered film. 

The discharge stability of each powder target is unique and depends on a 

number of influential factors such as the material particle size and its electrical 

and thermal conductivity. Giving the insulating nature of the powder targets, it 

is extremely difficult to strike a discharge using a DC power supply, therefore 

in this project an Advanced Energy Pinnacle Plus pulsed DC supply was 

used, which can drive the discharge at frequencies from 100 to 350 kHz with 

duty cycles from 50% to 95%. The discharge stability also depends on the 

degree of compaction of the blended powder surface. The powders are 

compacted or tamped to promote a better surface uniformity and improve 

thermal and electrical conductivity. Figure ‎5.2:1 presents two different powder 

targets; the left photo show a target tamped with a 100 g steel rod and the 

right photo for a target that tamped using a 1 kg steel rod. Both targets were 

sputtered using identical deposition process, the target shown in (a) was 

tamped very lightly which promoted for trapped air particles in the target and 

lead to aggressive out-gassing of the target and led to target arcing. Therefore 
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demonstrating, that to avoid arcing, it is important to ensure the tamping 

process is done with using an adequate weight. 

 

    (a)               (b) 

Figure ‎5.2:1 Effect of tamping of the powder target, (a) target tamped with 

very light steel rod, (b) target tamped with 1 kg steel rod. 

The discharge voltage of the powder targets was measured periodical during 

sputtering using a TDK P5100 voltage probe which was attached to the target 

and monitored using a Tektronix DPO3014 digital oscilloscope. It is important 

to note that each new powder target was conditioned in an argon atmosphere 

for an hour at constant power mode of 100 W. The power was then 

incremented at 20 W per five minutes to ensure no arcing occurred. When the 

powder target is conditioned, the target voltage is stabilised and target surface 

problems such arcing and out-gassing are eliminated.  

Figure ‎5.2:2 presents the target voltage characteristics for conditioned powder 

targets as a function of the deposition period, including fluorine doped tin 

oxide (FTO), antimony tin oxide (ATO), copper aluminium oxide (CAO) and 

titanium (Ti) targets. The discharge was observed to be stable across the 

deposition period of one hour (i.e. no arcing was observed). However, a slight 

decrease was observed in the discharge voltage across all the powders. This 
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may be attributed to the thermal relaxation and/or the removal of 

contamination from the target surface. Another important factor that influences 

the discharge voltage is secondary electron emission yield, which varies for 

each material and determines how many electrons are released from the 

target for each incident ion. This accounts for the range of operating voltages 

displayed below. 

 

Figure ‎5.2:2 Discharge voltage stability as function of deposition period of 

loosely packed powder targets sputtered in argon and oxygen atmosphere. 

During deposition, no target melting was observed for all the powder blends 

used as long as the target power was less than P ≤ 500 W. Increasing the 

target power above 500 W, caused the powder target to deform and melt and 

then solidify as in the figure shown below. The copper aluminium powder 

target melted and solidified as the target power increased to 550 W. 
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Figure ‎5.2:3 Copper aluminium powder target surface state after being 

sputtered with 550 W. 

5.2.1  Pulsed-DC reactive sputtering of dielectric 

powder targets 

The DC reactive sputtering of oxide powder targets poses great difficulty in 

sustaining a stable discharge. As the powders are dielectrics, applying a DC 

signal to the target causes a charge build up on the target surface. If the 

charge reaches the breakdown voltage of the powder target, an arc will occur, 

which causes the powder to be ejected from the target holder, which 

effectively degrades the thin film quality.  To overcome this problem, dielectric 

powder targets are sputtering using either a pulsed direct current (DC) [141-

142] or a mid-frequency alternating current (AC) [143-144] technology. Both 

pulsed DC and mid-frequency AC use a voltage reversal at the dielectric 

target in order to offset the charge build up on the target surface. A schematic 

pulsed DC waveform is shown in Figure ‎5.2:4. 

 



 

97 | P a g e  

  

 

  

 

 

 

Figure ‎5.2:4 Schematic of an asymmetric bipolar-pulse DC waveform to 

power dielectric surface.  

In a bipolar pulsed DC supply, the polarity of the voltage alternates between 

the negative and positive pulse, as observed from the figure above. The 

negative pulse duration and magnitude are normally longer than the positive 

pulse, this type of pulse is termed asymmetric pulse because the positive and 

negative pulses have different durations and magnitudes. During the negative 

pulse of the cycle, the ions are attracted to the target to eject the atoms from 

the target surface, while during the positive pulse, the electrons in the plasma 

are attracted to the target surface to discharge the positively charged regions 

[12].  

During pulsed DC sputtering, there are two important factors; the pulse 

frequency and the duty cycle, which can be ranged from 20-350 kHz and 0.5-

0.95, respectively. The duty cycle is defined as the negative pulse time 

divided by the cycle period (Ton/(Ton+Toff)). These two important parameters 

affect the deposition conditions such as target voltage and current peaks, 

deposition rate and also the properties of the deposited thin films.  
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Another way for sputtering dielectric materials is using reactive mid-frequency 

(typically 40 kHz) AC sputtering arrangements. The plasma of the magnetron 

is only on for half the period, leaving the other half for undesired sputtering 

such as the chamber walls. To overcome this problem and to increase the 

deposition rate, the use of both halves of the periods are used and the single 

magnetron is replaced with two magnetrons, each connected to an opposite 

pole of a floating AC power supply. The necessity to replace a single 

magnetron with a dual magnetron increases the cost of the system, and also 

the nature of the system can lead to the increase in the substrate temperature 

which is very difficult to prevent [142].  

5.2.2  Pulsing parameters and discharge behaviour  

The sputtering of the powder target during this research was based on the 

pulsed DC power supply arrangements using a constant power mode. The 

constant power mode, allows the target voltage and current to vary to 

accommodate the target surface resistance, while securing a constant flux of 

energy to the target surface. 

Pulsed DC sputtering of fluorine doped tin oxide (FTO) from a blended 

powder target is unique and novel, therefore, trial experiments were 

conducted using a variety of pulsing parameters, including pulse frequency 

and duty cycle as shown in Figure ‎5.2:5. These trial experiments were used to 

determine the optimum experimental conditions for a stable sputtering 

environment. Figure ‎5.2:5 demonstrates the different parameter arrays that 

were used to determine the deposition rate and the structure of the thin film. 
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Figure ‎5.2:5 power supply trials conducted using different pulse frequency, 

pulse off time and duty cycle on FTO powder target. 

 

 (a) 300 kHz duty cycle 85% (b)  200 kHz duty cycle 85% 

 

            (c)      100 kHz duty cycle 85%  

Figure ‎5.2:6 SEM fracture sections showing the effect of pulse frequency on 

structure and deposition thickness of the FTO thin films. 
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The deposition thicknesses and the structure of the deposited coatings were 

determined using the SEM, as observed in Figure ‎5.2:6. It was shown that the 

coatings based on a visual inspection, are well adhered and the morphology 

is the same as the widely accepted structure zone model of coatings grown 

using the pulsed DC sputtering technique, as reported by Kelly et al. [133]. 

During high pulse frequency such as (a) 300 kHz, the deposition thickness 

measured to 350 nm, meanwhile at (c) 100 kHz the thickness measured 696 

nm. 

The difference becomes clear when the target voltage waveforms found in 

Figure ‎5.2:7 are analysed. 

 

Figure ‎5.2:7 Effect of pulse frequency on FTO powder target voltage 

waveform 90% duty cycle using constant power mode at 400 W of sputtering 

power, in 10 sccm of Ar and 4.5 sccm of O2, coating pressure of 0.55 Pa. 
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frequency, there are 3 cycles for every one at 100 kHz. Thus, the time 

required to establish the plasma and for the target voltage to ramp to the 

discharge voltage over the same time period is three times longer in total than 

that of a 100 kHz pulse frequency, so as the frequency increases, the off time 

became an increasing proportion of the total cycle. This leads to the decrease 

in deposition rate; such behaviour was observed during the investigation 

using a FTO target as shown in Figure ‎5.2:8. The experimental conditions 

were set as follows; using a constant power mode of 400 W, 0.4 μs pulse off 

time and 90% duty cycle. The Ar flow rate was set to 10 sccm and O2 set to 

4.5 sccm, chamber pressure of 0.55 Pa and substrate to target distance set to 

11 cm.  

 

Figure ‎5.2:8 Effect of pulse frequency on the deposition rate of a FTO powder 
target (duty cycle = 90%). 

 

As demonstrated, the target pulsing frequency has a significant influence on 

the deposition rate. An increase in the pulsing frequency was found to result 

in a decrease in the deposition rate. Another factor besides pulsing frequency 
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kHz target pulse frequency and variable duty cycle (90, 70 and 50%) using 

constant power mode of 400 W, 10 sccm of Ar and 4.5 sccm of O2, and a 

chamber pressure of 0.55 Pa. 

 

Figure ‎5.2:9 Effect of duty cycle on the FTO target voltage using 50, 70 and 

90% duty cycle at 200 kHz pulse frequency. 

At a higher duty cycle (90 %), the plasma was off for a very short moment; 0.5 

μs, hence the sputter efficiency of atoms removed from the target was very 

high and effectively yielded a high deposition thickness as shown in Figure 

‎5.2:10. However, at a lower duty cycle (50 %) the plasma was off for a longer 

time at 3.5 μs which allowed the plasma to decay through bipolar plasma 

distribution to the walls of the chamber. Therefore, a decrease in the 

deposition thickness was observed in the growth thickness of the FTO thin 

films (deposited at 400 W for a period of 20 minutes using a variety of pulse 

frequency ranging from 100-300 kHz) shown in Figure ‎5.2:10. All the powder 

targets were subject to a conditioning experiment, to ensure all the 

experimental conditions produced an arc free environment.  
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Figure ‎5.2:10 Effect of pulse time on the growth thickness of the FTO thin 

films using sputtering power of 400 W, sputtering period of 20 minutes using a 

variety of pulse frequency and a verity of pulse off time in 10 sccm of Ar and 

4.5 sccm of O2, coating pressure of 0.55 Pa. 

 

During the conditioning of a newly spread FTO powder target, the power was 

introduced steadily at 50 W then incremented at 50 W per every 15 minutes, 

to ensure the powder target does not outgas very abruptly therefore causing 

target to be unstable and arc. Figure ‎5.2:11 presents the voltage 

characteristics of the FTO powder target during powder conditioning, 
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generate the plasma is realised mainly in the sputtering of the target material, 

but also can be lost through heating all surfaces, such as target, chamber 

walls and substrate [143]. The other point to note from Figure ‎5.2:11 is how 

the magnitude of the voltage increases with increasing power and how the 

voltage rises in the negative sense more quickly at higher powers, this 

observation show that the power supply is more stable at higher powers. 

 

Figure ‎5.2:11 Effect of sputtering power on the FTO target voltage using a 

90% duty cycle and 200 kHz pulse frequency in 20 sccm of Ar chamber 

pressure of 0.55 Pa. 

The target voltage was measured in intervals of every five minutes across the 

2.5 hours conditioning period, using a 90% duty cycle at 200 kHz pulse 

frequency and constant power mode, in 20 sccm of argon, chamber pressure 
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Figure ‎5.2:12 Average target voltage of FTO powder target conditioning 

measured across a period of 2 hours. 

The chamber base pressure was also measured during the powder target 

conditioning using MKS a Baratron capacitance manometer vacuum gauge, 

connected to a PR4000 MKS pressure controller and readout. The chamber 

pressure increased from 0.55 Pa at 50 W to 0.59 Pa at 150 W, this slight 

increase in chamber pressure corresponds to the outgassing of the target. 

The chamber pressure observed to decrease to 0.56 Pa at 200 W then 

remained stable around the 0.55 Pa at 400 W. This indicated a stable target, 

clean from adsorbed materials. Oxygen gas at 4.5 sccm was added to the 

chamber and the diffusion pump valve was readjusted to give the desired 

operating pressure of 0.55 Pa after which the shutter situated between the 

target and the substrate holder was removed to resume sputtering. It is 

important to note that only newly formed powder targets followed such 

extensive and long conditioning procedure. Once the powder target has been 

used more than once, it stabilised and only 10 minutes was required to clean 

the target prior to deposition. 
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Figure ‎5.2:13 Chamber pressure variations during the FTO powder target-

conditioning period of 2 hours. 

The effect of the oxygen flow rate on the voltage characteristics of a pure tin 

oxide (SnO2) target is demonstrated in Figure ‎5.2:14. The pure SnO2 powder 

target was sputter cleaned in an argon atmosphere using constant power 

mode of 300 W, pulse frequency of 200 kHz and duty cycle of 90% at a 

chamber pressure of 0.54 Pa. The target was sputter cleaned to ensure that 

the target voltage was stable and not fluctuating. Oxygen gas was introduced 

to the chamber at increments of 2 sccm every five minutes. Sputtering in 

argon gas mode only, the target voltage was -363 V, as the oxygen gas was 

introduced to the chamber, the target voltage decreased in magnitude to -345 

V and further decreased to -337 V as the oxygen was increased to 6 sccm. 

Introducing such a reactive gas into the plasma atmosphere reduced the 

discharge voltage; it implies that it is easier to sustain the magnetron 

discharge. This means the secondary electron coefficient must be higher for 

tin oxide, compared to tin. Therefore, the SnO2 powder target does not require 

high energy to sustain the plasma.  
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Figure ‎5.2:14 Effect of oxygen flow on the SnO2 target voltage. 

 

In general, the study of the deposition parameters such as duty cycle and 

pulse frequency helps to build a better understanding of how they affect the 

plasma an in growth of the coatings. The knowledge gained can be used to 

deposit coatings with specific deposition rates and with specific properties. 
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Three set of experiments carried out on the FTO target at various target-to-

substrate separations are shown in Table ‎5.3:1. 

Table ‎5.3:1 Comparison experiments using different separation distances. 

Exp.  
run 

Separation  
distance (cm) 

dt-s 

Power supply 
set up 

Run 
time 
(min) 

O2 
(sccm) 

Ar 
(sccm) 

Chamber 
pressure 

(Pa) 

1 7 200 kHz 90% 15 4.5 10 0.55 

2 9 200 kHz 90% 15 4.5 10 0.55 

3 11 200 kHz 90% 15 4.5 10 0.55 

 

The deposition conditions were kept the same and the run time was fixed at 

15 minutes. A piece of kapton tape was placed on the glass substrate prior to 

sputtering and removed after the deposition to produce a step in the coating. 

The coating thickness was measured across six points and an average was 

calculated. The target separation produced large differences in coating 

thickness, as observed in the Figure ‎5.3:1. The coating thickness was found 

to decrease from 600 nm to 400 nm as the target-to-substrate separation (dt-s) 

was increased from 7 cm to 11 cm. As the dt-s is increased, the atom flux and 

the ion flux decreased; however, research has shown that the neutral atom 

flux decreases faster, therefore the ion-to-atom ratio actually increases. This 

implication was demonstrated by Kelly et. al. which showed that the ratio of 

ion-to-atom current density (Ji:Ja) increased twofold as the dt-s was increased 

[145]. Although not measured during this study, it would suggest ion-to-atom 

ratio is a critical parameter in determining the film structure [135].  
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Figure ‎5.3:1. The effect of target-to-substrate separation (dt-s) on the thickness 
of the coatings.  

The relationship between the target-to-substrate separation and the electrical 

resistivity of the FTO thin films shown in Figure ‎5.3:2. It was observed that the 

further the away the substrate was from the target, the lower the electrical 

resistivity of the FTO coatings. This could be attributed to the higher ion-to-

atom ratio. This implies that resistivity is optimised as the ion-to-atom ratio 

increases.  

 

Figure ‎5.3:2 The effect of the target-to-substrate distance on the electrical 

resistivity of the FTO coatings. 
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5.4  Effect of pulse frequency and duty cycle 

parameters on electrical property of FTO 

In this study, a set of experiments were designed to find the optimum pulse 

frequency and duty cycle for the deposition of FTO thin films. Based on the 

characteristic studies, two sets of frequencies were chosen; 200 and 300 kHz 

with different duty cycles; 50, 70, and 90%. The deposition period was 

carefully monitored in order to produce a consistent deposition thickness of 

400 nm. The other operating conditions for each run were kept constant, 

including constant power mode of 400 W, 10 sccm of Ar and 4.5 sccm of O2 

and total pressure of 0.54 Pa was maintained during the deposition. The FTO 

powder target was optimised to a composition ratio of SnO2:SnF2 (6.6 at.% of 

fluorine) set to 52:9 grams. During the deposition at a pulse frequency of 200 

kHz, the electrical properties of the FTO thin films were significantly improved 

as the duty cycle was increased from 50% to 90% as observed in Figure ‎5.4:1 

(a-b). However, it was observed that increasing the pulse frequency to 300 

kHz deteriorated the electrical properties of the FTO thin films as shown in 

Figure ‎5.4:1 (c-d). Therefore, this demonstrated that the optimum pulsing 

sputtering parameters were to use a high duty cycle of 90%, in combination 

with a pulse frequency of 200 kHz to yield the optimum electrical parameters. 
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(d) 

Figure ‎5.4:1 The effect of the pulse frequency of (a-b) 300 kHz (c-d) 200 kHz 

and duty cycle 50, 70, 90 % on electrical property of FTO thin films. 

 

5.5  Crystallographic analysis of powder targets 

The crystallography of the powder targets was characterised using XRD (θ-2θ‎

configuration). The diffraction peaks were indexed to the intensity obtained 
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element or a compound has a unique crystal structure assembly and displays 

a X-ray diffraction pattern that is unique to its own structure and orientation. 
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Titanium metal base 

 

Antimony doped tin oxide  

Figure ‎5.5:1 X-ray diffraction pattern for the powder targets used in this 

project 

5.5.1  Target composition Vs sample composition 

The chemical compositions of the FTO powder targets were obtained using 
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EDS analysis of the tin oxide and the tin fluoride targets are shown below. 

The EDS analysis measurement shows a reasonable reproducibility of the 

chemical composition of the compound elements. The same powder sample 

was analysed four times and an error factor of +/- 3.5 at.% was calculated.  

Table ‎5.5:1The Compositional analysis of (a) SnO2 and (b) SnF2 powder 
targets prior to blending. 

(a)       (b) 

 

 

 

 

 

The FTO targets were sputtered in argon and oxygen gas to yield a Ar/O2 

ratio of 9:1 at a total working pressure of 0.54 Pa. The power supply was set 

to a constant power mode of 400 W and a pulse frequency of 200 kHz and 

duty cycle of 90%. The total deposition run was 15 minutes to yield a 400 nm 

thin film. The EDS absolute data from the analysis of the FTO powder target 

and the subsequent films is given in Table ‎5.5:1. It is important to note that 

the oxygen arising from the glass substrate was not taken in to consideration 

during the analysis of this study because the energy of the EDS acceleration 

beam was optimised to 7 keV in order not to detect the elements of glass 

such as Si and Ca. The analysis of the un-doped tin oxide film are presented 

in Table ‎5.5:2. It was observed that there was 31.7 at.% tin and 68.4 at.% 

oxygen, which is close to stoichiometric SnO2. It was observed that the 

fluorine content in the doped thin films was in the range of 0 - 7.4 at.%, which 

is low in comparison to the amount of fluorine incorporated into the powder 

Element Weight % Atomic % 

O K 20.0 66.7 

Sn L 80.0 34.3 

Element Weight % Atomic % 

F K 28.4 67.3 

Sn L 71.6 32.7 
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targets (0 - 13 at.%). This can be explained by the fact that fluorine is a light 

element (Z=9 ) and may be more readily scattered during gas phase transport 

through the high density plasma [146]. After all, as the sputtered particles 

move through the dense plasma, they will be scattered by the collisions with 

the argon and the oxygen gas atoms, and the mean free path decreases, 

therefore influencing the deposition profile. 

Table ‎5.5:2 Compositional analysis of the powder targets and subsequent tin 

oxide and fluorine doped tin oxide. 

 

5.5.2  Target composition Vs discharge voltage of CAO 

target 

The composition of the Cu:Al metal base powder target was varied and the 

effect on the target voltage was investigated. The copper/aluminium powder 

targets were all sputtered at a fixed oxygen flow of 30 sccm (0.42 Pa), argon 

flow of 12 sccm (0.13 Pa), chamber pressure set to 0.55 Pa, the deposition 

period was set to 60 minutes. The power supply was set to 350 W using a 

pulse frequency of 100 kHz and duty cycle of 50%. Figure ‎5.5:2 shows the 

average target voltage of copper aluminium as a function of different target 

compositions. With a pure aluminium target, the average discharge voltage 

Sample 

ID 

Element at.% in targets Element at.% in films 

O F Sn O F Sn 

SnO2 66.7 0.0 33.4 68.4 0.0 31.7 

SnO2:F1 63.3 3.3 33.3 66.4 2.8 30.8 

SnO2:F2 60.0 6.6 33.3 64.0 5.3 30.7 

SnO2:F3 56.7 10.0 33.2 62.8 6.2 30.9 

SnO2:F4 53.4 13.0 33.3 60.1 7.4 32.5 
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was about -184 V. A pure aluminium metal base powder target has a very 

high oxidisation rate, therefore when sputtered in a reactive environment, the 

target surface is immediately oxidised to Al2O3. So the target tends to oxidise 

with higher content of oxygen, forming a dense oxidised layer, therefore 

effecting the sputter deposition rate [60]. When 25 at.% of Cu was introduced 

to the powder target content, the target discharge voltage increased to -225 V 

and further increased to-278 V at 50 at.% of Cu content. The discharge 

voltage was observed to further increase from -315 V to -470 V when the Cu 

concentration increased from 75 at.% to 100 at.%. The observed increase in 

the target voltage indicates that copper requires a higher potential to sputter 

the atom from the target.  

 

Figure ‎5.5:2 Average target voltage of a copper/aluminium target as a function 

of Cu at.% concentration deposited in oxygen environment. 

The effect of the oxygen flow rate on the target voltage of a Cu:Al powder 

target with an atomic ratio of 75at.%Cu:25at.%Al and on the coating thickness 

were investigated. This study was carried in order to find the optimum oxygen 
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flow rate that would result in improving the optical transparency of the CAO 

coatings, while at the same time not decrementing the electrical properties. 

The relationship of the oxygen flow rate against the target voltage and the 

coating thickness is shown in Figure ‎5.5:3. It can be seen from the figure 

below, that the deposition rate decreases with increasing partial pressure, 

such behaviour was also reporterd in [60, 147]. The deposition rate can be 

obtained from the coating thickness and the relative deposition period of 60 

minutes. 

The deposition rate was observed to decrease as the oxygen gas was 

introduced to the chamber. Initially, sputtering in argon mode, the deposition 

rate achieved was 22‎nm·min-1 at 0.13 Pa. when oxygen was introduced, the 

deposition rate reduced to 6‎ nm·min-1 at 0.41 Pa and a corresponding 

decrease in the target voltage was observed from -490 to -305 V. The 

decrease in the average target voltage can be attributed to the fact that as the 

O2 is introduced to the deposition chamber, this increases the secondary 

electron coefficient, which in turn causes more ionisation of the sputtering gas 

and increases the ion current at the target, therefore, less potential is required 

to sustain the plasma discharge. 

The decrease in the deposition rate may be attributed to the fact that O2 

chemisorbs on the target and forms a surface layer of adsorbed oxygen. This 

layer inhibits the sputtering of the target atoms and therefore reduces the 

deposition rate. In addition, with high content of O2 in the deposition chamber, 

the Ar density is reduced. Since oxides have a lower sputter yeild than metals, 

the net sputtering rate is reduced. Also the increase in the O2 partial pressure, 
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increases the quantity of atoms in the chamber, which leads to more plasma 

collisions and therefore higher scattering of atoms to occur [60].  

 

Figure ‎5.5:3 Deposition rate and the average target voltage as a function of 

oxygen partial pressure using a Cu:Al powder target. 

 

5.5.3  Hysteresis studies of copper aluminium powder 

targets 

To understand the effect of the reactive gas on metal-based powder targets, 

hysteresis studies were conducted using three powder targets using the same 

deposition parameters. Table ‎5.5:3 outlines the experimental parameters of 

the hysteresis trials including the composition ratio, oxygen flow rate and the 

total mass ratio of the powder target. 
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Table ‎5.5:3 Experimental parameters during the hysteresis study of Cu-Al 

powder target. 

Target 
powder 

Composition ratio 
(at.%) 

Oxygen flow rate 
(sccm) 

Total mass of 
target (g) 

   Cu 100 0-23    50 

   Al 100 0-23    50 

 Cu:Al     Cu:75,Al:25 0-10     Cu:43.2,Al:6.2 

 

The first trial was for an aluminium powder target, the second was the copper 

powder target and the third trial was for a copper aluminium blended powder 

target. All the hysteresis trials were conducted with power set to 200 W and in 

a pulsed DC mode. The argon flow was set to 10 sccm, giving an initial base 

pressure of 0.12 Pa. The oxygen flow rate was set from 0-23 sccm and 

stepwise increased by 1 sccm every 2 minutes and the response of the target 

voltage (measured by an oscilloscope, connected directly to the magnetron) 

and the total pressure (measured by a Baratron capacitance manometer) 

were recorded. The measuring time intervals were sufficient to enable the 

target to stabilise. During the copper aluminium blended powder target trial, 

the oxygen flow was incremented at 0.2 sccm and the discharge voltage and 

the total pressure were recorded every 2 minutes. 

The results of the hysteresis of the discharge voltage and the total pressure 

as a function of the oxygen flow rate for Al, Cu and CuAl blended powder 

targets are shown in Figure ‎5.5:4. It is apparent from Figure ‎5.5:4 (a) and (b) 

that an initial discharge voltage of -334 V and a total working pressure of 0.2 

Pa was observed when sputtering in pure Ar. The cathode voltage remained 

stable until the O2 flow rate was at 2 sccm due to getter effect of the Al target 
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surface, i.e. the adsorption of the O2 molecules by the Al target surface. The 

target surface remained clean and the sputtered atoms were metallic. Other 

studies such as [148] have seen a slight increase in the discharge voltage 

prior to the transition state of the target surface. This can be due to formation 

of chemisorbed oxide layer which causes a decrease in the number of 

electrons emitted per incoming ion, also known as the ion secondary electron 

coefficient (γISEE) [149]. However, in this study, such behaviour was not 

observed which suggests that it was due to the nature of the powder target 

which may have formed chemisorbed layers on the surface prior to sputtering.  

As the flow of O2 was increased to 5 sccm, the cathode voltage decreased to 

-163 V, corresponding to a metal oxide transition, a state where a target 

surface is fully oxidised and can no longer incorporate more O2 atoms into its 

surface and it is sufficient enough to produce Al2O3. As the O2 flow was 

increased from 5-22 sccm, the target surface entered the oxide steady state 

phase, which induces an increase in the γISEE leading to a decrease in the 

cathode voltage to -160±10 V, and a corresponding partial pressure of 0.14 to 

0.63 Pa was observed. No signs of unstable behaviour such outgassing was 

observed on the pressure measurements.  

To complete the hysteresis loop, the O2 flow rate was finally decreased using 

the 2 min. time interval between successive measurements. The cathode 

voltage began to increase at a steady rate of 6 Vsccm-1 from -172 V to -288 V 

as the O2 decreased from 22 sccm to a critical value of 2 sccm. This slow 

increase in the cathode voltage corresponds to the transition stage between 

oxide and the metal mode. A further decrease in the O2 flow to 0 sccm 

resulted in the cathode voltage increasing to -458 V, at which point the sputter 
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deposition returned to its original metal mode. The large spike in the 

discharge voltage as the target returns to the metallic mode cannot be 

interpreted as no reaction was observed in the pressure measurement, so the 

spike cannot be related to any gas related issues. So the increase of almost 

100 V remains unclear, however, one interpretation could be related to a 

thermal matter i.e. the powder target was unable to dissipate heat directly, 

hence the observed increase in the target voltage. It is worth noting that the 

hysteresis loop did not follow a typical metal trend. One of the main reasons 

for this is due to the high oxidisation state of Al. Other less prominent reasons 

could be due to the pumping speed of the pumps or the measured points are 

not stable enough, i.e. the 2 min. time interval between two measurements. 

Figure ‎5.5:4 (c) and (d) shows the cathode voltage curve and total pressure of 

the O2, respectively for the Cu powder target. Initially, when sputtering in 

argon mode, the cathode voltage was -460 V. As the O2 flow increased to 5 

sccm, the cathode voltage and the partial pressure slightly increased to -462 

V and 0.11 Pa, respectively. 

Due to the sputtering process, the target surface remains clean and the 

sputtered particles are of a metallic nature. Beyond 5 sccm of O2, the target 

operates in a poisoned mode and the cathode voltage decreases to -316 V. It 

is apparent from the data that the cathode voltage continues to drop once the 

target has gone into poisoned mode. This is probably due to the fact that the 2 

min. time interval was not sufficient for the target to adjust its surface 

composition to the new gas flow. 
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Figure ‎5.5:4 (d) and (e) shows the cathode voltage and the partial pressure of 

O2 of for a Cu-Al powder target during the hysteresis trial. During this study, 

the O2 flow was controlled from 0-9 sccm and step wise at 0.2 sccm every 2 

min. The slow flow is required in order to allow the target to have enough time 

to react with the O2 molecules. When the target was subject to an argon 

atmosphere, the cathode voltage was -428 V, which is 32 V lower than that of 

a pure Cu powder target. This can be attributed to the fact 25 at.% of the 

sputtered powder target was aluminium and therefore requires a lower vltage 

to be sputtered. It was noticed that as the oxygen flow was increased from 2-4 

sccm, the voltage dropped from -390 to -320 V at a constant rate. This region 

can be classified as the transition mode of the target. As the oxygen gas was 

increased from 4-9 sccm, the cathode voltage decreased to -208 V at a 

slower rate, which indicated the formation of the oxide mode. To complete the 

hysteresis loop, the oxygen flow was decremented from 9-3 sccm and the 

measured cathode voltage increased at a slow rate from -208 to -322 V. The 

observed delay that the target requires to enter the transition mode maybe 

attributed to the formation of the oxide layer on top of the target surface which 

therefore required a longer time to sputter away. The oxygen flow was then 

decreased from 3-0 sccm and the voltage dropped to -422 V, which was lower 

than the cathode voltage at the start of the hysteresis. It was observed that 

the total pressure followed a linear relationship, as the oxygen gas was 

varied. This linear relationship suggests a stable sputtering system.  
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(e)  

 

(f) 

Figure ‎5.5:4 hysteresis analysis of pure metal powder target of (a-b) Al (c-d) 

Cu and (e-f) Cu:Al blended powder target. 

 

5.5.4  Hysteresis study of titanium dioxide 

A study of the effect of oxygen partial pressure on the titanium target voltage 

of a titanium powder target was also carried out. The oxygen flow rate was 

controlled using a MKS mass flow controller with a flow set from 0 sccm to 6 

sccm, incremented in 0.2 sccm steps every 2 minutes. The target voltage was 

recorded from the pulsed DC power supply display control unit. 

Prior to the input of the oxygen gas, the target was sputter cleaned in argon 

gas only at a chamber pressure of 0.36 Pa in order to remove the surface 
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oxide layer of the target. At each oxygen gas flow rate, sputtering took place 

until a constant target voltage was reached. 

Table ‎5.5:4 Power supply experiment conditions during the Ti hysteresis 
study. 

Power (W) Frequency (kHz) pulse off time (μs) Duty cycle (%) on 

400 100 1 90 

 

The chamber pressure was then adjusted to 0.6 Pa using the high-vac lever, 

after which the target voltage was measured. Following this, a given oxygen 

flow was introduced to the chamber and after a period of 2 minutes, the target 

voltage was measured, following this, the oxygen flow was incremented and 

target voltage re-measured.  

Figure ‎5.5:5 outline the hysteresis behaviour of the titanium powder target 

while varying the oxygen flow rate. At low oxygen flow rates, almost all the 

reactive gas is gettered by the sputtered metal. This region is termed the 

metallic region. As a result, no changes in the base pressure of 0.6 Pa and 

average target voltage, -292 V, were observed. The metallic region persisted 

until the oxygen flow reached a critical value of 2 sccm at a base pressure of 

0.6 Pa, where the flow rate of oxygen became higher than the gettering rate of 

the sputtered titanium, which led to a rise in the magnitude of the target 

voltage from -296 V to -322 V. This region is termed the transition region. 

As the gas flow was increased from 4 sccm to 6 sccm, the base pressure 

increased from 0.59 Pa to 0.623 Pa while the target voltage increased in 

magnitude from -322 V to -348 V, which is the point at which the system 

entered the reactive or poisoned region. At this point, the target surface was 
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fully poisoned with oxygen and the target voltage reached equilibrium (the 

target voltage saturating at -348 V). 

The oxygen gas flow was then reduced from 6 sccm to 4 sccm at 0.2 steps 

per every 2 minutes and it was noticed that the target voltage decreased in 

magnitude from -348 V to -343 V. As the oxygen flow was further decreased 

from 4 sccm to 2 sccm, the target voltage dropped from -343 V to -298 V. The 

oxygen was further reduced from 2 sccm to 0 sccm and the target voltage 

decreased in magnitude from -298 V and settled at -289 V. The reason for the 

delayed target voltage change compared to that when increasing the oxygen 

flow is mainly due to the low sputtering rate of titania compared to titanium, 

which means the oxygen flow rate has to be reduced to a point where it can 

no longer maintain the compound layer which was being continuously 

sputtered. At this point, the poisoned target is ‘cleaned’‎again. 

When the target is completely poisoned, any further increase in the reactive 

gas flow will result in a linear increase in the base pressure. 
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Figure ‎5.5:5 Hysteresis study of Ti metal base powder. 

 

5.6  Effect of base pressure on target voltage of 

titanium target  

To understand the effect of the base pressure on the target voltage of 

titanium, an experiment was prepared using the same conditions illustrated in 

Table ‎5.5:4. 

Initially the argon flow was used to maintain a constant base pressure into the 

continuously pumped chamber and then used to initiate the plasma. The 

argon flow was set from 0 to 7 sccm (7 sccm is the full range scale) then the 

high-vac valve was used to increase the chamber pressure up to 0.6 Pa. The 

chamber pressure was increased at 0.067 Pa per every 2 minutes and the 

target voltage was recorded. 
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Initially, the argon gas flow was set to 0 sccm, at which point no plasma was 

initiated and target voltage was reading -663 V, this is effectively an open 

circuit voltage. As the argon pressure was increased to 1 sccm which 

corresponds to 0.06 Pa, the plasma was activated and the target voltage 

decreased in magnitude from -663 V to -387 V and began to decrease even 

further as the chamber pressure was increased. Figure ‎5.6:1 illustrates the 

behaviour of the target voltage as the chamber pressure was increased. It can 

be observed from Figure ‎5.6:1 that at low chamber pressure, the target 

voltage is higher than that compared to operating at a higher pressure.  The 

decrease in the discharge voltage with pressure is a result of a reduced 

probability of electron recapture, yielding to higher ionisation. 

 

Figure ‎5.6:1 Effect of chamber pressure on target voltage for titanium powder. 

 

A plot of the operating frequency against the time averaged target voltage is 

shown in Figure ‎5.6:1. The experiments were carried using the operating 
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rate as more energy is available to excite the sputtered particles, therefore the 

sputter yield is proportional to the target voltage.  

 

Figure ‎5.6:2 Effect of frequency on time averaged target voltage for titanium 

powder target.  

 

5.7  Effect of oxygen flow rate on titanium target 

discharge voltage 

A study of the effect of oxygen flow rate on the target voltage has been 

carried out. The oxygen flow rate was varied from 0 sccm to 8 sccm and the 

target voltage was recorded. Each experiment run was for a period of 2 hours 

using the conditions shown in Table ‎5.7:1Table ‎5.5:4. The average target 

voltage was recorded according to the Pinnacle Plus power supply display 

unit.  

Table ‎5.7:1 Experimental parameters of oxygen partial pressure affect on 
target voltage. 
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The use of a reactive gas such as oxygen will cause the formation of a 

compound layer on the target surface. It can be observed from Figure ‎5.7:1, 

that when sputtering in metallic mode, i.e. with no oxygen flow to the 

chamber, the target voltage was lower in comparison to that when increasing 

the oxygen flow. The increase in the oxygen flow, results in the oxidisation of 

the titanium target surface, therefore additional discharge voltage is required 

in order to sustain the plasma discharge.  

 

Figure ‎5.7:1 Target voltage Of Ti target at different oxygen flow rates. 

 

5.8 Deposition rate in a titanium/oxygen system 

Figure ‎5.8:1 outlines the variation of the deposition rate of titanium powder 

target as a function of oxygen flow rate. It can be observed that the deposition 

rate has a negative linear relationship as the oxygen rate was increased. This 

rapid decrease in the deposition rate was due to the oxidisation of the target 
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phenomenon has been related to the chemical reaction occurring between the 

target surface and the oxygen gas [151]. 

 

 

 

 

 

 

 

Figure ‎5.8:1 Deposition rate of a titanium target at different oxygen flow rates. 

 

5.9  Summary and outlook 

In Chapter 5 the fabrication and the characterisation of the powder targets 
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yield a better thermal conductivity and therefore limit the arcing probability.  
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target surface. Using such configuration yielded a well adhered and dense 

structured coatings.  

The target-to-substrate separation (dt-s) study conducted on the FTO powder 

target showed that 11 cm was the optimum separation distance needed to 

produce optimum electrical properties. 

A compositional analysis conducted on the FTO powder target and the FTO 

coating showed a variation in the composition atomic percentage. This is 

attributed to the fact that as the sputtered particles travel through the dense 

plasma, light elements such as fluorine are easily scattered by collisions with 

the gas atoms which significantly influence the deposition profile. 

The hysteresis study on the Cu:Al metal base powder as a function of the 

oxygen flow demonstrated that the metal target surface began to transition 

from the metallic mode to oxide mode between 2-4 sccm. The cathode 

voltage continued to drop once the target has gone into the oxide mode, This 

is possibly due to the fact that the measured points are not stable points, i.e. 

the 2 minutes interval between the measurement was not sufficient enough 

for the target to adjust its surface composition to the new gas flow.  

Optimisation experiments were carried to study the influence of the base 

pressure, pulsing frequency and oxygen flow rate on the target voltage of 

titanium metal base powder target. It was observed that using low operating 

pressures resulted in higher target voltages. This is maybe attributed to the 

fact that titanium target was oxidised and requires a higher discharge voltage 

to sustain the plasma. Also reported, operating at lower frequencies increases 

the sputtering rate, as more energy is available to excite the sputtered 
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particles. It was determined from the optimisation of Ti experiments that the 

oxygen flow rate should be in the range of 2 to 4 sccm in order to produce 

transparent coatings. However the initial electrical tests show that the 

coatings were very resistive as it was not possible to measure them using the 

Hall probe system.  

 

 

  



 

137 | P a g e  

 

 

The development of thin film coatings and devices requires the measurement 

and the study of their properties. In this research, it is important to 

characterise the thin films developed in terms of their electrical, optical, 

structural and compositional arrangement. The techniques involved were; the 

Van der Pauw technique (using the Hall effect measurement system), 

spectrometry (using the USB2000+ spectrometer), scanning electron 

microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray 

(EDX). The thickness of the thin films were measured by surface profilometry 

(Dektak ST stylus surface profilometer). 

 

 

 

 

6  

ANALYTICAL TECHNIQUES 
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6.1  Introduction 

The advancement of analytical techniques has been growing owing to the 

increasingly interdisciplinary field of thin films applications. The deposition of 

thin films under varying growth conditions, play the most significant role on the 

properties of the thin films. The variation in the structure of the thin films can 

be characterised structurally, chemically, optically and electrically. Each 

technique employs a unique way of analysing the thin film, for instance the 

structural and chemical analysis of a thin film provides information from the 

first few layer of the surface via applying an incident electron, ions or photon 

beams. These interact with the surface and emit a combination of secondary 

beams of electrons, ion or photons, which are captured by the analytical 

system for structural and chemical analysis of the thin film. 

This chapter will only address the characterisation techniques relevant to this 

project for composition, morphology structure and film thickness. 

 

6.2  Analysis of electrical properties 

To understand the conductivity behaviour of the TCO coating that will be 

developed, four parameters will be investigated, these are charge carrier 

density, Nd, mobility,  , the resistivity, ρ, and conductivity,  . As the 

conductivity does not distinguish between hole and electron conduction, a Hall 

Effect study of the carriers is required to determine whether the coating 

developed is an n-type or a p-type; the carrier density will be used to 

determine this fact. 
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Conductivity,  , is a measure of the electric current density, J, passing through 

the material at a given electric field, E. It is measured in S∙cm-1
 and it is given 

by the following equation; 

  
 

 
      Eq. ‎6.2:1 

 

The reciprocal of conductivity is known as the electrical resistivity, ρ, with units 

of Ω∙cm. For a given dimension of the coating (l= length, b= width, t= 

thickness, R = resistance), the electrical resistivity is given by the following 

equation; 

     
   

 
      Eq. ‎6.2:2 

 

If the coating has a square dimension i.e. b=l, then equation Eq.6.2:2 

becomes; 

             Eq. ‎6.2:3 

 

ρs, is known as the sheet resistivity, which refers to the conductivity of one 

square of the film and it represents the resistance between two sides of the 

square and it is independent of the square size with units of Ω/square. It can 

be seen from equation 6.2.2 that the electrical resistivity is greatly influenced 

by the thickness of the coating. As a result, this will affect the conductivity of 

the coating. 
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Charge carrier density and mobility can be measured by employing the 

magnetic and the electric field. The force that relates the two factors is termed 

the Lorentz force, F, which is the total force exerted on a charged particle 

travelling at velocity,  , through a magnetic field, B, and the electric field, E; 

 

              Eq. ‎6.2:4 

 

Figure ‎6.2:1 outlines the vector direction of the instantaneous velocity of the 

electrons and the magnetic field; 

 

 

 

 

 

 

 

Figure ‎6.2:1 Schematic of the Hall effect.  

The direction of the Lorenz force is determined using the right-hand-rule 

(obtained by pointing the right thumb in the direction of the current and the 

fingers curl in the same sense as the magnetic field). The electron direction is 
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mounted upwards while the other side becomes depleted of electrons, this 

produces the Hall field, EH as can be observed in Figure ‎6.2:1. The 

measurable difference in the potential is termed the Hall voltage, VH. The Hall 

field acts on the electrons with the same magnitude as the Lorenz force but in 

the opposite direction. 

Since, E, EH, and, B, are mutually perpendicular and given that the 

instantaneous velocity, V, equal to the drift velocity, Vd, as the thermal 

velocities, Vth, of a charged particles in all direction are equated to zero, 

hence, the Hall field can be given by the following equation; 

 

             Eq. ‎6.2:5 

 

Given that drift velocity is the product of the electron mobility,  , and electric 

field, E, 

             Eq. ‎6.2:6 

 

Therefore the Hall field is; 

 

             Eq. ‎6.2:7 

 

It can be deduced from the above equation that the Hall field is a product of 

the mobility of the charged particle, the electric field and the magnetic field. 
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6.2.1  Hall effect measurement system  

In 1879, Edward Hall determined the sign of the moving charges that form the 

electrical current by studying the effect when he applied a magnetic field 

perpendicular to the direction of the current flowing through a conductor and 

observed that the electrical field is created in a direction that is perpendicular 

to both. The Hall effect is important in the analysis of semiconductors to 

determine their electrical characterisation.  

The Hall Effect Measurement System (HEMS) is a system used to make 

electrical measurements of the deposited thin films. It utilises the Van der 

Pauw’s‎technique to measure the charge carrier density, Nd, Hall mobility,  , 

resistivity, ρ, and conductivity,  , of the thin film. The HEMS used to determine 

the electrical properties during this research is the HEMS-3000 system 

manufactured by ECOPIA.  

6.2.2  Van der Pauw technique 

The Van der Pauw method was used to measure the resistivity of the TCO 

coatings. Four Ohmic contacts are placed on the periphery of the TCO coated 

sample as shown on Figure ‎6.2:2, 

 

 

 

 Figure ‎6.2:2 Ohmic contact placement on TCO thin film 
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Initially, the Van der Pauw technique is used to measure the sheet resistance, 

Rs, of the coated sample. There are two characteristic resistances; RA, and RB, 

associated with the four terminals, which Van der Pauw demonstrated with 

the following two equations [152]; 

 

   
   

   
    Eq. ‎6.2:8 

 

   
   

   
     Eq. ‎6.2:9 

 

Where;  

    Is the measured voltage across contact terminals 4 and 3.  

    Is the measured voltage across contact terminals 1 and 4.  

    Is the measured current across contact terminals 1 and 2.  

    Is the measured current across contact terminals 2 and 3.  

 

The characteristic resistances, RA, and, RB, are found by applying a dc current, 

I, across contact terminal 1 and out of contact terminal 2 and measuring the 

voltage across contact terminals 4 and 3 (V43 . The same process is repeated 

by applying dc current, I, across contact terminal 2 and out of contact terminal 

3 while measuring the voltage across contact terminals 1 and 4 (V14). RA, and, 

RB, can then be calculated using equations 6.2:8 and 6.2:9 respectively. 

The characteristic resistances, RA, and, RB, are related to the sheet resistance 

of the thin film through the Van der Pauw equation; 
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     Eq. ‎6.2:10 

 

Equation 6.2:10 can be solved numerically for, Rs, and the resistivity, ρ, can 

be calculated using the following equation: 

 

          Eq. ‎6.2:11 

 

The sheet carrier density, ns,‎ can‎be‎determined‎using‎ the‎Van‎der‎Pauw’s‎

technique by measuring the Hall voltage, VH. The Hall voltage is obtained by 

forcing the dc current through the opposing pair of the terminal contacts 1 and 

3, and measuring the Hall voltage, VH, across the terminal contacts 2 and 4 

(     and continuing to taking a series of voltage measurements at a constant 

current, I, and constant magnetic field, B, that is applied perpendicular to the 

thin film sample. Once the Hall voltage is determined, the sheet carrier density 

can be calculated using the following equation; 

 

       
  

     
     Eq. ‎6.2:12 

 

Then the bulk carrier density can also be calculated using the following 

equation; 
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     Eq. ‎6.2:13 

 

To ensure the consistency of the results, the following factors must be 

considered; 

 The quality and size of the ohmic contacts 

 The size of the ohmic contact compared to the size of the measured thin 

film sample 

 The uniformity and accuracy in thickness measurement  

6.3  Analysis of optical properties 

The optical analysis is a quantitative measurement of the thin film to 

determine the transparency and the reflection as a function of wavelength, 

typically in the range of 200-2500 nm to cover the UV-VIS-IR spectrum.  

The optical analysis of a sample is determined using a spectrometer device 

which transmits light through an optical fibre over a range of wavelengths, 

which strikes the sample surface where the light is either transmitted (T), 

reflected (R) or absorbed (A). The total output light should sum to 1, therefore 

adding the three factors, realises the following relationship, 

 

            Eq. ‎6.3:1 

 

The light transmitted through the fibre optics consists of a stream of photons 

that interact with molecules of the thin films, which absorb the photon, and 

therefore reduce the intensity of the penetrating light beam. 
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During this research, the optical properties of the developed thin films were 

measured by an Ocean Optics USB200+ spectrometer system. To minimise 

the system errors and incoherence during the measurements, the intensity of 

the light passing through a microscope glass slide identical to the sample 

substrate was measured and taken as a reference. The reference provided 

the absorption of light by the glass slide. A reference spectrum is a spectrum 

taken with the light source on, and when the light source is blocked in the 

sampling region. The reference measurements are then stored and used as 

way of calibrating the instrument prior to the optical analysis of the thin film 

samples. A typical schematic diagram for the transmission, absorption and the 

reflection configurations are demonstrated in the figure below; 

 

 

 

 

 

 

 

 

 

Figure ‎6.3:1 The instrumental setup for measuring the Transmission, 

absorption and the reflection of the coating. 
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The transmission is expressed as a percentage (   ) and it is defined as the 

percentage of the light energy that is transmitted through the thin film sample 

relative to the amount that passes through the reference. The Spectra-Suite 

software calculates the T% using the following equation; 

 

  
   

   
         Eq. ‎6.3:2 

 

Where:   is the sample intensity at a specific wavelength,   is the dark 

intensity at a specific wavelength and   is the reference intensity at a specific 

wavelength 

Absorption is a measure of how much light a coating can absorb. In general, 

absorption is related to the thickness of the coating, as the thicker the coating, 

the higher the chances of the molecules of the coating obstructing the 

photons pathway and absorbing the photon, hence reducing the intensity of 

the light passing through the coating. Spectra-Suite calculates the absorbance 

(A) using the following equation; 

 

       
   

   
      Eq. ‎6.3:3 

 

The transmission and absorption setup is the same, the light source transmits 

light (wavelength 300-950 nm) via an optical fibre cable onto the sample 

holder. The light waves interact with the coating and the transmitted light from 
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the sample is fed through another optical fibre cable to the spectrometer 

where the light waves are converted into digital data which are transmitted to 

the computer via a USB bus.  

Reflection is expressed as a percentage (R%), relative to the reflection from a 

standard reference sample. Reflection is defined as the light energy which is 

reflected from the thin film sample without changing its wavelength. 

Depending on the surface of the coating, reflection can be specular, meaning 

the angle of incidence is equal to the angle of reflection, or it can be diffuse, 

meaning the angle of incidence is not equal to the angle of reflection. Some 

coatings have a glossy finish, which provides more specular reflection than 

diffuse reflection. Spectra-Suite software determines the R% as follows; 

 

  
   

   
          Eq. ‎6.3:4 

 

In a reflection setup, the light source transmits the light energy via the optical 

fibre cable onto the sample, the sample holder holds the optical fibre at a 90 

degree angle to the coated sample and the output of the reflection probe 

carries the light from the sample to the spectrometer via an optical fibre. The 

spectrometer converts the received light intensity into digital data and sends it 

to the computer via the USB bus.  
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6.4  Structural analysis  

It is important to determine the morphology and topology of the coating 

surface, the crystal structure, grain size, and composition. The analysis 

techniques will include scanning electron microscopy (SEM), energy 

dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The SEM 

system to analyse the topography of the films was manufactured by Carl 

Zesis Ltd, model number Supra 40VP and the software used was SmartSEM. 

The EDS systems used in this research was manufactured by EDAX Inc, 

model number Apollo 40SDD and the software used was Genesis.   

6.4.1  Scanning electron microscopy 

The scanning electron microscope (SEM) is the most frequently used 

technique for the study of the morphology of thin films. The SEM can give 

very detailed images, which can be used to study the adhesion, surface 

topography, surface defects and structure of the coating. The SEM can also 

be used to study the chemical composition of the coating by changing the 

mode of the SEM to energy dispersive X-ray spectroscopy (EDX) or to 

wavelength dispersive X-ray (WDX) spectroscopy, which acts as an electron 

probe micro analyser (EPMA). When the SEM is in the EPMA mode, it strikes 

the sample surface atoms with high energy electrons and during the process, 

X-rays characteristic of the sample atoms are emitted and collected (the 

energy of the electrons was set to 7 KeV in order not to detect the elements of 

the glass substrate). These can then be identified and counted, which gives 

information regarding the concentration of the atoms in the sample and 

therefore the coating composition. 
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In a typical SEM configuration, an electron is thermionically emitted from a 

cathode filament (usually tungsten or LaB6) and it is attracted to an anode. 

The electrons are focused into a fine spot size of circa 5 nm by using two 

condenser lenses. As the electrons are condensed onto a fine spot size, an 

objective lens, which contains a pair scanning coils, is used to deflect the 

beam in a linear or raster fashion onto an area of the sample surface.  

The energy of the electrons can be accelerated from a few thousand electron 

volts to 50 keV. As the fast moving electrons strike the sample surface, the 

primary electrons decelerate, and begin to lose energy inelastically to the 

sample atomic electrons and the lattice. After some time, the beam begins to 

spread across the sample surface due to random scattering events, creating a 

huge number of electron excitation and a teardrop shaped dimension is 

formed. The excited electrons leave the sample surface and emit X-rays, light, 

and heat. The appropriate detectors on the SEM detect and differentiate these 

signals to convert into an image. 

The characterisations that will be included in this research are as follows;  

SEM micro images of the coatings will be used to determine the surface 

topography and if there are any surface defects such as pin holes or micro 

stress which may introduce surface stress on the coating after a period of 

time.  

Also, chemical characterisation will be compiled by studying the atomic weight 

ratio of the coatings to determine the composition ratio of the coating.  

 



 

151 | P a g e  

6.4.2  X-ray diffraction 

X-ray diffraction is a non-destructive technique used to determine the 

crystalline phases and the structure (strain state, grain size, defect structure, 

epitaxy, phase composition, preferred orientation) in crystalline materials 

[153]. 

In a typical X-ray diffraction system, the sample is exposed to a beam of 

monochromatic X-rays, and as a result, the atomic lattice of the sample 

diffracts the beam at specific angles producing a unique diffraction pattern, as 

shown in Figure ‎6.4:1. The diffraction pattern produced includes the angle of 

diffraction and the intensities of the diffracted beam, which can be 

represented using Bragg’s equation,  

           Eq. ‎6.4:1 

Consider the length of the incident and the reflected beams are equal, 

      

Therefore, 

   2   

Using simple geometry, yields,  

     
  

 
 

2         

The diffraction angles can be used to calculate the interplanar atomic spacing 

(d-spacing)‎using‎the‎Bragg’s‎law‎equation‎shown‎below;‎ 
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   2               Eq. ‎6.4:2 

Where, d, is the distance between atomic layers in the crystal structure, θ, is 

the angle of incidence of the reflected X-ray beam, n, is an integer,  , is the 

wavelength of the incident X-ray beam usually of value 0.154 nm for a copper 

X-ray source. A schematic representation of Bragg’s law is shown in Figure 

‎6.4:1. The important point is that the path length is the same, therefore the 

diffracted beam is in phase and there is constructive interference, rather than 

the destructive interference which occurs at all angles other than the Bragg 

angle. 

 

 

Figure ‎6.4:1 Schematic representation of X-ray diffraction operating in the     

θ-2θ mode. 

 

The interatomic distances of the material, also known as the d-spacing are 

used to characterise the type of the material. This is done by comparing the 

XRD trace with that published by the Joint Committee for Powder Diffraction 
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Standards (JCPDS). The measured XRD trace can also give information 

about the preferred orientation (texture of the material), defect structure (such 

as strain analysis), phase composition and grain size of the crystallites in the 

sample  

The atom arrangement within a crystalline lattice can also be found from the 

position of the diffraction peak and the intensity of the peak can be used to 

assess any preferred orientation in the structure. The diffraction peak widths 

are used to obtain an accurate estimate of the grain size using the Scherrer 

equation shown below [154]; 

       
 

     
     Eq. ‎6.4:3 

 

Where, D, is the grain size,  , is the wavelength of the X-ray source (0.154178 

nm for copper radiation),  , is the width of the diffraction peaks at full wave 

half maximum in rads (FWHM) and,  , is the diffraction angle measured in 

radians. Due to the deposition nature of PVD techniques, PVD coatings tend 

to show strong textures because the coating flux arrives from a limited set of 

directions. Low energy lattice arrangements are usually formed which results 

in preferred planes (111), (110) etc. laying parallel to the surface. A unique 

peak appears on the XRD data collector only when the reflected data meets 

Bragg’s law. This unique peak is used to analyse the nature of the lattice such 

as the orientation and the texture.  

Generally, the XRD patterns of thin films measured using the conventional    

θ-2θ scanning mode generally produce a weak signal from the thin film and 

an intense signal from the substrate. One way to avoid the strong signal from 
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the substrate and to achieve a stronger diffraction signal from the thin film is 

to perform the Grazing Incident X-ray diffraction method (GIXRD). The 

method is based on the fact that at X-ray energies, the refractive index of the 

materials is less than 1.0. One can then achieve total external reflection from 

the surface if the incident angle is set to a small value typically in the range of 

0.3-3°. At this point, the path length of the X-ray beam through the thin films 

increases and the substrate is not visible to the X-ray beam, but only 

evanescent waves penetrate into and scatter from it. The strongest X-ray 

signal intensity is therefore achieved at the surface as desired. This gives a 

dramatic increase in the films signal-to-background ratio since the path length 

increases when the grazing incidence angle is used, the diffraction volume 

increase proportionally.  

The grazing incident and the diffracted beams are made nearly parallel to 

substrate by means of narrow slit (put along the incident beam) and mirror 

slits (put along the Soller slit on the detector side). During the collection of the 

diffraction spectrum, only the detector rotates through a set angle (usually 20-

70°, 2θ range), and keeping the incident angle, the path length and irradiated 

area constant. The Soller slit on the receiving side, allows for beams that are 

nearly parallel to the surface to arrive to the detector, this adds to the 

advantage of reducing sensitivity to sample displacement from the rotation 

axis. The schematics of the GIXRD are shown below.  
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Figure ‎6.4:2 GIXRD device setup. 

During the analysis of the data, it is important to consider instrumental effects 

such as the instrumental broadening of the X-ray beam, this can be estimated 

by analysing a calibration sample such a Si or an Al sample, which then the 

collected data is compared to the JCPDs data and the instrumental 

broadening is calculated. This broadening is the same for all the samples, so 

it is subtracted during the calculation of the grain size estimation. 

During this research, the PANalytical Xpert3 MRD X-ray diffraction system 

was used. The anode material used during the XRD scans was Cu with K  

wavelength of 0.1541874 nm. Due to thickness of the thin films, Grazing 

incidence XRD (GIXRD) thin film analysis was used for phase identification. 

The XRD patterns for the measured thin films, were analysed using 

HighScore Plus software developed by PAN analytical. The following 

treatments were carried on each XRD pattern.  

 Determining the background;  

In order to carry any phase analysis or peak search, HighScore Plus 

determines the background of the anchor scan,  
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 Peak search; 

Peak search automatically locate the peak position and the peak intensity. It is 

also able to determine the K   and K 2 peaks, 

 K  stripping;  

The K  is a doublet consisting of K 1 and K 2 radiation. This function is used 

to eliminate the K 2 from the scanned XRD pattern. K 2 is the emission line 

given‎by‎the‎electron‎transition‎to‎the‎intermost‎“K”‎shell‎(quantum number 1) 

from the 2p orbital of the second or the, L shell (with quantum number 2). K  

is by far the strongest x-ray spectral line for an element bombardment 

because it attains enough energy to cause a maximally intense X-ray 

emission. 

 Profile fitting 

It is a function used to characterise the peak profiles of the XRD pattern by 

applying a range of mathematical profile functions to determine the peak 

characteristics such as the position, intensity, width and shape.  

 Line profile analysis (LPA) 

It is a function used to determine the microstrain and the crystallite size for a 

single or a range of peaks. LPA uses the integral breadth (defined as the net 

peak area / peak height) as a measure of the peak width and the shape of the 

peak  (defined as the FWHM / integral breadth) to describe the peak 

variation. The algorithm deconvolutes the profile into a mathematical 

Gaussian and a Lorentzian part. The line profile automatically calculates the 
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instrumental broadening values LORENTZ Binstr. and GAUSS Binstr and 

effectively calculates the strain and the crystallite size accordingly.  

Crystallite size and the lattice strain calculations can also be done manually 

using the Scherrer calculator function available in high score software. The 

basis of simple size or strain analysis are the following two equations; 

The Scherrer equation defined as,  

                                           Eq. ‎6.4:4 

And the lattice strain defined as,  

                                                         Eq. ‎6.4:5 

 

Where B is the structural broadening, which is the difference in the integral 

profile width between the standard and the sample measured. The following 

two equation are used to calculate the B value for the crystallite size and the 

lattice strain, 

                       Eq. ‎6.4:6 

                  
      

      Eq. ‎6.4:7 

 

Where Bobs. And Bstd. is the observed broadening of the sample measured and 

the standard broadening.  
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6.5  Summary and outlook 

The developed thin films during this research are subject to optical, 

morphological, structural and electrical characterisation using standard 

techniques in order to quantify the effect of the variables on the thin film 

properties such as the effect of doping or the effect of experimental 

parameters such as power or pulse frequency. The optimised n-type and p-

type thin films are then used to devise a p-n heterojunction diode, which is 

subject to electrical testing to measure the efficiency of the device as a 

current generating device.  
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This chapter presents the experimental arrays and setup for each developed 

thin film. The methods and procedures used for target preparation and 

substrate cleaning and the deposition details are also presented.  

 

 

 

 

 

 

 

 

 

7  

EXPERIMENTAL DETAILS 

  



 

160 | P a g e  

7.1  Introduction  

The aim of this project is to deposit n-type and p-type semiconductors for use 

in a p-n hetero junction power generating diode by magnetron sputtering from 

powder blended targets. The preparation of the powder targets are defined in 

the next subsection.  

A traditional one variable method was used in the dopant trials, in which the 

composition of the fluorine doped tin oxide (FTO) and the copper aluminium 

(CA) metal base powder targets were varied and the effect on the optical, 

electrical properties and the morphology of the developed thin films were 

studied. 

Other variables such as the pulse frequency and duty cycle and their effect on 

the thickness and the deposition rate of the thin films were also studied. 

7.2  Preparation of the powder targets 

The sputter powder rig used during this research was designed by Postill for 

the development of novel applications. The full design of the powder rig can 

be found in [155] and [114].  

In this project, single and compound based powder targets were deployed to 

create thin films that are optimised for the of p-n junction diode device. The 

powders were all sourced from Alfa Aesar and the purities ranged from 

97.95% to 99.99%. The total mass of the powder was set to approximately 60 

g which is appropriate to cover all of the copper backing plate and depending 

on the density of the powder, the total mass was reduced in order to keep the 

powder target thickness similar. The mass distribution of the powder blend 

was calculated based on the atomic percent concentration (at.%). Using 



 

161 | P a g e  

loosely packed powder targets permits the ability to prepare targets that 

contain different compositional ratios. The composition of the powder targets 

were based on changing the at.% of the dopant. Table ‎7.2:1 presents the at.% 

of the fluorine in the tin oxide and aluminium at.% in the copper powder target. 

Research has shown that fluorine plays a significant role in the optical and 

electrical properties of the tin oxide [48, 71, 83, 156-157], meanwhile the 

aluminium affects the optical properties of the copper thin films [51, 158-159]. 

Table ‎7.2:1 Atomic percent ratio of the dopants for the SnO2:F and Cu:Al 
powder targets. 

Target name 
Atomic percentage 

of dopant at.% 

SnO2:F1 5 

SnO2:F2 10 

SnO2:F3 15 

SnO2:F4 20 

CAO7525 25 

CAO5050 50 

CAO2575 75 

 

The molecular masses (M) of SnO2, SnF2, Cu and Al are 150.706 g·mol-1, 

156.706 g·mol-1, 63.55 g·mol-1 and 26.98 g·mol-1, respectively. The amount of 

powder target required to cover the surface area of the backing plate was 60g 

and therefore the at.% calculation was based on the total mass of 60g.  

The following example illustrates the atomic percent calculation for the 

SnO2:F3 powder target. 

The at.% of fluorine is determined by the number of fluorine atoms n(F) 

divided by the total number of all atoms in the powder target 
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(n(Sn),n(O),n(Sn), n(F)). It is important to note that the number of atoms of Sn 

found in the SnO2 is different than the one found in the SnF2 as the molar 

mass ratios between the two compounds are different.  

The atomic percentage (at.%) of, F, needed in the SnO2:F3 target is 15%,  

     
    

                       
   Eq. ‎7.2:1 

 

And from the chemical formula of SnO2, the Sn is be defined as; 

                   Eq. ‎7.2:2 

And from the chemical formula of SnF2, the Sn is defined as; 

 2                 Eq. ‎7.2:3 

Substituting Eg.7.2:2 and Eq.7.2:3 into Eq.7.2:1 gives, 

     
    

               
 

                           

Therefore the fluorine to oxygen ratio is defined as, 

     
 

  
     

The above ratio is also correct for the ratio between the SnF2 and the SnO2, 

        
 

  
        

To calculate the mass of SnF2 and the SnO2 needed to make the total mass 

of 60g, 
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Therefore, it is possible to calculate the mass for the SnO2 powder target that 

is required,  

                          Eq. ‎7.2:4 

 

                                

                               

               

Therefore the total mass required for the SnF2 to produce 15 at.% of F, 
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To ensure the calculation was accurate, the number of moles for each 

element was calculated using                           

Eq.7.2:4 by using the calculated mass of SnO2 and the SnF2. 

                                    
                

          
 

Using the equation above, the following table was created and the mass 

percentage for each element was calculated. 

Table ‎7.2:2 Calculation for mass % of elements in SnO2:F3 powder target 

 Element 

Total number 

F2 Sn (n2) Sn (n1) O2 

Number of mol 0.177 0.089 0.306 0.612 1.184 

Calculated at.%  14.95 7.52 25.84 51.69 100 

 

Based on the equations above, the rest of the composition for the SnO2:F 

powder targets were calculated and are shown in Table ‎7.2:3. 

The atomic mass percentage of the copper aluminium powder was also 

calculated, and demonstrated below is the target composition ratio of 50 

at.%:Al and 50 at.%Cu. The total mass of the powder target was set to 50g 

and the molar mass of Cu and Al is 63.55 and 26.98 g·mol-1, respectively. The 

atomic mass percentage is defined as the number of mols (n) for that 

particular element divided by the total number of mols (nT) within in that 

compound, this can be shown as follows; 
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      Eq. ‎7.2:5 

The total mass of the compounds needed to make 50g is defined as,  

                    Eq. ‎7.2:6 

The       is the mass of copper and is defined as,  

                     Eq. ‎7.2:7 

And       is the mass of aluminium and is defined as,  

                      Eq. ‎7.2:8 

Since, 

            

Therefore, substituting the value of       and       into Eq 7.2:6 becomes,  

                        

      
   

            
 

          2     

The mass of Cu is therefore,  

                  

          2                 

             

Therefore, the mass of the Al can easily be calculated from the total mass of 

the powder target,  
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Using the same method shown above, the rest of the composition ratios were 

calculated and are shown in Table ‎7.2:3.(b). 

Table ‎7.2:3 The total mass of the blended powder targets (a) fluorine doped 

ting oxide, (b) copper aluminium oxide and (c) titanium and antimony doped 

tin oxide. 

 

(a) 

 

powder target ID compound powder target mass (g) 

tin oxide tin fluoride 

SnO2 60.0 0 

SnO2:F1 57.5 2.5 

SnO2:F2 52.7 7.3 

SnO2:F3 46.1 13.9 

SnO2:F4 43.2 16.8 

 

(b) 

 

 

 

 

 
(c) 

 
 

 

Regardless of the powder target material, the preparation method was kept 

the same. The mass of the powder was measured to two decimal places 

using an Oertling OB152 scale. The powder target material was inserted into 

a glass bottle, which was placed on a tumble rotator for several hours to 

powder target ID compound powder target mass (g) 

copper  aluminium  

CA2575 21.98 28.01 

CA5050 35.09 14.90 

CA7525 43.79 6.21 

powder target ID Other powder target mass (g) 

titanium Ti 60 

antimony doped tin oxide Sb2O3:SnO2 

(10:90 at.%) 

60 



 

167 | P a g e  

ensure the blending of the powders. As described in Chapter 5, the powder 

blend was then distributed across the 2 mm recessed backing plate and was 

tamped down using a 1 kg steel cylinder to ensure uniformity of the target 

surface and also to ensure the powder is dense for better thermal and 

electrical conductivity. No additional adjustments were carried on the target 

surface such as sintering the powders or pressing with excessive force. The 

purity, particle size and the hazard of the powder materials are given in Table 

‎7.2:4. During the handling of the powder targets, safety measures were 

carried out such as wearing protective gloves and breathing masks to ensure 

the protection against skin irritation and the inhalation of dust metal particles. 

The powder targets were placed in a safe cupboard to ensure the safety of 

other students.  

Prior to sputtering, each powder target surface was sputter cleaned using an 

Advanced Energy DC Pinnacle Plus power supply with operating conditions; 

pulsing frequency of 200 kHz, duty cycle of 90 % and sputtering power 

density of 0.2 Wcm-2 for a period of 10 minutes. After the cleaning process, 

the oxygen gas was introduced to the chamber to yield a known Ar/O2 ratio. 

Table ‎7.2:4 Purity, particle size and hazard of the powder targets. 

Compound Purity (%) Mesh size Hazard warning 

tin oxide  
(SnO2) 

99.99 -325  skin and eyes irritation. 

tin fluoride  
(SnF2) 

97.95 -325 Corrosive, poison, burns eyes and 
skin. 

antimony oxide  
(Sb2O3) 

99.999 -325 Irreversible effects do not breathe 
dust, wear suitable protection. 

titanium  
 (Ti) 

99.95 -325 Irritates skin and eyes. 

copper powder 
(Cu) 

99.99 -325 Highly flammable, risk of impaired 
fertility. 

aluminium powder 
(Al) 

99.95 -325 Highly flammable in air, irritates skin 
and eyes. 
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7.3  Deposition techniques 

7.3.1  Substrate cleaning  

The thin films were initially deposited on standard microscope glass slides 

which were used to characterise the thin films, then deposited on the final 

10cm2 float glass substrate. The glass substrates were cleaned very 

thoroughly to remove all traces of any contamination such as fingerprints, 

grease/oil, which can create negative effects on the thin film surfaces. The 

substrates were initially cleaned for a period of 10 minutes using a 

transistorised ultrasonic tank. This ultrasonic cleaner uses transducers that 

are mounted at the bottom of the tank to create high frequency sound waves, 

which causes tiny cavities that are formed in the liquid of the tank. As these 

cavities implode with the substrate surface a large energy is realised to the 

surface, which cause the removal of dirt, stains, and other particles. The 

substrates were then dried using a jet of compressed air and immediately  

attached to the substrate holder and placed in the deposition chamber. The 

substrates were subject to an RF sputter clean using a power supply fixed to 

the substrate holder. The holder was insulated from the chamber and 

connected to a RF power supply (RFX-600, Advanced Energy), which was set 

to 0.13 Wcm-2 for a period of 10 minutes to further clean any contamination 

from the substrate via plasma etching prior to deposition. 

7.3.2  Sputtering equipment 

During this research, all the developed coatings were deposited using a mid-

frequency pulsed DC magnetron sputtering technique from loosely packed 

powder targets. The magnetron, which is strongly unbalanced, has a diameter 
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of 180 mm to provide a reasonable area of uniform deposition on the 

substrate. Full schematics of the sputtering system and a detailed schematic 

of the discharge are given in Figure ‎4.5:6, further description of the deposition 

system has been given previously [88, 134, 136, 141]. In order to control the 

properties of the developed coatings the following experimental parameters 

were monitored; 

 Discharge voltage: The power supply used to strike the discharge was an 

Advanced Energy DC Pinnacle Plus power supply, which was set to 

constant power mode in order to allow for constant input of energy to the 

target, therefore attaining constant discharge plasma. 

 Base pressure: The base pressure is the pressure of the deposition 

chamber prior to introducing any sputtering ambience. To ensure the level 

of impurities in the chamber was kept to a minimum, the base pressure 

was ensured to be 2.1×10-4 Pa.  

 Working pressure: This is the pressure of the sputter chamber prior to the 

initiation of the glow discharge. The gas flow rates of Ar and O2 were 

controlled using Ar and O2 mass flow controller (MFC) with flow range of 

25 sccm and 50 sccm, respectively. The MFCs were set and maintained 

using a two-channel mass flow controller power supply/readout (PR4000B 

by MKS). The Ar:O2 ratio inside the sputtering system was calculated by 

adjusting the relative flow rate of each gas, 

               
                    

                                        
   Eq. ‎7.3:1 

The working pressure was adjusted to 0.24 Pa using Ar gas in order to 

perform the substrate and target surface cleaning process. 
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7.3.3  Deposition conditions  

On the completion of the substrate and target cleaning processes, the 

chamber working pressure was readjusted by varying the argon to give 0.4 Pa 

and at the same time, the O2 gas was fed in to the chamber depending on the 

specific run conditions in order to maintain the coating stoichiometry and 

compensate for any lost O2 during the deposition runs.  

During this research, the main variable was the target composition, therefore, 

based on previous characterisation studies (Chapter 5), other deposition 

conditions were kept the same, such as the target to substrate separation, 

Ar:O2 ratio, power, pulse frequency and duty cycle. 

The best FTO thin films (prepared using SnO2:F2 powder target) in terms of 

the electrical and optical behaviour were prepared in an Ar and O2 

atmosphere with a constant flow rate of 23 and 4.5 sccm, respectively, which 

gave a coating pressure of 0.54 Pa. During deposition, the shutter was 

opened and the magnetron discharge was pulsed at 200 kHz using an 

Advanced Energy DC Pinnacle Plus power supply which was operated in 

constant power mode to provide a power density of 1.6  Wcm-2, at 90% duty 

cycle (pulse off time set to 0.5 μs). These conditions were chosen to produce 

stable arc free deposition conditions. The deposition period of all the 

experiments was set to 15 min. The optimum deposition rate of 27 nm·min-1 

was achieved through a trial of different pulsing frequency, duty cycle and 

target to substrate distance, using the SnO2 powder target as described 

earlier. The deposition rate for the different powder targets was not found to 

vary significantly during this study. The synthesis temperature during the 
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deposition of the thin film was measured to be below 170 °C at the substrate 

using a platinum thermal resistor sensor. 

Copper aluminium oxide (CuAlO2) thin films, were deposited onto standard 

microscope glass substrates by using pulsed DC magnetron sputtering 

technique using the copper and aluminium metal base powder blended target. 

The powder blended targets were formed as described in earlier chapter. 

The operating conditions were chosen through an array of experimental trials 

to produce arc free operating and to produce the desired p-type CAO thin film. 

During the trial depositions, the power supply was set to constant power 

mode, with pulse frequency set to between DC, 100, 250, 350 kHz,  using 

duty cycle of 50% and power set to 250 W and then to 350 W. The deposition 

time was set to 150 minutes. Depending on the discharge sputtering power 

and frequency used, the variation in the deposition thickness were recorded 

and shown in the table below.  

 

Table ‎7.3:1 Deposition conditions and corresponding deposition rates of 
CuAlO2 thin films. 

Sample ID 
Frequency 

(kHz) 
Duty cycle 

on (%) 
Discharge 

Power 
(W) 

Thickness 
(nm) 

Deposition rate 
(nm·min-1) 

7525CAO#8 350 61 350 620 4.13 

7525CAO#7 225 55 350 633 4.22 

7525CAO#6 100 55 350 1090 7.27 

7525CAO#5 0 0 350 579 3.86 

          

7525CAO#4 350 61 250 417 2.78 

7525CAO#3 225 55 250 415 2.76 

7525CAO#2 100 55 250 600 5.0 

7525CAO#1 0 0 250 430 2.86 
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The deposition was prepared in an Ar and O2 atmosphere with constant flow 

rates of 13 and 30 sccm, respectively, which gave a coating pressure of 0.4 

Pa. The diffusion pump speed was controlled in order to increase the coating 

pressure to 0.6 Pa as it gave a stable and dense plasma.  

Trial experiments were conducted on antimony doped tin oxide (ATO) and 

titanium metal base powder (Ti) targets to explore its structural, optical and 

electrical properties. The preparation of the powder targets followed the same 

procedure as mentioned in the previous subsection. The experimental 

conditions for the ATO and the Ti powder target are shown below. 

Table ‎7.3:2 Standard deposition parameter for (a) antimony doped tin oxide 
powder target and (b) titanium metal base powder target. 

(a) 

Power 
(W) 

Frequency 
(kHz) 

Pulse 
time_off 

(uS) 

Duty cycle 
(%) 

Ar 
(sccm) 

O2 
(sccm) 

Chamber 
pressure 

(Pa) 

Deposition 
run (min) 

300 200 0.5 90 23 4.5 0.50 40 

 

(b) 

 

 

 

The top and the back side electrical contacts were made using silver and 

copper metal targets. The sputtering depositions were performed using DC 

mode power supply, therefore promoting high deposition rates. The following 

table outlines the deposition condition, 

Power 
(W) 

Frequency 
(kHz) 

Pulse 
time_off 

(uS) 

Duty cycle 
(%) 

Ar 
(sccm) 

O2 
(sccm) 

Chamber 
pressure 

(Pa) 

Deposition 
run (min) 

400 100 1 90 23 1.75 0.60 120 
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Table ‎7.3:3 Standard deposition parameters for Cu and Ag targets. 

 

 

 

 

7.4  Fabrication of p-n junction diodes 

To demonstrate the applicability of the SnO2:F thin films, the CuAlO2 thin 

films and the metallic contacts, a simple p-n heterojunction diode was 

fabricated. The device was fabricated, by depositing a 400 nm FTO film onto 

copper contact pads, then p-type CAO film grown to a 1 μm was deposited on 

to the FTO layer. Then a silver metallic contact was then deposited onto the 

CAO film to create the device. Finally, a 1 μm titanium dioxide thin film was 

grown on top of the silver contacts as a protective layer for the device. The 

fabrication process of the p-n junction is shown in Figure ‎7.4:1.  

 

 

 

 

 

 

 

Material 
Power 

(W) 
Frequency 

(kHz) 
Ar 

(sccm) 
O2 

(sccm) 

Chamber 
pressure 

(Pa) 

Deposition run 
(min) 

Cu 500 DC 17 0 0.3 120 

Ag 500 DC 17 0 0.3 120 
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(1) clean glass substrate  (2) sputtered Cu contacts 

  

(3) soldering of Cu wire to Cu 
contacts 

(4) sputtered n-type layer  

  

(5) sputtered p-type layer (6) sputtered Ag back contact 

  

(7) soldering of Cu wire to Ag contact  (8) sputtered TiO2 on Ag contact 

 
 

Figure ‎7.4:1 Schematic fabrication process of p-n junction solar diode 
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Figure ‎7.4:2 Cross section schematic diagram of multi p-n heterojunction 

diode configuration. 

To extract the photoelectrons from the diode, the n-type copper metallic 

contacts were deposited through a mask that was customised to specifically 

allow maximum sun light while maximising the coverage area for the 

collection of charged carriers. Figure ‎7.4:3 outlines the mask and the 

corresponding deposition of the copper metal contacts. The copper contacts 

were grown to 1 μm thick which gave an electrical resistivity (using the Hall 

effect measurement system) to be less than 3.3 × 10-6 Ω·cm-1. 

                   

   (a)              (b) 

Figure ‎7.4:3 (a) The mask design and (b) the corresponding copper metal 

contact for the n-type FTO thin film.  

Light Am.1.5 

   I, V 

Glass substrate 

n-type: FTO 

p-type: CAO silver contacts 

copper contacts 

titanium dioxide coating 
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The FTO thin film was deposited onto the copper contacts using a second 

mask that only exposed the grid of the copper contacts but not the electrical 

soldering contacts points.  

To complete the diode configuration, the p-type CAO thin film was deposited 

on top of the FTO thin film using a third mask that had a smaller dimension to 

the n-type mask, in order to stop any short circuit problems occurring. Silver 

contacts were deposited on top of the CAO using a fourth mask that had a 

smaller dimension to that of the p-type thin film. Finally, a titanium dioxide 

coating was deposited onto the silver contacts to protect the device from any 

damage caused by scratches etc. The Cross section schematic diagram of  

the complete p-n heterojunction diode configuration is shown in Figure ‎7.4:2. 

7.5  Summary and outlook 

The powder target preparation has been discussed along with the 

mathematical calculation for the atomic percentage content for the mixed 

powder targets. Target conditioning prior to sputtering deposition has two 

main advantages; firstly, it is an important step to extract any contaminations 

and trapped gaseous atoms from within the powder particles; secondly it 

stabilises the powder target and reduces the abrupt arcing problems that 

powder targets suffer from. The powder target approach is a cheap and 

efficient means of investigating and optimising the properties of multi-

component materials, compared to using metallic or ceramic targets 

regardless of the powder target material, the preparation method was kept the 

same. Paying attention to experimental parameters such as the target 
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voltage, chamber pressure and the gas flow ratio is very important in order to 

be able to the repeat the experiment and develop thin films that attain 

consistent optoelectrical properties. The schematic of the p-n heterojunction 

was demonstrated.  
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This chapter presents the electrical, optical, topographical, and morphological 

analysis for the n-type and p-type thin films. To demonstrate the applicability 

of the SnO2:F/CuAlO2 thin films, a simple p-n heterojunction diode was 

fabricated and a typical J-V rectifying characteristics of the resultant device 

was demonstrated. 

 

 

 

 

 

 

8  

CHARACTERISATION OF THIN 

FILMS 
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8.1  Fluorine doped tin oxide  

8.1.1  Introduction 

In this work, fluorine doped tin oxide coatings were produced from blended 

SnO2 and SnF2 powder targets and the effect of different fluorine doping 

levels was investigated. The chemical composition, structural, electrical and 

optical properties of the FTO coatings sputtered in an argon/oxygen gas 

mixture at different deposition conditions is reported. 

8.1.2  Elemental analysis of SnO2:F thin films 

The EDS absolute data from the analysis of the FTO films is given in Table 

‎8.1:1. The EDS accelerated energy beam was optimised to be 7 KeV in order 

not to detect the elements of glass such as Si and Ca. The analysis of the un-

doped tin oxide film shows a composition of 31.7 at.% tin and 68.4 at.% 

oxygen which is close to stoichiometric SnO2. It was observed that the fluorine 

content in the doped thin films is in the range of 0-7.4 at.%, which is low in 

comparison to the amount of fluorine incorporated into the powder targets (0-

13 at.%). This can be explained by the fact that fluorine is a light element  

(Z=9 ) and may be more readily scattered during gas phase transport through 

the high density plasma [146].  

 

 

Table ‎8.1:1 Compositional analysis of the powder targets and subsequent tin 

oxide and fluorine doped tin oxide. 
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Figure ‎8.1:1 depicts the relationship between the fluorine and oxygen atomic 

contents incorporated in the film, as functions of the fluorine content of the 

target. It was observed that the fluorine to oxygen ratio increased with the 

increase in the fluorine content in the thin film. This implies that the fluorine is 

successfully incorporated into the tin oxide, as each F- anion substitutes an  

O-2 anion in the lattice. This is attributed to the fact that fluorine is the most 

favoured oxygen substitute, because the ionic size of fluorine (F-
 :0.133 nm) is 

closely matched to that of oxygen (O2-:0.132 nm) [160].  

 

Figure ‎8.1:1 EDS analysis of fluorine and oxygen atomic content in the FTO films as 

a function of fluorine atomic content in the target. 

 
 

Sample 
ID 

Element at.% in targets Element at.% in films 

O F Sn O F Sn 

SnO2 66.7 0.0 33.4 68.4 0.0 31.7 

SnO2:F1 63.3 3.3 33.3 66.4 2.8 30.8 

SnO2:F2 60.0 6.6 33.3 64.0 5.3 30.7 

SnO2:F3 56.7 10.0 33.2 62.8 6.2 30.9 

SnO2:F4 53.4 13.0 33.3 60.1 7.4 32.5 
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8.1.3  Structural properties of SnO2:F thin films 

The crystal structures of the SnO2 and SnO2:F thin films were analysed using 

X-ray diffraction over the range 20° to 70° 2θ. The XRD patterns for the 

undoped SnO2 and the doped SnO2:F films are presented in Figure ‎8.1:2. The 

diffraction angle (2), Miller indices (hkl), grain size (D) and texture coefficient 

for all the thin films are presented in Table ‎8.1:2.  

It can be observed from Figure ‎8.1:2 that the films exhibited XRD patterns 

with diffraction peaks corresponding to the (110), (101), (200), (211), (301), 

and (310) peaks of the rutile SnO2 pattern [161]. The presence of these peaks 

indicates that all the films were found to be of the cassiterite type with a 

polycrystalline structure. No other diffraction lines that correspond to other tin 

oxide or tin fluoride structures were detected. In addition, there was no 

significant shift in the peak positions of all the developed thin films, which 

probably implies that fluorine doping did not introduce any significant stress in 

the films. For comparison reason, the XRD pattern for SnO2, SnO2:F2 and 

SnO2:F4 were plotted on a separate Figure ‎8.1:2 (b) to give the reader a clear 

observation of the effect of the fluorine doping. It is apparent from Figure ‎8.1:2 

(b) that the undoped SnO2 sample has a lower intensity in comparison to the 

more sharper, more intense peaks of the SnO2:F2 sample. In other words, the 

crystallinity of the SnO2 samples were improved with the fluorine incorporation 

(2.8 to 5.4 at.%). In the present investigation, the intensity of the (200) plane 

ameliorates with the increase in the fluorine concentration up to 5.4 at.% and 

then deteriorated with fluorine concentration up to 7.4 at.% (sample SnO2:F4), 

a similar behaviour was observed by Moholkar et al [13]. It is therefore 
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concluded that the fluorine content strongly effects the structure of the SnO2, 

as observed elsewhere [83].  

Thin films deposited via magnetron sputtering, usually exhibit a preferred 

orientation because the sputtered atoms arrive at the substrate via limited 

pathways, therefore promoting the formation of a columnar microstructure. A 

preferred orientation can also be affected by experimental parameters, such 

as the growth temperature [162-163], coating thickness [58] and fluorine 

doping level [44, 46]. 

 

 

(a) 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

20 25 30 35 40 45 50 55 60 65 70 

In
te

n
s
it

y
 (

A
rb

. 
U

n
it

s
) 

2θ (degrees) 

SnO2 

SnO2:F1 

SnO2:F2 

SnO2:F3 

SnO2:F4 

(1
1

0
) 

(1
0

1
) 

(2
0

0
) 

(2
1

1
) 

(2
2

0
) 

(3
1

0
) 

(3
0

1
) 



 

183 | P a g e  

 

(b) 

Figure ‎8.1:2. XRD diffraction pattern for (a) all FTO diffraction patterns (b) 

diffraction pattern of SnO2, SnO2:F1 and SnO2:F4. 

The intensity of the hkl reflection pattern can be utilised to determine the 

orientation of the grains or the volume of crystallites within that particular hkl 

plane parallel to the surface sample. 

The degree of the preferred orientation of the thin films can be estimated by 

comparing the relative intensities of the measured peaks. A texture coefficient 

TC (hkl) is calculated using the Harris analysis technique shown in Eg 8.1:1 

[164]. 

        
      

       
  

 

 
 

      

       

 
    

  

   Eq. ‎8.1:1 

 

Where I is the measured intensity of the peak, Io is the theoretical intensity 

obtained from the JCPDS powder diffraction file and n is the number of peaks. 
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The texture coefficients for the (110), (200) and (211) peaks are shown in 

Table ‎8.1:2. It is apparent from Table ‎8.1:2 that the coatings tend to have a 

(211) preferred orientation or texture (TC > 1). FTO coatings grown by other 

techniques suggest that the (200) peak was most influenced by fluorine 

doping [18]. Although the TC of the (200) peak varies with fluorine content, 

becoming a maximum of 1.11 at 5.3 at.% F, it still remains below the TC for 

the (211) peak.  

The grain sizes of the crystallites were calculated using the Scherrer equation 

for the (110), (211) and (200) peaks [165]. It is important to note that a lattice 

strain de-convolution was not considered during the calculation. The 

calculated values are presented in Table ‎8.1:2. 

 

 

 

Texture 

coefficient P

(hkl) (nm)

SnO2 26.6 110 15 0.48

37.7 200 24 0.42

51.7 211 22 1.27

SnO2:F1 26.5 110 28 0.73

37.8 200 23 0.95

51.6 211 34 1.48

SnO2:F2 26.5 110 31 0.77

37.8 200 38 1.11

51.7 211 33 1.31

SnO2:F3 26.6 110 13 0.47

37.7 200 14 0.6

51.6 211 15 1.01

SnO2:F4 26.6 110 9 0.3

51.4 211 7 0.49

Sample ID 2θ(°)‎
Peak Grain size D

Table ‎8.1:2 Diffraction‎angle‎(2θ),‎the‎miller‎indices‎(hkl), grain size (D) and the 

texture coefficient (P) of FTO thin films. 
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The average of the grain sizes for the (110), (200) and (211) peaks is shown 

in Figure ‎8.1:3. It was observed that the mean crystallite size followed a 

progressive incremental trend with increasing fluorine content up to 5.3 at.% 

(from 20 nm to 34 nm), beyond which there was a reduction in the crystallite 

size, which may be due to the excess fluorine within the tin oxide lattice. The 

implication being that 5.3 at.% of fluorine in the lattice was the optimum 

composition, of those tested, for grain growth. The calculated values for the 

lattice‎parameters‎‘a’‎and‎‘c’‎for SnO2 thin films are 4.74 Å and 3.35 Å for the 

(110) peak which are in reasonable agreement with the standard data (a = 

4.73 Å, c =3.18 Å) [161].  

 

Figure ‎8.1:3 Average grain size as a function of fluorine atomic content in the 

FTO thin films. 
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employed [152]. Figure ‎8.1:4 presents the electrical behaviour of the thin films 

as a function of the fluorine content. The values for the carrier concentration 

(Nd) were reported to be negative, indicating n-type semiconductor behaviour 

however, the absolute value was plotted to present the trend of the data.  

Resistivity and mobility values of 3.71×10-1 Ω·cm and 3.1 cm2/Vs and a 

corresponding carrier concentration (Nd) of 5.5×1018 cm-3 were obtained for 

un-doped SnO2. These values are similar to those reported elsewhere [45, 

47]. It was observed from the carrier concentration (Nd) data that the FTO thin 

films exhibit n-type conductivity, which is also achieved by other deposition 

techniques including spray pyrolysis and PLD [37], [44]. 

It was observed from Figure ‎8.1:4, that the best electrical properties where 

achieved with a fluorine concentration of 5.3 at.%, corresponding to a 

resistivity of 6.71×10-3 Ω·cm, mobility of 15.1 cm2/Vs and a carrier 

concentration (Nd) of 1.46×1020 cm-3 for the films. Similar results were 

achieved by PLD at a deposition temperature of 300°C [44]. The improvement 

in the electrical properties is attributed to the larger grain size observed at this 

composition [44]. In addition, the hybrid orbital configuration of fluorine and 

oxygen are 2S22P5 and 2S22P4, respectively, indicating that fluorine atoms 

promote one free electron/ molecule when it sits in place of oxygen. As the 

ionic radius of F (1.36 Å) is slightly lower than that of O-2 (1.40 Å), so the 

fluorine atoms are more electronegative than the oxygen atoms, therefore the 

fluorine substitutes the oxygen sites more easily [166]. This phenomenon 

leads to higher carrier concentration, which is shown in Figure ‎8.1:4. Similar 

trends were observed in [39]. 
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Increasing the fluorine content in the film beyond 5.3 at.% resulted in a 

degradation of the electrical properties. This is probably attributed to the 

solubility limit of fluorine into the tin oxide lattice [11], and probably the cause 

for the reduction in the grain size, as observed in Table ‎8.1:2 [38]. The excess 

fluorine atoms do not occupy the correct position within the lattice, which 

leads to disorder of the structure, grain boundary scattering and therefore to a 

decrease in the free carrier concentration (Nd) and mobility and an increase in 

the resistivity (7.04×1019 cm-3, 10.15 cm2/Vs and 1.31×10-1 Ω·cm,‎

respectively). The effect of the fluorine content on the electrical properties of 

FTO was investigated by Elangovan et al, who reported the degradation in the 

electrical properties is probably due to the solubility limit of fluorine content in 

the thin film [11]. Kim et al found that a saturation carrier concentration (Nd) is 

achieved due to the formation of Sn-F complexes in the grain boundaries 

when using higher than 10 wt.% of SnF2 in target [9]. The electrical results 

depicted in this study indicate that the mobility and the carrier concentration 

(Nd) were limited by the solubility limit of fluorine content in the film. This 

behaviour is also observed by Elangovan et. al [11]. 
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(b) 

 

 (c) 

Figure ‎8.1:4  Variation of (a) resistivity in logarithmic scale, (b) mobility and (c) 

absolute carrier concentration of FTO thin films as a function of fluorine 

atomic content. 
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The optical transmittance and the direct band-gap properties of SnO2:F films 
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was recorded three times and an average taken. The optical transmittance (T) 

was averaged over the wavelength range of 300-900 nm, and the absorption 

coefficient‎(α)‎was‎determined by using Eq. 8.1:2 

                             Eq. ‎8.1:2 

 

Where, t, is the thickness of the film. The absorption refers to the excitation of 

an electron from the valence band to the conduction band. The absorption 

coefficient was then used to estimate the direct optical energy band-gap (Eg) 

using the relation shown in Eq 8.1:3.  

            
       Eq. ‎8.1:3 

 

Where, h, is‎Planck’s‎constant,‎ , is the frequency of the incident photon, C, is 

a constant for direct transition and,  , is the absorption coefficient. The direct 

optical energy band-gap (Eg) was estimated by extrapolating the linear portion 

of the curve (   )2
 against (  ) for direct allowed transition to the point where 

    = 0 [25].  

The optical transmission spectra recorded in the wavelength range of 300 to 

900 nm are presented in Figure ‎8.1:5. High transparency in the visible range 

(82%<Tvis<85%) was observed, in accordance with the requirements for TCO 

applications (80%) [167]. This can be associated with good structural 

homogeneity. It is evident from the Figure ‎8.1:5; that the average visible 

transmittance is not influenced much for different doping levels of fluorine; 

similar behaviour was also observed in [166] and [168]. However, a slight 

decrease in the transmission is probably due to the decrease in the oxygen 
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vacancies as perceived in the EDS data shown in Table ‎8.1:1. The insert in 

Figure ‎8.1:5 is for the convenience of the reader to give a quick average view 

of the transmission and the direct optical band-gap against the change in the 

fluorine concentration in the thin film. The sharp decrease in the transmission 

in the UV range of the spectrum is related to the light absorption edge [169]. It 

is also possible to notice that both the un-doped and the doped films showed 

interference fringe patterns suggesting the thickness of the coating being 

greater than 100 nm. 

The direct band-gap for un-doped tin oxide was estimated to be 3.70 eV, 

which increased slightly to a value of 3.77 eV at a fluorine content of 5.4 at.% 

in the film as observed in Figure ‎8.1:6. The direct band-gap values obtained in 

this work are slightly higher than the direct band-gap values of 3.17-3.45 eV 

reported in [46] and slightly lower than the band-gap values of 4.0-4.25 eV 

reported in [44]. This variation is probably attributed to the different 

concentration of fluorine used in the film, the thickness variation and the 

experimental variables such as working pressure and deposition temperature.  

Generally, the band-gap energy for doped metal oxides films is higher than 

that of the un-doped type. This is because the energy gap between the 

valence band and the lowest empty state in the conduction band is found to 

increase due to the filling of low lying energy levels in the conduction that is 

caused by the increase in the carrier concentration (Burstein-Moss effect) 

[167]. The shift in the band-gap can also be related to the variation in the 

mean crystallite size, the internal stress or due to the free carrier 

concentration [170].  
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Figure ‎8.1:5. The optical transmittance of FTO thin films as a function of 

fluorine atomic content. The insert shows the variation in optical band-gap and 

the‎average‎transmittance‎across‎the‎300≤λ≤900‎nm‎with change in fluorine 

concentration in thin film. 

 

Figure ‎8.1:6. The direct allowed transition of FTO thin films as a function of 

fluorine atomic content. 

 

0

50

100

300 400 500 600 700 800 900

T
ra

n
s
m

it
ta

n
c
e

 (
%

)

Wavelength (nm)

SnO2 SnO2:F1 SnF2:F2 SnO2:F3 SnO2:F4

70

75

80

85

90

3.65

3.67

3.69

3.71

3.73

3.75

3.77

3.79

0 2 4 6 8

A
v

e
ra

g
e

 T
ra

n
s
m

it
ta

n
c
e

 (
%

)

O
p

ti
c
a

l 
b

a
n

d
-g

a
p

 (
e

V
)

F at.% in thin film (%)

0

0.5

1

1.5

2

2.5

3

2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

(α
h
ν
)2

( 
1

0
1

0
 e

V
2
.c

m
-2

)

hν(eV)

SnO2

SnO2:F1

SnO2:F2

SnO2:F3

SnO2:F4



 

192 | P a g e  

8.1.6  Morphological properties of SnO2:F thin films 

Figure ‎8.1:7 (a) and (b) shows the surface area and the cross-section SEM 

morphologies of the SnO2:F2 film, respectively. The film has a compact and 

dense homogenous surface characterised by small grains. The small grains 

observed in Figure ‎8.1:7 (a) are probably a result of the low deposition 

temperature. Consonni et al. studied the effect of deposition temperature and 

observed an increase in the mean grain size from 60-127 nm as the growth 

temperature raised from 360-460 °C.  

The thickness of the film was measured to be about 410 nm, which is in good 

agreement with the Dektak profilometer measurements. The cross-sectional 

images show that the thin film has a dense columnar grained structure normal 

to the surface of the substrate.  

 

(a) 
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(b) 

Figure ‎8.1:7. (a) Surface topography, (b) Cross-sectional morphologies of 

SnO2:F2 thin film. 

 

8.1.7  Conclusions 

Transparent conductive oxide SnO2:F thin films have been deposited on glass 

substrates by the pulsed DC magnetron sputtering technique in a Ar/O2 

atmosphere using loosely packed blended powder targets. The thin films were 

grown at a deposition rate of 27 nm·min-1 and a deposition temperature below 

170 °C. It was determined that 5.3 at.% of fluorine incorporated into the film 

gave the best electrical behaviour. In addition, the XRD structural analysis 

showed that a the crystallinity of the SnO2 samples were improved with the 

fluorine incorporation and the intensity of the (200) plane ameliorated with the 

increase in the fluorine concentration up to 5.3 at.% found in the thin film. The 

average optical transmittance achieved for this coating was 83% across a 

range‎of‎300≤‎λ‎≤900‎nm.‎The‎detailed‎analysis‎of‎the‎electrical‎properties‎of‎
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the thin film as a function of the fluorine doping level revealed that, a resistivity 

as low as 6.71×10-3 Ω·cm‎was‎obtained‎with‎a‎fluorine‎content‎of‎5.3 at.%.  

This work has shown the ability to grow transparent conductive oxide SnO2:F 

thin films using a cost effective (no post annealing of samples, and high 

deposition rate) and environmentally friendly method (no fluorine gas is used 

and no toxic affluent is produced). This technique is of great advantage for 

studying the properties of multicomponent materials and identifying optimum 

compositions. 

Future work will include evaluating the long-term performance of the 

developed TCO coatings, including the susceptibility to delamination through 

electrochemical corrosion and accelerated weather trials. The effect of 

thickness variation to the optical and the electrical performance of the TCO 

will also be investigated.  

8.2  Antimony doped tin oxide 

8.2.1  Introduction  

Antimony doped tin oxide (ATO) thin films can be deposited using a variety of 

deposition techniques, such as vapour deposition methods, including 

magnetron sputtering [171], pulsed laser deposition [172] molecular beam 

epitaxy [173]. The deposition conditions such as the working gas pressure, 

target size, system geometry and the deposition power, play an important role 

on the quality of the ATO. The effect of the deposition power can certainly 

influence the (Sn+Sb)/O ratio of the developed thin films by changing the 

deposition rate and the deposition ratio of the sputtered atoms/ reactive 

oxygen. Therefore, this is a good opportunity to the study the effect of 
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deposition power on the properties of the developed thin films including the 

electrical, optical and structural properties of the thin films. 

During the deposition process, the discharge current and the discharge power 

were recorded and illustrated in Figure ‎8.2:1. It can be observed that the 

discharge current increased linearly with the increase in the discharge power, 

this suggests that the energy and the number of atoms arriving at the 

substrate increase due to the increase in the discharge power, similar trends 

were observed during the deposition of aluminium zinc oxide via magnetron 

sputtering [174]. The increase in the energy can be used to promote the 

sputtered atoms to grow in a particular direction or order. Also, the increase in 

the number of the sputtered atoms, at a fixed Ar:O2 ratio during the deposition 

can lead to the change in the stoichiometry of the thin films.  

 

Figure ‎8.2:1 Discharge of power–current curve for a working pressure 0.5 Pa 

for a ATO powder target. 
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8.2.2  Electrical properties of antimony doped tin oxide  

A Hall probe measurement system was used to measure the electrical 

characteristics of the as-deposited (no post annealing) antimony doped tin 

oxide (Sb2O5:SnO2, ATO) thin films, using only one target composition of 

10:90 wt.% Sb2O5:SnO2. All the electrical measurements were based on a 

coating thickness of 400 nm, which was measured using the surface 

profilometer.  

During the ATO trial experiments, it was found that the target power was the 

major influence on the transparency and the electrical resistivity of the thin 

films, so it was chosen to be the prime factor during this investigation. The 

effect of the discharge power was varied from 100 W to 400 W using a 

constant chamber pressure of 0.5 Pa, and a constant deposition period of 90 

minutes. Varying the target discharge power also varied the deposition rate, 

therefore varying the thickness of the thin films. The film thickness has a 

major influence on the electrical resistivity and the optical transparency of thin 

films, and can affect the surface morphology and the crystallinity of the thin 

film [52]. Thus, a careful measure was made to ensure that during each 

experiment, a coating thickness of circa 400 nm was produced (this was 

achieved by varying the deposition run time). 

Figure ‎8.2:2 (a) and (b) outlines the variation of the electrical resistivity and 

the Hall mobility as a function of varying the target discharge power for the 

thin films deposited on a standard microscope glass. The results show that all 

the films are of n-type conductivity. It can be observed from the figure that as 

the target power increased from 100 W to 150 W, the electrical resistivity 
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decreased from 8.71X10-1 to 5.70X10-1 Ω·cm, at the same time, the mobility 

increased from 0.53 to 0.64 cm2/Vs. This can be attributed to the 

enhancement of the crystallinity as the target power was increased.  As the 

target power was increased from 150 W to 300 W, the resistivity decreased 

from 5.70X10-1 to 3.75X10-2 Ωcm, while the mobility increased from 0.64 to 

1.30 cm2/Vs. The improvement in the electrical resistivity and the Hall mobility 

is due to the reduction in the density of the grain boundaries, which are the 

transitional regions between different neighbouring crystallites. This causes 

less carrier scattering to take effect which resulted in the increase in Hall 

mobility, similar trends were observed in [55] and [175]. As the power was 

further increased from 300 W to 400 W, the resistivity increased from 

3.75X10-2 to 9.02X10-2 Ω·cm and the mobility decreased from 1.30 to 0.60 

cm2/Vs. This sudden change in the electrical resistivity and the Hall mobility is 

due to the fact that higher target power causes an increase in the deposition 

rate which therefore can limit the growth of the crystalline grains and can lead 

to strong boundary scattering for carrier which results in the increased 

resistivity [54]. Similar trends were observed by Montero et al [55]. Research 

has shown that antimony doped tin oxide grown by other methods such as DC 

and RF magnetron sputtering [52, 55], were a subject to in situ annealing or 

deposited at very high substrate temperatures which promoted the 

enhancement in the electrical properties of the thin film. 
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(a) 

 

(b) 

 

(c) 
Figure ‎8.2:2. Variation of the electrical (a) resistivity, (b) hall mobility and  

(c) carrier concentration of SnO2:Sb thin films with varying target power. 
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8.2.3  Optical properties of ATO thin films 

Figure ‎8.2:3 presents the optical transmittance in the visible wavelength range 

of the ATO thin films deposited on a microscope glass substrate as a function 

of target discharge power. The average transmittance of the ATO film 

deposited at a target discharge power of 100 W was 67%. Increasing the 

target discharge power from 100 W to 250 W reduced the optical 

transmittance to 59%. However, at a target discharge power of 300 W the 

average optical transmittance improved to 70%. By increasing the target 

sputtering power to 400 W, the average optical transmittance reduced to 60%. 

The improvement in the average optical transmittance at a target sputtering 

power of 300 W is closely related to the film structure. Moreover, the surface 

morphology also affects the thin films transmittance, as the bigger the grain 

size, the less light is scattered due to the decrease in the grain boundaries. 

The improvement in the crystalline structure can also be observed from the 

XRD data shown in Figure ‎8.2:4. 

 

Figure ‎8.2:3 Optical transmittance of ATO thin films as a function of the 

discharge power. 
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8.2.4  Structural properties of ATO thin films  

In order to understand the effect of the discharge sputtering power on the 

crystal structure of the ATO thin films, X-ray diffraction analyse were done 

over the range 20° to 70° 2. The XRD patterns for the ATO thin films as a 

function of the discharge power is shown in Figure ‎8.2:4. It is shown that, 

during a low discharge sputtering power of 100 W, the grown films have been 

shown to have amorphous structures. This may be attributed to the sputtered 

atoms not having enough energy to form a crystallise structure, therefore the 

random structure is created which is of an amorphous nature. It is observed 

that the increase in the discharge sputtering power to 300 W, resulted in a 

sharp increase in the (110) peak, and the weak trace of the (101), (200), 

(211), (220), (310) and (301). Increasing the discharge power to 400 W 

resulted in the noticeable decrease in the intensity of the main (101) peak 

which may be attributed to the increase in the deposition rate, a similar trend 

was observed by Montero et al. [55].The progressive increase in the (110) 

peak can be related with the increase in the concentration of the charge 

carriers [176]. 
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Figure ‎8.2:4 The XRD pattern for ATO thin films as function of discharge 
power. 

 

The mean crystalline size of the ATO thin films is shown in Figure ‎8.1:3. The 

average grain size for the (110) main peak was measured using the Scherrer 

formula. It was not possible to measure the crystallite size for the 100 W XRD 

trace as the (110) had no significance. Figure ‎8.1:3 shows that the average 

grain size increases from 5 nm to 15 nm with the increase in the discharge 

sputtering power from 200 to 300 W. The increase promotes the decrease in 

grain boundaries and, therefore the decrease in the number of scattering 

centres for carriers, giving an enhancement in the electrical resistivity the 

enhancement in the grain size subject to the increase in the discharge 

sputtering power maybe related to the generation of lattice imperfections as 

the results of increasing the deposition rate. The increase in the deposition 

rate can promote the generation of donor carriers in the thin film and therefore 

enhancing the active growth of the crystalline grains. 
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Therefore, it is concluded that at the appropriate discharge sputtering power 

of 300 W, the electrical properties of the ATO thin films were enhanced.  

However, excessive supply of the discharge sputtering power over 300 W 

caused the degradation in the (110) preferred orientation, resulting in the 

decrease in the grain size as shown below. The decrease in the grain size 

increases the grain boundary scattering, therefore decreasing the Hall mobility 

and the carrier concentration of the ATO thin films, which causes the poor 

electrical properties.  

 

Figure ‎8.2:5. Average grain size for the ATO thin films as a function of the 

discharge sputtering power. 
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The optimisation process of antimony doped tin oxide (Sb2O5:SnO2, ATO) at a 

target atomic ratio of 10:90 at.%, Sb2O5:SnO2 was performed by varying the 
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electrical and optical properties of the ATO thin films. The crystallinity of the 

0

2

4

6

8

10

12

14

16

18

150 200 250 300 350 400 450

G
ra

in
 S

iz
e

 (n
m

)

Discharge Sputtering Power (W)



 

203 | P a g e  

thin films improved with increasing sputtering discharge power up to 300 W, 

this is supported by the XRD patterns. Moreover, the increase in the 

sputtering power improved the structural properties of the thin film which led 

to the increase in the Hall mobility by increasing the crystallinity of the thin 

film. Consequently, the electrical resistivity was reduced due to the decrease 

in carrier scattering attributed to the improved crystallinity of the coating. 

Therefore, at a sputtering power of 300 W, ATO thin film was deposited onto a 

microscope glass substrate with an electrical resistivity of 3.75 × 10-2 Ω∙cm 

and an average of 70% transmission in the visible range of the spectrum was 

achieved.  

 

8.3  Copper aluminium oxide  

8.3.1  Introduction  

In general, two general conditions define a metal oxide TCOs; (1) to have a 

band-gap higher than 3 eV to be able to transmit 80% of light in the visible 

spectrum, (2) capability to degenerate doping in order to embrace carrier 

concentration higher than 1020 cm-3 [56].  

Previous research has been conducted by Alkoy et al. [51] on CuAlO2 thin 

films using pulsed DC magnetron sputtering power using oxide powder 

targets, however no previous work has been reported on using powder form 

metal base targets. This research used Cu and Al metal based powder target 

at different composition ratios and deployed excessive oxygen flow rates to 

the plasma in an attempt to oxidise the thin films and studied the optical 
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properties of the CAO thin films. In addition, the effect of the discharge 

sputtering power and the pulse frequency was also report.  

8.3.2  Elemental analysis of the CAO thin films 

Compositional analysis was carried out on Cu-Al-O thin films that were 

produced using three powder targets that contained different composition 

ratios of Cu:Al. The deposition conditions of each trial run were kept identical 

to minimise the effect of experimental errors (as ascribed in section 7.3.3). It 

can observed from Table ‎8.3:1 that the composition analyses of the Cu-to-Al 

atomic ratio increased from 0.5 to 1.2 with the increase in the Cu atomic 

content in the powder target. In addition, the Cu, Al and O elements were 

successfully incorporated in the lattice structure of the deposited thin films, 

indicating the formation of the Cu-Al-O structure based thin films.  

Table ‎8.3:1 Composition analysis of CAO thin films produced using different 

powder targets. 

Sample ID Cu (at.%) Al (at.%) O (at.%) Cu/Al ratio 

CAO2575 10.5 20.8 68.7 0.5 

CAO5050 15.6 12.5 71.9 1.2 

CAO7525 31.6 15.52 52.8 2.0 

 

The effect of the discharge sputter power on the compositional ratio of the Cu-

Al-O thin films was carried out using the CA7525 powder target.  

An Al metal base powder targets are well known to oxidise to form Al2O3 

under the presence of oxygen partial pressures and that the oxide requires a 

lower formation energy in comparison to that of CuO2 [66]. And since Al is 
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less dense than Cu, it is required to use more content of the Al material during 

the making of the target, therefore the surface area of Al is greater than that of 

Cu. The use of a high content of oxygen (oxygen flow rate of 30 sccm) during 

deposition led to the formation of an oxide layer on top of the Cu:Al powder 

target surface, which resulted in a decrease of the sputter yield. The formation 

of the oxide layer, led to the production of two types of sputtered species, the 

oxides and the metals. Oxides targets have lower sputter yields in comparison 

to metal targets, as the former have stronger chemical bonds [177].  

Table ‎8.3:2 Composition of Cu-Al-O thin film deposited using various 

discharge sputtering power. 

Sample ID Cu (at.%) Al (at.%) O (at.%) Cu/Al ratio 

CAO 250 W 31.5 15.9 52.6 1.9 

CAO 350 W 31.5 15.5 52.8 2.0 

 

The effect on the Cu:Al in the thin film as a function of the various pulsed 

frequency at a discharge power of 350 W is shown in Figure ‎8.3:1 and the 

results are summarised in Table ‎8.3:3. It can be observed that sputtering in 

DC mode produced a thin film with Cu-to-Al ratio of 1.9 and increasing further 

to 2.3 at pulsed frequency of 350 kHz. The effect of varying the pulsed 

frequency on the composition of the deposited thin film is very little and the 

observed influence on Cu-to-Al atomic ratio indicated that the pulsed 

frequency process parameter does not alter the affects the sputter yield of Cu-

to-Al ratio. 
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Figure ‎8.3:1 The effect of pulse frequency on the atomic ratio of a CuAlO2 thin 

films. 

Table ‎8.3:3 Effect of pulse frequency on the composition ratio of CuAlO2 thin 

films sputtered at 350 W. 

 

 

 

 

8.3.3  Deposition growth rate 

Experimental parameters can greatly affect the deposition rate of powder 
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frequency and flow rate of the reactive gas. The deposition rate under 250 W 

and 350 W of discharge sputter power and varying pulse frequencies of DC 

100 225 and 350 kHz are shown in Figure ‎8.3:2. It was observed that using a 

high discharge sputter power of 350 W produced the highest deposition rate. 
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Ar ions in the plasma, therefore increasing the bombardment on the powder 

target per second [178]. 

 

Figure ‎8.3:2 Deposition rate of Cu-Al-O thin film as a function of various pulse 

frequency and discharge sputter powers. 

The effect of the oxygen flow rate on the film thickness was investigated out 

using experimental conditions shown in Table ‎8.3:4. The variation of film 

thickness as a function of oxygen flow rate was then plotted as shown in 

Figure ‎8.3:3. The film thickness decreased with an increase in the oxygen 

flow rate fed into the chamber. This could be due to the poisoning of the 

powder metal target occurring at higher oxygen flow rates (also evident from 

the hysteresis experiments that showed the poisoning of the target at 8 sccm 

of oxygen flow). In addition, the target contained Al, therefore the formation of 

the Al2O3 on the target surface occurred during the sputtering process, 

therefore causing an effect on the deposition rate.  
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Table ‎8.3:4 Dependence of CuAlO2 thickness on the O2 flow rate.  

Powder 
target 

ID 

O2 Flow 
rate 

(sccm) 

Discharge 
power  
(W) 

Pulse 
frequency 

(kHz) 

Duty 
cycle 
(%) 

Deposition 
period 
(min) 

Film 
thickness 

(nm) 

CA7525 0 350 100 55 60 1300 

CA7525 10 350 100 55 60 450 

CA7525 20 350 100 55 60 432 

CA7525 30 350 100 55 60 380 

  

 

Figure ‎8.3:3 Effect of the oxygen flow rate on the film thickness of the CuAlO2 
coatings. 
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and 350 W and varying pulsed frequencies of DC, 100 kHz, 225 kHz and 350 

kHz.  

It was observed from Figure ‎8.3:4 (a) that sputtering at 250 W using DC mode 

produced an amorphous structure film. A similar amorphous structure was 

observed by Reddy et. al when using copper aluminium alloy metal target and 

sputtered in Ar/O2 environment using low substrate temperature and DC 

magnetron sputtering mode [68]. However, as the magnetron discharge was 

pulsed, and set to 100 kHz, the film structure became crystalline CuAlO2 with 

a peak at diffraction 2θ angle of 37.5◦, corresponding to the (012) plane. The 

results are consistent with the standard JCPDS data [179]. It is important to 

note that no other peaks corresponding to the Cu or the Al metal base target 

formed in the as-deposited CAO thin films, suggesting single-phase films. 

This indicates the ability to produce coatings of CAO with no residual metal 

remainder in the film. Similar results were reported by Alkoy et al. who 

deposited CAO coatings in an argon only atmosphere using copper oxide and 

aluminium oxide powder targets, and managed to achieve a delafossite 

structure with a peak at 37.5◦ corresponding to the (012) plane [51].  

As the pulse frequency was changed to 225 kHz and 350 kHz, the intensity of 

the (012) peak was reduced considerably. This maybe simply due to lower 

thickness achieved, 630 nm at 225 kHz and 620 nm at 350 kHz, as can be 

observed in Table ‎7.3:1. 

Figure ‎8.3:4 (b) shows the XRD patterns of the CAO thin films deposited 

using a sputter discharge power of 350 W and varying pulse frequencies of 

DC, 100 kHz, 225 kHz and 350 kHz. It can be observed that 350 W improved 
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the crystallinity of the coatings as the increase in the power effectively 

increased the deposition rate and raised the deposition temperature. It is 

important to note that during sputtering at 100 kHz, the intensity of the (012) 

became more intense and the appearance of the (110) peak in comparison to 

other pulsed frequency parameters. This could be attributed to the fact that 

pulsing at 100 kHz produced an optimum amount of ion to atoms ratio during 

sputtering, to produce a crystalline film. 

To understand the effect of the discharge sputter power onto the crystallinity 

of the thin films, the crystallite size of the films was calculated. The analysis of 

crystallite is performed by measuring the broadening of the (012) diffraction 

peak. The crystallite size (D) of the as-deposited CAO thin films are calculated 

using the Scherrer equation (as described earlier) and are presented on Table 

‎8.3:5. For the films deposited at a discharge power of 250 W, it was not 

possible to measure the crystallite as the peaks were very small apart from 

the film deposited at 100 kHz, which was approximately of 13.4 nm. At a 

discharge power of 350 W, the crystallite size was approximately of 13-14 nm. 

It was not possible to report a great improvement in the crystallinity of the 

deposited thin film. This suggests that the increase in the discharge power 

from 250-350 W produced a noticeable difference in the (012) peak of the 

film. It is important to note that due to the nature of the powder target, the 

discharge power was limited to 350 W, as increasing the power further 

resulted in the melting of the aluminium powder particles in the target. Hsieh 

et. al [66], observed an increase in the grain size from 50-150 nm along with 

the RF power at 300 W; however, it is important to note that the dimension of 

the magnetron was 0.1 cm in thickness and 1 cm in diameter as published in 



 

211 | P a g e  

[177], which is considerably smaller in comparison to the size of the 

magnetron used in during this research, 0.2 cm thickness and 18 cm in 

diameter.  

The EDX data of the thin film deposited at 100 kHz and discharge power of 

350 W provided an argument that the Cu-to-Al ratio was found to be 2-to-1 

with respect to the oxygen concentration that was introduced during the 

deposition. Such composition ratio can produce different phase compounds 

such as Cu2O with a diffraction peak (111) corresponding to diffraction angle 

of 34.5° and CuO with a diffraction peak (    ) corresponding to a diffraction 

angle of 36.5°. In the literature, it is suggested during the oxidation of Cu, 

initially Cu2O is formed during low deposition temperature, and that CuO 

starts forming with deposition temperatures above 300°C and with increasing 

oxidisation [180]. The deposition temperature of pulsed DC magnetron 

sputtering using powder target was measured in previous work and it was 

shown to be 170°C [181], and it is therefore assumed that only Cu2O can be a 

possible phase in the as-deposited Cu-Al-O structure, but in weak intensities, 

or even existing in an amorphous structure. Hence, it was not possible to 

detect using the XRD diffraction technique. It is therefore possible to conclude 

that the as-deposited CAO thin film deposited by the pulsed DC magnetron 

sputtering technique can be composed of possibly two types of structures, an 

amorphous and nanocrystalline structure. 
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(a) 

 

(b) 

Figure ‎8.3:4 XRD pattern of the CAO thin films deposited using various 

discharge power (a) 250 W and (b) 350 W using various pulse frequency of 

DC, 100, 225 and 350 kHz. 
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Table ‎8.3:5 The grain size of the as-deposited CAO thin films. 

Target power (W) Pulse frequency (kHz) Grain size (nm) 

350 

DC 13.4 

100 14 

225 13.1 

350 13.3 

250 

DC - 

100 13.4 

225 - 

350 - 

 

8.3.5  Electrical properties of CAO thin films 

The electrical resistivity of the as-deposited CAO thin films prepared with 

different Cu-to-Al ratios is shown in Figure ‎8.3:5. The resistivity of the 0.5   

Cu-to-Al coating was 4.20 MΩ∙cm. The resistivity was further optimised with 

the increase in the Cu-to-Al ratio 2.0 down to 4.35 Ω∙cm. Increase the copper 

atomic content from 10.5 at.% to 31.6 at.% in the coating lattice promotes for 

more free carriers and therefore improved the electrical resistivity of the 

coating by six orders of magnitude. The hole carrier concentration of the 0.5 

and the 2.0 Cu-to-Al ratios were 6.44×1011 cm-3 and 4.19×1017 cm-3, 

respectively. The corresponding hole mobilities were 1.35 cm2/Vs to 3.42 

cm2/Vs. It can be observed that with high content of Al incorporated into the 

thin film, it effectively substitutes the Cu ions and distorts the lattice and 

consumes some of the native holes [177]. A similar effect was observed by 

Ong et al. who measured an electrical resistivity of 4.8 MΩ∙cm at Al content 

higher than 6.8 at.% in the film. The high resistivity was attributed to the 

formation of the Al2O3 phase in the lattice.  
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Figure ‎8.3:5 Effect of Cu-to-Al ratio on the electrical resistivity of the CAO thin 
film. 

The effect of the pulse frequency and the discharge power on the electrical 

resistivity (ρ), Hall mobility (μ) and hole carrier concentration (n) are shown in 

Figure ‎8.3:6.  It can be observed from Figure ‎8.3:6 (a) that the resistivity at 

250 and 350 W using DC pulse frequency were 50 and 30 Ω·cm respectively. 

The drop in the resistivity could possibly be related to the difference in the 

deposition rate between the sputter discharges powers (as observed in Figure 

‎8.3:2), therefore promoting for thicker coatings. In addition, sputtering at 

higher power promotes for higher energetic atoms and therefore greater 

thermal energised atoms to impinge onto the substrate. The electrical 

resistivity decreased to a lowest value of 17.6 Ω·cm and‎ 4.35‎ Ω·cm at 
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resistivity. The low electrical resistivity‎of‎4.35‎Ω·cm obtained was very closely 

matched to the of Alkoy et. al who reported resistivities in the range of 5-10 

Ω·cm using pulsed DC magnetron sputtering with oxide base powder targets. 

The achieved value of 4.45‎Ω·cm was lower than the 1.9 kΩ·cm for deposition 

by RF magnetron sputtering and the 10.5‎ Ω·cm reported for pulsed laser 

deposition [62] and the 12‎ Ω·cm obtained for DC sputtered films [59]. 

However Wang‎ et.‎ al‎ reported‎ the‎ lowest‎ resistivity‎ of‎ 0.14‎ Ω·cm using 

plasma enhanced chemical vapour deposition [64]. 

The Hall mobility and the carrier concentration of the as-deposited CAO thin 

films were measured against the varying discharge sputter power and the 

pulse frequency, the results are shown in Figure ‎8.3:6 (b-c). The positive 

value obtained for the carrier concentration indicates the majority of the 

carriers in the thin film are of positive charge and therefore it was determined 

that the required p-type characteristic was achieved.  The results showed that 

using a discharge power of 350 W and a pulse frequency of 100 kHz 

produced a Hall mobility of 3.42 cm2/Vs in comparison to 1.93 cm2/Vs 

achieved during a discharge power of 250 W and pulse frequency of 100 kHz. 

It can be clearly observed that increasing the discharge power from 250 to 

350 W influenced the Hall mobility and the carrier concentration of the as-

deposited CuAlO2 thin films. However it was not possible to increase the 

power any further. Other literature suggests that the improvement in the Hall 

mobility and the carrier concentration can be attributed to the improvement in 

the grain size and hence the decrease in the grain boundaries and minimising 

the trapping/scattering of the charge carriers at the grain boundaries [68, 182]. 

However, in this research, the crystallite size did not vary along the (012) 
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diffraction peak with respect to the change in the discharge power or the pulse 

frequency. This may be attributed to the weak diffraction signal of the 

immature nanocrystalline CAO thin film. Hence, the need to use further 

analytical techniques such RBS (Rutherford backscattering spectroscopy) and 

XPS (X-ray photoelectron spectroscopy) to determine the composition 

structure and valence of the elements, respectively. This will give a clearer 

understanding of the influence of the oxygen valency on the conduction 

mechanism of the CAO coatings and the effect of the excess oxygen 

vacancies on the conduction mechanism of the as-deposited thin films. Lan 

et. al reported that the electrical properties of the CAO thin films is dependent 

on the oxygen concentration and reported an enhancement in the electrical 

resistivity by an order of one magnitude to a minimum value of 217 Ω·cm at a 

partial pressure of 0.4 Pa of oxygen [183].  
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(b) 

 

(c) 

Figure ‎8.3:6 Electrical properties (a) resistivity, (b) Hall mobility and (c) carrier 

concentration of CAO thin films using various pulse frequency and discharge 

sputtering power. 
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The effect of the oxygen flow rate on the metal based copper aluminium 

powder target with atomic composition of 75at.%Cu:25at.%Al were 

investigated by depositing the films under different oxygen concentration of, 2 

sccm, 4 sccm, 20 sccm 30 sccm. The electrical resistivity of the thin films 

were measured. The base pressure was kept at 0.6 pa with constant argon 

flow of 13 sccm. The pulse frequency was kept at 100 kHz with duty-cycle 55 

% and a discharge power of 350 W.  

The films deposited at oxygen flows of 2 to 4 sccm showed a very high 

electrical resistivity of 39 KΩ·cm and 10 KΩ·cm, respectively. Increasing the 

oxygen flow from 6 to 10 sccm decreased the electrical resistivity from 241 

Ω·cm to 20 Ω·cm respectively. The electrical resistivity decreased further from 

18.5 Ω·cm to 4.35 Ω·cm as the oxygen flow was increased from 12-30 sccm, 

respectively. The maximum oxygen flow rate of the mass flow controller was 

reached and it was not possible to increase the oxygen flow any further. The 

results shown in Figure ‎8.3:7 indicate that the lowest electrical were achieved 

with oxygen flow rate of 30 sccm, indicating that the electrical resistivity of the 

as-deposited thin film is sensitive to the oxygen concentration.  

 

Figure ‎8.3:7 Effect of the oxygen flow rate on the CAO thin films. 
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8.3.6  Optical properties of CAO thin films 

The optical transmissions of the as-deposited CAO were recorded for 300 nm 

to 900 nm wavelength range, taking a similar glass substrate as reference, 

and hence the spectrum gave transmittance of the films only. The optical 

transmittance of the samples sputtered using 250 W and 350 W at varying 

pulse frequencies are shown in Figure ‎8.3:8 (a) and (b) and the average 

Transmittance between 300-900 nm as a function of the varying pulse 

frequency is shown in Figure ‎8.3:8 (c). As can be observed, the transmission 

is found to be very small in the lower wavelength of visible regions, this can 

be attributed to the fact that the films contained high atomic percent of copper 

metal atoms, and metal elements are opaque in the visible region [60].  

The average transmittance was found to decrease from 27.5% to 14 % with 

the increase in the discharge power from 250 W to 350 W. Higher discharge 

power promotes thicker films, therefore degradation in the film transmission 

can be attributed to the difference in film thickness.  

Regardless of the sputter power used, 100 kHz pulse frequency promoted for 

the lowest transmittance of 15.9% and 7.8% for 250 W and 350 W of 

discharge power, respectively. Therefore concluded that deposition conditions 

such as the discharge power and the pulsing frequency plays an important 

role on the deposition thickness of the thin film and effectively on the 

performance of the films.   



 

220 | P a g e  

 

(a) 

 

(b) 

 

0

5

10

15

20

25

30

35

40

45

350 450 550 650 750 850

T
ra

n
s
m

it
ta

n
c
e
 (
%

)

Wavelength (nm)

DC@350W

100kHz@350W

225kHz@350W

350kHz@350W

0

5

10

15

20

25

30

35

40

45

300 400 500 600 700 800 900

T
ra

n
s
m

it
ta

n
c
e
 (
%

)

Wavelength (nm)

DC@250W

100kHz@250W

225kHz@250W

350kHz@250W



 

221 | P a g e  

 

(c) 

Figure ‎8.3:8 Optical transmittance of CAO thin films grown using (a) 350 W 

(b) 250 W sputter discharge power (c) average transmittance across 350-900 

nm at various pulsed frequency and discharge sputter power. 

 

The optical band-gap (Eg) of the CAO films was determined from the 

transmission spectra and calculated using Tauc method described in the 

earlier section. Based on previous reports, the optical band-gap of CAO thin 

films were reported to exhibit a direct band-gap, in the range of 3.4-3.7 eV 

and located the indirect band-gap in the range of 1.65-2.1 eV [183-185]. All 

the calculations were based on direct transition, for this, the band-gap was 

calculated from the spectra of (αhv)2 Vs hv plot by extrapolating the linear 

portion of the curve to the, hv, axis, as shown in Figure ‎8.3:9. The results of 

this study were summarised in Table ‎8.3:6. The highest optical band-gap 

achieved was 2.2 eV at discharge power of 250 W DC. The achieved optical 

direct band-gap is not within range of other reported values such as that of 

Lan et al. who reported a direct band-gap of 3.47eV and that of Fang et al. 

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 T

ra
n
s
m

it
ta

n
c
e
 (
%

)

Frequency (kHz)

Transmittance@ 250W

Transmittance@350W



 

222 | P a g e  

who reported a direct band-gap of 3.5 eV and of yin et al. who reported band-

gap of 3.26 eV [158, 183, 185]. This disparity could be due to the different 

growth conditions and to post deposition treatments. Also, the nano sized 

particles (average of 13 nm particle size) achieved during this study are much 

lower than that reported by other techniques such as 50 nm reported by 

Reddy [68] et al. and 33 nm reported by Ruei et al. [158]. Therefore, the 

increase in the scattering of the incident photon could be a factor in narrowing 

the absorption edge and therefore reducing the optical direct band-gap.  

Another useful technique in determining the optical band-gap of 

semiconductor is the use of photoluminescence technique. When a valence 

electron is given the right amount of energy to overcome the electrostatic 

potential, the valence electrons of a semiconductor material transit from the 

valence band (ground state) to the conduction band (excited state) where the 

electrons are unstable. The electrons then transit back to the ground state 

and emit a photon. By measuring the wavelength of the photon, the band-gap 

can be estimated [158]. In other published work, photoluminescence analysis 

studies showed that the band-gap of the CAO thin film decreased from 3.84-

3.60 eV as the average grain size of the thin film increased from 30-60 nm 

[59]. Alivisatos reported that the absorption edges shifts to higher energy 

(blue-shift) as the particle size was reduced [186]. Another reason that may 

affect the absorption edge is the high content of the Cu metal particles within 

the lattice, therefore absorbing most the photon and causing the reduction in 

the optical direct band-gap. 
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(a) 

 

(b) 

Figure ‎8.3:9 The direct optical band-gap of CAO thin films as a function of 

discharge power at (a) 350 W and (b) 250 W with varying pulse frequencies 
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Table ‎8.3:6 Average optical transmittance and energy band-gap of CAO thin 

films grown using various pulse frequency and discharge sputtering power 

Discharge Power 
(W) 

 

Pulsing 
Frequency 

(kHz) 

Direct 
Band-gap 

(eV) 

Average optical 
Transmittance  
(350-900 nm) 

(%) 

Film 
Thickness 

(nm) 

250 

DC 2.20 27.50 430 

100 2.15 15.90 600 

225 2.05 18.90 415 

350 2.15 24.50 417 

350 

DC 2.15 14.0 580 

100 1.70 7.80 1090 

225 2.10 10.65 633 

350 2.0 12.90 620 

 

8.3.7  Conclusion  

CAO thin films were successfully deposited on glass substrate using loosely 

packed Cu and Al metal base powder targets deposited by pulsed DC 

magnetron sputtering. The influence of pulsing frequency and discharge 

sputter power and oxygen flow rate were demonstrated. The best electrical 

properties were achieved using at duty cycle of 55% with pulse frequency of 

100 kHz, discharge power of 350 W and oxygen flow rate of 30 sccm. The 

optimised conditions produced a CAO thin film with diffraction peaks at 2θ 

angles of 37.5◦ and 66.5◦, corresponding to the (012) and the (110) planes. A  

p-type semiconductor was grown to 1 um and obtained electrical resistivity of 

4.35 Ω·cm, a hole carrier concentration of 4.6 × 1017 cm-3 and average optical 

transmittance of 7.8% and optical band-gap of 2.1 eV. The low optical 

properties were attributed due to the nano-size particle size and the high 

content of the Cu atoms. The results showed that the developed p-type CAO 



 

225 | P a g e  

can be used as p-type semiconductor layer in the heterojunction configuration 

that will be developed in this research. 

 

8.4  Photovoltaic response of p-n junction 

The photovoltaic response of the developed p-n junction diode was 

characterised by measuring the current-voltage behaviour of the device in 

dark and under illumination. The intensity of the incident light was 100  

mWcm-2 (AM1.5) provided by a halogen lamp that was placed 10 cm directly 

above the device under test (DUT). The J-V characteristics were then 

determined by measuring the current density and the voltage. All 

measurements were taken at room temperature. 

The AM1.5 J-V characteristics curves of the p-n junction diode device were 

collected using an Abet Technologies Ltd. Solar simulator with light power 

density calibrated using a LOT Oriel GaAs reference cell was used. To 

generate the voltage sweep between -1 V to 1 V, a Keithly source meter was 

used, whilst measuring the current densities of the device both in the dark 

setup and under light illumination. A visual basic program was used to 

generate the J-V curve and calculate the parameters of efficiency, short circuit 

current (Isc) density, open circuit voltage (Voc) and the fill factor (FF). The J-V 

characteristics of the device are shown in Figure ‎8.4:2.  

When the light shines at the cell, it resulted in the flow of the drift current due 

to the minority electrons and holes, which flow from the n-FTO to the p-CAO. 

This produced a light-generated current IL. The photovoltage that is generated 

from the IL in the forward bias mode, reduces the‎junction’s potential energy 
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barrier, resulting in a diffusion current that flows in the opposite direction to 

that of the IL. Since the magnitude of the IL is bigger than the forward biased 

diffusion current, the net current flows from the n-side to the p-side (opposite 

to that of the forward biased diode current). Hence, when the light shines on 

the cell, the current flows in the opposite to the direction of the generated 

voltage. Over all, when the light shines onto the cell, the J-V curve shifts 

downwards in the current-voltage axis as shown in Figure ‎8.4:2.   

During forward bias measurements, the holes in the CAO and the electrons in 

the FTO are pushed to the junction, which reduces the thickness of the 

depletion region and lowers the barrier of the p-n junction. When the bias 

voltage is further increased, the depletion region becomes low enough to 

disable‎ the‎zone’s‎electric‎ field‎ from‎ the‎counteracting‎charge‎carrier‎motion‎

across the p-n junction, therefore reducing the electrical resistance [187].  

During the reverse bias, the holes in the CAO and the electrons in the FTO 

are pulled away from the junction, which promotes an increase in the 

depletion region. This consequently raises the voltage barrier, which causes 

high electrical resistance to the flow of the charge carriers [187]. This 

indicates that the absorption of light by the active layer generates carriers, 

which therefore contributes to the photocurrent due to the production of 

excitations and their subsequent dissociation into the free charge carriers at 

the junction barrier indicating the observed rectification. It was expected that 

the photovoltaic characteristics of the CAO and the FTO would originate a 

rectifying behaviour due to the depletion region formed at the interface.  

The characteristic of the p-n junction solar cell diode are determined in terms 

of the open circuit voltage (Voc), the short circuit current density (Isc) and the fill 
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factor (FF). The Voc is defined as the maximum voltage that can be obtained 

from the p-n junction solar cell device when its terminals are left open. It 

corresponds to the amount of forward bias of the p-n junction due to the light-

generated current (IL), and at this voltage, the (IL) becomes equal and 

opposite to the forward bias diffusion current of the p-n junction solar cell 

diode. The short circuit current is defined as the maximum current produced 

by the p-n junction solar cell diode when its terminals are shorted, i.e. when 

the voltage is zero, which is equal to the photon current (Iph). The Voc and Isc 

were determined from the I-V curve to be 0.40 V and 65.3 μA/cm2 

respectively, which give an ideal power (Po) of 26.1 μW/cm2. Other 

photovoltaic devices, such as the Au/ZnO:Co/n-Si produced a maximum Voc 

of 0.195 V and Isc of 2.63 μA. The low performance of the device, was 

attributed due to the short life-time of the photo-carriers due to the number of 

traps [188]. 

The maximum power (Pm) was also calculated from the I-V curve shown in 

Figure ‎8.4:3, by measuring the maximum voltage (Vmax) and the maximum 

current (Imax) which were 0.25 V and 45 μA/cm2
, yielding a maximum power 

density of 11.3 μW/cm2. The fill factor, FF, was then determined which is a 

measure of the power conversion efficiency of the J-V characteristics and it is 

always less than one. It is the ratio of the maximum power (Pm) that can be 

extracted from the device to the ideal power (Po), it is given by the following 

equation [189],  

   
  

  
 

       

         
     Eq. ‎8.4:1 
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The FF was calculated to 43.2%. The most important figure or merit of the p-n 

junction device is the power conversion cell efficiency (η), which is the ratio of 

the power output to the power input and it is defined as [189],  

 

  
  

    
 

          

   
    Eq. ‎8.4:2 

 

The power output is the maximum power point Pm of the cell, and the input 

power is the power of the light spectrum incident upon the p-n junction device 

Prad, which is 100 mW/cm2. The efficiency of the device was calculated to be 

0.045 %. Other p-n junction devices fabricated from Cu2/TiO2 produced 

efficiencies of 0.01% and attributed the low efficiency was attributed to the 

poor contacts and small junction area of their device [190]. The performance 

of the device are summarised in the table below. 

Table ‎8.4:1 Photovoltaic parameters of n-FTO/p-CAO p-n junction solar cell 
device  

Device Performance Value 

Jsc(μA) 65.3  

Voc(V) 0.4  

FF 0.43 

η (%) 0.0452 

Vm(V) 0.25  

Im(μA) 45  

Cell area (cm2) 0.25   

 

The developed photovoltaic performance is similar to that developed by Ocak 

et. al who developed a heterojunction devices by DC-sputtering a n-ZnO  thin 

film onto p-lnP substrate and observed a good rectification with FF = 32 % 
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and η of 0.0754 % and attributed the low efficiency of the device due to the 

high series resistance [191]. The achieved photovoltaic parameters are very 

low for practical applications which could be due to the fundamental reasons 

(limited by the material properties) or due to the technological reason (limited 

by cell processing capabilities). When the energy of incident photons onto the 

device have less energy than the band-gap energy of the device they do not 

contribute to the generation of the hole-electron pair generation. This type of 

loss is referred to as transmission loss and it almost equals to 23% of the 

losses in single junction p-n junction solar cells [192]. If the photon energy is 

higher than the band-gap energy of the device, the excess energy is given off 

as heat to the material, this type of loss is referred to as thermalisation loss, 

which contributes to about 33 % of a single junction solar cells [192].   

Other unavoidable losses in the solar cells that contributes to the loss in the 

conversion efficiency is the parasitic resistance such as the series resistance 

Rs and the shunt resistance Rsh [191]. The equivalent circuit of a real solar cell 

device is shown in Figure ‎8.4:1. The Rsh represents the resistive losses that 

are caused by the current leakage across the diode and at the edge of the 

device. The effect of the impurities and the crystal defects in the depletion 

region of the p-n junction also contributes to the Rsh of the device. 
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Figure ‎8.4:1 The equivalent electrical circuit of a real pn-junction solar cell.  

 

As mentioned in the previous sub-chapter, the electrical resistance of the 

deposited n-FTO was about 150 Ω, which acts as a loss in the current 

efficiency of the device. Meanwhile, the p-CAO films suffered from high 

resistance +100 KΩ and from small grain size (<10nm) which may act as 

carrier traps to the excited electrons, therefore increasing the recombination 

effect and decreasing the flow of the current. The recombination processes 

play an important role in the device performance as the photogenerated 

charges can recombine before reaching the electrodes of the device. The 

recombination effect mainly reduces the Voc of the device, which as 

consequence reduces the FF. Another factor that decreases the efficiency of 

the device is the shunt resistance which arises due to the leakage across the 

p-n junction due to the crystal defects of the material in the junction region 

[192]. 
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Figure ‎8.4:2: Electrical I-V characterisation of the p-n heterojunction device in 

dark and under illumination. 

 

Figure ‎8.4:3 I-V curve and the parameters used to calculate the device 

performance. 
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The fabrication process of the electrical contacts for the n-FTO layer followed 

a number of trials using different device configurations in order to optimise the 

device performance in terms of efficiency and device reproducibility. In terms 

of the device efficiency, the size of the device was constructed to 

accommodate an area of 10 cm2 in order to capture the most amount of sun 

light energy therefore harvesting increasing the efficiency of the device. The 

initial device configuration was set up to use Ag as the electrical contacts for 

the n-FTO, however, the design was not successful because the silver kept 

delaminating from the glass substrate and it was also very difficult to solder 

onto the contact pads. In addition, two separate deposition runs were needed 

to complete the design of the contacts, this added to the production process 

time. Figure ‎8.4:4 outlines the design layout for the bottom contact layer of the 

n-type layer and the stress related problem that were encountered after the 

deposition of the n-FTO onto the Ag contacts.   

                               

(a) 

             

(b) 
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(c) 

Figure ‎8.4:4 n-FTO Ag electrical contacts (a) Mask design (b) complete Ag 

contact design, (c) problems encountered after FTO deposition onto the Ag 

contacts. 

 

8.4.1  Conclusion 

 A p-n junction power generating diode was successfully fabricated using 

pulsed DC magnetron sputtering technique using a combination of un-sintered  

loosely packed powder targets. The main parameters of the n-FTO/p-CAO 

heterojunction illumination such as the short circuit current density (Jsc) 65.3 

μA/cm2, open circuit voltage (Voc) 0.4 V, fill factor (FF) 0.43 and power 

conversion efficiency 0.043% were determined. The device showed that the 

current at a given voltage for the device under illumination is higher than that 

in the dark. This indicates that the absorption of the light by the active layer 

generates carrier contributing photocurrent. This is due to the production of 

excitants and their subsequent dissociation into the free charge carriers at the 

p-n junction interface. Consequently, a successful generation of a photovoltaic 

solar cell have been achieved. Further improvements in the photovoltaic 

properties can be realised by: 
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 Optimising the thickness of the p-type CAO layer  

 Investigation of other material as a substitute to the P-CAO candidates 

 Improving the growth conditions of the device.   
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The aim of this project was to use un-sintered loosely packed powder targets 

as a deposition source for pulsed DC magnetron sputtering to create a p-n 

junction solar generating diode. In retrospect, this thesis can be divided into 

five parts, i), a general historical background of solar cell, ii), theory of 

semiconductors and p-n junctions, iii), a general description of PVD and 

magnetron sputtering, iv) development of n-type and p-type thin films and the 

electrical contacts for the p-n junction device, v) performance of the 

developed thin films and the p-n junction device. 
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OVERALL CONCLUSIONS 
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The field of photovoltaic solar cells technology has witnessed a rapid increase 

of demand as a producer of electricity using very low cost materials and 

technology for large-scale production. This has pushed thin film solar cell 

technology to be the perfect candidate and for the magnetron sputtering 

technique to be the prime technology for the production of thin film solar cells. 

Because no silicon materials are required, relatively high deposition rate can 

be produced and the technology is available for large area production 

volumes.  

The conclusion of this research can be summarised as follow, 

 Pulsed DC magnetron sputtering from blended powder targets has been 

shown to be very viable, highly versatile technique for the production of the 

thin films for the production of the p-n junction solar cell diodes.  

 The deposition system can be used to deposit either single or multi-

component thin films. 

 Provided the powder targets are well mixed, it offers a good control over 

the film composition. 

 The film structure of a deposited thin film depends greatly on the sputtered 

material, the substrate chemistry and morphology, the preparation of the 

substrate surface, the deposition process and the deposition parameters.  

 It is important to create TCO that exhibit a film structure of zone 2 or zone 

3. 

 SEM micro images of the thin films showed the production of dense 

columnar with defect-free thin films at deposition temperatures lower than 

170 °C and at relatively high deposition rate. 
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 Owing to the insulating nature of the powder target, the use of the pulsed 

DC configuration with negative cathode voltage is necessary in order to 

offset the charge build up on the target surface. Using such configuration 

yielded well adhered and densely structured coatings. 

 Using the pulsed DC magnetron sputtering technique in combination with 

powder targets promotes for a cost effective (no post annealing of samples, 

and high deposition rate) and environmentally friendly method (no fluorine 

gas is used and no toxic affluent is produced). This technique is of great 

advantage for studying the properties of multicomponent materials and 

identifying optimum compositions.   

 Using powder targets limits the use of high sputtering power due to the 

thermal instability therefore 500 W is the maximum power that can be used 

in powder sputtering.  

 Substrate-to-target distance was proven to be influential on the electrical 

properties of the as-deposited thin films. 

 Process conditions, including, the base pressure, pulse frequency and 

oxygen flow rate influenced the target voltage of a Ti powder target. Low 

operating pressure results in higher target voltage and the increase in the 

probability of sputtered atom transport from target to substrate surface due 

to the lowering of the gas scattering rate between the background gas and 

the sputtered atom. Also, lower pulsing frequency results in higher 

deposition rate because more of the pulse on time is available to sputter 

the target. 

 To enhance the optical and electrical property of the TCO, a controlled 

concentration of a dopant is added. The addition of the dopant to the 
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semiconductor was to enhance the carrier concentration of the free charge 

carriers. Excess doping concentration can cause serious scattering effect 

which in turn lowers the carrier mobility, effectively increasing the electrical 

resistivity of the coating.  

 Sputtering deposition conditions optimised for FTO yield a deposition rate 

of‎27‎nm∙cm-1 and deposition temperature at 170 °C.   

 The EDS analysis showed a compositional variation between the fluorine 

doped tin oxide (FTO) powder target and the FTO thin film because light 

elements can suffer from scattering issues due to collision with gas atoms, 

which significantly influences the deposition profile. It was determined that 

5.3 at.% of fluorine incorporated into the tin oxide thin film lattice promoted 

an enhancement in the electrical properties from 3.71×10-1 Ω·cm to 

6.71×10-3 Ω·cm. 

 Antimony doped tin oxide (ATO) was also investigated as a possible n-type 

semiconductor and showed relatively high resistivity of 3.75 × 10-2 Ω·cm 

and an average of 70 % transmission in the visible range of the spectrum. 

 The optimisation of the deposition conditions of the Cu:Al metal base 

powder target yielded a single phase CAO p-type thin film with optical 

transparency of 7.8 % and electrical resistivity of 4.35 Ω·cm.  

 The successful production of p-n junction solar generating diode with Voc 

and Isc determined from the I-V curve to be 0.40 V and 65.3 μA/cm2 

respectively, which give an ideal power (Po) of 26.1 μW/cm2. The maximum 

power (Pm) was calculated to be 11.3 μW/cm2 using the Imax 45 μA/cm2 and 

Vmax 0.25 V that were also determined from the I-V curve. The fill factor and 

the power conversion efficiency were calculated to be 0.43 and 0.045 % 
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respectively. The device showed that the current at a given voltage for the 

device under illumination is higher than that in the dark. This indicates that 

the absorption of the light by the active layer generates carrier-contributing 

photocurrent. 
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Further to the work described in this thesis, a number of questions remain and 

more studies are needed in order to further develop the investigated work.  

 To install a better cooling system for the powder target to enable the use of 

a higher deposition power to increase the deposition rate.  

 To develop a better system to blend the loosely powder target to ensure the 

homogenous distribution of the mixed powders target.  

 To install an extra magnetron to the system in order to enable the 

deposition of the n-type and the p-type thin films using the same deposition 

run without the exposure of the coating to air. This will further enhance the 

p-n junction region by extracting any impurities that may have been added 

due to the exposure of the device to air during the change of the powder 

target.  

10 

RECOMMENDATIONS  

FOR FUTURE WORK 
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 The performance of the p-n junction solar cell can be improved by 

optimising the p-type film thickness.  

 To investigate further possible p-type materials, and improving the 

deposition growth conditions of the device.  

 To deposit the p-n junction onto a ceramic tile and study the effect of the 

substrate onto the performance of the device.  
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