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12.1 Introduction  

 

12.11  The challenge of measuring pressure 

 

Monitoring pressure distribution using probes and sensors to ascertain the performance of a 

wide range of products in medical and clothing compression-wear is important for 

understanding the efficacy of products.  

 

The technology challenge is substantial, because surfaces are 3D contoured and deformable.  

Textiles can stretch and recover according to their construction and fibre type, and human 

bodies are covered in skin, below which are various permutations of fat and bone. 

 

Pressure is a term that describes the force applied per unit area. The equation that allows 

quantitative measurement of pressure is as follows: 

 

P = F/A 

          (Equation 1) 

Where P = pressure, F = applied force and A = area affected by the applied force.   

 

When an object (like a part of the human body) is in contact with a stretch fabric (a bandage 

or a compression garment), it experiences a compressive force. According to Equation 1 

above, the average interface pressure is the total force divided by the interface area. However, 

the average pressure is only part of the story.  The human body is not a smooth cylinder, but a 

complex surface of extensible skin under which are soft tissues and rigid bones.  

Furthermore, stretch fabrics are not simple materials to understand, as they have different 

stretch properties in different directions and exhibit the phenomenon of relaxation after 

extension.  Consequently, localized interface pressure measurement is necessary to assess the 

distribution of pressure and to find concentrations of peak pressure.  

 



Pressure measurement technologies are designed to map the location and magnitude of peak 

pressures and to gain information about pressure gradients across interfaces. To handle 

exponential increases in information gathered, computerised systems have been developed to 

analyse the data and provide visual representations of the interface being studied. 

 

For medical products, there are numerous tools used for the measurement of compression.  

For compression hosiery, the Hatra Mk2A+ Hose Pressure Tester and the Salzmann MST 

Professional have been developed.  For other applications, the Kikuhime tester and the 

PicoPress® instruments are widely used.  These are described in Section 2 (with brief 

mentions of other technologies). 

 

At a research level, numerous additional sensors have been used for medical products as well 

as for clothing. The instruments are constantly changing, but emphasis is given in section 3 to 

the use of Tekscan pressure sensors, including the FlexiForceTM interface pressure sensors. 

 

In medical contexts, where compression is applied frequently to limbs (which have 

cylindrical body forms), reference is often made to a variant of Equation 1, known as 

Laplace’s Law: 

P ∝ T/R       (Equation 2) 

Where P (pressure) is directly proportional to T (tension) divided by R (radius). 

 

This equation is the basis for data processing in the British Standard for compression hosiery 

(BS 6612, 1985).  The medical background for compression bandages and stockings is 

summarised in Rotsch et al (2011). 

 

Laplace’s Law means that the smaller the radius (with constant tension), the higher is the 

compression pressure.  Since the human leg is smaller in diameter nearer the ankle and larger 

nearer the knee, if bandages are wrapped at a constant tension, there will be a pressure 

gradient (known as graduated compression) with maximum pressure at the ankle and reduced 

pressure towards the knee.  This graduated compression is considered to accelerate the 

venous flow rate, with medical benefits to the patient.   

 

Equation 2 also suggests a potential problem when the radius is small.  A pressure measuring 

device that has a thickness of a few millimetres has the potential of distorting the radius 

locally, thereby distorting the compression pressure locally.  Questions have been raised 

about the accuracy of some instruments because of this effect. 

 

12.12  Units of Pressure 

 

Pressure is defined as Force divided by Area (with the Laplace Law being a special case of 

this).  The international system (SI units) recognised the pascal as the unit of pressure.  

Physicists have defined one pascal (Pa) as the pressure exerted by a force of one newton 

applied over an area of one square metre.  The SI unit of pressure honours Blaise Pascal as a 

pioneering 17th Century French scientist who made significant contributions relating to 

understanding pressure. 

 

One pascal represents a low pressure, and there are many applications where other units are 

deemed more appropriate, sometimes for historical reasons.  There are numerous metric and 

imperial units that were in common use before SI units were defined, and they continue to be 

employed.  Examples of metric units are kilograms force per square metre (kgf/m2) or grams 



force per square cm (gf/cm2).  An imperial unit of pressure is pounds per square inch (psi).  

Some important additional units of pressure in common use are: torr, mmHg and bar. 

 

The torr is a unit honouring the 17th Century Italian physicist Evangelista Torricelli, who 

invented the mercury barometer and was the first to explain the concept of atmospheric 

pressure.  He found that the column of mercury in a barometer positioned at sea level 

measured 760 mm.  1 torr is the pressure needed to sustain 1mm of mercury (Hg) in a 

barometer, so 1 torr is 1 mmHg.  Most pressure-measuring medical instruments are calibrated 

in mmHg units.  1 torr is approximately 33 pascals. 

 

One bar represents the mean atmospheric pressure at sea level.  It is common to use this unit 

when referring to the pressure of water at depth (with reference to diving, for example).  It is 

now defined as 100 kPa.  Meteorological charts normally use hectopascals (hPa), where 1 

hPa = 100 Pa and 1 bar = 1000 hPa.   

 

 
12.2 Pressure sensors for medical applications 

 

12.21 Compression Hosiery: the Hatra hose pressure tester 

 

During the 1970s, a tool for measuring the properties of compression hosiery was developed 

by Derek Peat at the Hosiery & Allied Trades Research Association (Hatra, Nottingham, 

UK).  The garment is stretched lengthways and widthways in a defined manner in a range of 

sizes.  A measuring head utilises a strain gauge to record the compression provided at any 

position from the ankle upwards.  The head has a rectangular plate (25 mm wide) that is 

pushed onto the stretched hose and the resistive forces are recorded.  The equipment provides 

reproducible test data and was incorporated into British Standard 6612 in 1985.  The Hatra 

tester was also adopted by two other British Standards: BS 7672:1993 and BS 7563:1999.  

The MK2 Hatra was available before 1990, after which the Mk2A was released, allowing 

tailored leg profiles to be easily added. The current model is the Mk2A+, illustrated in Figure 

12.1. 

 

 
FIGURE 12.1 

The Hatra Mk2A+ hose pressure tester. (Courtesy Segar Technology.) 

 



12.22 Compression Hosiery: the Medical Stocking Tester 
 

In 1977, the first Medical Stocking Tester (MST) was launched by Dr. A.A. Bolliger in 

Switzerland.  The concept is similar to the Hatra tester.  The main difference is that the 

compression stocking is placed on a leg-shaped former and a flat measuring device (40 mm 

wide, 0.5 mm thick, linked to an air pump and a pressure transducer) is used to quantify the 

compression forces.  A separate former is needed for each size to be tested.  This tool has also 

been developed over time, and the current model is Mk V.  Alongside this, the MST 

Professional has a variable leg form that is claimed to cover 95% of known leg sizes.  The 

measuring probe has the capability of measuring the compression exerted by stockings worn 

by live subjects, which means it can be used additionally as a research tool.  The instrument 

is illustrated in Figure 12.2 and an example of its use in research for both in vivo and in vitro 

measurements is provided by Liu et al. (2013).   

 

 
FIGURE 12.2 

Salzmann MST Professional. (Courtesy Swisslastic AG.) 

 

12.23 The Kikuhime tester 

 

The sensor used in the Kikuhime instrument is an oval polyurethane balloon containing a 3-

mm-thick foam sheet.  This is connected to a syringe (for changing the air pressure within the 

balloon) and a measuring unit (with the pressure transducer). Testing starts by adjusting the 

syringe so that the balloon is at atmospheric pressure, and then it is placed in position (for 

example, between the leg and the compression garment). The transducer monitors the 

pressure experienced by the balloon and the output is a digital display (Figure 12.3).  An 

assessment of the reproducibility and reliability of measurement was undertaken by Brophy-

Williams et al. (2014), who concluded that the tester was suitable for use with sports 

compression garments. 

 



 
FIGURE 12.3 

The Kikuhime tester. (Courtesy TT Meditrade and mediGroup Australia Pty Ltd.) 

 

12.24 Overview of other test instruments 

 

Numerous other instruments can be found in the literature and there are many new ideas 

coming to the fore each year.  A survey of the field was undertaken at an international 

consensus meeting of medical experts and representatives from industry held in January 2005 

in Vienna, Austria. In vivo measurement of interface pressure was considered highly 

desirable, and methods for measuring the interface pressure were considered with that in 

mind.  Table 12.1 presents the different technologies considered. 

 

Table 12.1 Types of Interface Pressure Sensors 

   



 

It is necessary to point out that many of these instruments are no longer available.  There are 

many design concepts that have been explored, but finding commercial viability has not been 

easy.  The first two entries listed in Table 12.1 are described below, as these have had a more 

significant impact in the literature.  The Talley Group designed pressure sensors in the 1980s 

but production ceased around the year 2000.  The company no longer offers instruments to 

measure pressure, but has concentrated on producing mattresses, cushions and other products 

providing pressure relief and compression therapy. 

 

The Oxford Pressure Monitor MkII 

The instrument was designed to monitor pressures between skin tissue and support media for 

chair or bed bound individuals.  The name originates because of collaboration with the 

Oxford Orthopaedic Centre.  Multiple sensors were used to enable the simultaneous 

monitoring of pressures below a reclining patient.  Each sensor was constructed from two 

thin plastic sheets that could be inflated by a pulse of air, allowing a measure of the 

compression forces. The MkII had 12 sensors, and a later device, the MkIII, was equipped 

with 96 sensors and also marketed as the Talley IPM (Interface Pressure Monitor). 

 

The Talley Skin Pressure Evaluator 

The Talley SD.500 Skin Pressure Evaluator was designed as a portable device for checking 

tissue pressures in medical wards, wheelchair pressures and any scenario where tissue trauma 

is an issue.  There were two main parts: a hand-held control unit with a digital display of 

pressure and a balloon type sensor that could be inflated manually.  The sensor contained 

platinum wires on both sides of its inner surface. To obtain a measurement, the sensor was 

placed between the skin and clothing before inflating using the pump bulb.  As the sensor 

inflated, the electrical contact between the two sets of platinum wire was broken. As air was 

allowed to flow out of the sensor, the platinum wires touched and the circuit was 

reconnected. At this point, the pressure was recorded and displayed on the control unit. 

 

12.25 Evaluation of pressure sensing instruments 

 

A detailed comparison of three instruments was undertaken by Flaud et al. (2010).  They 

selected the Salzmann, Talley SD.500 and Kikuhime testers and compared their performance 

in terms of accuracy, repeatability and sensitivity to flexion on a curved surface. The first set 

of tests utilised a chamber that could be preset to defined pressures.  The second set used a 

wooden leg model and inserted the sensors between the leg and compression stockings of 

known pressure.  The results for the pressurised chamber tests are reproduced in Figure 12.4. 

 



 
FIGURE 12.4 

Measured pressures versus reference pressures for the three sensors in the pressurised 

chamber. (From Flaud, P. et al. 2010. Dermatologic Surgery 36 (12): 1930–1940.) 

 

The equations of lines fitted to the data points are as follows: 

Salzmann:  y = 0.99x +3.32 (R2 = 0.99) 

Talley:  y = 0.97x + 0.47 (R2 = 0.99) 

Kikuhime:  y = 0.93x + 0.57 (R2 = 0.99) 

 

The researchers summarised their results in this way:  

“In a pressurized chamber, the three systems gave linear responses and an overall 

error of 15.4%, 3.1%, and 4.3% for Salzmann, Talley, and Kikuhime, respectively. 

The repeatability error was less than 0.6mmHg. On the leg model, the overall errors 

differ between the systems. Repeatability was comparable between the sensors.” 

(Flaud et al. 2010, p.1930) 

This shows the sensors were capable of providing useful tools for medical practitioners.  

However, care must always be taken with stockings and bandages around legs and arms 

because material variability and user factors may introduce variability that is difficult to 

control. 

 

Table 12.2 has some generalised comments on the advantages and limitations of different 

types of sensor. 

 

Table 12.2 Some Advantages and Disadvantages of Sensors 

  



 

12.26 The PicoPress® instrument 

 

With the passing of time, the instruments listed in Table 1 require extensive editing.  There 

are both additions and deletions.  In particular, a new product designed for medical 

applications is worthy of note: the PicoPress® produced by Microlab (Padua, Italy).  The 

instrument has a manometer connected to a probe: a flexible circular plastic bladder (5 cm 

diameter).  The bladder is placed in position in the deflated state and the 

bandage/compression garment is applied.  To take measurements, the operator pushes on an 

embedded syringe to introduce 2 cubic centimetres of air to the bladder.  The resultant 

expansion in thickness is constrained by the compression exerted by the bandage/garment and 

the manometer is used to record the pressure.  Both static and dynamic measurements are 

possible, so the compression can be determined when resting, when walking and when 

standing.  After collecting data, the probe is deflated and left in position until further readings 

are required.  The PicoPress® is shown in Figure 12.5.  Partsch & Mosti (2010) evaluated 

this instrument by comparing its performance with two other commercial systems.  They 

concluded: “The results suggest that the Picopress® transducer, which also allows dynamic 

pressure tracing in connection with a software program and which may be left under a 

bandage for several days, is a reliable instrument for measuring the pressure under a 

compression device.” 

 

 
FIGURE 12.5 

The PicoPress instrument. (Courtesy Microlab Elettronica.) 

 

 
12.3. Pressure sensors for clothing applications 

 

12.31 Use of medical instruments 

Several of the medical instruments discussed above have been used for measuring 

compression provided by clothing.   

 

Chan and Fan (2002) used the Tally SD.500 skin pressure evaluator to clarify the relationship 

between subjective tightness sensation and the clothing pressure of girdles.  This was 



followed by modelling work to predict the pressure of girdles on the human body (Fan and 

Chan, 2005). 

 

Pressure garments are widely used in the treatment of skin damage caused by burns.  Giele et 

al. (1997) expressed concern that devices like the Talley and Kikuhime testers were 

inadequate for three reasons: 

 

1. Distortion of the garment, hence raising garment tension and increasing the 

pressure generated. 

2. Poor conformity of the device to the skin. 

3. Being unaware to what degree external pressure is transmitted to and through the 

skin. 

 

Consequently, they adapted a method of probing the subdermal cutaneous pressure using 

hypodermic needles connected to a continuous low flow pressure transducer.  They found 

that pressure garments have the effect of increasing pressure subdermally. They confirmed 

that the garment was responsible for controlling compression through and within the skin and 

were able to quantify the effects. 

 

Another custom-built instrument to assess pressures obtained from garments worn for scar 

treatment was constructed by Teng and Chou (2006).  This was based on an “air pack” sensor 

similar to those used in the Talley and Kikuhime testers. 

 

However, despite this interest in customised instruments, research by Van den Kerckhove et 

al. (2007) into burned skin treatment went back to using the Kikuhime tester.  They tracked 

reductions in pressure with time associated with different fabric constructions and concluded 

“that the Kikuhime pressure sensor provides valid and reliable information and can be used in 

comparative clinical trials to evaluate pressure garments used in burn scar treatment.” 

 

Another custom-made instrument has been called the “Textilpress” (Maklewska, et al. 2007).  

This has been designed to measure pressures exerted by compression bands, manufactured 

from knitted fabrics, on a cylinder surface of defined diameter.  Its role is to test compression 

away from a human wearer, and it is not suitable for in vivo measurement.  The device is 

based on tensometric sensors, to measure both the compression exerted by the fabric and the 

diameter of the cylinder. 

 

12.32  Tekscan technologies (I-scan system) 

 

The I-scan system provides ultra-thin (0.15 mm) sensors of varying sizes for measuring 

compression forces. These sensors are formed from two sheets of thin polyester, each coated 

with linear electrical conductors and enclosing a pressure-sensitive material.  The electrical 

conductivity of the sandwiched interlayer material changes linearly in response to applied 

pressures. The array of linear conductors on the upper sheet are at 90 degrees to the array on 

the lower sheet.  This creates a matrix of sensing locations (sensels) that is determined by the 

geometry of the sensor.  Two examples of the many sensors available are shown in Figure 

12.6. 

 



 
FIGURE 12.6 

Two sensors supplied by Tekscan (model 5250 and model 4201). (Source: David Tyler.) 

 

The smaller of these two sensors is Model 4201, with a matrix width of 45.7 mm and a matrix 

height of 21.0 mm.  The matrix itself is made up of 24 columns and 11 rows, making 264 

sensels (see Figure 12.7).  This gives a sensel density of 27.6 sensels/cm2.  The larger sensor 

is connected to a sensor handle (which carries the signals to a computer) and is Model 5250.  

This is a square sensor with both matrix width and matrix height being 245.9 mm.  The 

matrix itself is made up of 44 columns and 44 rows, making 1,936 sensels.   

 

 
FIGURE 12.7 

The matrix of model 4201. (Courtesy Sheena Tyler.) 

 



An example of a screen plot of compression data using Model 5250 is in Figure 12.8. 

 

 
FIGURE 12.8 

Screen display showing sensels recording different pressures of a human hand against a flat 

surface. The sensels are colour coded, with black/deep blue representing the lowest pressures 

and, as higher pressures are recorded, the colours move through the spectrum to red 

(maximum pressure). In this black-and-white illustration, sensels with lighter shades of grey 

are recording higher pressures. 

 

A review of technologies available in 2005 and suitable for measuring interface pressures 

relevant to the formation of pressure sores in patients was produced by Swain (2005).  Six 

commercial systems were considered, including Tekscan and Tally.  Tests with Tekscan 

found evidence for significant hysteresis and creep in the data output, but the author noted 

that clinicians preferred this system because of its real-time display capabilities, resolution 

and display options. 

 

A detailed investigation of the calibration issues affecting one particular I-scan sensor was 

undertaken by Macintyre (2011).  The paper contains an overview of the measurement 

inaccuracies affecting many instruments, but there is a recognition that Tekscan sensors and 

the supporting software has become “widely used in recent years”.  The range of interface 

pressure of interest is between 6 and 50 mmHg, which are “often at the lower end of the 

measurement range of commercial pressure sensors”.  Using the Tekscan 9801 sensor, a very 

detailed evaluation was undertaken of standard calibration procedures to quantify the 

accuracy of test results.  These are referred to as the “2-Point power law calibration” and the 

“Linear calibration” procedures.  A difference of 3% between measured and applied loads 

was considered unsatisfactory.   

 



“Despite considerable effort and many attempts to calibrate these sensors the results 

were disappointing and unsatisfactory. The 2-point power law calibration was most 

accurate in the middle of the calibrated range, while the linear calibration was most 

accurate towards the top of the calibrated range (and was completely inaccurate at low 

applied loads). [. . .] This level of variability was unacceptably high for precise 

product development work so another method of calibration was sought.” (pp.1176-7) 

 

The rest of this paper is concerned with a revised calibration procedure and additional 

probing of sources of error.  The findings are presented in a table of the mean differences 

between measured and applied pressures, where the largest difference is 2.1 mmHg.  The 

results were shown not to be time or use dependent and the new method was adopted for “the 

accurate measurement of pressures delivered by pressure garments (and compression 

bandages)”. This calibration method was used to evaluate design solutions for pressure 

garments used in the treatment of hypertrophic burn scars (Macintyre, 2007). 

 

Brorson et al. (2012) used Tekscan technology (the I-scan® system) for in vitro 

measurements on compression garments for treating lymphedema.  Their aim was to define a 

protocol for gaining quantified data relating to compression hosiery.  Garments from three 

manufacturers were selected; wear and tear was simulated by washing the garments before 

putting them on plastic legs every day for 4 weeks.  Whilst there were differences between 

garments from different manufacturers, no difference was found between garments from the 

same manufacturer. During the trial period, decreases of subgarment pressure were not 

observed.  They concluded that “Tekscan  pressure measuring equipment could measure 

subgarment pressure in vitro.” 

 

An example of Tekscan sensors being used in sports science is provided by Pain et al. (2008).  

The authors set out to measure in vivo impact intensities during enacted front-on tackling in 

order to assess the effectiveness of rugby shoulder padding for reducing peak forces 

experienced by players.  The work reported limited benefits from using shoulder pads, but 

raised a number of issues about the selection and use of sensors: 

 

“These potentially inaccurate force measurements exposed three issues with the 

Tekscan sensor. Firstly, the sensor area was too small as large forces were generated 

up to and beyond the sensor boundary. Secondly, despite performing a dynamic 

calibration, the sensor’s method of multiplexing data within a long sampling window 

(4 ms) may have caused the total impact peak force to be missed. Thirdly, the sensor 

has a low dynamic response time.  [. . .] These issues can be alleviated with the use of 

a larger sensor that employs a higher sampling frequency. A further limitation is the 

inability to measure shear force and the fact that the sensors will produce a response if 

creased or curved too acutely.” (p.862) 

 

These reflective comments are noted here as they show that experiment design considerations 

have to be addressed carefully, so that the instruments used are capable of delivering useful 

results.  Sometimes it is necessary to analyse activities in terms of several elements, and then 

focus attention on those elements separately.  This has been a way forward for the analysis of 

forces on rugby players.  Usman et al. (2011) looked specifically at the forces in tackling, 

using a tackle bag equipped with four Tekscan sensors.  Participants were asked to tackle the 

bag in four different ways: (1) dominant side, (2) non-dominant side, (3) dominant side with 

shoulder pads, and (4) non-dominant side with shoulder pads.   With repeated tackling, an 

assessment of the variability of the forces experienced by participants was gained. 



 

12.33  Tekscan technologies (FlexiForce®) 

 

Another type of Tekscan sensor is a single element force sensor with the brand name 

FlexiForce®. There are similarities between the construction of force sensors and pressure 

sensors but, instead of a matrix of sensels, the resistive layer uniformly covers the whole area 

of the sensor.  Force sensors do not map pressure distributions but provide feedback about the 

aggregated force experienced. Inevitably, data acquisition and analysis are simplified.  

Applications for these sensors have been found in sportswear research (Lin et al. 2011, Lin et 

al. 2012), modelling the compression effects of high-performance sportswear.  The 

FlexiForce® sensors provided empirical data to compare with the simulation: 

 

“Seven FlexiForce® A201 force sensors (Tekscan, Inc., USA) were placed at seven 

important muscles that flex or extend when running, namely: (i) vastus lateralis (VL); 

(ii) vastus medialis (VM); (iii) rectus femoris (RF); (iv) tibialis anterior (TA); (v) 

semimembranosus (SE); (vi) gastrocnemius lateralis (GL); (vii) gastrocnemius 

medialis (GM).” (p.1472) 

 

Undoubtedly, new interface pressure measurement systems will emerge, and there are 

numerous others that have been reported in the literature that do not appear in this review.  

There is a problem with custom-made instruments and with commercial products that have a 

short market life: there is simply not the time to assess the reliability and reproducibility of 

these instruments and to build a knowledge base to achieve “best practice”.  Consequently, 

the literature considered in this chapter has been selected to stimulate thoughts on 

experimental design and helping research aims to be achieved by an appropriate choice of 

sensors.  

 

 
12.4 Discussion of Laplace’s Law 

 

Rotsch et al. (2011) point out that the compression pressure exerted by a bandage is 

dependent on four factors: 

 

 The type of bandage, particularly its elasticity 

 The pre-stretching applied during application 

 The number of layers of bandage 

 The state of the bandage as it is in use 

 

Laplace's Law means that the applied pressure is directly proportional to the tension in a 

bandage but inversely proportional to the radius of curvature of the limb to which it is 

applied.  This has immediate relevance to the selection of the material to bandage the limb. 

When an inelastic bandage is applied, the tension in the material tends to be low and the 

contact pressure when resting tends to be relatively low.  However, when moving about, the 

limb expands as muscles contract, and the tension in the bandage tends to increase rapidly so 

that the resultant applied pressure is high.  By contrast, the use of elastic bandages will result 

in more even compression whether resting or exercising.  This leads Rotsch et al. (2011) to 

refine the conceptual model by distinguishing between static pressure and operating pressure.  

The static pressure is effectively the pressure when the bandage is applied to relaxed tissue.  

The operating pressure results from changes in the volume of muscles during movement.  



Clearly, Laplace’s Law does not provide a comprehensive mathematical model of 

compression pressure. 

 

It is also necessary to point out that the human leg has a complex shape, and is not well 

represented either as a cylinder or a cone.  There are solid bones covered by various types of 

soft tissue, and there are many permutations depending on the individuals being bandaged.  

Deformation of the skin may vary significantly when considering different parts of the leg.  

This raises further questions about the application of Laplace’s Law and its relevance to 

compression garments, whether for medical purposes or for sport. 

 

Thomas (2003) referred to the widespread recognition of the Laplace equation, but pointed 

out that it has not been well understood.  He made reference to a book he published in 1990 

that set out a version of the equation that would be more useful to practitioners.  He wrote: “it 

is also necessary to consider two further factors: the width of the bandage and the number of 

layers applied. Although these variables may not appear initially to form part of the original 

Laplace formula, they are essential to obtain an accurate value of tension.” (p.22). The 

modified equation used units selected because they are familiar to practitioners and 

incorporated bandage parameters. 

 

Pressure (mmHg) =   Tension (kgf) × n × 4620 

   ___________________________________ 

   Circumference (cm) × Bandage Width (cm) 

          (Equation 3) 

 

Where n = the number of layers applied.   

 

The goal of bandaging is to achieve graduated compression, with the highest pressures close 

to the ankle and the lowest pressures closest to the knee.  However, despite great care being 

taken to apply bandages correctly, there has been an ongoing problem of demonstrating 

graduated compression.  Schuren & Mohr (2008) drew attention to the various explanations 

that have been proposed to explain the problem: poor operator technique, poor measurement 

technique, and the difficulty of maintaining constant tension during application.   

 

With growing scepticism, Schuren & Mohr (2008) reviewed 3 detailed studies of graduated 

compression by standardising on the leg shape.  Study 1 involved 32 experts, 4 commercial 

compression bandage systems and an artificial leg fitted with three Kikuhime pressure 

sensors. The participants were asked to repeat the bandaging exercise 3 times for each 

commercial system.  Study 2 was an evaluation of a commercial prototype compression 

bandage, using 3 experienced orthopaedic technicians, and an artificial leg with 6 strain-

gauge force transducers.  Each participant applied 40 bandages to the artificial leg.  Study 3 

used the same leg but selected a different compression bandage, and 8 nurses comprised the 

expert practitioners.  Altogether, these studies yielded a database of 744 sets of data relating 

to graduated compression.   

 

Using the Laplace formula, theoretical compression pressures were calculated.  These all 

showed the desired graduated compression, mostly in the range 30-60 mmHg (Figure 12.9). 

 



 
FIGURE 12.9 

Theoretical compression according to Laplace’s law. (Based on Schuren, J. and Mohr, K. 

2008. Wounds UK 4 (2): 38–47.) 

 

When comparing theoretical with measured values, there was a marked disparity. First, the 

experimental results typically showed that less than 10% of the bandages applied achieved 

graduated compression.  Furthermore, the measured values were consistently lower than 

theoretical values.  The aggregated test results are plotted in Figure 12.10. 

 

 
FIGURE 12.10 

Measured mean pressure values from all studies. (Based on Schuren, J. and Mohr, K. 2008. 

Wounds UK 4 (2): 38–47.) 

 

Schuren & Mohr (2008) discuss their findings critically, acknowledging the problems of 

working with artificial legs and in a laboratory (rather than in a clinical) environment.  



However, they question the widespread belief in the usefulness of the Laplace equation and 

also the assumption that graduated compression is the norm.   

“It is true to say that these studies should have produced data that presented Laplace’s 

law in its best light as the environment, subject, and bandagers were well controlled. 

However, the pressure calculations made using the modified Laplace’s law equation 

did not accurately predict the pressure values found in these three studies. In fact, true 

graduated compression was observed in only 53 of the 744 (7.1%) applications.” 

(Schuren & Mohr, 2008, p.46) 

 

Of course, these findings do not mean that the Laplace equation should be abandoned, but 

merely that its limitations should be recognised along with the complexities of human 

anthropometrics.  No one should assume graduated compression, but procedures are needed 

to check this experimentally.  Even the goal of graduated compression should be questioned, 

as do Schuren & Mohr (2010).  With sportswear, merely wearing a compression garment is 

no guide as to what effect it is having on the wearer.  The very varied reports of no 

benefit/some benefit/measurable benefit coming from the sportswear research literature may 

be simply a pointer to the uncontrolled (and unmeasured) compression that these garments 

exert.  For an example of research that has sought to model and measure compression forces 

in a more rigorous way, see Dias et al. (2003). 

 

 
12.5 Summary and Conclusions 

 

1. There are many different measurement systems for monitoring the compression 

pressures of garments.  These use sensors based on a variety of technologies (see 

Table 12.1).  Many of these have had a short lifetime and are of historic interest only. 

 

2. To develop a standard test, many variables have to be excluded.  This has been 

achieved with compression hosiery by eliminating the variability of the human leg 

and by establishing protocols for loading the garment to the instrument.  The Hatra 

Hose Pressure tester is the test instrument for British Standards 6612:1985, 7672:1993 

and 7563:1999.   

 

3. Medical applications need simple test instruments that can be transported easily and 

where setting up and measurement times are short.  Instruments need to be capable of 

making in vivo measurements.  The most widely used test systems are the MST 

Professional (for compression hosiery), the Kikuhime tester, and the PicoPress®.  

These have all withstood the test of time and have been developed over the years to 

incorporate enhancements. 

 

4. Measurement of sportswear compression has made use of medical equipment, but 

there has been much interest in custom-made systems.  There is a recent tendency to 

use Tekscan technologies.  Researchers appreciate the paper-thin sensors, the variety 

of off-the-shelf sensors available, the sophisticated data-processing software and the 

visualisation tools.  The main problem reported has been drift, and various approaches 

have been used to obtain reproducible outputs.  With a combination of calibration and 

standardised measurement protocols, acceptable accuracies have been reported. 

 

5. Medical practitioners and researchers appear to have under-estimated the problems of 

getting a controlled and predictable compression.  This is particularly apparent in the 



difficulties in producing graduated compression with leg bandages, but it is 

symptomatic of the variability associated with compression garments.  There is an 

urgent need for sportswear compression research to be accompanied by detailed 

measurements of compression pressures.  Without this, informed assessments of the 

value of compression garments cannot be made. 

 

 
6. Further Information 

 

Hatra Mk2A+ hose pressure tester  

Segar Technology 

email: segar@segartechnology.com  

Web: www.segartechnology.com  

 

I-Scan and FlexiForce® 

Tekscan, Inc.  

email: marketing@tekscan.com 

Web: www.tekscan.com/  

 

Kikuhime®  

mediGroup Australia Pty Ltd. 

email: sales@medigroup.com.au  

Web: www.medigroup.com.au  

Manufacturer: TT Meditrade, Soledet 15, DK 4180 Soro, Denmark 

 

MST Professional 

Swisslastic Ag St. Gallen. (formerly Salzmann AG) 

email: info@swisslastic.ch  

Web: www.swisslastic.ch/en/ 

 

PicoPress® 

Microlab Elettronica 

e-mail: info@microlabitalia.it  

Web: www.microlabitalia.it  
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