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Abstract

As the number of nature-inspired algorithms increases so does the need to characterise

these algorithms. A rigorous process to characterise algorithms helps practitioners

decide which algorithms may offer a good fit for their given problem. One approach

is to relate the characteristics of a problem’s associated fitness landscape with the

performance of an algorithm.

The aim of this thesis is to capitalise on the notion of fitness landscape charac-

teristics as a technique for analysing algorithm performance, and to provide a novel

algorithm- and problem-independent methodology that can be used to present the

strengths and weaknesses of an algorithm. The methodology was tested by developing

a portfolio of six nature-inspired algorithms commonly used to solve continuous opti-

misation problems. This portfolio includes the performance of these algorithms with

parameters both “out of the box” and after they have been tuned using an automated

tuning technique. Each of the algorithms shows a different “resilience” profile to the

landscape characteristics, and responds differently to the tuning process. In order to

provide a more practical way to utilise the portfolio an automated “ranking” method-

ology based on two machine learning techniques was developed. Using estimates of the

fitness landscape characteristics on benchmark problems, the best algorithm to use is

estimated, and compared with the actual performance of each algorithm. While results

show that predicting algorithm performance is difficult, the results are promising, and

show that this is an area worth exploring further.

This methodology has significant advantages over the current practice of demon-

strating novel algorithm performance on benchmark problems, most importantly of-

fering a practical, generalised overview of the algorithm to a potential practitioner.

Choosing to use a technique such as the one demonstrated here when presenting a

novel algorithm could greatly ease the problem of algorithm selection.
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Chapter 1

Introduction

The number of nature-inspired algorithms for optimisation is growing continuously,

as researchers develop novel algorithms, modify existing algorithms and hybridise al-

gorithms to gain improved accuracy. This rapid expansion of the space of possible

algorithms presents a new problem to practitioners: Which algorithm should I use for

my problem, and why? This question is exacerbated by the arguments presented in

the No Free Lunch Theorem Wolpert and Macready (1997), which states that where

any algorithm shows improved performance on one class of problems, it must (on aver-

age) show reduced performance on another. The summary of the theorem is that, by

choosing the correct algorithm for a particular problem class, better performance can

be obtained than using naive selection.

It has also been argued that the very process of developing “novel” metaheuristics

is harmful to the field, with newer techniques not being thoroughly explored, or with

algorithms accidentally being recreated under new terminology, due to a lack of a rigor-

ous process under which to analyse algorithm performance and behaviours (Sörensen,

2013).

Often, when a novel algorithm is proposed, results from a handful of benchmark

functions, or results on a particular problem set, are used to provide comparisons

against a limited set of other similar algorithms. This provides little practical infor-

mation on the performance of the algorithm, leaving unanswered the question of which

types of problem is this algorithm best-suited to?

By offering an algorithm-independent methodology for analysis, based on a land-

scape generation technique, it is shown that it is possible to provide an in-depth profile

of an algorithm’s performance which relates to characteristics of the fitness landscape

of a problem, highlighting the relative strengths (and weaknesses) of an algorithm.

Furthermore, this technique can be used to compare and contrast algorithms with oth-

ers, or even different versions of the same algorithm. This offers a practical insight into

which algorithm to choose, as the information about algorithm performance relates

directly to characteristics of the problem. It can also highlight where algorithms differ

from each other, potentially offering a solution to the problem of “overcrowding” in

the nature-inspired algorithm field.

The fundamental research questions this thesis aims to answer are as follows:

1



1. To what extent can fitness landscape characteristics be used to establish a perfor-

mance profile of an algorithm, and thus distinguish between different algorithms

in terms of performance?

2. To what extent does tuning alter the performance profile of an algorithm with

regard to each of the landscape characteristics defined?

3. To what extent can algorithm performance be predicted by using the defined

landscape characteristics as input to a classification algorithm?

In answering these questions, it is hoped that this work provides the first steps

towards a novel methodology for algorithm designers to compare algorithms which is

independent of specific benchmark problems (removing the problem of comparing al-

gorithms which were not introduced by testing on similar problems), and a technique

for presenting novel algorithms which highlights the strengths and weaknesses of an

algorithm and, where possible, the specific usefulness of certain ‘features’ of an algo-

rithm. The final question, regarding prediction, provides a starting point for a possible

prediction technique which, while still posing many technical challenges, offers fellow

researchers a potential alternative strategy to current predictive methods.

The remainder of this thesis is organised as follows:

• In Chapter 2 the notion of nature-inspired algorithms is introduced, with de-

scriptions of how and why they are used as an optimisation strategy. Six specific

nature-inspired algorithms are introduced, with specific attention to their their

inspirations and how these particular algorithms work. These six algorithms are

then used throughout the remaining work as the algorithms under study.

• In Chapter 3 a methodology is presented which describes one approach for analysing

algorithms based on fitness landscape characteristics. This methodology, or slight

variants thereof, is then used in the three experimental chapters of this thesis,

which affirms its usefulness and tests the extent to which landscape character-

istic analysis can be used by algorithm designers to better present, or answer

questions, about novel algorithms.

• In Chapter 4 the methodology introduced in Chapter 3 is tested by carrying out

a performance analysis of the selected algorithms. This analysis is performed in

terms of fitness landscape characteristics, using a landscape generation technique.

By breaking down and relating algorithm performance to different aspects of the

generated landscapes, is is shown that there is no universal way to choose a best

algorithm. It is clear from the results that the landscape characteristics used in

the generation technique are an appropriate basis for analysing the performance

of these algorithms and that the methodology is an appropriate way to generate

performance profiles of optimisation algorithms.

• In Chapter 5 the previous Chapter is expanded upon with further analysis focus-

ing on the effect of tuning the parameters of each of the algorithms, offering a

2



more “realistic” study as algorithms are rarely used “out of the box”. Whether

to tune parameters or not is a significant debate in the implementation of nature-

inspired algorithms, and by analysing the effect of tuning using the methodology

presented in Chapter 3, it is shown that there are some algorithms which always

need tuning, some which do not require tuning, and some which need only be

tuned in certain (landscape characteristic dependant) circumstances. This also

emphasises that the methodology is appropriate for use within algorithms.

• In Chapter 6 a feasibility study is presented on predicting algorithm performance

using fitness landscape characteristics. It is found that although automated pre-

diction is a challenging task promising results can be obtained with little effort

when the fitness landscapes are representative of those used to generate the train-

ing data. This demonstrates again that the methodology presented in Chapter 3,

and associated algorithm profiles, could form the basis a strategy for predicting

algorithm performance.

• In Chapter 7 the thesis is summarised, with some concluding remarks and sug-

gestions for future work.

3
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Chapter 2

Nature-Inspired Algorithms

2.1 Introduction

Broadly speaking, there are three classifications of techniques used to solve optimisation

problems: Methods designed to reach exact solutions mathematically, methods which

reach a solution iteratively and methods designed not to provide an exact solution, but

rather to approximate a solution - that is, they find a solution that’s “good enough”

but do so when the former two methodologies may not be appropriate (Gill et al.,

1981).

The field of linear programming offered the first attempts to solve optimisation

problems mathematically, and dates back to Kantorovich (1940). With the publication

of the Simplex method, by Dantzig (1965), a method for calculating exact solutions to

problems became available, and this marked the start of optimisation as a promising

area of research, with continued development and extensions to the Simplex method.

One prominent question surrounding the Simplex method regarded its complexity, par-

ticularly the complexity scaling, of the method, and how intractable problems became

as they increased in size (i.e. number of variables). It has been found to generally con-

verge in polynomial time (Wright and Nocedal, 1999; Forsgren et al., 2002), although

its worst-case complexity is exponential (Klee and Minty, 1970).

An alternative are heuristics, designed to reach an approximate solution rather than

an exact solution. These methods are often used when traditional methods as described

above either prove too slow, or fail to find an exact solution (Pearl, 1984).

Many heuristic methods are inspired by nature, and it is these algorithms that form

the focus of this thesis. The over-arching concept of nature-inspired algorithms is that

natural processes can offer insight into the various “problem-solving” techniques used

by living systems, for example; The way bacteria use chemical gradients to sense food

concentrations (Adler, 1966), the process of evolution itself (which naturally selects the

‘best solution’ from a number of candidates (Fisher, 1999)) and the way insects carry

out their day-to-day tasks (Bonabeau et al., 2000). Like many other disciplines which

also borrow ideas from nature, the idea here is not necessarily to mimic nature exactly,

rather, ideas are drawn from nature and these ideas are used as a basis for inspiration

to design algorithms which solve problems in a similar manner. In doing so, at least in

5



theory, algorithm designers capitalise on the refinements and ingenuity of the natural

process itself.

As there are a number of different nature-inspired algorithms, there is no straight-

forward answer to how and why they are used, but they are often used when a “good

enough” solution will do, or an exact solution is not available. With an increasing num-

ber of nature-inspired algorithms available to practitioners, and increasing availability

of resources such as code repositories, implementation guides, and more in-depth stud-

ies into the exact behaviour of these algorithms, using a nature-inspired algorithm in

place of a traditional technique is becoming a more realistic option.

The decision to use a nature-inspired algorithm may be informed by a number of

factors, including (but not limited to)

1. Which nature-inspired algorithm should be used?

• This decision is one of the most difficult facing a potential practitioner, and

is one which is not getting any easier as novel nature-inspired algorithms

are proposed.

• A practitioner can reduce their potential selection based on whether their

problem is continuous or discrete.

2. Are there variants, hybridisations or components of the algorithm a practitioner

needs to choose from? (Goldberg and Deb, 1991)

3. What values should the parameters for the algorithm take? (Eiben et al., 1999)

• Some algorithms are more parameter sensitive than others.

• There are methods to automatically determine parameter values, but these

add to the overall computation required before a solution can be reached.

Rice (1976) discusses the notion of the algorithm selection problem, proposing a

series of models for selecting the best (or at least, an effective or good) algorithm

for a given situation. The relationship between problem, algorithm and performance

is discussed in detail, with the importance of a mapping between the three the key

to solving the problem. It is by this that the inspiration to develop a portfolio of

algorithm performance arises, in a way such that algorithm performance can be related

directly to characteristics of a problem. Using this, a practitioner could estimate the

characteristics of their problem, examine the portfolio, and make an informed decision

as to which algorithm could prove to be effective for their situation.

In the rest of this Chapter the underlying concepts of the nature-inspired algorithms

that are selected for examination in this thesis are described. This includes a discussion

of the origin, a description of the algorithm, and some example applications of each

algorithm.
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Figure 2.1: Number of papers found on six nature-inspired algorithms by three leading
publication databases.

2.2 Algorithm Descriptions

Six nature-inspired algorithms are selected for detailed description and analysis, two of

which are evolutionary algorithms (Evolution Strategies (ES) and Genetic Algorithm

(GA)), three of which are generally classed as swarm or social based algorithms (

Bacterial Foraging Optimisation Algorithm (BFOA), Bees Algorithm (BA) and Particle

Swarm Optimisation (PSO)) and lastly an algorithm which is neither evolutionary nor

swarm-based, though draws on the concepts of both, and is often classed as a physical

algorithm, the Harmony Search (HS) algorithm. Of these algorithms, some account for

a substantially larger section of the field than others, with the more recently proposed

algorithms having fewer applications than those that originated the field (Yang, 2010).

To gain a brief overview of the relative size of the bodies of work on each of these

algorithms, a search of each algorithm’s name was performed on three leading publi-

cation databases; (1) Science Direct1, (2) Google Scholar2 and (3) IEEE Xplore3. The

results are depicted in Fig. 2.1, showing that GAs have, by far, the most published

literature, with PSO in second place. The relative newcomers, BA and BFOA fall

significantly behind, with very few published papers returned by the searches.

One of the reasons for GAs having a high paper count compared to the other

algorithms is its frequent use as the “benchmark” algorithm in many applications. As

such, when a new technique is used, it is often compared to the performance of a GA

as a way of validating its performance. This is particularly noticeable due to the large

number of extra results from Google Scholar, which indexes entire texts, and many

of these could not feature GA as the focal point of the research, but rather, as the

comparison. A by-product of this, however, is that GAs have been applied to a wide

range of problems and applications, and have been studied in-depth in this manner.

The six algorithms were selected based on (i) their apparant similarity with each

other, (ii) their differences in computational properties (for which there is no clear

1http://www.sciencedirect.com
2http://scholar.google.co.uk/
3http://ieeexplore.ieee.org/
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analysis of the performance benefits/hindrances), and (iii) their popularity for use on

continuous function optimisation problems. The foundation for further classification

of the algorithms is derived from the work of Blum and Roli (2003). Each of the al-

gorithms selected falls into the over-arching category of either trajectory methods or

population-based methods (in fact, all except HS are population-based, but this partic-

ular algorithm shares many characteristics of population-based algorithms). Further

computational properties of the algorithms are described by Blum and Roli, and to

give an idea of how the algorithms selected differ from each other, Table 2.1 contains a

listing of the algorithm and a short description of how, where possible, each algorithm

fulfils each particular property.

It may be questioned why certain other popular algorithms have not been included

in this study. A popular technique not included in this study is that of artificial neural

networks. Artificial neural networks were not chosen for inclusion in this study as they

are already distinct in nature from population-based algorithms, and, although it is

possible to use neural networks for optimisation (Joya et al., 2002), it is more common

to see them used for either fitness approximation (Jin, 2005) or to apply a population-

based algorithm to a neural network as a means of training it - many examples of

this are demonstrated in the individual algorithm example sections throughout this

Chapter). It should be noted that the methodology presented in Chapter 3 is algorithm

independent and, as such, any additional algorithms could be incorporated into the

study at a later date.

A brief description of the algorithms, including their origin, inspiration and an

overview of their most popular applications, now follows.

2.2.1 Bacterial Foraging Optimisation Algorithm

The seminal BFOA algorithm was presented by Liu and Passino (2002); Passino (2002),

suggesting an algorithm inspired by the behaviour of bacteria - specifically Escherichia

coli (E. coli) and Myxococcus xanthus (M. xanthus). The motivation of the algorithm

is that bacteria engage in social foraging, and that this has been shown to provide a

method for climbing chemical gradients (Grünbaum, 1998), and so their behaviour is a

reasonable inspiration for a social foraging optimisation algorithm. Through a process

of modelling and examining bacteria behaviour, and relating this to the optimisation

process, the BFOA was developed, for use on continuous optimisation problems.

Bacteria, through a process of sensing chemicals (chemotaxis, (Adler, 1966)), tra-

verse an environment attempting to move away from areas containing harmful sub-

stances and towards areas of high food concentration. It is this process that forms the

main inspiration for BFOA, which is in essence a hill-climbing algorithm. This process

is modelled, algorithmically, in a simplistic manner: At each step of the algorithm,

a bacterium selects a random direction in which to swim, and commences swimming

(Berg, 2000). If this new position is “better” than the previous position, the bacterium

continues to swim in this direction. If the position is worse, the bacterium halts, wait-

ing for the next step to select a new direction. Parameters such as the step size and
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swim length control the exact behaviour of the chemotactic phases of the algorithm.

While chemotaxis forms the main component of the algorithm’s inspiration, there

are other factors which can be modelled that enhance the ability of the algorithm to

perform in an optimisation context. The first of these is reproduction; Where food

levels are high (or, where solutions are promising), bacteria reproduce at a high rate

- by “killing off” bacteria in unpromising areas (those performing worst), and cloning

the better performing bacteria, this allows the algorithm to explore promising areas

more thoroughly while ignoring areas of little interest.

Another key feature of the BFOA are elimination-dispersal events. Due to the

scale of bacteria relative to the world around them, events often occur which can

redistribute/remove the population en masse, for example water or animals moving

populations of bacteria from one location to another, or sudden local changes in tem-

perature harming large numbers of bacteria in a localised region. These events can

be used as a way of “shuffling” the population - in an optimisation context, this of-

fers a local optima avoidance technique similar to that of random restarts (Hu et al.,

2009), and is controlled by a parameter which dictates the chance a bacterium is elim-

inated/redistributed during an elimination-dispersal event.

The last component of the algorithm is an individual bacterium’s interactions with

the other members of its colony. Attractant and repellent chemicals are secreted by

individual bacterium, and these chemicals are also sensed by other members of the

colony, enabling a true “swarming” behaviour. For example, bacterium in areas of high

food density may release attractants - following the optimisation metaphor, bacterium

in a region of promising solutions will “beckon” other members of the population to

explore the area more thoroughly. The four cell-cell interaction parameters control

this behaviour, dictating the range individual bacterium’s chemicals are spread and

the reliance other members of the colony place on these chemicals.

Pseudocode for the BFOA is shown in Algorithm 1.

A second version, presented by Muller et al. (2002), is not labelled as the BFOA but

rather the Bacteria Chemotaxis Algorithm (BCA) This version shares a lot of the ideas

of the Passino (2002) implementation, in that the main inspiration for the core of the

algorithm is the process of bacterial movement, driven by chemotactic sensing. Using

a more rigorous mathematical model of bacterial movement, the BCA examines the

probabilities of a bacterium changing direction, and selects a new direction based on

a Gaussian distribution. Features such as reproduction and elimination-dispersal are

not components of the BCA. The BCA is not found to compete with other algorithms

at the time of its presentation, and subsequently although it has been used somewhat,

it is not as popular as Passino’s version of the algorithm.

Applications

As a relative newcomer, the BFOA suffers from a lack of diversity in application areas,

with applications to power systems appearing most frequently. Mishra and Bhende

(2007) apply the BFOA to multi-machine power system stabilizer design, using a
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for each bacterium do
generate random solution;
evaluate fitness;

end
for number elimination-dispersal events do

for number reproductive steps do
for number chemotactic steps do

for each bacterium do
choose random direction;
repeat

update position in random direction by step size;
calculate cell-cell interaction;
evaluate fitness;

until fitness worsens OR maximum swim length reached ;

end

end
sort bacteria by fitness;
remove R worst bacteria;
clone R best bacteria;

end
for each bacterium do

if bacterium should be redistributed then
generate new random solution;
evaluate fitness;

end

end

end
Algorithm 1: Bacterial foraging optimisation algorithm pseudocode.
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slightly adapted version of the algorithm which adapts the run length dynamically

according to heuristic rules. Results are compared with those found using a GA, and

are noted to be much better. Das et al. (2008) later also apply the BFOA to the

design of power system stabilizers, although this time the comparison is made to PSO

and a variant of PSO referred to as small-population-based particle swarm optimisa-

tion (SPPSO). Although SPPSO is the overall “winner” of this competitive testing, it

is noted that BFOA also gives “...robust damping performance for various operating

conditions and disturbances.”

A different problem within the power systems field, that of power system reconfig-

uration and loss minimisation, is tackled by Kumar and Jayabarathi (2012). Compar-

isons are made between ten algorithms here, including notably a set of refined versions

of the GA. The BFOA provides the least power loss, and is described as having “fast

and effective convergence.”

2.2.2 Bees Algorithm

Introduction and Origin

The BA is one of many nature-inspired algorithms inspired by the behaviour of bees.

The algorithm was first proposed by Pham et al. (2005, 2006b), where it is tested on

a number of benchmark functions. It was found to outperform the rival algorithms,

specifically genetic algorithms and ant colony systems. Although not the first algorithm

to be inspired by the behaviour of bees, this is the first to be based on the food locating

and collecting behaviour. The strengths and weaknesses of the BA are discussed -

good local optima avoidance is cited as a strength (as the algorithm relies very little on

gradient information), and results show good accuracy of solutions. The only stated

weakness is that the algorithm has several parameters, though the authors claim these

can be configured quickly using a small number of trials.

Unlike other bee-inspired algorithms, such as the Artificial Bee Colony algorithm

(Karaboga and Basturk, 2007) and the Honey Bee Mating Optimisation algorithm

(Haddad et al., 2006), the BA focuses specifically and solely on the nectar-collecting

behaviour of the honey bee, neglecting to include many of the other interesting be-

haviours of the bee (Winston, 1991; Seeley, 2009). While collecting nectar, the honey

bees perform optimisation on a basic level: As a colony, they need to be harvest-

ing nectar from nectar sites with the most promising harvest (i.e. areas with a good

solution).

During the process of harvesting, bee colonies send out a number of “scout” bees,

whose task it is to (randomly) explore patches of flowers and evaluate these flowers

for their richness of nectar (Janson et al., 2005). These scout bees then return to the

colony, and report their findings, through the process of the waggle dance (Riley et al.,

2005). Using the information gained from the waggle dance (which reports both the

quality and location of their explored sites), bees tasked with harvesting nectar then

make decisions about which patches to harvest nectar from, and commence harvesting.

12



for each bee do
generate random solution;
evaluate fitness;

end
while stopping criteria are not met do

sort bees by fitness;
for number of sites (n) do

site = nth best bee;
if elite site then

siteBees = eBees;
else

siteBees = oBees;
end
for siteBees number of bees do

generate random solution in patch size range of site;
evaluate fitness;

end

end
for remaining bees (scouts) do

generate random solution;
evaluate fitness;

end
reduce patch size;

end
Algorithm 2: Bees algorithm pseudocode.

The optimisation metaphor follows quite logically here, with promising flower patches

representing areas of promising solutions.

While harvesting, bees continually report on the quality of their sites, and similarly,

scout bees continue to assess new sites for potentially better areas of exploration, acting

as both a local search (harvesting bees) and a global search (scout bees) simultaneously,

with harvesting bees re-evaluating their site choice if necessary. The trade-off between

local and global search is tweaked using parameters which control the number of the

population assigned to the scouting task.

Pseudocode for the BA is shown in Algorithm 2.

Applications

Pham has worked with a number of researchers to show that the BA is capable of solving

a wide range of problems. Some early applications for the BA were heavily focused

on hybrid use with learning algorithms. One combination of hybridisation includes

the use of BA as a method of training an artificial neural network, as in Pham et al.

(2006c) and Pham et al. (2006d), where in the latter a neutral network is developed to

recognise defects in wood (i.e. image analysis). Compared to a traditional technique

for training ANNs (back propagation), the same accuracy is achieved, showing that

BA is a capable technique. Another learning technique benefiting from the inclusion

of the BA is described in Pham et al. (2007d), which again tackles the problem of
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classifying wood defects, this time using a support vector machine (SVM) approach.

Parameters of the SVM are optimised using the BA, providing a considerable increase

in accuracy. A third learning technique, learning vector quantisation (LVQ) networks,

benefit from the use of BA for parameter optimisation in the application of recognising

control chart patterns (Pham et al., 2006a). Again, a noted improvement in learning

accuracy and test accuracy is produced when parameters are optimised using the BA.

Diversifying from the field of machine learning, the BA has also been applied to

problems in the domain of engineering. Initially described in Pham et al. (2007b), the

BA has been used to design welded beams (Pham and Ghanbarzadeh, 2007) and in

the design of cellular manufacturing systems (Pham et al., 2007c).

The BA has also been applied scheduling problems, including job scheduling (Pham

et al., 2007a) - notable, as this shows the BA is also suitable for solving combinatorial

optimisation problems. Compared to a variety of other algorithms (discrete particle

swarm optimisation, tabu search, a genetic algorithm and hybridisations of tabu search

and genetic algorithms), the BA produced better results, and the authors also found

the BA to be more stable and robust than the other algorithms tested.

Other applications include workload balancing (Baykasoglu et al., 2009), assembly

line balancing (Özbakır and Tapkan, 2011) and control systems for robotics (Fahmy

et al., 2012).

2.2.3 Evolution Strategies

Introduction and Origin

ES was primarily formulated in the 60s and 70s, with work including Rechenberg (1971)

and Schwefel (1977) (the latter republished in English (Schwefel, 1981)), providing the

foundation for what has become a rich field of algorithmic exploration (Bäck, 1996;

Beyer and Schwefel, 2002). ES is inspired by the process of evolution as viewed at

the species-level, rather than at the individual-level, and does not concern itself with

the evolutionary mechanics of individuals - that is to say, it ignores the mechanics of

individuals such as genomes, alleles, genes, etc. and instead an “overview” of evolution

is presented.

Fundamentally, an ES algorithm is similar to other evolutionary algorithms. Ini-

tially, a population is generated based on a population size parameter. The population

is usually generated by randomly sampling from all available solutions. In this “vanilla”

form of ES (which is the variant under scrutiny) there are terminological conventions,

as follows: This ES in particular is referred to as the (µ + λ) ES. µ is the number of

parents, λ is the number of children, and the “+” signifies that the next generation is

the best members of both the parents and children, whereas a “,” would indicate that

only the children would be selected to form the next generation.

To generate children, which forms the main process of the algorithm, a parent is

selected using some selection mechanism (this could be as straightforward as always

choosing the best of the current generation as the parent, choosing a random member

14



for population size do
generate random solution;
evaluate fitness;

end
while stopping criteria are not met do

for number of children do
select parent;
generate child solution by mutating parent solution;
evaluate fitness;

end
merge children and parents into one population;
sort merged population by fitness;
select population size best solutions as new population;

end
Algorithm 3: Evolution strategies pseudocode.

of the current generation as a parent, or generating a number of children for each par-

ent proportionally based on the ratio of children to parents in the configuration of the

algorithm). Once a parent is selected, the solution is mutated, generating the child so-

lution. Many of the selection methods for choosing a parent are shared between others

used by other evolutionary algorithms (Goldberg and Deb, 1991). The mutation strat-

egy varies based on the problem representation, and is usually problem specific. For

continuous optimisation, mutation could be assumed as adjusting the parent solution

by a random variation within a given limit. Children and parents are then merged,

with the population size best solutions forming the population for the next generation,

where the process repeats until some stopping criteria is reached. Pseudocode for the

ES is shown in Algorithm 3.

Applications

Much of the work on ES revolves around improvement and adaptation to the algorithm

(Hansen and Ostermeier, 1996; Knowles and Corne, 1999), and investigation into the

way in which the algorithm works . Despite this, ES has found some applications

including the training of artificial neural networks (Mandischer, 2002; Lucas, 2005),

structural design (Papadrakakis et al., 1998; Hasançebi, 2008), vehicle routing problems

(Mester and Bräysy, 2007; Mester et al., 2007; Repoussis et al., 2010) and engineering

problems (Papadrakakis et al., 1998; Kim et al., 2007; Chen and Chen, 2009).

2.2.4 Genetic Algorithm

Introduction and Origin

The oldest and most well-known of the nature-inspired algorithms, GAs have a huge

volume of published work with a large number of applications and variations, and are

often used as a “standard measure” for novel algorithms to compete against. The exact

origin of the GA can be debated, since they existed in theoretical work for some time
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before being put into practice. Many of the theories underpinning GAs stem from

Holland’s work on adaptive systems (Holland, 1962), with Goldberg (1989) providing

what has come to be known as the classical book on GAs.

The inspiration behind GA is population level genetics, mimicking the process of

natural selection, which differs from the macro evolution level inspiration used by ES.

The idea here is that each member of the population “encodes” the solution to the

problem in a structure similar to that of genetic material. In this sense, in terms

of continuous optimisation, a segment of a population member’s DNA may encode a

particular value in a given dimension, for example.

The algorithm execution follows the pattern of a number of generations, with a

number of essential components creating the drive towards an optimal solution. These

components are selection, reproduction (crossover) and mutation, with a number of

different strategies available for each of these components, discussed below. Pseudocode

for a GA is shown in Algorithm 4.

The method of encoding the solution is the first problem a practitioner is faced

with, and there are different encoding strategies that are suitable for different problems

(Herrera et al. (1998)). The two most common representations are binary coded GAs

(Goldberg and Holland, 1988) and real coded GAs (Mühlenbein and Schlierkamp-

Voosen, 1993). In binary coded representation, the solution is represented as a string

of bits, which is decoded appropriately into the solution as required. This method is

simple to implement in terms of the GA, as it fits in with the metaphor; Standard

operators all apply to the string of bits, as this is how the GA was first conceived

to encode a solution. The main drawback of binary coded GAs arises when they are

applied to continuous optimisation, as the length of the string of bits limits the precision

of solution that can be generated, and it is in these instances that a real coded GA may

be used instead. In a real-coded GA, genes are represented directly as real numbers,

thus a chromosome is a vector of floating point numbers. This avoids the need to

“decode” the string of bits, and solves the problem of dealing with precision when

solving continuous optimisation problems. The problem here, however, is that the

implementation of selection, crossover and mutation operators is completely different

to those for binary coded GAs, with new interpretations of the methods for binary

coded GAs required to handle real numbers.

Selection is the process used to choose which of the individuals from the popula-

tion should be used for crossover, and as with all components there are a number of

different selection techniques available to practitioners (Goldberg and Deb, 1991). All

of these selection techniques have one thing in common, and that is to choose the fitter

solutions as parents, echoing the “survival of the fittest” notion of natural evolution.

Common selection techniques include the tournament technique, in which potential

parents “compete” against each other, with the fittest selected - a common implemen-

tation of this being the binary tournament, where two potential parents are selected,

with the fitter of the two being selected.

Crossover defines the method of combining two members of the population to create
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“offspring”, which is then added to the population (and, optionally mutated, as de-

scribed below), with the effect of crossover studied in Mitchell et al. (1992). A common

crossover technique is n-point crossover, in which a number of points (n) are selected

at which to crossover the solution representation from both parents (Eshelman et al.,

1989). In one-point crossover, for example, one point is selected; Anything before that

point is taken from one parent, and anything after from the other. In two point, the

switch between parents occurs twice, and so on. Another popular crossover technique

is uniform crossover (Syswerda (1989)), in which genes are selected from parents on an

individual basis - there is a 50% chance that a gene will be taken from parent one, and

therefore a 50% chance that the gene will instead come from parent two.

Mutation is a key component for ensuring that the population is able to explore

“fresh” solutions, and is based on the natural occurrence of genetic mutation. One of

the simplest techniques for implementing mutation is to “bitflip” the encoded solution

- i.e., iterate through the encoding and, based on a mutation chance parameter a

bit should flip (swap from a zero to a one, or vice versa). Depending on the precise

encoding technique used, mutations may make a major or minor change to the actual

solution.

Parameters control various aspects of the different components, plus the interac-

tion each component has on the algorithm as a whole. The crossover rate controls

the likelihood that crossover occurs (where it doesn’t, one parent is selected without

crossover occurring) and the mutation rate controls the likelihood that individual bits

are flipped when mutation is occurring. Generally, a high probability of crossover and

a low probability of mutation is used, although this is problem dependant.

Applications

As one of the oldest nature-inspired algorithms, and the standard competitive test for

novel algorithms, GAs have been applied to a very diverse range of problems, including

both theoretical problems used for benchmarking and real-world applications.

Among the most common applications are job shop scheduling and timetabling

(Fang et al., 1993; Hou et al., 1994; Cheng et al., 1996; Ross et al., 2003), engineering

problems (Gen and Cheng, 2000), power systems (Nara et al., 1992; Walters and Sheble,

1993; Hassan et al., 2013), training and generating artificial neural networks (Yao, 1999;

Stanley and Miikkulainen, 2002; Nasseri et al., 2008) and control systems (Grefenstette,

1986; Pan et al., 2011).

2.2.5 Harmony Search

Introduction and Origin

The origin of the HS is described in the paper by Geem and Kim (2001). The HS al-

gorithm is suggested to work well for both continuous and combinatorial optimisation

problems, and the proposed algorithm is tested on problems of both types - the trav-

elling salesman problem, the design of a pipeline network, and a continuous function
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for each member of population do
generate random solution;
evaluate fitness;

end
while stopping criteria not met do

for each member of next generation do
select parent1;
select parent2;
if should crossover then

child is crossover of both parents;
else

child is clone of parent1;
end
if should mutate then

mutate child;
end
evaluate fitness;
merge children and parents into one population;
sort merged population by fitness;
select population size best solutions as new population;

end

end
Algorithm 4: Genetic algorithm pseudocode.

minimisation problem. HS outperforms the tested existing techniques on the problems

tried in this paper.

HS is inspired by the process of a group of musicians reaching a harmonious per-

formance while improvising. By listening to the notes produced by each other, and

adjusting the notes they themselves are playing, the sound waves produced by each

individual musician eventually reach a point where they combine in a way such that

they are aurally pleasing. Unlike some of the other selected algorithms, the concep-

tual link to optimisation is perhaps less straightforward. To translate from inspiration

to optimisation, consider each dimension of the optimisation process as an individual

musician, and each note they are currently playing as the value of the variable in that

dimension. When a harmonious sound is produced, the objective function produces a

good fitness value for the given variables.

Adding complexity are the additional levels of inspiration included in HS - one of

which i s “pitch adjustment”. A musician may, when improvising, choose to alter the

pitch of a note rather than opting to play a different note entirely: This is mimicking in

optimisation by selecting a new value for a variable within a parameter-controlled range

of the previous variable, i.e. select a neighbouring value. In this sense, HS implements

a local search, controlled by both the pitch adjustment rate and the method used to

adjust the pitch.

A second imperative feature of HS is the “harmony memory” - a stored collection

of previously played harmonies. When a new harmony is determined, it only enters

harmony memory if it is better than the harmonies in the musician’s memories. This
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for harmony memory size do
generate random solution;
evaluate fitness;

end
while stopping critera are not met do

if should choose from memory then
choose random harmony from memory;
if do pitch adjustment then

adjust solution by range;
evaluate fitness;

end

else
generate random solution;
evaluate fitness;

end
add new harmony to memory;
sort memory by fitness;
remove worst solution from memory;

end
Algorithm 5: Harmony search pseudocode.

harmony memory also serves as a “pool” of promising solutions (similar to the pop-

ulation in swarm-based algorithms) from which candidate solutions can be selected.

The size of the harmony memory controls the greediness of the algorithm, while the

harmony memory consideration rate controls the convergence rate of the algorithm.

Pseudocode for the HS is shown in Algorithm 5.

HS is revisited by Lee and Geem (2005), where its applicability to continuous en-

gineering optimisation is the main topic of discussion. Advertising the benefits over

gradient-based mathematical optimisation techniques (no derivative information nec-

essary), and also the benefits over evolutionary techniques such as GA (consideration

of an entire harmony memory rather than just two parent vectors), claims for the HS

are backed up by strong results on a variety of benchmark problems including both

continuous unconstrained functions, constrained functions and combinatorial problems.

Applications

A comprehensive survey of the applications of HS was presented by Manjarres et al.

(2013).

The largest category of practical applications of HS is in the engineering domain,

with HS for structural optimisation presented in Lee and Geem (2004). The advantage

of using the HS algorithm for these problems is stated as primarily being the lack of

reliance on gradient information and derivative information. A general application to

the design of truss structures is posed, and HS is tested on some benchmark truss-

structure problems against a varying number of competing algorithms, based on the

specific problem. HS outperforms the traditional mathematical optimisation techniques

tested, and simple GA based methods, but failed to outperform a fuzzy controlled GA.
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The authors note that the HS used is in its basic form, and also note that while trusses

are one specific sample of structural optimisation problem, there are many more for

which it may prove a capable optimiser.

Stemming from this, the HS has been applied to the related problems of: designing

steel sway frames (Saka, 2009), cellular beam design (Erdal et al., 2011), the design of

shell and tube heat exchangers (Fesanghary et al., 2009), and multi-pass face-milling

(Zarei et al., 2009).

Like BFOA, another large area of application for HS is power systems. The first

application to a power systems problem appears in Coelho and Mariani (2009), ap-

plying HS to power economic load dispatch. HS (and a modified version proposed)

both converge to good solutions, notably out-performing PSO and performing sim-

ilarly compared to variants of a GA. HS has also been applied to combined heat

and power economic dispatch problems (Vasebi et al., 2007; Khorram and Jaberipour,

2011), once again outperforming a GA, particularly when some adaptations are made

to the algorithm to better accommodate problem-specific knowledge.

Other areas of note include water management (Geem, 2006; Tamer Ayvaz, 2009),

and robotics (Tangpattanakul and Artrit, 2009; Tangpattanakul et al., 2010).

2.2.6 Particle Swarm Optimisation

Introduction and Origin

PSO is another major nature-inspired algorithm, first proposed by Kennedy and Eber-

hart (1995); Eberhart and Kennedy (1995) for optimisation of continuous functions.

Swarming (or flocking) as exhibited by birds, fish, herds and even humans is a

behaviour believed to improve the process of “climbing gradients” (Grünbaum, 1998).

This social behaviour forms the basis of the exploratory pattern in PSO, which is based

on similar rules to those proposed by the artificial swarming that kick-started the field

of agent-based modelling (Reynolds, 1987). In this sense, the metaphor here does not

apply directly to the process of optimisation but rather, to the exploration pattern

used to carry out the process of optimisation.

To create the swarming behaviour, particle positions are updated based on three

factors: Their current velocity, their personal best position and the global best posi-

tion. The personal best represents an individual’s personal experiences, and the global

best signifies the concept of ‘publicized knowledge’. A preference to rely on personal

experience over group experience (or vice versa) is controlled using parameters.

Pseudocode for the PSO is shown in Algorithm 6.

Applications

In the review by Poli (2008), applications of PSO are divided roughly into categories.

The largest area of application for PSO, according to this study, is in image and

video analysis. One noted application is the inversion of ocean colour observations

(Slade et al., 2004), in which improved results over a GA are noted and improvements
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for each particle do
generate random solution;
evaluate fitness;
store fitness as personal best;
if global best then

update global best;
end

end
while stopping criteria not met do

for each particle do
update velocity;
update position;
evaluate fitness;
if personal best then

update personal best;
end
if global best then

update global best;
end

end

end
Algorithm 6: Particle swarm optimisation pseudocode.

in computation time and a lack of sensitivity to parameters are also commented upon.

Another application in the image and video analysis field includes biomedical image

registration (Wachowiak et al., 2004), where eight slightly different variants of the PSO

are tested against seven slightly different variants of ES. The efficacy of using PSO

for image registration is noted, although the performance of ES is also good. Also

in the image analysis field, PSO has been used as a solution to the inverse scattering

problem arising in microwave imaging applications (Donelli and Massa, 2005), again

outperforming a GA.

‘Control’ applications also form a large portion of PSO’s applications, which in-

cludes the design of proportional-integral-derivative (PID) controllers (Gaing, 2004),

where it outperforms a GA, control of power plants (Heo et al., 2006) and reactive

power and voltage control (Yoshida et al., 2000), where PSO shows promising results.

The third largest application area for PSO is distribution networks. Specifically

mentioned are the problems of network reconfiguration and expansion (Kannan et al.,

2004), where PSO (and variants) outperforms a more traditional technique (dynamic

programming) and economic dispatch (Gaing, 2003; Park et al., 2005; Selvakumar and

Thanushkodi, 2007).

Note that this study only includes papers from the IEEE Xplore database, and

so is limited in scope (including roughly 700 papers), but as an overview of the field

the authors suggest this is adequate. They comment on the success of PSO in such a

wide range of different application fields, owing to PSO’s simplicity, ease of adaptation

and capability of hybridisation. Finally, the authors comment that possibly the least

successful field PSO has been applied to is combinatorial optimisation, with more work
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needed to adapt the PSO for combinatorial optimisation problems over continuous

optimisation.

A later survey (Sedighizadeh and Masehian, 2009) finds similar results, with the

largest area of application categorised as ‘electrical engineering.’ This covers electricity

generation and power systems (Del Valle et al., 2008), design and control of neural

networks (Gudise and Venayagamoorthy, 2003) and, as found by the previous study,

control applications. The area of data clustering (Van der Merwe and Engelbrecht,

2003) and data mining (Sousa et al., 2004) is found to be a much larger area by this

study than the previous.

2.3 Summary

In this Chapter, the existing literature on six nature-inspired algorithms has been

explored, looking at the origin, inspiration and applications of the algorithms used

throughout this thesis. This provides a fundamental underpinning of the basics of

each algorithm, which enables the use of these as the test algorithms for the remainder

of this study. In the next Chapter, a methodology is proposed which uses a fitness

landscape generator to further the understanding of the capabilities of these algorithms,

by analysing their performance in relation to landscape characteristics.
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Chapter 3

Methodology

3.1 Introduction

Inspired by the foundational work of Wolpert and Macready (1997), practitioners have

long sought to better understand the relationship between problems and solution meth-

ods (i.e., algorithms). Here, the question of interest is “Which algorithm is best-suited

to a particular problem?”, and the process of addressing this has been described by

some as a “black-art” (Woodward, 2010).

Although theoretical studies in this area have yielded useful results, the experimen-

tal analysis of algorithms is receiving increasing attention. As Morgan and Gallagher

(2010) point out, this approach is scalable in that it readily admits newly-described al-

gorithms, and it is now an area of research that is supported by a number of high-profile

competitions and libraries of benchmark test problems.

The fundamental properties of a problem’s search landscape underpin much work

in experimental analysis, and the use of landscape/test case generators (Gallagher and

Yuan, 2006; Jani, 2008; Morgan and Gallagher, 2010; Jin, 2004; Michalewicz et al.,

2000) has been proposed as one way in which algorithm designers might effectively

assess algorithms against problem instances.

This methodology is based on an experimental approach (Barr et al., 1995) to

studying the selected algorithms, using an established landscape generation technique

(Gallagher and Yuan, 2006). As Morgan and Gallagher observe, “In a general sense, an

algorithm can be expected to perform well if the assumptions that it makes, either ex-

plicit or implicit, are well-matched to the properties of the search landscape or solution

space of a given problem or set of problems” (Morgan and Gallagher, 2010). It is the

objective, therefore, to investigate the performance of several algorithms on a number

of types of fitness landscape with specific properties or characteristics. This approach

is preferred by Hooker to the use of benchmark problems, because the latter “differ in

so many respects that it is rarely evident why some are harder than others, and they

may yet fail to vary over parameters that are key determinants of performance. It is

better generate problems in a controlled fashion... The goal is not to generate realistic

problems, which random generation cannot do, but to generate several problem sets,

each of which is homogeneous with respect to characteristics that are likely to affect
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performance” (Hooker, 1995).

In this Chapter, a generalised methodology is introduced which gathers a compar-

ative dataset on algorithm performance. This methodology is used throughout the

thesis, in Chapters 4 through 6, with some variation described in the individual Chap-

ters. Firstly, a rationale to the approach is presented by exploring the background (and

possible alternatives) to the techniques used in this methodology, before describing the

facets of the methodology in detail in the remainder of the Chapter.

3.2 Background

3.2.1 Introduction to Fitness Landscapes

Evolutionary biology provides the fundamental foundations on which many concepts

of optimisation arise, with the fundamental work of Sewall Wright providing the core

details borrowed in optimisation today. The highly mathematical approach to evo-

lutionary principles (Wright, 1931) led Wright to introduce the notion of what would

eventually be called fitness landscapes (Wright, 1932). Wright suggests that by plotting

every possible gene combination, a representation of the “fitter” gene combinations be-

comes viewable, as seen in Fig. 3.1. With this concept, the first instance of a “fitness

landscape” exists - that is, a depiction of all possible gene combinations, represented in

a way such that “fitter” combinations are shown as peaks, and “less fit” combinations

are depicted as valleys. Wright goes on to describe the process of evolution as one of

traversing the landscape in an attempt to climb to the highest peak, and neatly posits

the problem of local optima by describing a species stuck at a “fit” peak, surrounded

by valleys, while a fitter peak may lie unreachable in the landscape beyond. Wright

then goes on to suggest methods in which species may overcome this to find these

fitter peaks, although for the purposes of this work, the notion of a fitness landscape is

the interesting point, although these concepts are used in the development of various

evolution-based nature-inspired algorithms.

Figure 3.1: Wright’s interpretation of a fitness landscape, as seen in Wright (1932).
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To relate this concept to optimisation, consider that instead of representing each

combination of gene combinations, and the fitness of a species, a fitness landscape is

designed such that instead of gene combinations, each combination of potential values

for each variable is used, and their fitness as calculated by the objective function. In this

way, a fitness landscape is generated, identical in purpose to those used in evolutionary

biology, and the same concept can be applied (that is to say, optimisation can be seen

as the process of traversing this landscape in an attempt to find the highest peak or

lowest valley) as a helpful way to both visualise an optimisation problem, and offer a

useful perspective on solving optimisation problems.

3.2.2 No Free Lunch Theorem

The No Free Lunch (NFL) theorems, posed by Wolpert and Macready (1997), establish

that for any given algorithm, better performance on one class of problem comes at the

cost of decreased performance on another class of problem, and this has a variety of

implications, discussed in this section.

There are two NFL theorems: The first states

∑
f

P (dym|f,m, a1) =
∑
f

P (dym|f,m, a2). (3.1)

Essentially, “... what an algorithm gains in performance on one class of problems is

necessarily offset by its performance on the remaining problems ...” - i.e. if an algorithm

is better than random search at one class of problems, it must suffer (using the same

measure of performance) in another class of problems, on other classes of problems,

on average. Another way of viewing this is to consider that there can be no one best

algorithm in any given instance, and this is a crucial concept. When algorithms are

proposed, as discussed previously, a small sample of performance is demonstrated, and

this does not offer robust insight into their performance across a range of classes to a

practitioner; Indeed, classes are usually selected that show an algorithm in its best light.

A practitioner may select an algorithm, based on some sample benchmark problems,

that is wholly inappropriate for the class of problems they are trying to solve, and if

an algorithm is truly novel, then there are no further performance details available for

this algorithm.

The second NFL theorem states “... if one algorithm outperforms another for

certain kinds of cost function dynamics, then the reverse must be true on the set of

all other cost function dynamics.” This theorem is interesting only for time-dependent

situations, which are outside the scope of this study, but offers further insights into

the differentiation between algorithms in terms of performance and the necessity of

providing complete information about performance across a complete set of problem

classes.

With the ideas presented by the NFL theorems in mind, it becomes increasingly

clear that there is a need to focus on the problem of algorithm selection (Rice, 1976),

as selecting the wrong algorithm for the problem to be solved could leave a practitioner
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in a position where they are using an algorithm that offers poorer performance than a

random search. A necessity for algorithm selection is to use any information possible

from the problem to inform the algorithm selection process, and using information

gained from the fitness landscape is one such way to do so.

3.2.3 Fitness Landscape Analysis

The fitness landscape approach has been successfully applied to the study of vari-

ous nature-inspired algorithms. There exists a large body of work on fitness landscape

analysis for evolutionary algorithms, particularly in the domain of discrete (or combina-

torial) optimisation problems. Merz (2000) focusses on landscape ruggedness (defined,

in this instance, in terms of the number of local optima, the distribution of these op-

tima in the search space and the correlation between neighbouring points in the search

space) in the context of a specific combinatorial optimization problem (Quadratic As-

signment). As this approach does not use a landscape generation technique, the authors

use a range of techniques for analysing fitness landscape hardness, such as the random

walk correlation function (Weinberger, 1990) and the fitness distance correlation coeffi-

cient (Jones and Forrest, 1995), and relate these difficulty measures to actual algorithm

performance. They find that combining several fitness landscape analysis techniques

together can offer insights into the selection of evolutionary operators in memetic al-

gorithms, and suggest that more efficient hardness measures would be beneficial in

designing these operators.

Tavares et al. (2008) describe similar work, this time using the Multidimensional

Knapsack problem as the case study. By using similar measures of fitness landscape

hardness as in Merz (2000), the authors describe changes in performance obtained by

altering components of an evolutionary algorithm (such as the problem representa-

tion). Their findings highlight the importance of selecting correct components of an

evolutionary algorithm for a given problem, and the use of fitness landscape analysis

is used mainly to explain performance differences.

It is possible to adapt these hardness measures for continuous function optimisa-

tion, as shown by Uludag and Sima Uyar (2009). Here, the fitness distance correlation

coefficient and correlation length are adapted for continuous search spaces in an at-

tempt to describe the hardness of a continuous fitness landscape and the behaviour

of differential evolution algorithms. The authors determine that the new measures

are capable of describing algorithm performance when the landscape does not contain

sharp ridges, is not deceptive and is not unimodal with a large basin of attraction.

They suggest that additional hardness measures are required to fully analyse all kinds

of landscapes.

Malan and Engelbrecht (2009) propose a metric for ruggedness of continuous land-

scapes. Importantly for this work, the authors stress the importance of a combined

approach, in which multiple characteristics of a landscape are considered. Using a ran-

dom walk, an estimate of the number of local optima (i.e., the multimodality of the

landscape) is made, an approach similar to that taken for discrete landscapes. While
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this work focuses on the ruggedness of landscapes, it highlights that fact that, in terms

of hardness measures, there still exist many unexplored characteristics of landscapes.

3.2.4 Fitness Landscape Generators

While it is interesting to look at the relationship between fitness landscape hardness

and intrinsic hardness of the problem, another approach exists. Rather than analysing

landscapes to determine a meaningful representation of difficulty, another approach

uses randomly generated landscapes, which capture a set of pre-determined charac-

teristics. By analysing the performance of algorithms on these randomly generated

landscapes, the intention is to effectively ‘reverse-engineer’ the problem, associating

algorithm performance with specific characteristics of landscapes rather than simply a

‘hardness measure’.

The NK Model

Several techniques exist to generate fitness landscapes, with one of the most widely

known being the NK model (Kauffman and Levin, 1987; Kauffman and Weinberger,

1989), a method for generating tunable NP-complete (Wright et al., 2000) combinato-

rial optimisation problems. A solution representation to a problem in the NK model

is made up of a string (of length N), made up of values from a pre-defined set. The K

value defines how many other characters in the string the fitness calculation relies on

(that is to say, is the fitness calculation based on substrings). To give an example, an

NK problem with an N of 3 and a K of 1 would have a fitness function which, in order

to calculate the fitness for a given string, used the substrings (0, 1), (1, 2), (2, 3) and

(3, 0). The NK model itself does not impose a specific fitness calculation, rather this

is down to the specific implementation (and thus follows the distance measure chosen

to create the associated fitness landscape) usually as a function, or lookup table, map-

ping each potential substring combination to a specified fitness value. The fitness of a

complete string is then the total value of all its substrings.

A variant of the NK model, the NKp model (Barnett, 1998), offers a probability

(p) that certain substring patterns make no contribution to the overall fitness of the

string (i.e. a percentage of the substrings, proportional to p, have a fitness value of

zero). Another variant, the NKq model (Newman and Engelhardt, 1998), defines a

fixed number of “levels” (q) that the fitness values for each substring can take (i.e. if

q is 2, substring fitness values will be polarised to 0 and 1, rather than the standard

NK landscape where fitness values tend to be continuous in the range 0 to 1). A

comparison of the effect of using NKp or NKq landscapes in place of NK landscapes on

search is performed by Geard et al. (2002), who conclude that NK and NKq landscapes

have similar search functionality, though NKq landscapes exhibit more “ridge-like”

properties. NKp landscapes differ more significantly, however, due to large areas of

neutrality (i.e. lack of gradient information).

Merz and Freisleben (1998) use the NK model to analyse the effectiveness of evo-
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lutionary search strategies, in high dimensional problems. The findings stress the

importance of using landscape generators like this; highlighting that previous stud-

ies have focused on small sets of test problems. Specifically, the results indicate that

differences in performance of the algorithms studied are not highlighted in small di-

mensional problems (the sizes usually included in the previously used test sets) and

only by using a landscape generation technique have they been able to study problems

which emphasise the difference in performance of these algorithms.

Pelikan et al. (2009) also use a slightly modified version of the NK model as a

method for analysing the performance of evolutionary algorithms, relating the genera-

tion parameters (n, k and, in their version of the model, step) directly to performance

as a method of characterising the algorithms tested.

The Max-Set of Gaussians Method

A more recent technique, proposed by Gallagher and Yuan (2006), is the Max-Set of

Gaussians landscape generator, as a potential technique for improving the experimental

analysis of algorithms (Bartz-Beielstein, 2003). Differing from the NK Model, this

technique generates continuous optimisation problems.

A number of Gaussians are generated, according to the n -dimensional Gaussian

function

g(x) = [
1

(2π)
π
2 |
∑
| 12

exp(−1

2
(xxx− µµµ)

−1∑
(xxx− µµµ)T )]

1
n (3.2)

where µµµ is an n-dimensional vector of means and
∑

is an (n × n) covariance matrix.

A Gaussian function is, in this sense, described as “... an n-dimensional ‘bump’ or

hill.” Gallagher and Yuan then explain that a set of Gaussians can be combined as a

weighted sum in a function, but for the purposes of generating a fitness landscape, the

interest is not in the sum, rather the maximum Gaussian at any given point. Thus,

the landscape is generated using the following:

G(x) = max
i

[wigi(x)]. (3.3)

where w is the amplitude of each hill - essentially, the scaling of each hill. A sample

landscape generated using this technique is shown in Fig. 3.2.

Gallagher and Yuan (2006) go on to demonstrate that their technique is capable

of generating landscapes of varying difficulty by tracking the behaviour of test algo-

rithms across landscapes of varying designs, and observing differences in performance.

Although they note that this is not a thorough comparative study, they suggest this

signifies that the landscapes generated do provide different search patterns for the al-

gorithms, and are therefore suitable for potential use as a test-bed when analysing

algorithms.

This technique has been used successfully by Nannen et al. (2008) to examine the

costs and benefits of tuning parameters for evolutionary algorithms. This work uses
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(a) Surface plot. (b) Contour plot.

Figure 3.2: Example 2-D landscapes, shown in Gallagher and Yuan (2006), to illustrate
the max-sum of Gaussians landscape generator.

the landscape generation technique to provide randomly generated problems, across

four different problem sets, with varying degrees of structure, i.e. the structure of the

landscape here is varied, rather than the specific characteristics used to generate the

landscape, and results are taken as a whole, rather than analysed on a per-set basis.

The effect of choosing different operators is analysed, alongside the interaction between

different operators, and then the effect of tuning the parameters related to the various

operators is also examined. Results show that the choice of operator for one component

largely depends on the choice for other components, with the choice for selection having

the biggest impact on performance, and tuning cost varied depending on the overall

setup of the algorithm.

Morgan and Gallagher (2010) expand on the methodology, by incorporating a ridge

structure generation process into the MSG technique. In doing so, a comparative ex-

perimental methodology is also proposed. Firstly, the technique for generating the

ridge is illustrated, with an additional parameter added to the landscape generation

technique - the angle of the ridge, and it is this parameter under investigation. The

experimental methodology proposed is to generate a number of landscapes with fixed

characteristics, barring that under investigation (angle of ridge), which varies between

a range (in this case, 0 to 45 degrees, in increments of 5). The performance of two

algorithms is trialled on a number of randomly generated landscapes at each of these

landscape characteristic values, and plotted, to determine the effect varying this char-

acteristic has on algorithm performance. It is noted that one of the benefits of using

this technique is being able to recreate specific landscapes, allowing for examination of

specific landscapes where results were unexpected.

This technique for generating landscapes forms the basis for the analytical method,

with the parameters used to generate the landscapes as the cornerstones for the fitness

landscape characteristics. A more in-depth review of these characteristics, including

their effect on optimisation problems (Section 3.3.2) and on the various algorithms

(Section 4.2) can be found in the following Sections.
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3.3 Methodology Design

3.3.1 Algorithm selection

A number of nature-inspired algorithms that are commonly applied to continuous func-

tion optimisation are selected for comparison. These may be classified (Brabazon and

O’Neill, 2006) as either social, evolutionary or physical:

• Social Systems

– Bacterial Foraging Optimisation Algorithm (BFOA) (Passino (2002))

– Bees Algorithm (BA) (Pham et al. (2006b))

– Particle Swarm Optimisation (PSO) (Kennedy and Eberhart (1995))

• Evolutionary Computation

– Genetic Algorithm (GA) (Goldberg (1989))

– Evolution Strategies (ES) (Bäck and Schwefel (1993))

• Physical Systems

– Harmony Search (HS) (Geem and Kim (2001))

Also included are Random Search (RS) and Stochastic Hill Climbing (SHC) as

“baseline” algorithms.

Note that the references supplied above for each algorithm may serve simply as

an example of their application, rather than their precise implementation. In terms of

implementation, the observation that “Ideally, competing algorithms would be coded by

the same expert programmer and run on the same test problems on the same computer

configuration” (Barr et al., 1995) is observed. With that in mind, implementations

provided by Brownlee to accompany Brownlee (2011) are used.

3.3.2 Optimisation problem characteristics

As Morgan and Gallagher (2010) explain, their Max-Set of Gaussians (MSG) method

(Gallagher and Yuan, 2006) is a “randomised landscape generator that specifies test

problems as a weighted sum of Gaussian functions. By specifying the number of Gaus-

sians and the mean and covariance parameters for each component, a variety of test

landscape instances can be generated. The topological properties of the landscapes are

intuitively related to (and vary smoothly with) the parameters of the generator.”

By manipulating these parameters, landscapes with different characteristics are

obtained. This allows us to investigate the performance of the selected algorithms on

landscapes with different features, and to identify which characteristics pose the great-

est challenge. As Morgan and Gallagher observe, “Different problem types have their
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own characteristics, however it is usually the case that complementary insights into

algorithm behaviour result from conducting larger experimental studies using a variety

of different problem types” Morgan and Gallagher (2010). The different characteristics

(corresponding to problem types) under study are now described.

Ruggedness of a landscape is often linked to its difficulty (Jones and Forrest, 1995),

and factors affecting this include (1) the number of local optima (Horn and Goldberg,

1994), and (2) ratio of local optima to the global optimum (Malan and Engelbrecht,

2009; Merz, 2000). Other significant factors concern (3) dimensionality (Hendtlass,

2009) (that is, the number of variables in the objective function), (4) boundary con-

straints (that is, the limits imposed on the value of a variable) Kukkonen and Lampinen

(2005), and (5) smoothness of each curve making up the landscape (Beyer and Schwefel,

2002). Each of these characteristics are now described in more detail.

Number of local optima

This characteristic has long been considered one of the greatest challenges for opti-

mization. If a landscape is made up of only one curve, the landscape is unimodal with

no local optima. Each additional curve in the landscape introduces a local optimum,

creating landscapes with increasing modality. The range chosen for number of local

optima begins at one (starting at a unimodal landscape) and increases to ten, with

three local optima as the default value when investigating other characteristics.

Ratio of local optima to global optimum

As the ratio approaches one, local optima become increasingly “attractive” to optimi-

sation algorithms. A full range of values is investigated for this characteristic, from

0.1 (ignoring zero, as this would completely remove local optima) to 0.9 (ignoring 1,

as this would make the local optima effectively equal to the global optimum). Prelimi-

nary experiments suggested an appropriate step size of 0.2, balancing information loss

against computation time. A default value of 0.5 was used when other characteristics

were investigated.

Dimensionality

The so-called “curse of dimensionality” (Bellman, 1972; Michalewicz and Janikow,

1992) refers to the challenge posed by a search space that expands in multiple dimen-

sions (i.e., that grows exponentially with the addition of extra variables). Preliminary

experiments suggested an upper bound of ten dimensions for effective comparison, after

which performance degraded beyond the point of usefulness for most of the algorithms

under test. Landscapes with dimensionality in the range 1–10 are tested, with a default

value of 2.
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Table 3.1: A summary of the ranges selected for the characteristics in the fitness
landscapes.

Characteristic Min Step Max Default

Number of local optima 0 1 9 3

Ratio of local optima to global optimum 0.1 0.2 0.9 0.5

Dimensionality 1 1 10 2

Boundary constraint range 10 10 100 30

Smoothness Coefficient 10 10 100 15

Boundary constraints

Boundary constraints define the range of each variable in an objective function. The

way in which algorithms handle these boundary constraints can have a great impact

on performance (Kukkonen and Lampinen, 2005). Constraints are often closely linked

to a specific parameter in most algorithms, and for this reason there is only a certain

amount of adjustment is it possible to make before algorithms start to struggle with

no varied parameterisation. For this reason, a relatively small range of ten units to

one hundred units in each dimension is chosen, increasing in steps of ten, and thirty is

used as the default value.

Smoothness

“Smoothness” is defined as a coefficient controlling the gradation of each curve making

up a landscape (Beyer and Schwefel, 2002). As this coefficient increases, curves become

steeper, generating a landscape with larger “barren” areas (with no useful gradient

information) and a much steeper slope for each optimum. Preliminary experiments

showed little change in general algorithm performance with changes in the smoothness

coefficient, so a broad range was chosen, with a lower limit of 10 and upper limit of

100, increasing the coefficient in steps of 10. For the default, a coefficient of 15 is used,

which provides “interesting” landscapes with good coverage of gradient information,

whilst not disadvantaging gradient-reliant algorithms too much when the smoothness

characteristic is not under consideration. This characteristic is related to ruggedness

by reference to the distribution of optima. While the MSG method offers no direct

control over the precise placement of local optima, the smoothness of the curves is

directly related to the amount of space these curves occupy on the landscape. With

a small smoothness coefficient the curves occupy a larger proportion of the fitness

landscape, in turn providing more gradient information around the optima.

A summary of the ranges selected for each characteristic is given in Table 3.1.

Sample landscapes generated at the extremes of each range are also shown in Fig. 3.3.
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(a) Single optimum (b) Ten optima (c) 0.1 optima ratio (d) 0.9 optima ratio

(e) Range =10 (f) Range =100 (g) Smoothness coeffi-
cient=10

(h) Smoothness coeffi-
cient=100

Figure 3.3: Illustrations of sample landscapes generated at the extremes of each char-
acteristic range (from top: number of local optima, local optima ratio, boundary con-
straints, smoothness (dimensionality=2 in all cases) . Captions describe the parameter
that was altered, all other parameters set to default values.

3.3.3 Performance measurement

In terms of performance metrics, algorithm-specific measures have been abstracted

away from, due to the diverse range of methods selected. The following metrics are

applied:

Accuracy

Defined as the average distance from the global optimum of the best solution found

on a given set of landscape characteristics, over a number of runs (that is, the average

error). This is the most commonly-used assessment metric for optimisation algorithms

(Gallagher and Yuan, 2006) . The generation technique used creates landscapes with

a known global optimum (zero), which permits a precise assessment of an algorithm’s

performance.

Variation of final solutions

A measure of variation in best solutions found across differently seeded runs. The

standard deviation of the best solutions of all runs on a given set of landscape charac-

teristics is used, defined as ( 1
n−1

n∑
i=1

(xi − x̄)2)
1
2 (where X is the data set, n is the size

of the data set and x̄ is the mean average).

Success rate

Defined as the frequency with which differently-seeded runs of an algorithm are able to

find a solution within a specified distance from the optimum (Elbeltagi et al., 2005).

The success tolerance is chosen to be relatively low (error less than 1.0×10−4) in order
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to ensure that changes in success rate of algorithms which perform poorly are fully

encapsulated by the results.

3.3.4 Experimental setup

In order to generate the landscapes, the Matlab code supplied with Gallagher and

Yuan (2006) is used. All landscapes were generated using default parameters of three

curves, two dimensions, 0.5 average ratio of local minima to global minimum, 30 units

in each dimension with a smoothness coefficient of 15), with only the parameter under

investigation changing for each experiment. Each algorithm was executed 100 times

on each landscape in the set of landscapes generated for each particular characteristic

value (when investigating smoothness, for example, 1000 landscapes were generated,

100 different landscapes for each parameter configuration (smoothness = 10 . . . 100),

and each algorithm executed 100 times on each landscape). The Ruby implementations

of each algorithm were taken from the repository associated with Brownlee (2011) -

code was added to each one to track the number of objective function evaluations, and

- where necessary - code was slightly modified for continuous optimization.

Parameterisation of algorithms provides a significant challenge when evaluating

performance. The aim is not to perform “competitive testing” Hooker (1995), but to

establish general performance profiles for different algorithms over different types of

problem. As such, the so-called “vanilla” implementation of each algorithm was used,

with general-purpose settings. For parameters that are unique to a specific algorithm,

the default values specified in the codebase were used (see Table 3.2 for a full list of

parameters used).

Termination criteria were also standardised. The most objective criterion is the

number of objective function evaluations. This means each algorithm has access to

the same amount of information from the landscape, and the same amount of feedback

on potential solutions. Experimentally, it was determined that the selected algorithms

generally converged within 20,000 objective function calculations, so this was used as

the termination criterion.

The code used for all algorithms, as well as datasets and the landscape generator,

is available on request from the authors.

3.4 Summary

The methodology proposed in this Chapter allows for the gathering of performance

data on algorithms that is non-specific to a particular benchmark problem and instead

highlights the strengths and weaknesses of an algorithm with relation to characteris-

tics of a problem. Many facets of the methodology can be changed to accommodate

particular questions; The algorithms are by no-means fixed and are not restricted to

nature-inspired optimisation algorithms, the set of characteristics (and indeed, the

problem generator) can be swapped out for another, and the measures used to assess
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Table 3.2: Parameter values for the selection of algorithms.

Harmony Search Particle Swarm
Optimisation

Evolution Strate-
gies

Range 10 Maximum veloc-
ity

10 Population size 50

Memory size 50 Population size 50 Number of chil-
dren

20

Consideration
rate

0.95 Personal best
weight

2 Strategy muta-
tion

Off

Adjustment rate 0.7 Global best
weight

2

Bees Algorithm Bacterial Foraging
Optimisation Algo-
rithm

Genetic Algorithm

Number of bees 50 Step size 0.1 Population Size 50

Patch size 10 Population size 50 Bits per variable 16

Number of sites 3 Swim length 3 Crossover proba-
bility

0.95%

Number of elite
sites

1 Elimination
chance

0.25% Mutation proba-
bility

1
totalbits

Number of elite
bees

7 Attractant
depth

0.1

Number of other
bees

2 Attractant
width

0.2 Stochastic Hill-
Climbing

Repellent height 0.1 Range 10

Repellent width 10

Chemotactic
steps

50

Reproduction
steps

2
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the algorithms can also be reconsidered.

To assess the potential usefulness of the methodology as depicted here, the remain-

der of this thesis explores the three research questions posed at the outset, using the

methodology. In Chapter 4, the viability of the method for collecting performance

profiles of an algorithm is assessed. In Chapter 5, the methodology is used as a way

of establishing whether there is a meaningful performance improvement in using auto-

mated parameter tuning techniques for the various algorithms and, finally, in Chapter

6, the methodology is used to generate datasets for learning algorithms as a possible

technique for predicting algorithm performance.
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Chapter 4

Performance Analysis Using Fitness

Landscape Characteristics

4.1 Introduction

In the previous Chapter, a methodology was proposed which allows for the gathering of

performance data of algorithms based on fitness landscape characteristics, as opposed

to specific benchmark problems. The first question posed by this thesis is: “To what

extent can fitness landscape characteristics be used to establish a performance profile

of an algorithm, and thus distinguish between different algorithms in terms of perfor-

mance?” and, therefore, this Chapter explores whether the methodology proposed is

suitable for generating algorithm performance profiles for the set of algorithms selected

for study.

The remainder of this Chapter is organised as follows: in Section 4.2 there is an

examination of the properties of the selected algorithms, which suggests likely algo-

rithms of the analytical methodology proposed in Chapter 3.3. The methodology is

then used to obtain performance profiles, which are presented in Section 4.3, which are

summarised with a concluding discussion in Section 4.4.

4.2 Expected Results

In work exploring the practicality of using optimisation algorithms for given problems

there is speculation and assertion regarding algorithm performance on specific prob-

lems. In this section, an analysis of this literature assesses which algorithms are likely

to perform well under certain combinations of characteristics.

Increasing the size of the problem space provides a more difficult fitness landscape.

Specifically in the case of these randomly generated landscapes, the problems provided

are two-fold: The space is larger, thus requiring more exploration to find an optimal

solution, and similarly, a larger area of the problem is ‘flat’, providing less information

for algorithms which rely on the gradation of the landscape to optimise.

The algorithms included in this study have different ‘coping mechanisms’ for the
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increase in size of problem spaces, which will now be briefly discussed.

One strategy for ensuring that an algorithm is searching for promising solutions is

to produce new solutions from within a smaller range of the current best solution -

most commonly referred to in algorithmic terms as a maximum step size (expressed as

a distance - in the case of continuous optimisation, this is usually Euclidean distance).

It is important to note that in the algorithms selected, this is always considered as a

maximum, and not an absolute value. This ensures that solutions can be chosen from

anywhere within an infinitesimally small distance from the current best solution, up to

the maximum step size. Algorithms which employ this technique are the Bees Algo-

rithm (BA) (referred to as patch size), Particle Swarm Optimisation (PSO) (referred

to as maximum velocity), Harmony Search (HS) (referred to as range) and Bacterial

Foraging Optimisation Algorithm (BFOA) (referred to as step size). The advantages

(and disadvantages) of including a step size parameter in each algorithm are discussed

in the proposal of each algorithm, with references found in Chapter 2.

The obvious downside of limiting new solutions to a certain area within the fitness

landscape is that the current best solution may not be in an area where the actual

best solution is (i.e. the algorithm may be trapped in a local optima). Some of

the algorithms under investigation in this study have additional coping mechanisms to

counter this - with the added benefit that, if the step size parameter is inappropriate for

a given problem space size, the algorithm is not hindered too much. The BA performs

a global search at each step of the algorithm (described as ‘scout bees’ - essentially,

random solutions from anywhere within the fitness landscape are included in the new

population, in addition to those from promising regions) and this should allow the BA

to cope well with varying boundary constraint ranges while the step size parameter

remains constant (Pham and Castellani, 2009). The BFOA has elimination-dispersal

events (in other words, solutions can be randomly redistributed throughout the fitness

landscape at periodic intervals), which attempts to ensure that the fitness landscape is

fully explored regardless of both local optima and also inappropriate step sizes being

chosen (Chen et al., 2008).

Other algorithms under study here draw from the fitness landscape without restric-

tion, or by adjusting the current solution (without regarding topological information

such as distance). Of particular note, the Genetic Algorithm (GA) in this study func-

tions differently from the other algorithms as it is binary-coded, rather than real-coded.

The parameter in the GA that controls the granularity of exploration is the number of

bits used in the encoding. A larger number of bits allows for a fine-grained exploration

of the fitness landscape, while a smaller number of bits means less possible solutions

can be found (and, therefore, less precise solutions - and less gradient information can

be obtained). If the parameters are kept constant as problem space size increases (as

they are in this Chapter), the increase in problem space suggests that the GA (or any

other binary-coded algorithm) can obtain less information, and provide less precise

solutions, and may be hampered severely. This is one of the main problems with using

binary-encoded solutions for continuous optimisation (Goldberg and Holland, 1988).
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Increased dimensionality offers the greatest challenge for optimisation algorithms

as each additional dimension increases the search space exponentially. For this reason,

it is expected that all algorithms show greatly decreasing performance as the number

of dimensions increases, with algorithms which can explore a large space quickly (i.e.

algorithms that generate large pools of solutions) offering the best resilience towards

increased dimensionality. BFOA is dubbed as an algorithm in which the performance

heavily decreases as the search space grows (Chen et al., 2008), and as such it is ex-

pected that algorithms exhibit poor performance as dimensionality increases. Algo-

rithms which can explore a search space efficiently and quickly are expected to cope

best with the increase in dimensionality. Such algorithms include BA which has a

constant global search alongside a local search (Pham and Castellani, 2009). PSO also

claims to rapidly explore a search space and should therefore be able to cope with the

increase in dimensionality (Eberhart and Shi, 2001).

It is expected that algorithms which are more robust, that is, less sensitive to

parameter tuning, should be able to cope with the increased size in each dimension.

HS has few parameters to adjust, with some versions of the algorithm not offering any

parameterisation at all (Wang and Huang, 2010). Offering a high level of diversification,

a wide and efficient search and refinement of local solutions (Yang, 2009), it is expected

that the HS may perform well as search space size increases. BA has many parameters,

but according to Pham’s work after the initial publication, the algorithm is very robust

- the algorithm is insensitive to parameter changes (Pham and Castellani, 2009). Given

this, it is expected that the BA may also perform well. Each individual in the PSO

algorithm is described with a “... tendency to hurtle past their target.” Overshooting

a destination will promote excellent exploratory search within the algorithm, and as

such PSO is expected to perform well at larger problem sizes (Kennedy and Eberhart,

1995). It is possible that smaller problem sizes may prove difficult for PSO - if such

overshooting extends the potential solution beyond the bounds of the problem, the

exploration may become ‘stuck’ around the edges of the problem space.

Fig. 4.1 shows the exploration pattern of the selected algorithms attempting to

optimise a simple benchmark function (a two dimensional paraboloid given by f(x, y) =

x2 + y2 with boundaries of -15 to 15). Algorithms were executed for 20,000 objective

function calculations, as in the full methodology, and explore a 2-dimensional space

of size 30, based on the default parameters used when generating landscapes. This

gives some additional insight into the exploratory nature of the varying algorithms. In

order to quantify the coverage of the fitness landscape, a grid (of 0.3 units square) was

imposed, and the percentage of grid spaces visited measured. The results of this can be

seen in Table 4.1. PSO and HS both have parameters which controls the ‘range’ of new

solutions and this is visible from the plots - this parameter defaults (in this case) to

10, and you can see a square of heavy exploration around the centre of the landscape.

BA, Evolution Strategies (ES) and Random Search (RS) are the top three algorithms

in terms of coverage all showing above 60% coverage of the landscape. While this is

suitable for a landscape of this size, they may show some problems as the landscapes
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(a) Bacterial foraging optimi-
sation algorithm.

(b) Bee algorithm.

(c) Evolution strategy. (d) Genetic algorithm.

(e) Harmony search. (f) Particle swarm optimisa-
tion.

(g) Random search.

Figure 4.1: Exploration pattern of algorithms, executed for 20,000 objective calcula-
tions, optimising a two dimensional paraboloid given by f(x, y) = x2 + y2 in the range
-15 to 15. Each cross indicates an area of the landscape that was searched, coloured
from red (first objective calculation) to green (20,000th objective calculation). The
global optimum is at (0, 0).
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Table 4.1: A 0.3 unit square grid was imposed on the fitness landscape, and the percent-
age of grid spaces explored calculated as an estimate of the fitness landscape covered in
the algorithm’s exploration pattern. The results for both the parabolic function (Fig.
4.1) and Rastrigin’s function (Fig. 4.2).

Algorithm Percentage of Parabolic
Function Landscape Ex-
plored

Percentage of Rastrigin’s
Function Landscape Ex-
plored

BA 78.74 79.52

BFOA 13.78 2.91

ES 61.36 61.61

GA 9.7 9.43

HS 46.7 47.61

PSO 55 57.04

RS 86.31 86.31

increase in dimensionality and search space size. GA focuses on areas of promise rather

than providing a ‘general overview’ of the landscape, which offers good performance on

a landscape with little to no multimodality. BFOA shows a very clear search pattern

‘honing in’ on the global minimum (at the origin), but movement in the algorithm is

quite small and exploration levels are quite low just under 14%).

Another of the main concerns within optimisation algorithm design is that of getting

‘stuck’ in a local optimum. By altering the fitness landscape parameter which controls

the number of curves in the landscape, increasing numbers of local optima are intro-

duced to the fitness landscape and algorithm performance can be observed. BA boasts

strong avoidance of local optima, owing to the abandonment of nest sites and rapid

re-deployment of bees when the area no longer seems promising (Pham et al., 2006b;

Pham and Castellani, 2009). PSO, another algorithm from the swarm-based category,

is also recommended for problems with a high level of multimodality and is therefore

expected to cope well with the increase in local minima (Poli et al., 2007). BFOA,

however, relies very heavily on gradient information which is dubbed as both a benefit

and a hindrance. For the purpose of avoiding local optima, the reliance on fitness

landscape gradient means poor performance as the number of local minima increases is

to be expected (Passino, 2002). This is in direct contrast with the expectations of the

other swarm-based algorithms. HS is described as using little information about the

gradient of the landscape contributing towards the generation of new solutions, and is

therefore expected to perform well (Lee and Geem, 2005).

Adjusting the average ratio of local optima closer to the global optimum has two

effects on algorithms which use the gradient of the landscape to optimise a solution.

Firstly, it makes the local optima seem more attractive. This may make them more

difficult to escape from as they may not discover a better solution while searching the

immediate area unless they stumble across an area very close to the global optimum.

Secondly, it means optimisation may succeed despite becoming trapped in a local
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optima, as the local optimum may be very close to the global optimum. This behaviour

would be quite unexpected, however, as even at a ratio of 0.9 (the upper limit on the

range of values chosen for this parameter), the optimal value of a landscape would be

0.1, compared to the global minimum of 0 - this means, even successfully optimising

accurately on a local minima, the error should be outside of the success criteria. Results

when adjusting the ratio may be similar to those when increasing the number of local

optima - that is to say, algorithms which do not rely on landscape gradation to generate

new solutions (such as HS (Lee and Geem, 2005), BA (Pham and Castellani, 2009) and

PSO (Eberhart and Shi, 2001)) should cope well, contrasting algorithms which rely on

gradient information (such as BFOA (Passino, 2002)) to perform poorly.

Fig. 4.2 shows the exploration pattern of the selected algorithms on a benchmark

function with some multimodality (Rastrigin’s function). As with the exploration of

the sphere equation discussed earlier, algorithms were executed for 20,000 objective

calculations on a 2-dimensional space with a search size of 30 (selected to better parallel

the full experiments, as opposed to the usual 10.24 search space size commonly used

in optimising Rastrigin’s function). Again, a grid was imposed, and visits to the cells

of the grid were measured as a means of quantifying the coverage of the landscape.

Results are presented in Table 4.1. There is little change between the exploration

pattern of the sphere equation for BA, ES and PSO suggesting these algorithms are

capable of escaping local optima. HS shows some failed attempts at exploring areas of

interest (represented by the cross-like exploration pattern not around the origin), and

GA also shows extra exploration around local optima. BFOA suffers greatly here, with

a drastically different search pattern to that in the function with no multimodality,

suggesting that the heavy reliance of gradient information hampers the algorithm’s

ability to escape local minima severely.

As a combination of both problem space size and ratio, curve gradation provides

larger areas of ‘barren’ landscape (that is, landscape that provides no gradation), po-

tentially offering difficulty to algorithms which rely on the gradation of a landscape to

find an optimal solution, as discussed above.

4.3 Results

In this Section, results are explored on a per-characteristic basis. The presentation

of the results takes the form of graphs depicting the mean error (accuracy), standard

deviation (stability) and success rate of each algorithm as the characteristic in ques-

tion’s value changes. Also provided is a visual presentation of the p-values obtained

using unpaired two-tailed t-tests, to assess the significance of the characteristic value’s

change on the algorithm’s performance. Numerical values for the p-values are also

presented in Appendix A.
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(a) Bacterial foraging optimi-
sation algorithm.

(b) Bee algorithm.

(c) Evolution strategy. (d) Genetic algorithm.

(e) Harmony Search. (f) Particle swarm optimisa-
tion.

(g) Random search.

Figure 4.2: Exploration pattern of algorithms, executed for 20,000 objective calcu-
lations, optimising Rastrigin’s function in two dimensions (f(x, y) = 10 × 2 + [x2 −
10cos(2πx)] + [y2 − 10cos(2πy)]) in the range -15 to 15. Each cross indicates an area
of the landscape that was searched, coloured from red (first objective calculation) to
green (20 000th objective calculation).
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4.3.1 Number of local optima

Graphical results are depicted in Fig. 4.3. All algorithms produce the smallest average

error when no local optima (minima) are present in the fitness landscape. This is

expected, as, with only one optimum, there are no alternative solutions to which the

algorithms may converge. The greatest average error occurs with only one optimum

from Stochastic Hill Climbing (SHC), with BFOA (approx. 0.14) falling short also.

There are very small average errors (almost zero) from GA, ES, PSO, HS, RS and BA.

BFOA also produces the largest variation in final solutions (0.32).

With the introduction of only a single local optimum, performance of most al-

gorithms degrades significantly. ES and GA suffer significantly, with average error

increasing from approximately zero to 0.07 and 0.09 respectively, and the standard

deviation of solutions increasing by around 0.15 for each algorithm. SHC also per-

forms poorly, with a similar increase in average error. The least affected are RS (which

blindly chooses random solutions, and is therefore unaffected by local minima) and BA

which contains a global search mechanism.

As the number of local optima increases beyond one, ES and GA continue to suffer

from larger average errors. PSO and HS only suffer from slightly decreased performance

as the number of local optima increases beyond one, while RS continues to suffer no

performance decrease. Similarly, BA continues to show no performance degradation

as the number of local minima increases, most likely owing to the nature of the global

search they both perform. The swarm-based algorithms, therefore, seem to handle the

problem of local optima most effectively.

BFOA demonstrates a decreased average error as the number of local optima in-

creases, most likely due to an increased likelihood of latching on to a gradient which

leads towards any optimum at all, rather than becoming “stuck” in areas of the land-

scape with no information.

Statistical analysis of the results as the number of local optima changes (illustrated

in Fig. 4.4) shows a varied profile across the selected algorithms. There is no statistical

significance when comparing results for any number of local optima between three and

eight inclusive for BFOA, suggesting that within this range adjusting the number of

local optima has no significant effect. Similarly, increasing the number of local optima

beyond five has no significant effect on ES. This profile is not reflected in BA, GA,

HS, PSO, SHC or RS - all of which exhibit a mix of unique patterns.

From the statistical analysis, it can be seen that in many cases adjusting the number

of local optima does have an effect on the performance of the algorithm (even if that

effect could be considered negligible in terms of actual performance), and that for all

algorithms, the profile is varied - particularly BFOA and ES for which there exist ranges

of local optima values where there is no statistically significant performance variation.
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Figure 4.3: Result of varying the number of local optima.
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(a) Bacterial foraging optimi-
sation algorithm.

(b) Bees algorithm. (c) Evolution strategy.

(d) Genetic algorithm. (e) Harmony search. (f) Particle swarm optimisa-
tion.

(g) Stochastic hill-climbing. (h) Random search.

Figure 4.4: The results of unpaired two-tailed t-tests for each algorithm comparing
algorithm performance results at one value of number of local optima with every other
value of number of local optima (H0 = The number of local optima in the fitness
landscape has no effect on an algorithm’s performance, HA = The number of local
optima in the fitness landscape has an effect on an algorithm’s performance). Green
shaded cells depict p-values below 0.05. Where a cell is shaded, a significant difference
has been found between the results with one number of local optima (row) versus
the second number of local optima (column). An algorithm with more shaded cells
indicates it is more sensitive to changes in the number of local optima (i.e. there are
more statistically significant performance differences as the number of local optima
changes) than one with less shaded cells.
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4.3.2 Ratio of local optima to global optimum

Results are depicted in Fig. 4.5. For algorithms which do not directly use the gradi-

ent of the landscape, no change in performance is expected as the ratio parameter is

adjusted. Note that, for example RS, which selects new solutions randomly from the

entire search space, offers very similar performance in terms of mean error and success

rate for all ratio values. Similarly, algorithms which perform a global search should

be better at avoiding local minima even when they are attractive - and this is true

for BA and HS. PSO shows little change in success rate as the ratio becomes more

attractive, owing to the fact that solutions are directed towards the best particle, and

their own best solution, regardless of their individual experience with the gradation

of the landscape. Interestingly, SHC average error decreases as ratio increases - most

likely due to an increased availability of ‘better’ solutions throughout the landscape.

ES demonstrates very poor, yet consistent, performance as the ratio changes. Suc-

cess rates are very low, and, interestingly, there is a decrease in the standard deviation

of solutions as the ratio increases. This suggests that ES is perhaps more “content”

to optimise at a local minima, with the algorithm getting trapped in these more fre-

quently as ratio increases. This could also be true of other algorithms whose deviation

decrease, such as BFOA and SHC. GA performs in a similar manner to ES with regard

to average error and diversity, although with a considerably better success rate, sug-

gesting that this may be a general problem for algorithms which use an evolutionary

approach.

HS seems quite unhindered by the attractiveness of local minima, showing little to

no change in performance as the ratio changes, with an interesting dip at 0.5 ratio.

This suggests that this algorithm is quite capable of escaping local minima, with the

dip being too small a change in average error to draw further conclusions.

Statistical analysis of the results as the ratio of local optima to global optimum

changes (illustrated in Fig. 4.6) shows a varied profile of robustness across the al-

gorithms. Most notably, RS’s lack of performance change is confirmed as it shows no

significant differences for any comparisons - the ratio of local optima to global optimum

has no significant effect on RS at all, understandable as the selection of random solu-

tions is unlikely to be affected by the availability of gradient information. SHC, which

relies wholly on gradients, shows significant differences at each comparison - it, along

with BA - are algorithm that are seemingly the most affected by the attractiveness

of local optima. The BFOA and ES demonstrate the same profile in terms of ratio -

they are unaffected by unattractive ratios of local optima (no significant performance

change between 0.1/0.3), but there are significant performance changes when the ratio

is higher. The GA is affected by changes to ratio only when there is an extreme dif-

ference. HS and PSO have a similar profile to each other in that they are affected by

changes when the ratio is small, but not when the ratio is large.

It is clear that amongst the algorithms selected for study, examining the ratio of

local optima to global optimum highlights a range of different performance profiles.

For the majority of the algorithms, there are also significant performance differences
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Figure 4.5: Result of varying the average ratio of local minima to the global minimum.
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(a) Bacterial foraging optimi-
sation algorithm.

(b) Bees algorithm. (c) Evolution strategy.

(d) Genetic algorithm. (e) Harmony search. (f) Particle swarm optimisa-
tion.

(g) Stochastic hill-climbing. (h) Random search.

Figure 4.6: The results of unpaired two-tailed t-tests for each algorithm comparing
algorithm performance results at one ratio of local optima to global optimum with
every other ratio of local optima to global optimum (H0 = The ratio of local optima to
global optimum in the fitness landscape has no effect on an algorithm’s performance,
HA = The ratio of local optima to global optimum in the fitness landscape has an
effect on an algorithm’s performance). Green shaded cells depict a p-value below 0.05.
Where a cell is shaded, a significant difference has been found between the results
with one ratio of local optima to global optimum (row) versus the second ratio of local
optima to global optimum (column). An algorithm with more shaded cells indicates it
is more sensitive to changes in the ratio of local optima to global optimum (i.e. there
are more statistically significant performance differences as the ratio of local optima to
global optimum changes) than one with less shaded cells.
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between different ratio values, suggesting it is a good characteristic for distinguishing

between algorithms in terms of performance.

4.3.3 Dimensionality

Results are depicted in Fig. 4.7. At only one dimension, fitness landscapes are trivially

easy. The performance of all algorithms reflects this, with all algorithms performing

well on landscapes of a single dimension. All algorithms show a success rate (that is,

optimisation with an error of under 1.0×10−4) above 90%.

Once dimensionality is increased to two, the performance of most algorithms begins

to degrade. Suffering mostly severely is RS, which is to be expected, as random search is

the most basic algorithm. Its success rate drops from a 99.98% to 2.94%. Algorithms

which also perform poorly at only two dimensions are ES (from 93.79% success to

7.46%), BA (from 100% success to 13.57%) and PSO (from 99.79% success to 19.66%).

It is perhaps surprising, at first, to see BA performing poorly given that the algorithm

contains a randomly sourced global search. However, this global search is effectively

RS, which performs poorly, so it may be reasonable to assume the global search is

not covering enough of the landscape. Coupled with the non-adaptive nature of the

algorithm (meaning that solution selection around the current best area is within a

relatively large range), poor algorithm performance is easily explained. It is reasonable

to suggest that PSO and ES suffer from a similar problem, in that exploration is limited,

and neither optimise their current best as accurately as their adaptive variants.

As dimensionality increases beyond two, the performance of all algorithms, as ex-

pected, continues to degrade significantly. At only three dimensions, BA, ES, PSO,

SHC, BFOA and RS all demonstrate particularly poor performance in terms of success.

Performing with the greatest success rate is HS, still dropping to a 40% success rate

at three dimensions, with GA in second place offering a 24% success rate.

These results are reaffirmed by the statistical analysis (results in Fig. 4.8), which

shows significant performance differences for all algorithms when comparing all num-

bers of dimensions, with two exceptions. There is no significant difference between the

performance of the GA at seven and eight dimensions, or at nine and ten dimensions

- though these seem to be unusual cases rather than the standard. On the whole, it

is apparent that dimensionality has a large, significant effect on performance of all the

selected algorithms, noticeable by both the observed performance differences and the

statistical testing.
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Figure 4.7: Result of varying dimensionality.
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(a) Bacterial foraging optimi-
sation algorithm.

(b) Bees algorithm. (c) Evolution strategy.

(d) Genetic algorithm. (e) Harmony search. (f) Particle swarm optimisa-
tion.

(g) Stochastic hill-climbing. (h) Random search.

Figure 4.8: The results of unpaired two-tailed t-tests for each algorithm comparing
algorithm performance results at one number of dimensions with every other number
of dimensions (H0 = The number of dimensions in the fitness landscape has no effect on
an algorithm’s performance, HA = The number of dimensions in the fitness landscape
has an effect on an algorithm’s performance). Green shaded cells depict a p-value
below 0.05. Where a cell is shaded, a significant difference has been found between the
results with one number of dimensions (row) versus the second number of dimensions
(column). An algorithm with more shaded cells indicates it is more sensitive to changes
in the number of dimensions (i.e. there are more statistically significant performance
differences as the number of dimensions changes) than one with less shaded cells.

52



4.3.4 Boundary constraints

Results are depicted in Fig. 4.9. RS exhibits a similar, yet less extreme, reaction to the

increase of problem space as with the increase in dimensionality. This is to be expected,

as the limit on objective function calculations results in random search having less

chance to explore the search space. SHC also has an almost linear increase in average

error, matching the linear increase in search space size, but produces consistently poor

results in terms of success. The social system algorithms (BA and PSO) both exhibit

slightly unusual behaviour - as the problem space increases, their success rate also

increases. This suggests that their reliance on a parameter to search within a range

is hindering the algorithms when the problem space is too small to properly explore.

HS provides the best success rate for the entire range of sizes selected in this problem,

indicating good exploration of the search space irrespective of the range parameter.

BFOA also suffers significantly as search space size increases, again implying a heavy

reliance on the parameter which controls the range of search for new solutions. The

evolutionary algorithms do not cope particularly well with the increase of problem size,

with performance in terms of both average error and success rate decreasing consistently

as size increases.

Statistical analysis shows that most algorithms show significant differences across

all characteristic values (Fig. 4.10). BFOA, GA, HS, SHC and RS all have signifi-

cant differences for every comparison. The BA, as discussed above, shows significant

differences up to a point, with a majority of significant differences occurring between

boundary constraint range values up to fifty. Above fifty, there are no significant

differences between performance - except between very extreme values (fifty and one

hundred), indicating that there is a large boundary range for which the BA will per-

form consistently. ES shows some resilience, with no significant performance difference

found between most border cases (e.g. forty and fifty, fifty and sixty), suggesting that

despite its noted poor performance above, the ES is not as strongly affected by change

in boundary constraint range as most of the other algorithms.

Although nearly all the algorithms show significant performance differences for

boundary constraint range, the magnitude of the effect boundary constraint range

has on each of the algorithms is quite varied - for example, as mentioned, BFOA has a

much greater increase in mean error as boundary constraint range increases compared

to an algorithm with only a minor mean error increase such as PSO. The performance

profiles here are perhaps not as obviously varied, but there is certainly still performance

variety, and distinguishing features, between some, if not all, of the selected algorithms.
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Figure 4.9: Result of varying boundary constraint range.
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(a) Bacterial foraging optimi-
sation algorithm.

(b) Bees algorithm. (c) Evolution strategy.

(d) Genetic algorithm. (e) Harmony search. (f) Particle swarm optimisa-
tion.

(g) Stochastic hill-climbing. (h) Random search.

Figure 4.10: The results of unpaired two-tailed t-tests for each algorithm comparing al-
gorithm performance results at one boundary constraint range with every other bound-
ary constraint range (H0 = The boundary constraint range of the fitness landscape has
no effect on an algorithm’s performance, HA = The boundary constraint range of the
fitness landscape has an effect on an algorithm’s performance). Green shaded cells
depict a p-value below 0.05. Where a cell is shaded, a significant difference has been
found between the results with one boundary constraint range (row) versus the second
boundary constraint range (column). An algorithm with more shaded cells indicates it
is more sensitive to changes in the boundary constraint range (i.e. there are more sta-
tistically significant performance differences as the boundary constraint range changes)
than one with less shaded cells.
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4.3.5 Smoothness

Results are depicted in Fig. 4.11. The evolutionary algorithms (ES and particularly

GA) perform poorly, with GA being greatly affected by changing the smoothness coef-

ficient. BA and PSO all also show decreasing success rate as the curves become steeper,

as does BFOA which relies heavily on gradient information.

Harmony search suffers similarly to the evolutionary algorithms, and swarm algo-

rithms, as curves become more steep. The similarity in terms of success rate for all

algorithms suggests that the availability of gradient information is something which

affects all algorithms, including random search to some respect. This is largely due to

the decreased area of successful solutions, which hinders the likelihood of “stumbling”

across a good solution irrespective of the way in which gradient information is used, or

not used, by the specific algorithm.

Statistical analysis confirms the observations (Fig. 4.12), showing that BFOA, BA

and the GA are all significantly affected by the change in smoothness coefficient at

all (or nearly all) characteristic values. RS also shows significant performance differ-

ences at every value - perhaps due to the availability of good solutions, rather than

a reliance on gradient information to succeed. HS, PSO and SHC both show some

resilience to changes in smoothness coefficient around edge cases (e.g. forty to fifty,

seventy to eighty), but this only holds true within a limited range of smoothness coeffi-

cient. That is to say, they show some resilience compared to the other algorithms, but

not a particularly noteworthy amount. ES demonstrates a greater resilience towards

changing smoothness coefficients than the other algorithms - although, as noted pre-

viously, its performance is generally poor compared to some of the other algorithms.

Above a smoothness coefficient of forty, ES demonstrates less significant change be-

tween smoothness coefficients as the value increases. As performance does degrade

slightly before this point, it could be that ES reaches a point where further changes to

smoothness coefficient do not further hinder the performance - but a greater range of

smoothness coefficients would need to be tested to confirm this.

As with the other characteristics, a fitness landscape’s smoothness (and by exten-

sion, availability of gradient information) is a characteristic capable of determining a

range of performance profiles for different algorithms. Each of the algorithms studied

here shows a different level of robustness to changes in the smoothness coefficient used

to generate the fitness landscapes, in the form of greater or lesser declines in mean

error.

4.3.6 Overview

To summarise the results, the resilience of each algorithm to changing landscape char-

acteristics is presented in the form of a radar plot in Fig. 4.13. To assess the resilience

of an algorithm, the standard deviation of the average error across all values of a land-

scape characteristic is used, normalised on a per-characteristic basis. This “ranking”

shows which algorithms do not show performance variability versus those which are
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Figure 4.11: Result of varying the smoothness coefficient.
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(a) Bacterial foraging optimi-
sation algorithm.

(b) Bees algorithm. (c) Evolution strategy.

(d) Genetic algorithm. (e) Harmony search. (f) Particle swarm optimisa-
tion.

(g) Stochastic hill-climbing. (h) Random search.

Figure 4.12: The results of unpaired two-tailed t-tests for each algorithm comparing
algorithm performance results at one smoothness coefficient with every other smooth-
ness coefficient (H0 = The smoothness coefficient of the fitness landscape has no effect
on an algorithm’s performance, HA = The smoothness coefficient of the fitness land-
scape has an effect on an algorithm’s performance). Green shaded cells depict a p-value
below 0.05. Where a cell is shaded, a significant difference has been found between the
results with one smoothness coefficient (row) versus the second smoothness coefficient
(column). An algorithm with more shaded cells indicates it is more sensitive to changes
in the smoothness coefficient (i.e. there are more statistically significant performance
differences as the smoothness coefficient changes) than one with less shaded cells.
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Figure 4.13: Radar plots depicting the standard deviation of the average error of
each algorithm with respect to differing landscape characteristics. Standard deviations
are normalised on a per-axis basis. Values close to the centre of the plot indicate a
larger variation in average error, indicating these algorithms are more affected by the
characteristic.

heavily influenced by a characteristic. BFOA shows large deviations in average error

to boundary constraint range, smoothness coefficient changes and dimensionality, indi-

cating that BFOA is an algorithm heavily dependent on the landscape of a problem -

perhaps because of a heavy reliance on careful parameterisation. SHC also shows large
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variation - perhaps, in large part again, to the lack of parameters and complicated local

optima avoidance techniques, etc. GA and ES depict a large variation with respect

to number of local optima, confirming earlier speculation that evolutionary algorithms

suffer the problem of becoming “stuck” in a local optima most significantly.

4.4 Summary

In this Chapter, the results of an extensive study of nature-inspired algorithms have

been described, in terms of their performance on fitness landscapes with different char-

acteristics. Six nature-based methods (plus two stochastic baseline algorithms) were

studied, by varying a number of landscape features. The most significant characteristic

appears to be the number of local minima, where a combination of global and local

search appears to be beneficial. On the other hand, the ratio of local optima to the

global minimum appears to have little effect on the success of the algorithms under

study. As expected, dimensionality proved problematic for all algorithms, whereas

landscape smoothness appeared to have little effect.

In obtaining performance profiles for each of these algorithms, the methodology

proposed in Chapter 3 (and used here) has been demonstrated to be suitable for estab-

lishing the performance profile of an algorithm. Each of the algorithms in the study

showed differing resilience to the varying characteristics (as well as different perfor-

mance profiles across the characteristics), and this allows for the algorithms to be

distinguished from each other in terms of performance.

This also answers the first of the research questions posited in this thesis. In

using fitness landscape characteristics to analyse the performance of the selected algo-

rithms, unique and varied performance profiles have been obtained. While there are

some characteristics which are unanimously difficult in this study (e.g. dimensional-

ity), they provided varying degrees of difficulty across a range of algorithms. Similarly,

the algorithms showed varying degrees of resilience to all of the characteristics (i.e. the

algorithms exhibit various levels of robustness to these characteristics), owing to the al-

gorithms exhibiring a range of different features, parameters, etc. Ultimately, although

this work offers only the first steps in illustrating how fitness landscape characteris-

tics could be used to develop performance profiles of algorithms, with the purpose of

differentiating algorithm performance, the results are promising.

The results obtained here offer an insight into only a small section of the algorithms

available to practitioners, and so only go a little way to offering a picture of the nature-

inspired field. One of the most obvious ways in which this study could be built upon

is to increase the number of algorithms for which this technique is applied, developing

a much richer overview of the general strengths and weaknesses of nature-inspired

algorithms for the continuous optimisation domain.

In particular, certain algorithms, such as the GA, offer many customisable com-

ponents, and in this Chapter only a single possible configuration has been examined.

The technique presented here would be entirely plausible for analysing the benefit, or
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drawbacks, of choosing other problem representation, selection, crossover and mutation

strategies, and how they affect the performance of the algorithm with respect to each

of the identified characteristics of the fitness landscapes.

Another drawback of this technique is potential difficulty in identifying some of

the characteristics of the landscapes. While the characteristics of dimensionality and

boundary constraint range are specified by the problem - at least, in the case of con-

straint continuous optimisation problems such as these - features such as number of

local optima, ratio of local optima to the global optimum and smoothness coefficient,

require landscape sampling to estimate, and this is a process that can become more

time consuming and difficult than finding a solution. Further work may look at the

different techniques used to estimate these characteristics and relate this to how accu-

rate a prediction needs to be to obtain a good estimate of performance based on the

strengths and weaknesses identified by an analysis technique such as this.

A final criticism that could be made of the work in this Chapter is that these

algorithms were all used “out of the box” with no effort expended into the process

of parameter tuning. This is very unlike the way algorithms are used in practice,

as very often considerable effort is made to use algorithms with carefully selected

parameters, to ensure optimal performance. In the following Chapter, this work is

expanded upon using an automated parameter tuning methodology to examine the

performance of algorithms, with respect to landscape characteristics, both pre- and

post-tuning, offering an insight into how tuning affects algorithm performance.
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Chapter 5

Investigation of the Relationship

Between Parameter Tuning and

Landscape Characteristics

5.1 Introduction

Parameter tuning is a considerable obstacle in the implementation of a nature-inspired

algorithm on a given problem, and Eiben and Smit (2011) discuss the importance of

ensuring parameter tuning takes place. It is commonly accepted that there is little

to no pattern to parameter values, and often it is not obvious how parameters relate

to the properties of problems. While articles describing novel algorithms may make

some suggestions as to sensible parameter ranges, and how changing these parameters

affects the exploration pattern of the algorithm, it is often unintuitive as to which

values prove promising for a given problem without a large amount of trial and error.

Tuning, therefore, can often become a task more intractable than the optimisation

problem itself. There is then no discussion as to how valuable parameter tuning is in

obtaining improved performance, which means many hours could be wasted tuning an

algorithm which does not benefit significantly from the tuning process.

There is great benefit in exploring an algorithm in terms of parameter tuning using

scientific testing (Hooker, 1995), for example to explore the robustness of an algorithm

to changes in problem specification (Eiben and Smit, 2011). In this Chapter the six

different nature-inspired algorithms are examined by testing them against a number

of different randomized landscapes with several different pre-defined properties (e.g.,

ruggedness). An automated parameter tuning method is used to obtain performance

data both pre- and post-tuning, which enables a breakdown of the effect tuning has

on algorithm performance, individualised by a landscape characteristic. This offers a

more “complete” view of the relationship between parameter tuning, performance and

problem specification, by highlighting which specific characteristics of the problems are

relevant to the tuning process.

The rest of the Chapter is organised as follows: in Section 5.2 a a brief overview of

63



previous work is presented before the testing methodology is described in Section 5.3.

Experimental results are then presented in Section 5.4, before conclusions are drawn

in Section 5.5 with a discussion of findings and further work.

5.2 Background

In this Chapter, work from the previous Chapter is expanded upon with the inclusion

of the performance of algorithms after parameter tuning has taken place, thus resolving

the key criticism that algorithms are not commonly used ‘out of the box.’ By examining

the same six different nature-inspired methods both pre- and post- tuning, conclusion

can be made regarding the effect parameter tuning has on each of the different algo-

rithms with respect to landscape characteristics. Analysis of the benefit of parameter

tuning in other fields (for example, text categorisation (Koster and Beney, 2007)), has

found great importance in tuning parameters to achieve maximal performance, and

Eiben and Smit (2011) echo this notion of importance for implementing evolutionary

algorithms. While there are some individual studies in the importance of parameter

tuning and parameter control for specific algorithms (such as that for the Bee Colony

Algorithm provided by Akay and Karaboga (2009), or Evolutionary Algorithms pro-

vided by Nannen et al. (2008)) there are no comprehensive studies covering a range of

nature-inspired algorithms, or any studies which relate the benefit of tuning to fitness

landscape characteristics, identifying when it is beneficial to tune.

Racing, first introduced in the field of machine learning Maron and Moore (1993,

1997), is one approach proposed to deal with the intractable task of parameter tuning.

The racing methodology suggests that a subset of algorithm configurations should be

generated, and their performance analysed on a small subset of problems. Those con-

figurations which are found to be performing statistically significantly better are carried

through to a further step of the racing methodology, which increases the problem space

to gain more information about the promising algorithms, leading to narrowing of the

algorithm configuration pool. These steps are repeated until only one configuration

remains, or a maximum number of steps has been reached.

Many variants of the racing methodology exist, mostly focusing on the distribution

used for determining which configurations are performing well. Hoeffding (1963) pro-

poses the use of Hoeffding’s formula for the confidence measure, and Bayesian statistics

were later recommended by Maron and Moore (1997). Eventually a middle ground was

reached in the form of a race using the Friedman test. Originally proposed by Birattari

et al. (2002), the F-Racing methodology is both non-parametric and takes advantage

of a blocking design. Refined later, Balaprakash et al. (2007) introduce the notion

of sampling design and iterative refinement - sampling design consisting of randomly

generated algorithm configurations and iterative refinement offering a method for gen-

erating new configurations that seem promising. The performance of F-Racing was

compared to other methodologies by Yuan and Gallagher (2004), and F-Races were

found to be most effective at eliminating candidates, and overall, racing is a promising
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methodology drastically reducing the compute time compared to exhaustive experi-

ments (Smit and Eiben, 2009).

Adopting a scientific testing strategy, instead of a competitive testing as suggested

by Hooker (1995) and Eiben and Smit (2011), the methodology of Chapter 4 is en-

hanced, and this methodology is discussed in the following section.

5.3 Methodology

Having demonstrated in Chapter 4 that the methodology proposed in Chapter 3 can

be used to establish the variation in performance of nature-inspired algorithms cross-

algorithm, the second question addressed by this thesis asks whether fitness characters

can be used as a way of comparing intra-algorithm changes.

The methodology used is exactly as proposed in Chapter 3, with one crucial change:

Two data-sets are generated rather than one, allowing for comparison between them.

The first uses the exact same algorithms, characteristics and algorithm parameters as

in the standard methodology. The second uses algorithm parameters that have been

automatically tuned for the landscape characteristics in question using an F-Race.

Specific details of the F-Race configuration follow.

5.3.1 F-Race Configuration

An F-Race (Birattari et al., 2010) framework was implemented in the Ruby scripting

language, selected for convenience and easy integration with the existing algorithm

codebase. The initial pool was populated with 500 configurations for each algorithm

using the random sampling design methodology (Balaprakash et al., 2007; Birattari

et al., 2010) taking random values for each parameter between sensible limits, drawn

from the original literature for each algorithm where possible. Ranges for each param-

eter of each algorithm are shown in Table 5.1.

To produce a test set of problems, the MSG landscape generator was used. Five

problems were generated to form the initial problem set for each of the landscape

characteristic values. Algorithms were executed until reaching 20,000 objective function

calculations, and repeated with a differing random seed twenty times. The average

exact error (ε = |v − vest|, where v is the known best solution and vest is the best

solution found) across the twenty repeat runs was used as the performance criteria

for the F-Race, which itself used a 0.05 significance level for the rejection of the null

hypothesis. This is a commonly used significance level that also performed well in

initial testing (Yuan and Gallagher, 2004; Birattari et al., 2010). After each step of

the F-Race process, the problem space was expanded with an additional five randomly

generated landscapes, providing a more complete picture of the performance of the

algorithms which proved promising. The F-Races were terminated when there is only

one configuration remaining, or ten race steps have been reached - whichever occurs

first.
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Table 5.1: Parameter ranges for the generation of algorithm configurations. Where s
is used, it represents the size of the problem space in each dimension.

Bees Algorithm Particle Swarm Optimisation

Number of bees (n) (1, 250] Population size [20, 40]

Patch size (0, s] Maximum velocity (0, s]

Number of sites (i) [1, n] Personal best weight (0, 4]

Number of elite sites [1, i] Global best weight (0, 4]

Number of elite bees (e) [1, n]

Number of other bees [1, e]

Evolution Strategies Genetic Algorithm

Population size (n) (1, 250] Population Size (1, 250]

Number of children (1, n] Bits per variable [8, 64]

Strategy mutation Off Crossover probability (0, 1)

Mutation probability (0, 1)

Harmony Search Bacterial Foraging Optimisation
Algorithm

Range (0, s] Step size (0, s]

Memory size (1, 250] Population size (5, 50]

Consideration rate (0, 1) Swim length [1, 10]

Adjustment rate (0, 1) Elimination chance (0, 1)

Attractant depth (0, 2)

Stochastic Hill Climbing Attractant width (0, 2)

Neighbourhood size (0, s] Repellent height (0, 2)

Repellent width (0, 2)

Chemotactic steps [1, 100]

Reproduction steps [1, 10]
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F-Races were performed for a range of characteristics described previously using the

same value ranges for each characteristic as in Chapter 3, giving optimised parameters

for each value of every landscape characteristic used. The optimised parameters are

then used to perform an identical performance evaluation of each algorithm. This

provides adequate performance data of the algorithms against landscape characteristics,

using both default parameters and optimised parameters. This data is analysed in the

next section, with reference to the effect tuning has on each of the algorithm under

different landscape characteristic combinations and conditions.

5.4 Results

The effect of tuning was varied across all of the algorithms chosen for the study, though

broadly algorithms fit into three categories:

• Algorithms which did not benefit from tuning

– Evolution Strategies (ES)

• Algorithms which only benefit notably from tuning when a landscape is ‘difficult’

for the algorithm with default parameters

– Bees Algorithm (BA)

– Harmony Search (HS)

– Particle Swarm Optimisation (PSO)

• Algorithms which always benefit from tuning

– Bacterial Foraging Optimisation Algorithm (BFOA)

– Genetic Algorithm (GA)

– Stochastic Hill Climbing (SHC)

It is worth noting, however, that GA and SHC were unable to tune when the

problem was too difficult (i.e. when dimensionality was high).

Summarised results, including the average error of the algorithm performance across

characteristic values and the standard deviation of average error across all character-

istic values (effectively, how much performance varied across landscape characteristic

values), are presented in Table 5.2, with the complete configuration of parameters for

each algorithm available in Appendix B and complete performance data available in

Appendix C. Additionally, Table 5.3 presents a count of the number of unique param-

eter configurations selected by the F-Racing process for each algorithm, both in total

and for each characteristic. The performance of each algorithm individually is now

examined, and the parameters available for tuning investigated to provide suggestions

as to why the results are reasonable.
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Table 5.3: The count of different parameter configurations selected by the F-Racing
process for each algorithm for each characteristic, and also the number of unique con-
figurations selected across all characteristics. The maximum number of possible con-
figurations for each characteristic is ten, except for ’Ratio of Local Optima to Global
Optimum’ which only has nine possible configurations. This makes for a total of 49
possible unique configurations for each algorithm.

BA BFOA ES GA HS PSO SHC

Number of Local Optima 1 4 10 3 3 5 8

Number of Dimensions 4 4 10 6 7 3 10

Ratio of Local Optima to Global
Optimum

3 3 9 3 9 3 9

Boundary Constraint Range 3 4 10 4 10 6 10

Smoothness Coefficient 2 4 10 2 10 3 10

Different Configurations
Across All Characteristics

4 9 46 8 34 12 44

5.4.1 Bacterial Foraging Optimisation Algorithm

Proving the most difficult to tune, there is little discussion on the role of the different

parameters in the BFOA. While some elements of the search pattern are inherently

altered by various parameters, it is very difficult to estimate sensible values for these.

In the original proposal of the BFOA (Passino, 2002), the parameters were assigned

based on observation of actual bacterial colonies. While this is true to the nature-

inspired concept, it is not necessarily the best way to get the optimal performance

from the algorithm.

Broad ranges for all parameters of the BFOA were selected to avoid being too

restrictive on any particular parameter. The F-Races returned configurations which

proved promising, and obtaining performance data using these configurations highlights

the importance of tuning the parameters for bacterial foraging, which is the most

tuning-sensitive of the selected algorithms. BFOA also provides the most parameters

for tuning, suggesting a possible link between number of parameters affecting the search

behaviour and tuning sensitivity.

The combination of parameters offered by BFOA gives a highly configurable search

environment. Parameters such as step size and population size directly affect the poten-

tial area the algorithm can explore in a given number of objective function calculations.

Additional parameters include attraction and repulsion weights and the “space” over

which these attraction and repulsion effects spread. Working in a similar manner to

the personal best and global best weightings offered by particle swarm optimisation,

these control the reliance of an individual on the solutions found by the rest of the pop-

ulation. The final set of parameters control the number of ‘chemotactic steps’1 that

occur before a reproduction step, and the number of reproduction steps that occur

before an elimination-dispersal event. This has a direct effect on the search behaviour:

1That is, steps in which the population perform a local search.
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A large number of chemotactic steps encourages broad exploration, while fewer en-

courages more reproductive steps - thus a larger focus on exploring promising areas.

It is clear from the descriptions of these parameters that the search space is highly

configurable for different problems, and the reliance on tuning follows logically.

Across all characteristics, tuning has a vast improvement on the average error and

standard deviation of the bacterial foraging optimisation algorithm - in many cases,

improving from the largest average error to one of the smallest, and coping well with

the changing characteristics. Tuning provides the largest performance improvement

where boundary constraint ranges change, a characteristic that is heavily reliant on

parameters which control the range from which new solutions are selected (in the case

of BFOA, this is the step size). Improvements are also shown for dimensionality and

smoothness coefficient, increasing the performance of BFOA where there is little gradi-

ent information in a large fitness landscape. Smaller improvements were demonstrated

by the increasing number of local optima and the increasing attractiveness of these

local optima, but tuning still benefits the algorithm considerably.

Box plots depicting the average errors across the characteristic ranges are shown

in Fig. 5.1, allowing for a thorough examination of the spread of average errors pre-

and post-tuning. Examining the errors in this way shows that, on the whole, there is

a clear improvement in average error for all characteristics and, for at least three of

the five characteristics, there is a clear improvement in the spread of results. It would

appear that BFOA always benefits from the tuning process, and in most cases, the

performance improvement is quite noticeable. Each characteristic is now examined in

detail.

As described above, there is an overall improvement to average errors for all values of

number of local optima (from 0.118 untuned to 0.003 tuned). The range also narrows

slightly (from 3.82×10−2 untuned to 3.77×10−3) tuned), suggesting that the ability

of the algorithm to cope with changes to the number of optima has increased with

tuning. This improvement is almost identical to that shown with changes to the ratio

of optima, which shows an improvement of average error again (from 0.120 untuned to

0.003 tuned) and another narrowing of the spread of results (from 5.25×10−2 untuned

to 4.07×10−3) tuned).

Boundary constraint range shows improvements again, but on a much greater scale.

Originally offering a much greater challenge for the BFOA, with an mean average error

of 0.317, post-tuning the mean average error improves to 0.022). The improvement

here is much greater than that of number and ratio of local optima, though does not

reach the same level of improvement, suggesting that there is still some difficulty pre-

sented by increasing boundary constraint ranges - or, that there was still some further

parameter optimisation that could have taken place. The range narrows greatly (from

0.59 to 0.1), but again the range is greater than for the previously discussed charac-

teristics suggesting there is still some difficulty presented in dealing with increasing

boundary constraint ranges - though tuning characteristics does provide much bet-

ter solutions, and does allow for the algorithm to perform more consistently against
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changing boundary constraint ranges. The pre- and post-tuning results for smoothness

coefficient are similar to those of boundary constraint range, though the pre-tuning

results were less widely spread. The mean average error improves from 0.260 to 0.010,

and range decreases from 0.27 to 0.016. An improvement in both overall average and

range smaller than that of boundary constraint range, but greater than number/ratio

of local optima.

For changes to the number of dimensions, the average error increases somewhat

(from 0.754 to 0.417), and the range shows a very limited improvement (from 0.998

to 0.914). This suggests that although improvements to performance can be made

through tuning as dimensionality increases, dimensionality still poses a problem to the

BFOA. All values increase in accuracy - tuning is always potentially worthwhile - but

there is a much less notable increase in benefit, particularly when compared to other

characteristics.

When tested with a paired, two-tailed t-test, the untuned and tuned BFOA datasets

were shown to be significantly different using a significance level of 5% for all charac-

teristic values (H0 = Tuning the parameters of the algorithm using an F-Race has no

effect on an algorithm’s performance, HA = Tuning the parameters of the algortihm

using an F-Race has an effect on an algorithm’s performance). Tuning the param-

eters using an F-Race in the manner demonstrated here offers statistically different

performance for all characteristics, although as described above, despite tuning there

is still a wide spread of average errors post-tuning when the number of dimensions is

varied, suggesting that tuning does not help the BFOA completely overcome the prob-

lem of increasing dimensionality in the same way it appears to help changes in other

characteristics.
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Figure 5.1: Box plots depicting the average errors of the bacterial foraging optimisa-
tion algorithm across ranges of characteristic values, for each selected characteristic.
A narrower spread of errors indicates that the algorithm is more robust to this charac-
teristic, i.e. the performance remains consistent regardless of the changes to the fitness
landscape.
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In terms of the configurations selected by F-Racing, there is little variety in con-

figuration as characteristics change. Across all characteristics, and all values for those

characteristics, there are only nine different configurations selected by racing. This

suggests that while it is difficult to find a good configuration, once it has been found,

it is likely good for all similar problems. Tuning is vital to the performance of the

bacterial foraging optimisation algorithm, but it is possible that by exploring problems

using a similar methodology to that demonstrated here, it may be possible to create a

‘bank’ of promising configurations.

5.4.2 Bees Algorithm

The BA is considered an algorithm in which parameterisation has little effect on the

performance of the algorithm (Pham et al., 2006b). As such, only small performance

increases after the algorithm parameters have been tuned are expected. It is worth

noting that the bees algorithm is one of the best untuned performers in this study,

offering weight to the parameter insensitivity argument.

In terms of adjusting the BA to cope with an increasing number of local optima,

there are several parameters which have an effect. Parameters such as the number

of sites under investigation, the number of bees attributed to those sites, and the

differentiation between sites and ‘elite’ sites are all factors which affect the searching

behaviour of the algorithm to allow for greater flexibility as the modality of the problem

landscape increases.

Box plots depicting the average errors across the characteristic ranges are shown in

Fig. 5.2, allowing for a thorough examination of the spread of average errors pre- and

post-tuning. Examining the errors in this way shows that there is a clear improvement

in the spread of results for the number of dimensions, but all other characteristics do

not seem to have improved by a noticeable amount. It should be reiterated that the

untuned performance was already very strong, and as such, the BA does not have much

room to improve. It would appear that the BA only benefits from tuning when the

problem is ‘difficult’, and in many cases, tuning may not improve performance by a

noticeable (or worthwhile) amount. Each characteristic is now examined in detail.

Post-tuning, the BA used the same parameter configuration, regardless of the num-

ber of local optima present in the landscape. Examining the results, it would appear

that tuning has no very little effect on the ability of the algorithm to cope with increas-

ing numbers of local optima, with the range narrowing from 7.67×10−4 to 3.25×10−6

- an improvement, but on a range that was already very narrow. The average error

across all characteristics improves from 1.38×10−3 to 8.78×10−6. Again, this is an im-

provement, but on an error that was already much smaller than many of the algorithms

in the study.

A possible explanation as to the selection of only a single set of parameter config-

urations for all numbers of local optima, is that as long as the number of sites under

investigation is greater than the number of optima, the algorithm is capable of dealing

with multi-modality. Coupled with the abandonment of ‘unpromising’ sites, this means
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that ‘too many’ sites is not detrimental to the exploration pattern of the algorithm,

and as such, one ‘good’ parameter configurations suits for a wide range of landscapes

regardless of the number of local optima. That is to say, the algorithm naturally has

very good local optima avoidance, regardless of the parameter configuration.

● ●

Untuned Tuned Untuned Tuned Untuned Tuned Untuned Tuned Untuned Tuned

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
ve

ra
ge

 E
rr

or

Number of Optima Number of Dimensions Ratio of Optima Boundary Constraint Range Smoothness Coeff.

Figure 5.2: Box plots depicting the average errors of the bees algorithm across ranges
of characteristic values, for each selected characteristic. A narrower spread of errors
indicates that the algorithm is more robust to this characteristic, i.e. the performance
remains consistent regardless of the changes to the fitness landscape.

Similar results occur when increasing the ratio of local optima to the global opti-

mum. Again, as long as the parameter controlling the ‘number of sites’ under inves-

tigation is greater than the modality of the landscape, the bees algorithm is hardly

affected by increasing levels of attractiveness regardless of parameter settings. A simi-

lar improvement in terms of mean average is noted (from 0.001 to 8.7×10−5), but the

range is very similar both pre- and post-tuning (2.3×10−4 and 1.9×10−4) suggesting

that although performance is improved by tuning, the ability to cope with changes in

ratio of local optima (and therefore availability of gradient information) is not affected

by the parameter tuning process.

The patch size parameter of the BA controls the distance from a site bees are

allowed to explore. This is the parameter which would affect the search behaviour of

the algorithm as boundary constraint size increases. Unlike the other swarm algorithms,

however, the bees algorithm allows for full coverage of any sized search space: Scout

bees are employed to investigate new random sites, allowing “teleportation” across the

landscape, and ensuring coverage across a full landscape regardless of this parameter.

As with the number of local optima, the F-Races for the bees algorithm choose the same

parameter set for most boundary constraint sizes. Post-tuning, the performance of the

bees algorithm actually decreases slightly, with a larger average error (from 0.001 to

0.002), increased standard deviation and widened spread of averages (from 4.09×10−4

to 3.25×10−3) - suggesting the algorithm can cope slightly less well with changes in

boundary constraint size, although the difference is very small. It is possible that
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the configurations in this instance have become overfitted to the landscapes used for

tuning, and while performance on the landscapes used for racing may have increased,

their ability to search generalised landscapes has decreased.

For the ratio of local optima to global optimum, the mean average error shows

improvement (from 0.001 to 8.7×10−5), but the spread of results is only improved

very slightly (from 5.67×10−4 to 4.24×10−4). There is clearly a performance benefit

from tuning, however, tuning does not help the BA to cope with the availability of

gradient information where the ratio of local optima to global optimum is concerned.

Due to the BA’s ability to search a landscape thoroughly regardless of the parameter

used for patch size, it is likely the case that reasonably ‘good’ performance can be

achieved without tuning - and the performance benefit may come from the parameters

optimising for other characteristics of the landscape.

Similarly, for smoothness coefficient (which again controls the availability of gradi-

ent information), there is a small improvement in terms of average error (from 0.004 to

0.001), but the range of results only narrows by a very small amount (from 5.81×10−3

to 1.13×10−3). The BA does not appear to cope better with changes to available

gradient information due to tuning, although small performance improvements can be

obtained through tuning.

Dimensionality provides the most significant result in terms of pre-tuning and post-

tuning performance for the BA. Fig. 5.3 shows the average error as dimensionality

increases for both the untuned and tuned bees algorithm. There is little change to the

performance at one to three dimensions - the point where the untuned algorithm is

already performing well. As dimensionality increases beyond this the effect of tuning

becomes increasingly beneficial. It may be the case that there is no increase in per-

formance in other characteristics because these landscapes are simply not challenging

enough to the bees algorithm to require adjusting the parameters. Fig. 5.2 shows a

large decrease in the ‘worst’ average, from 0.525 to 0.181 - a vast improvement in per-

formance. The spread in averages has also narrowed greatly with tuning, suggesting

that tuning has had a large impact on the ability of the bees algorithm to cope with

the problem of increasing dimensionality.

When tested with a paired, two-tailed t-test, the untuned and tuned BA datasets

were shown to be significantly different using a significance level of 5% for all charac-

teristic values except boundary constraint range (H0 = Tuning the parameters of the

algorithm using an F-Race has no effect on an algorithm’s performance, HA = Tun-

ing the parameters of the algortihm using an F-Race has an effect on an algorithm’s

performance). As has been argued previously, because the BA exhibits a global search

alongside a local search, there does not appear to be any performance change when

tuning for differently constrained search spaces. It is entirely possible that a larger

range of boundary sizes may require some tuning, or that the ‘defaults’ for the BA

are a wide-ranging enough to suit a wide variety of boundary constraint ranges, but

whichever of these is true, it is still apparent at this stage that the BA’s performance

does not change due to tuning with regard to changing boundary constraint ranges.
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Figure 5.3: The average error of the Bees Algorithm pre- and post-tuning as dimen-
sionality increases.

For the ranges of landscape characteristics the BA has been tested on, it is clear

that tuning generally makes little difference to the algorithm’s ability to cope with

changing landscape characteristics, and generally to the algorithm’s performance, as

suggested by the original algorithm designer. This could be because the bees algorithm

is generally very highly performing and, when tried on more difficult problems, it may

be that tuning could still provide significant benefits, similar to those seen when the

dimensionality of the problem is high.

5.4.3 Evolution Strategies

ES has the smallest number of parameters of all the algorithms studied here (excepting

the baseline algorithm, stochastic hill climbing). The two parameters this form of ES

offers are (1) the population size and (2) the number of children. It is suggested that by

tweaking these parameters selection pressure is adjusted: That is to say, the greediness

of the algorithm changes. The parameter configurations obtained through F-Racing

are varied, implying that there are some configurations more successful than others.

A range of configurations are selected across each characteristic - both in terms of

different values for the two parameters, and different selection pressures when the two

parameters are combined.

Box plots depicting the average errors across the characteristic ranges are shown

in Fig. 5.4, allowing for a thorough examination of the spread of average errors pre-

and post-tuning. Examining the errors in this way shows that there is either little or

no improvement to the average error, or spread of results, for all of the characteristics.

This implementation of ES does not appear to benefit from tuning by a noticeable

amount in any circumstances. Each characteristic is now examined in detail.

It is unexpected to see that the results of using the tuned parameters show little to

no change in performance across all characteristics. There is a small decrease in average

error as the number of local optima changes, but the standard deviation is similar for
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Figure 5.4: Box plots depicting the average errors of evolution strategies across
ranges of characteristic values, for each selected characteristic. A narrower spread
of errors indicates that the algorithm is more robust to this characteristic, i.e. the
performance remains consistent regardless of the changes to the fitness landscape.

both untuned and tuned, suggesting that while the average error has decreased very

slightly, the ability of the algorithm to cope with increasing numbers of local optima

is unchanged.

For all other characteristics, there is little change in average error, standard devi-

ation and range across characteristics values (that is to say, the algorithm is no more

capable of dealing with changes in these characteristics). This is in-line with the defini-

tion of the two parameters the algorithm offers - the selection pressure can only affect

the way evolution strategies explores local optima, there is no control over the area

that is explored around each point of interest, or any way to encourage the algorithm

to rapidly explore an increasingly large search space, for example.

For the number of local optima, there is a small improvement in the mean average

error (from 0.085 to 0.078), suggesting a small performance improvement from tuning.

The range of averages is very close both pre- and post-tuning (0.0094 and 0.0086

respectively), which suggests that tuning has either had a very small, or negligable,

effect on the algorithm’s ability to cope with increasing number of local optima. The

results are statistically significant, so there is some effect from tuning, but whether

this effect is worth the extra effort of tuning is questionable.

The results are similar for boundary constraint range and smoothess coefficient also,

with an improvement of average error for boundary constraint range from 0.097 to 0.093

and for smoothness coefficient from 0.110 to 0.102. The range broadens slightly for

boundary constraint range (from 0.0053 to 0.0058) and narrows slightly for smoothness

coefficient (from 0.0038 to 0.0037). As with number of local optima, there is a small

performance improvement from tuning, but the changes to range are very small - and

it is questionable whether this means that tuning is worthwhile in these instances.

The differences between pre- and post-tuning for dimensions and ratio of local op-
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tima, when tested with a paired, two-tailed t-test, were not found to be statistically

significant. That is to say, there was no statistically signifnicant difference in this

instance between the tuned and untuned results. Indeed this is apparent from the re-

sults, with both means changing only slightly (within 0.002), and the ranges exhibiting

a similarly small change. This is perhaps unsurprising, as the very basic ES used in this

study does not have advanced features or parameters which can capitalise on strategies

for better coping with changes to dimensionality and avoidance of local optima.

When tested for significance using a paired, two-tailed t-test with a significance

level of 5%, the post-tuning results were found to be significantly different for number

of local optima, boundary constraint range and smoothness coefficient, but not signif-

icantly different for number of dimensions or ratio of local optima to global optimum

(H0 = Tuning the parameters of the algorithm using an F-Race has no effect on an

algorithm’s performance, HA = Tuning the parameters of the algortihm using an F-

Race has an effect on an algorithm’s performance). Although the results of some of

these characteristics are significantly different, the change in mean, and the change in

the spread of means, is still very small, and it is important to consider whether a non-

substantial improvement, while statistically significant, can be considered a worthwhile

improvement in the algorithm’s performance.

This form of ES is now considered outdated, and there are many more adaptations

of the ES algorithm that offer a greater range of parameters (such as CMA-ES (Hansen

and Kern, 2004)). Evolution strategies will give you its best performance with an out-

of-the-box parameter configuration, so it is quick to implement, but it is also vital to be

aware that there is little you can do to improve this implementation without switching

to a more complex variant of ES.

5.4.4 Genetic Algorithm

The performance of the GA generally increases greatly post-tuning, coping significantly

better with increasing numbers of local optima, increasing boundary constraint range

and an increasing smoothness coefficient. A graphical summary of the average error

as characteristics change for the GA can be seen in Fig. 5.5. This particular imple-

mentation of a genetic algorithm offers four configurable parameters: (1) Population

size, (2) ’Bits’ per parameter in the bitstring representation, (3) Crossover rate and

(4) Mutation rate. In experiments with a fixed number of objective function calcula-

tions, population size affects the number of generations the algorithm reaches before

completing. A larger number of bits in a bitstring representation allows more ‘precise’

solutions to be generated at the expense of a representation which is less affected by

mutation. Similarly to BFOA, there are a few configurations which re-occur across

different characteristics and different characteristic values. It is probable that once a

‘good’ configuration has been found for a genetic algorithm, it is extendable to ‘simi-

lar’ landscapes, agreeing with Goldberg (1989)’s suggestion that genetic algorithms are

robust problem solvers exhibiting approximately the same performance across a wide

range of problems.
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Box plots depicting the average errors across the characteristic ranges are shown

in Fig. 5.5, allowing for a thorough examination of the spread of average errors pre-

and post-tuning. Examining the errors in this way shows that there is a reasonable

improvement in average error for all characteristics excepting dimensionality, and in

some of these cases (boundary constraint range and smoothness coefficient), the spread

of results narrows considerably also - suggesting improved robustness to this character-

istic. The average error worsens for dimensionality, and the spread of errors broadens,

suggesting that the GA has become less capable of dealing with increased dimensional-

ity post-tuning. The GA does benefit from tuning in all cases, but there is a difficulty

when the problem is too tough, likely related to the automated tuning methodology

selected for this study rather than the GA itself. Each characteristic is now examined

in detail.
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Figure 5.5: Box plots depicting the average errors of the genetic algorithm across
ranges of characteristic values, for each selected characteristic. A narrower spread
of errors indicates that the algorithm is more robust to this characteristic, i.e. the
performance remains consistent regardless of the changes to the fitness landscape.

When considering the results of changing the number of local optima, post-tuning

the mean average error improves from 0.093 to 0.015 - a noticeable improvement. The

range of errors also decreases from 0.116 to 0.002, a much narrower range, suggesting

that the tuning of parameters has enabled the GA to provide a more robust set of results

when the number of local optima changes. Another large improvement is observed in

the average mean error for the changing ratio of local optima to global optimum, which

improves from 0.079 to 0.007, but the range here decreases less notably, from 0.0015 to

0.0013. This suggests that while there is a performance improvement here from tuning,

the ability of the algorithm to cope with changing attractiveness of local optima is not

helped by adjusting the parameters and the improvements may be related to better

fitting the parameters to other landscape characteristics. It should be noted that the

range here was already very narrow - there was little room for improvement, as the GA

was already one of the better algorithms in this study for coping with changes to the
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ratio of local optima to the global optimum.

Improvements for boundary constraint range and smothness coefficient are also

notable. The average mean errors improve from 0.125 to 0.021 and from 0.154 to 0.021

respectively, a similar improvement for both characteristics. Likewise, the range of

average errors narrow from 0.17 to 0.048 and from 0.14 to 0.034 respectively. The

GA is gaining a performance benefit from tuning both in terms of improvement to the

error, and also in terms of improvement to its ability to cope with the changes in these

characteristics.

For increasing dimensionality the GA initially shows promising results in terms of

tuned performance, with a marked performance increase up to four dimensions. The

benefit from tuning rapidly declines, however, until the tuned performance is worse

than that of the tuned version (see Fig. 5.6). There are two possible explanations

for this: The first is that the number of objective calculations used as the termination

criteria did not allow the F-Race to gather any meaningful performance data from

the configurations. The second explanation is that the test was not conducted on a

wide enough range of parameter configurations - although, two of the four parameters

have definite ranges (mutation and crossover rates are percentages, thus generation was

bounded between zero and one) so this is unlikely. Across the full range of values for

dimensionality, tuning decreases the performance of the GA greatly. The average mean

error increases from 0.420 to 0.529, and the range of averages increases greatly from

0.67 to 0.97. The negative effect of tuning at greater dimensions severely hinders the

overall performance of the GA, and the lessened ability of the GA to cope with varied

dimensionality becomes hugely problematic for the algorithm’s general performance.

When tested for significance using a paired, two-tailed t-test with a significance

level of 5%, the post-tuning results were found to be significantly different for all char-

acteristics excepting dimensionality, where no significance was found (H0 = Tuning the

parameters of the algorithm using an F-Race has no effect on an algorithm’s perfor-

mance, HA = Tuning the parameters of the algortihm using an F-Race has an effect on

an algorithm’s performance). The improvements in all other characteristics are both

statistically significant and noteworthy, and with the narrowing of the ranges show that

the GA is reliant on careful parameter tuning to adapt to varying fitness landscape

characteristics. However, this can backfire, as has been demonstrated here with the

cases of high dimensionality, where the automated tuning methodology was unable to

find a suitable parameter configuration, resulting in increased average errors.

Genetic algorithms offer additional levels of customisation in the form of component

selection. Design decisions such as selecting the most appropriate problem representa-

tion, crossover and mutation strategies, and selection strategies also have to be made.

Only a single combination of these features has been examined in this study (a genetic

algorithm with a binary tournament selection process, bitstring problem representa-

tion, one-point crossover and “bit flip” mutation). This methodology could be used

to examine the effect of different components on a genetic algorithm, which may fur-

ther highlight the importance of design decisions in relation to characteristics of fitness
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Figure 5.6: The average error of the Genetic Algorithm pre-tuning and post-tuning as
dimensionality increases.

landscapes.

5.4.5 Harmony Search

The four parameters of HS all control different aspects of the search strategy. Mem-

ory size dictates how many promising solutions can be stored - effectively, how many

potential sites of interest are retained by the algorithm. Consideration rate and ad-

justment rate control how new solutions are generated. The consideration rate is the

percentage chance that a solution based on one in memory will be generated (con-

versely, 1-consideration rate is the chance a random solution is generated instead).

The adjustment rate is then the percentage chance that the randomly chosen solution

from memory will be adjusted. In cases where a solution is adjusted the fourth pa-

rameter, which controls the maximum range from which solutions can be selected, is

used. If the adjustment does not occur, the considered solution potentially occupies an

additional slot in the memory - thus increasing the chance that this solution may be

chosen for consideration again. The interplay between these parameters is crucial, and

it is somewhat hard to see how consideration rate and adjustment rate can directly

affect the search strategy - unlike memory size and range, which are more obvious.

Box plots depicting the average errors across the characteristic ranges are shown in

Fig. 5.7, allowing for a thorough examination of the spread of average errors pre- and

post-tuning. Examining the errors in this way shows that there is an improvement in

average error for the number of dimensions, and the boundary constraint range, coupled

with a shortening of the range of errors also. In these cases, tuning has improved the

results of the HS. For the other characteristics, results are less impressive, with either

little or no obvious improvement. The HS does benefit, but as with the BA, with

untuned results being very good, the problem needs to be sufficiently ‘difficult’ to justify

the tuning process. When the problem proves challenging, e.g. at high dimensionality

or large boundary constraint ranges, the HS is improved considerably by tuning. Each
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characteristic is now examined in detail.
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Figure 5.7: Box plots depicting the average errors of the harmony search across
ranges of characteristic values, for each selected characteristic. A narrower spread
of errors indicates that the algorithm is more robust to this characteristic, i.e. the
performance remains consistent regardless of the changes to the fitness landscape.

HS, like the BA, offers some of the lowest ‘out of the box’ average errors in this

study. For most characteristics, there is little room for a performance increase post-

tuning. Boundary constraint range proved the second most challenging characteristic

to harmony search pre-tuning, but post-tuning shows improved performance with a

substantial improvement in average mean error from 0.048 to 0.001. The range of

errors also narrows, from 0.111 to 3.97×10−3 - which suggests that HS improves not

only in terms of performance, but also in terms of its ability to cope with the change in

this characteristic. The range values in all the configurations selected by F-Racing are

much smaller than those in the ‘out of the box’ values, and this contributes significantly

to the performance improvement where boundary constraint ranges are increasing.

The consideration rate also decreases almost linearly as size increases - effectively,

more random solutions are used instead of a reliance on the ‘memory’. These random

solutions allow the solution pool to jump from one position in the search space to

another, encouraging a wider search space, explaining the significant improvement as

boundary constraint range increases.

Dimensionality also shows some minor improvement in the tuned parameter per-

formance of harmony search in terms of both average error and ability to cope with

the increasing characteristic, with an improvement in average mean error from 0.364 to

0.263, and a narrowing of the range of errors from 0.716 to 0.510. High dimensionality

problems (seven and above) have a much higher consideration rate than the successful

configurations for lower dimensionality, suggesting that a focus on exploitation rather

than exploration is beneficial to the harmony search when dimensionality is high. This

is the opposite case of what happens with boundary constraint range as discussed

above.
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Number of local optima, ratio of local optima to global optimum and smoothness

coefficient were all characteristics with which the HS already coped very well - pro-

viding both good quality solutions, within a very small range, across all characteristic

values. Post-tuning, there is a significant improvement in the HS’s performance when

the number of local optima changes, although as mentioned previously, the pre-tuning

performance was already better than many other algorithms in this study. The av-

erage mean error decreases from 1.12×10−2 to 2.17×10−5, with the range narrowing

from 1.86×10−2 to 7.34×10−5. Again, while the HS already offered fairly consistent

performance as the number of local optima changed, this is improved upon post-tuning.

Much smaller improvements are observed for ratio of local optima to global optimum

and smoothness coefficient, with the average mean error improving from 7.14×10−3 to

1.72×10−3 and 1.79×10−2 to 6.19×10−4 respectively. The range for ratio of local optima

shows little change post-tuning, suggesting that the HS is no more capable of escaping

increasingly attractive local optima due to parameter changes. However, the range of

average errors for smoothness coefficient shortens from 1.95×10−2 to 4.13×10−3, indi-

cating some improvement in ability to cope with availability of gradient information.

When tested for significance using a paired, two-tailed t-test with a significance

level of 5%, the post-tuning results for all characteristics were found to be significantly

different to the pre-tuning results (H0 = Tuning the parameters of the algorithm using

an F-Race has no effect on an algorithm’s performance, HA = Tuning the parameters

of the algortihm using an F-Race has an effect on an algorithm’s performance). How-

ever, as with the BA, the performance of the HS is very strong pre-tuning, and the

improvements made by tuning are most noticeable when the problem is ‘difficult’.

5.4.6 Particle Swarm Optimisation

PSO in this form has four parameters. These parameters control the population size,

the maximum velocity of a particle and two parameters which control the bias towards

the particle best solution and the bias towards the global best solution. With these

parameters, it is possible to control the coverage of a search space (the number of

particles), enforce a large search area or a small search area for each particle (the

maximum velocity) and through tweaking of the local and global best solution bias,

control the capability of the algorithm to converge on a single solution or explore several

areas of interest (optima avoidance).

Box plots depicting the average errors across the characteristic ranges are shown in

Fig. 5.8, allowing for a thorough examination of the spread of average errors pre- and

post-tuning. Examining the errors in this way shows that there is an improvement in

average error as the number of dimensions increases, as the boundary constraint range

increases, and a smaller yet noticeable improvement when the smoothness coefficient

changes. There is not an obvious improvement for the number, or ratio, of local optima.

As with the BA and HS, the PSO does appear to benefit from tuning, but only when the

problem is ‘difficult’ with the default parameters. Each characteristic is now examined

in detail.
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Figure 5.8: Box plots depicting the average errors of particle swarm optimisation
across ranges of characteristic values, for each selected characteristic. A narrower
spread of errors indicates that the algorithm is more robust to this characteristic, i.e. the
performance remains consistent regardless of the changes to the fitness landscape.

A small decrease in average error is shown as local optima increases (from 0.025

to 0.014) - and the range narrows only very slightly, from 3.59×10−2 to 2.95×10−2,

indicating that the algorithm is no more capable (or only slightly more capable) of

dealing with increasing numbers of local optima post-tuning. The results for ratio

of local optima to global optimum mirror those of number of local optima in terms

of average error, with an improvement from 0.025 to 0.016. The range, however,

for this characteristic actually widens very slightly, from 9.31×10−3 to 2.27×10−2.

Better performance has been obtained from the PSO when the ratio of local optima is

high, which either suggests that the algorithm has optimised its parameters to better

take advantage of the local optima, or, has better optimised its ability to avoid local

optima when they are more attractive. Smoothness coefficient results also show a

small improvement post-tuning. There is a small increase in the average error (from

4.32×10−2 to 1.41×10−2), and the range shortens slightly also, from 3.62×10−2 to

1.71×10−2.

As there are techniques in PSO to avoid local optima, and parameters to control

these, a stronger improvement in error and robustness for these two characteristics

may have been expected. As with other local optima avoidance strategies in previously

discussed algorithms, however, the presence of these strategies, and not the specific

parameterisation, is likely enough to encourage the algorithm to escape local optima,

meaning that the actual parameters chosen are not as important as some of the other

parameters available in the configuration of the algorithm.

PSO starts to show a much larger improvement with tuning where changes to

boundary constraint range is concerned. The increase to average error here is much

greater than that of the three previously mentioned characteristics (from 7.6×10−2 to

2.19×10−2), and the spread of results also makes a dramatic decrease from 0.148 to
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4.21×10−2. It is perhaps not surprising, considering PSO’s parameter which so directly

controls exploration (maximum velocity), that there is a great improvement in the al-

gorithm’s ability to adapt to changing boundary constraint ranges post-tuning, and in-

deed, six different configurations are selected for the varying boundary constraint ranges

- suggesting that having a customised parameter configuration for specific boundary

constraint ranges does make a considerable difference to the performance of PSO.

Performance of PSO most greatly improves in terms of dimensionality post-tuning,

in terms of both average error (improving from 0.420 to 0.157) and ability to cope

with the changing characteristic values (with the range narrowing from 0.809 to 0.39 -

mostly due to greatly improved performance at higher dimensions). The F-Races for

PSO selected the same configuration for nearly all values of dimensionality, implying

that there is no specific parameter that needs adjusting to cope with the increase in

dimensionality, but selecting a configuration which provides good exploration allows

PSO to perform well as the search space increases exponentially. Dimensionality is still

the characteristic where PSO offers the poorest performance, and in which the results

show the algorithm to be the least robust, but this not unusual, as this is the same for

all other algorithms.

This trend continues across all characteristics, with F-Races selecting the same

configurations often, regardless of characteristic values. As with the other swarming

algorithms, it is possible that once a good configuration has been found, it is able

to deal with a wide range of problems of a similar nature, regardless of the specific

characteristics. The configurations selected are all varied in their parameters, and it is

unexpected to see that there is no pattern to maximum velocity as boundary constraint

range increases. This is likely that because maximum velocity is a maximum, and there

are particles with randomly generated velocities below the maximum, this parameter

is less significant than it may initially appear. It would be interesting to consider

the effect of having a minimum velocity on the increase in boundary constraint range,

although this would also severely hamper exploitation.

When tested with a paired, two-tailed t-test, the post-tuning results were found to

be statistically significantly different at a significance level of 5% for all characteristics,

excepting number of local optima - which, as discussed above, showed virtually no

improvements (H0 = Tuning the parameters of the algorithm using an F-Race has no

effect on an algorithm’s performance, HA = Tuning the parameters of the algortihm

using an F-Race has an effect on an algorithm’s performance). The PSO does contain

does parameters which control local optima avoidance (in the form of weightings which

control reliance on a particle’s own best solution versus the population’s best solution),

so there was the potential for tuning to make a difference here. As previously suggested,

the likely explanation for a lack of improvement post-tuning, especially given the strong

initial results, is that the ‘default’ parameters for PSO already offer strong local optima

avoidance, and that tweaking these particular parameters does not make a significant

difference.
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5.4.7 Stochastic Hill Climbing

With only a single parameter - the range at which new solutions are generated - the

stochastic hill-climbing algorithm does not offer a large amount of customisation where

parameters are concerned. This one parameter is directly linked to the search pattern

and nothing else, and as there are no other parameters there is no interplay between

parameters to consider, so arguably stochastic hill-climbing should prove the easiest

algorithm to tune.

Box plots depicting the average errors across the characteristic ranges are shown in

Fig. 5.9, allowing for a thorough examination of the spread of average errors pre- and

post-tuning. Examining the errors in this way shows that there is an improvement in

average error for all characteristics except dimensionality (where performance actually

worsens, similar to the GA). The spread of results narrows slightly for number of

optima, ratio of optima and smoothness coefficient, and there is a bigger improvement

in the spread of results for boundary constraint range. As with the GA, SHC shows

that tuning is always a benefit (excepting the cases where tuning has failed, once again

likely attributed to the tuning technique rather than the algorithm itself).
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Figure 5.9: Box plots depicting the average errors of stochastic hill-climbing across
ranges of characteristic values, for each selected characteristic. A narrower spread
of errors indicates that the algorithm is more robust to this characteristic, i.e. the
performance remains consistent regardless of the changes to the fitness landscape.

As shown, all characteristics, barring dimensionality, show an improvement post-

tuning, which is counter-intuitive given the number and nature of the parameters of

the algorithm. As the neighbourhood size is intrinsically linked with the range from

which new solutions are generated it is of no surprise that performance post-tuning

is affected when boundary constraint range changes. Examining the configurations

determined through F-Racing, there is a clear correlation: As the boundary constraint

range increases, so does the neighbourhood size (the neighbourhood size is consistently

50%-60% of the boundary constraint range). As the number of objective function

calculations is limited, despite having a larger neighbourhood size, the ability of the
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algorithm to effectively explore larger environments is still limited, hence the average

error not decreasing as much as may be expected (from 0.446 to 0.305), but the ability

of the algorithm to deal with increasing search space sizes does also improve slightly

(the range narrows from 0.699 to 0.578).

Dimensionality shows poorer performance post-tuning with SHC, similar to that

observed with the GA. The average error remains roughly consistent post-tuning (with

a pre-tuning error of 0.577 and a post-tuning error of 0.589), but the range broadens

quite vastly from 0.73 to 0.94. As with the GA, better performance is obtained when

the landscape comprises of fewer dimensions, but this is offset by poorer performance

when the dimensionality is high. This could, once again, be a case of the F-Race

failing to find a satisfactory parameter configuration, and producing less desirable

configurations/configurations which are not well suited for generalised landscapes.

Number of local optima, ratio of local optima to global optimum and smoothness

coefficient all show very similar improvements in terms of both increased average error

and decreased spread of results. Taking the parameters of the algorithm into account,

it is surprising to observe clear improvements in both average error and error ranges

for the characteristics other than boundary constraint range. The number of local

optima demonstrate a large increase in performance and a greater ability to cope with

more optima (a reduced standard deviation). The parameter configurations selected

for the number of local optima, the ratio of local optima and the smoothness all have a

neighbourhood size of around 50% the search space size. Performance improvement for

all of these characteristics could be attributed to the algorithm having configured itself

properly for the search space size used as a default for all other characteristics, rather

than tuning itself to perform most significantly with the characteristic in question.

When tested with a paired, two-tailed t-test, all characteristics were found to be

significantly different at a significance level of 5% post-tuning, excepting number of

dimensions (H0 = Tuning the parameters of the algorithm using an F-Race has no

effect on an algorithm’s performance, HA = Tuning the parameters of the algortihm

using an F-Race has an effect on an algorithm’s performance). As previously discussed,

it is somewhat surprising to see tuning making a difference to the SHC algorithm,

given the lack of parameters to tune. There is a possibility that the performance

improvements have been obtained from optimising the algorithm’s search strategy to

the default boundary constraint range (i.e. using a range parameter of approximately

15 instead of 10, to better fit the default boundary constraint range of 30).

While tuning makes an improvement to performance of SHC, the noticeable trend

in the parameterisation, and the simplified set of parameters perhaps means that an

automated tuning methodology may be more than is necessary to obtain maximum

performance from the algorithm.
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5.5 Summary

In this Chapter, the experiment from Chapter 4 has been developed further. A signifi-

cant limitation of the previous work pertained to the use of ‘out of the box’ parameter

configurations for the algorithms, which is unlike the way algorithms are used in the

real world. By adding an automated parameter tuning component (F-Racing) to the

methodology, the effect of tuning on different algorithms has been studied, contributing

significantly to the debate on when it is beneficial to tune algorithms.

It is noted that algorithms broadly fall into three categories with regard to their

response to tuning: (1) Algorithms which do not benefit from tuning (ES), (2) Algo-

rithms which benefit from tuning when the problem is “difficult” enough to require

tuning (i.e. when untuned performance is poor) (BA, HS, PSO) and (3) Algorithms

which always benefit from tuning (BFOA, GA, SHC). Dimensionality often offers the

most significant improvement post-tuning in algorithms that have parameters relevant

to increasing the breadth of search space (swarming algorithms are significantly better

here than evolutionary algorithms).

The answer to the question ‘To what extent does tuning alter the performance

profile of an algorithm with regard to each of the landscape characteristics defined?’

therefore depends on both the algorithm and characteristic in question. While there are

some algorithms for which tuning has no effect, at least in this study, there are many

more where there is an effect - and that effect varies, depending on the characteristic,

and the combination of characteristic values. Developing a portfolio of the algorithm’s

performance, both pre- and post-tuning in this manner, is a helpful strategy for de-

scribing the behaviour, strengths and weaknesses of an algorithm, and for exploring

the way in which an algorithm is capable of dealing with challenging landscapes. With

a performance profile such as those described here, a practitioner can identify what

the particular strengths, and weaknesses, of an algorithm are, and whether or not it

requires tuning in a specific implementation.

Another way of looking at the results is to consider how tuning works on a per-

characteristic basis. Box plots depicting the pre- and post-tuning results of each char-

acteristic, by algorithm, are shown in Figs. 5.10 and 5.11. Examining the results

in this way shows that despite the algorithms having unique and varied performance

portfolios, with varied reactions to the tuning process, there is some consistency with

regard to characteristics. These findings mirror those found in Chapter 4, for exam-

ple, dimensionality is clearly the most difficult both pre- and post-tuning, with tuning

offering the strongest improvements as dimensionality improves, but algorithms still

suffering from the poorest performance despite this.

Number of local optima and ratio of local optima are also fairly consistent across

algorithms. The likelihood here is that both of these characteristics control the land-

scape’s attractiveness of local optima, and as such, if an algorithm improves post-tuning

when there are more local optima present, it likely also improves if these local optima

are more attractive.

87



The methodology presented here is computationally inexpensive, which makes it

ideal for use as a ‘benchmark’ process for better defining novel algorithms, with the

potential for discussing performance of algorithms both pre- and post-tuning. Addi-

tionally, it offers the possibly of relating this to when it is appropriate to tune based on

estimated landscape characteristics. To further this work, it would be useful to inves-

tigate further which features of specific algorithms make them more or less amenable

to tuning, and positions algorithms to better cope with difficult characteristics. It

is expected that to do so would follow a similar methodology: By ‘flagging’ certain

features off and on, and comparing the performance with relation to landscape charac-

teristics, an algorithm designer can highlight the features of algorithms necessary for

good performance, and potentially transfer these features from existing algorithms to

new algorithms to cover their weaknesses to certain landscape characteristics.

It is of note that this methodology is applicable to any optimisation algorithm,

and further studies could continue to add algorithms to form a “complete” picture of

algorithm performance, both with untuned parameters and tuned parameters, across

the nature-inspired optimisation field.

While the work in this Chapter presents the findings using one automated parame-

ter tuning methodology, there are several more that exist in the literature. It could be

argued, for example, that the work presented here demonstrates how amenable algo-

rithms are to the F-Racing process rather than how they are to the process of tuning

more generally. To further this study, it would be beneficial to look at these other tun-

ing methodologies and compare the results; The benefits here would be twofold - such

studies would firstly offer additional insights into the performance of the algorithms

post-tuning, with more configurations tested, and secondly, different automated tuning

methodologies could offer advantages and disadvantages under different problem con-

figurations. It may be the case that certain automated parameter tuning methodologies

work well at extremes, i.e. when there is little differentiation between performance data

from algorithm runs, and others when there is greater variation. If this is the case, a

methodology presented such as this could also be used to identify the strengths and

weaknesses of parameter tuning methodologies, in addition to algorithms for optimi-

sation themselves.

The work so far, from Chapter 4 and this Chapter, has focused on methods of trying

to offer practitioners more information about nature-inspired algorithms to aid with the

algorithm selection problem. One of the problems that remains is that this information

is still difficult to use; While information has been presented as clearly as possible, it is

still not clear which algorithm is “best” to use in a given circumstance. For example, if

you have a problem with high dimensionality, but with low modality, it is now known

that the BA performs well against high dimensional problems, but so do GAs, and then

adding in the extra factor of number of local optima further complicates matters. To

aid in the decision making process further, it would be useful to automate the process of

algorithm selection. Having identified suitable characteristics for “dividing” algorithm

performance, these could be used as inputs for a machine learning technique, and it is
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this approach that is trialled in the following Chapter.
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(c) Ratio of local optima to global optimum.

Figure 5.10: Box plots depicting the average error of all algorithms across the complete
range of characteristic values for all characteristics (number of local optima, number
of dimensions and ratio of local optima to global optimum).
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(b) Smoothness coefficient.

Figure 5.11: Box plots depicting the average error of all algorithms across the complete
range of characteristic values for all characteristics (boundary constraint range and
smoothness coefficient).
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Chapter 6

Using Landscape Characteristics as

a Performance Predictor

6.1 Introduction

The algorithm selection problem (Rice, 1976; Smith-Miles, 2009) involves finding the

“best” algorithm to solve a specific problem for a given case. One approach to this

problem may be to test different algorithms on public benchmark data sets, but, such

experimental studies are limited in that they generally only consider a relatively small

number of algorithms and/or problem instances. The No Free Lunch Theorem (NFLT)

(Wolpert and Macready, 1997) suggests that no single algorithm can out-perform an-

other (including random search) on all types of problem (Christensen and Oppacher,

2001). The natural implication of this is that benchmark-based comparisons have lim-

ited utility, as there may well exist problem instances on which algorithms that are

found to be “superior” perform less well (Smith-Miles and Lopes, 2012). It is natural,

therefore, to focus on using the features of the problem under consideration to inform

the choice of algorithm. There now exists a wide and diverse range of algorithms and

methods for computationally hard problems, and finding the “best fit” between the

characteristics of an algorithm and those of a particular problem is, itself, a difficult

task (Kotthoff et al., 2012).

As an ever increasing number of nature-inspired algorithms, and variants of these

algorithms, are described, the process of algorithm selection becomes increasingly dif-

ficult. The field of hyper-heuristics1 has evolved alongside that of heuristics and meta-

heuristics2 to combat this problem, but as more novel algorithms are proposed new

hyper-heuristic techniques need to be developed in an attempt to minimise the prob-

lems posed by the process of algorithm selection (Burke et al., 2003, 2010; Özcan et al.,

2008).

In the previous Chapters, and associated publications, it has been shown that the

performance of various algorithms can be related to the characteristics of the fitness

landscape of the problem to be solved (Crossley et al., 2013a,b; Pham and Castellani,

1Defined here as the process of selecting meta-heuristics.
2Defined here as the process of selecting heuristics.
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2013). This provides insight into the strengths and weaknesses of an algorithm with

regard to certain values of landscape characteristics, but there is still considerable diffi-

culty in interpreting this information when considering which algorithm to select for a

given problem. This leads to the third, and final, of the questions posed at the outset:

To what extent can algorithm performance by predicted by using the defined landscape

characteristics as inputs to a classification algorithm? This Chapter addresses that

question by trialling two classification algorithms which automatically “rank” heuristic

choices by making assumptions on algorithm performance based on landscape char-

acteristics of a given problem, using the data sets generated using the methodology

proposed in Chapter 3.

Two systems for predicting algorithm performance were developed, one using ar-

tificial neural networks and one using random forests (Breiman, 2001). These two

learning algorithms were trained using data sets generated across a range of landscape

characteristics. The results analyse whether data sets with average error or expected

ranking as the target outputs produce the best prediction performance for each learning

algorithm.

The remainder of this Chapter is organised as follows: There is first an exploration

of the background of fitness landscape analysis for the algorithm selection problem in

Section 6.2, followed by a description of the approach in Section 6.3, before the exper-

imental findings are presented in Section 6.4. Finally, there is a concluding discussion

of the implications of the results, and suggestions for further work in Section 6.5.

6.2 Background

Finding a way to reliably relate fitness landscape analysis to problem characteristics,

and then to algorithm performance, is an essential component of solving the algorithm

selection problem. One of the originators of the idea that this might be possible for

a wide range of algorithms using characteristics of fitness landscapes is Merz (2001).

Merz uses a variety of different techniques for describing fitness landscapes to classify

problems. In Merz and Freisleben (2000), existing measures of ‘hardness’ are used

to classify landscapes and attempts are made to relate this to algorithm performance

leading to the selection of components of an algorithm (in this case, recombination

and mutation operators). In later work, Merz proposes new measures of landscape

hardness designed to help relate fitness landscapes to algorithm performance (Merz,

2004). The observation is made, once again, that these measures provide valuable

insight into the behaviour of algorithms on different kinds of landscapes, and specific

features of landscapes (such as the size of the basins of attractiveness of local optima)

are important in relating fitness landscape analysis to performance. The techniques

proposed in this work are said to improve on previous techniques (such as the fitness

distance correlation coefficient) which are not feasible for real-world problems.

In Morgan and Gallagher (2012a), the authors also acknowledge the difficulty of un-

derstanding the relationship between problems and algorithms, and turn their attention
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to continuous optimisation problems unlike previous efforts which have mainly focused

on discrete optimisation proposing a technique for capturing information about prob-

lem structure. With Morgan and Gallagher (2012b), the authors once again investigate

continuous optimisation and the effect ridge structures in a landscape have on optimis-

ers, proposing a methodology for studying the behaviour of optimisation algorithms.

The authors acknowledge that more precisely categorising the relationship between

landscape structure and algorithm behaviour is the long-term goal beyond this work,

and that broader experimentation (including differing performance measures) may lead

to this.

Working with particle swarm optimisation, Malan and Engelbrecht (2013) suggest

that previous measures of hardness are not generally useful for relating fitness analysis

to algorithm performance for a variety of reasons. To summarise, these reasons include

(1) Some require knowledge of the global optima which is not always known, (2) Many

assume the problem is discrete which is not always the case, and, (3) Many are as

computationally intensive as solving the problem. The authors of this work propose

three new measures, specifically with continuous optimisation in mind, which measure

ruggedness, predict the presence of funnels and provide an estimated measure of the

fitness gradient. These novel techniques were tested on benchmark functions, and an

attempt to relate performance of PSO to these measures was made. The conclusion,

as perhaps can be expected, states that each measure gives some information about

performance, and could be used as a part-predictor, but none is useful as a complete

predictor. This sentiment is echoed in future work, too. In Malan and Engelbrecht

(2014b), an opposite approach is taken to the standard - instead of trying to find good

algorithms, fitness landscape analysis is used to try and find where the PSO algorithm

fails to optimise. This time, several traditional discrete optimisation landscape analysis

techniques are adapted for use in the continuous domain and, once again, the conclusion

is that these techniques give partial information individually, but in order to build up a

complete picture of algorithm performance (or, rather, failure), several measures need

to be used. This is further reinforced in Malan and Engelbrecht (2014a), where similar

results are obtained once again, emphasising the need for multiple measures of different

fitness landscape features.

The process of mapping a ‘real-world’ problem to a fitness landscape (and therefore

an algorithm) is a complex and intractable task, even with the series of landscape

analysis measures the above authors have used to relate fitness landscapes to algorithm

performance. This is observed in all of the work described above, and also in the work

of Sun et al. (2014), who tackle the problem of mapping fitness landscape analysis

measures to problem characteristics as a way of easing this difficulty. This collection

of metrics demonstrates that there are several ways to determine different problem

characteristics in terms of fitness landscape analysis, making the problem somewhat

more tricky, and, this work posits itself as a way of helping algorithm designers looking

to solve the problem of algorithm selection choose which fitness landscape analysis

metric to use.
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Bischl et al. (2012) demonstrate some success in using landscape analysis for au-

tomated algorithm selection, based on exploratory analysis. Using large data sets

obtained from workshops, support-vector regression is used as the learning method-

ology to choose between a number of algorithms on a set of functions. The authors

acknowledge that there is some difficult in the experimental set-up: The functions used

are very different from each other (making accurately testing the learning algorithm’s

learning capabilities challenging). Based on low-level features (such as an estimation

of the number of peaks in the distribution of function values) the authors state they

can predict the optimal, or close to optimal, candidate from a small portfolio of algo-

rithms for a given function. They do observe that they have poor worst-case scenario

performance and express a desire for more test functions.

6.3 Methodology

The fundamental question this Chapter addresses is this: is it possible to use fitness

landscape characteristics in order to predict the performance of a set of algorithms?

As Kotthoff et al. point out, “While there has been some small-scale work to compare

the performance of different machine learning algorithms, there has been no com-

parison of the machine learning methodologies available for algorithm selection and

large-scale evaluation of their performance to date” (Kotthoff et al., 2012). In this

paper, the authors evaluate a number of machine learning algorithms (and a large

number of machine learning methods for algorithm selection) on a number of discrete

optimisation public data sets, to give a broad overview. In this Chapter, two of the

algorithm selection methods they use (random forests and neural network) are selected

for investigation into their prediction performance across different general landscape

characteristics. This approach extends that of Muñoz et al. (2012), who use a neural

net-based regression approach to rank a number of different configurations of a base

algorithm.

To investigate the feasibility of fitness landscape characteristics as a predictor of

algorithm performance, a methodology is proposed that uses two different machine

learning techniques to predict the “performance rankings” of seven different optimisa-

tion algorithms. The methodology is as follows: (1) select a number of nature-inspired

algorithms, and obtain consistent source code for their implementations; (2) generate

training data for each algorithm, describing the performance of each algorithm across

a range of characteristics; (3) train two learning algorithms (neural net and random

forest) using the training data, and then test the predictive capabilities of each.

The predictors are tested using ten-fold cross-validation (Kohavi, 1995), and the

learning algorithms are compared against each other. In order to get an idea for how

best to prepare the data sets, the learning algorithms are trained using the data in its

raw state (that is, with the average error used as the target output) and also with the

data pre-ranked (that is, with the expected rank as the target output). In the following

sections, the methodology is in described in more detail.
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Table 6.1: Ranges of characteristics used with the Max-Set of Gaussians landscape
generator to generate the training data for the predictors.

Characteristic Start Step End

Number of Optima 1 100 501

Ratio of Local Optima 0.1 0.4 0.9

Dimensions 2 0 2

Boundary Constraint Range 1 50 1151

6.3.1 Training Data Generation

The methodology from Chapter 3 forms the basis of the process for generating training

data. The same set of algorithms are used, the same fitness landscape generator is

used, and the same landscape characteristics are used. However, in order to ensure

a sufficient amount of data for training the learning algorithms, the range of charac-

teristics used has been adjusted for this particular experiment. The ranges used for

training data are shown in Table 6.1. Note that in this case, there are no defaults.

Instead, a complete set of training data (that is to say, all possible combinations of

characteristics within the ranges) are generated. Each algorithm was executed on each

possible combination 64 times (each a different landscape; 64 chosen as this is the

number of simultaneous threads capable of execution on the cluster used for data set

generation in this particular experiment), resulting in 29,440 training elements per al-

gorithm. Note that smoothness has been excluded from the range table (and also was

not considered as a characteristic in this experiment), as it is not possible to make

reasonable estimates about the smoothness coefficient of a ‘real-world’ landscape.

6.3.2 Learning Algorithms

The comparison between two different machine learning technique’s ability to predict

the “performance rankings” of the selected algorithms forms the backbone of this exper-

iment. Two learning techniques commonly used for regression analysis were selected:

(1) artificial neural networks and (2) random forests. To avoid implementation bias,

standard implementations of each were selected. Each method is then trained using a

number of different landscapes, with the values for the landscape characteristics (see

Table 6.1) forming the input to each. Desired outputs for each algorithm and land-

scape characteristic combination are determined based on the average performance of

an algorithm for a given combination of characteristics. For one set of trials, the mean

error is used in its raw form (with the idea that this would capture any nuances in the

training data, which may be lost if trained on only ranked data) and in another, the

mean errors post-ranking (i.e. the expected rank of the algorithm) are used. Using

the expected ranking instead of the mean error incurs the significant drawback that

the training data, and setup, need to be readjusted to incorporate any additional al-

gorithms, but does mean the desired outputs used for training more accurately mirror

97



the final rankings. The predictors then assess a given set of landscape characteristics,

making a prediction for each algorithm based on whichever training data was used.

The outputs of these are ranked across algorithms to give the final rankings of the

algorithms. The two predictor methods are not briefly described.

Artificial Neural Network

The Neural Network Toolbox 3 provided by Matlab was chosen for the artificial neural

network implementation. Neural networks were generated and trained with the default

parameters offered by the Matlab toolbox: 85% of the generated training set was used

for training, 15% of the training set was used for validation. As the results of the

regression-based Neural Network are interpreted as rankings, a script implementing

k-fold cross-validation to compare the predicted rankings with the actual rankings was

created, based on the estimated error produced by the ANN. Scaled conjugate gradient

backpropagation training was used (Møller, 1993), to allow for GPU parallelisation of

ANN training. An ANN was trained for each algorithm, configured with four inputs

(one for each landscape characteristic), and one output and a single hidden layer

comprised of five neurons. Inputs were normalised between -1 and 1 prior to training,

as is common practice when using gradient based training functions (LeCun et al.,

1998).

Random Forests

The Random Forest package for R (Liaw and Wiener, 2002) was chosen for the random

forest implementation. Random forests are generated with fifty trees, two variables

tried at each split and a sample size of twenty. Unlike ANNs, there is no gradient

based training function, and so there is no need to normalise the inputs. As such,

no normalisation was performed on the data set prior to use as training data for the

random forests. As with the ANNs, one random forest was generated to specialise in

making a prediction for each algorithm, and the output from the forests were then

compared and ranked, to create the predicted ranking of algorithm performance for a

given set of characteristics.

6.3.3 Testing the Predictors

In order to thoroughly test the performance of the learning algorithms, the accepted

method of k-fold cross validation (with a k of 10) (Kohavi, 1995) was used to obtain

performance data from each learning algorithm. Five of each model was created, each

trained using a different random seed and tested using a different selection of cross-

validation indices, to further ensure a thorough testing strategy.

3http://www.mathworks.co.uk/products/neural-network/
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Table 6.2: Overall classification accuracy, and correlation coefficients for each of the
learning algorithms and training data configurations.

Accuracy Spearman’s Rho Kappa

No learning alg. used 55% 0.83 0.472

ANN trained on mean values 51% 0.82 0.43

ANN trained on rankings 64% 0.91 0.58

RF trained on mean values 63% 0.91 0.57

RF trained on rankings 72% 0.91 0.67

6.4 Results

In order to analyse and present the performance of the predictors, three measures of

performance are used: (1) The percentage of algorithms placed in the correct ranking

position, visualised using a confusion matrix (Stehman, 1997), (2) Spearman’s rank cor-

relation coefficient (Spearman’s rho, see the original 1904 paper reprinted in Spearman

(2010)), commonly used to determine the level of “agreement” between two judges.

In this instance, the two “judges” are the actual ordering of the nature-inspired al-

gorithms, and the predicted ordering. A strong positive coefficient (≥ 0.7) indicates

successful prediction of the algorithm ranking, a coefficient close to zero indicates no

correlation, and a strong negative correlation indicates that the ranking has predicted

an opposite ordering (and the “correct” ordering can be obtained by merely reversing

the predictions), and (3) Cohen’s Kappa, which also measures agreement between two

judges, but adjusts agreement that could happen by chance (Cohen, 1960).

Overall accuracy, Spearman’s rho and Cohen’s Kappa were calculated for each of

five tests: No learning algorithm used - that is, taking the average ranking across all

characteristics, and using these rankings in all cases without consideration for land-

scape characteristics - ANNs, using targets of both the raw mean errors and the mean

errors ranked, and RFs, again using targets of both the raw mean errors and mean

errors ranked. These results are depicted in Table 6.2. The best overall accuracy, and

highest Cohen’s Kappa value, were obtained from the random forest implementations,

trained using data sets which had been pre-ranked. Pre-ranking the training data has

the unfortunate side effect of “closing” the system, meaning that additional learning

algorithms cannot be added without re-training, but the performance benefit for doing

so is large (a 13% accuracy increase for ANNs, and a 9% accuracy increase for RFs).

Confusion matrices for each set are also shown. Not using a learning algorithm

(Fig. 6.1) provides a correct prediction of the best algorithm 73.5% of the time, but

this is improved upon by just under 10% when learning algorithms are trained using

rankings in both ANNs (Fig. 6.2b) and RFs (Fig. 6.3b). The performance in terms of

correctly identifying the best algorithm is not improved upon by either the ANNs or

RFs trained on mean errors (Fig. 6.2a and Fig. 6.3a respectively), despite the overall

accuracy and kappa value of the RF being better than in the ‘no learning algorithm’

prediction.
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Figure 6.1: Cross-validated confusion matrix showing the performance when not us-
ing a learning algorithm, merely using the average ranking of an algorithm with no
characteristic-based ranking estimation. Each value is as a percentage of 460 samples.

In all cases of using a learning algorithm, identifying the worst performing algorithm

is greatly improved by using landscape characteristics as a predictor, with an increase

of approximately 20% correctly identified cases. Both the extremities, and also the

second place, algorithm score highly in all cases, and the difficulty occurs in identifying

algorithms which are performing in the mid-range of the rankings. This is likely due

to larger variability in the placement of algorithms at these rankings, and, for the

algorithms trained on mean values, less differentiation between the average error.

6.5 Conclusions

In this Chapter, the feasibility of using machine learning techniques to “rank” the per-

formance of continuous optimisation algorithms based on the fitness landscape char-

acteristics of the problem has been explored. Ranking algorithms in this way provides

a method for informing the choice of the “best” algorithm to use for a given problem,

and also offers suggestions as to the approximate ordering of the performance of the

remaining algorithms. In this way, the question of whether or not a data set generated

for profiling an algorithm using the methodology from Chapter 3 has been answered.

Improved prediction accuracy was obtained when using landscape characteristics

as a predictor in 3 out of 4 methods, with random forests proving to be the better
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(a) Trained using raw mean errors.
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(b) Trained using ranked mean errors.

Figure 6.2: Cross-validated confusion matrix showing the performance of five artificial
neural network predictors, trained both on the mean exact error values and trained on
ranked mean exact error values. Each value is as a percentage of 2300 samples.
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(a) Trained using raw mean errors.
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(b) Trained using ranked mean errors.

Figure 6.3: Cross-validated confusion matrix showing the performance of five random
forest predictors, trained both on the mean exact error values and on ranked mean
exact error values. Each value is as a percentage of 2300 samples.
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of the two learning algorithms examined in this study, for this particular case. Also

explored was whether ranking the training data helped, or hindered, the process (since

pre-ranking would hide intricacies in the data, but is a closer natural fit to the targets

being predicted), and found that there are performance improvements from doing so.

This is, however, at the cost of creating a system which cannot be as easily extended

with additional algorithms.

While this work provides a foundation for showing that characteristics can be used

as predictors, there are still open questions. There is ongoing discussion regarding

which characteristics are important to the process. Here, those used are are a natural

fit to these particular problem instances, they may not have as natural a fit in a broader

problem scenario (i.e with landscapes not artificially generated). Further investigation

into more possible characteristics, and how these inform the prediction process, are

key to developing predictors which are both more accurate, and which have broader

applicability would likely prove fruitful.

Similarly, another possible extension is to continue exploring the interaction be-

tween different algorithms, on broader problems (and broader ranges of characteris-

tics), and how these fit into the rankings. With a broader range of problems, and

more algorithms included, the need for characteristic-based prediction may increase,

as the simple ‘no learning algorithm’ method struggles with the increased diversity in

the data set.

It is hoped that this work provides a foundation for future work on the prediction of

algorithm performance in terms of fitness landscape characteristics, particularly using

novel methods of characterising problem features and additional learning techniques.
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Chapter 7

Conclusion

7.1 Summary

This study was inspired by the problem of an increasing number of nature-inspired al-

gorithms being developed. The overall aim was to investigate whether fitness landscape

characteristics could be used as the cornerstone for rigorously characterising these al-

gorithms in a way that is useful to algorithm designers. Many algorithms are presented

with limited details of their performance on a small subset of problem classes, offering

little insight into the performance of the algorithm in general. In Chapter 3, a novel

method for characterising algorithms based on characteristics of a problem’s associated

fitness landscape was presented. This method, based on a landscape generation tech-

nique, is easy to implement, scalable and algorithm-independent, making it an ideal

technique for examining the strengths and weaknesses of algorithms when applied to

continuous optimisation problems.

Three research questions were proposed at the outset of this thesis:

1. To what extent can fitness landscape characteristics be used to establish a perfor-

mance profile of an algorithm, and thus distinguish between different algorithms

in terms of performance?

2. To what extent does tuning alter the performance profile of an algorithm with

regard to each of the landscape characteristics defined?

3. To what extent can algorithm performance be predicted by using the defined

landscape characteristics as input to a classification algorithm?

In order to answer the first of these questions, performance profiles of six differ-

ent nature-inspired algorithms were established in Chapter 4, using the methodology

described. To assess the extent to which these profiles can be used to differentiate

between algorithms, the profiles were examined primarily on two key criteria; Each

algorithm’s capability to produce accurate solutions, and the algorithm’s tendency to

produce accurate solutions consistently as a characteristic changed, representing that

algorithm’s robustness to that particular characteristic. Statistical analysis was also
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used to identify where algorithm performance did, or did not, significantly change as

a landscape’s characteristics changed. Across the algorithms included in this study, a

varied set of results, and also tolerances to landscape characteristics, were identified.

Some algorithms were much better at coping with certain characteristics than others,

and some algorithms offered much better performance in certain areas than others.

Importantly, the ideas in the No Free Lunch Theorem (Wolpert and Macready, 1997)

were also reaffirmed - there was no one algorithm able to perform consistently, irre-

spective of the landscape characteristics. Obtaining unique performance profiles for

even this small subset of nature-inspired algorithms suggests that fitness landscape

characteristics are a useful tool for profiling the performance of algorithms.

Having answered the first question, using algorithms with ‘out of the box’ parameter

settings, the second question, explored in Chapter 5, required investigation into the

extent to which parameter tuning affects the performance profile of an algorithm. Of

particular interest, is whether or not it is possible to tell whether an algorithm does,

or does not, benefit from tuning in terms of fitness landscape characteristics. Using an

automated parameter tuning methodology (F-Racing), ‘tuned’ performance profiles of

the same six nature-inspired algorithms were obtained, and these were compared to the

performance profiles of the algorithms pre-tuning, to identify where tuning had, or had

not, had a significant impact. As with the first question, results were varied across the

algorithms. Broadly, algorithms fit into three categories - those that did not benefit

from tuning, those that benefit from tuning only when a problem is ‘difficult’, and

those that always benefit from tuning. As tuning is a time-consuming process, having

an idea, in advance of implementation, of whether an algorithm benefits from tuning

(and if so, when it benefits from tuning), is a substantial boon. The results of this

Chapter show that once again landscape characteristics are a useful tool for describing

the performance profile of an algorithm with respect to improvement (or lack thereof)

when parameter tuning.

To address the third question, investigation into the performance of two classifi-

cation algorithms using data sets generated using the methodology as training sets

was carried out in Chapter 6. The advantage here is significant; While the technique

presented offers insight into algorithm performance, the interpretation of the results

can still be a difficult task, particularly when a problem does not neatly match up

to a particular set of trialled characteristics. By using machine learning techniques,

and automatically ranking algorithm performance, there is an alternative to manually

interpreting the data and essentially “interpolating” those characteristic combinations

not investigating explicitly. It was found that when used to predict the performance of

algorithms on randomly generated landscapes, the prediction technique proved accu-

rate, again showing that the method presented in Chapter 4 is reasonable. Particularly

noteworthy was the observation that pre-ranking the data before training, and using

random forests (over artificial neural networks) offers better prediction performance.

This offers a starting point for using landscape characteristics as a performance predic-

tor, although there are still outstanding questions, the most important of which being:
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How could the technique be applied to ‘real world’ problems, where the characteristics

are less easily established? This question is one of the key concerns with most tech-

niques for predicting algorithm performance, and requires significant further study to

work towards resolution.

In answering these questions, this thesis provides the first steps towards novel usage

of fitness landscape characteristics for profiling, characterising and analysing nature-

inspired continuous optimisation algorithms. The three questions show that fitness

landscape characteristics are an appropriate, and useful, way to describe the perfor-

mance of an algorithm, and that they can easily be used to differentiate between the

performance of several algorithms. Particularly useful is the ability to show an algo-

rithm’s robustness to certain characteristics.

The method for profiling algorithms presented here is not dependent on algorithm

or problem, the main benefit being that it can be used to highlight the profile of any

algorithm that can be applied to continuous optimisation. If an algorithm analysis

technique, such as the one presented in this thesis, becomes one of the standard ele-

ments that accompanies the presentation of a novel algorithm the clarity of algorithm

performance will, over time, improve.

By presenting an algorithm in this way, the relative strengths and weaknesses are

instantly visible and comparable between algorithms “at a glance”. The particular

usefulness here is that as the space of algorithms increase, it is important to highlight

precisely why a novel algorithm occupies a niche space, and what that niche space

is; Using the landscape characteristic analysis technique, it is entirely possible to show

that a novel nature-inspired algorithm presents a unique profile in terms of performance

across the range of characteristics – something that is not immediately obvious when

only presented with the results of benchmark problem results. Conversely, as more

algorithms are profiled using this technique, the inherent weaknesses in the field will

become apparent, and this will help to focus the attention of algorithm designers on

precisely which characteristics need attention and, with further profiling, where the

current algorithms are falling short. It is hoped that this is of particular usefulness to

algorithm designers, both in the design of new algorithms and the analysis and proposal

of novel optimisation algorithms.

7.2 Contributions

The contributions of this work are as follows:

A novel methodology for analysing algorithm performance using landscape charac-

teristics has been proposed and tested. This methodology could be used by algorithm

designers to showcase a novel algorithm’s strengths, weaknesses and how it fits into

a niche of the algorithm space. Existing work largely requires algorithm designers to

present their algorithms using benchmark problems, which do not offer insight into the

broad applicability of an algorithm and can be difficult to interpret or generalise and,

as such, this methodology in part solves this problem.
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In Chapter 4, portfolios of six existing nature-inspired algorithms are presented, en-

hancing the understanding of these algorithms with regard to their performance against

landscape characteristics. This is, to my knowledge, the first broad-scale study of this

kind which attempts to characterise algorithms throughout the entire nature-inspired

algorithms field with respect to fitness landscape analysis. By establishing that fitness

landscape characteristics can be used to identify a performance profile of algorithms,

it is suggested that they are a suitable cornerstone for developing further techniques

for analysing and characterising algorithms. The need for techniques to classify, char-

acterise and differentiate algorithms is known (Woodward, 2010; Sörensen, 2013), and

existing approaches acknowledge short-comings in existing approaches with a need

to encapsulate more information about the problem (Malan and Engelbrecht, 2013).

While further work is necessary to fully explore the notion of fitness-landscape based

analysis of algorithms, the identification of fitness landscape characteristics as a profil-

ing technique offers an alternative to existing techniques, which could prove especially

promising when partnered with those techniques as a means of incorporating additional

information about a particular problem.

In Chapter 5, insight into when it is advantageous (or not) to tune specific al-

gorithms, given landscape characteristics, is presented. The use of this methodology

when presenting or developing an algorithm is useful. To my knowledge, this is again

the first broad study into the effect of parameter tuning, encapsulating algorithms both

in and outside of the evolutionary algorithm field. In observing that algorithms react

differently to tuning - based on the profiles obtained in this study - and differently

with regard to varying landscape characteristics, there is further evidence that fitness

landscape characteristics are a suitable way to analyse algorithm performance. Having

acknowledged that these algorithms respond differently to tuning, the importance of

discussing how an algorithm reacts to tuning is highlighted, reaffirming the discussion

of Eiben and Smit (2011). With this knowledge, algorithm designers can obtain per-

formance profiles and quantitatively describe the robustness of their algorithm using

both standard parameters, and when tuned, to better describe the performance of a

novel algorithm.

Finally, in chapter 6, it is shown that algorithm performance prediction is improved

when using landscape characteristics as inputs to a classification algorithm over näıve

algorithm selection. In the studies shown in this work, three out of four classifica-

tion algorithm configurations predicted the best performing algorithm with greater

accuracy than simply choosing the best performing algorithm for all problems. Most

notably, the observation is made that random forests appear to be the better classifier

when compared to artificial neural networks and pre-ranking the training data gives

better results when seeking algorithm rankings. Previous attempts to predict algo-

rithm performance have primarily focused on using measures of hardness as inputs to

classification algorithms, and this alternative approach may provide a complementary

technique which, partnered with measures of hardness, could provide improved accu-

racy in algorithm selection. The field of automated algorithm selection is still in its
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infancy, and it is hoped that insights such as these may help to guide the development

of further work in this area.

7.3 Further Work

In undertaking the trialling of this methodology, the process of cataloguing existing

algorithms using this technique has begun. By thoroughly analysing the strengths and

weaknesses of six existing nature-inspired algorithms, some well explored and some

less so, insight into when and why these algorithms may be applicable to problems

exhibiting certain characteristics has been provided, plus insight into the effect of how

they are affected by the process of parameter tuning.

The catalogue so far only contains a small selection of potential algorithms, and only

one version of each of those. The first stage of further work would broaden this study

by increasing the algorithm count this study includes, examining a much wider range of

algorithms. The benefits of this would be threefold; Firstly, algorithm designers could

have a much greater picture of the strengths and weaknesses of specific algorithms,

offering a good starting point for choosing algorithms given problem characteristics.

Secondly, having a larger overview of the strengths and weaknesses of the field generally

would highlight which characteristics pose the most significant challenges for the algo-

rithms currently available. For the algorithms included in this study, it was found that

both increasing numbers of local optima and increasing dimensionality were significant

problems, but different algorithms coped better with the two different characteristics.

Having an overview of more algorithms may indicate that there are more algorithms

able to cope with local optima, and that resources would be best spent on algorithms

able to cope with increasing dimensionality, for example. Thirdly, the increased usage

of this technique would offer refinements to the technique itself, perhaps suggesting

new characteristics - or variations on the landscape generation methodology - which

may offer additional insight which may prove invaluable.

Another avenue of interest, rather than simply adding additional algorithms to the

study, is to look at the features of algorithms that have particular benefits with respect

to different characteristics. This would prove especially interesting to the concept of a

meta-heuristic, where rather than selecting a particular algorithm particular features

that can be used are selected, and an algorithm is built from these “components.” This

analysis methodology provides an ideal test bed for such a study; An algorithm can be

executed both with, and without, a feature, and the results across each characteristic

can be compared, to see precisely the effect the feature has on the given characteristic.

In this way, it is hoped that algorithm designers could identify the specific features

that are useful for avoiding local optima, for example, rather than viewing algorithms

as a whole.

Analysing all the existing nature-inspired algorithms and classifying these on a wide

variety of different problems sets is a huge task. It is hoped that by presenting an easy to

implement, and reasonably quick to compute, methodology for presenting the strengths
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and weaknesses of an algorithm, and showing that automated algorithm selection is

possible, this thesis offers a starting point towards making the algorithm selection

problem somewhat easier. Once again, it is noted that presenting novel algorithms

using the methodology proposed in this thesis would offer practical insight into the

behaviour of algorithms, and a standardised method for introducing algorithms would

greatly reduce the problems a reader faces when choosing to use a nature-inspired

algorithm.
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Özcan, E., Bilgin, B., and Korkmaz, E. E. (2008). A comprehensive analysis of hyper-
heuristics. Intelligent Data Analysis, 12(1):3–23.

Pan, I., Das, S., and Gupta, A. (2011). Tuning of an optimal fuzzy pid controller with
stochastic algorithms for networked control systems with random time delay. ISA
transactions, 50(1):28–36.

Papadrakakis, M., Lagaros, N. D., and Tsompanakis, Y. (1998). Structural optimiza-
tion using evolution strategies and neural networks. Computer methods in applied
mechanics and engineering, 156(1):309–333.

Park, J.-B., Lee, K.-S., Shin, J.-R., and Lee, K. Y. (2005). A particle swarm optimiza-
tion for economic dispatch with nonsmooth cost functions. Power Systems, IEEE
Transactions on, 20(1):34–42.

Passino, K. (2002). Biomimicry of bacterial foraging for distributed optimization and
control. IEEE Control Systems Magazine, 22(3):52–67.

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem solving.

Pelikan, M., Sastry, K., Goldberg, D. E., Butz, M. V., and Hauschild, M. (2009).
Performance of evolutionary algorithms on nk landscapes with nearest neighbor in-
teractions and tunable overlap. In Proceedings of the 11th Annual conference on
Genetic and evolutionary computation, pages 851–858. ACM.

Pham, D. and Castellani, M. (2009). The bees algorithm: modelling foraging behaviour
to solve continuous optimization problems. Proc. Inst. Mech. Engineers, Part C: J.
Mech. Eng. Sci., 223(12):2919.

Pham, D. and Castellani, M. (2013). Benchmarking and comparison of nature-inspired
population-based continuous optimisation algorithms. Soft Computing, pages 1–33.

Pham, D. and Ghanbarzadeh, A. (2007). Multi-objective optimisation using the bees
algorithm. In 3rd International Virtual Conference on Intelligent Production Ma-
chines and Systems (IPROMS 2007): Whittles, Dunbeath, Scotland, volume 242,
pages 111–116.

119



Pham, D., Ghanbarzadeh, A., and Koc, E. (2006a). The Bees Algorithm A Novel
Tool for Complex Optimisation Problems. In Pham, D., Eldukhri, E., and Soroka,
A., editors, Intelligent Production Machines and Systems, pages 454–459.

Pham, D., Ghanbarzadeh, A., and Koc, E. (2006b). The Bees Algorithm: A Novel
Tool for Complex Optimisation Problems. In Pham, D., Eldukhri, E., and Soroka,
A., editors, Intelligent Production Machines and Systems, pages 454–459.

Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M. (2005). The
bees algorithm. technical note. Technical report.
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Appendix A

p-Values for Untuned Performance
Data

This appendix includes the p-values of two-tailed, unpaired T-Tests for each algorithm,
across each characteristic, for the complete characteristic value range. Significance
suggests that the change in characteristic value is statistically significant. Values that
do not have a significance level less than 5% (i.e. where the statistical tests suggest that
the change in characteristic value has not generated statistically significantly different
results) are highlighted in bold.

126



p
-V

al
u
es

of
th

e
U

n
tu

n
ed

B
e
e
s

A
lg

o
ri

th
m

re
su

lt
s

ac
ro

ss
‘n

u
m

b
e
r

o
f

lo
ca

l
o
p
ti

m
a
’

va
lu

es
.

0
1

2
3

4
5

6
7

8
9

0
-

1.
79

E
-5

8
5.

61
E

-3
5

5
.8

4
E

-5
8

5
.1

2
E

-4
2

1
.1

3
E

-7
1

4
.3

4
E

-7
2

1
.5

9
E

-8
7

1
.0

6
E

-6
4

3
.5

4
E

-5
1

1
1.

79
E

-5
8

-
1.

69
E

-0
6

5
.3
9
E
-0
1

4
.8

4
E

-0
4

1
.5

2
E

-0
9

1
.2
0
E
-0
1

3
.0

7
E

-0
3

5
.2
5
E
-0
1

3
.7

3
E

-0
3

2
5.

61
E

-3
5

1.
69

E
-0

6
-

1
.3

6
E

-0
7

1
.7
7
E
-0
1

3
.9

6
E

-2
3

1
.0

8
E

-1
0

1
.1

3
E

-1
5

9
.1

8
E

-0
6

1
.1

0
E

-1
1

3
5.

84
E

-5
8

5
.3
9
E
-0
1

1.
36

E
-0

7
-

5
.9

0
E

-0
5

5
.2

4
E

-0
8

3
.7
2
E
-0
1

2
.4

4
E

-0
2

2
.0
7
E
-0
1

1
.9

4
E

-0
2

4
5.

12
E

-4
2

4.
84

E
-0

4
1
.7
7
E
-0
1

5
.9

0
E

-0
5

-
5
.4

1
E

-1
9

2
.7

9
E

-0
7

2
.7

0
E

-1
1

2
.3

2
E

-0
3

7
.9

5
E

-0
9

5
1.

13
E

-7
1

1.
52

E
-0

9
3.

96
E

-2
3

5
.2

4
E

-0
8

5
.4

1
E

-1
9

-
1
.4

1
E

-0
6

1
.7

4
E

-0
4

1
.7

1
E

-1
1

4
.5

2
E

-0
3

6
4.

34
E

-7
2

1
.2
0
E
-0
1

1.
08

E
-1

0
3
.7
2
E
-0
1

2
.7

9
E

-0
7

1
.4

1
E

-0
6

-
1
.6
3
E
-0
1

2
.2

7
E

-0
2

1
.0
2
E
-0
1

7
1.

59
E

-8
7

3.
07

E
-0

3
1.

13
E

-1
5

2
.4

4
E

-0
2

2
.7

0
E

-1
1

1
.7

4
E

-0
4

1
.6
3
E
-0
1

-
1
.6

1
E

-0
4

6
.0
8
E
-0
1

8
1.

06
E

-6
4

5
.2
5
E
-0
1

9.
18

E
-0

6
2
.0
7
E
-0
1

2
.3

2
E

-0
3

1
.7

1
E

-1
1

2
.2

7
E

-0
2

1
.6

1
E

-0
4

-
4
.4

7
E

-0
4

9
3.

54
E

-5
1

3.
73

E
-0

3
1.

10
E

-1
1

1
.9

4
E

-0
2

7
.9

5
E

-0
9

4
.5

2
E

-0
3

1
.0
2
E
-0
1

6
.0
8
E
-0
1

4
.4

7
E

-0
4

-

p
-V

al
u
es

of
th

e
U

n
tu

n
ed

B
e
e
s

A
lg

o
ri

th
m

re
su

lt
s

ac
ro

ss
‘d

im
e
n
si

o
n
s’

va
lu

es
.

1
2

3
4

5
6

7
8

9
1
0

1
-

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
0.

00
E

+
00

-
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
0.

00
E

+
00

0.
00

E
+

00
-

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

-
0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

5
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

-
1
.0

3
E

-2
6
7

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

6
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

1
.0

3
E

-2
6
7

-
7
.3

8
E

-1
8
6

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

7
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

7
.3

8
E

-1
8
6

-
4
.2

9
E

-8
2

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

8
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
.2

9
E

-8
2

-
1
.0

5
E

-2
4
5

0
.0

0
E

+
0
0

9
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

1
.0

5
E

-2
4
5

-
6
.2

3
E

-3
4

10
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

6
.2

3
E

-3
4

-

127



p
-V

alu
es

of
th

e
U

n
tu

n
ed

B
e
e
s

A
lg

o
rith

m
resu

lts
across

‘b
o
u
n
d
a
ry

co
n
stra

in
ts’

valu
es.

10
20

3
0

4
0

5
0

6
0

7
0

80
90

100

10
-

2
.0

9
E

-25
1.00

E
-0

8
4
.3

0
E

-0
3

2
.8
6
E
-0
1

2
.6
3
E
-0
1

2
.1
0
E
-0
1

3
.7
7
E
-0
1

7.70E
-03

1.14E
-03

20
2.09

E
-2

5
-

1
.5

3E
-0

4
1
.5

1
E

-0
6

7
.5

3
E

-1
7

3
.4

2
E

-1
3

5
.0

7
E

-12
1.10E

-08
3.58E

-15
3.92E

-17

30
1.00

E
-0

8
1
.5

3E
-04

-
1
.1
9
E
-0
1

4
.9

5
E

-0
7

7
.2

0
E

-0
6

1
.3

9
E

-05
3.90E

-04
4.42E

-08
1.74E

-09

40
4.30

E
-0

3
1
.5

1E
-06

1
.1

9
E

-0
1

-
2
.1

8
E

-0
3

3
.8

9
E

-0
3

3
.8

1
E

-03
1.78E

-02
5.19E

-05
5.13E

-06

50
2
.8
6
E
-0
1

7.53E
-1

7
4
.9

5E
-0

7
2
.1

8
E

-0
3

-
8
.3
1
E
-0
1

6
.8
5
E
-0
1

8
.3
3
E
-0
1

8
.8
3
E
-0
2

2.63E
-02

60
2
.6
3
E
-0
1

3.42E
-1

3
7
.2

0E
-0

6
3
.8

9
E

-0
3

8
.3
1
E
-0
1

-
8
.5
0
E
-0
1

9
.7
1
E
-0
1

1
.6
3
E
-0
1

6
.1
7
E
-0
2

70
2
.1
0
E
-0
1

5.07E
-1

2
1
.3

9E
-0

5
3
.8

1
E

-0
3

6
.8
5
E
-0
1

8
.5
0
E
-0
1

-
9
.0
0
E
-0
1

2
.4
8
E
-0
1

1
.0
8
E
-0
1

80
3
.7
7
E
-0
1

1.10E
-0

8
3
.9

0E
-0

4
1
.7

8
E

-0
2

8
.3
3
E
-0
1

9
.7
1
E
-0
1

9
.0
0
E
-0
1

-
2
.4
4
E
-0
1

1
.1
6
E
-0
1

90
7.70

E
-0

3
3
.5

8E
-15

4
.4

2
E

-0
8

5
.1

9
E

-0
5

8
.8
3
E
-0
2

1
.6
3
E
-0
1

2
.4
8
E
-0
1

2
.4
4
E
-0
1

-
6
.6
3
E
-0
1

1
0
0

1.14
E

-0
3

3
.9

2E
-17

1
.7

4
E

-0
9

5
.1

3
E

-0
6

2
.6

3
E

-0
2

6
.1
7
E
-0
2

1
.0
8
E
-0
1

1
.1
6
E
-0
1

6
.6
3
E
-0
1

-

p
-V

alu
es

of
th

e
U

n
tu

n
ed

B
e
e
s

A
lg

o
rith

m
resu

lts
across

‘sm
o
o
th

n
e
ss

co
e
ffi

cie
n
t’

valu
es.

10
20

3
0

4
0

5
0

6
0

70
80

90
100

10
-

1
.5

7E
-12

5
4
.7

9E
-2

6
6

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

20
1.57E

-1
2
5

-
1
.6

4
E

-4
5

6
.5

2
E

-1
2
1

3
.9

1
E

-2
0
9

7
.7

8
E

-2
7
4

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

30
4.79E

-2
6
6

1
.6

4
E

-45
-

8
.0

9
E

-2
8

4
.0

1
E

-8
1

1
.0

9
E

-1
3
7

9
.2

7
E

-193
5.63E

-263
0.00E

+
00

0.00E
+

00

40
0.00E

+
00

6.52
E

-1
21

8
.0

9
E

-2
8

-
7
.7

8
E

-1
6

6
.2

1
E

-4
9

1
.7

7
E

-89
1.31E

-136
1.51E

-182
7.66E

-228

50
0.00E

+
00

3.91
E

-2
09

4
.0

1
E

-8
1

7
.7

8
E

-1
6

-
1
.5

2
E

-1
2

8
.6

2
E

-38
5.09E

-69
8.41E

-107
9.68E

-145

60
0.00E

+
00

7.78
E

-2
74

1.09
E

-1
3
7

6
.2

1
E

-4
9

1
.5

2
E

-1
2

-
3
.5

1
E

-09
3.62E

-25
4.92E

-51
4.68E

-79

70
0.00E

+
00

0
.0

0E
+

00
9.27

E
-1

9
3

1
.7

7
E

-8
9

8
.6

2
E

-3
8

3
.5

1
E

-0
9

-
2.33E

-05
1.81E

-19
6.07E

-38

80
0.00E

+
00

0
.0

0E
+

00
5.63

E
-2

6
3

1
.3

1
E

-1
3
6

5
.0

9
E

-6
9

3
.6

2
E

-2
5

2
.3

3
E

-05
-

5.40E
-07

2.40E
-19

90
0.00E

+
00

0
.0

0E
+

00
0
.0

0E
+

0
0

1
.5

1
E

-1
8
2

8
.4

1
E

-1
0
7

4
.9

2
E

-5
1

1
.8

1
E

-19
5.40E

-07
-

7.53E
-05

1
0
0

0.00E
+

00
0
.0

0E
+

00
0
.0

0E
+

0
0

7
.6

6
E

-2
2
8

9
.6

8
E

-1
4
5

4
.6

8
E

-7
9

6
.0

7
E

-38
2.40E

-19
7.53E

-05
-

128



p
-V

al
u
es

of
th

e
U

n
tu

n
ed

B
a
ct

e
ri

a
l

F
o
ra

g
in

g
O

p
ti

m
is

a
ti

o
n

A
lg

o
ri

th
m

re
su

lt
s

ac
ro

ss
‘n

u
m

b
e
r

o
f

lo
ca

l
o
p
ti

m
a
’

va
lu

es
.

0
1

2
3

4
5

6
7

8
9

0
-

6
.8
9
E
-0
2

5.
42

E
-0

6
7
.0

7
E

-1
3

1
.8

4
E

-1
0

4
.1

9
E

-1
1

3
.8

6
E

-1
1

6
.9

9
E

-1
0

6
.3

4
E

-0
9

2
.9

6
E

-2
4

1
6
.8
9
E
-0
2

-
4.

40
E

-0
3

1
.9

8
E

-0
8

2
.0

7
E

-0
6

6
.4

2
E

-0
7

6
.0

5
E

-0
7

6
.6

5
E

-0
6

3
.8

3
E

-0
5

1
.5

0
E

-1
8

2
5.

42
E

-0
6

4.
40

E
-0

3
-

5
.6

0
E

-0
3

6
.4
0
E
-0
2

3
.8

0
E

-0
2

3
.7

3
E

-0
2

1
.2
0
E
-0
1

2
.5
1
E
-0
1

2
.2

3
E

-0
9

3
7.

07
E

-1
3

1.
98

E
-0

8
5.

60
E

-0
3

-
3
.2
9
E
-0
1

4
.4
5
E
-0
1

4
.4
7
E
-0
1

1
.8
0
E
-0
1

7
.6
8
E
-0
2

1
.1

8
E

-0
3

4
1.

84
E

-1
0

2.
07

E
-0

6
6
.4
0
E
-0
2

3
.2
9
E
-0
1

-
8
.2
5
E
-0
1

8
.2
1
E
-0
1

7
.2
8
E
-0
1

4
.3
6
E
-0
1

1
.7

9
E

-0
5

5
4.

19
E

-1
1

6.
42

E
-0

7
3.

80
E

-0
2

4
.4
5
E
-0
1

8
.2
5
E
-0
1

-
9
.9
6
E
-0
1

5
.6
4
E
-0
1

3
.1
2
E
-0
1

4
.2

0
E

-0
5

6
3.

86
E

-1
1

6.
05

E
-0

7
3.

73
E

-0
2

4
.4
7
E
-0
1

8
.2
1
E
-0
1

9
.9
6
E
-0
1

-
5
.6
1
E
-0
1

3
.0
9
E
-0
1

4
.1

3
E

-0
5

7
6.

99
E

-1
0

6.
65

E
-0

6
1
.2
0
E
-0
1

1
.8
0
E
-0
1

7
.2
8
E
-0
1

5
.6
4
E
-0
1

5
.6
1
E
-0
1

-
6
.6
1
E
-0
1

2
.0

8
E

-0
6

8
6.

34
E

-0
9

3.
83

E
-0

5
2
.5
1
E
-0
1

7
.6
8
E
-0
2

4
.3
6
E
-0
1

3
.1
2
E
-0
1

3
.0
9
E
-0
1

6
.6
1
E
-0
1

-
1
.9

9
E

-0
7

9
2.

96
E

-2
4

1.
50

E
-1

8
2.

23
E

-0
9

1
.1

8
E

-0
3

1
.7

9
E

-0
5

4
.2

0
E

-0
5

4
.1

3
E

-0
5

2
.0

8
E

-0
6

1
.9

9
E

-0
7

-

p
-V

al
u
es

of
th

e
U

n
tu

n
ed

B
a
ct

e
ri

a
l

F
o
ra

g
in

g
O

p
ti

m
is

a
ti

o
n

A
lg

o
ri

th
m

re
su

lt
s

ac
ro

ss
‘d

im
e
n
si

o
n
s’

va
lu

es
.

1
2

3
4

5
6

7
8

9
1
0

1
-

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
0.

00
E

+
00

-
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
0.

00
E

+
00

0.
00

E
+

00
-

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

-
8
.3

0
E

-2
4
6

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

5
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

8
.3

0
E

-2
4
6

-
2
.2

5
E

-6
5

4
.1

8
E

-1
1
9

1
.0

5
E

-1
3
6

3
.0

8
E

-1
4
1

8
.6

1
E

-1
4
4

6
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

2
.2

5
E

-6
5

-
2
.7

7
E

-2
8

3
.9

0
E

-5
1

4
.1

5
E

-5
8

2
.3

5
E

-6
2

7
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

4
.1

8
E

-1
1
9

2
.7

7
E

-2
8

-
2
.6

7
E

-1
2

1
.4

3
E

-2
0

4
.5

1
E

-2
7

8
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

1
.0

5
E

-1
3
6

3
.9

0
E

-5
1

2
.6

7
E

-1
2

-
2
.3

8
E

-0
4

2
.6

7
E

-1
1

9
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

3
.0

8
E

-1
4
1

4
.1

5
E

-5
8

1
.4

3
E

-2
0

2
.3

8
E

-0
4

-
9
.8

6
E

-0
4

10
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

8
.6

1
E

-1
4
4

2
.3

5
E

-6
2

4
.5

1
E

-2
7

2
.6

7
E

-1
1

9
.8

6
E

-0
4

-

129



p
-V

alu
es

of
th

e
U

n
tu

n
ed

B
a
cte

ria
l

F
o
ra

g
in

g
O

p
tim

isa
tio

n
A

lg
o
rith

m
resu

lts
across

‘b
o
u
n
d
a
ry

co
n
stra

in
ts’

valu
es.

10
20

3
0

4
0

5
0

6
0

70
80

90
100

10
-

1
.2

7E
-10

4
0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

20
1.27E

-1
0
4

-
2.10

E
-1

3
9

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

30
0.00E

+
00

2.10
E

-1
39

-
3
.2

6
E

-1
0
8

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

40
0.00E

+
00

0
.0

0E
+

00
3.26

E
-1

0
8

-
1
.1

9
E

-7
2

1
.9

7
E

-2
3
6

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

50
0.00E

+
00

0
.0

0E
+

00
0
.0

0E
+

0
0

1
.1

9
E

-7
2

-
9
.2

2
E

-5
1

2
.3

0
E

-158
2.74E

-290
0.00E

+
00

0.00E
+

00

60
0.00E

+
00

0
.0

0E
+

00
0
.0

0E
+

0
0

1
.9

7
E

-2
3
6

9
.2

2
E

-5
1

-
3
.1

2
E

-32
5.51E

-102
5.54E

-207
0.00E

+
00

70
0.00E

+
00

0
.0

0E
+

00
0
.0

0E
+

0
0

0
.0

0
E

+
0
0

2
.3

0
E

-1
5
8

3
.1

2
E

-3
2

-
5.00E

-22
5.46E

-80
4.67E

-159

80
0.00E

+
00

0
.0

0E
+

00
0
.0

0E
+

0
0

0
.0

0
E

+
0
0

2
.7

4
E

-2
9
0

5
.5

1
E

-1
0
2

5
.0

0
E

-22
-

1.44E
-20

1.61E
-66

90
0.00E

+
00

0
.0

0E
+

00
0
.0

0E
+

0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

5
.5

4
E

-2
0
7

5
.4

6
E

-80
1.44E

-20
-

2.29E
-15

1
0
0

0.00E
+

00
0
.0

0E
+

00
0
.0

0E
+

0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
.6

7
E

-159
1.61E

-66
2.29E

-15
-

p
-V

alu
es

of
th

e
U

n
tu

n
ed

B
a
cte

ria
l

F
o
ra

g
in

g
O

p
tim

isa
tio

n
A

lg
o
rith

m
resu

lts
across

‘sm
o
o
th

n
e
ss

co
e
ffi

cie
n
t’

valu
es.

10
20

3
0

4
0

5
0

6
0

70
80

90
100

10
-

3
.3

5
E

-67
8
.5

0E
-1

6
3

7
.3

9
E

-2
7
1

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

20
3.35E

-6
7

-
1.7

0
E

-2
4

1
.2

1
E

-7
7

4
.1

8
E

-1
3
1

3
.1

1
E

-1
7
9

3
.0

0
E

-227
4.59E

-275
0.00E

+
00

0.00E
+

00

30
8.50E

-1
6
3

1
.7

0
E

-24
-

1
.4

2
E

-1
7

1
.6

7
E

-4
6

4
.1

3
E

-7
7

4
.3

6
E

-110
4.72E

-145
1.69E

-181
1.26E

-211

40
7.39E

-2
7
1

1
.2

1
E

-77
1.4

2
E

-1
7

-
6
.8

2
E

-0
9

5
.9

0
E

-2
4

1
.8

3
E

-43
1.67E

-66
1.27E

-91
1.47E

-113

50
0.00E

+
00

4.18
E

-1
31

1
.6

7
E

-4
6

6
.8

2
E

-0
9

-
1
.6

1
E

-0
5

8
.0

4
E

-16
1.60E

-30
5.98E

-48
3.77E

-64

60
0.00E

+
00

3.11
E

-1
79

4
.1

3
E

-7
7

5
.9

0
E

-2
4

1
.6

1
E

-0
5

-
1
.8

4
E

-04
6.88E

-13
1.39E

-24
2.05E

-36

70
0.00E

+
00

3.00
E

-2
27

4.36
E

-1
1
0

1
.8

3
E

-4
3

8
.0

4
E

-1
6

1
.8

4
E

-0
4

-
5.58E

-04
8.37E

-11
7.54E

-19

80
0.00E

+
00

4.59
E

-2
75

4.72
E

-1
4
5

1
.6

7
E

-6
6

1
.6

0
E

-3
0

6
.8

8
E

-1
3

5
.5

8
E

-04
-

2.47E
-03

6.74E
-08

90
0.00E

+
00

0
.0

0E
+

00
1.69

E
-1

8
1

1
.2

7
E

-9
1

5
.9

8
E

-4
8

1
.3

9
E

-2
4

8
.3

7
E

-11
2.47E

-03
-

1.73E
-02

1
0
0

0.00E
+

00
0
.0

0E
+

00
1.26

E
-2

1
1

1
.4

7
E

-1
1
3

3
.7

7
E

-6
4

2
.0

5
E

-3
6

7
.5

4
E

-19
6.74E

-08
1.73E

-02
-

130



p
-V

al
u
es

of
th

e
U

n
tu

n
ed

E
v
o
lu

ti
o
n

S
tr

a
te

g
ie

s
re

su
lt

s
ac

ro
ss

‘n
u
m

b
e
r

o
f

lo
ca

l
o
p
ti

m
a
’

va
lu

es
.

0
1

2
3

4
5

6
7

8
9

0
-

9.
37

E
-1

40
3.

50
E

-1
99

1
.8

2
E

-2
2
8

5
.8

2
E

-2
5
8

6
.5

5
E

-2
6
7

8
.3

2
E

-2
7
9

2
.3

2
E

-2
9
5

5
.4

4
E

-2
7
6

1
.9

1
E

-2
8
3

1
9.

37
E

-1
40

-
3.

38
E

-0
9

4
.1

9
E

-1
3

1
.6

2
E

-2
1

6
.9

5
E

-2
5

1
.2

2
E

-2
6

4
.7

4
E

-3
3

2
.7

7
E

-2
4

7
.7

3
E

-2
5

2
3.

50
E

-1
99

3.
38

E
-0

9
-

2
.3
1
E
-0
1

5
.3

9
E

-0
4

2
.1

9
E

-0
5

5
.0

5
E

-0
6

4
.5

2
E

-0
9

6
.0

4
E

-0
5

4
.4

4
E

-0
5

3
1.

82
E

-2
28

4.
19

E
-1

3
2
.3
1
E
-0
1

-
2
.1

0
E

-0
2

1
.8

7
E

-0
3

6
.1

7
E

-0
4

2
.0

2
E

-0
6

4
.3

0
E

-0
3

3
.4

9
E

-0
3

4
5.

82
E

-2
58

1.
62

E
-2

1
5.

39
E

-0
4

2
.1

0
E

-0
2

-
4
.2
0
E
-0
1

2
.7
2
E
-0
1

1
.5

0
E

-0
2

6
.0
5
E
-0
1

5
.7
1
E
-0
1

5
6.

55
E

-2
67

6.
95

E
-2

5
2.

19
E

-0
5

1
.8

7
E

-0
3

4
.2
0
E
-0
1

-
7
.7
5
E
-0
1

1
.0
6
E
-0
1

7
.6
5
E
-0
1

7
.9
8
E
-0
1

6
8.

32
E

-2
79

1.
22

E
-2

6
5.

05
E

-0
6

6
.1

7
E

-0
4

2
.7
2
E
-0
1

7
.7
5
E
-0
1

-
1
.7
9
E
-0
1

5
.5
4
E
-0
1

5
.8
2
E
-0
1

7
2.

32
E

-2
95

4.
74

E
-3

3
4.

52
E

-0
9

2
.0

2
E

-0
6

1
.5

0
E

-0
2

1
.0
6
E
-0
1

1
.7
9
E
-0
1

-
5
.2
3
E
-0
2

5
.6
2
E
-0
2

8
5.

44
E

-2
76

2.
77

E
-2

4
6.

04
E

-0
5

4
.3

0
E

-0
3

6
.0
5
E
-0
1

7
.6
5
E
-0
1

5
.5
4
E
-0
1

5
.2
3
E
-0
2

-
9
.6
4
E
-0
1

9
1.

91
E

-2
83

7.
73

E
-2

5
4.

44
E

-0
5

3
.4

9
E

-0
3

5
.7
1
E
-0
1

7
.9
8
E
-0
1

5
.8
2
E
-0
1

5
.6
2
E
-0
2

9
.6
4
E
-0
1

-

p
-V

al
u
es

of
th

e
U

n
tu

n
ed

E
v
o
lu

ti
o
n

S
tr

a
te

g
ie

s
re

su
lt

s
ac

ro
ss

‘d
im

e
n
si

o
n
s’

va
lu

es
.

1
2

3
4

5
6

7
8

9
1
0

1
-

7.
16

E
-4

9
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
7.

16
E

-4
9

-
3.

69
E

-1
89

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
0.

00
E

+
00

3.
69

E
-1

89
-

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

-
0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

5
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

-
1
.1

5
E

-2
0
5

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

6
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

1
.1

5
E

-2
0
5

-
3
.6

6
E

-2
5
9

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

7
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
.6

6
E

-2
5
9

-
2
.5

6
E

-1
2
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

8
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
.5

6
E

-1
2
0

-
3
.9

7
E

-1
9
7

0
.0

0
E

+
0
0

9
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
.9

7
E

-1
9
7

-
6
.0

8
E

-1
0
0

10
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

6
.0

8
E

-1
0
0

-

131



p
-V

alu
es

of
th

e
U

n
tu

n
ed

E
v
o
lu

tio
n

S
tra

te
g
ie

s
resu

lts
across

‘b
o
u
n
d
a
ry

co
n
stra

in
ts’

valu
es.

10
20

3
0

4
0

5
0

6
0

7
0

80
90

100

10
-

7
.6

3E
-06

2
.0

8
E

-1
2

3
.9

2
E

-2
0

4
.6

8
E

-2
8

6
.6

0
E

-3
5

5
.7

6
E

-40
1.83E

-46
8.70E

-53
4.37E

-60

20
7.63

E
-0

6
-

1.08E
-0

2
2
.5

7
E

-0
6

9
.1

0
E

-1
1

5
.5

7
E

-1
5

3
.0

1
E

-18
1.47E

-22
7.03E

-27
5.09E

-32

30
2.08

E
-1

2
1.08E

-0
2

-
3
.1

5
E

-0
2

8
.6

9
E

-0
5

1
.5

1
E

-0
7

7
.9

5
E

-10
6.08E

-13
3.60E

-16
4.00E

-20

40
3.92

E
-2

0
2.57E

-0
6

3
.1

5E
-0

2
-

7
.6
6
E
-0
2

1
.9

7
E

-0
3

6
.6

9
E

-05
4.82E

-07
2.23E

-09
2.35E

-12

50
4.68

E
-2

8
9.10E

-1
1

8
.6

9E
-0

5
7
.6
6
E
-0
2

-
1
.8
6
E
-0
1

2
.6

8
E

-02
1.12E

-03
2.67E

-05
1.70E

-07

60
6.60

E
-3

5
5.57E

-1
5

1
.5

1E
-0

7
1
.9

7
E

-0
3

1
.8
6
E
-0
1

-
3
.7
3
E
-0
1

5
.3
4
E
-0
2

4.07E
-03

9.60E
-05

70
5.76

E
-4

0
3.01E

-1
8

7
.9

5E
-1

0
6
.6

9
E

-0
5

2
.6

8
E

-0
2

3
.7
3
E
-0
1

-
2
.9
9
E
-0
1

4.79E
-02

2.66E
-03

80
1.83

E
-4

6
1.47E

-2
2

6
.0

8E
-1

3
4
.8

2
E

-0
7

1
.1

2
E

-0
3

5
.3
4
E
-0
2

2
.9
9
E
-0
1

-
3
.4
8
E
-0
1

4.92E
-02

90
8.70

E
-5

3
7.03E

-2
7

3
.6

0E
-1

6
2
.2

3
E

-0
9

2
.6

7
E

-0
5

4
.0

7
E

-0
3

4
.7

9
E

-02
3
.4
8
E
-0
1

-
3
.0
4
E
-0
1

1
0
0

4.37
E

-6
0

5.09E
-3

2
4
.0

0E
-2

0
2
.3

5
E

-1
2

1
.7

0
E

-0
7

9
.6

0
E

-0
5

2
.6

6
E

-03
4.92E

-02
3
.0
4
E
-0
1

-

p
-V

alu
es

of
th

e
U

n
tu

n
ed

E
v
o
lu

tio
n

S
tra

te
g
ie

s
resu

lts
across

‘sm
o
o
th

n
e
ss

co
e
ffi

cie
n
t’

valu
es.

10
20

3
0

4
0

5
0

6
0

7
0

80
90

100

10
-

2
.8

6E
-03

5.41
E

-0
8

1
.1

1
E

-1
0

3
.4

7
E

-1
4

1
.7

5
E

-1
6

5
.8

1
E

-20
1.94E

-22
1.47E

-24
5.95E

-28

20
2.86

E
-0

3
-

1
.4

1E
-0

2
5
.6

0
E

-0
4

4
.8

3
E

-0
6

1
.7

6
E

-0
7

9
.2

5
E

-10
1.97E

-11
6.55E

-13
2.53E

-15

30
5.41

E
-0

8
1.41E

-0
2

-
3
.2
5
E
-0
1

3
.5

7
E

-0
2

6
.0

5
E

-0
3

2
.7

6
E

-04
2.50E

-05
2.71E

-06
6.29E

-08

40
1.11

E
-1

0
5.60E

-0
4

3
.2
5
E
-0
1

-
2
.6
3
E
-0
1

7
.7
4
E
-0
2

7
.8

5
E

-03
1.21E

-03
2.03E

-04
9.22E

-06

50
3.47

E
-1

4
4.83E

-0
6

3.57
E

-0
2

2
.6
3
E
-0
1

-
5
.1
9
E
-0
1

1
.2
5
E
-0
1

3.47E
-02

9.64E
-03

9.41E
-04

60
1.75

E
-1

6
1.76E

-0
7

6.05
E

-0
3

7
.7
4
E
-0
2

5
.1
9
E
-0
1

-
3
.7
3
E
-0
1

1
.4
2
E
-0
1

5
.1
9
E
-0
2

7.73E
-03

70
5.81

E
-2

0
9.25E

-1
0

2.76
E

-0
4

7
.8

5
E

-0
3

1
.2
5
E
-0
1

3
.7
3
E
-0
1

-
5
.6
5
E
-0
1

2
.9
3
E
-0
1

7
.6
4
E
-0
2

80
1.94

E
-2

2
1.97E

-1
1

2.50
E

-0
5

1
.2

1
E

-0
3

3
.4

7
E

-0
2

1
.4
2
E
-0
1

5
.6
5
E
-0
1

-
6
.3
2
E
-0
1

2
.3
1
E
-0
1

90
1.47

E
-2

4
6.55E

-1
3

2.71
E

-0
6

2
.0

3
E

-0
4

9
.6

4
E

-0
3

5
.1
9
E
-0
2

2
.9
3
E
-0
1

6
.3
2
E
-0
1

-
4
.7
1
E
-0
1

1
0
0

5.95
E

-2
8

2.53E
-1

5
6.29

E
-0

8
9
.2

2
E

-0
6

9
.4

1
E

-0
4

7
.7

3
E

-0
3

7
.6
4
E
-0
2

2
.3
1
E
-0
1

4
.7
1
E
-0
1

-

132



p
-V

al
u
es

of
th

e
U

n
tu

n
ed

G
e
n
e
ti

c
A

lg
o
ri

th
m

re
su

lt
s

ac
ro

ss
‘n

u
m

b
e
r

o
f

lo
ca

l
o
p
ti

m
a
’

va
lu

es
.

0
1

2
3

4
5

6
7

8
9

0
-

9.
55

E
-2

98
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

1
9.

55
E

-2
98

-
8
.4
2
E
-0
1

3
.8
7
E
-0
1

4
.1

3
E

-2
7

2
.1

3
E

-0
8

8
.8

7
E

-3
7

1
.2

3
E

-4
4

1
.2

0
E

-2
1

1
.6

4
E

-1
5

2
0.

00
E

+
00

8
.4
2
E
-0
1

-
2
.8
0
E
-0
1

1
.4

4
E

-2
6

5
.2

4
E

-0
8

3
.2

1
E

-3
6

4
.4

4
E

-4
4

4
.0

1
E

-2
1

5
.0

2
E

-1
5

3
0.

00
E

+
00

3
.8
7
E
-0
1

2
.8
0
E
-0
1

-
5
.2

9
E

-3
4

1
.0

9
E

-1
1

1
.8

4
E

-4
5

2
.0

0
E

-5
4

7
.5

0
E

-2
8

1
.4

4
E

-2
0

4
0.

00
E

+
00

4.
13

E
-2

7
1.

44
E

-2
6

5
.2

9
E

-3
4

-
2
.7

7
E

-0
8

7
.7
3
E
-0
2

1
.2

6
E

-0
3

1
.2
0
E
-0
1

9
.5

5
E

-0
4

5
0.

00
E

+
00

2.
13

E
-0

8
5.

24
E

-0
8

1
.0

9
E

-1
1

2
.7

7
E

-0
8

-
9
.7

0
E

-1
4

6
.0

8
E

-1
9

3
.7

4
E

-0
5

1
.6

7
E

-0
2

6
0.

00
E

+
00

8.
87

E
-3

7
3.

21
E

-3
6

1
.8

4
E

-4
5

7
.7
3
E
-0
2

9
.7

0
E

-1
4

-
1
.3
6
E
-0
1

6
.9

5
E

-0
4

2
.1

6
E

-0
7

7
0.

00
E

+
00

1.
23

E
-4

4
4.

44
E

-4
4

2
.0

0
E

-5
4

1
.2

6
E

-0
3

6
.0

8
E

-1
9

1
.3
6
E
-0
1

-
1
.0

9
E

-0
6

2
.5

8
E

-1
1

8
0.

00
E

+
00

1.
20

E
-2

1
4.

01
E

-2
1

7
.5

0
E

-2
8

1
.2
0
E
-0
1

3
.7

4
E

-0
5

6
.9

5
E

-0
4

1
.0

9
E

-0
6

-
7
.4
5
E
-0
2

9
0.

00
E

+
00

1.
64

E
-1

5
5.

02
E

-1
5

1
.4

4
E

-2
0

9
.5

5
E

-0
4

1
.6

7
E

-0
2

2
.1

6
E

-0
7

2
.5

8
E

-1
1

7
.4
5
E
-0
2

-

p
-V

al
u
es

of
th

e
U

n
tu

n
ed

G
e
n
e
ti

c
A

lg
o
ri

th
m

re
su

lt
s

ac
ro

ss
‘d

im
e
n
si

o
n
s’

va
lu

es
.

1
2

3
4

5
6

7
8

9
1
0

1
-

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
0.

00
E

+
00

-
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
0.

00
E

+
00

0.
00

E
+

00
-

1
.5

0
E

-1
8
5

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
0.

00
E

+
00

0.
00

E
+

00
1.

50
E

-1
85

-
1
.1

1
E

-4
6

1
.1

1
E

-8
5

1
.9

6
E

-2
5
3

7
.8

0
E

-2
4
2

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

5
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

1
.1

1
E

-4
6

-
2
.9

5
E

-0
7

2
.6

1
E

-8
7

1
.7

5
E

-7
8

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

6
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

1
.1

1
E

-8
5

2
.9

5
E

-0
7

-
1
.7

3
E

-5
0

2
.8

6
E

-4
3

1
.3

7
E

-2
8
3

4
.7

4
E

-2
7
0

7
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

1
.9

6
E

-2
5
3

2
.6

1
E

-8
7

1
.7

3
E

-5
0

-
1
.5
6
E
-0
1

1
.4

3
E

-9
4

3
.9

0
E

-8
5

8
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

7
.8

0
E

-2
4
2

1
.7

5
E

-7
8

2
.8

6
E

-4
3

1
.5
6
E
-0
1

-
3
.4

4
E

-1
1
2

5
.9

0
E

-1
0
2

9
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

1
.3

7
E

-2
8
3

1
.4

3
E

-9
4

3
.4

4
E

-1
1
2

-
1
.5
4
E
-0
1

10
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
.7

4
E

-2
7
0

3
.9

0
E

-8
5

5
.9

0
E

-1
0
2

1
.5
4
E
-0
1

-

133



p
-V

alu
es

of
th

e
U

n
tu

n
ed

G
e
n
e
tic

A
lg

o
rith

m
resu

lts
across

‘b
o
u
n
d
a
ry

co
n
stra

in
ts’

valu
es.

10
20

3
0

4
0

5
0

6
0

70
80

90
100

10
-

4
.3

3
E

-92
7
.2

4E
-2

0
2

4
.5

5
E

-3
0
4

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

20
4.33E

-9
2

-
4.8

0
E

-3
1

1
.4

8
E

-8
9

2
.3

3
E

-1
4
8

1
.7

2
E

-1
8
8

3
.7

9
E

-234
1.29E

-289
0.00E

+
00

0.00E
+

00

30
7.24E

-2
0
2

4
.8

0
E

-31
-

1
.6

4
E

-1
8

1
.1

2
E

-5
0

3
.9

3
E

-7
6

4
.1

6
E

-108
1.45E

-149
2.04E

-187
4.68E

-216

40
4.55E

-3
0
4

1
.4

8
E

-89
1.6

4
E

-1
8

-
3
.4

1
E

-1
0

1
.0

0
E

-2
2

1
.0

9
E

-41
2.44E

-69
1.94E

-96
6.78E

-118

50
0.00E

+
00

2.33
E

-1
48

1
.1

2
E

-5
0

3
.4

1
E

-1
0

-
4
.1

5
E

-0
4

3
.4

5
E

-13
4.57E

-30
1.11E

-48
2.36E

-64

60
0.00E

+
00

1.72
E

-1
88

3
.9

3
E

-7
6

1
.0

0
E

-2
2

4
.1

5
E

-0
4

-
1
.6

9
E

-04
2.77E

-15
4.64E

-29
2.09E

-41

70
0.00E

+
00

3.79
E

-2
34

4.16
E

-1
0
8

1
.0

9
E

-4
1

3
.4

5
E

-1
3

1
.6

9
E

-0
4

-
3.40E

-05
1.02E

-13
2.13E

-22

80
0.00E

+
00

1.29
E

-2
89

1.45
E

-1
4
9

2
.4

4
E

-6
9

4
.5

7
E

-3
0

2
.7

7
E

-1
5

3
.4

0
E

-05
-

9.90E
-04

2.21E
-08

90
0.00E

+
00

0
.0

0E
+

00
2.04

E
-1

8
7

1
.9

4
E

-9
6

1
.1

1
E

-4
8

4
.6

4
E

-2
9

1
.0

2
E

-13
9.90E

-04
-

2.12E
-02

1
0
0

0.00E
+

00
0
.0

0E
+

00
4.68

E
-2

1
6

6
.7

8
E

-1
1
8

2
.3

6
E

-6
4

2
.0

9
E

-4
1

2
.1

3
E

-22
2.21E

-08
2.12E

-02
-

p
-V

alu
es

of
th

e
U

n
tu

n
ed

G
e
n
e
tic

A
lg

o
rith

m
resu

lts
across

‘sm
o
o
th

n
e
ss

co
e
ffi

cie
n
t’

valu
es.

1
0

2
0

3
0

4
0

5
0

6
0

70
80

90
100

1
0

-
8.49

E
-4

9
2
.8

8
E

-1
0
1

1
.2

2
E

-1
5
8

5
.5

4
E

-1
9
5

5
.0

3
E

-2
5
0

2
.2

0
E

-278
0.00E

+
00

0.00E
+

00
0.00E

+
00

2
0

8
.4

9
E

-49
-

5
.5

1
E

-1
2

1
.4

4
E

-3
6

1
.7

6
E

-5
6

1
.4

7
E

-8
9

1
.6

7
E

-108
3.61E

-133
3.92E

-146
6.89E

-175

3
0

2
.8

8E
-10

1
5.51

E
-1

2
-

7
.4

7
E

-0
9

1
.4

0
E

-1
9

1
.3

9
E

-4
0

7
.0

0
E

-54
1.04E

-71
1.71E

-81
1.08E

-103

4
0

1
.2

2E
-15

8
1.44

E
-3

6
7.47

E
-0

9
-

9
.5

1
E

-0
4

2
.6

7
E

-1
4

1
.6

6
E

-22
2.44E

-34
3.11E

-41
1.73E

-57

5
0

5
.5

4E
-19

5
1.76

E
-5

6
1.40

E
-1

9
9
.5

1
E

-0
4

-
1
.7

1
E

-0
5

1
.0

9
E

-10
5.30E

-19
3.71E

-24
8.08E

-37

6
0

5
.0

3E
-25

0
1.47

E
-8

9
1.39

E
-4

0
2
.6

7
E

-1
4

1
.7

1
E

-0
5

-
3
.0

2
E

-02
3.92E

-06
4.75E

-09
4.36E

-17

7
0

2
.2

0E
-27

8
1
.6

7E
-10

8
7.0

0
E

-5
4

1
.6

6
E

-2
2

1
.0

9
E

-1
0

3
.0

2
E

-0
2

-
1.47E

-02
2.33E

-04
4.78E

-10

8
0

0
.0

0
E

+
0
0

3
.6

1E
-13

3
1.0

4
E

-7
1

2
.4

4
E

-3
4

5
.3

0
E

-1
9

3
.9

2
E

-0
6

1
.4

7
E

-02
-

2
.1
4
E
-0
1

1.47E
-04

9
0

0
.0

0
E

+
0
0

3
.9

2E
-14

6
1.7

1
E

-8
1

3
.1

1
E

-4
1

3
.7

1
E

-2
4

4
.7

5
E

-0
9

2
.3

3
E

-04
2
.1
4
E
-0
1

-
1.07E

-02

100
0
.0

0
E

+
0
0

6
.8

9E
-17

5
1
.0

8E
-1

0
3

1
.7

3
E

-5
7

8
.0

8
E

-3
7

4
.3

6
E

-1
7

4
.7

8
E

-10
1
.47E

-04
1.07E

-02
-

134



p
-V

al
u
es

of
th

e
U

n
tu

n
ed

H
a
rm

o
n
y

S
e
a
rc

h
re

su
lt

s
ac

ro
ss

‘n
u
m

b
e
r

o
f

lo
ca

l
o
p
ti

m
a
’

va
lu

es
.

0
1

2
3

4
5

6
7

8
9

0
-

5.
02

E
-3

0
4.

44
E

-3
3

2
.6

3
E

-4
7

1
.2

1
E

-4
9

2
.8

7
E

-4
2

1
.9

5
E

-7
3

1
.4

1
E

-7
2

1
.3

6
E

-5
4

5
.8

5
E

-4
6

1
5.

02
E

-3
0

-
7
.3
6
E
-0
1

1
.9

2
E

-0
2

3
.6

9
E

-0
3

2
.6
5
E
-0
1

4
.8

8
E

-1
4

6
.5

5
E

-1
2

7
.4

7
E

-0
5

5
.3
1
E
-0
2

2
4.

44
E

-3
3

7
.3
6
E
-0
1

-
5
.4

5
E

-0
3

7
.9

4
E

-0
4

1
.3
0
E
-0
1

7
.2

0
E

-1
6

1
.2

9
E

-1
3

9
.1

2
E

-0
6

1
.8

2
E

-0
2

3
2.

63
E

-4
7

1.
92

E
-0

2
5.

45
E

-0
3

-
5
.5
2
E
-0
1

1
.9
4
E
-0
1

4
.4

7
E

-0
8

2
.2

5
E

-0
6

8
.7
2
E
-0
2

6
.6
2
E
-0
1

4
1.

21
E

-4
9

3.
69

E
-0

3
7.

94
E

-0
4

5
.5
2
E
-0
1

-
5
.8
6
E
-0
2

1
.0

3
E

-0
6

3
.6

3
E

-0
5

2
.6
5
E
-0
1

3
.0
2
E
-0
1

5
2.

87
E

-4
2

2
.6
5
E
-0
1

1
.3
0
E
-0
1

1
.9
4
E
-0
1

5
.8
6
E
-0
2

-
1
.6

7
E

-1
1

1
.6

9
E

-0
9

2
.6

8
E

-0
3

3
.8
7
E
-0
1

6
1.

95
E

-7
3

4.
88

E
-1

4
7.

20
E

-1
6

4
.4

7
E

-0
8

1
.0

3
E

-0
6

1
.6

7
E

-1
1

-
4
.0
2
E
-0
1

1
.5

3
E

-0
4

3
.5

0
E

-0
9

7
1.

41
E

-7
2

6.
55

E
-1

2
1.

29
E

-1
3

2
.2

5
E

-0
6

3
.6

3
E

-0
5

1
.6

9
E

-0
9

4
.0
2
E
-0
1

-
2
.6

4
E

-0
3

2
.2

7
E

-0
7

8
1.

36
E

-5
4

7.
47

E
-0

5
9.

12
E

-0
6

8
.7
2
E
-0
2

2
.6
5
E
-0
1

2
.6

8
E

-0
3

1
.5

3
E

-0
4

2
.6

4
E

-0
3

-
3
.1

6
E

-0
2

9
5.

85
E

-4
6

5
.3
1
E
-0
2

1.
82

E
-0

2
6
.6
2
E
-0
1

3
.0
2
E
-0
1

3
.8
7
E
-0
1

3
.5

0
E

-0
9

2
.2

7
E

-0
7

3
.1

6
E

-0
2

-

p
-V

al
u
es

of
th

e
U

n
tu

n
ed

H
a
rm

o
n
y

S
e
a
rc

h
re

su
lt

s
ac

ro
ss

‘d
im

e
n
si

o
n
s’

va
lu

es
.

1
2

3
4

5
6

7
8

9
1
0

1
-

2.
71

E
-3

3
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
2.

71
E

-3
3

-
1.

72
E

-2
62

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
0.

00
E

+
00

1.
72

E
-2

62
-

3
.4

7
E

-2
6
9

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
0.

00
E

+
00

0.
00

E
+

00
3.

47
E

-2
69

-
4
.7

6
E

-1
8
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

5
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

4
.7

6
E

-1
8
0

-
3
.2

7
E

-2
1

2
.7

1
E

-2
7
7

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

6
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

3
.2

7
E

-2
1

-
6
.7

7
E

-1
6
0

3
.0

1
E

-2
1
1

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

7
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

2
.7

1
E

-2
7
7

6
.7

7
E

-1
6
0

-
2
.8

5
E

-0
2

2
.5

5
E

-2
8
9

0
.0

0
E

+
0
0

8
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
.0

1
E

-2
1
1

2
.8

5
E

-0
2

-
0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

9
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
.5

5
E

-2
8
9

0
.0

0
E

+
0
0

-
4
.8

9
E

-0
9

10
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
.8

9
E

-0
9

-

135



p
-V

alu
es

of
th

e
U

n
tu

n
ed

H
a
rm

o
n
y

S
e
a
rch

resu
lts

across
‘b

o
u
n
d
a
ry

co
n
stra

in
ts’

valu
es.

10
20

3
0

4
0

5
0

6
0

70
80

90
100

10
-

2
.3

8
E

-03
1.2

8
E

-2
8

1
.4

4
E

-6
0

2
.2

7
E

-1
1
3

1
.5

0
E

-1
7
3

2
.1

9
E

-231
2.32E

-288
0.00E

+
00

0.00E
+

00

20
2.38E

-0
3

-
8.4

2
E

-2
3

2
.4

3
E

-5
5

2
.5

6
E

-1
0
8

2
.2

7
E

-1
6
8

3
.5

9
E

-226
4.09E

-283
0.00E

+
00

0.00E
+

00

30
1.28E

-2
8

8
.4

2E
-23

-
4
.4

0
E

-1
7

6
.1

9
E

-6
2

6
.8

4
E

-1
1
7

3
.0

1
E

-172
1.56E

-227
1.53E

-268
0.00E

+
00

40
1.44E

-6
0

2
.4

3E
-55

4
.4

0
E

-1
7

-
8
.5

2
E

-2
0

1
.3

4
E

-5
8

3
.3

7
E

-104
1.15E

-152
2.69E

-189
4.57E

-235

50
2.27E

-1
1
3

2.56E
-1

0
8

6
.1

9
E

-6
2

8
.5

2
E

-2
0

-
3
.1

7
E

-1
3

1
.4

3
E

-39
2.36E

-73
8.49E

-101
6.18E

-138

60
1.50E

-1
7
3

2.27E
-1

6
8

6.84
E

-1
1
7

1
.3

4
E

-5
8

3
.1

7
E

-1
3

-
2
.1

3
E

-09
1.73E

-28
1.20E

-46
6.90E

-74

70
2.19E

-2
3
1

3.59E
-2

2
6

3.01
E

-1
7
2

3
.3

7
E

-1
0
4

1
.4

3
E

-3
9

2
.1

3
E

-0
9

-
3.07E

-07
4.13E

-17
6.44E

-35

80
2.32E

-2
8
8

4.09E
-2

8
3

1.56
E

-2
2
7

1
.1

5
E

-1
5
2

2
.3

6
E

-7
3

1
.7

3
E

-2
8

3
.0

7
E

-07
-

1.00E
-03

4.27E
-13

90
0.00E

+
00

0
.0

0E
+

00
1.53

E
-2

6
8

2
.6

9
E

-1
8
9

8
.4

9
E

-1
0
1

1
.2

0
E

-4
6

4
.1

3
E

-17
1.00E

-03
-

6.91E
-05

1
0
0

0.00E
+

00
0
.0

0E
+

00
0
.0

0E
+

0
0

4
.5

7
E

-2
3
5

6
.1

8
E

-1
3
8

6
.9

0
E

-7
4

6
.4

4
E

-35
4.27E

-13
6.91E

-05
-

p
-V

alu
es

of
th

e
U

n
tu

n
ed

H
a
rm

o
n
y

S
e
a
rch

resu
lts

across
‘sm

o
o
th

n
e
ss

co
e
ffi

cie
n
t’

valu
es.

10
20

3
0

4
0

5
0

6
0

7
0

80
90

100

10
-

3
.6

1E
-03

2
.5

0
E

-0
8

5
.1

6
E

-1
5

9
.2

1
E

-1
9

8
.8

6
E

-2
4

4
.3

6
E

-30
2.43E

-37
5.39E

-43
9.44E

-41

20
3.61

E
-0

3
-

6.56E
-0

3
5
.0

9
E

-0
7

1
.1

0
E

-0
9

1
.7

8
E

-1
3

2
.1

0
E

-18
2.16E

-24
2.40E

-29
2.08E

-27

30
2.50

E
-0

8
6.56E

-0
3

-
2
.0

4
E

-0
2

6
.3

3
E

-0
4

2
.3

0
E

-0
6

8
.3

4
E

-10
2.46E

-14
2.34E

-18
8.63E

-17

40
5.16

E
-1

5
5.09E

-0
7

2
.0

4E
-0

2
-

2
.6
6
E
-0
1

1
.4

5
E

-0
2

1
.0

8
E

-04
7.21E

-08
6.01E

-11
9.66E

-10

50
9.21

E
-1

9
1.10E

-0
9

6
.3

3E
-0

4
2
.6
6
E
-0
1

-
1
.8
2
E
-0
1

5
.7

8
E

-03
1.85E

-05
4.92E

-08
5.12E

-07

60
8.86

E
-2

4
1.78E

-1
3

2
.3

0E
-0

6
1
.4

5
E

-0
2

1
.8
2
E
-0
1

-
1
.5
5
E
-0
1

3.18E
-03

3.53E
-05

2.15E
-04

70
4.36

E
-3

0
2.10E

-1
8

8
.3

4E
-1

0
1
.0

8
E

-0
4

5
.7

8
E

-0
3

1
.5
5
E
-0
1

-
1
.2
5
E
-0
1

6.21E
-03

2.16E
-02

80
2.43

E
-3

7
2.16E

-2
4

2
.4

6E
-1

4
7
.2

1
E

-0
8

1
.8

5
E

-0
5

3
.1

8
E

-0
3

1
.2
5
E
-0
1

-
2
.2
5
E
-0
1

4
.4
0
E
-0
1

90
5.39

E
-4

3
2.40E

-2
9

2
.3

4E
-1

8
6
.0

1
E

-1
1

4
.9

2
E

-0
8

3
.5

3
E

-0
5

6
.2

1
E

-03
2
.2
5
E
-0
1

-
6
.6
0
E
-0
1

1
0
0

9.44
E

-4
1

2.08E
-2

7
8
.6

3E
-1

7
9
.6

6
E

-1
0

5
.1

2
E

-0
7

2
.1

5
E

-0
4

2
.1

6
E

-02
4
.4
0
E
-0
1

6
.6
0
E
-0
1

-

136



p
-V

al
u
es

of
th

e
U

n
tu

n
ed

P
a
rt

ic
le

S
w

a
rm

O
p
ti

m
is

a
ti

o
n

re
su

lt
s

ac
ro

ss
‘n

u
m

b
e
r

o
f

lo
ca

l
o
p
ti

m
a
’

va
lu

es
.

0
1

2
3

4
5

6
7

8
9

0
-

2.
13

E
-7

4
5.

52
E

-8
5

3
.5

3
E

-1
0
2

9
.2

1
E

-1
1
9

4
.7

8
E

-7
6

2
.7

5
E

-1
2
4

3
.2

9
E

-1
4
1

6
.3

4
E

-1
0
7

1
.7

0
E

-9
1

1
2.

13
E

-7
4

-
9
.0
0
E
-0
1

8
.6
8
E
-0
1

2
.7

8
E

-0
3

4
.8

0
E

-0
4

7
.7

1
E

-0
4

3
.9

3
E

-0
8

3
.4
7
E
-0
1

1
.5
7
E
-0
1

2
5.

52
E

-8
5

9
.0
0
E
-0
1

-
9
.7
1
E
-0
1

3
.1

3
E

-0
3

1
.6

5
E

-0
4

8
.4

4
E

-0
4

3
.2

4
E

-0
8

4
.0
2
E
-0
1

1
.0
8
E
-0
1

3
3.

53
E

-1
02

8
.6
8
E
-0
1

9
.7
1
E
-0
1

-
2
.2

8
E

-0
3

5
.7

9
E

-0
5

5
.5

8
E

-0
4

1
.0

4
E

-0
8

4
.0
0
E
-0
1

8
.3
7
E
-0
2

4
9.

21
E

-1
19

2.
78

E
-0

3
3.

13
E

-0
3

2
.2

8
E

-0
3

-
3
.0

4
E

-1
2

7
.0
6
E
-0
1

8
.1

7
E

-0
3

2
.6

7
E

-0
2

2
.0

2
E

-0
6

5
4.

78
E

-7
6

4.
80

E
-0

4
1.

65
E

-0
4

5
.7

9
E

-0
5

3
.0

4
E

-1
2

-
1
.3

6
E

-1
3

6
.4

7
E

-2
2

1
.2

8
E

-0
6

2
.1

0
E

-0
2

6
2.

75
E

-1
24

7.
71

E
-0

4
8.

44
E

-0
4

5
.5

8
E

-0
4

7
.0
6
E
-0
1

1
.3

6
E

-1
3

-
2
.2

6
E

-0
2

9
.0

7
E

-0
3

2
.4

3
E

-0
7

7
3.

29
E

-1
41

3.
93

E
-0

8
3.

24
E

-0
8

1
.0

4
E

-0
8

8
.1

7
E

-0
3

6
.4

7
E

-2
2

2
.2

6
E

-0
2

-
1
.0

4
E

-0
6

1
.1

6
E

-1
3

8
6.

34
E

-1
07

3
.4
7
E
-0
1

4
.0
2
E
-0
1

4
.0
0
E
-0
1

2
.6

7
E

-0
2

1
.2

8
E

-0
6

9
.0

7
E

-0
3

1
.0

4
E

-0
6

-
1
.0

3
E

-0
2

9
1.

70
E

-9
1

1
.5
7
E
-0
1

1
.0
8
E
-0
1

8
.3
7
E
-0
2

2
.0

2
E

-0
6

2
.1

0
E

-0
2

2
.4

3
E

-0
7

1
.1

6
E

-1
3

1
.0

3
E

-0
2

-

p
-V

al
u
es

of
th

e
U

n
tu

n
ed

P
a
rt

ic
le

S
w

a
rm

O
p
ti

m
is

a
ti

o
n

re
su

lt
s

ac
ro

ss
‘d

im
e
n
si

o
n
s’

va
lu

es
.

1
2

3
4

5
6

7
8

9
1
0

1
-

6.
82

E
-8

9
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
6.

82
E

-8
9

-
9.

92
E

-2
21

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
0.

00
E

+
00

9.
92

E
-2

21
-

2
.1

4
E

-2
9
6

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
0.

00
E

+
00

0.
00

E
+

00
2.

14
E

-2
96

-
0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

5
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

-
3
.2

2
E

-9
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

6
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

3
.2

2
E

-9
0

-
8
.7

0
E

-2
2
3

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

7
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

8
.7

0
E

-2
2
3

-
3
.2

3
E

-2
4

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

8
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
.2

3
E

-2
4

-
1
.5

7
E

-2
7
2

0
.0

0
E

+
0
0

9
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

1
.5

7
E

-2
7
2

-
2
.0

2
E

-5
3

10
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
.0

2
E

-5
3

-

137



p
-V

alu
es

of
th

e
U

n
tu

n
ed

P
a
rticle

S
w

a
rm

O
p
tim

isa
tio

n
resu

lts
across

‘b
o
u
n
d
a
ry

co
n
stra

in
ts’

valu
es.

1
0

20
3
0

4
0

5
0

6
0

70
80

90
100

1
0

-
0
.0

0E
+

00
1
.5
8
E
-0
1

8
.6

8
E

-2
5

1
.8

3
E

-7
6

1
.5

5
E

-1
2
5

3
.1

7
E

-165
6.54E

-232
1.06E

-300
0.00E

+
00

2
0

0
.0

0E
+

00
-

1.67
E

-7
1

2
.3

1
E

-1
3
8

1
.1

9
E

-2
0
7

3
.2

9
E

-2
6
4

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

3
0

1
.5
8
E
-0
1

1.67
E

-7
1

-
1
.2

9
E

-2
1

1
.9

3
E

-6
5

3
.8

7
E

-1
0
9

1
.6

6
E

-145
1.46E

-207
6.23E

-273
0.00E

+
00

4
0

8
.6

8E
-25

2.31
E

-1
38

1
.2

9
E

-2
1

-
3
.4

1
E

-1
5

1
.9

0
E

-4
0

2
.6

0E
-65

8.84E
-112

8.06E
-165

1.68E
-200

5
0

1
.8

3E
-76

1.19
E

-2
07

1
.9

3
E

-6
5

3
.4

1
E

-1
5

-
3
.0

6
E

-0
8

5
.6

8E
-21

1.71E
-50

4.28E
-89

8.61E
-117

6
0

1.55E
-1

2
5

3.29E
-2

6
4

3.87
E

-1
0
9

1
.9

0
E

-4
0

3
.0

6
E

-0
8

-
1
.0

2E
-04

2.60E
-21

2.25E
-48

1.63E
-69

7
0

3.17E
-1

6
5

0
.0

0E
+

00
1
.6

6E
-1

4
5

2
.6

0
E

-6
5

5
.6

8
E

-2
1

1
.0

2
E

-0
4

-
2.16E

-08
5.23E

-27
2.92E

-43

8
0

6.54E
-2

3
2

0
.0

0E
+

00
1
.4

6E
-2

0
7

8
.8

4
E

-1
1
2

1
.7

1
E

-5
0

2
.6

0
E

-2
1

2
.1

6E
-08

-
2.13E

-07
1.74E

-16

9
0

1.06E
-3

0
0

0
.0

0E
+

00
6
.2

3E
-2

7
3

8
.0

6
E

-1
6
5

4
.2

8
E

-8
9

2
.2

5
E

-4
8

5
.2

3E
-27

2.13E
-07

-
2.23E

-03

100
0
.0

0E
+

00
0
.0

0
E

+
0
0

0
.0

0E
+

0
0

1
.6

8
E

-2
0
0

8
.6

1
E

-1
1
7

1
.6

3
E

-6
9

2
.9

2E
-43

1.74E
-16

2.23E
-03

-

p
-V

alu
es

of
th

e
U

n
tu

n
ed

P
a
rticle

S
w

a
rm

O
p
tim

isa
tio

n
resu

lts
across

‘sm
o
o
th

n
e
ss

co
e
ffi

cie
n
t’

valu
es.

10
20

3
0

4
0

5
0

6
0

7
0

80
90

100

10
-

2
.6

6E
-03

9.15
E

-1
3

6
.5

2
E

-1
9

1
.4

5
E

-2
3

1
.1

3
E

-3
4

2
.3

2
E

-37
5.74E

-42
1.49E

-46
3.01E

-58

20
2.66

E
-0

3
-

2
.9

5E
-0

5
2
.7

4
E

-0
9

1
.4

1
E

-1
2

4
.9

2
E

-2
1

4
.1

9
E

-23
8.45E

-27
1.76E

-30
2.28E

-40

30
9.15

E
-1

3
2.95E

-0
5

-
7
.3
8
E
-0
2

3
.3

7
E

-0
3

1
.1

5
E

-0
7

7
.2

8
E

-09
3.67E

-11
1.63E

-13
1.90E

-20

40
6.52

E
-1

9
2.74E

-0
9

7
.3
8
E
-0
2

-
2
.5
3
E
-0
1

4
.3

1
E

-0
4

6
.3

4
E

-05
1.33E

-06
2.24E

-08
6.15E

-14

50
1.45

E
-2

3
1.41E

-1
2

3.37
E

-0
3

2
.5
3
E
-0
1

-
1
.7

1
E

-0
2

4
.2

2
E

-03
2.16E

-04
8.35E

-06
1.76E

-10

60
1.13

E
-3

4
4.92E

-2
1

1.15
E

-0
7

4
.3

1
E

-0
4

1
.7

1
E

-0
2

-
6
.3
8
E
-0
1

1
.9
0
E
-0
1

3.92E
-02

6.23E
-05

70
2.32

E
-3

7
4.19E

-2
3

7.28
E

-0
9

6
.3

4
E

-0
5

4
.2

2
E

-0
3

6
.3
8
E
-0
1

-
4
.0
0
E
-0
1

1
.1
1
E
-0
1

3.96E
-04

80
5.74

E
-4

2
8.45E

-2
7

3.67
E

-1
1

1
.3

3
E

-0
6

2
.1

6
E

-0
4

1
.9
0
E
-0
1

4
.0
0
E
-0
1

-
4
.5
3
E
-0
1

6.82E
-03

90
1.49

E
-4

6
1.76E

-3
0

1.63
E

-1
3

2
.2

4
E

-0
8

8
.3

5
E

-0
6

3
.9

2
E

-0
2

1
.1
1
E
-0
1

4
.5
3
E
-0
1

-
4.97E

-02

1
0
0

3.01
E

-5
8

2.28E
-4

0
1.90

E
-2

0
6
.1

5
E

-1
4

1
.7

6
E

-1
0

6
.2

3
E

-0
5

3
.9

6
E

-04
6.82E

-03
4.97E

-02
-

138



p
-V

al
u
es

of
th

e
U

n
tu

n
ed

S
to

ch
a
st

ic
H

il
l-

C
li

m
b
in

g
re

su
lt

s
ac

ro
ss

‘n
u
m

b
e
r

o
f

lo
ca

l
o
p
ti

m
a
’

va
lu

es
.

0
1

2
3

4
5

6
7

8
9

0
-

4.
99

E
-4

0
9.

23
E

-1
10

1
.8

9
E

-4
6

3
.9

3
E

-1
4
7

1
.9

2
E

-1
2
8

3
.6

9
E

-9
4

7
.1

3
E

-1
6
2

2
.1

4
E

-1
0
3

4
.1

5
E

-8
2

1
4.

99
E

-4
0

-
3.

11
E

-2
1

6
.0
2
E
-0
1

1
.4

5
E

-3
6

4
.7

3
E

-2
7

6
.0

1
E

-1
2

8
.3

7
E

-4
3

8
.6

9
E

-1
5

2
.1

5
E

-0
7

2
9.

23
E

-1
10

3.
11

E
-2

1
-

8
.8

5
E

-2
1

6
.1

2
E

-0
3

3
.9
8
E
-0
1

1
.4

9
E

-0
3

2
.8

8
E

-0
4

1
.5

0
E

-0
2

4
.9

0
E

-0
7

3
1.

89
E

-4
6

6
.0
2
E
-0
1

8.
85

E
-2

1
-

7
.5

6
E

-3
7

6
.7

2
E

-2
7

2
.6

4
E

-1
1

1
.6

6
E

-4
3

3
.2

2
E

-1
4

1
.0

2
E

-0
6

4
3.

93
E

-1
47

1.
45

E
-3

6
6.

12
E

-0
3

7
.5

6
E

-3
7

-
4
.5

7
E

-0
2

3
.8

2
E

-1
0

3
.8
3
E
-0
1

3
.3

2
E

-0
8

1
.3

5
E

-1
6

5
1.

92
E

-1
28

4.
73

E
-2

7
3
.9
8
E
-0
1

6
.7

2
E

-2
7

4
.5

7
E

-0
2

-
2
.1

1
E

-0
5

3
.5

3
E

-0
3

4
.9

3
E

-0
4

4
.4

9
E

-1
0

6
3.

69
E

-9
4

6.
01

E
-1

2
1.

49
E

-0
3

2
.6

4
E

-1
1

3
.8

2
E

-1
0

2
.1

1
E

-0
5

-
3
.0

8
E

-1
3

3
.9
9
E
-0
1

5
.2
6
E
-0
2

7
7.

13
E

-1
62

8.
37

E
-4

3
2.

88
E

-0
4

1
.6

6
E

-4
3

3
.8
3
E
-0
1

3
.5

3
E

-0
3

3
.0

8
E

-1
3

-
5
.6

3
E

-1
1

7
.4

8
E

-2
1

8
2.

14
E

-1
03

8.
69

E
-1

5
1.

50
E

-0
2

3
.2

2
E

-1
4

3
.3

2
E

-0
8

4
.9

3
E

-0
4

3
.9
9
E
-0
1

5
.6

3
E

-1
1

-
4
.6

9
E

-0
3

9
4.

15
E

-8
2

2.
15

E
-0

7
4.

90
E

-0
7

1
.0

2
E

-0
6

1
.3

5
E

-1
6

4
.4

9
E

-1
0

5
.2
6
E
-0
2

7
.4

8
E

-2
1

4
.6

9
E

-0
3

-

p
-V

al
u
es

of
th

e
U

n
tu

n
ed

S
to

ch
a
st

ic
H

il
l-

C
li

m
b
in

g
re

su
lt

s
ac

ro
ss

‘d
im

e
n
si

o
n
s’

va
lu

es
.

1
2

3
4

5
6

7
8

9
1
0

1
-

1.
19

E
-1

27
1.

59
E

-2
10

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
1.

19
E

-1
27

-
2.

13
E

-0
8

2
.2

1
E

-1
7
9

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
1.

59
E

-2
10

2.
13

E
-0

8
-

7
.9

0
E

-1
2
6

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
0.

00
E

+
00

2.
21

E
-1

79
7.

90
E

-1
26

-
8
.1

6
E

-1
9
2

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

5
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

8
.1

6
E

-1
9
2

-
1
.7

1
E

-1
3
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

6
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

1
.7

1
E

-1
3
0

-
1
.6

3
E

-1
6
2

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

7
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

1
.6

3
E

-1
6
2

-
8
.6

5
E

-7
2

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

8
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

8
.6

5
E

-7
2

-
2
.6

3
E

-2
0
7

0
.0

0
E

+
0
0

9
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
.6

3
E

-2
0
7

-
7
.7

3
E

-8
4

10
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

7
.7

3
E

-8
4

-

139



p
-V

alu
es

of
th

e
U

n
tu

n
ed

S
to

ch
a
stic

H
ill-C

lim
b
in

g
resu

lts
across

‘b
o
u
n
d
a
ry

co
n
stra

in
ts’

valu
es.

10
20

3
0

4
0

5
0

6
0

70
80

90
100

10
-

0
.0

0E
+

00
0
.0

0E
+

0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

20
0.00E

+
00

-
3
.5

0
E

-2
5
1

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

30
0.00E

+
00

3
.5

0
E

-251
-

1
.2

2
E

-8
6

4
.2

7
E

-2
3
7

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

40
0.00E

+
00

0.00
E

+
0
0

1
.2

2
E

-8
6

-
1
.9

5
E

-4
0

2
.8

2
E

-1
4
6

3
.8

7
E

-260
0.00E

+
00

0.00E
+

00
0.00E

+
00

50
0.00E

+
00

0.00
E

+
0
0

4.27
E

-2
3
7

1
.9

5
E

-4
0

-
4
.4

7
E

-3
5

1
.8

1
E

-98
8.57E

-174
4.29E

-259
0.00E

+
00

60
0.00E

+
00

0.00
E

+
0
0

0.00
E

+
0
0

2
.8

2
E

-1
4
6

4
.4

7
E

-3
5

-
1
.8

2
E

-18
8.78E

-57
2.66E

-109
1.04E

-165

70
0.00E

+
00

0.00
E

+
0
0

0.00
E

+
0
0

3
.8

7
E

-2
6
0

1
.8

1
E

-9
8

1
.8

2
E

-1
8

-
1.05E

-12
2.67E

-41
4.98E

-78

80
0.00E

+
00

0.00
E

+
0
0

0.00
E

+
0
0

0
.0

0
E

+
0
0

8
.5

7
E

-1
7
4

8
.7

8
E

-5
7

1
.0

5
E

-12
-

2.43E
-10

5.49E
-31

90
0.00E

+
00

0.00
E

+
0
0

0.00
E

+
0
0

0
.0

0
E

+
0
0

4
.2

9
E

-2
5
9

2
.6

6
E

-1
0
9

2
.6

7
E

-41
2.43E

-10
-

1.50E
-07

10
0

0.00E
+

00
0.00

E
+

0
0

0.00
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

1
.0

4
E

-1
6
5

4
.9

8
E

-78
5.49E

-31
1.50E

-07
-

p
-V

alu
es

of
th

e
U

n
tu

n
ed

S
to

ch
a
stic

H
ill-C

lim
b
in

g
resu

lts
across

‘sm
o
o
th

n
e
ss

co
e
ffi

cie
n
t’

valu
es.

10
2
0

3
0

4
0

5
0

6
0

7
0

80
90

100

1
0

-
2.20

E
-1

2
3.13

E
-2

7
6
.3

3
E

-4
1

4
.5

4
E

-5
3

9
.5

0
E

-6
7

3
.2

2
E

-76
4.47E

-88
4.09E

-100
1.82E

-108

2
0

2.20
E

-1
2

-
1
.4

0
E

-0
4

1
.4

2
E

-1
0

6
.0

2
E

-1
7

7
.6

4
E

-2
5

1
.0

8
E

-30
2.71E

-38
2.75E

-46
5.35E

-52

3
0

3.13
E

-2
7

1
.4

0
E

-04
-

9
.1

1
E

-0
3

5
.1

0
E

-0
6

8
.9

3
E

-1
1

1
.2

5
E

-14
6.86E

-20
1.17E

-25
6.61E

-30

4
0

6.33
E

-4
1

1
.4

2
E

-10
9.11

E
-0

3
-

5
.0
8
E
-0
2

1
.0

8
E

-0
4

3
.4

1
E

-07
7.19E

-11
3.98E

-15
2.26E

-18

5
0

4.54
E

-5
3

6
.0

2
E

-17
5.10

E
-0

6
5
.0
8
E
-0
2

-
5
.5
2
E
-0
2

1
.6

7
E

-03
5.13E

-06
3.72E

-09
1.17E

-11

6
0

9.50
E

-6
7

7
.6

4
E

-25
8.93

E
-1

1
1
.0

8
E

-0
4

5
.5
2
E
-0
2

-
2
.1
9
E
-0
1

8.19E
-03

6.87E
-05

1.12E
-06

7
0

3.22
E

-7
6

1
.0

8
E

-30
1.25

E
-1

4
3
.4

1
E

-0
7

1
.6

7
E

-0
3

2
.1
9
E
-0
1

-
1
.5
7
E
-0
1

5.96E
-03

2.75E
-04

8
0

4.47
E

-8
8

2
.7

1
E

-38
6.86

E
-2

0
7
.1

9
E

-1
1

5
.1

3
E

-0
6

8
.1

9
E

-0
3

1
.5
7
E
-0
1

-
1
.8
2
E
-0
1

2.62E
-02

9
0

4
.0

9
E

-100
2
.7

5
E

-46
1.17

E
-2

5
3
.9

8
E

-1
5

3
.7

2
E

-0
9

6
.8

7
E

-0
5

5
.9

6
E

-03
1
.8
2
E
-0
1

-
3
.7
4
E
-0
1

1
00

1
.8

2
E

-108
5
.3

5
E

-52
6.61

E
-3

0
2
.2

6
E

-1
8

1
.1

7
E

-1
1

1
.1

2
E

-0
6

2
.7

5
E

-04
2.62E

-02
3
.7
4
E
-0
1

-

140



p
-V

al
u
es

of
th

e
U

n
tu

n
ed

R
a
n
d
o
m

S
e
a
rc

h
re

su
lt

s
ac

ro
ss

‘n
u
m

b
e
r

o
f

lo
ca

l
o
p
ti

m
a
’

va
lu

es
.

0
1

2
3

4
5

6
7

8
9

0
-

1.
09

E
-1

3
7.

68
E

-0
3

1
.3

1
E

-0
4

4
.1
0
E
-0
1

1
.4

0
E

-0
7

2
.7

2
E

-0
6

1
.1

1
E

-0
8

1
.3

1
E

-0
2

1
.0
0
E
-0
1

1
1.

09
E

-1
3

-
8.

26
E

-0
7

5
.1

1
E

-0
4

2
.9

9
E

-1
1

4
.8

8
E

-0
2

3
.2

8
E

-0
3

5
.1
1
E
-0
2

4
.3

2
E

-0
7

4
.9

9
E

-0
8

2
7.

68
E

-0
3

8.
26

E
-0

7
-

1
.9
2
E
-0
1

6
.6
2
E
-0
2

5
.1

0
E

-0
3

3
.9

6
E

-0
2

2
.0

1
E

-0
3

8
.7
0
E
-0
1

4
.0
2
E
-0
1

3
1.

31
E

-0
4

5.
11

E
-0

4
1
.9
2
E
-0
1

-
2
.3

6
E

-0
3

1
.4
6
E
-0
1

5
.0
8
E
-0
1

9
.9
2
E
-0
2

1
.4
6
E
-0
1

4
.2

6
E

-0
2

4
4
.1
0
E
-0
1

2.
99

E
-1

1
6
.6
2
E
-0
2

2
.3

6
E

-0
3

-
6
.8

8
E

-0
6

1
.0

9
E

-0
4

9
.9

3
E

-0
7

9
.6
9
E
-0
2

3
.8
1
E
-0
1

5
1.

40
E

-0
7

4.
88

E
-0

2
5.

10
E

-0
3

1
.4
6
E
-0
1

6
.8

8
E

-0
6

-
3
.9
1
E
-0
1

9
.0
8
E
-0
1

3
.3

2
E

-0
3

6
.0

4
E

-0
4

6
2.

72
E

-0
6

3.
28

E
-0

3
3.

96
E

-0
2

5
.0
8
E
-0
1

1
.0

9
E

-0
4

3
.9
1
E
-0
1

-
3
.0
5
E
-0
1

2
.7

4
E

-0
2

5
.8

1
E

-0
3

7
1.

11
E

-0
8

5
.1
1
E
-0
2

2.
01

E
-0

3
9
.9
2
E
-0
2

9
.9

3
E

-0
7

9
.0
8
E
-0
1

3
.0
5
E
-0
1

-
1
.2

4
E

-0
3

1
.9

4
E

-0
4

8
1.

31
E

-0
2

4.
32

E
-0

7
8
.7
0
E
-0
1

1
.4
6
E
-0
1

9
.6
9
E
-0
2

3
.3

2
E

-0
3

2
.7

4
E

-0
2

1
.2

4
E

-0
3

-
4
.9
7
E
-0
1

9
1
.0
0
E
-0
1

4.
99

E
-0

8
4
.0
2
E
-0
1

4
.2

6
E

-0
2

3
.8
1
E
-0
1

6
.0

4
E

-0
4

5
.8

1
E

-0
3

1
.9

4
E

-0
4

4
.9
7
E
-0
1

-

p
-V

al
u
es

of
th

e
U

n
tu

n
ed

R
a
n
d
o
m

S
e
a
rc

h
re

su
lt

s
ac

ro
ss

‘d
im

e
n
si

o
n
s’

va
lu

es
.

1
2

3
4

5
6

7
8

9
1
0

1
-

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

2
0.

00
E

+
00

-
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
0.

00
E

+
00

0.
00

E
+

00
-

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

4
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

-
0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

5
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

-
0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

6
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

-
0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

7
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

-
0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

8
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

-
0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

9
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

-
3
.6

2
E

-2
0
1

10
0.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

3
.6

2
E

-2
0
1

-

141



p
-V

alu
es

of
th

e
U

n
tu

n
ed

R
a
n
d
o
m

S
e
a
rch

resu
lts

across
‘b

o
u
n
d
a
ry

co
n
stra

in
ts’

valu
es.

10
20

3
0

4
0

5
0

6
0

70
80

90
100

10
-

0
.0

0E
+

00
0
.0

0E
+

0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

20
0.00E

+
00

-
1
.2

0
E

-1
3
5

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

30
0.00E

+
00

1
.2

0
E

-135
-

2
.7

6
E

-6
6

3
.9

6
E

-1
7
6

3
.6

5
E

-2
7
6

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

40
0.00E

+
00

0.00
E

+
0
0

2
.7

6
E

-6
6

-
1
.4

6
E

-3
8

2
.1

9
E

-1
1
1

1
.7

9
E

-188
2.67E

-258
0.00E

+
00

0.00E
+

00

50
0.00E

+
00

0.00
E

+
0
0

3.96
E

-1
7
6

1
.4

6
E

-3
8

-
4
.1

2
E

-2
5

7
.1

3
E

-76
7.17E

-135
3.25E

-193
2.44E

-247

60
0.00E

+
00

0.00
E

+
0
0

3.65
E

-2
7
6

2
.1

9
E

-1
1
1

4
.1

2
E

-2
5

-
9
.3

4
E

-18
8.36E

-55
1.01E

-100
6.03E

-149

70
0.00E

+
00

0.00
E

+
0
0

0.00
E

+
0
0

1
.7

9
E

-1
8
8

7
.1

3
E

-7
6

9
.3

4
E

-1
8

-
2.68E

-13
2.21E

-41
8.02E

-78

80
0.00E

+
00

0.00
E

+
0
0

0.00
E

+
0
0

2
.6

7
E

-2
5
8

7
.1

7
E

-1
3
5

8
.3

6
E

-5
5

2
.6

8
E

-13
-

2.13E
-10

2.27E
-32

90
0.00E

+
00

0.00
E

+
0
0

0.00
E

+
0
0

0
.0

0
E

+
0
0

3
.2

5
E

-1
9
3

1
.0

1
E

-1
0
0

2
.2

1
E

-41
2.13E

-10
-

1.94E
-08

10
0

0.00E
+

00
0.00

E
+

0
0

0.00
E

+
0
0

0
.0

0
E

+
0
0

2
.4

4
E

-2
4
7

6
.0

3
E

-1
4
9

8
.0

2
E

-78
2.27E

-32
1.94E

-08
-

p
-V

alu
es

of
th

e
U

n
tu

n
ed

R
a
n
d
o
m

S
e
a
rch

resu
lts

across
‘sm

o
o
th

n
e
ss

co
e
ffi

cie
n
t’

valu
es.

10
20

3
0

4
0

5
0

6
0

70
80

90
100

10
-

3
.1

1E
-21

4
0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

20
3.11E

-2
1
4

-
1
.4

3
E

-8
1

1
.4

7
E

-2
1
5

0
.0

0
E

+
0
0

0
.0

0
E

+
0
0

0
.0

0
E

+
00

0.00E
+

00
0.00E

+
00

0.00E
+

00

30
0.00E

+
00

1
.4

3E
-81

-
4
.8

9
E

-4
2

1
.0

5
E

-1
2
1

4
.8

8
E

-2
0
9

1
.4

1
E

-292
0.00E

+
00

0.00E
+

00
0.00E

+
00

40
0.00E

+
00

1.47
E

-2
15

4
.8

9
E

-4
2

-
2
.3

3
E

-2
5

1
.5

0
E

-7
6

1
.5

5
E

-137
4.07E

-200
1.86E

-260
0.00E

+
00

50
0.00E

+
00

0
.0

0E
+

00
1.05

E
-1

2
1

2
.3

3
E

-2
5

-
6
.2

5
E

-1
7

6
.1

3
E

-52
6.51E

-96
3.43E

-143
1.12E

-190

60
0.00E

+
00

0
.0

0E
+

00
4.88

E
-2

0
9

1
.5

0
E

-7
6

6
.2

5
E

-1
7

-
4
.1

1
E

-12
3.25E

-37
6.41E

-70
2.83E

-106

70
0.00E

+
00

0
.0

0E
+

00
1.41

E
-2

9
2

1
.5

5
E

-1
3
7

6
.1

3
E

-5
2

4
.1

1
E

-1
2

-
3.91E

-09
7.72E

-28
7.66E

-53

80
0.00E

+
00

0
.0

0E
+

00
0
.0

0E
+

0
0

4
.0

7
E

-2
0
0

6
.5

1
E

-9
6

3
.2

5
E

-3
7

3
.9

1
E

-09
-

3.48E
-07

1.49E
-21

90
0.00E

+
00

0
.0

0E
+

00
0
.0

0E
+

0
0

1
.8

6
E

-2
6
0

3
.4

3
E

-1
4
3

6
.4

1
E

-7
0

7
.7

2
E

-28
3.48E

-07
-

7.81E
-06

1
0
0

0.00E
+

00
0
.0

0E
+

00
0
.0

0E
+

0
0

0
.0

0
E

+
0
0

1
.1

2
E

-1
9
0

2
.8

3
E

-1
0
6

7
.6

6
E

-53
1.49E

-21
7.81E

-06
-

142



p-Values of the Untuned Bees Algorithm results across ‘ratio of local optima to
global optimum’ values.

0.1 0.3 0.5 0.7 0.9

0.1 - 6.04E-05 7.88E-16 3.76E-31 8.74E-54

0.3 6.04E-05 - 2.63E-05 5.32E-17 1.44E-35

0.5 7.88E-16 2.63E-05 - 3.45E-06 5.90E-19

0.7 3.76E-31 5.32E-17 3.45E-06 - 2.76E-05

0.9 8.74E-54 1.44E-35 5.90E-19 2.76E-05 -

p-Values of the Untuned Bacterial Foraging Optimisation Algorithm results
across ‘ratio of local optima to global optimum’ values.
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0.7 1.12E-19 7.47E-14 1.30E-04 - 1.63E-08

0.9 4.70E-45 6.58E-37 1.38E-20 1.63E-08 -

p-Values of the Untuned Evolution Strategy results across ‘ratio of local optima
to global optimum’ values.
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0.7 1.67E-07 9.66E-07 8.17E-03 - 1.01E-04

0.9 4.14E-18 1.72E-17 1.35E-10 1.01E-04 -

p-Values of the Untuned Genetic Algorithm results across ‘ratio of local optima
to global optimum’ values.

0.1 0.3 0.5 0.7 0.9

0.1 - 7.66E-05 5.47E-08 6.73E-08 1.21E-02

0.3 7.66E-05 - 1.71E-01 2.38E-01 5.32E-02

0.5 5.47E-08 1.71E-01 - 8.06E-01 3.87E-04

0.7 6.73E-08 2.38E-01 8.06E-01 - 5.68E-04

0.9 1.21E-02 5.32E-02 3.87E-04 5.68E-04 -

p-Values of the Untuned Harmony Search results across ‘ratio of local optima to
global optimum’ values.

0.1 0.3 0.5 0.7 0.9

0.1 - 1.16E-03 1.52E-10 1.11E-15 3.31E-16

0.3 1.16E-03 - 2.06E-03 1.39E-05 7.98E-05

0.5 1.52E-10 2.06E-03 - 2.93E-01 7.51E-01

0.7 1.11E-15 1.39E-05 2.93E-01 - 3.73E-01

0.9 3.31E-16 7.98E-05 7.51E-01 3.73E-01 -
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p-Values of the Untuned Particle Swarm Optimisation results across ‘ratio of
local optima to global optimum’ values.

0.1 0.3 0.5 0.7 0.9

0.1 - 6.78E-03 6.56E-06 1.88E-07 3.72E-07

0.3 6.78E-03 - 8.26E-02 2.10E-02 4.25E-02

0.5 6.56E-06 8.26E-02 - 6.11E-01 8.94E-01

0.7 1.88E-07 2.10E-02 6.11E-01 - 6.74E-01

0.9 3.72E-07 4.25E-02 8.94E-01 6.74E-01 -

p-Values of the Untuned Stochastic Hill-Climbing results across ‘ratio of local
optima to global optimum’ values.

0.1 0.3 0.5 0.7 0.9

0.1 - 2.76E-02 2.74E-13 5.84E-38 1.28E-87

0.3 2.76E-02 - 1.34E-07 1.20E-28 3.37E-76

0.5 2.74E-13 1.34E-07 - 2.50E-09 1.45E-42

0.7 5.84E-38 1.20E-28 2.50E-09 - 2.20E-15

0.9 1.28E-87 3.37E-76 1.45E-42 2.20E-15 -

p-Values of the Untuned Random Search results across ‘ratio of local optima to
global optimum’ values.

0.1 0.3 0.5 0.7 0.9

0.1 - 1.00E+00 1.00E+00 1.00E+00 1.00E+00

0.3 1.00E+00 - 1.00E+00 1.00E+00 1.00E+00

0.5 1.00E+00 1.00E+00 - 1.00E+00 1.00E+00

0.7 1.00E+00 1.00E+00 1.00E+00 - 1.00E+00

0.9 1.00E+00 1.00E+00 1.00E+00 1.00E+00 -
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Appendix B

Tuned Parameter Configurations

This appendix includes the complete parameter configurations for all six
nature-inspired algorithms, after the conclusion of the F-Racing process.

Best found Bacterial Foraging Optimisation parameter configurations as the
‘number of local optima’ characteristic of the fitness landscape changes.

Curves Pop.
Size

Step
Size

Repro
Steps

Chem
Steps

Swim
Length

Elim.
Prob.

d attr w attr h rep w rep

0 9 1.42 9 36 4 0.01 0.10 0.36 0.14 0.21
1 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
2 49 1.74 6 65 4 0.78 0.94 1.26 1.32 1.93
3 49 1.74 6 65 4 0.78 0.94 1.26 1.32 1.93
4 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
5 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
6 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
7 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
8 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
9 11 1.93 4 37 4 0.96 0.04 0.12 0.22 1.86

Best found Bacterial Foraging Optimisation parameter configurations as the ‘di-
mensions’ characteristic of the fitness landscape changes.

Dims. Pop.
Size

Step
Size

Repro
Steps

Chem
Steps

Swim
Length

Elim.
Prob.

d attr w attr h rep w rep

1 34 0.31 8 39 5 0.39 0.11 0.07 0.20 1.06
2 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
3 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
4 22 2.83 8 75 7 0.87 0.69 1.32 0.98 0.62
5 22 2.83 8 75 7 0.87 0.69 1.32 0.98 0.62
6 33 3.46 2 83 6 0.67 0.07 1.47 1.07 1.34
7 33 3.46 2 83 6 0.67 0.07 1.47 1.07 1.34
8 33 3.46 2 83 6 0.67 0.07 1.47 1.07 1.34
9 33 3.46 2 83 6 0.67 0.07 1.47 1.07 1.34
10 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
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Best found Bacterial Foraging Optimisation parameter configurations as the ‘ra-
tio of local optima to global optimum’ characteristic of the fitness landscape
changes.

Ratio Pop.
Size

Step
Size

Repro
Steps

Chem
Steps

Swim
Length

Elim.
Prob.

d attr w attr h rep w rep

0.1 11 1.93 4 37 4 0.96 0.04 0.12 0.22 1.86
0.2 11 1.93 4 37 4 0.96 0.04 0.12 0.22 1.86
0.3 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
0.4 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
0.5 49 1.74 6 65 4 0.78 0.94 1.26 1.32 1.93
0.6 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
0.7 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
0.8 49 1.74 6 65 4 0.78 0.94 1.26 1.32 1.93
0.9 49 1.74 6 65 4 0.78 0.94 1.26 1.32 1.93

Best found Bacterial Foraging Optimisation parameter configurations as the
‘boundary constraints’ characteristic of the fitness landscape changes.

Constraint Pop.
Size

Step
Size

Repro
Steps

Chem
Steps

Swim
Length

Elim.
Prob.

d attr w attr h rep w rep

10 11 1.93 4 37 4 0.96 0.04 0.12 0.22 1.86
20 11 1.93 4 37 4 0.96 0.04 0.12 0.22 1.86
30 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
40 53 0.92 7 36 9 0.22 0.57 1.66 1.06 1.90
50 53 0.92 7 36 9 0.22 0.57 1.66 1.06 1.90
60 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
70 53 0.92 7 36 9 0.22 0.57 1.66 1.06 1.90
80 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
90 53 0.92 7 36 9 0.22 0.57 1.66 1.06 1.90
100 32 6.29 6 70 1 0.26 0.03 0.44 0.07 1.95

Best found Bacterial Foraging Optimisation parameter configurations as the
‘smoothness coefficient’ characteristic of the fitness landscape changes.

Smoothness Pop.
Size

Step
Size

Repro
Steps

Chem
Steps

Swim
Length

Elim.
Prob.

d attr w attr h rep w rep

10 11 1.93 4 37 4 0.96 0.04 0.12 0.22 1.86
20 11 1.93 4 37 4 0.96 0.04 0.12 0.22 1.86
30 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
40 53 0.92 7 36 9 0.22 0.57 1.66 1.06 1.90
50 53 0.92 7 36 9 0.22 0.57 1.66 1.06 1.90
60 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
70 53 0.92 7 36 9 0.22 0.57 1.66 1.06 1.90
80 21 2.97 8 80 7 0.59 0.74 0.95 1.15 1.77
90 53 0.92 7 36 9 0.22 0.57 1.66 1.06 1.90
100 32 6.29 6 70 1 0.26 0.03 0.44 0.07 1.95

Best found Bees algorithm parameter configurations as the ‘number of local
optima’ characteristic of the fitness landscape changes.

Curves Num Bees Num Sites Elite Sites Patch Size Elite Bees Other Bees
0 108 43 9 0.369758663 9 3
1 108 43 9 0.369758663 9 3
2 108 43 9 0.369758663 9 3
3 108 43 9 0.369758663 9 3
4 108 43 9 0.369758663 9 3
5 108 43 9 0.369758663 9 3
6 108 43 9 0.369758663 9 3
7 108 43 9 0.369758663 9 3
8 108 43 9 0.369758663 9 3
9 108 43 9 0.369758663 9 3
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Best found Bees algorithm parameter configurations as the ‘dimensions’ charac-
teristic of the fitness landscape changes.

Dimensions Num Bees Num Sites Elite Sites Patch Size Elite Bees Other Bees
1 13 11 1 0.092645364 6 3
2 108 43 9 0.369758663 9 3
3 13 11 1 0.092645364 6 3
4 97 10 5 1.569463987 35 7
5 97 10 5 1.569463987 35 7
6 97 10 5 1.569463987 35 7
7 97 10 5 1.569463987 35 7
8 97 10 5 1.569463987 35 7
9 97 10 5 1.569463987 35 7
10 97 10 5 1.569463987 35 7

Best found Bees algorithm parameter configurations as the ‘ratio of local optima
to global optimum’ characteristic of the fitness landscape changes.

Ratio Num Bees Num Sites Elite Sites Patch Size Elite Bees Other Bees
0.1 13 11 1 0.092645364 6 3
0.2 13 11 1 0.092645364 6 3
0.3 135 56 7 0.060748275 4 1
0.4 135 56 7 0.060748275 4 1
0.5 108 43 9 0.369758663 9 3
0.6 13 11 1 0.092645364 6 3
0.7 13 11 1 0.092645364 6 3
0.8 13 11 1 0.092645364 6 3
0.9 135 56 7 0.060748275 4 1

Best found Bees algorithm parameter configurations as the ‘boundary con-
straints’ characteristic of the fitness landscape changes.

Boundary
Constraints

Num Bees Num Sites Elite Sites Patch Size Elite Bees Other Bees

10 13 11 1 0.092645364 6 3
20 13 11 1 0.092645364 6 3
30 108 43 9 0.369758663 9 3
40 13 11 1 0.092645364 6 3
50 13 11 1 0.092645364 6 3
60 135 56 7 0.060748275 4 1
70 13 11 1 0.092645364 6 3
80 13 11 1 0.092645364 6 3
90 13 11 1 0.092645364 6 3
100 13 11 1 0.092645364 6 3

Best found Bees algorithm parameter configurations as the ‘smoothness coeffi-
cient’ characteristic of the fitness landscape changes.

Smoothness
Coefficient

Num Bees Num Sites Elite Sites Patch Size Elite Bees Other Bees

10 13 11 1 0.092645364 6 3
20 13 11 1 0.092645364 6 3
30 135 56 7 0.060748275 4 1
40 13 11 1 0.092645364 6 3
50 13 11 1 0.092645364 6 3
60 13 11 1 0.092645364 6 3
70 13 11 1 0.092645364 6 3
80 13 11 1 0.092645364 6 3
90 13 11 1 0.092645364 6 3
100 135 56 7 0.060748275 4 1
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Best found Evolution Strategies parameter configurations as the ‘number of local
optima’ characteristic of the fitness landscape changes.

Curves Population
Size

Number of
Children

0 5 2
1 84 38
2 94 92
3 78 61
4 90 88
5 97 91
6 88 80
7 98 92
8 86 84
9 90 76

Best found Evolution Strategies parameter configurations as the ‘dimensions’
characteristic of the fitness landscape changes.

Dimensions Population
Size

Number of
Children

1 86 42
2 94 92
3 91 33
4 8 6
5 47 34
6 65 14
7 49 26
8 100 23
9 41 10
10 29 19

Best found Evolution Strategies parameter configurations as the ‘ratio of local
optima to global optimum’ characteristic of the fitness landscape changes.

Ratio Population
Size

Number of
Children

0.1 98 83
0.2 96 52
0.3 98 65
0.4 71 49
0.5 94 92
0.6 90 88
0.7 54 32
0.8 99 84
0.9 65 63

Best found Evolution Strategies parameter configurations as the ‘boundary con-
straints’ characteristic of the fitness landscape changes.

Boundary
Constraints

Population
Size

Number of
Children

10 90 80
20 99 95
30 94 92
40 91 56
50 88 60
60 50 26
70 95 43
80 98 86
90 80 55
100 80 61
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Best found Evolution Strategies parameter configurations as the ‘smoothness
coefficient’ characteristic of the fitness landscape changes.

Smoothness
Coefficient

Population
Size

Number of
Children

10 59 42
20 98 66
30 95 81
40 87 57
50 77 61
60 81 52
70 72 67
80 95 92
90 71 65
100 97 70

Best found Genetic Algorithm parameter configurations as the ‘number of local
optima’ characteristic of the fitness landscape changes.

Curves Bits Per
Dimension

Population
Size

Crossover
Chance

Mutation
Chance

0 112 227 0.89331401 0.039475776
1 50 191 0.052663763 0.051492694
2 50 191 0.052663763 0.051492694
3 50 191 0.052663763 0.051492694
4 50 191 0.052663763 0.051492694
5 58 243 0.294221318 0.064708823
6 50 191 0.052663763 0.051492694
7 58 243 0.294221318 0.064708823
8 50 191 0.052663763 0.051492694
9 50 191 0.052663763 0.051492694

Best found Genetic Algorithm parameter configurations as the ‘dimensions’ char-
acteristic of the fitness landscape changes.

Dimensions Bits Per
Dimension

Population
Size

Crossover
Chance

Mutation
Chance

1 112 227 0.89331401 0.039475776
2 50 191 0.052663763 0.051492694
3 50 191 0.052663763 0.051492694
4 24 221 0.162093651 0.020109175
5 24 221 0.162093651 0.020109175
6 24 221 0.162093651 0.020109175
7 24 221 0.162093651 0.020109175
8 118 234 0.73610524 0.01388368
9 42 238 0.26651476 0.014879794
10 87 198 0.810279389 0.011274037

Best found Genetic Algorithm parameter configurations as the ‘ratio of local op-
tima to global optimum’ characteristic of the fitness landscape changes.

Ratio Bits Per
Dimension

Population
Size

Crossover
Chance

Mutation
Chance

0.1 112 227 0.89331401 0.039475776
0.2 112 227 0.89331401 0.039475776
0.3 58 243 0.294221318 0.064708823
0.4 50 191 0.052663763 0.051492694
0.5 50 191 0.052663763 0.051492694
0.6 50 191 0.052663763 0.051492694
0.7 58 243 0.294221318 0.064708823
0.8 50 191 0.052663763 0.051492694
0.9 58 243 0.294221318 0.064708823
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Best found Genetic Algorithm parameter configurations as the ‘boundary con-
straints’ characteristic of the fitness landscape changes.

Boundary
Constraints

Bits Per
Dimension

Population
Size

Crossover
Chance

Mutation
Chance

10 112 227 0.89331401 0.039475776
20 112 227 0.89331401 0.039475776
30 50 191 0.052663763 0.051492694
40 50 191 0.052663763 0.051492694
50 50 191 0.052663763 0.051492694
60 50 191 0.052663763 0.051492694
70 58 243 0.294221318 0.064708823
80 50 191 0.052663763 0.051492694
90 111 234 0.294221318 0.064708823
100 58 243 0.294221318 0.064708823

Best found Genetic Algorithm parameter configurations as the ‘smoothness coef-
ficient’ characteristic of the fitness landscape changes.

Smoothness
Coefficient

Bits Per
Dimension

Population
Size

Crossover
Chance

Mutation
Chance

10 50 191 0.052663763 0.051492694
20 50 191 0.052663763 0.051492694
30 50 191 0.052663763 0.051492694
40 50 191 0.052663763 0.051492694
50 58 243 0.294221318 0.064708823
60 58 243 0.294221318 0.064708823
70 50 191 0.052663763 0.051492694
80 58 243 0.294221318 0.064708823
90 58 243 0.294221318 0.064708823
100 58 243 0.294221318 0.064708823

Best found Harmony Search parameter configurations as the ‘number of local
optima’ characteristic of the fitness landscape changes.

Curves Memory Size Consideration
Rate

Adjustment
Rate

Range

0 61 0.522940998 0.361405982 0.02686435
1 106 0.594938408 0.241110384 0.018747458
2 38 0.58512274 0.119371722 0.041315692
3 106 0.594938408 0.241110384 0.018747458
4 61 0.522940998 0.361405982 0.02686435
5 61 0.522940998 0.361405982 0.02686435
6 61 0.522940998 0.361405982 0.02686435
7 61 0.522940998 0.361405982 0.02686435
8 61 0.522940998 0.361405982 0.02686435
9 61 0.522940998 0.361405982 0.02686435
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Best found Harmony Search parameter configurations as the ‘dimensions’ char-
acteristic of the fitness landscape changes.

Dimensions Memory Size Consideration
Rate

Adjustment
Rate

Range

1 130 0.432413263 0.874201206 0.028459016
2 184 0.556426407 0.716830534 0.071875809
3 61 0.522940998 0.361405982 0.02686435
4 2 0.448981918 0.233814989 2.321073256
5 2 0.448981918 0.233814989 2.321073256
6 2 0.448981918 0.233814989 2.321073256
7 110 0.92527344 0.07807093 0.658149792
8 110 0.92527344 0.07807093 0.658149792
9 1 0.885656584 0.049619375 13.6648148
10 46 0.97452116 0.376275727 0.657018353

Best found Harmony Search parameter configurations as the ‘ratio of local optima
to global optimum’ characteristic of the fitness landscape changes.

Ratio Memory Size Consideration
Rate

Adjustment
Rate

Range

0.1 28 0.565082183 0.753860822 0.185551216
0.2 139 0.514641192 0.146908781 0.05675386
0.3 58 0.650182633 0.110585621 0.078901814
0.4 121 0.864147077 0.476129388 0.022442529
0.5 38 0.58512274 0.119371722 0.041315692
0.6 101 0.679165869 0.245691678 0.412331579
0.7 101 0.470476815 0.453765271 0.052569231
0.8 150 0.479425233 0.241871074 0.171575701
0.9 124 0.90089792 0.243349931 0.513187438

Best found Harmony Search parameter configurations as the ‘boundary con-
straints’ characteristic of the fitness landscape changes.

Boundary
Constraints

Memory Size Consideration
Rate

Adjustment
Rate

Range

10 128 0.957354308 0.659578273 0.050942962
20 29 0.783704707 0.923156195 0.051675768
30 38 0.58512274 0.119371722 0.041315692
40 16 0.694140202 0.377870876 0.530903565
50 21 0.489778087 0.112641114 0.242556224
60 91 0.468706715 0.531816432 0.658843222
70 77 0.505062739 0.251941775 0.91844589
80 160 0.614716811 0.369631483 1.387309958
90 54 0.358521337 0.8326134 0.267781121
100 21 0.499594146 0.897245597 0.939176505

Best found Harmony Search parameter configurations as the ‘smoothness coeffi-
cient’ characteristic of the fitness landscape changes.

Smoothness
Coefficient

Memory Size Consideration
Rate

Adjustment
Rate

Range

10 26 0.631935846 0.428215124 0.104445226
20 49 0.564021172 0.408215819 0.513555773
30 41 0.666408546 0.657556726 0.091365312
40 215 0.739566626 0.490167435 0.344831117
50 218 0.817422046 0.665090485 0.202434332
60 19 0.408050675 0.90265884 0.151420418
70 119 0.472864497 0.63521141 0.16787071
80 79 0.577783975 0.378317385 0.388423256
90 25 0.377836064 0.660113722 0.859643887
100 24 0.3403247 0.110464253 0.30650878
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Best found Particle Swarm Optimisation parameter configurations as the ‘num-
ber of local optima’ characteristic of the fitness landscape changes.

Curves Population
Size

Maximum
Velocity

Personal
Best Weight

Global Best
Weight

0 35 0.118316261 3.605395251 0.71177902
1 35 2.808731759 3.66606597 0.154792824
2 33 2.463940386 3.611013362 1.282039577
3 36 29.06492595 2.08535032 0.552357329
4 34 3.02885491 3.978257479 0.799743307
5 34 3.02885491 3.978257479 0.799743307
6 35 2.808731759 3.66606597 0.154792824
7 36 29.06492595 2.08535032 0.552357329
8 34 3.02885491 3.978257479 0.799743307
9 34 3.02885491 3.978257479 0.799743307

Best found Particle Swarm Optimisation parameter configurations as the ‘dimen-
sions’ characteristic of the fitness landscape changes.

Dimensions Population
Size

Maximum
Velocity

Personal
Best Weight

Global Best
Weight

1 35 0.118316261 3.605395251 0.71177902
2 29 20.1549109 1.774936052 3.370919399
3 35 2.808731759 3.66606597 0.154792824
4 35 2.808731759 3.66606597 0.154792824
5 35 2.808731759 3.66606597 0.154792824
6 35 2.808731759 3.66606597 0.154792824
7 35 2.808731759 3.66606597 0.154792824
8 35 2.808731759 3.66606597 0.154792824
9 35 2.808731759 3.66606597 0.154792824
10 35 2.808731759 3.66606597 0.154792824

Best found Particle Swarm Optimisation parameter configurations as the ‘ratio
of local optima to global optimum’ characteristic of the fitness landscape changes.

Ratio Population
Size

Maximum
Velocity

Personal
Best Weight

Global Best
Weight

0.1 33 2.463940386 3.611013362 1.282039577
0.2 33 2.463940386 3.611013362 1.282039577
0.3 37 29.45821309 2.115935328 2.386092361
0.4 34 3.02885491 3.978257479 0.799743307
0.5 34 3.02885491 3.978257479 0.799743307
0.6 34 3.02885491 3.978257479 0.799743307
0.7 34 3.02885491 3.978257479 0.799743307
0.8 34 3.02885491 3.978257479 0.799743307
0.9 34 3.02885491 3.978257479 0.799743307

Best found Particle Swarm Optimisation parameter configurations as the ‘bound-
ary constraints’ characteristic of the fitness landscape changes.

Boundary
Constraints

Population
Size

Maximum
Velocity

Personal
Best Weight

Global Best
Weight

10 36 0.391012818 2.321464975 2.720356571
20 29 20.1549109 1.774936052 3.370919399
30 33 2.463940386 3.611013362 1.282039577
40 25 39.15311803 2.002129093 2.906120979
50 34 1.382664143 3.476081122 0.234521474
60 33 3.254507546 3.115778704 0.126284832
70 33 3.254507546 3.115778704 0.126284832
80 33 3.254507546 3.115778704 0.126284832
90 33 3.254507546 3.115778704 0.126284832
100 33 3.254507546 3.115778704 0.126284832
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Best found Particle Swarm Optimisation parameter configurations as the
‘smoothness coefficient’ characteristic of the fitness landscape changes.

Smoothness
Coefficient

Population
Size

Maximum
Velocity

Personal
Best Weight

Global Best
Weight

10 35 1.531565201 3.919579713 0.400994985
20 35 1.531565201 3.919579713 0.400994985
30 34 1.382664143 3.476081122 0.234521474
40 34 1.382664143 3.476081122 0.234521474
50 35 1.531565201 3.919579713 0.400994985
60 34 1.382664143 3.476081122 0.234521474
70 35 1.531565201 3.919579713 0.400994985
80 33 3.254507546 3.115778704 0.126284832
90 34 1.382664143 3.476081122 0.234521474
100 33 3.254507546 3.115778704 0.126284832

Best found Stochastic Hill Climbing parameter configurations as the ‘number of
local optima’ characteristic of the fitness landscape changes.

Curves Neighbourhood Size
0 15.75686374
1 13.57374624
2 16.19450084
3 19.00952014
4 21.18612078
5 16.05003502
6 16.05003502
7 16.05003502
8 15.82807067
9 15.8692342

Best found Stochastic Hill Climbing parameter configurations as the ‘dimensions’
characteristic of the fitness landscape changes.

Dimensions Neighbourhood Size
1 10.20867642
2 16.19450084
3 14.64677071
4 14.1933461
5 7.07795945
6 6.491854803
7 6.904605006
8 5.895783364
9 5.672806904
10 4.552774007

Best found Stochastic Hill Climbing parameter configurations as the ‘ratio of
local optima to global optimum’ characteristic of the fitness landscape changes.

Ratio Neighbourhood Size
0.1 14.86405173
0.2 15.23523792
0.3 15.57096951
0.4 15.68013727
0.5 16.19450084
0.6 16.4536341
0.7 16.37892354
0.8 16.9389166
0.9 17.37204712
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Best found Stochastic Hill Climbing parameter configurations as the ‘boundary
constraints’ characteristic of the fitness landscape changes.

Boundary
Constraints

Neighbourhood Size

10 4.773961648
20 10.31928631
30 16.19450084
40 22.34021944
50 28.32556178
60 33.58694741
70 40.62169524
80 45.57602055
90 52.98651083
100 59.17991985

Best found Stochastic Hill Climbing parameter configurations as the ‘smoothness
coefficient’ characteristic of the fitness landscape changes.

Smoothness
Coefficient

Neighbourhood Size

10 15.72213281
20 16.75488111
30 17.40161114
40 17.06126638
50 17.471051
60 17.70691888
70 16.71207413
80 17.8007314
90 17.6963382
100 17.95917259

154



Appendix C

Untuned and Tuned Performance
Data

This appendix includes the complete performance data, in terms of aver-
age error and standard deviation, of all six nature-inspired algorithms, as
characteristics varied across the given ranges.

155



T
h
e

average
error

of
th

e
selected

algorith
m

s
as

th
e

n
u
m

b
er

of
lo

cal
op

tim
a

in
th

e
fi
tn

ess
lan

d
scap

e
ch

an
ges,

b
oth

p
re-

an
d

p
ost-

tu
n
in

g.

B
A

B
F

O
A

E
S

G
A

H
S

P
S

O
S

H
C

#
O

p
tim

a
U

n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

1
9
.2

2
E

-04
6.64

E
-0

6
1
.4

0
E

-01
5.84

E
-0

3
1
.0

6
E

-0
2

7
.1

5
E

-0
3

7
.7

6
E

-0
3

4
.2

9
E

-0
3

3
.03E

-05
5.71E

-09
7.03E

-04
1.90E

-03
1.71E

-01
2.49E

-02
2

1
.4

0
E

-03
8.43

E
-0

6
1
.3

2
E

-01
2.67

E
-0

3
6
.7

0
E

-0
2

6
.4

3
E

-0
2

8
.3

7
E

-0
2

1
.8

6
E

-0
2

8
.96E

-03
7.34E

-05
2.58E

-02
2.73E

-03
2.40E

-01
7.72E

-02
3

1
.2

3
E

-03
7.87

E
-0

6
1
.2

1
E

-01
2.07

E
-0

3
8
.5

4
E

-0
2

8
.2

8
E

-0
2

8
.4

3
E

-0
2

1
.6

7
E

-0
2

8
.60E

-03
3.02E

-05
2.61E

-02
1.90E

-02
2.89E

-01
9.11E

-02
4

1
.4

2
E

-03
8.58

E
-0

6
1
.1

2
E

-01
2.23

E
-0

3
8
.9

3
E

-0
2

8
.2

5
E

-0
2

8
.1

5
E

-0
2

1
.6

7
E

-0
2

1
.16E

-02
2.35E

-05
2.61E

-02
4.44E

-03
2.42E

-01
8.42E

-02
5

1
.2

7
E

-03
8.56

E
-0

6
1
.1

5
E

-01
2.37

E
-0

3
9
.6

8
E

-0
2

9
.2

2
E

-0
2

1
.1

4
E

-0
1

2
.6

5
E

-0
2

1
.22E

-02
1.59E

-05
3.15E

-02
1.39E

-02
3.03E

-01
9.52E

-02
6

1
.6

9
E

-03
9.50

E
-0

6
1
.1

4
E

-01
2.73

E
-0

3
9
.9

5
E

-0
2

9
.1

2
E

-0
2

9
.8

8
E

-0
2

4
.4

7
E

-0
3

1
.02E

-02
7.60E

-09
1.99E

-02
2.12E

-02
2.93E

-01
6.53E

-02
7

1
.4

5
E

-03
9.29

E
-0

6
1
.1

4
E

-01
2.50

E
-0

3
1
.0

0
E

-0
1

9
.0

0
E

-0
2

1
.1

9
E

-0
1

2
.5

8
E

-0
2

1
.86E

-02
7.11E

-05
3.22E

-02
9.41E

-03
2.73E

-01
6.39E

-02
8

1
.5

1
E

-03
9.76

E
-0

6
1
.1

6
E

-01
2.88

E
-0

3
1
.0

5
E

-0
1

9
.3

1
E

-0
2

1
.2

3
E

-0
1

4
.8

4
E

-0
3

1
.75E

-02
2.31E

-07
3.66E

-02
8.99E

-03
3.07E

-01
8.09E

-02
9

1
.3

7
E

-03
9.29

E
-0

6
1
.1

7
E

-01
2.66

E
-0

3
9
.8

5
E

-0
2

9
.0

1
E

-0
2

1
.1

0
E

-0
1

1
.8

3
E

-0
2

1
.36E

-02
3.63E

-07
2.76E

-02
3.14E

-02
2.77E

-01
7.68E

-02
1
0

1
.5

3
E

-03
9.88

E
-0

6
1
.0

2
E

-01
5.55

E
-0

3
9
.8

6
E

-0
2

8
.5

6
E

-0
2

1
.0

5
E

-0
1

1
.8

2
E

-0
2

1
.11E

-02
2.81E

-06
2.34E

-02
2.58E

-02
2.65E

-01
6.41E

-02

T
h
e

stan
d
ard

d
ev

iation
of

th
e

selected
algorith

m
s

as
th

e
n
u
m

b
er

of
lo

cal
op

tim
a

in
th

e
fi
tn

ess
lan

d
scap

e
ch

an
ges,

b
oth

p
re-

an
d

p
ost-

tu
n
in

g.

B
A

B
F

O
A

E
S

G
A

H
S

P
S

O
S

H
C

#
O

p
tim

a
U

n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

1
1
.2

1
E

-03
9.02

E
-0

6
3
.1

2
E

-01
7.07

E
-0

2
7
.6

9
E

-0
2

5
.3

3
E

-0
2

4
.6

0
E

-0
2

5
.5

1
E

-0
3

1
.50E

-04
5.20E

-08
9.67E

-04
4.35E

-02
3.74E

-01
1.34E

-01
2

2
.6

6
E

-03
1.32

E
-0

5
2
.7

8
E

-01
5.89

E
-0

3
2
.0

8
E

-0
1

2
.0

3
E

-0
1

1
.9

4
E

-0
1

6
.9

9
E

-0
2

7
.82E

-02
1.41E

-03
1.37E

-01
4.13E

-02
3.62E

-01
2.19E

-01
3

2
.1

8
E

-03
1.20

E
-0

5
2
.5

7
E

-01
4.40

E
-0

3
2
.3

1
E

-0
1

2
.2

9
E

-0
1

1
.9

1
E

-0
1

6
.5

8
E

-0
2

7
.13E

-02
1.91E

-03
1.29E

-01
1.09E

-01
3.73E

-01
2.36E

-01
4

2
.8

3
E

-03
1.43

E
-0

5
2
.3

4
E

-01
1.03

E
-0

2
2
.2

6
E

-0
1

2
.1

8
E

-0
1

1
.7

4
E

-0
1

6
.4

7
E

-0
2

7
.95E

-02
6.91E

-04
1.17E

-01
4.99E

-02
3.31E

-01
2.04E

-01
5

2
.2

7
E

-03
1.41

E
-0

5
2
.3

2
E

-01
5.02

E
-0

3
2
.3

3
E

-0
1

2
.2

7
E

-0
1

2
.0

4
E

-0
1

8
.1

0
E

-0
2

8
.20E

-02
4.96E

-04
1.31E

-01
9.09E

-02
3.43E

-01
2.21E

-01
6

4
.0

8
E

-03
1.79

E
-0

5
2
.2

9
E

-01
6.43

E
-0

3
2
.3

6
E

-0
1

2
.2

5
E

-0
1

1
.8

6
E

-0
1

6
.8

7
E

-0
3

7
.40E

-02
9.85E

-08
1.03E

-01
1.10E

-01
3.39E

-01
1.86E

-01
7

2
.6

8
E

-03
1.81

E
-0

5
2
.2

8
E

-01
4.56

E
-0

3
2
.3

3
E

-0
1

2
.1

9
E

-0
1

2
.0

1
E

-0
1

7
.6

7
E

-0
2

1
.02E

-01
5.35E

-03
1.31E

-01
7.09E

-02
3.26E

-01
1.79E

-01
8

2
.6

6
E

-03
1.53

E
-0

5
2
.2

4
E

-01
6.43

E
-0

3
2
.3

7
E

-0
1

2
.2

2
E

-0
1

2
.0

6
E

-0
1

6
.9

9
E

-0
3

9
.60E

-02
1.52E

-05
1.40E

-01
6.43E

-02
3.30E

-01
2.01E

-01
9

2
.3

5
E

-03
1.57

E
-0

5
2
.2

4
E

-01
5.25

E
-0

3
2
.2

9
E

-0
1

2
.1

8
E

-0
1

1
.9

1
E

-0
1

6
.3

7
E

-0
2

8
.65E

-02
1.77E

-05
1.21E

-01
1.30E

-01
3.17E

-01
1.89E

-01
1
0

3
.8

4
E

-03
2.44

E
-0

5
2
.0

9
E

-01
4.78

E
-0

2
2
.2

6
E

-0
1

2
.1

1
E

-0
1

1
.8

4
E

-0
1

5
.9

1
E

-0
2

7
.73E

-02
9.29E

-05
1.11E

-01
1.17E

-01
3.12E

-01
1.73E

-01

156



T
h
e

av
er

ag
e

er
ro

r
of

th
e

se
le

ct
ed

al
go

ri
th

m
s

as
th

e
n
u
m

b
er

of
d
im

en
si

on
s

in
th

e
fi
tn

es
s

la
n
d
sc

ap
e

ch
an

ge
s,

b
ot

h
p
re

-
an

d
p

os
t-

tu
n
in

g.

B
A

B
F

O
A

E
S

G
A

H
S

P
S

O
S

H
C

D
im

en
si

on
s

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u
n

ed
U

n
tu

n
ed

T
u
n

ed
U

n
tu

n
ed

T
u

n
ed

1
4.

15
E

-0
7

9.
47

E
-1

1
7.

95
E

-0
4

9.
66

E
-0

4
4.

2
8
E

-0
2

4
.1

8
E

-0
2

1
.0

9
E

-0
4

2
.2

0
E

-0
6

9
.3

7
E

-0
7

3
.4

1
E

-1
1

6
.7

4
E

-0
5

4
.4

3
E

-0
3

1
.7

2
E

-0
1

4
.0

2
E

-0
2

2
1.

23
E

-0
3

7.
87

E
-0

6
1.

21
E

-0
1

2.
09

E
-0

3
8.

5
4
E

-0
2

8
.2

8
E

-0
2

8
.4

3
E

-0
2

1
.6

7
E

-0
2

8
.6

0
E

-0
3

4
.7

0
E

-0
5

2
.6

1
E

-0
2

1
.8

7
E

-0
2

2
.8

9
E

-0
1

9
.1

1
E

-0
2

3
1.

55
E

-0
2

5.
09

E
-0

3
5.

83
E

-0
1

4.
23

E
-0

2
1.

8
9
E

-0
1

1
.9

2
E

-0
1

2
.6

7
E

-0
1

1
.1

4
E

-0
1

9
.1

9
E

-0
2

5
.1

7
E

-0
2

1
.1

0
E

-0
1

1
.7

8
E

-0
2

3
.1

8
E

-0
1

2
.0

8
E

-0
1

4
6.

75
E

-0
2

1.
34

E
-0

2
8.

81
E

-0
1

1.
53

E
-0

1
3.

8
9
E

-0
1

3
.9

5
E

-0
1

4
.0

4
E

-0
1

2
.6

1
E

-0
1

2
.3

1
E

-0
1

1
.0

9
E

-0
1

2
.5

1
E

-0
1

4
.8

9
E

-0
2

4
.3

4
E

-0
1

4
.1

8
E

-0
1

5
1.

41
E

-0
1

5.
21

E
-0

2
9.

72
E

-0
1

3.
28

E
-0

1
5.

5
8
E

-0
1

5
.5

7
E

-0
1

4
.7

6
E

-0
1

5
.0

9
E

-0
1

3
.7

0
E

-0
1

2
.6

7
E

-0
1

4
.2

1
E

-0
1

9
.9

7
E

-0
2

5
.6

7
E

-0
1

6
.3

7
E

-0
1

6
2.

29
E

-0
1

8.
10

E
-0

2
9.

92
E

-0
1

4.
86

E
-0

1
6.

7
4
E

-0
1

6
.8

1
E

-0
1

5
.0

1
E

-0
1

6
.9

3
E

-0
1

4
.1

7
E

-0
1

3
.6

5
E

-0
1

5
.0

8
E

-0
1

1
.4

8
E

-0
1

6
.6

2
E

-0
1

7
.6

5
E

-0
1

7
3.

17
E

-0
1

1.
13

E
-0

1
9.

98
E

-0
1

6.
40

E
-0

1
7.

8
7
E

-0
1

7
.9

0
E

-0
1

5
.7

3
E

-0
1

8
.3

8
E

-0
1

5
.4

7
E

-0
1

4
.8

1
E

-0
1

6
.3

4
E

-0
1

2
.2

2
E

-0
1

7
.5

2
E

-0
1

8
.7

0
E

-0
1

8
3.

78
E

-0
1

1.
26

E
-0

1
9.

99
E

-0
1

7.
47

E
-0

1
8.

4
9
E

-0
1

8
.5

0
E

-0
1

5
.6

7
E

-0
1

9
.1

1
E

-0
1

5
.5

7
E

-0
1

4
.0

5
E

-0
1

6
.6

9
E

-0
1

2
.5

3
E

-0
1

8
.0

2
E

-0
1

9
.1

9
E

-0
1

9
4.

87
E

-0
1

1.
59

E
-0

1
1.

00
E

+
00

8.
57

E
-0

1
9.

1
0
E

-0
1

9
.0

9
E

-0
1

6
.6

7
E

-0
1

9
.6

6
E

-0
1

6
.9

8
E

-0
1

5
.1

0
E

-0
1

7
.7

3
E

-0
1

3
.6

5
E

-0
1

8
.7

0
E

-0
1

9
.6

2
E

-0
1

10
5.

25
E

-0
1

1.
81

E
-0

1
1.

00
E

+
00

9.
14

E
-0

1
9.

4
1
E

-0
1

9
.4

2
E

-0
1

6
.6

1
E

-0
1

9
.8

5
E

-0
1

7
.1

6
E

-0
1

4
.3

8
E

-0
1

8
.0

9
E

-0
1

3
.9

5
E

-0
1

9
.0

2
E

-0
1

9
.7

9
E

-0
1

T
h
e

st
an

d
ar

d
d
ev

ia
ti

on
of

th
e

se
le

ct
ed

al
go

ri
th

m
s

as
th

e
n
u
m

b
er

of
d
im

en
si

on
s

in
th

e
fi
tn

es
s

la
n
d
sc

ap
e

ch
an

ge
s,

b
ot

h
p
re

-
an

d
p

os
t-

tu
n
in

g.

B
A

B
F

O
A

E
S

G
A

H
S

P
S

O
S

H
C

D
im

en
si

on
s

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u
n

ed
U

n
tu

n
ed

T
u
n

ed
U

n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

1
1.

62
E

-0
6

4.
17

E
-1

0
2.

44
E

-0
2

2.
57

E
-0

2
1.

74
E

-0
1

1
.7

1
E

-0
1

2
.0

6
E

-0
3

1
.1

9
E

-0
5

3
.0

5
E

-0
6

1
.2

2
E

-1
0

6
.7

2
E

-0
3

5
.5

3
E

-0
2

3
.0

8
E

-0
1

1
.6

3
E

-0
1

2
2.

18
E

-0
3

1.
20

E
-0

5
2.

57
E

-0
1

4.
51

E
-0

3
2.

31
E

-0
1

2
.2

9
E

-0
1

1
.9

1
E

-0
1

6
.5

8
E

-0
2

7
.1

3
E

-0
2

1
.7

5
E

-0
3

1
.2

9
E

-0
1

1
.0

9
E

-0
1

3
.7

3
E

-0
1

2
.3

6
E

-0
1

3
1.

90
E

-0
2

5.
78

E
-0

2
3.

90
E

-0
1

6.
65

E
-0

2
2.

63
E

-0
1

2
.6

6
E

-0
1

3
.0

6
E

-0
1

1
.9

8
E

-0
1

2
.2

4
E

-0
1

1
.4

6
E

-0
1

2
.2

7
E

-0
1

9
.4

9
E

-0
2

3
.4

9
E

-0
1

2
.3

7
E

-0
1

4
8.

22
E

-0
2

6.
12

E
-0

2
2.

44
E

-0
1

1.
67

E
-0

1
3.

01
E

-0
1

3
.0

4
E

-0
1

3
.5

4
E

-0
1

1
.7

4
E

-0
1

3
.2

1
E

-0
1

2
.4

0
E

-0
1

2
.9

9
E

-0
1

1
.3

6
E

-0
1

3
.3

7
E

-0
1

2
.5

2
E

-0
1

5
1.

51
E

-0
1

1.
44

E
-0

1
1.

07
E

-0
1

2.
34

E
-0

1
2.

82
E

-0
1

2
.7

8
E

-0
1

3
.5

2
E

-0
1

2
.0

4
E

-0
1

3
.5

7
E

-0
1

3
.3

7
E

-0
1

3
.1

2
E

-0
1

1
.8

1
E

-0
1

2
.9

1
E

-0
1

2
.2

9
E

-0
1

6
1.

95
E

-0
1

1.
76

E
-0

1
4.

60
E

-0
2

2.
12

E
-0

1
2.

48
E

-0
1

2
.4

5
E

-0
1

3
.4

2
E

-0
1

1
.7

8
E

-0
1

3
.4

2
E

-0
1

3
.5

5
E

-0
1

2
.9

1
E

-0
1

2
.0

4
E

-0
1

2
.5

3
E

-0
1

1
.8

7
E

-0
1

7
2.

26
E

-0
1

2.
06

E
-0

1
2.

01
E

-0
2

2.
16

E
-0

1
2.

06
E

-0
1

2
.0

2
E

-0
1

3
.4

0
E

-0
1

1
.3

8
E

-0
1

3
.3

5
E

-0
1

3
.8

6
E

-0
1

2
.6

2
E

-0
1

2
.4

7
E

-0
1

2
.1

2
E

-0
1

1
.3

6
E

-0
1

8
2.

23
E

-0
1

2.
08

E
-0

1
9.

28
E

-0
3

1.
75

E
-0

1
1.

64
E

-0
1

1
.6

5
E

-0
1

3
.2

8
E

-0
1

9
.2

1
E

-0
2

2
.8

4
E

-0
1

3
.7

6
E

-0
1

2
.2

7
E

-0
1

2
.4

9
E

-0
1

1
.7

5
E

-0
1

1
.0

4
E

-0
1

9
2.

34
E

-0
1

2.
21

E
-0

1
6.

34
E

-0
3

1.
24

E
-0

1
1.

17
E

-0
1

1
.1

9
E

-0
1

2
.9

8
E

-0
1

4
.8

3
E

-0
2

2
.3

3
E

-0
1

3
.7

4
E

-0
1

1
.8

0
E

-0
1

2
.7

5
E

-0
1

1
.3

0
E

-0
1

5
.9

1
E

-0
2

10
2.

05
E

-0
1

2.
21

E
-0

1
1.

69
E

-0
3

9.
49

E
-0

2
8.

69
E

-0
2

8
.5

0
E

-0
2

2
.9

1
E

-0
1

2
.8

4
E

-0
2

2
.0

0
E

-0
1

3
.6

6
E

-0
1

1
.4

7
E

-0
1

2
.6

2
E

-0
1

1
.0

3
E

-0
1

3
.6

2
E

-0
2

157



T
h
e

average
error

of
th

e
selected

algorith
m

s
as

th
e

ratio
of

lo
cal

op
tim

a
to

th
e

glob
al

op
tim

u
m

in
th

e
fi
tn

ess
lan

d
scap

e
ch

an
ges,

b
oth

p
re-

an
d

p
ost-

tu
n
in

g.

B
A

B
F

O
A

E
S

G
A

H
S

P
S

O
S

H
C

R
a
tio

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

0
.1

1
.0

2E
-03

5
.0

4
E

-07
1
.4

3
E

-01
6.19

E
-0

3
9
.5

4
E

-0
2

9
.3

1
E

-0
2

6
.9

2
E

-0
2

4
.5

8
E

-0
3

2
.9

8
E

-03
1.35E

-07
1.91E

-02
2.60E

-02
3.32E

-01
9.38E

-02
0
.3

1
.1

1E
-03

1
.0

3
E

-06
1
.3

6
E

-01
2.25

E
-0

3
9
.3

4
E

-0
2

9
.0

4
E

-0
2

8
.0

5
E

-0
2

3
.8

8
E

-0
3

5
.6

5
E

-03
5.10E

-06
2.42E

-02
3.29E

-03
3.19E

-01
1.00E

-01
0
.5

1
.2

3E
-03

7
.8

7
E

-06
1
.2

1
E

-01
2.12

E
-0

3
8
.5

4
E

-0
2

8
.2

8
E

-0
2

8
.4

3
E

-0
2

1
.6

6
E

-0
2

8
.6

0
E

-03
6.13E

-05
2.75E

-02
1.92E

-02
2.89E

-01
9.11E

-02
0
.7

1
.4

0E
-03

4
.2

5
E

-04
1
.0

8
E

-01
2.22

E
-0

3
7
.7

2
E

-0
2

7
.9

1
E

-0
2

8
.3

6
E

-0
2

3
.9

9
E

-0
3

9
.6

2
E

-03
9.13E

-05
2.84E

-02
6.96E

-03
2.59E

-01
8.29E

-02
0
.9

1
.5

9E
-03

1
.1

8
E

-06
9
.0

8
E

-02
2.15

E
-0

3
6
.6

4
E

-0
2

6
.2

5
E

-0
2

7
.5

5
E

-0
2

3
.9

3
E

-0
3

8
.8

8
E

-03
8.46E

-03
2.77E

-02
6.86E

-03
2.23E

-01
7.20E

-02

T
h
e

stan
d
ard

d
ev

iation
of

th
e

selected
algorith

m
s

as
th

e
ratio

of
lo

cal
op

tim
a

to
th

e
glob

al
op

tim
u
m

in
th

e
fi
tn

ess
lan

d
scap

e
ch

an
ges,

b
oth

p
re-

an
d

p
ost-

tu
n
in

g.

B
A

B
F

O
A

E
S

G
A

H
S

P
S

O
S

H
C

R
a
tio

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

0
.1

1
.4

3E
-03

2
.2

3
E

-06
3
.1

0
E

-01
6.52

E
-0

2
2
.7

7
E

-0
1

2
.7

4
E

-0
1

2
.0

0
E

-0
1

6
.5

5
E

-0
3

5
.1

2
E

-02
6.99E

-07
1.30E

-01
1.53E

-01
4.52E

-01
2.73E

-01
0
.3

1
.7

8E
-03

1
.4

8
E

-06
2
.8

9
E

-01
4.77

E
-0

3
2
.5

8
E

-0
1

2
.5

4
E

-0
1

2
.0

2
E

-0
1

5
.5

2
E

-0
3

6
.4

2
E

-02
2.25E

-04
1.36E

-01
4.97E

-02
4.13E

-01
2.64E

-01
0
.5

2
.1

8E
-03

1
.2

0
E

-05
2
.5

7
E

-01
4.51

E
-0

3
2
.3

1
E

-0
1

2
.2

9
E

-0
1

1
.9

1
E

-0
1

6
.5

6
E

-0
2

7
.1

3
E

-02
3.27E

-03
1.33E

-01
1.11E

-01
3.73E

-01
2.36E

-01
0
.7

2
.9

4E
-03

1
.3

4
E

-02
2
.3

0
E

-01
4.33

E
-0

3
2
.0

7
E

-0
1

2
.1

0
E

-0
1

1
.7

7
E

-0
1

5
.6

9
E

-0
3

6
.5

0
E

-02
1.77E

-03
1.23E

-01
6.49E

-02
3.39E

-01
2.13E

-01
0
.9

3
.3

7E
-03

8
.8

2
E

-06
2
.0

5
E

-01
7.56

E
-0

3
1
.8

4
E

-0
1

1
.8

0
E

-0
1

1
.5

4
E

-0
1

5
.6

9
E

-0
3

5
.1

0
E

-02
5.06E

-02
1.09E

-01
5.92E

-02
3.11E

-01
1.89E

-01

158



T
h
e

av
er

ag
e

er
ro

r
of

th
e

se
le

ct
ed

al
go

ri
th

m
s

as
th

e
b

ou
n
d
ar

y
co

n
st

ra
in

t
ra

n
ge

in
th

e
fi
tn

es
s

la
n
d
sc

ap
e

ch
an

ge
s,

b
ot

h
p
re

-
an

d
p

os
t-

tu
n
in

g.

B
A

B
F

O
A

E
S

G
A

H
S

P
S

O
S

H
C

R
an

ge
U

n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u
n

ed
U

n
tu

n
ed

T
u
n

ed
10

1.
08

E
-0

3
8.

73
E

-0
7

6.
04

E
-0

3
1.

03
E

-0
3

6.
37

E
-0

2
5
.5

1
E

-0
2

1
.9

9
E

-0
2

1
.4

3
E

-0
3

5
.1

8
E

-0
5

1
.0

5
E

-0
4

2
.8

1
E

-0
2

3
.9

5
E

-0
2

5
.2

9
E

-0
3

1
.6

5
E

-0
2

20
1.

35
E

-0
3

7.
45

E
-0

5
4.

41
E

-0
2

1.
77

E
-0

3
7.

72
E

-0
2

7
.1

7
E

-0
2

5
.5

8
E

-0
2

3
.0

0
E

-0
3

6
.3

5
E

-0
4

2
.7

6
E

-0
4

2
.3

5
E

-0
3

1
.4

6
E

-0
2

1
.2

9
E

-0
1

9
.6

3
E

-0
3

30
1.

23
E

-0
3

7.
87

E
-0

6
1.

21
E

-0
1

2.
13

E
-0

3
8.

54
E

-0
2

8
.2

8
E

-0
2

8
.4

3
E

-0
2

1
.6

7
E

-0
2

7
.4

4
E

-0
3

7
.3

2
E

-0
6

2
.6

1
E

-0
2

1
.8

9
E

-0
2

2
.8

9
E

-0
1

9
.1

1
E

-0
2

40
1.

17
E

-0
3

4.
67

E
-0

4
2.

14
E

-0
1

6.
55

E
-0

3
9.

26
E

-0
2

9
.4

2
E

-0
2

1
.1

0
E

-0
1

2
.5

2
E

-0
2

1
.8

3
E

-0
2

3
.0

7
E

-0
4

4
.6

6
E

-0
2

5
.0

6
E

-0
2

3
.9

8
E

-0
1

1
.9

8
E

-0
1

50
1.

05
E

-0
3

7.
55

E
-0

4
3.

02
E

-0
1

1.
46

E
-0

2
9.

86
E

-0
2

9
.3

2
E

-0
2

1
.3

0
E

-0
1

3
.2

9
E

-0
2

3
.5

6
E

-0
2

1
.6

6
E

-0
5

6
.7

7
E

-0
2

2
.4

9
E

-0
2

4
.7

5
E

-0
1

2
.9

9
E

-0
1

60
1.

04
E

-0
3

1.
57

E
-0

6
3.

82
E

-0
1

7.
13

E
-0

3
1.

03
E

-0
1

1
.0

0
E

-0
1

1
.4

2
E

-0
1

4
.0

0
E

-0
2

5
.3

2
E

-0
2

4
.5

1
E

-0
4

8
.4

8
E

-0
2

8
.4

7
E

-0
3

5
.4

8
E

-0
1

3
.6

8
E

-0
1

70
1.

03
E

-0
3

2.
07

E
-0

3
4.

47
E

-0
1

5.
27

E
-0

2
1.

06
E

-0
1

1
.0

3
E

-0
1

1
.5

6
E

-0
1

1
.0

7
E

-0
2

7
.0

0
E

-0
2

7
.3

4
E

-0
4

9
.7

8
E

-0
2

1
.0

2
E

-0
2

5
.9

9
E

-0
1

4
.4

7
E

-0
1

80
1.

04
E

-0
3

2.
48

E
-0

3
5.

01
E

-0
1

2.
22

E
-0

2
1.

10
E

-0
1

1
.0

7
E

-0
1

1
.7

1
E

-0
1

5
.0

2
E

-0
2

8
.5

9
E

-0
2

3
.9

7
E

-0
3

1
.1

8
E

-0
1

1
.3

5
E

-0
2

6
.3

9
E

-0
1

4
.9

3
E

-0
1

90
9.

63
E

-0
4

3.
01

E
-0

3
5.

53
E

-0
1

1.
05

E
-0

1
1.

13
E

-0
1

1
.0

8
E

-0
1

1
.8

4
E

-0
1

1
.4

3
E

-0
2

9
.6

8
E

-0
2

5
.6

7
E

-0
4

1
.3

8
E

-0
1

1
.7

0
E

-0
2

6
.7

5
E

-0
1

5
.4

3
E

-0
1

10
0

9.
37

E
-0

4
3.

25
E

-0
3

5.
96

E
-0

1
7.

31
E

-0
3

1.
17

E
-0

1
1
.1

3
E

-0
1

1
.9

3
E

-0
1

1
.5

6
E

-0
2

1
.1

1
E

-0
1

1
.2

4
E

-0
3

1
.5

0
E

-0
1

2
.0

9
E

-0
2

7
.0

4
E

-0
1

5
.8

7
E

-0
1

T
h
e

st
an

d
ar

d
d
ev

ia
ti

on
of

th
e

se
le

ct
ed

al
go

ri
th

m
s

as
th

e
b

ou
n
d
ar

y
co

n
st

ra
in

t
ra

n
ge

in
th

e
fi
tn

es
s

la
n
d
sc

ap
e

ch
an

ge
s,

b
ot

h
p
re

-
an

d
p

os
t-

tu
n
in

g.

B
A

B
F

O
A

E
S

G
A

H
S

P
S

O
S

H
C

R
an

ge
U

n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u
n

ed
U

n
tu

n
ed

T
u
n

ed
10

1.
31

E
-0

3
1.

14
E

-0
6

6.
11

E
-0

2
1.

05
E

-0
2

2.
06

E
-0

1
1
.9

1
E

-0
1

8
.3

8
E

-0
2

2
.0

5
E

-0
3

2
.3

1
E

-0
4

8
.0

2
E

-0
3

5
.4

0
E

-0
2

1
.5

7
E

-0
1

6
.1

6
E

-0
3

1
.9

7
E

-0
2

20
2.

14
E

-0
3

7.
38

E
-0

3
1.

63
E

-0
1

2.
06

E
-0

2
2.

23
E

-0
1

2
.1

8
E

-0
1

1
.5

4
E

-0
1

4
.2

3
E

-0
3

1
.9

2
E

-0
2

1
.1

8
E

-0
2

2
.8

4
E

-0
2

9
.5

1
E

-0
2

2
.7

9
E

-0
1

1
.1

9
E

-0
2

30
2.

18
E

-0
3

1.
20

E
-0

5
2.

57
E

-0
1

5.
00

E
-0

3
2.

31
E

-0
1

2
.2

9
E

-0
1

1
.9

1
E

-0
1

6
.5

8
E

-0
2

6
.6

4
E

-0
2

2
.0

4
E

-0
4

1
.2

9
E

-0
1

1
.0

9
E

-0
1

3
.7

3
E

-0
1

2
.3

6
E

-0
1

40
2.

86
E

-0
3

1.
66

E
-0

2
3.

26
E

-0
1

4.
81

E
-0

2
2.

38
E

-0
1

2
.4

0
E

-0
1

2
.2

0
E

-0
1

8
.9

1
E

-0
2

1
.1

0
E

-0
1

1
.2

4
E

-0
2

1
.7

2
E

-0
1

1
.7

7
E

-0
1

4
.0

3
E

-0
1

3
.3

0
E

-0
1

50
2.

80
E

-0
3

2.
11

E
-0

2
3.

64
E

-0
1

7.
96

E
-0

2
2.

42
E

-0
1

2
.3

6
E

-0
1

2
.3

9
E

-0
1

1
.0

4
E

-0
1

1
.5

5
E

-0
1

2
.2

9
E

-0
4

2
.0

6
E

-0
1

1
.2

9
E

-0
1

4
.1

5
E

-0
1

3
.8

0
E

-0
1

60
3.

58
E

-0
3

2.
70

E
-0

5
3.

86
E

-0
1

4.
68

E
-0

2
2.

45
E

-0
1

2
.4

1
E

-0
1

2
.4

8
E

-0
1

1
.1

8
E

-0
1

1
.8

6
E

-0
1

1
.1

7
E

-0
2

2
.2

9
E

-0
1

7
.5

1
E

-0
2

4
.1

2
E

-0
1

4
.0

1
E

-0
1

70
4.

01
E

-0
3

3.
58

E
-0

2
3.

93
E

-0
1

1.
69

E
-0

1
2.

46
E

-0
1

2
.4

1
E

-0
1

2
.5

9
E

-0
1

1
.6

3
E

-0
2

2
.1

0
E

-0
1

1
.4

5
E

-0
2

2
.4

4
E

-0
1

8
.2

2
E

-0
2

4
.0

7
E

-0
1

4
.1

4
E

-0
1

80
4.

91
E

-0
3

3.
89

E
-0

2
3.

95
E

-0
1

1.
07

E
-0

1
2.

48
E

-0
1

2
.4

0
E

-0
1

2
.7

1
E

-0
1

1
.3

6
E

-0
1

2
.2

9
E

-0
1

3
.4

2
E

-0
2

2
.6

4
E

-0
1

9
.4

4
E

-0
2

4
.0

2
E

-0
1

4
.2

0
E

-0
1

90
4.

36
E

-0
3

4.
32

E
-0

2
3.

91
E

-0
1

2.
39

E
-0

1
2.

49
E

-0
1

2
.4

2
E

-0
1

2
.7

9
E

-0
1

2
.2

4
E

-0
2

2
.3

9
E

-0
1

1
.0

7
E

-0
2

2
.8

2
E

-0
1

1
.0

7
E

-0
1

3
.9

3
E

-0
1

4
.1

9
E

-0
1

10
0

4.
36

E
-0

3
4.

48
E

-0
2

3.
84

E
-0

1
3.

47
E

-0
2

2.
50

E
-0

1
2
.4

4
E

-0
1

2
.8

5
E

-0
1

2
.3

6
E

-0
2

2
.5

4
E

-0
1

2
.4

8
E

-0
2

2
.9

2
E

-0
1

1
.2

0
E

-0
1

3
.8

5
E

-0
1

4
.1

2
E

-0
1

159



T
h
e

average
error

of
th

e
selected

algorith
m

s
as

th
e

sm
o
oth

n
ess

co
effi

cien
t

of
th

e
fi
tn

ess
lan

d
scap

e
ch

an
ges,

b
oth

p
re-

an
d

p
ost-

tu
n
in

g.

B
A

B
F

O
A

E
S

G
A

H
S

P
S

O
S

H
C

C
o
effi

cien
t

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

1
0

8.32E
-0

4
1
.7

7E
-04

9.03
E

-0
2

2.55E
-0

3
8
.5

2
E

-0
2

7
.7

3
E

-0
2

6
.3

6
E

-0
2

1
.1

4
E

-0
2

6
.78E

-03
6.10E

-08
2.28E

-02
6.02E

-03
2.70E

-01
8.47E

-02
2
0

1.66E
-0

3
3
.5

4E
-04

1.54
E

-0
1

8.11E
-0

3
9
.5

2
E

-0
2

8
.8

2
E

-0
2

1
.0

3
E

-0
1

2
.0

9
E

-0
2

9
.65E

-03
1.80E

-06
2.82E

-02
9.33E

-03
3.07E

-01
9.63E

-02
3
0

2.39E
-0

3
1
.8

0E
-06

1.98
E

-0
1

5.38E
-0

3
1
.0

4
E

-0
1

9
.3

1
E

-0
2

1
.2

5
E

-0
1

2
.6

2
E

-0
2

1
.28E

-02
3.01E

-04
3.66E

-02
8.38E

-03
3.28E

-01
1.04E

-01
4
0

3.13E
-0

3
6
.5

7E
-04

2.39
E

-0
1

6.22E
-0

3
1
.0

7
E

-0
1

1
.0

0
E

-0
1

1
.4

5
E

-0
1

3
.2

9
E

-0
2

1
.58E

-02
1.38E

-03
4.05E

-02
1.07E

-02
3.42E

-01
1.08E

-01
5
0

3.79E
-0

3
7
.9

3E
-04

2.69
E

-0
1

7.72E
-0

3
1
.1

1
E

-0
1

1
.0

2
E

-0
1

1
.5

6
E

-0
1

1
.0

7
E

-0
2

1
.74E

-02
4.13E

-03
4.31E

-02
1.71E

-02
3.53E

-01
1.13E

-01
6
0

4.45E
-0

3
8
.6

9E
-04

2.92
E

-0
1

1.15E
-0

2
1
.1

4
E

-0
1

1
.1

0
E

-0
1

1
.7

3
E

-0
1

1
.2

0
E

-0
2

1
.94E

-02
2.19E

-06
4.87E

-02
1.49E

-02
3.64E

-01
1.16E

-01
7
0

5.07E
-0

3
1
.1

3E
-03

3.12
E

-0
1

1.04E
-0

2
1
.1

7
E

-0
1

1
.1

1
E

-0
1

1
.8

1
E

-0
1

4
.4

3
E

-0
2

2
.16E

-02
1.55E

-04
4.99E

-02
2.10E

-02
3.71E

-01
1.19E

-01
8
0

5.55E
-0

3
8
.8

2E
-04

3.31
E

-0
1

1.52E
-0

2
1
.1

9
E

-0
1

1
.1

1
E

-0
1

1
.9

1
E

-0
1

1
.5

1
E

-0
2

2
.41E

-02
1.89E

-04
5.20E

-02
1.41E

-02
3.79E

-01
1.23E

-01
9
0

6.14E
-0

3
1
.0

6E
-03

3.48
E

-0
1

1.31E
-0

2
1
.2

0
E

-0
1

1
.1

2
E

-0
1

1
.9

6
E

-0
1

1
.6

2
E

-0
2

2
.63E

-02
1.50E

-05
5.39E

-02
2.31E

-02
3.87E

-01
1.25E

-01
1
00

6.64E
-0

3
4
.1

8E
-06

3.62
E

-0
1

1.88E
-0

2
1
.2

3
E

-0
1

1
.1

4
E

-0
1

2
.0

6
E

-0
1

1
.7

1
E

-0
2

2
.55E

-02
1.08E

-05
5.90E

-02
1.68E

-02
3.92E

-01
1.28E

-01

T
h
e

stan
d
ard

d
ev

iation
of

th
e

selected
algorith

m
s

as
th

e
sm

o
oth

n
ess

co
effi

cien
t

of
th

e
fi
tn

ess
lan

d
scap

e
ch

an
ges,

b
oth

p
re-

an
d

p
ost-

tu
n
in

g.

B
A

B
F

O
A

E
S

G
A

H
S

P
S

O
S

H
C

C
o
effi

cien
t

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

U
n
tu

n
ed

T
u

n
ed

1
0

1.50E
-0

3
1
.0

3E
-02

2.19
E

-0
1

3.43E
-0

2
2
.3

3
E

-0
1

2
.2

4
E

-0
1

1
.6

5
E

-0
1

5
.2

3
E

-0
2

6
.32E

-02
4.73E

-07
1.21E

-01
6.47E

-02
3.65E

-01
2.30E

-01
2
0

3.10E
-0

3
1
.4

6E
-02

2.90
E

-0
1

6.80E
-0

2
2
.4

3
E

-0
1

2
.3

3
E

-0
1

2
.1

2
E

-0
1

7
.4

9
E

-0
2

7
.58E

-02
1.33E

-05
1.33E

-01
8.04E

-02
3.82E

-01
2.41E

-01
3
0

4.10E
-0

3
2
.3

6E
-06

3.26
E

-0
1

1.04E
-0

2
2
.5

0
E

-0
1

2
.3

5
E

-0
1

2
.3

2
E

-0
1

8
.6

3
E

-0
2

8
.77E

-02
1.13E

-02
1.51E

-01
7.58E

-02
3.91E

-01
2.46E

-01
4
0

5.43E
-0

3
1
.9

9E
-02

3.53
E

-0
1

2.96E
-0

2
2
.5

0
E

-0
1

2
.4

1
E

-0
1

2
.4

9
E

-0
1

1
.0

2
E

-0
1

9
.69E

-02
1.94E

-02
1.58E

-01
8.51E

-02
3.97E

-01
2.47E

-01
5
0

6.04E
-0

3
2
.2

1E
-02

3.69
E

-0
1

3.42E
-0

2
2
.5

2
E

-0
1

2
.3

8
E

-0
1

2
.6

0
E

-0
1

1
.3

3
E

-0
2

1
.02E

-01
4.00E

-02
1.63E

-01
1.07E

-01
4.02E

-01
2.49E

-01
6
0

7.05E
-0

3
2
.3

4E
-02

3.80
E

-0
1

1.77E
-0

2
2
.5

3
E

-0
1

2
.4

7
E

-0
1

2
.7

1
E

-0
1

1
.4

3
E

-0
2

1
.08E

-01
3.29E

-06
1.73E

-01
9.98E

-02
4.05E

-01
2.50E

-01
7
0

7.93E
-0

3
2
.6

8E
-02

3.89
E

-0
1

3.88E
-0

2
2
.5

3
E

-0
1

2
.4

5
E

-0
1

2
.7

7
E

-0
1

1
.1

9
E

-0
1

1
.13E

-01
6.53E

-03
1.74E

-01
1.18E

-01
4.07E

-01
2.51E

-01
8
0

7.94E
-0

3
2
.3

7E
-02

3.98
E

-0
1

2.49E
-0

2
2
.5

3
E

-0
1

2
.4

0
E

-0
1

2
.8

2
E

-0
1

1
.7

9
E

-0
2

1
.20E

-01
7.99E

-03
1.77E

-01
9.27E

-02
4.09E

-01
2.52E

-01
9
0

8.76E
-0

3
2
.5

8E
-02

4.02
E

-0
1

4.30E
-0

2
2
.5

4
E

-0
1

2
.4

0
E

-0
1

2
.8

6
E

-0
1

1
.8

3
E

-0
2

1
.26E

-01
3.38E

-05
1.80E

-01
1.24E

-01
4.11E

-01
2.52E

-01
1
00

9.24E
-0

3
4
.8

5E
-06

4.07
E

-0
1

2.70E
-0

2
2
.5

5
E

-0
1

2
.3

9
E

-0
1

2
.9

2
E

-0
1

1
.9

1
E

-0
2

1
.24E

-01
2.67E

-05
1.89E

-01
1.01E

-01
4.12E

-01
2.54E

-01

160



Appendix D

Published Work

This appendix contains two papers which have been published in peer-
reviewed conference proceedings during this research. These conference
publications contain much of the work presented in Chapter 4 and Chap-
ter 5.

Details are as follows:

Crossley, M., Nisbet, A., and Amos, M. (2013). Fitness landscape-based
characterisation of nature-inspired algorithms. In Tomassini, M., Anto-
nioni, A., Daolio, F., and Buesser, P., editors, Proceedings of the 11th Interna-
tional Conference on Adaptive and Natural Computing Algorithms (ICANNGA ‘13),
Lausanne, Switzerland, April 4-6, 2013. Lecture Notes in Computer Science, Vol.
7824, pages 110-119. Springer.

Crossley, M., Nisbet, A., and Amos, M. (2013). Quantifying the impact
of parameter tuning on nature-inspired algorithms. In Lio, P., Miglino,
O., Nicosia, G., Nolfi, S., and Pavone, M., editors, Advances in Artificial Life,
ECAL 2013, pages 925-932. MIT Press.
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Fitness Landscape-Based Characterisation
of Nature-Inspired Algorithms

Matthew Crossley, Andy Nisbet, and Martyn Amos ?

School of Computing, Mathematics and Digital Technology,
Manchester Metropolitan University, Manchester M15GD, UK

{m.crossley,a.nisbet,m.amos}@mmu.ac.uk

Abstract. A significant challenge in nature-inspired algorithmics is the
identification of specific characteristics of problems that make them harder
(or easier) to solve using specific methods. The hope is that, by identi-
fying these characteristics, we may more easily predict which algorithms
are best-suited to problems sharing certain features. Here, we approach
this problem using fitness landscape analysis. Techniques already exist
for measuring the “difficulty” of specific landscapes, but these are often
designed solely with evolutionary algorithms in mind, and are generally
specific to discrete optimisation. In this paper we develop an approach
for comparing a wide range of continuous optimisation algorithms. Us-
ing a fitness landscape generation technique, we compare six different
nature-inspired algorithms and identify which methods perform best on
landscapes exhibiting specific features.

1 Introduction

Inspired by the foundational work of Wolpert and Macready [1], practitioners
have long sought to better understand the relationship between problems and
solution methods (i.e., algorithms). Here, we are particularly interested in the
question of which algorithm is best-suited to a particular problem, and the process
of addressing this has been described by some as a “black-art” [2].

Although theoretical studies in this area have yielded useful results, the ex-
perimental analysis of algorithms is receiving increasing attention. As Morgan
and Gallagher point out [3], this approach is scalable in that it readily admits
newly-described algorithms, and it is now an area of research that is supported
by a number of high-profile competitions and libraries of benchmark test prob-
lems.

The fundamental properties of a problem’s search landscape underpin much
work in experimental analysis, and the use of landscape/test case generators [3–7]
has been proposed as one way in which we might effectively assess algorithms
against problem instances.

In this paper we examine six different nature-inspired algorithms by testing
them against a number of different randomized landscapes with several different

? Matthew Crossley is supported by a Ph.D. studentship from the Dalton Research
Institute, MMU. The authors thank David Corne for useful discussions.
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properties (e.g., ruggedness). This gives a much richer picture of their relative
strengths and weaknesses, compared to simply using the “difficulty” of a land-
scape [8].

The rest of the paper is organized as follows: in Section 2 we give a brief
overview of previous work, before describing our testing methodology in Section
3. We then present our experimental results in Section 4, before concluding in
Section 5 with a discussion of our findings.

2 Previous work

The use of algorithms inspired by physical or natural processes is now well-
established in the field of optimisation [9]. As the number of such algorithms
grows year-on-year, there is a pressing need to better understand their properties,
in order that practitioners may make informed decisions about which method is
best-suited to a particular problem, under certain conditions. Although analyti-
cal methods have been successfully applied to nature-inspired methods [10] [11],
their “real world” applicability is not clear, as they often rely on significant
assumptions and/or simplifications.

In what follows, we take an experimental approach [12] to studying the se-
lected algorithms, using an established landscape generation technique [4]. As
Morgan and Gallagher observe, “In a general sense, an algorithm can be expected
to perform well if the assumptions that it makes, either explicit or implicit, are
well-matched to the properties of the search landscape or solution space of a
given problem or set of problems” [3]. We therefore seek to investigate the per-
formance of several algorithms on a number of types of fitness landscape with
specific properties or characteristics. This approach is preferred by Hooker to
the use of benchmark problems, because the latter “differ in so many respects
that it is rarely evident why some are harder than others, and they may yet fail
to vary over parameters that are key determinants of performance. It is better
generate problems in a controlled fashion... The goal is not to generate realistic
problems, which random generation cannot do, but to generate several problem
sets, each of which is homogeneous with respect to characteristics that are likely
to affect performance” [13].

The fitness landscape approach has been successfully applied to the study of
various nature-inspired algorithms [14–16]. Indeed, to our knowledge, landscape
analysis of nature-inspired algorithms has been largely restricted to evolution-
ary methods. In this paper we broaden this work considerably, by considering
several classes of natural algorithms (social, evolutionary and physical). Over-
all, we study six different nature-inspired methods, as well as stochastic hill-
climbing as a baseline algorithm. Our empirical approach is informed by previ-
ous work [17] [18], which emphasises the need to establish a rigorous framework
for experimental algorithmics. In the next Section, we describe in detail our
methodology.
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3 Methodology

3.1 Algorithm selection

We select, for comparison, a number of nature-inspired algorithms that are com-
monly applied to continuous function optimisation. These may be classified [19]
as either social, evolutionary or physical. The social algorithms we select are Bac-
terial Foraging Optimisation Algorithm (BFOA) [20], Bees Algorithm (BA) [21],
and Particle Swarm Optimisation (PSO) [22]. The evolutionary algorithms se-
lected are Genetic Algorithms (GA) [23] and Evolution Strategies (ES) [24],
and physical algorithms are represented by Harmony Search (HS) [25]. We also
include random search (RS) and stochastic hill climbing (SHC) as “baseline”
algorithms.

We note that the references supplied above for each algorithm may serve sim-
ply as an example of their application, rather than their precise implementation.
In terms of implementation, we heed the observation that “Ideally, competing
algorithms would be coded by the same expert programmer and run on the same
test problems on the same computer configuration” [12]. With that in mind, we
use only implementations provided by Brownlee to accompany [26]. The limited
space available prevents a complete description of each algorithm, but full im-
plementation details are in [26], which is freely available and contains the source
code used here.

3.2 Optimisation problem characteristics

As Morgan and Gallagher explain [3], their Max-Set of Gaussians (MSG) method
[4] is a “randomised landscape generator that specifies test problems as a weighted
sum of Gaussian functions. By specifying the number of Gaussians and the mean
and covariance parameters for each component, a variety of test landscape in-
stances can be generated. The topological properties of the landscapes are intu-
itively related to (and vary smoothly with) the parameters of the generator.” By
manipulating these parameters, we obtain landscapes with different characteris-
tics. This allows us to investigate the performance of our selected algorithms on
landscapes with different features, and to identify which characteristics pose the
greatest challenge. As Morgan and Gallagher observe, “Different problem types
have their own characteristics, however it is usually the case that complemen-
tary insights into algorithm behaviour result from conducting larger experimen-
tal studies using a variety of different problem types” [3]. We now describe the
different characteristics (corresponding to problem types) under study in this
paper.

Ruggedness of a landscape is often linked to its difficulty [8], and factors
affecting this include (1) the number of local optima [27], and (2) ratio of the
fitness value of local optima to the global optimal value [28] [14]. Other significant
factors concern (3) dimensionality [29] (that is, the number of variables in the
objective function), (4) boundary constraints (that is, the limits imposed on the
value of a variable) [30], and (5) smoothness of each Gaussian curve (effectively
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Table 1. A summary of the ranges selected for the characteristics in our fitness space
(F )

Characteristic Min Step Max Default

Number of local optima 0 1 9 3

Ratio of local optima to
global optimum

0.1 0.2 0.9 0.5

Dimensionality 1 1 10 2

Boundary constraints 10 10 100 30

Smoothness 10 10 100 15

the gradient) used to generate the landscape [31] - a smaller value indicates a
smoother gradient. A summary of the ranges selected for each characteristic is
given in Table 1.

3.3 Performance measurement

In terms of performance metrics, we abstract away from algorithm-specific mea-
sures, due to the diverse range of methods selected. The following metrics are
applied: (1) Accuracy: We define this as the mean absolute error of the best
solution found on a given set of landscape characteristics, over a number of runs

( 1
n

n∑
i=1

(xi−x̄)) (where X is the set of best solutions found, n is the number of runs

performed and x̄ is the known optimum). This is the most commonly-used as-
sessment metric for optimisation algorithms [4]. The generation technique we use
creates landscapes with a known global optimum, in this case zero. (2) Variance
of final solutions: A measure of variation in best solutions found across differ-
ently seeded runs. We use the standard deviation of the best solutions of all runs

on a given set of landscape characteristics, defined as ( 1
n−1

n∑
i=1

(xi− x̄)2)
1
2 (where

X is our data set, n is the size of the data set and x̄ is the mean average). (3)
Success rate: We measure this as the frequency with which differently-seeded
runs of an algorithm are able to find a solution within a specified distance from
the optimum [32]. We keep the success tolerance relatively low (error less than
1.0×10−4) in order to ensure that we capture the change in success rate of al-
gorithms which perform poorly.

3.4 Experimental setup

In order to generate the landscapes, we used the Matlab code supplied with [4].
All landscapes were generated using default parameters of three curves, two
dimensions, 0.5 average ratio of local minima to global minimum, 30 units in
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each dimension with a smoothness coefficient of 15), with only the parameter
under investigation changing for each experiment. We ran each algorithm 100
times on each landscape in the set of landscapes generated for each particular
characteristic value (when investigating smoothness, for example, we generated
10 different landscapes (smoothness = 10 . . . 100), and ran each algorithm 100
times on each landscape).

Parameterisation of algorithms provides a significant challenge when evalu-
ating performance. Our aim is not to perform “competitive testing” [13], but
to establish general performance profiles for different algorithms over different
types of problem. As such, we use the so-called “vanilla” implementation of each
algorithm, with general-purpose settings taken from [4]. Where an algorithm has
a “population size” parameter, we use a value of 50; where an algorithm has a
“range” or “velocity” parameter, we use a value of 10.

Termination criteria were also standardised. The most objective criterion is
the number of objective function evaluations. This means each algorithm has
access to the same amount of information from the landscape, and the same
amount of feedback on potential solutions. Experimentally we determined that
the selected algorithms generally converged within 20,000 objective function cal-
culations, so this was used as the termination criterion. The code used for all
algorithms, as well as datasets and the landscape generator, is available on re-
quest from the authors.

4 Results

Space prevents a detailed presentation of full experimental plots, but these are
available from the project website1. To summarise, we plot the resilience of each
algorithm to changing landscape characteristics, in the form of a radar plot in
Figure 1. To assess the resilience of an algorithm we use the standard deviation
of the average error across all values of a landscape characteristic, which we
normalise on a per-characteristic basis. This “ranking” shows which algorithms
do not show performance variability versus those which are heavily influenced
by a characteristic. BFOA shows large deviations in average error for boundary
constraint range, smoothness coefficient changes and dimensionality, indicating
that BFOA is an algorithm heavily dependent on the landscape of a problem
- perhaps because of a heavy reliance on careful parameterisation. SHC also
shows large variance - perhaps, in large part again, to a lack of parameters and
complicated local optima avoidance techniques. GA and ES show large variation
with respect to number of local optima, perhaps supporting the argument that
evolutionary algorithms suffer more than most from the problem of becoming
“stuck” in local optima.

All algorithms produce the smallest average error when no local optima
(minima) are present in the fitness landscape. This is expected, as, with only
one optimum, there are no alternative solutions to which the algorithms may con-
verge. We observe the greatest average error with only one optimum from SHC,

1 http://www2.docm.mmu.ac.uk/STAFF/M.Amos/Project/Characterisation
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(a) Bees algorithm (b) Bacterial foraging optimisation al-
gorithm

(c) Evolution strategies (d) Genetic algorithm

(e) Harmony search (f) Particle swarm optimisation

(g) Random search (h) Stochastic hill climbing

Fig. 1. Radar plots depicting the standard deviation of the average error of each al-
gorithm with respect to differing landscape characteristics. Standard deviations are
normalised on a per-axis basis. Values close to the centre of the plot indicate a larger
variance in average error, indicating these algorithms are more affected by the charac-
teristic. In general, the more robust an algorithm, the larger the plot surface area.
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with BFOA (approx. 0.14) also showing a large average error. There are very
small average errors (almost zero) from GA, ES, PSO, HS, RS and BA. BFOA
also produces the largest variation in final solutions (0.32).With the introduc-
tion of only a single local optimum, performance of most algorithms degrades
significantly. ES and GA suffer significantly, with average error increasing from
approximately zero to 0.06 and 0.08 respectively, and the standard deviation
of solutions increasing by around 0.15 for each algorithm. SHC also performs
poorly, with a similar increase in average error. The least affected are RS (which
blindly chooses random solutions, and is therefore unaffected by local minima)
and BA, which contains a global search mechanism.

For algorithms which do not directly use the gradient of the landscape, we
would expect to see no change in their performance as we adjust the ratio
of local optima parameter. We observe that RS, which selects new solutions
randomly from the entire search space, offers very similar performance in terms
of mean error and success rate for all ratio values. Similarly, algorithms which
perform a global search should be better at avoiding local minima even when
they are attractive - and this is true for BA and HS. PSO shows little change in
success rate as the ratio becomes more attractive, owing to the fact that solutions
are directed towards the best particle, and their own best solution, regardless
of their individual experience with the gradation of the landscape. Interestingly,
SHC average error decreases as ratio increases - most likely due to an increased
availability of ‘better’ solutions throughout the landscape. ES demonstrates very
poor, yet consistent, performance as the ratio changes. Success rates are very low,
and, interestingly, we observe a decrease in the standard deviation of solutions as
the ratio increases. This suggests that ES is perhaps more “content” to optimise
at a local minima, with the algorithm getting trapped in these more frequently
as ratio increases. This could also be true of other algorithms whose deviation
decrease, such as BFOA and SHC. GA performs in a similar manner to ES with
regard to average error and diversity, although with a considerably better success
rate, suggesting that this may be a general problem for algorithms which use an
evolutionary approach.

At only one dimension, fitness landscapes are trivially easy. The perfor-
mance of all algorithms reflects this, with all algorithms performing well on
landscapes of a single dimension. All algorithms show a success rate (that is,
optimisation with an error of under 1.0×10−4) above 90%. As we increase the
dimensionality to two, most algorithm performances begin to degrade. Suffering
mostly severely is RS, which is to be expected, as random search is our most ba-
sic algorithm. Algorithms which also perform poorly at only two dimensions are
ES, BA and PSO. It is perhaps surprising, at first, to see BA performing poorly,
given that the algorithm contains a randomly sourced global search. However,
this global search is effectively RS, which performs poorly, so we can assume
the global search is not covering enough of the landscape. Coupled with the
non-adaptive nature of the algorithm (meaning that solution selection around
the current best area is within a relatively large range), poor algorithm perfor-
mance is easily explained. We propose that PSO and ES suffer from a similar
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problem, in that exploration is limited, and neither optimise their current best
as accurately as their adaptive variants.

Random search exhibits a similar, yet less extreme, reaction to changes in
boundary constraints as with the increase in dimensionality. This is to be ex-
pected, as the limit on objective function calculations results in random search
having less chance to explore the search space. SHC also has an almost linear
increase in average error, matching the linear increase in search space size, but
produces consistently poor results in terms of success. The social system algo-
rithms (BA and PSO) both exhibit slightly unusual behaviour - as the problem
space increases, their success rate also increases. This suggests that their reliance
on a parameter to search within a range is hindering the algorithms when the
problem space is too small to properly explore. HS provides the best success
rate for the entire range of sizes we have selected in this problem, indicating
good exploration of the search space irrespective of the range parameter. BFOA
also suffers significantly as search space size increases, again implying a heavy
reliance on the parameter which controls the range of search for new solutions.
The evolutionary algorithms do not cope particularly well with the increase of
problem size, with performance in terms of both average error and success rate
decreasing consistently as size increases.

The evolutionary algorithms (ES and particularly GA) perform poorly and
are most affected by changing the smoothness coefficient. BA and PSO all
also show decreasing success rate as the curves become steeper, as does BFOA
which relies heavily on gradient information. Harmony search suffers similarly
to the evolutionary algorithms, and swarm algorithms, as curves become more
steep. The similarity in terms of success rate for all algorithms suggests that the
availability of gradient information is something which affects all algorithms.

5 Conclusions

In this paper, we have described the results of an extensive study of nature-
inspired algorithms, in terms of their performance on fitness landscapes with dif-
ferent characteristics. We studied six nature-based methods (plus two stochastic
baseline algorithms), varying a number of landscape features. The most signif-
icant characteristic appears to be the number of local minima, where a combi-
nation of global and local search appears to be beneficial. On the other hand,
the ratio of local optima to the global minimum appears to have little effect on
the success of the algorithms under study. As expected, dimensionality proved
problematic for all algorithms, whereas landscape smoothness appeared to have
little effect.

This work offers a contribution to the empirical study of nature-inspired algo-
rithms, and we hope that it motivates future investigations. To further this work,
it may be useful to examine a larger collection of nature-inspired algorithms over
a greater range of values for the characteristics, in order to more fully capture
a wider variety of algorithmic performance. The current work provides a firm
foundation for this.
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[24] T. Bäck and H.-P. Schwefel, “An Overview of Evolutionary Algorithms for Pa-
rameter Optimization,” Evolutionary Computation, vol. 1, no. 1, pp. 1–23, Mar.
1993.

[25] Z. Geem and J. Kim, “A new heuristic optimization algorithm: harmony search,”
Simulation, vol. 76, no. 2, pp. 60–68, 2001.

[26] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes. Lulu,
2011. [Online]. Available: http://www.cleveralgorithms.com

[27] J. Horn and D. Goldberg, “Genetic algorithm difficulty and the modality of fitness
landscapes,” in Foundations of Genetic Algorithms 3, 1994.

[28] K. M. Malan and A. P. Engelbrecht, “Quantifying ruggedness of continuous land-
scapes using entropy,” in 2009 IEEE Congress on Evolutionary Computation.
IEEE, May 2009, pp. 1440–1447.

[29] T. Hendtlass, “Particle swarm optimisation and high dimensional problem
spaces,” in 2009 IEEE Congress on Evolutionary Computation, CEC’09. IEEE,
May 2009, pp. 1988–1994.

[30] S. Kukkonen and J. Lampinen, “GDE3: The third Evolution Step of Generalized
Differential Evolution,” 2005 IEEE Congress on Evolutionary Computation, pp.
443–450, 2005.

[31] H.-g. Beyer and H.-p. Schwefel, “Evolution strategies,” Natural Computing, vol. 1,
pp. 3–52, 2002.

[32] E. Elbeltagi, T. Hegazy, and D. Grierson, “Comparison among five evolutionary-
based optimization algorithms,” Advanced Engineering Informatics, vol. 19, no. 1,
pp. 43–53, Jan. 2005.

171



Quantifying the Impact of Parameter Tuning on Nature-Inspired Algorithms

Matthew Crossley, Andy Nisbet and Martyn Amos

School of Computing, Mathematics and Digital Technology,
Manchester Metropolitan University, Manchester M1 5GD, UK.

Email: m.crossley@mmu.ac.uk

Abstract

The problem of parameterization is often central to the ef-
fective deployment of nature-inspired algorithms. However,
finding the optimal set of parameter values for a combina-
tion of problem instance and solution method is highly chal-
lenging, and few concrete guidelines exist on how and when
such tuning may be performed. Previous work tends to ei-
ther focus on a specific algorithm or use benchmark prob-
lems, and both of these restrictions limit the applicability of
any findings. Here, we examine a number of different algo-
rithms, and study them in a “problem agnostic” fashion (i.e.,
one that is not tied to specific instances) by considering their
performance on fitness landscapes with varying characteris-
tics. Using this approach, we make a number of observations
on which algorithms may (or may not) benefit from tuning,
and in which specific circumstances.

Introduction and Background
There exist many algorithms that are inspired by nature, and
each has associated with it a set of parameters. These de-
fine specific features or details of an algorithm that may be
altered in order to change the behaviour or performance of
the method (for example, in evolutionary algorithms, param-
eters may include mutation rate or crossover probability).
The problem of finding the optimal settings for these pa-
rameters (often referred to as “tuning”) is well-established
(Lobo et al., 2007; Nannen et al., 2008; Akay and Karaboga,
2009; Birattari, 2009; Eiben and Smit, 2011), but little in-
depth work has been performed on quantifying the benefits
of tuning for a range of algorithms. We address this in the
current paper, by investigating the precise benefits (or other-
wise) of tuning for a number of different algorithms. More-
over, we do this in a way that is independent of any spe-
cific problem, by using an approach based on fitness land-
scape characteristics. The main contribution of the paper
is therefore to establish a framework for deciding - prior
to any problem-specific implementation - which algorithms
may (or may not) benefit from tuning. Our aim is to offer
advice to future practitioners on the relative merits of tun-
ing, compared to the effort involved in finding the best set of
parameter values. We achieve this by establishing, for each

algorithm, the problem features that offer the most potential
for performance improvements via tuning.

Previous work (Crossley et al., 2013) characterised a
number of nature-inspired algorithms according to their
performance on fitness landscapes with different features.
However, the authors used the default parameter settings for
each algorithm, which fails to reflect the fact that, in prac-
tice, methods are usually tuned prior to serious use (Leung
et al., 2003; Adenso-Diaz and Laguna, 2006; Koster and
Beney, 2007; Ridge and Kudenko, 2010). Here, we extend
this work by quantifying the relative merits of tuning for a
range of algorithms in a wide variety of fitness landscape
scenarios. We achieve this by assessing both their tuned and
untuned behaviour, using the methods described in Crossley
et al. (2013).

In order to tune our selected algorithms, we use the no-
tion of racing, which was first introduced in the field of
machine learning (Maron and Moore, 1993, 1997). Specif-
ically, we use the F-race algorithm (Birattari et al., 2002;
Yuan and Gallagher, 2004; Smit and Eiben, 2009; Birattari
et al., 2010), which has been extensively used to find the
best possible set of parameter values for a given problem in
a limited time.

The rest of the paper is organised as follows: we first de-
scribe our approach in the Methodology section, before pre-
senting our experimental findings in the Results section. We
conclude with a discussion of the implications of our results,
and suggest further work.

Methodology
Our methodology may be summarised as follows: (1) select
a number of nature-inspired algorithms, and obtain consis-
tent source code for their implementation; (2) for each al-
gorithm, find the best parameter settings (i.e., tune) over a
number of different problems; (3) compare the performance
of tuned and untuned algorithms.

Algorithm selection
We compare a number of nature-inspired algorithms, all of
which are commonly applied to continuous function opti-
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misation (we use the same set as in Crossley et al. (2013)).
These may be classified (Brabazon and O’Neill, 2006) as ei-
ther social, evolutionary or physical. The social algorithms
we select are Bacterial Foraging Optimisation Algorithm
(BFOA) (Passino, 2002), Bees Algorithm (BA) (Pham et al.,
2006), and Particle Swarm Optimisation (PSO) (Kennedy
and Eberhart, 1995). The evolutionary algorithms selected
are Genetic Algorithms (GA) (Goldberg, 1989) and Evolu-
tion Strategies (ES) (Bäck and Schwefel, 1993), and phys-
ical algorithms are represented by Harmony Search (HS)
(Geem and Kim, 2001). We also include stochastic hill
climbing (SHC) as a “baseline” algorithm; in contrast to
Crossley et al. (2013) we exclude random search, as it has no
parameters to tune. As before, we heed the observation that
“Ideally, competing algorithms would be coded by the same
expert programmer and run on the same test problems on the
same computer configuration” (Barr et al., 1995). With that
in mind, we use only implementations provided by Brown-
lee (2011). Space prevents a complete description of specific
implementation details for each algorithm, but full imple-
mentation details can be found in Brownlee (2011), which is
freely available and contains complete source code.

Tuning
Our fundamental goal is to investigate the pre- and post-
tuned performance of our selected algorithms on landscapes
with different general features, and thus identify character-
istics of landscapes for which tuning may yield significant
differences in algorithm performance. As Morgan and Gal-
lagher (2010) observe, “Different problem types have their
own characteristics, however it is usually the case that com-
plementary insights into algorithm behaviour result from
conducting larger experimental studies using a variety of dif-
ferent problem types” (our emphasis). Rather than using ar-
bitrary benchmark instances of problems in order to perform
tuning, we use a landscape-based approach, as utilised in
Crossley et al. (2013). As Morgan and Gallagher (2010) ex-
plain, this Max-Set of Gaussians (MSG) method (Gallagher
and Yuan, 2006) is a “randomised landscape generator that
specifies test problems as a weighted sum of Gaussian func-
tions. By specifying the number of Gaussians and the mean
and covariance parameters for each component, a variety of
test landscape instances can be generated. The topological
properties of the landscapes are intuitively related to (and
vary smoothly with) the parameters of the generator.” We
now describe the characteristics under study:

Ruggedness of a landscape is often linked to its difficulty
(Jones and Forrest, 1995), and factors affecting this include
(1) the number of local optima (Horn and Goldberg, 1994),
and (2) ratio of the fitness value of local optima to the global
optimal value (Malan and Engelbrecht, 2009; Merz, 2000).
Other significant factors concern (3) dimensionality (Hendt-
lass, 2009) (that is, the number of variables in the objective
function), (4) boundary constraints (that is, the limits im-

Table 1: A summary of the ranges selected for the various
characteristics in the landscape generation methodology.

Characteristic Min Max Step Default

No. of local optima 0 9 1 3
Ratio of local optima
to global optimum

0.1 0.9 0.2 0.5

Dimensionality 1 10 1 2
Boundary constraints 10 100 10 30
Smoothness 10 100 10 15

posed on the value of a variable) (Kukkonen and Lampinen,
2005), and (5) smoothness of each Gaussian curve (effec-
tively the gradient) used to generate the landscape (Beyer
and Schwefel, 2002) - a smaller value indicates a smoother
gradient. For each characteristic, we use the same ranges as
in Crossley et al. (2013), summarised in Table 1.

To produce a test set of problems, we use the MSG land-
scape generator. For every value of every characteristic (in
the range specified in Table 1) we generate a set of five
landscapes, which makes up the initial problem set for each
value. We then use the F-racing methodology (Birattari
et al., 2002) to find optimised parameters for each algorithm,
over every value of every landscape characteristic used. We
ensure that termination criteria are standardised, in order to
ensure reasonable comparisons, and therefore use the num-
ber of objective function evaluations to determine when to
terminate an algorithm’s run. We established, through initial
experiments, that all selected algorithms generally converge
within 20,000 objective function evaluations, so we use that
as the specific value.

Comparison

We run each algorithm 100 times on each landscape in the
set of landscapes generated for each particular characteristic
value (when investigating smoothness, for example, we gen-
erate 1000 different landscapes (100 each for smoothness =
10 . . . 100), and run each algorithm 100 times on each land-
scape). This is done first for all algorithms with ‘default’
parameter configurations, and then again, this time using
the parameter configurations obtained through the F-Racing
process. We measure the performance of each algorithm in
terms of the mean (µ) and standard deviation (σ) of the ex-
act average error obtained, over all values for a particular
characteristic. That is, we investigate the robustness of each
algorithm to changes in the values for each characteristic,
rather than their absolute performance on specific problem
instances. This allows us to identify specific landscape fea-
tures where tuning may make a significant difference, some
difference, or no difference at all, for a particular algorithm.
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Results
We find that the effect of tuning using F-Racing is varied
across algorithms, and that they fit into three categories: Al-
gorithms which do not benefit from F-Racing (ES), algo-
rithms which only benefit significantly from F-Racing when
a landscape is ‘difficult’ for the algorithm using default pa-
rameters (BA, HS, PSO), and algorithms which always ben-
efit from F-Racing (BFOA, GA, SHC). Of course, we ac-
knowledge the fact that F-Racing is just one of many pos-
sible meta-search techniques available for parameter tuning,
and future work will involve a comparative study of alterna-
tive methods.

We summarise our results in Table 2; the full datasets are
available online1; the repository contains all performance
data across all runs, summary spreadsheets and details of
all parameter settings. We now examine in detail the perfor-
mance of each algorithm, using spider plots to graphically
depict the results in Table 2. For each plot, the further a line
is from the origin, the smaller the average error (that is, the
“larger” an area, the larger the degree of robustness, which
is considered “better”).

Bacterial Foraging Optimisation Algorithm
There exists little discussion on the role of different parame-
ters in the BFOA. While some elements of the search pattern
are clearly altered by various parameters, it is very difficult
to estimate values for these. In the original description of the
BFOA (Passino, 2002), the parameter values were assigned
based on observation of actual bacterial colonies. While this
may be true to the nature-inspired concept, it is not nec-
essarily the best way to obtain optimal performance from
the algorithm. The combination of parameters offered by
BFOA gives a highly configurable search environment. Pa-
rameters such as step size and population size directly affect
the potential area the algorithm can explore in a given num-
ber of objective function calculations. Attraction and repul-
sion weights, and the “space” over which these attraction
and repulsion effects spread, work to control local optima
avoidance. Parameters controlling the number of chemotac-
tic steps before a reproduction step, and the number of repro-
duction steps before an elimination-dispersal event, control
the balance of exploitation versus exploration. Given that
the search behaviour of the algorithm is highly configurable,
it is unsurprising that BFOA is heavily reliant on tuning.
Results for BFOA are shown in Figure 1. Across all char-
acteristics, tuning offers a significant improvement on the
average error and standard deviation of the performance -
in many cases, improving the ranking of the algorithm from
the largest average error to one of the smallest, and cop-
ing well with the changing characteristics. We see the most
significant improvement where boundary constraint ranges
change, a characteristic that is heavily reliant on parameters

1http://dx.doi.org/10.6084/m9.figshare.696908

Figure 1: Summary of results for Bacterial Foraging Opti-
misation Algorithm.

which control the range at which new solutions are gener-
ated (in the case of BFOA, this is the step size). Improve-
ments are also shown for dimensionality and smoothness co-
efficient, increasing the performance of BFOA where there
is little gradient information in a large fitness landscape.
Smaller improvements are demonstrated by the increasing
number of local optima and the increasing attractiveness of
these local optima, but tuning still benefits the algorithm
considerably.

In terms of the configurations selected by F-Racing,
there is little variation in parameter values as characteristics
change. Across all characteristics, and all values for those
characteristics, there are only eight different configurations
selected by racing. This suggests that, while it is difficult to
find a good configuration, once it has been found, it is likely
to be good for all similar problems. Tuning is vital to the
performance of the BFOA, but it is possible that by explor-
ing problems using a similar methodology to that demon-
strated here, we may create a ‘bank’ of promising configu-
rations.

Bees Algorithm
The BA is considered to be an algorithm on which param-
eterisation has little effect (Pham et al., 2006). We observe
that the BA is one of the best untuned performers in this
study, offering weight to this argument for relative parame-
ter insensitivity. In terms of adjusting the BA to cope with an
increasing number of local optima, there are several param-
eters which have an effect. Parameters such as the number
of sites under investigation, the number of bees attributed to
those sites, and the differentiation between sites and ‘elite’
sites are all factors which affect the searching behaviour of
the algorithm to allow for greater flexibility as the modal-
ity of the problem landscape increases. Results for BA are
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Table 2: Mean (µ) and standard deviation (σ) of the exact average error of algorithm performance (both untuned (UT) and
tuned (T)). Smaller values imply more robustness to changes in a specific characteristic.

BFOA Bees Algorithm ES GA Harmony Search PSO SHC
UT T UT T UT T UT T UT T UT T UT T

# of Local
Optima

µ 0.118 0.003 0.001 8.8×10−6 0.085 0.078 0.093 0.015 0.011 2.2×10−5 0.025 0.014 0.266 0.072
σ 0.011 0.001 2.1×10−4 9.2×10−7 0.028 0.026 0.033 0.008 0.005 2.9×10−5 0.010 0.010 0.041 0.020

Dimensions µ 0.754 0.417 0.216 0.073 0.542 0.544 0.420 0.529 0.364 0.263 0.420 0.157 0.577 0.589
σ 0.388 0.360 0.202 0.069 0.345 0.346 0.233 0.401 0.271 0.204 0.307 0.145 0.261 0.371

Local Optima
Ratio

µ 0.120 0.003 0.001 8.7×10−5 0.084 0.082 0.079 0.007 0.007 0.002 0.025 0.016 0.284 0.088
σ 0.021 0.002 2.3×10−4 1.9×10−4 0.012 0.012 0.006 0.006 0.003 0.004 0.004 0.011 0.045 0.011

Boundary
Range

µ 0.317 0.022 0.001 0.001 0.097 0.093 0.125 0.021 0.048 0.001 0.076 0.022 0.446 0.305
σ 0.213 0.033 1.3×10−4 0.001 0.017 0.018 0.057 0.016 0.041 0.001 0.050 0.013 0.239 0.217

Smoothness µ 0.260 0.010 0.004 0.001 0.110 0.102 0.154 0.021 0.018 0.001 0.043 0.014 0.349 0.112
σ 0.089 0.005 0.002 4.3×10−4 0.012 0.012 0.045 0.011 0.007 0.001 0.012 0.006 0.039 0.014

Figure 2: Summary of results for Bees Algorithm.

shown in Figure 2. Post-tuning, we find that the BA selects
the same parameter configuration, regardless of the num-
ber of local optima present in the landscape. We then see
that tuning has no effect on the ability of the algorithm to
cope with increasing numbers of local optima. As long as
the number of sites under investigation is greater than the
number of optima, the algorithm is capable of dealing with
modality. Coupled with the abandonment of ‘unpromising’
sites, this means that ‘too many’ sites are not detrimental to
the exploration pattern of the algorithm.

We see the same pattern when increasing the ratio of lo-
cal optima to the global optimum. As long as the number
of sites under investigation covers the modality of the land-
scape, the BA is not hampered by increasing levels of attrac-
tiveness, regardless of parameter settings. The patch size
parameter of the BA controls the distance from a site bees
are allowed to explore. This is the parameter which affects
the search behaviour of the algorithm as boundary constraint
size increases. The BA allows for full coverage of any sized
search space, using scout bees to investigate new random
sites to give ‘teleportation’ across the landscape. As with
the number of local optima, we find the F-Races for the BA

Figure 3: Summary of results for Evolution Strategies.

select the same parameter set for most boundary constraint
sizes. We find that, post-tuning, the performance of the
BA actually decreases slightly, suggesting the algorithm can
cope less well with changes in boundary constraint size. We
believe that the configurations may have become over-fitted
to the landscapes used for tuning, and, while performance
on the landscapes used for racing may have increased, the
ability to search generalised landscapes has decreased. Di-
mensionality provides the most significant result in terms of
pre-tuning and post-tuning performance of the BA. We ob-
serve little change in performance at one to three dimensions
- the point where the untuned algorithm is already perform-
ing well. As dimensionality increases beyond this, the effect
of tuning becomes increasingly beneficial. We suggest that
there is no increase in performance in other characteristics
because these landscapes are not challenging enough to the
BA to require adjusting the parameters. For the ranges of
landscape characteristics on which we have tested the BA,
it is clear that tuning generally makes little difference to the
performance, as suggested by its original developer.
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Evolution Strategies
ES has the smallest number of parameters of all the al-
gorithms studied here (excepting the baseline algorithm,
stochastic hill climbing). The two parameters this form of
ES offers are (1) population size and (2) number of children.
It is suggested (Cant-Paz, 2001) that altering these parame-
ters adjusts selection pressure (that is to say, the greediness
of the algorithm changes). The parameter configurations
obtained through F-Racing are varied, implying that there
do exist some configurations that are more successful than
others. A range of configurations are selected across each
characteristic - both in terms of different values for the two
parameters, and different selection pressures when the two
parameters are combined. Results for ES are shown in Fig-
ure 3. It is perhaps surprising to observe that the results of
using the tuned parameters show little or no change in per-
formance across all characteristics. There is a small decrease
in average error as the number of local optima changes, but
the standard deviation is similar for both untuned and tuned,
suggesting that while the average error has decreased very
slightly, the ability of the algorithm to cope with increasing
numbers of local optima is unchanged. For all other charac-
teristics post-tuning, there is little change in both average er-
ror and standard deviation across characteristics values (that
is to say, the algorithm is no more capable of dealing with
changes in these characteristics). This is perhaps consistent
with the definition of the two parameters the algorithm of-
fers - selection pressure can only affect the way in which ES
explores local optima, and there is no control over the area
that is explored around each point of interest, or any way to
encourage the algorithm to rapidly explore an increasingly
large search space.

We use a simple variant of ES, here, and there exist many
other versions of the ES algorithm that offer a greater range
of parameters (such as CMA-ES (Hansen and Kern, 2004)).
ES clearly yields its best performance with an “out-of-the-
box” parameter configuration, which means that it is quick
to implement. However, our results suggest that there is little
that can be done to improve the performance of this particu-
lar variant.

Genetic Algorithm
The performance of the GA increases post-tuning, coping
significantly better with increasing numbers of local op-
tima, increasing boundary constraint range and an increas-
ing smoothness coefficient. Results for the GA are shown
in Figure 4. The parameters of the GA are not as intuitively
linked to the exploration pattern as many of the other algo-
rithms in the study. This particular GA offers four config-
urable parameters: (1) population size, (2) ‘bits’ per param-
eter in the representation, (3) crossover rate and (4) muta-
tion rate. In experiments with a fixed number of objective
function calculations, population size affects the number of
generations the algorithm evaluates before terminating. A

Figure 4: Summary of results for Genetic Algorithm.

larger number of bits in a bit string representation allows
more ‘precise’ solutions to be generated at the expense of
having a representation which is less affected by mutation.
Similarly to BFOA, there are a few configurations which re-
occur across different characteristics and different charac-
teristic values. It is probable that once a ‘good’ configura-
tion has been found for a GA, it is applicable to ‘similar’
landscapes, which is consistent with the suggestion Gold-
berg (1989) that GAs are robust problem solvers, exhibiting
approximately the same performance across a wide range of
problems.

With increasing dimensionality, the GA initially shows
promising results in terms of tuned performance, with a
marked performance increase up to four dimensions. The
benefit from tuning rapidly declines, however, until the
tuned performance is worse than that of the tuned version.
There are two possible explanations for this: the first is that
the restriction on the number of objective calculations did
not allow the F-Race algorithm to gather any meaningful
performance data from the configurations. The second ex-
planation is that we did not test a wide enough range of con-
figurations - although two of the four parameters have def-
inite ranges (mutation and crossover rates are percentages,
thus generation was bounded between zero and one), so this
is unlikely.

Harmony Search
The four parameters of HS all control different aspects of
the search strategy. Memory size dictates how many promis-
ing solutions can be stored - effectively, how many potential
sites of interest are retained by the algorithm. Considera-
tion rate and adjustment rate control how new solutions are
generated. The consideration rate is the percentage chance
that a solution based on one in memory will be generated
(conversely, 1-consideration rate is the chance a random so-
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Figure 5: Summary of results for Harmony Search.

lution is generated instead). The adjustment rate is then the
percentage chance that the randomly chosen solution from
memory will be adjusted. If so, the fourth parameter, which
controls the maximum range at which solutions can be ad-
justed, is used. If the adjustment does not occur, the con-
sidered solution potentially occupies an additional slot in
the memory - thus increasing the chance that this solution
may be chosen for consideration again. The interplay be-
tween these parameters is crucial, and it is somewhat hard to
see how consideration rate and adjustment rate can directly
affect the search strategy - unlike memory size and range,
which are more obvious. The results for HS are shown in
Figure 5. HS, like the BA, offers some of the lowest ‘out of
the box’ average error rates in this study. For most charac-
teristics, there is little room for a performance increase post-
tuning. Boundary constraint range proves to be the second-
most challenging characteristic to HS pre-tuning, but post-
tuning shows improved performance. The range values in
all the configurations selected by F-Racing are much smaller
than those in the ‘out of the box’ values, and this contributes
significantly to the performance improvement when bound-
ary constraint ranges are increasing. The consideration rate
also decreases almost linearly as size increases - effectively,
more random solutions are used instead of relying on the
‘memory’. These random solutions allow the solution pool
to jump from one position in the search space to another,
encouraging a wider search space, and explaining the signif-
icant improvement as boundary constraint range increases.
Dimensionality also yields an improvement in the tuned pa-
rameter performance of HS, in terms of both average error
and ability to cope, as it rises. High dimension problems
(seven and above) have a much higher consideration rate
than the successful configurations for lower dimensionality,
suggesting that a focus on exploitation rather than explo-
ration is beneficial to the HS when dimensionality is high.

This is the opposite case of what happens with boundary
constraint range, as discussed above.

Particle Swarm Optimisation
PSO in this form has four parameters; these control the pop-
ulation size, the maximum velocity of a particle, the bias
towards the particle best solution and the bias towards the
global best solution. With these parameters, it is possible to
control the coverage of a search space (the number of parti-
cles), enforce a large search area of a small search area for
each particle (the maximum velocity), and, through manip-
ulation of the local and global best solution bias, control the
capability of the algorithm to converge on a single solution
or explore several areas of interest (optima avoidance). Re-
sults for PSO are shown in Figure 6. The parameters used
cover a broad range of search behaviours, and, as such, we
would expect to see a large improvement in particle swarm
performance post-tuning. This holds true for most of our
characteristics. Results for the number of local optima, for
example, show a reasonable decrease in average error as the
number of local optima increases, yet the standard deviation
demonstrates no change, indicating that the algorithm is no
more capable of dealing with increasing numbers of local
optima post-tuning. Performance of PSO greatly improves
on dimensionality post-tuning, in terms of both average er-
ror and ability to cope as it grows. The F-Race algorithm for
PSO selects the same configuration for all values of dimen-
sionality (except for 2 dimensions), implying that there is
no specific parameter that requires adjustment to cope with
the increase in dimensionality, but selecting a configuration
which provides good exploration allows PSO to perform
well as the size of the search space increases exponentially.
This trend continues across all characteristics, with F-Races
often selecting the same configurations, regardless of char-
acteristic values. As with the other swarming algorithms,
we suggest that once a good configuration has been found,
it is able to deal with a wide range of problems of a similar
nature, regardless of the specific characteristics. The config-
urations selected are all varied in their parameters, and it is
unexpected to see that there is no pattern to maximum ve-
locity as boundary constraint range increases. This is possi-
bly because maximum velocity is an upper bound, and there
are particles with randomly generated velocities below the
maximum, so this parameter is less significant than it may
initially appear. It would perhaps be interesting to consider
the effect of having a minimum velocity on the increase in
boundary constraint range, although this would also severely
hamper exploitation.

Stochastic Hill-Climbing
With only a single parameter - the range at which new so-
lutions are generated - the SHC algorithm does not offer a
large amount of customisation. This single parameter is di-
rectly linked to the search pattern and nothing else, and as
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Figure 6: Summary of results for Particle Swarm Optimi-
sation.

there are no other parameters there is no interplay between
parameters to consider. Arguably, therefore, SHC should
prove the easiest algorithm to tune. Results for SHC are
shown in Figure 7. All characteristics, barring dimensional-
ity, show an improvement post-tuning. As the neighbour-
hood size is the range at which new solutions are gener-
ated, it is unsurprising that tuning improves algorithm per-
formance as boundary constraint ranges change. As the
number of objective function calculations is limited, despite
having a larger neighbourhood size, the ability of the algo-
rithm to effectively explore larger environments is still re-
stricted, therefore the average error does not decrease by as
much as may be expected, and the ability of the algorithm
to deal with increasing search space sizes improves only
slightly. SHC demonstrates a large increase in performance
and a greater ability to cope with more optima (a reduced
standard deviation) post-tuning. The parameter configura-
tions selected for the number of local optima, the ratio of
local optima and the smoothness all have a neighbourhood
size of around 50% of the search space size. We suggest that
the performance improvement for all of these characteristics
is actually derived from the algorithm having configured it-
self properly for the search space size used as a default for
all other characteristics, rather than tuning itself to best per-
form on any specific characteristic.

Conclusions and Future Work
In this paper we have built on previous studies of the perfor-
mance of nature-inspired algorithms on fitness landscapes
with different characteristics. Earlier work explored ‘out of
the box’ parameter configurations, and we futher develop
this by using an automated parameter configuration method-
ology. This allows us to study the effect of tuning on dif-
ferent algorithms, contributing significantly to the debate on

Figure 7: Summary of results for Stochastic Hill-Climbing
Algorithm.

when and how it is beneficial to tune specific algorithms.
We observe that algorithms broadly fall into three cat-

egories: algorithms which do not/sometimes/always bene-
fit from tuning by F-Racing. Dimensionality often offers
the most significant improvement post-tuning in algorithms,
particularly those with parameters that increase the breadth
of search space (swarming algorithms are significantly bet-
ter here than evolutionary algorithms). The methodology
presented here is easy to implement, is computationally in-
expensive, and offers considerably more information on the
performance of an algorithm than using a standard set of
benchmark problems. We hope that it will offer a frame-
work for the experimental comparison of nature-inspired al-
gorithms, as well as a useful set of heuristics for practitioners
to use in order to decide when and how to tune their meth-
ods. Future work will focus on a comparative study of tuning
techniques (i.e., in addition to F-Racing), and the applica-
tion of our insights to the predictive performance ranking of
methods on given problems.
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